Science.gov

Sample records for promyelocytic hl-60 leukemia

  1. Antiproliferative activity of various Uncaria tomentosa preparations on HL-60 promyelocytic leukemia cells.

    PubMed

    Pilarski, Radosław; Poczekaj-Kostrzewska, Magdalena; Ciesiołka, Danuta; Szyfter, Krzysztof; Gulewicz, Krzysztof

    2007-01-01

    The woody Amazonian vine Uncaria tomentosa (cat's claw) has been recently more and more popular all over the world as an immunomodulatory, antiinflammatory and anti-cancer remedy. This study investigates anti-proliferative potency of several cat's claw preparations with different quantitative and qualitative alkaloid contents on HL-60 acute promyelocytic human cells by applying trypan blue exclusion and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide reduction assay (MTT). By standardization and statistical comparison of the obtained results pteropodine and isomitraphylline are indicated to be most suitable for standardization of medical cat's claw preparations.

  2. Oxidative stress-mediated intrinsic apoptosis in human promyelocytic leukemia HL-60 cells induced by organic arsenicals

    PubMed Central

    Fan, Xiao-Yang; Chen, Xin-You; Liu, Yu-Jiao; Zhong, Hui-Min; Jiang, Feng-Lei; Liu, Yi

    2016-01-01

    Arsenic trioxide has shown the excellent therapeutic efficiency for acute promyelocytic leukemia. Nowadays, more and more research focuses on the design of the arsenic drugs, especially organic arsenicals, and on the mechanism of the inducing cell death. Here we have synthesized some organic arsenicals with Schiff base structure, which showed a better antitumor activity for three different kinds of cancer cell lines, namely HL-60, SGC 7901 and MCF-7. Compound 2a (2-(((4-(oxoarsanyl)phenyl)imino)methyl)phenol) and 2b (2-methoxy-4-(((4-(oxoarsanyl)phenyl)imino)methyl)phenol) were chosen for further mechanism study due to their best inhibitory activities for HL-60 cells, of which the half inhibitory concentration (IC50) were 0.77 μM and 0.51 μM, respectively. It was illustrated that 2a or 2b primarily induced the elevation of reactive oxygen species, decrease of glutathione level, collapse of mitochondrial membrane potential, release of cytochrome c, activation of Caspase-3 and apoptosis, whereas all of the phenomena can be eliminated by the addition of antioxidants. Therefore, we concluded that compound 2a and 2b can induce the oxidative stress-mediated intrinsic apoptosis in HL-60 cells. Both the simplicity of structure with Schiff base group and the better anticancer efficiency demonstrate that organic arsenicals are worthy of further exploration as a class of potent antitumor drugs. PMID:27432798

  3. The induction of monocytopoiesis in HL-60 promyelocytic leukemia cells is inhibited by hydroquinone, a toxic metabolite of benzene

    SciTech Connect

    Oliveira, N.L.

    1992-01-01

    Chronic exposure of humans to benzene has been shown to have a cytotoxic effect on hematopoietic progenitor cells in intermediate stages of differentiation which can lead to aplastic anemia and acute myelogenous leukemia. This thesis examined the effect of hydroquinone, a toxic metabolite of benzene found in the bone marrow, on the human promyelocytic leukemia cell line (HL-60) which can be induced to differentiate to both monocyte and myeloid cells, and thus has been used as a surrogate for a granulocyte/macrophage progenitor cell. Exposure of HL-60 cells to noncytotoxic concentrations of hydroquinone for three hours prior to induction with 12-O-tetradecanoyl phorbol-13-acetate caused a dose-dependent inhibition of the acquisition of characteristics of monocytic differentiation. These included adherence, nonspecific esterase activity and phagocytosis. Hydroquinone had no effect on cell proliferation. Hydroquinone appeared to be affecting maturation beyond the monoblast/promonocyte stages. Hydroquinone also prevented differentiation induced by 1, 25-dihydroxy vitamin D[sub 3], however, the block occurred after the acquisition of adherence. Hydroquinone at concentrations that inhibited monocytic differentiation had no effect on differentiation to granulocytes, suggesting that the block in the differentiation of these bipotential cells is at a step unique to the monocytic pathway. Hydroquinone was unable to prevent differentiation induced by the macrophage-derived cytokine interleukin-1, a differentiation factor for cells of the monocytic lineage. These data demonstrate that treatment of Hl-60 cells with hydroquinone prior to induction of differentiation prevents the acquisition of the monocytic phenotype induced by TPA or 1, 25(OH)[sub 2]D[sub 3] by a mechanism which at present is unknown, but which appears to be specific for the monocytic pathway. These results are of considerable significance for benzene hematotoxicity.

  4. Eugenol isolated from the essential oil of Eugenia caryophyllata induces a reactive oxygen species-mediated apoptosis in HL-60 human promyelocytic leukemia cells.

    PubMed

    Yoo, Chae-Bin; Han, Ki-Tae; Cho, Kyu-Seok; Ha, Joohun; Park, Hee-Juhn; Nam, Jung-Hwan; Kil, Uk-Hyun; Lee, Kyung-Tae

    2005-07-01

    Eugenol is a major component of essential oil isolated from the Eugenia caryophyllata (Myrtaceae), which has been widely used as a herbal drug. In this study, we investigated the effects of eugenol on the cytotoxicity, induction of apoptosis, and the putative pathways of its actions in human promyelocytic leukemia cells (HL-60) under the standard laboratory illumination. Eugenol-treated HL-60 cells displayed features of apoptosis including DNA fragmentation and formation of DNA ladders in agarose gel electrophoresis. We observed that eugenol transduced the apoptotic signal via ROS generation, thereby inducing mitochondrial permeability transition (MPT), reducing anti-apoptotic protein bcl-2 level, inducing cytochrome c release to the cytosol, and subsequent apoptotic cell death. Taken together, the present study demonstrated that ROS plays a critical role in eugenol-induced apoptosis in HL-60, and this is the first report on the mechanism of the anticancer effect of eugenol. PMID:15922856

  5. Induction of mitochondrial dependent apoptosis and cell cycle arrest in human promyelocytic leukemia HL-60 cells by an extract from Dorstenia psilurus: a spice from Cameroon

    PubMed Central

    2013-01-01

    Background The use of edible plants is an integral part of dietary behavior in the West region of Cameroon. Dorstenia psilurus (Moraceae) is widely used as spice and as medicinal plant for the treatment of several diseases in Cameroon. The aim of this study is to investigate the cytotoxic and apoptotic potential of methanol extract of D. psilurus in human promyelocytic leukemia (HL-60) cells and prostate cancer (PC-3) cells. Methods Cytotoxicity of D. psilurus extract was tested in HL-60 and PC-3 cells using 3-(4, 5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) reduction assay and flow cytometric methods Results The methanol extract of D. psilurus have significant in vitro cytotoxic activity in HL-60 cells and PC-3 cells with IC50 value of 12 ±1.54 μg/ml and 18 ± 0.45 μg/ml respectively after 48 h. The mechanism of antiproliferative activity showed that after 24 h, D. psilurus extract induces apoptosis on HL-60 cells by the generation of reactive oxygen species (ROS) along with concurrent loss of mitochondrial membrane potential, modification in the DNA distribution and enhance of G2/M phase cell cycle. Conclusion The extract induces apoptosis of HL-60 cells associated with ROS production, loss of mitochondrial membrane potential and apoptotic DNA fragmentation. PMID:24016040

  6. Copper(II) and uranyl(II) complexes with acylthiosemicarbazide: synthesis, characterization, antibacterial activity and effects on the growth of promyelocytic leukemia cells HL-60.

    PubMed

    Angelusiu, Madalina Veronica; Almajan, Gabriela Laura; Rosu, Tudor; Negoiu, Maria; Almajan, Eva-Ruxandra; Roy, Jenny

    2009-08-01

    New chelates of N(1)-[4-(4-X-phenylsulfonyl)benzoyl]-N(4)-butyl-thiosemicarbazide (X=H, Cl, Br) with Cu(2+) and UO(2)(2+) have been prepared and characterized by analytical and physico-chemical techniques such as magnetic susceptibility measurements, elemental and thermal analyses, electronic, ESR and IR spectral studies. Room temperature ESR spectra of Cu(II) complexes yield {g} values characteristic of distorted octahedral and pseudo-tetrahedral geometry. Infrared spectra indicate that complexes contain six-coordinate uranium atom with the ligand atoms arranged in an equatorial plane around the linear uranyl group. Effects of these complexes on the growth of human promyelocytic leukemia cells HL-60 and their antibacterial activity (against Staphylococcus epidermidis ATCC 14990, Bacillus subtilis ATCC 6633, Bacillus cereus ATCC 14579, Pseudomonas aeruginosa ATCC 9027 and Escherichia coli ATCC 11775 strains) were studied comparatively with that of free ligands. PMID:19356828

  7. Programmed Cell Death Induced by (−)-8,9-Dehydroneopeltolide in Human Promyelocytic Leukemia HL-60 Cells under Energy Stress Conditions

    PubMed Central

    Fuwa, Haruhiko; Sato, Mizuho; Sasaki, Makoto

    2014-01-01

    (+)-Neopeltolide is a marine macrolide natural product that exhibits potent antiproliferative activity against several human cancer cell lines. Previous study has established that this natural product primarily targets the complex III of the mitochondrial electron transport chain. However, the biochemical mode-of-actions of neopeltolide have not been investigated in detail. Here we report that (−)-8,9-dehydroneopeltolide (8,9-DNP), a more accessible synthetic analogue, shows potent cytotoxicity against human promyelocytic leukemia HL-60 cells preferentially under energy stress conditions. Nuclear morphology analysis, as well as DNA ladder assay, indicated that 8,9-DNP induced significant nuclear condensation/fragmentation and DNA fragmentation, and these events could be suppressed by preincubating the cells with a pan-caspase inhibitor, N-benzyloxycarbonyl-Val-Ala-Asp(OMe)-fluoromethylketone (zVAD). Immunoblot analysis demonstrated the release of cytochrome c from the mitochondria and the cleavage of full-length caspase-3 and poly(ADP-ribose) polymerase (PARP). These results indicated that 8,9-DNP induced caspase-dependent apoptotic programmed cell death under energy stress conditions. It was also found that 8,9-DNP induced non-apoptotic cell death in the presence/absence of zVAD under energy stress conditions. Immunoblot analysis showed the intracytosolic release of apoptosis-inducing factor (AIF), although it did not further translocate to the nucleus. It appears most likely that, in the presence of zVAD, 8,9-DNP triggered necrotic cell death as a result of severe intracellular ATP depletion. PMID:25419998

  8. Seed dormancy breaking diterpenoids from the liverwort Plagiochila sciophila and their differentiation inducing activity in human promyelocytic leukemia HL-60 cells.

    PubMed

    Kenmoku, Hiromichi; Tada, Hiroyuki; Oogushi, Megumi; Esumi, Tomoyuki; Takahashi, Hironobu; Noji, Masaaki; Sassa, Takeshi; Toyota, Masao; Asakawa, Yoshinori

    2014-07-01

    To obtain the structural diversity of bioactive compounds similar to cotylenins and fusicoccins that modulate 14-3-3 protein-protein interactions in eukaryotes, screening tests were carried out using the lettuce seed dormancy breaking-assay. An acetone extract of the liverwort Plagiochila sciophila exhibited significant activity against the seeds in the presence of the plant hormone abscisic acid. Activity-guided fractionation of the extract afforded the isolation of seven novel fusicoccane-type diterpenoids, named fusicosciophins A-E (1-5), 8-deacetyl (6) and 9-deacetyl fusicosciophin E (7). Their structures were determined by spectroscopic methods and X-ray crystallographic analyses. All the pure isolated compounds (1-7) exhibited moderate lettuce seed dormancy breaking activity. In addition, the differentiation-inducing activity and cytotoxicity of these isolates, together with fusicoccin A (FC-A) and all-trans retinoic acid (ATRA), were evaluated in human promyelocytic leukemia HL-60 cells and human mouth epidermal carcinoma KB cells, respectively. Fusicosciophins (2 and 4) and FC-A exhibited moderate differentiation-inducing activity (EC50 31.2-59.1 microM) compared with ATRA (EC50 0.3 microM), while 2, 4 and ATRA exhibited higher selectivity indices (IC50/EC50 >3.38-667) than FC-A (IC50/EC50 1.05). This is the first report on the isolation of fusicoccane-type diterpenoids from liverworts having seed dormancy breaking activity and differentiation-inducing activity in mammal cells. PMID:25230492

  9. Seed dormancy breaking diterpenoids from the liverwort Plagiochila sciophila and their differentiation inducing activity in human promyelocytic leukemia HL-60 cells.

    PubMed

    Kenmoku, Hiromichi; Tada, Hiroyuki; Oogushi, Megumi; Esumi, Tomoyuki; Takahashi, Hironobu; Noji, Masaaki; Sassa, Takeshi; Toyota, Masao; Asakawa, Yoshinori

    2014-07-01

    To obtain the structural diversity of bioactive compounds similar to cotylenins and fusicoccins that modulate 14-3-3 protein-protein interactions in eukaryotes, screening tests were carried out using the lettuce seed dormancy breaking-assay. An acetone extract of the liverwort Plagiochila sciophila exhibited significant activity against the seeds in the presence of the plant hormone abscisic acid. Activity-guided fractionation of the extract afforded the isolation of seven novel fusicoccane-type diterpenoids, named fusicosciophins A-E (1-5), 8-deacetyl (6) and 9-deacetyl fusicosciophin E (7). Their structures were determined by spectroscopic methods and X-ray crystallographic analyses. All the pure isolated compounds (1-7) exhibited moderate lettuce seed dormancy breaking activity. In addition, the differentiation-inducing activity and cytotoxicity of these isolates, together with fusicoccin A (FC-A) and all-trans retinoic acid (ATRA), were evaluated in human promyelocytic leukemia HL-60 cells and human mouth epidermal carcinoma KB cells, respectively. Fusicosciophins (2 and 4) and FC-A exhibited moderate differentiation-inducing activity (EC50 31.2-59.1 microM) compared with ATRA (EC50 0.3 microM), while 2, 4 and ATRA exhibited higher selectivity indices (IC50/EC50 >3.38-667) than FC-A (IC50/EC50 1.05). This is the first report on the isolation of fusicoccane-type diterpenoids from liverworts having seed dormancy breaking activity and differentiation-inducing activity in mammal cells.

  10. Gossypol-Induced Differentiation in Human Leukemia HL-60 Cells

    PubMed Central

    Wang, Wen-Qing; Li, Rong; Bai, Qing-Xian; Liu, Yu-Hong; Zhang, Wei-Ping; Wang, Juan-Hong; Wang, Zhe; Li, Yuan-Fei; Chen, Xie-Qun; Huang, Gao-Sheng

    2006-01-01

    The main treatment of leukemia is traditional radiochemotherapy, which is associated with serious side effects. In the past twenty years, differentiation was found as an important effective measure to treat leukemia with fewer side effects. Gossypol, a natural compound which has been used as an effective contraceptive drug, has been proposed to be a potent drug to treat leukemia, but the differentiation effect has not been studied. In the present study, we investigated the pro-differentiated effects, in vitro, of gossypol on the classic human myeloid leukemia HL-60 cell line. The effects of gossypol were investigated by using morphological changes, nitroblue tetrazolium (NBT) reduction, surface markers, cell-cycle analysis and Western blot analysis, etc. When HL-60 cells were incubated with low concentrations of gossypol (2-5μM) for 48hr, a prominent G0/G1 arrest was observed. At 96 hr of treatment, 90% of HL-60 cells differentiated, as evidenced by morphological changes, NBT reduction, and increase in cell surface expression of some molecules were detected. This study is the first to identify gossypol’s pro-differentiated effects on the leukemia cell line, and it induced differentiation through the PBK (PDZ-binding kinase)/TOPK (T-LAKcell-originated protein kinase) (PBK/TOPK) pathway. It is concluded that gossypol could induce differentiation in the leukemia HL-60 cells, and it may be a potential therapeutic agent, chemoprevention or chemotherapeutic adjuvant especially in combination drug therapy for leukemia. PMID:23675007

  11. Differentiated HL-60 promyelocytic leukaemia cells produce a factor inducing differentiation.

    PubMed

    Djulbegović, B; Christmas, S E; Moore, M

    1987-01-01

    The bipotential human promyelocytic leukaemia cell line HL-60 can be induced to differentiate into monocytic or granulocytic cells by treatment with 1,25 dihydroxyvitamin D3 (1,25(OH)2D3) or dimethylsulphoxide (DMSO) respectively. Conditioned media (CM) from 1,25(OH)2D3- or DMSO-treated cells were able to induce monocytic differentiation in fresh HL-60 cells as measured by induction of non-specific esterase and macrophage surface markers. CM from 1,25(OH)2D3-treated cells also led to a dose dependent loss of proliferative capacity in soft agar colony assays. These effects were not due to a toxic effect of the CM or to residual inducer present in the CM. gamma-interferon and GM-CSF were apparently not responsible for these effects. CM from the human histiocytic lymphoma cell line U937 led to only a low level of induction of macrophage differentiation in fresh HL-60 cells. The defect in HL-60 leukaemic cells may therefore be at the level of induction of an autonomously-produced differentiation factor.

  12. Protein kinase C-gamma is present in adriamycin resistant HL-60 leukemia cells.

    PubMed

    Aquino, A; Warren, B S; Omichinski, J; Hartman, K D; Glazer, R I

    1990-01-30

    The isoform pattern of protein kinase C (PKC) was examined in wild-type and Adriamycin-resistant (HL-60/AR) HL-60 leukemia cells. Analyses were carried out by immunoblotting with mouse monoclonal antibodies against PKC-alpha and PKC-beta and a rabbit polyclonal antibody against the variable (V3) region of PKC-gamma. HL-60/AR cells contained an equivalent level of PKC-alpha and a lower amount of PKC-beta than HL-60 cells. In contrast, only HL-60/AR cells contained PKC-gamma. These results indicate that the regulation of this family of isoenzymes is altered in drug-resistant cells. PMID:2302237

  13. The effect of aqueous cinnamon extract on the apoptotic process in acute myeloid leukemia HL-60 cells

    PubMed Central

    Assadollahi, Vahideh; Parivar, Kazem; Roudbari, Nasim Hayati; Khalatbary, Ali Reza; Motamedi, Masoumeh; Ezatpour, Behrouz; Dashti, Gholam Reza

    2013-01-01

    Background: Acute promyelocytic leukemia (APL) is an acute leukemia diagnosed by translocation of chromosomes 15 and 17 [T (15,17)] and aggregation of neoplastic promyelocytes which are incapable of being converted into mature cells. Today, many tend to use medicinal herbs in studies and clinical applications for treatment of cancers. Cinnamon with scientific name “cinnamomumzelanicum” is a shrub of Laurales order, lauraceae family with cinnamomum genus. It is a medicinal shrub with anti-proliferation effect on tumor cells. This study was conducted to determine the effects of aqueous cinnamon extract on HL-60 cells as a model for APL. Materials and Methods: In this in vitro experimental study, HL-60 cell line was cultured under the influence of cinnamon extract's concentrations of 0.01, 0.1, 1, and 2 mg/ml in with intervals of 24, 48, and 72 h. Growth inhibition and toxic effects of cinnamon extract were evaluated through tetrazolium salt reduction. The effect of this herb on the cell cycle was studied by flow cytometry. The Hoechst stain was used to detect apoptotic cell nuclei. Results: Cinnamon extract inhibited the growth of HL-60 cells as correlated with concentration and time. After 72 h of treating HL-60 cells with 0.01 mg/l cinnamon extract, the growth of cells was inhibited by 90.1%. Cinnamon extract stopped the cell cycle in G1 phase and the Hoechst staining verified the apoptotic process in those cells. Conclusion: Considering the inhibitory property of cinnamon extract, we recommend it as a single drug or besides other medications for treating promyelocytic leukemia. PMID:23977653

  14. Discovery of novel inducers of cellular differentiation using HL-60 promyelocytic cells.

    PubMed

    Mata-Greenwood, E; Ito, A; Westenburg, H; Cui, B; Mehta, R G; Kinghorn, A D; Pezzuto, J M

    2001-01-01

    Non-physiological inducers of terminal differentiation have been used as novel therapies for the prevention and therapy of cancer. We have used cultured HL-60 promyelocytic cells to monitor differentiation, proliferation and cell death events as induced by a large set of extracts derived from plants. Screening of more than 1400 extracts led to the discovery of 34 with potent activity (ED50 <8 mg/ml). Bioassay-guided fractionation led to the isolation of zapotin and 2',5,6-trimethoxyflavone as active principles from Casimiroa edulis, dibenzyltrisulfide and 2-[(phenylmethyl)dithio]ethanol as active principles from Petiveria alliacea, and desmethylrocaglamide from Aglaia ponapensis. Zapotin demonstrated the most favorable biological profile in that induction of differentiation correlated with proliferation arrest, and a lack of cytotoxicity. We conclude that the HL-60 cell model is a useful system for the discovery of novel pharmacophores with potential to suppress the process of carcinogenesis, and that flavonoids may be especially useful in this capacity.

  15. α-tomatine inhibits growth and induces apoptosis in HL-60 human myeloid leukemia cells

    PubMed Central

    HUANG, HUARONG; CHEN, SHAOHUA; VAN DOREN, JEREMIAH; LI, DONGLI; FARICHON, CHELSEA; HE, YAN; ZHANG, QIUYAN; ZHANG, KUN; CONNEY, ALLAN H; GOODIN, SUSAN; DU, ZHIYUN; ZHENG, XI

    2015-01-01

    α-tomatine is a glycoalkaloid that occurs naturally in tomatoes (Lycopersicon esculentum). In the present study, the effects of α-tomatine on human myeloid leukemia HL-60 cells were investigated. Treatment of HL-60 cells with α-tomatine resulted in growth inhibition and apoptosis in a concentration-dependent manner. Tomatidine, the aglycone of tomatine had little effect on the growth and apoptosis of HL-60 cells. Growth inhibition and apoptosis induced by α-tomatine in HL-60 cells was partially abrogated by addition of cholesterol indicating that interactions between α-tomatine and cell membrane-associated cholesterol may be important in mediating the effect of α-tomatine. Activation of nuclear factor-κB by the phorbol ester, 12-O-tetradecanoylphorbol-13-acetate failed to prevent apoptosis in HL-60 cells treated with α-tomatine. In animal experiments, it was found that treatment of mice with α-tomatine inhibited the growth of HL-60 xenografts in vivo. Results from the present study indicated that α-tomatine may have useful anti-leukemia activities. PMID:25625536

  16. Arsenic trioxide induces oxidative stress, DNA damage, and mitochondrial pathway of apoptosis in human leukemia (HL-60) cells

    PubMed Central

    2014-01-01

    Background Acute promyelocytic leukemia (APL) is a subtype of acute myeloid leukemia (AML), which accounts for approximately 10% of all acute myloid leukemia cases. It is a blood cancer that is formed by chromosomal mutation. Each year in the United States, APL affects about 1,500 patients of all age groups and causes approximately 1.2% of cancer deaths. Arsenic trioxide (ATO) has been used successfully for treatment of APL patients, and both induction and consolidated therapy have resulted in complete remission. Recently published studies from our laboratory have demonstrated that ATO pharmacology as an anti-leukemic drug is associated with cytotoxic and genotoxic effects in leukemia cells. Methods In the present study, we further investigated the detailed molecular mechanism of ATO-mediated intrinsic pathway of apoptosis; using HL-60 cells as a test model. Oxidative stress was assessed by spectrophotometric measurements of MDA and GSH levels while genotoxicity was determined by single cell gel electrophoresis (Comet assay). Apoptosis pathway was analyzed by Western blot analysis of Bax, Bcl2 and caspase 3 expression, as well as immunocytochemistry and confocal imaging of Bax and Cyt c translocation and mitochondrial membrane potential depolarization. Results ATO significantly (p < 0.05) induces oxidative stress, DNA damage, and caspase 3 activityin HL-60 cells in a dose-dependent manner. It also activated the intrinsic pathway of apoptosis by significantly modulating (p < 0.05) the expression and translocation of apoptotic molecules and decreasing the mitochondrial membrane potential in leukemia cells. Conclusion Taken together, our research demonstrated that ATO induces mitochondrial pathway of apoptosis in HL-60 cells. This apoptotic signaling is modulated via oxidative stress, DNA damage, and change in mitochondrial membrane potential, translocation and upregulation of apoptotic proteins leading programmed cell death. PMID:24887205

  17. Glycyrrhizin induces apoptosis in human stomach cancer KATO III and human promyelotic leukemia HL-60 cells.

    PubMed

    Hibasami, Hiroshige; Iwase, Hiroshi; Yoshioka, Kazumi; Takahashi, Hidehisa

    2005-08-01

    We have investigated the effects of glycyrrhizin (GL) on cell proliferations of human stomach cancer KATO III and promyelotic leukemia HL-60 cells, and on DNA of those cell lines. GL displayed growth inhibitory effect against KATO III and HL-60 cells. Morphological change showing apoptotic bodies was observed in the KATO III and HL-60 cells treated with GL. The fragmentation of DNA by GL to oligonucleosomal-sized fragments that is a characteristic of apoptosis was observed to be concentration- and time-dependent in both cell lines. Caspase inhibitors such as Z-VAD-FMK and Z-Asp-CH2-DCB suppressed the DNA fragmentation induced by GL. The data of the present study show that the suppression of KATO III and HL-60 cell-growth by GL results from the induction of apoptosis by GL, and that caspase is involved in the induction of apoptosis by GL in these cells. PMID:16012754

  18. Catalase regulates cell growth in HL60 human promyelocytic cells: evidence for growth regulation by H(2)O(2).

    PubMed

    Hachiya, Misao; Akashi, Makoto

    2005-03-01

    Reactive oxygen species (ROS) including hydrogen peroxide (H(2)O(2)) are generated constitutively in mammalian cells. Because of its relatively long life and high permeability across membranes, H(2)O(2) is thought to be an important second messenger. Generation of H(2)O(2) is increased in response to external insults, including radiation. Catalase is located at the peroxisome and scavenges H(2)O(2). In this study, we investigated the role of catalase in cell growth using the H(2)O(2)-resistant variant HP100-1 of human promyelocytic HL60 cells. HP100-1 cells had an almost 10-fold higher activity of catalase than HL60 cells without differences in levels of glutathione peroxidase, manganese superoxide dismutase (MnSOD), and copper-zinc SOD (CuZnSOD). HP100-1 cells had higher proliferative activity than HL60 cells. Treatment with catalase or the introduction of catalase cDNA into HL60 cells stimulated cell growth. Exposure of HP100-1 cells to a catalase inhibitor resulted in suppression of cell growth with concomitant increased levels of intracellular H(2)O(2). Moreover, exogenously added H(2)O(2) or depletion of glutathione suppressed cell growth in HL60 cells. Extracellular signal regulated kinase 1/2 (ERK1/2) was constitutively phosphorylated in HP100-1 cells but not in HL60 cells. Inhibition of the ERK1/2 pathway suppressed the growth of HP100-1 cells, but inhibition of p38 mitogen-activated protein kinase (p38MAPK) did not affect growth. Moreover, inhibition of catalase blocked the phosphorylation of ERK1/2 but not of p38MAPK in HP100-1 cells. Thus our results suggest that catalase activates the growth of HL60 cells through dismutation of H(2)O(2), leading to activation of the ERK1/2 pathway; H(2)O(2) is an important regulator of growth in HL60 cells.

  19. Regulated expression of the MRP8 and MRP14 genes during terminal differentiation of human promyelocytic leukemic HL-60 cells

    SciTech Connect

    Warner-Bartnicki, A.L.; Murao, S.; Collart, F.R.; Huberman, E.

    1992-02-14

    The calcium-binding proteins MRP8 and MRP14 are induced during monomyelocytic cell maturation and may mediate the growth arrest in differentiating HL-60 cells. We determined the levels of a protein complex (PC) containing MRP8 and MRP14 and investigated the mechanism by which the genes encoding these proteins are regulated in HL-60 cells treated with the differentiation-inducing agent mycophenolic acid. Elevated levels of the PC were found to directly parallel gains in the steady-state levels of MRP8 and MRP14 mRNA. Transcription studies with the use of nuclear run-on experiments revealed increased transcription initiation at the MRP8 and MRP14 promoters after MPA treatment. 1{alpha},25-Dihydroxyvitamin D{sub 3}, which induces HL-60 cell differentiation by another mechanism, was also found to increase transcription initiation at the MRP8 and MRP14 promoters, suggesting that this initiation is the major control of MRP8 and MRP14 gene expression during terminal differentiation of human promyelocytic cells.

  20. 24- and 26-homo-1,25-dihydroxyvitamin D/sub 3/: preferential activity in inducing differentiation of human leukemia cells HL-60 in vitro inducing differentiation of human leukemia cells HL-60 in vitro

    SciTech Connect

    Ostrem, V.K.; Tanaka, Y.; Prahl, J.; DeLuca, H.F.; Ikekawa, N.

    1987-05-01

    1,25-Dihydroxyvitamin D/sub 3/, the hormonal form of vitamin D/sub 3/, promotes the differentiation of HL-60 human promyelocytic leukemia cells into monocytes. Differentiation changes include the induction of phagocytosis, the initiation of nitroblue tetrazolium-reducing activity, and the appearance of nonspecific acid esterase. The authors have found that the 24-homo- and 26-homo-1,25-dihydroxyvitamin D/sub 3/ and their ..delta../sup 22/ analogues are 10-fold more potent than 1,25-dihydroxyvitamin D/sub 3/ in inducing differentiation of HL-60 cells in vitro. In vivo, these analogues show activity similar to 1,25-dihydroxy-vitamin D/sub 3/ in stimulating intestinal calcium transport in vitamin D-deficient rats. The 24-homoanalogues are significantly less active, whereas the 26-homo derivatives are more active than the natural hormone in mobilizing calcium from bone. This unusual activity pattern cannot be explained on the basis of the affinity of these analogues for the 1,25-dihydroxy-vitamin D/sub 3/ intracellular receptor: both 24-homo- and 26-homo-1,25-dihydroxyvitamin D/sub 3/ have the same effectiveness as 1,25-dihydroxyvitamin D/sub 3/ in displacing the tritiated hormone from its receptor in rat intestine of HL-60 cells. These analogues of 1,25-dihydroxyvitamin D/sub 3/ may be of some interest as possible therapeutic substances, or as tools in understanding the action of 1,25-dihydroxyvitamin D/sub 3/ in inducing differentiation.

  1. BCL-xL/MCL-1 inhibition and RARγ antagonism work cooperatively in human HL60 leukemia cells.

    PubMed

    Perri, Mariarita; Yap, Jeremy L; Yu, Jianshi; Cione, Erika; Fletcher, Steven; Kane, Maureen A

    2014-10-01

    The acute promyelocytic leukemia (APL) subtype of acute myeloid leukemia (AML) is characterized by chromosomal translocations that result in fusion proteins, including the promyelocytic leukemia-retinoic acid receptor, alpha fusion protein (PML-RARα). All-trans retinoic acid (atRA) treatment is the standard drug treatment for APL yielding cure rates > 80% by activating transcription and proteasomal degradation of retinoic acid receptor, alpha (RARα). Whereas combination therapy with As2O3 has increased survival further, patients that experience relapse and are refractory to atRA and/or As2O3 is a clinically significant problem. BCL-2 family proteins regulate apoptosis and over-expression of anti-apoptotic B-cell leukemia/lymphoma 2 (BCL-2) family proteins has been associated with chemotherapeutic resistance in APL including impairment of the ability of atRA to induce growth arrest and differentiation. Here we investigated the novel BH3 domain mimetic, JY-1-106, which antagonizes the anti-apoptotic BCL-2 family members B-cell lymphoma-extra large (BCL-xL) and myeloid cell leukemia-1 (MCL-1) alone and in combination with retinoids including atRA, AM580 (RARα agonist), and SR11253 (RARγ antagonist). JY-1-106 reduced cell viability in HL-60 cells alone and in combination with retinoids. The combination of JY-1-106 and SR11253 had the greatest impact on cell viability by stimulating apoptosis. These studies indicate that dual BCL-xL/MCL-1 inhibitors and retinoids could work cooperatively in leukemia treatment.

  2. BCL-xL/MCL-1 inhibition and RARγ antagonism work cooperatively in human HL60 leukemia cells

    PubMed Central

    Perri, Mariarita; Yap, Jeremy L.; Cione, Erika; Fletcher, Steven; Kane, Maureen A.

    2015-01-01

    The acute promyelocytic leukemia (APL) subtype of acute myeloid leukemia (AML) is characterized by chromosomal translocations that result in fusion proteins, including the promyelocytic leukemia-retinoic acid receptor, alpha fusion protein (PML-RARα). All-trans retinoic acid (atRA) treatment is the standard drug treatment for APL yielding cure rates >80% by activating transcription and proteasomal degradation of retinoic acid receptor, alpha (RARα). Whereas combination therapy with As2O3 has increased survival further, patients that experience relapse and are refractory to atRA and/or As2O3 is a clinically significant problem. BCL-2 family proteins regulate apoptosis and over-expression of anti-apoptotic B-cell leukemia/lymphoma 2 (BCL-2) family proteins has been associated with chemotherapeutic resistance in APL including impairment of the ability of atRA to induce growth arrest and differentiation. Here we investigated the novel BH3 domain mimetic, JY-1-106, which antagonizes the anti-apoptotic BCL-2 family members B-cell lymphoma-extra large (BCL-xL) and myeloid cell leukemia-1 (MCL-1) alone and in combination with retinoids including atRA, AM580 (RARα agonist), and SR11253 (RARγ antagonist). JY-1-106 reduced cell viability in HL-60 cells alone and in combination with retinoids. The combination of JY-1-106 and SR11253 had the greatest impact on cell viability by stimulating apoptosis. These studies indicate that dual BCL-xL/MCL-1 inhibitors and retinoids could work cooperatively in leukemia treatment. PMID:25088254

  3. BCL-x{sub L}/MCL-1 inhibition and RARγ antagonism work cooperatively in human HL60 leukemia cells

    SciTech Connect

    Perri, Mariarita; Yap, Jeremy L.; Yu, Jianshi; Cione, Erika; Fletcher, Steven; Kane, Maureen A.

    2014-10-01

    The acute promyelocytic leukemia (APL) subtype of acute myeloid leukemia (AML) is characterized by chromosomal translocations that result in fusion proteins, including the promyelocytic leukemia–retinoic acid receptor, alpha fusion protein (PML–RARα). All-trans retinoic acid (atRA) treatment is the standard drug treatment for APL yielding cure rates >80% by activating transcription and proteasomal degradation of retinoic acid receptor, alpha (RARα). Whereas combination therapy with As{sub 2}O{sub 3} has increased survival further, patients that experience relapse and are refractory to atRA and/or As{sub 2}O{sub 3} is a clinically significant problem. BCL-2 family proteins regulate apoptosis and over-expression of anti-apoptotic B-cell leukemia/lymphoma 2 (BCL-2) family proteins has been associated with chemotherapeutic resistance in APL including impairment of the ability of atRA to induce growth arrest and differentiation. Here we investigated the novel BH3 domain mimetic, JY-1-106, which antagonizes the anti-apoptotic BCL-2 family members B-cell lymphoma-extra large (BCL-x{sub L}) and myeloid cell leukemia-1 (MCL-1) alone and in combination with retinoids including atRA, AM580 (RARα agonist), and SR11253 (RARγ antagonist). JY-1-106 reduced cell viability in HL-60 cells alone and in combination with retinoids. The combination of JY-1-106 and SR11253 had the greatest impact on cell viability by stimulating apoptosis. These studies indicate that dual BCL-x{sub L}/MCL-1 inhibitors and retinoids could work cooperatively in leukemia treatment. - Highlights: • Novel Bcl-x{sub L}/Mcl-1 inhibitor JY-1-106 reduces HL60 cell viability. • JY-1-106 is investigated in combination with retinoic acid, AM580, and SR11253. • AM580 is an RARα agonist; SR11253 is an RARγ antagonist. • Combined use of JY-1-106/SR11253 exhibited the greatest cell viability reduction. • JY-1-106 alone or in combination with retinoids induces apoptosis.

  4. The role of p38 MAPK activation in auranofin-induced apoptosis of human promyelocytic leukaemia HL-60 cells

    PubMed Central

    Park, Seon-Joo; Kim, In-Sook

    2005-01-01

    In a previous study, we reported an antileukaemic activity of auranofin (AF), demonstrating its dual effects: on the induction of apoptotic cell death and its synergistic action with retinoic acid on cell differentiation. In this study, we investigated the downstream signalling events of AF-induced apoptosis to determine the molecular mechanisms of AF activity. Treatment of HL-60 cells with AF induced apoptosis in a concentration- and time-dependent manner. Western blot analysis showed that AF-induced apoptosis was accompanied by the activation of caspase-8, caspase-9, and caspase-3, and the release of cytochrome c from the mitochondria. The phosphorylation and kinase activities of p38 mitogen-activated protein kinase (p38 MAPK) increased gradually until 12 h after AF (2 μM) treatment, and p38 MAPK was also activated concentration-dependently. Pretreatment with SB203580, a specific inhibitor of p38 MAPK, significantly blocked DNA fragmentation and the cleavage of procaspase-8, procaspase-3, and poly-ADP-ribose polymerase (PARP), whereas SB203580 alone had no effect. Reactive oxygen species (ROS) were also detected within 1 h after AF treatment, and the antioxidant N-acetyl-L-cysteine (NAC) effectively protected the cells from apoptosis by inhibiting the phosphorylation of p38 MAPK and the activation of caspases. These results suggest that ROS generation and the subsequent activation of p38 MAPK are essential for the proapoptotic effects of AF in human promyelocytic leukaemia HL-60 cells. PMID:16086031

  5. Microarray analysis of responsible genes in increased growth rate in the subline of HL60 (HL60RG) cells.

    PubMed

    Luan, Yang; Kogi, Mieko; Rajaguru, Palanisamy; Ren, Jin; Yamaguchi, Teruhide; Suzuki, Kazuhiro; Suzuki, Takayoshi

    2012-03-01

    HL60RG, a subline of human promyelocytic leukemia HL60 cells, has a increased growth rate than their parental cells. To gain information of the mechanisms involved in the increased growth rate of HL60RG, we performed a multiplex fluorescence in situ hybridization (M-FISH), standard cytogenetics analysis (G-banding) and genome scan using 10K SNP mapping array on both cell types. Characteristic genomic alterations in HL60RG cells were identified including uniparental disomy (UPD) of chromosome 1, and hemizygous deletion in 10p and 11p. However, no such defects were observed in HL60 cells. Changes in gene expression in HL60RG cells were determined using expression arrays (Affymetrix GeneChip, HU133A). Candidate genes associated with the rapid growth of HL60RG cells were identified. Two tumor necrosis factor receptors, TNFRSF1B (type II tumor necrosis factor-α receptor) and TNFRSF8 (also known as a tumor marker CD30), which are adjacently located on chromosome 1 showed opposing changes in gene expression in HL60RG cells-over-expression of TNFRSF8 and repression of TNFRSF1B. Differences in the DNA methylation status in the transcriptional regulatory regions of both genes between HL60 and HL60RG was detected by a methylation-specific PCR assay. In conclusion, alterations in chromosome and gene expression in HL60RG may be associated with increased growth rate.

  6. Ganoderma lucidum polysaccharide exerts anti-tumor activity via MAPK pathways in HL-60 acute leukemia cells.

    PubMed

    Yang, Guohua; Yang, Lei; Zhuang, Yun; Qian, Xifeng; Shen, Yunfeng

    2016-01-01

    In this study, we investigated the anti-tumor activity both in vitro and in vivo of a polysaccharide obtained from Ganoderma lucidum on HL-60 acute myeloid leukemia cells, and focused on its targeting effect on mitogen-activated protein kinase (MAPK) pathways. It was found by the methods such as western blot and flow cytometry (FCM), that G. lucidum polysaccharide (GLP) blocked the extracellular signal-regulated kinase/MAPK signaling pathway, simultaneously activated p38 and JNK MAPK pathways, and therefore regulated their downstream genes and proteins, including p53, c-myc, c-fos, c-jun, Bcl-2, Bax, cleaved caspase-3 and cyclin D1. As a result, cycle arrest and apoptosis of HL-60 cells were induced. Therefore, GLP exerted anti-tumor activity via MAPK pathways in HL-60 acute leukemia cells.

  7. Activation of 2',5'-oligoadenylate synthetase activity on induction of HL-60 leukemia cell differentiation.

    PubMed Central

    Schwartz, E L; Nilson, L A

    1989-01-01

    A 27-fold increase in 2',5'-oligoadenylate synthetase activity, an enzyme associated with the antiproliferative actions of interferon (IFN), was observed after treatment of HL-60 human leukemia cells with dimethyl sulfoxide (DMSO), an inducer of granulocytic differentiation of the cells. Enzyme activity was elevated after 24 h of exposure to DMSO, was maximal at 48 hours, and declined thereafter. A comparable increase was observed after treatment with 1 U of alpha interferon (IFN-alpha) per ml or 8 U of beta interferon (IFN-beta) per ml. Elevated levels of expression of other IFN-inducible genes, including type I histocompatibility antigen (HLA-B) mRNA and 2',5'-oligoadenylate phosphodiesterase activity, were also observed with DMSO treatment. DMSO-treated HL-60 cells had an increased amount of a 1.8-kilobase mRNA for oligoadenylate [oligo(A)] synthetase when compared with that of control cells; both DMSO- and IFN-treated HL-60 cells also expressed 1.6-, 3.4-, and 4.3-kilobase mRNA. The increase in both oligo(A) synthetase activity and mRNA levels was inhibited by polyclonal antiserum to human IFN-alpha; however, no IFN-alpha mRNA could be detected in the cells. Antiserum to IFN-beta or gamma interferon (IFN-gamma) had no effect on oligo(A) synthetase expression or activity nor was there any detectable IFN-beta 1 or IFN-beta 2 mRNA in the cells. The anti-IFN-alpha serum did not block the elevation of HLA-B mRNA in DMSO-treated cells. These observations suggest that the increased expression of oligo(A) synthetase in DMSO-treated cells may be mediated by the release of an IFN-alpha-like factor; however, the levels of any IFN-alpha mRNA produced in the cells were extremely low. Images PMID:2476665

  8. Differential cell fates induced by all-trans retinoic acid-treated HL-60 human leukemia cells.

    PubMed

    Ozeki, Munetaka; Shively, John E

    2008-09-01

    HL-60 human leukemia cells, differentiated into a neutrophil lineage by all-trans retinoic acid (ATRA) treatment, express three members of the carcinoembryonic antigen (CEA) gene family, CEA-related cell adhesion molecule 1 (CEACAM1; CD66a), CEACAM3 (CD66d), and CEACAM6 (CD66c). CD66d is a neutrophil lineage-specific marker, and CD66a and CD66c are found on epithelial and other cells. HL-60 cells continuously treated with ATRA underwent apoptosis, and cells transiently treated for 1 day underwent cell-cycle arrest, entered into senescence, and exhibited reduced apoptosis with CD66-positive cells accounting for the majority of live cells. CD66 antigens were also induced in NB4 leukemic cells upon continuous treatment with ATRA. NB4 cells underwent apoptosis with a higher frequency in transient versus continuous-treated cells (38% vs. 19% at Day 5), in contrast to HL-60 cells that underwent cell-cycle arrest and senescence when transiently treated with ATRA. CD66 antigens were not induced in transient, ATRA-treated NB4 cells compared with HL-60 cells. Cell-cycle arrest in HL-60 cells involved reduction in expression levels of p21, cyclins D and E, while Rb1 exhibited reduction in protein levels without changes in mRNA levels over the time course of ATRA treatment. Analysis of several proapoptotic proteins implicated the activation of calpain and cleavage of Bax in the intrinsic apoptotic pathway, similar to published studies about the apoptosis of neutrophils. CD1d expression was also induced by ATRA in HL-60 cells and ligation with anti-CD1d antibody-induced apoptosis. In contrast, CD1d-positive primary monocytes were protected from spontaneous apoptosis by CD1d ligation. These studies demonstrate distinct cell fates for ATRA-treated HL-60 cells that provide new insights into ATRA-induced cell differentiation.

  9. Acute Promyelocytic Leukemia

    PubMed Central

    Kingsley, Edwin C.; Durie, Brian G. M.; Garewal, Harinder S.

    1987-01-01

    Acute promyelocytic leukemia (APL) is a subtype of acute myelogenous leukemia frequently associated with disseminated intravascular coagulation (DIC). Data on 11 patients with APL treated at our institution were analyzed and compared with those of 147 published cases. Most had a bleeding diathesis at presentation and evidence of DIC eventually developed in all. Seven patients (64%) showed the t(15;17)(q22;q21) karyotype or a similar translocation. Using a chemotherapy induction regimen containing an anthracycline, complete remission, requiring a total of 14 courses of treatment, was achieved in six patients (55%). The median duration of response and median survival for complete responders were 10 and 15 months, respectively. Three patients (27%) died of bleeding complications during induction therapy. The tritiated-thymidine labeling index of leukemia cells predicted which patients would achieve a complete remission. Review of six studies of 147 patients with APL from the past 12 years supports the use of a chemotherapy induction regimen containing anthracycline or amsacrine and heparin for the treatment of DIC. PMID:3472414

  10. Enhancement of caffeic acid phenethyl ester on all-trans retinoic acid-induced differentiation in human leukemia HL-60 cells

    SciTech Connect

    Kuo, H.-C.; Kuo, W.-H.; Lee, Y.-J.; Wang, C.-J.; Tseng, T.-H. . E-mail: tht@csmu.edu.tw

    2006-10-01

    All-trans retinoic acid (ATRA) induces complete remission in a high proportion of patients with acute promyelocytic leukemia (APL); however, the response is sometimes very slow. Furthermore, relapse and resistance to treatment often occur despite continued treatment with ATRA. Thereafter, combination treatment strategies have been suggested to circumvent these problems. The present study demonstrates that caffeic acid phenethyl ester (CAPE), a major component of honeybee propolis, enhanced ATRA-induced granulocytic differentiation in HL-60, a human promyelocytic cell line. The differentiation was assessed by Wright-Giemsa stain, nitroblue tetrazolium reduction, and membrane differentiation marker CD11b. In addition, CAPE enhanced ATRA-induced cell cycle arrest at the G1 phase by decreasing the association of cdk2-cyclin E complex. Finally, it was demonstrated that CAPE promoted the ATRA-mediated nuclear transcription activation of RAR{alpha} assessed by EMSA assay and enhanced the expression of target genes including RAR{alpha}, C/EBP{epsilon}, and p21 protein resulting in the differentiation development of leukemia. It is suggested that CAPE possesses the potential to enhance the efficiency of ATRA in the differentiation therapy of APL.

  11. Studies of the effect of 1,25-dihydroxycholecalciferol on the proliferation and differentiation of the human promyelocytic leukaemia cell line HL-60.

    PubMed

    Djulbegović, B; Christmas, S E; Evans, G; Moore, M

    1986-01-01

    Treatment of the human promyelocytic leukaemia cell line HL-60 with 1,25(OH)2D3, the active metabolite of vitamin D3, led to a dose- and time-dependent inhibition of growth and 3H-TdR incorporation at the population level. A similar effect was noted at the single cell level in clonogenic assays and autoradiographic experiments. Flow cytometry indicated that there was an arrest of cells in the G0/G1 phase of the cell cycle. Parallel to the loss of proliferative capacity 1,25(OH)2D3 induced differentiation of HL-60 into monocyte/macrophages as measured by the enzyme NSE and the macrophage membrane antigen recognised by the monoclonal antibody EB11 as well as by morphological changes. These findings reinforce the concept of concordant induction of differentiation and loss of proliferative capacity and demonstrate that the latter occurs not only at the population level but also at the single cell level in this system. In limiting dilution assays in liquid culture there was evidence for positive interactions between HL-60 cells as untreated cells gave less colonies at low dilutions than would have been expected by Poisson statistical analysis. In the presence of 10(-8) M 1,25(OH)2D3 more complex growth parameters were noted indicating the involvement of both positive and negative cellular interactions.

  12. Pinoresinol inhibits proliferation and induces differentiation on human HL60 leukemia cells.

    PubMed

    Sepporta, Maria Vittoria; Mazza, Teresa; Morozzi, Guido; Fabiani, Roberto

    2013-01-01

    Pinoresinol (PIN), one of the simplest lignans, is the precursor of other dietary lignans that are present in whole-grain cereals, legumes, fruits, and other vegetables. Several experimental and epidemiological evidences suggest that lignans may prevent human cancer in different organs. In this study we investigated the chemopreventive properties of PIN on cell lines derived from different sites either expressing or not the functional tumor suppressor protein p53. It was found that PIN inhibited the proliferation of p53 wild type colon and prostate tumor cells (HCT116 and LNCaP) while in breast cells the inhibition of growth was observed only in p53 mutant cells (MDA-MB-231). A potent antiproliferative activity of PIN was also observed on p53 null cells HL60 (IC50% 8 μM), their multidrug resistant variant HL60R (IC50% 32 μM) and K562. On HL60 cells, PIN caused a block of cell cycle in the G0/G1 phase, induced a weak proapoptotic effect but it was a good trigger of differentiation (NBT reduction and CD11b expression). PIN caused an upregulation of the CDK inhibitor p21(WAF1/Cip1) both at mRNA and protein levels so suggesting that this could be a mechanism by which PIN reduced proliferation and induced differentiation on HL60 cells.

  13. Ultraviolet light-emitting diode irradiation-induced cell death in HL-60 human leukemia cells in vitro

    PubMed Central

    XIE, DONG; SUN, YAN; WANG, LINGZHEN; LI, XIAOLING; ZANG, CHUANNONG; ZHI, YUNLAI; SUN, LIRONG

    2016-01-01

    Ultraviolet (UV) radiation is considered to be a potent cell-damaging agent in various cell lineages; however, the effect of UV light-emitting diode (LED) irradiation on human cells remains unclear. The aim of the present study was to examine the effect of UV LED irradiation emitting at 280 nm on cultured HL-60 human leukemia cells, and to explore the underlying mechanisms. HL-60 cells were irradiated with UV LED (8, 15, 30 and 60 J/m2) and incubated for 2 h after irradiation. The rates of cell proliferation and apoptosis, the cell cycle profiles and the mRNA expression of B-cell lymphoma 2 (Bcl-2) were detected using cell counting kit-8, multicaspase assays, propidium iodide staining and reverse transcription-quantitative polymerase chain reaction, respectively. The results showed that UV LED irradiation (8–60 J/m2) inhibited the proliferation of HL-60 cells in a dose-dependent manner. UV LED at 8–30 J/m2 induced dose-dependent apoptosis and G0/G1 cell cycle arrest, and inhibited the expression of Bcl-2 mRNA, while UV LED at 60 J/m2 induced necrosis. In conclusion, 280 nm UV LED irradiation inhibits proliferation and induces apoptosis and necrosis in cultured HL-60 cells. In addition, the cell cycle arrest at the G0/G1 phase and the downregulation of Bcl-2 mRNA expression were shown to be involved in UV LED-induced apoptosis. PMID:26820261

  14. Sonodynamic therapy induces apoptosis of human leukemia HL-60 cells in the presence of protoporphyrin IX.

    PubMed

    Su, Xiaomin; Wang, Xiaobing; Zhang, Kun; Yang, Shuang; Liu, Quanhong; Leung, Albert W; Xu, Chuanshan; Wang, Pan

    2016-04-01

    Sonodynamic therapy (SDT) is expected to be a novel therapeutic strategy for tumor. The protoporphyrin IX disodium salt (PpIX), a photosensitizer, can be activated by ultrasound. The present study aims to investigate apoptosis of HL-60 cells induced by PpIX-mediated SDT. 3-(4, 5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assay was adopted to examine cell toxicity. Apoptosis was detected using Annexin V-PE/7-amino-actinomycin D (7-AAD) double staining. Detection of apoptotic bodies was examined by Hoechst33342 (HO) staining. Western blotting was used to analyze the protein of caspase-3 and poly ADP-ribose polymerase (PARP). Intracellular reactive oxygen species (ROS) was detected by a flow cytometer after exposures. Compared with PpIX alone and ultrasound alone groups, the synergistic cytotoxicity of PpIX plus ultrasound were significantly boosted. In addition, as determined by Annexin V-PE/7-AAD staining, SDT significantly induced HL-60 cell apoptosis, the obvious nuclear condensation was also found with HO staining at 4 hours post-SDT treatment. Furthermore, Western blotting showed visible enhancement of caspase-3 and PARP cleavage in this process. Besides, intracellular ROS production was significantly enhanced after SDT. Our findings demonstrate that PpIX-mediated SDT could induce apoptosis on HL-60 cells, suggesting that apoptosis is an important mechanism of cell death induced by PpIX-mediated SDT. PMID:26891272

  15. Cytotoxic effects of tetracycline analogues (doxycycline, minocycline and COL-3) in acute myeloid leukemia HL-60 cells.

    PubMed

    Song, Hairong; Fares, Mona; Maguire, Kim R; Sidén, Ake; Potácová, Zuzana

    2014-01-01

    Tetracycline analogues (TCNAs) have been shown to inhibit matrix metalloproteinases and to induce apoptosis in several cancer cell types. In the present study, the cytotoxic effects of TCNAs doxycycline (DOXY), minocycline (MINO) and chemically modified tetracycline-3 (COL-3) were investigated in the human acute myeloid leukemia HL-60 cell line. Cells were incubated with TCNAs in final concentrations of 0.5-100 µg/ml for 24 h. Viability of the leukemic cells was inhibited in a concentration-dependent manner using resazurin assay. The estimated IC50s were 9.2 µg/ml for DOXY, 9.9 µg/ml for MINO and 1.3 µg/ml for COL-3. All three TCNAs induced potent cytotoxic effects and cell death. Apoptosis, which was assessed by morphological changes and annexin V positivity, was concentration- and time-dependent following incubation with any one of the drugs. TCNAs induced DNA double strand breaks soon after treatment commenced as detected by γH2AX and western blot. The loss of mitochondrial membrane potential (Δψm), caspase activation and cleavage of PARP and Bcl-2 were observed; however, the sequence of events differed among the drugs. Pancaspase inhibitor Z-VAD-FMK improved survival of TCNAs-treated cells and decreased TCNAs-induced apoptosis. In summary, we demonstrated that TCNAs had a cytotoxic effect on the HL-60 leukemic cell line. Apoptosis was induced via mitochondria-mediated and caspase-dependent pathways in HL-60 cells by all three TCNAs. COL-3 exerted the strongest anti-proliferative and pro-apoptotic effects in concentrations that have been achieved in human plasma in reported clinical trials. These results indicate that there is a therapeutic potential of TCNAs in leukemia.

  16. Nicotine induces chromatin changes and c-Jun up-regulation in HL-60 leukemia cells.

    PubMed

    Landais, Emilie; El-Khoury, Victoria; Prevost, Alain; Dufer, Jean; Liautaud-Roger, Françoise

    2005-12-01

    Although nicotine has been implicated as a potential factor in the pathogenesis of human cancer, its mechanisms of action regarding cancer development remain largely unknown. HL-60 cells were used to investigate the effects of a short-term treatment with nicotine at concentrations found in the blood of smokers. The findings show that nicotine induces chromatin decondensation, histone H3 acetylation and up-regulation of the c-Jun transcription factor mRNA. This increase is inhibited by mecamylamine, a nicotinic receptor antagonist, suggesting that nicotine alters cellular function directly via nicotinic acetylcholine receptors and may then play a role in cell physiology and tumor promotion.

  17. In Vitro Antioxidant and Antiproliferative Activities of Novel Orange Peel Extract and It's Fractions on Leukemia HL-60 Cells.

    PubMed

    Diab, Kawthar A E; Shafik, Reham Ezzat; Yasuda, Shin

    2015-01-01

    In the present work, novel orange peel was extracted with 100%EtOH (ethanol) and fractionated into four fractions namely F1, F2, F3, F4 which were eluted from paper chromatographs using 100%EtOH, 80%EtOH, 50%EtOH and pure water respectively. The crude extract and its four fractions were evaluated for their total polyphenol content (TPC), total flavonoid content (TFC) and radical scavenging activity using DPPH (1,1-diphenyl-2-picrylhydrazyl) assay. Their cytotoxic activity using WST assay and DNA damage by agarose gel electrophoresis were also evaluated in a human leukemia HL-60 cell line. The findings revealed that F4 had the highest TPC followed by crude extract, F2, F3 and F1. However, the crude extract had the highest TFC followed by F4, F3, F2, and F1. Depending on the values of EC50 and trolox equivalent antioxidant capacity, F4 possessed the strongest antioxidant activity while F1 and F2 displayed weak antioxidant activity. Further, incubation HL-60 cells with extract/fractions for 24h caused an inhibition of cell viability in a concentration- dependent manner. F3 and F4 exhibited a high antiproliferative activity with a narrow range of IC50 values (45.9 - 48.9 μg/ml). Crude extract exhibited the weakest antiproliferative activity with an IC50 value of 314.89 μg/ml. Analysis of DNA fragmentation displayed DNA degradation in the form of a smear-type pattern upon agarose gel after incubation of HL-60 cells with F3 and F4 for 6 h. Overall, F3 and F4 appear to be good sources of phytochemicals with antioxidant and potential anticancer activities. PMID:26514490

  18. Neutrophil elastase activity in differentiating HL-60 promyelocytes is decreased by culture with ethanol and elastase deficient neutrophils are produced in alcoholics

    SciTech Connect

    Sachs, C.; Christianson, R.; Pratt, P.; Lynn, W.

    1987-05-01

    Serum-free culture of HL-60 in the presence of recombinant Granulocyte-Macrophage Colony Stimulating Factor in four days elicits a five-fold increase in esterolytic neutrophil elastase (NE) like activity measured with methoxy-succinyl-ala-ala-pro-val p-nitroanilide and purified NE standard but does not cause terminal differentiation. Simultaneous exposure to 0.2, 0.4, or 0.6% (vol./vol.) ethanol blocks this increase in NE activity. Exposure to 0.85% ethanol promotes terminal differentiation to elastase-deficient granulocytes which as been described using DMSO. To ascertain if ethanol may have similar effects on granulocytic differentiation in vivo, they compared oxidase and elastase activities of PMN's in male alcoholics on a binge (ethanol > 200 mg/dl.). In 29 patients an average of 872 (+/- 237) (SD) ng./10/sup 6/ PMN's of active NE was found compared to 1571 (+/- 177) in 13 controls. Patients admitted for treatment of alcoholism had similar NE activity in 3-4 days, showed a slight increase in activity within one week and had NE activity comparable to controls within 2-3 weeks. These findings support the previous observation that smoking related emphysema is less prevalent and severe in patients who regularly consume alcohol. They conclude that ethanol may visibly alter responsiveness of promyelocytic precursors to regulatory differentiating factors.

  19. Nano-hole induction by nanodiamond and nanoplatinum liquid, DPV576, reverses multidrug resistance in human myeloid leukemia (HL60/AR)

    PubMed Central

    Ghoneum, Alia; Sharma, Shivani; Gimzewski, James

    2013-01-01

    Recently nanoparticles have been extensively studied and have proven to be a promising candidate for cancer treatment and diagnosis. In the current study, we examined the chemo-sensitizing activity of a mixture of nanodiamond (ND) and nanoplatinum (NP) solution known as DPV576, against multidrug-resistant (MDR) human myeloid leukemia (HL60/AR) and MDR-sensitive cells (HL60). Cancer cells were cultured with different concentrations of daunorubicin (DNR) (1 × 10 −9−1 × 10 −6 M) in the presence of selected concentrations of DPV576 (2.5%–10% v/v). Cancer cell survival was determined by MTT assay, drug accumulation by flow cytometry and confocal laser scanning microscopy (CLSM), and holes and structural changes by atomic force microscopy (AFM). Co-treatment of HL60/AR cells with DNR plus DPV576 resulted in the reduction of the IC50 to 1/4th. This was associated with increased incidences of holes inside the cells as compared with control untreated cells. On the other hand, HL60 cells did not show changes in their drug accumulation post-treatment with DPV576 and DNR. We conclude that DPV576 is an effective chemo-sensitizer as indicated by the reversal of HL60/AR cells to DNR and may represent a potential novel adjuvant for the treatment of chemo-resistant human myeloid leukemia. PMID:23888112

  20. Daunorubicin activates NFkappaB and induces kappaB-dependent gene expression in HL-60 promyelocytic and Jurkat T lymphoma cells.

    PubMed

    Boland, M P; Foster, S J; O'Neill, L A

    1997-05-16

    The anthracycline antibiotic, daunorubicin, can induce programmed cell death (apoptosis) in cells. Recent work suggests that this event is mediated by ceramide via enhanced ceramide synthase activity. Since the generation of ceramide has been directly linked with the activation of the transcription factor, NFkappaB, this was investigated as a novel target for the action of daunorubicin. Here we describe how treatment of HL-60 promyelocytes and Jurkat T lymphoma cells with daunorubicin results in the activation of the transcription factor NFkappaB. The effect of daunorubicin was evident following 1-2 h treatment, which was in contrast to the time course of activation obtained with the cytokine, tumor necrosis factor, where NFkappaB activation was detected within minutes of cellular stimulation. Activated complexes were shown to contain predominantly p50 and p65/RelA subunit components. Daunorubicin also induced IkappaB degradation and increased the expression of an NFkappaB-linked reporter gene. In addition, the drug was found to strongly potentiate the ability of tumor necrosis factor to induce an NFkappaB-linked reporter gene, suggesting a synergy between these two agents in this response. These events were sensitive to the iron chelator, deferoxamine mesylate (desferal), and the anti-oxidant and metal chelator pyrrolidine dithiocarbamate. A structurally related compound, mitoxantrone, which, unlike daunorubicin, is unable to undergo redox cycling in cells, also activated NFkappaB in a pyrrolidine dithiocarbamate-sensitive manner. A specific inhibitor of ceramide synthase, fumonisin B1, had no effect on daunorubicin induced NFkappaB activation at a range of concentrations previously reported to block apoptosis induced by this drug. However, this agent could inhibit increases in ceramide induced by daunorubicin, in addition to blocking ceramide synthase activity from HL-60 cells which was activated in response to daunorubicin treatment. These data therefore suggest

  1. Genetics Home Reference: acute promyelocytic leukemia

    MedlinePlus

    ... acute myeloid leukemia, a cancer of the blood-forming tissue ( bone marrow ). In normal bone marrow, hematopoietic ... 7186-203. Review. Citation on PubMed de Thé H, Chen Z. Acute promyelocytic leukaemia: novel insights into ...

  2. α-Tomatine inhibits growth and induces apoptosis in HL-60 human myeloid leukemia cells.

    PubMed

    Huang, Huarong; Chen, Shaohua; Van Doren, Jeremiah; Li, Dongli; Farichon, Chelsea; He, Yan; Zhang, Qiuyan; Zhang, Kun; Conney, Allan H; Goodin, Susan; Du, Zhiyun; Zheng, Xi

    2015-06-01

    α‑Tomatine is a glycoalkaloid that occurs naturally in tomatoes (Lycopersicon esculentum). In the present study, the effects of α‑tomatine on human myeloid leukemia HL‑60 cells were investigated. Treatment of HL‑60 cells with α‑tomatine resulted in growth inhibition and apoptosis in a concentration‑dependent manner. Tomatidine, the aglycone of tomatine had little effect on the growth and apoptosis of HL‑60 cells. Growth inhibition and apoptosis induced by α‑tomatine in HL‑60 cells was partially abrogated by addition of cholesterol indicating that interactions between α‑tomatine and cell membrane‑associated cholesterol may be important in mediating the effect of α‑tomatine. Activation of nuclear factor‑κB by the phorbol ester, 12‑O‑tetradecanoylphorbol‑13‑acetate failed to prevent apoptosis in HL‑60 cells treated with α‑tomatine. In animal experiments, it was found that treatment of mice with α‑tomatine inhibited the growth of HL‑60 xenografts in vivo. Results from the present study indicated that α‑tomatine may have useful anti‑leukemia activities. PMID:25625536

  3. Induction of apoptosis by the plant alkaloid sampangine in human HL-60 leukemia cells is mediated by reactive oxygen species.

    PubMed

    Kluza, Jérôme; Mazinghien, Romain; Degardin, Klara; Lansiaux, Amélie; Bailly, Christian

    2005-11-21

    Sampangine is a plant-derived copyrine alkaloid extracted from the stem bark of Cananga odorata. This azaoxoaporphine alkaloid primarily exhibits antifungal and antimycobacterial activities but also displays in vitro antimalarial activity against Plasmodium falciparum and it is cytotoxic to human malignant melanoma cells. Recently, sampangine was described as a pro-apoptotic agent, but the biochemical pathway leading to cell death remained unclear. Considering that sampangine possesses an iminoquinone moiety, potentially functioning as an oxidizing agent, we have investigated the implication of an oxidant stress on sampangine-induced cytotoxicity. We show that the treatment of human HL-60 leukemia cells for 48 h with sampangine induced an important oxidative burst. Real time flow cytometry measurements indicated that the production of oxidative species is very rapid, within minutes following the drug addition. Quenching of reactive oxygen species by the antioxidants N-acetyl cystein, vitamin C and vitamin E abolishes the pro-apoptotic activity of sampangine. The drug-induced production of reactive oxygen species is associated with cell cycle perturbations and mitochondrial alterations. This study shed light on the mechanism of action of sampangine and provides novel opportunities to use azaoxoaporphine alkaloids as lead compounds for the design of pro-apoptotic anticancer agents. PMID:16289142

  4. Structure-activity relationship studies of 5,7-dihydroxyflavones as naturally occurring inhibitors of cell proliferation in human leukemia HL-60 cells.

    PubMed

    Ninomiya, Masayuki; Nishida, Kyohei; Tanaka, Kaori; Watanabe, Kunitomo; Koketsu, Mamoru

    2013-07-01

    Flavonoids are widely occurring polyphenols that are found in plants. The aim of this study was to investigate the structure-activity relationships of 5,7-dihydroxyflavones, with a focus on the effect of B ring structure substitution on the antiproliferative effects of the compounds in human leukemia HL-60 cells. We prepared a series of 5,7-dihydroxyflavones and evaluated their ability to inhibit the proliferation of HL-60 cells by using the MTT assay. The apoptosis- and cell differentiation-inducing ability of the most potent flavones were investigated using staining and morphological analyses. This study explored the antileukemic and chemopreventive potency of 5,7-dihydroxyflavones, particularly diosmetin and chrysoeriol, which have both hydroxy and methoxy groups on the B ring.

  5. Inhibition of NF-kappa B can enhance Fas-mediated apoptosis in leukemia cell line HL-60.

    PubMed

    Wang, Li; Zhao, Shi; Wang, Hong-Xiang; Zou, Ping

    2010-09-01

    This study explored the effects of nuclear factor-kappa B (NF-κB) inhibitor Bay 11-7082 on Fas/FasL system and Fas-mediated apoptosis in cell line HL-60 cells. The mRNA and protein levels of Fas, FasL, and X-linked inhibitor of apoptosis protein (XIAP) were detected by reverse transcription-polymerase chain reaction (RT-PCR) and flow cytometry (FCM); the level of sFasL was evaluated by enzyme-linked immunosorbent assay (ELISA); and apoptosis was determined by FCM. After treatment with Bay 11-7082, the mRNA and protein levels of FasL and XIAP in HL-60 cells were significantly lower than in the controls (P<0.05), but the mRNA and protein levels of Fas and sFasL did not change significantly (P>0.05). Apoptotic rate of HL-60 cells treated with Bay 11-7082 was significantly higher than in the controls (P<0.05). Therefore, we conclude that Bay 11-7082 can enhance Fas-mediated apoptosis in HL-60 cells by downregulating FasL and XIAP levels.

  6. Protein-bound polysaccharide-K (PSK) induces apoptosis and inhibits proliferation of promyelomonocytic leukemia HL-60 cells.

    PubMed

    Hirahara, Noriyuki; Fujioka, Masaki; Edamatsu, Takeo; Fujieda, Ayako; Sekine, Fujio; Wada, Tsutomu; Tanaka, Tsuneo

    2011-09-01

    Protein-bound polysaccharide-K (PSK) is extracted from Coriolus versicolor (CM101), and is clinically used in combination therapy for gastrointestinal cancer and small cell lung carcinoma. PSK is a biological response modifier (BRM), and its mechanism of action is partly mediated, by modulating host immune systems, such as the activation of immune effector cells and the neutralization of transforming growth factor-beta (TGFβ) activity. Direct inhibition of tumor cell proliferation has been reported as another mechanism, but how PSK induces such an effect remains to be elucidated. Here, the anti-proliferative activity of PSK was examined using seven different human malignant cell lines (WiDr, HT29, SW480, KATOIII, AGS, HL60 and U937), and PSK was found to inhibit the proliferation of HL-60 cells most profoundly. Therefore, HL-60 cells were used to clarify the mechanism of anti-proliferative activity. Caspase-3 activation followed by apoptosis are involved at least in part in the PSK-induced anti-proliferative activity against HL-60 cells. PMID:21868514

  7. 18α-Glycyrrhetinic Acid Induces Apoptosis of HL-60 Human Leukemia Cells through Caspases- and Mitochondria-Dependent Signaling Pathways.

    PubMed

    Huang, Yi-Chang; Kuo, Chao-Lin; Lu, Kung-Wen; Lin, Jen-Jyh; Yang, Jiun-Long; Wu, Rick Sai-Chuen; Wu, Ping-Ping; Chung, Jing-Gung

    2016-01-01

    In this study we investigate the molecular mechanisms of caspases and mitochondria in the extrinsic and intrinsic signal apoptosis pathways in human leukemia HL-60 cells after in vitro exposure to 18α-glycyrrhetinic acid (18α-GA). Cells were exposed to 18α-GA at various concentrations for various time periods and were harvested for flow cytometry total viable cell and apoptotic cell death measurements. Cells treated with 18α-GA significantly inhibited cell proliferation and induced cell apoptosis in a dose-dependent manner, with an IC50 value of 100 μM at 48 h. The cell growth inhibition resulted in induction of apoptosis and decreased the mitochondria membrane potential (ΔΨm) and increased caspase-8, -9 and -3 activities. Furthermore, cytochrome c and AIF were released from mitochondria, as shown by western blotting and confirmed by confocal laser microscopy. Western blotting showed that 18α-GA increased the levels of pro-apoptotic proteins such as Bax and Bid and decreased the anti-apoptotic proteins such as Bcl-2 and Bcl-xl, furthermore, results also showed that 18α-GA increased Fas and Fas-L which are associated with surface death receptor in HL-60 cells. Based on those observations, the present study supports the hypothesis that 18α-GA-induced apoptosis in HL-60 cells involves the activation of the both extrinsic and intrinsic apoptotic pathways. PMID:27376261

  8. Juglone, from Juglans mandshruica Maxim, inhibits growth and induces apoptosis in human leukemia cell HL-60 through a reactive oxygen species-dependent mechanism.

    PubMed

    Xu, Hua Li; Yu, Xiao Feng; Qu, Shao Chun; Qu, Xiang Ru; Jiang, Yan Fang; Sui, Da Yuan

    2012-03-01

    Juglone, a major chemical constituent of Juglans mandshruica Maxim, is a promising anticancer agent that has shown a strong activity against cancer cells in vitro. Our previous study showed that juglone inhibited the proliferation of HL-60 cells with an IC50 value ∼8 μM. To further explore the proapoptotic mechanism of juglone, we investigated the role of the reactive oxygen species (ROS) in the apoptosis induced by juglone in HL-60 cells. The generation of ROS was about 2 to 8-fold as compared to control cell after treatment with juglone (2, 4 and 8 μM) for 24 h. The glutathione (GSH) depletion was consistent with ROS generation after treatment with juglone. Reversal of apoptosis in antioxidants (NAC and catalase) pretreated cells indicated the involvement of ROS in juglone-induced apoptosis. The cleavage of PARP and procaspase-3 and -9, loss of mitochondrial membrane potential (△Ψm), and release of cytochrome c (Cyt c) and Smac induced by juglone were significantly blocked by NAC. NAC also prevented the inhibition the phosphorylation of Akt and mTOR proteins by juglone. Collectively, these results indicated that ROS played a significant role in the apoptosis induced by juglone in human leukemia cell HL-60.

  9. Genistein decreases cellular redox potential, partially suppresses cell growth in HL-60 leukemia cells and sensitizes cells to γ-radiation-induced cell death

    PubMed Central

    KIM, IN GYU; KIM, JIN SIK; LEE, JAE HA; CHO, EUN WIE

    2014-01-01

    Various mechanisms have been proposed to underlie the cellular activity of genistein, based on biological experiments and epidemiological studies. The present study demonstrated that genistein inhibited the expression of cytoplasmic nicotinamide adenine dinucleotide phosphate (NADP)-dependent isocitrate dehydrogenase (cICDH), thus increasing levels of intracellular reactive oxygen species (ROS) in human promyeloid leukemia HL-60 cells. In genistein-treated cells, the cellular redox potential (GSH/GSSG) was significantly decreased. This decrease in redox potential was caused by significant downregulation of the cICDH gene, generating the reducing equivalents (NADPH) for maintenance of cellular redox potential and cellular ROS level, which may regulate cell growth and cell death. Genistein-induced ROS partially induced rapid transition into the G2/M phase by upregulation of p21wap1/cip1 and apoptotic cell death. Treatment of cells with N-acetylcysteine, a well-known antioxidant (ROS scavenger), not only partially restored cell growth and inhibited cell cycle arrest in G2/M, but also prevented apoptotic cell death. By contrast, normal lymphocytes did not significantly progress into the G2/M phase and radiation-induced cell death was inhibited by genistein treatment. Therefore, genistein and γ-irradiation together synergistically cause cell death in leukemia cells, however, genistein has a radioprotective effect in normal human lymphocytes. In conclusion, it was suggested that genistein selectively functions, not as an antioxidant, but as a pro-oxidant in HL-60 cells. This property can increase ionizing radiation-induced cell cycle arrest and sensitivity to apoptotic cell death in human promyeloid leukemia HL-60 cells, but does not cause significant damage to normal cells. PMID:25310747

  10. Apoptosis induced by the alkaloid sampangine in HL-60 leukemia cells: correlation between the effects on the cell cycle progression and changes of mitochondrial potential.

    PubMed

    Kluza, Jérôme; Clark, Alice M; Bailly, Christian

    2003-12-01

    Sampangine, a plant-derived copyrine alkaloid extracted from the stem bark of Cananga odorata, primarily exhibits antifungal and antimycobacterial activities, but it also displays in vitro antimalarial activity against Plasmodium falciparum and is cytotoxic to human malignant melanoma cells. It inhibits cell aggregation, but no molecular target has yet been identified. We investigated the biochemical pathway involved in sampangine-induced cytotoxicity toward HL-60 cells. These leukemia cells are prone to enter apoptosis after treatment with various stimuli, including genotoxic compounds structurally close to sampangine, such as ascididemin. PMID:15033745

  11. Activation of tracheal smooth muscle responsiveness by fMLP-treated HL-60 cells and neutrophils.

    PubMed

    Munoz, N M; Hamann, K J; Vita, A; Cozzi, P J; Baranowski, S; Solway, J; Leff, A R

    1993-03-01

    We assessed the effects of cultured human promyelocytic leukemia (HL-60) cells and polymorphonuclear leukocytes (neutrophils) isolated from peripheral human blood on tracheal smooth muscle responsiveness in 40 male Hartley guinea pigs. Undifferentiated HL-60 cells (16-25 passages) were activated in vitro by incubation with 1 microM f-Met-Leu-Phe (fMLP), and force of contraction was measured isometrically using an in situ preparation of tracheal smooth muscle. Increasing concentrations of acetylcholine (ACh; 10(-10) to 10(-6) mol/cm2 tracheal surface) were applied topically to the epithelial surface pretreated with 4 x 10(6) fMLP-activated HL-60 cells, 4 x 10(6) fMLP-activated neutrophils, 4 x 10(6) sham-activated HL-60 cells, fMLP+vehicle, or vehicle control. Topical application of fMLP-activated HL-60 cells caused a maximum active tension (AT) of 1.13 +/- 0.2 g/cm after 5 min; fMLP-activated neutrophils, sham-activated HL-60 cells, or fMLP+vehicle had no effect. The fMLP-activated HL-60 cells also caused substantial augmentation of tracheal contraction to ACh (P < 0.05 vs. sham-activated cells for all concentrations > 10(-9) mol/cm2). Although fMLP treatment caused 247 +/- 28% increase from baseline level in O2-. production, neither direct contraction nor augmentation of muscarinic stimulation was demonstrated after topical application of 4 x 10(6) neutrophils. In 12 other preparations, fMLP-activated HL-60 cells were pretreated with either 10 microM indomethacin (Indo) or 100 microM A63162, a 5-lipoxygenase inhibitor. Pretreatment with Indo caused complete blockade of direct tracheal contraction and 88 +/- 13% blockade of muscarinic augmentation; there was no effect after A63162.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:8460711

  12. Human myeloblastic leukemia cells (HL-60) express a membrane receptor for estrogen that signals and modulates retinoic acid-induced cell differentiation

    SciTech Connect

    Kauss, M. Ariel; Reiterer, Gudrun; Bunaciu, Rodica P.; Yen, Andrew

    2008-10-01

    Estrogen receptors are historically perceived as nuclear ligand activated transcription factors. An estrogen receptor has now been found localized to the plasma membrane of human myeloblastic leukemia cells (HL-60). Its expression occurs throughout the cell cycle, progressively increasing as cells mature from G{sub 1} to S to G{sub 2}/M. To ascertain that the receptor functioned, the effect of ligands, including a non-internalizable estradiol-BSA conjugate and tamoxifen, an antagonist of nuclear estrogen receptor function, were tested. The ligands caused activation of the ERK MAPK pathway. They also modulated the effect of retinoic acid, an inducer of MAPK dependent terminal differentiation along the myeloid lineage in these cells. In particular the ligands inhibited retinoic acid-induced inducible oxidative metabolism, a functional marker of terminal myeloid cell differentiation. To a lesser degree they also diminished retinoic acid-induced earlier markers of cell differentiation, namely CD38 and CD11b. However, they did not regulate retinoic acid-induced G{sub 0} cell cycle arrest. There is thus a membrane localized estrogen receptor in HL-60 myeloblastic leukemia cells that can cause ERK activation and modulates the response of these cells to retinoic acid, indicating crosstalk between the membrane estrogen and retinoic acid evoked pathways relevant to propulsion of cell differentiation.

  13. IGF-I stimulates IL-8 production in the promyelocytic cell line HL-60 through activation of extracellular signal-regulated protein kinase.

    PubMed

    Kooijman, Ron; Coppens, Astrid; Hooghe-Peters, Elisabeth

    2003-12-01

    Interleukin (IL)-8 serves as a major chemoattractant for neutrophils and has also been proposed to affect cancer progression. In the present study, we show that IGF-I stimulates IL-8 mRNA expression and IL-8 secretion in the leukemic cell line HL-60. Stimulation of IL-8 expression was completely attenuated by two inhibitors of mitogen-activated protein kinase (MAPK) kinase (MEK), which phosphorylates the MAPKs extracellular-regulated kinase (ERK)1 and ERK2, and by the c-Jun NH2-terminal kinase (JNK) inhibitor SP600125. In contrast, inhibitors of p38 MAPK and phosphatidylinositol-3 kinase (PI3K) did not abrogate the effect of IGF-I. We also show that IGF-I stimulates the activation of ERK1 and ERK2, but we could not detect any effect of IGF-I on the phosphorylation of p38, JNK(p46) or JNK(p54). Collectively, our results suggest that basal JNK activity and activation of the MEK-ERK pathway are required for upregulation of IL-8 by IGF-I in HL-60 cells.

  14. 'Attached cell' antigen 28.3.7 mapping to human chromosome 15 characterises TPA-induced differentiation of the promyelocytic HL-60 cell line to give macrophage/monocyte populations.

    PubMed Central

    Blaineau, C; Avner, P; Tunnacliffe, A; Goodfellow, P

    1983-01-01

    Human cells growing in vitro attached to the substratum express a cell antigen called 28.3.7 identified by a species-specific monoclonal antibody. This antigen is not expressed on human cells growing in suspension. The antigen has a mol. wt. in reduced SDS-polyacrylamide gel electrophoresis gels of 95 000 and in human-mouse somatic cell hybrids, expression of the antigen is controlled by a gene, MIC7, mapping to human chromosome 15. The antigen functions as a marker for macrophage differentiation. In vitro differentiation of the 28.3.7 antigen-negative human promyelocytic leukaemia line HL-60 induced by phorbol ester, results in the formation of a macrophage/monocyte population and the concomitant expression of the 28.3.7 antigen on this adherent cell population. Images Fig. 1. PMID:6641710

  15. Lipase-catalyzed preparation of optically active 1'-acetoxychavicol acetates and their structure-activity relationships in apoptotic activity against human leukemia HL-60 cells.

    PubMed

    Azuma, Hideki; Miyasaka, Keita; Yokotani, Tsuyoshi; Tachibana, Taro; Kojima-Yuasa, Akiko; Matsui-Yuasa, Isao; Ogino, Kenji

    2006-03-15

    Structure-activity relationships of 1'-acetoxychavicol acetate (ACA) for apoptotic activity against human leukemia HL-60 cells were investigated using optically active ACA and various racemic ACA analogues. Natural-type (or with different acyl group) ACA showed a high apoptotic activity, but the ortho or meta isomers, 4-deacetoxy analogue, and the 2'-3' dehydrogenated derivative had no effect, or a weak activity. Optically active (R)- and (S)-ACA were prepared by a lipase-catalyzed esterification. Using a mixture of vinyl acetate-tetrahydrofuran (1:1 v/v) as a solvent at refluxing temperature, optically pure (R)- and (S)-ACA were obtained (99.7% ee and 99.1% ee, respectively). The apoptosis-inducing effects of both enantiomers were compared by means of an MTT assay and the detection of typical apoptotic phenomena (DNA fragmentation, caspase-3 activation, and PARP cleavage) and these two activities were almost equal. These results indicate that the essential moieties of ACA for apoptotic activity against HL-60 cells are both the presence of a 4-acetoxyl group and an unsaturated double bond between C-2' and C-3', and that the configuration at the 1'-position is unrelated to activity.

  16. Kayeassamin A Isolated from the Flower of Mammea siamensis Triggers Apoptosis by Activating Caspase-3/-8 in HL-60 Human Leukemia Cells

    PubMed Central

    Uto, Takuhiro; Tung, Nguyen Huu; Thongjankaew, Pinjutha; Lhieochaiphant, Sorasak; Shoyama, Yukihiro

    2016-01-01

    Background: Mammea siamensis (Miq.) T. Anders. is used as a medicinal plant in Thailand and has several traditional therapeutic properties. In a previous study, we isolated eight compounds from the flower of M. siamensis and demonstrated that kayeassamin A (KA) exhibited potent antiproliferative activity against human leukemia and stomach cancer cell lines. Objective: In this study, we investigated the effect of KA on cell viability and apoptotic mechanisms in HL-60 human leukemia cells. Materials and Methods: Cell viability was measured by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. Nuclear morphology and DNA fragmentation were observed using Hoechst 33258 staining and agarose gel electrophoresis, respectively. The sub-G1 phase of cells was analyzed by flow cytometry after the cellular DNA had been stained with propidium iodide. The protein levels of poly (ADP-ribose) polymerase (PARP) and caspases were determined by Western blotting. Results: KA exhibited a significant cytotoxic effect in a dose- and time-dependent manner, and induced chromatin condensation, DNA fragmentation, and sub-G1 phase DNA content, known as molecular events associated with the induction of apoptosis. In addition, KA strongly induced the activation of PARP and caspase-3 and -8, with weak caspase-9 activation. Furthermore, KA-induced DNA fragmentation was abolished by pretreatment with z-VAD-FMK (a broad caspase inhibitor), z-DEVD-FMK (a caspase-3 inhibitor), and z-IETD-FMK (a caspase-8 inhibitor), but not by z-LEHD-FMK (a caspase-9 inhibitor) pretreatment. Conclusion: These results indicate that KA triggers apoptotic cell death by activation of caspase-3 and -8 in HL-60 cells. SUMMARY Kayeassamin A (KA) isolated from the flower of Mammea siamensis exhibited a significant cytotoxic effect in HL-60 human leukemia cells. KA triggers apoptotic cell death by activating caspase-3/-8. Abbreviations Used: KA: Kayeassamin A; MTT: 3-(4,5-dimethylthiazol-2-yl)-2

  17. Kayeassamin A Isolated from the Flower of Mammea siamensis Triggers Apoptosis by Activating Caspase-3/-8 in HL-60 Human Leukemia Cells

    PubMed Central

    Uto, Takuhiro; Tung, Nguyen Huu; Thongjankaew, Pinjutha; Lhieochaiphant, Sorasak; Shoyama, Yukihiro

    2016-01-01

    Background: Mammea siamensis (Miq.) T. Anders. is used as a medicinal plant in Thailand and has several traditional therapeutic properties. In a previous study, we isolated eight compounds from the flower of M. siamensis and demonstrated that kayeassamin A (KA) exhibited potent antiproliferative activity against human leukemia and stomach cancer cell lines. Objective: In this study, we investigated the effect of KA on cell viability and apoptotic mechanisms in HL-60 human leukemia cells. Materials and Methods: Cell viability was measured by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. Nuclear morphology and DNA fragmentation were observed using Hoechst 33258 staining and agarose gel electrophoresis, respectively. The sub-G1 phase of cells was analyzed by flow cytometry after the cellular DNA had been stained with propidium iodide. The protein levels of poly (ADP-ribose) polymerase (PARP) and caspases were determined by Western blotting. Results: KA exhibited a significant cytotoxic effect in a dose- and time-dependent manner, and induced chromatin condensation, DNA fragmentation, and sub-G1 phase DNA content, known as molecular events associated with the induction of apoptosis. In addition, KA strongly induced the activation of PARP and caspase-3 and -8, with weak caspase-9 activation. Furthermore, KA-induced DNA fragmentation was abolished by pretreatment with z-VAD-FMK (a broad caspase inhibitor), z-DEVD-FMK (a caspase-3 inhibitor), and z-IETD-FMK (a caspase-8 inhibitor), but not by z-LEHD-FMK (a caspase-9 inhibitor) pretreatment. Conclusion: These results indicate that KA triggers apoptotic cell death by activation of caspase-3 and -8 in HL-60 cells. SUMMARY Kayeassamin A (KA) isolated from the flower of Mammea siamensis exhibited a significant cytotoxic effect in HL-60 human leukemia cells. KA triggers apoptotic cell death by activating caspase-3/-8. Abbreviations Used: KA: Kayeassamin A; MTT: 3-(4,5-dimethylthiazol-2-yl)-2

  18. Global Characteristics of Childhood Acute Promyelocytic Leukemia

    PubMed Central

    Zhang, L; Samad, A; Pombo-de-Oliveira, MS; Scelo, G; Smith, MT; Feusner, J; Wiemels, JL; Metayer, C

    2014-01-01

    Acute promyelocytic leukemia (APL) comprises approximately 5–10% of childhood acute myeloid leukemia (AML) cases in the US. While variation in this percentage among other populations was noted previously, global patterns of childhood APL have not been thoroughly characterized. In this comprehensive review of childhood APL, we examined its geographic pattern and the potential contribution of environmental factors to observed variation. In 142 studies (spanning >60 countries) identified, variation was apparent—de novo APL represented from 2% (Switzerland) to >50% (Nicaragua) of childhood AML in different geographic regions. Because a limited number of previous studies addressed specific environmental exposures that potentially underlie childhood APL development, we gathered 28 childhood cases of therapy-related APL, which exemplified associations between prior exposures to chemotherapeutic drugs/radiation and APL diagnosis. Future population-based studies examining childhood APL patterns and the potential association with specific environmental exposures and other risk factors are needed. PMID:25445717

  19. Activation of a promyelocytic leukemia-tumor protein 53 axis underlies acute promyelocytic leukemia cure.

    PubMed

    Ablain, Julien; Rice, Kim; Soilihi, Hassane; de Reynies, Aurélien; Minucci, Saverio; de Thé, Hugues

    2014-02-01

    Acute promyelocytic leukemia (APL) is driven by the promyelocytic leukemia (PML)-retinoic acid receptor-α (PML-RARA) fusion protein, which interferes with nuclear receptor signaling and PML nuclear body (NB) assembly. APL is the only malignancy definitively cured by targeted therapies: retinoic acid (RA) and/or arsenic trioxide, which both trigger PML-RARA degradation through nonoverlapping pathways. Yet, the cellular and molecular determinants of treatment efficacy remain disputed. We demonstrate that a functional Pml-transformation-related protein 53 (Trp53) axis is required to eradicate leukemia-initiating cells in a mouse model of APL. Upon RA-induced PML-RARA degradation, normal Pml elicits NB reformation and induces a Trp53 response exhibiting features of senescence but not apoptosis, ultimately abrogating APL-initiating activity. Apart from triggering PML-RARA degradation, arsenic trioxide also targets normal PML to enhance NB reformation, which may explain its clinical potency, alone or with RA. This Pml-Trp53 checkpoint initiated by therapy-triggered NB restoration is specific for PML-RARA-driven APL, but not the RA-resistant promyelocytic leukemia zinc finger (PLZF)-RARA variant. Yet, as NB biogenesis is druggable, it could be therapeutically exploited in non-APL malignancies.

  20. Generation of Adducts of 4-Hydroxy-2-nonenal with Heat Shock 60 kDa Protein 1 in Human Promyelocytic HL-60 and Monocytic THP-1 Cell Lines

    PubMed Central

    Daga, Martina; Cetrangolo, Giovanni Paolo; Ciamporcero, Eric Stefano; Petrella, Claudia; Graf, Maria; Uchida, Koji; Mamone, Gianfranco; Ferranti, Pasquale; Ames, Paul R. J.

    2015-01-01

    Heat shock 60 kDa protein 1 (HSP60) is a chaperone and stress response protein responsible for protein folding and delivery of endogenous peptides to antigen-presenting cells and also a target of autoimmunity implicated in the pathogenesis of atherosclerosis. By two-dimensional electrophoresis and mass spectrometry, we found that exposure of human promyelocytic HL-60 cells to a nontoxic concentration (10 μM) of 4-hydroxy-2-nonenal (HNE) yielded a HSP60 modified with HNE. We also detected adducts of HNE with putative uncharacterized protein CXorf49, the product of an open reading frame identified in various cell and tissue proteomes. Moreover, exposure of human monocytic THP-1 cells differentiated with phorbol 12-myristate 13-acetate to 10 μM HNE, and to light density lipoprotein modified with HNE (HNE-LDL) or by copper-catalyzed oxidation (oxLDL), but not to native LDL, stimulated the formation of HNE adducts with HSP60, as detected by immunoprecipitation and western blot, well over basal levels. The identification of HNE-HSP60 adducts outlines a framework of mutually reinforcing interactions between endothelial cell stressors, like oxLDL and HSP60, whose possible outcomes, such as the amplification of endothelial dysfunction, the spreading of lipoxidative damage to other proteins, such as CXorf49, the activation of antigen-presenting cells, and the breaking of tolerance to HSP60 are discussed. PMID:26078803

  1. Dystroglycan depletion inhibits the functions of differentiated HL-60 cells.

    PubMed

    Martínez-Zárate, Alma Delia; Martínez-Vieyra, Ivette; Alonso-Rangel, Lea; Cisneros, Bulmaro; Winder, Steve J; Cerecedo, Doris

    2014-06-01

    Dystroglycan has recently been characterized in blood tissue cells, as part of the dystrophin glycoprotein complex but to date nothing is known of its role in the differentiation process of neutrophils. We have investigated the role of dystroglycan in the human promyelocytic leukemic cell line HL-60 differentiated to neutrophils. Depletion of dystroglycan by RNAi resulted in altered morphology and reduced properties of differentiated HL-60 cells, including chemotaxis, respiratory burst, phagocytic activities and expression of markers of differentiation. These findings strongly implicate dystroglycan as a key membrane adhesion protein involved in the differentiation process in HL-60 cells.

  2. Gemtuzumab Ozogamicin in Treating Patients With Relapsed or Refractory Acute Myeloid Leukemia or Acute Promyelocytic Leukemia

    ClinicalTrials.gov

    2016-07-26

    Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Del(5q); Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(15;17)(q22;q12); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Adult Acute Promyelocytic Leukemia (M3); Childhood Acute Promyelocytic Leukemia (M3); Recurrent Adult Acute Myeloid Leukemia; Recurrent Childhood Acute Myeloid Leukemia

  3. Minimal residual disease in acute promyelocytic leukemia.

    PubMed

    Weil, S C

    2000-03-01

    In the last decade our understanding of acute promyelocytic leukemia (APL) has advanced tremendously. The recognition of all-trans retinoic acid (ATRA) as a powerful therapeutic agent paralleled the cloning of the t(15;17) breakpoint. RtPCR for the PML-RARA hybrid mRNA has become the hallmark of molecular diagnosis and molecular monitoring in APL. Current techniques are useful in predicting complete remission and a possible cure in many patients who repeatedly test negative by PCR. Standardizing techniques and improving the sensitivity of the assay are important. Doing this in a way so that clinically relevant minimal residual disease can be distinguished from "indolent disease" remains among the future challenges in APL. PMID:10702899

  4. Targeting of leukemia-initiating cells in acute promyelocytic leukemia

    PubMed Central

    Lo-Coco, Francesco

    2015-01-01

    Acute promyelocytic leukemia (APL) is a subtype of acute myeloid leukemia (AML) with peculiar molecular, phenotypic and clinical features and unique therapeutic response to specific treatments. The disease is characterized by a single, pathognomonic molecular event, consisting of the translocation t(15;17) which gives rise to the PML/retinoic acid receptor α (RARα) hybrid protein. The development of this leukemia is mainly related to the fusion oncoprotein PML/RARα, acting as an altered RAR mediating abnormal signalling and repression of myeloid differentiation, with consequent accumulation of undifferentiated promyelocytes. The prognosis of APL has dramatically been improved with the introduction in therapy of all-trans retinoic acid (ATRA) and arsenic trioxide (ATO). The main effect of these two drugs is linked to the targeting of either RAR moiety of the PML/RARα molecule and induction of cell differentiation (ATRA) or of the PML moiety of the fusion protein and induction of leukemic cell apoptosis, including leukemic progenitors (mostly induced by ATO). These two drugs exhibited excellent synergism and determine a very high rate of durable remissions in low/intermediate-risk APLs, when administered in the absence of any chemotherapeutic drug. The strong synergism and the marked clinical efficacy of these two agents when administered together seem to be related to their capacity to induce PML/RARα degradation and complete eradication of leukemia stem cells. PMID:27358876

  5. Apoptosis of HL-60 human leukemia cells induced by Asiatic acid through modulation of B-cell lymphoma 2 family proteins and the mitogen-activated protein kinase signaling pathway.

    PubMed

    Wu, Qiuling; Lv, Tingting; Chen, Yan; Wen, Lu; Zhang, Junli; Jiang, Xudong; Liu, Fang

    2015-07-01

    The toxicities of conventional chemotherapeutic agents to normal cells restrict their dosage and clinical efficacy in acute leukemia; therefore, it is important to develop novel chemotherapeutics, including natural products, which selectively target cancer-specific pathways. The present study aimed to explore the effect of the chemopreventive agent asiatic acid (AA) on the proliferation and apoptotic rate of the leukemia cell line HL-60 and investigated the mechanisms underlying its anti-tumor activity. The effect of AA on the proliferation of HL-60 cells was evaluated using the MTT assay. Annexin V-fluorescein isothiocyanate/propidium iodide double staining followed by flow cytometric analysis as well as Hoechst 33258 staining were used to analyze the apoptotic rate of the cells. Furthermore, changes of survivin, B-cell lymphoma 2 (Bcl-2), myeloid cell leukemia 1 (Mcl-1), extracellular signal-regulated kinase (ERK), c-Jun N-terminal kinase (JNK) and p38 expressions were detected by western blot analysis. AA blocked the growth of HL-60 cells in a dose- and time-dependent manner. The IC50-value of AA on HL-60 cells was 46.67 ± 5.08 µmol/l for 24 h. AA induced apoptosis in a dose-dependent manner, which was inhibited in the presence of Z-DEVD-FMK, a specific inhibitor of caspase. The anti-apoptotic proteins Bcl-2, Mcl-1 and survivin were downregulated by AA in a dose-dependent manner. Concurrently, AA inhibited ERK and p38 phosphorylation in a dose-dependent manner, while JNK phosphorylation was not affected. In conclusion, the present study indicated that the p38 and ERK pathways, as well as modulation of Bcl-2 family and survivin proteins were key regulators of apoptosis induced in HL-60 cells in response to AA.

  6. Fucoidan Suppresses the Growth of Human Acute Promyelocytic Leukemia Cells In Vitro and In Vivo.

    PubMed

    Atashrazm, Farzaneh; Lowenthal, Ray M; Woods, Gregory M; Holloway, Adele F; Karpiniec, Samuel S; Dickinson, Joanne L

    2016-03-01

    Fucoidan, a natural component of seaweeds, is reported to have immunomodulatory and anti-tumor effects. The mechanisms underpinning these activities remain poorly understood. In this study, the cytotoxicity and anti-tumor activities of fucoidan were investigated in acute myeloid leukemia (AML) cells. The human AML cell lines NB4, KG1a, HL60, and K562 were treated with fucoidan and cell cycle, cell proliferation, and expression of apoptotic pathways molecules were analyzed. Fucoidan suppressed the proliferation and induced apoptosis through the intrinsic and extrinsic pathways in the acute promyelocytic leukemia (APL) cell lines NB4 and HL60, but not in KG1a and K562 cells. In NB4 cells, apoptosis was caspase-dependent as it was significantly attenuated by pre-treatment with a pan-caspase inhibitor. P21/WAF1/CIP1 was significantly up-regulated leading to cell cycle arrest. Fucoidan decreased the activation of ERK1/2 and down-regulated the activation of AKT through hypo-phosphorylation of Thr(308) residue but not Ser(473). In vivo, a xenograft model using the NB4 cells was employed. Mice were fed with fucoidan and tumor growth was measured following inoculation with NB4 cells. Subsequently, splenic natural killer (NK) cell cytotoxic activity was also examined. Oral doses of fucoidan significantly delayed tumor growth in the xenograft model and increased cytolytic activity of NK cells. Taken together, these data suggest that the selective inhibitory effect of fucoidan on APL cells and its protective effect against APL development in mice warrant further investigation of fucoidan as a useful agent in treatment of certain types of leukemia.

  7. 2-(3-Methoxyphenyl)-5-methyl-1,8-naphthyridin-4(1H)-one (HKL-1) induces G2/M arrest and mitotic catastrophe in human leukemia HL-60 cells

    SciTech Connect

    Hsu, Mei-Hua; Liu, Chin-Yu; Lin, Chiao-Min; Chen, Yen-Jung; Chen, Chun-Jen; Lin, Yu-Fu; Huang, Li-Jiau; Lee, Kuo-Hsiung; Kuo, Sheng-Chu

    2012-03-01

    2-(3-Methoxyphenyl)-5-methyl-1,8-naphthyridin-4(1H)-one (HKL-1), a 2-phenyl-1,8-naphthyridin-4-one (2-PN) derivative, was synthesized and evaluated as an effective antimitotic agent in our laboratory. However, the molecular mechanisms are uncertain. In this study, HKL-1 was demonstrated to induce multipolar spindles, sustain mitotic arrest and generate multinucleated cells, all of which indicate mitotic catastrophe, in human leukemia HL-60 cells. Western blotting showed that HKL-1 induces mitotic catastrophe in HL-60 cells through regulating mitotic phase-specific kinases (down-regulating CDK1, cyclin B1, CENP-E, and aurora B) and regulating the expression of Bcl-2 family proteins (down-regulating Bcl-2 and up-regulating Bax and Bak), followed by caspase-9/-3 cleavage. These findings suggest that HKL-1 appears to exert its cytotoxicity toward HL-60 cells in culture by inducing mitotic catastrophe. Highlights: ► HKL-1 is a potential antimitotic agent against HL-60 cells. ► HKL-1 induces spindle disruption and sustained resulted in mitotic catastrophe. ► CENP-E and aurora B protein expressions significantly reduced. ► Bcl-2 family protein expressions altered and caspase-9/-3 activation. ► HKL-1 is an attractive candidate for possible use as a novel antimitotic agent.

  8. Induction of apoptosis by penta-O-galloyl-beta-D-glucose through activation of caspase-3 in human leukemia HL-60 cells.

    PubMed

    Pan, M H; Lin, J H; Lin-Shiau, S Y; Lin, J K

    1999-09-24

    Penta-O-galloyl-beta-D-glucose is structurally related to (-)-epigallocatechin gallate and is isolated from hydrolyzed tannin. Penta-O-galloyl-beta-D-glucose can inhibit tumor promotion by teleocidin. We investigated the effects of penta-O-galloyl-beta-D-glucose and various tea polyphenols on cell viability in human leukemia HL-60 cells. In this study, we demonstrated that penta-O-galloyl-beta-D-glucose was able to induce apoptosis in a concentration- and time-dependent manner; however, other polyphenols were less effective. We further investigated the molecular mechanisms of penta-O-galloyl-beta-D-glucose-induced apoptosis. Treatment with penta-O-galloyl-beta-D-glucose caused induction of caspase-3/CPP32 activity in dose- and time-dependent manner, but not caspase-1 activity, and induced the degradation of poly-(ADP-ribose) polymerase. Pretreatment with acetyl-Asp-Glu-Val-Asp-aldehyde (Ac-DEVD-CHO) and Z-Val-Ala-Asp-fluoromethyl-ketone (Z-VAD-FMK) inhibited penta-O-galloyl-beta-D-glucose-induced DNA fragmentation. Furthermore, treatment with penta-O-galloyl-beta-D-glucose (50 microM) caused a rapid loss of mitochondrial transmembrane potential, release of mitochondrial cytochrome c into cytosol, and subsequent induction of procaspase-9 processing. Our results indicate that penta-O-galloyl-beta-D-glucose allows caspase-activated deoxyribonuclease to enter the nucleus and degrade chromosomal DNA, and induces DFF-45 (DNA fragmentation factor) degradation. These results lead to a working hypothesis that penta-O-galloyl-beta-D-glucose-induced apoptosis is triggered by the release of cytochrome c into the cytosol, procaspase-9 processing, activation of caspase-3, degradation of poly-(ADP-ribose) polymerase, and DNA fragmentation caused by the caspase-activated deoxyribonuclease through the digestion of DFF-45. The induction of apoptosis by penta-O-galloyl-beta-D-glucose may provide a pivotal mechanism for its cancer chemopreventive action.

  9. Alterations in polyamine levels induced by phorbol diesters and other agents that promote differentiation in human promyelocytic leukemia cells

    SciTech Connect

    Huberman, E.; Weeks, C.; Herrmann, A.; Callaham, M.; Slaga, T.

    1981-02-01

    Polyamine levels were evaluated in human HL-60 promyelocytic leukemia cells after treatment with inducers of terminal differentiation. Differentiation in these cells was determined by increases in the percentage of morphologically mature cells and in lysozyme activity. Treatment of the HL-60 cells with phorbol 12-myristate-13-acetate (PMA), phorbol 12,13-didecanoate or other inducers of terminal differentiation such as dimethylsulfoxide and retinoic acid resulted in increased levels of putrescine. However, no increase in putrescine could be detected after PMA treatment of a HL-60 cell variant that exhibited a decreased susceptibility to PMA-induced terminal differentiation. Similarly, no increase in putrescine was observed with two nontumor-promoters (phorbol 12,13-diacetate and 4-O-methyl-PMA) or with anthralin, a non-phorbol tumor promoter. In addition to enhancing putrescine levels, PMA also increased the amount of spermidine and decreased the amount of spermine. The increase in putrescine and spermidine preceded the expression of the various differentiation markers. Unlike the changes observed in the polyamine levels after PMA treatment, the activities of ornithine and S-adenosylmethionine decarboxylases, which are polyamine biosynthetic enzymes, did not significantly change. ..cap alpha..-Methylornithine and ..cap alpha..-difluoromethylornithine and methylglyoxal bis(guanylhydrazone), which are inhibitors of the polyamine biosynthetic enzymes, did not affect differentiation in control or PMA-treated cells. Because of these observations, we suggest that the change in polyamine levels involve biochemical pathways other than the known biosynthetic ones. By-products of these pathways may perhaps be the controlling factors involved in the induction of terminal differentiation in the HL-60 and other cell types as well.

  10. [Transfection of HL-60 cells by Venus lentiviral vector].

    PubMed

    Li, Zheng; Hu, Shao-Yan; Cen, Jian-Nong; Chen, Zi-Xing

    2013-06-01

    In order to study the potential of Venus, lentiviral vector, applied to acute myeloid leukemia, the recombinant vector Venus-C3aR was transfected into 293T packing cells by DNA-calcium phosphate coprecipitation. All virus stocks were collected and transfected into HL-60, the GFP expression in HL-60 cells was measured by flow cytometry. The expression level of C3aR1 in transfected HL-60 cells was identified by RT-PCR and flow cytometry. The lentiviral toxicity on HL-60 was measured by using CCK-8 method and the ability of cell differentiation was observed. The results indicated that the transfection efficacy of lentiviral vector on HL-60 cells was more than 95%, which meets the needs for further study. C3aR1 expression on HL-60 cells increased after being transfected with recombinant lentiviral vector. Before and after transfection, the proliferation and differentiation of cells were not changed much. It is concluded that the lentiviral vector showed a high efficacy to transfect AML cells and can be integrated in genome of HL-60 cells to realize the stable expression of interest gene. Meanwhile, lentiviral vector can not affect HL-60 cell ability to proliferate and differentiate.

  11. Protein-bound polysaccharide-K induces apoptosis via mitochondria and p38 mitogen-activated protein kinase-dependent pathways in HL-60 promyelomonocytic leukemia cells.

    PubMed

    Hirahara, Noriyuki; Edamatsu, Takeo; Fujieda, Ayako; Fujioka, Masaki; Wada, Tsutomu; Tajima, Yoshitsugu

    2013-07-01

    Protein-bound polysaccharide-K (PSK) is extracted from Coriolus versicolor (CM101). PSK is a biological response modifier (BRM), and its mechanism of action is partly mediated by modulating host immune systems; however, recent studies showed antiproliferative activity of PSK. Therefore, we examined the mechanism underlying the antiproliferative activity of PSK using seven different human malignant cell lines (WiDr, HT29, SW480, KATOIII, AGS, HL-60 and U937), and PSK was found to inhibit the proliferation of HL-60 cells most profoundly. Therefore, HL-60 cells were used to elucidate the mechanism of the antiproliferative activity. Western blotting was performed to detect phosphorylated p38 mitogen-activated protein kinase (MAPK). A p38 MAPK inhibitor, SB203580, was used to examine the roles in PSK-induced apoptosis and growth inhibition. Flow cytometry was performed for mitochondrial membrane potential detection. PSK activated caspase-3 and induced p38 MAPK phosphorylation. Co-treatment with SB203580 blocked PSK-induced apoptosis, caspase-3 activation and growth inhibition. PSK induced apoptosis via the mitochondrial pathway. The depolarization of mitochondria induced by PSK was reversed by co-treatment with SB203580. The present study revealed that PSK induced apoptosis in HL-60 cells via a mitochondrial and p38 MAPK-dependent pathway. PMID:23604455

  12. Acute promyelocytic leukemia: a curable disease.

    PubMed

    Lo Coco, F; Nervi, C; Avvisati, G; Mandelli, F

    1998-12-01

    The Second International Symposium on Acute Promyelocytic Leukemia (APL) was held in Rome in 12-14 November 1997. Clinical and basic investigators had the opportunity to discuss in this meeting the important advances in the biology and treatment of this disease achieved in the last 4 years, since the First Roman Symposium was held in 1993. The first part of the meeting was dedicated to relevant aspects of laboratory research, and included the following topics: molecular mechanisms of leukemogenesis and of response/resistance to retinoids, biologic and therapeutic effects of new agents such as arsenicals and novel synthetic retinoids; characterization of APL heterogeneity at the morphological, cytogenetic and immunophenotypic level. The updated results of large cooperative clinical trials using variable combinations of all-trans retinoic acid (ATRA) and chemotherapy were presented by the respective group chairmen, and formed the 'core' part of the meeting. These studies, which in most cases integrated the molecular assessment of response to treatment, provided a stimulating framework for an intense debate on the most appropriate frontline treatment options to be adopted in the future. The last day was dedicated to special entities such as APL in the elderly and in the child, as well as the role of bone marrow transplantation. The prognostic value of molecular monitoring studies was also discussed in the final session of the meeting. In this article, we review the major advances and controversial issues in APL biology and treatment discussed in this symposium and emerging from very recent publications. We would like to credit the successful outcome of this meeting to the active and generous input of all invited speakers and to participants from all over the world who provided constructive and fruitful discussions.

  13. Acute Appendicitis Secondary to Acute Promyelocytic Leukemia

    PubMed Central

    Rodriguez, Eduardo A.; Lopez, Marvin A.; Valluri, Kartik; Wang, Danlu; Fischer, Andrew; Perdomo, Tatiana

    2015-01-01

    Patient: Female, 43 Final Diagnosis: Myeloid sarcoma appendicitis Symptoms: Abdominal pain • chills • fever Medication: — Clinical Procedure: Laparoscopic appendectomy, bone marrow biopsy Specialty: Gastroenterology and Hepatology Objective: Rare disease Background: The gastrointestinal tract is a rare site for extramedullary involvement in acute promyelocytic leukemia (APL). Case Report: A 43-year-old female with no past medical history presented complaining of mild abdominal pain, fever, and chills for the past day. On examination, she was tachycardic and febrile, with mild tenderness of her right lower quadrant and without signs of peritoneal irritation. Laboratory examination revealed pancytopenia and DIC, with a fibrinogen level of 290 mg/dL. CT of the abdomen showed a thickened and hyperemic appendix without perforation or abscess, compatible with acute appendicitis. The patient was given IV broad-spectrum antibiotics and was transfused with packed red blood cells and platelets. She underwent uncomplicated laparoscopic appendectomy and bone marrow biopsy, which revealed neo-plastic cells of 90% of the total bone marrow cellularity. Flow cytometry indicated presence of 92.4% of immature myeloid cells with t (15: 17) and q (22: 12) mutations, and FISH analysis for PML-RARA demonstrated a long-form fusion transcript, positive for APL. Appendix pathology described leukemic infiltration with co-expression of myeloperoxidase and CD68, consistent with myeloid sarcoma of the appendix. The patient completed a course of daunorubicin, cytarabine, and all trans-retinoic acid. Repeat bone marrow biopsy demonstrated complete remission. She will follow up with her primary care physician and hematologist/oncologist. Conclusions: Myeloid sarcoma of the appendix in the setting of APL is very rare and it might play a role in the development of acute appendicitis. Urgent management, including bone marrow biopsy for definitive diagnosis and urgent surgical intervention

  14. NLS-RARα promotes proliferation and inhibits differentiation in HL-60 cells.

    PubMed

    Hu, Xiu-Xiu; Zhong, Liang; Zhang, Xi; Gao, Yuan-Mei; Liu, Bei-Zhong

    2014-01-01

    A unique mRNA produced in leukemic cells from a t(15;17) acute promyelocytic leukemia (APL) patient encodes a fusion protein between the retinoic acid receptor α (RARα) and a myeloid gene product called PML. Studies have reported that neutrophil elastase (NE) cleaves bcr-1-derived PML-RARα in early myeloid cells, leaving only the nuclear localization signal (NLS) of PML attached to RARα. The resultant NLS-RARα fusion protein mainly localizes to, and functions within, the cell nucleus. It is speculated that NLS-RARα may act in different ways from the wild-type RARα, but its biological characteristics have not been reported. This study takes two approaches. Firstly, the NLS-RARα was silenced with pNLS-RARα-shRNA. The mRNA and protein expression of NLS-RARα were detected by RT-PCR and Western blot respectively. Cell proliferation in vitro was assessed by MTT assay. Flow cytometry (FCM) was used to detect the differentiation of cells. Secondly, the NLS-RARα was over-expressed by preparation of recombinant adenovirus HL-60/pAd-NLS-RARα. The assays of mRNA and protein expression of NLS-RARα, and cell proliferation, were as above. By contrast, cell differentiation was stimulated by all trans retinoic acid (ATRA) (2.5µmol/L) at 24h after virus infection of pAd-NLS-RARα, and then detected by CD11b labeling two days later. The transcription and translation of C-MYC was detected in HL-60/pAd-NLS-RARα cells which treated by ATRA. Our results showed that compared to the control groups, the expression of NLS-RARα was significantly reduced in the HL-60/pNLS-RARα-shRNA cells, and increased dramatically in the HL-60/pAd-NLS-RARα cells. The proliferation was remarkably inhibited in the HL-60/pNLS-RARα-shRNA cells in a time-dependent manner, but markedly promoted in the HL-60/pAd-NLS-RARα cells. FCM outcome revealed the differentiation increased in HL-60/pNLS-RARα-shRNA cells, and decreased in the HL-60/pAd-NLS-RARα cells treated with 2.5µmol/L ATRA. The

  15. Global protein expression dataset acquired during isoniazid-induced cytoprotection against H2O2 challenge in HL-60 cells.

    PubMed

    Khan, Saifur R; Baghdasarian, Argishti; Fahlman, Richard P; Siraki, Arno G

    2016-03-01

    Isoniazid (INH) is one of the first-line anti-tuberculosis drugs. Its effect on oxidative stress, however, is unknown. Here we used a model of oxidative stress by employing glucose/glucose oxidase (GOx), which (based on the availability of glucose and oxygen) is known to produce H2O2. This reaction induces oxidative stress culminating in necrotic cell death in HL-60 cells (a human promyelocytic leukemia cell line). The changes in protein levels have been quantified using global proteome expression changes through stable isotope labeling by amino acids in cell culture (SILAC) followed by LC-MS/MS analysis. A total of 1459 and 1712 proteins were identified in forward and reverse experiments, respectively. However, only 390 proteins were reproducibly identified in both samples. These 390 proteins were taken into account for further analysis which has been described in "Cytoprotective effect of isoniazid against H2O2 derived injury in HL-60 cells" [1].

  16. A novel PAD4/SOX4/PU.1 signaling pathway is involved in the committed differentiation of acute promyelocytic leukemia cells into granulocytic cells

    PubMed Central

    Song, Guanhua; Shi, Lulu; Guo, Yuqi; Yu, Linchang; Wang, Lin; Zhang, Xiaoyu; Li, Lianlian; Han, Yang; Ren, Xia; Guo, Qiang; Bi, Kehong; Jiang, Guosheng

    2016-01-01

    All-trans retinoic acid (ATRA) treatment yields cure rates > 80% through proteasomal degradation of the PML-RARα fusion protein that typically promotes acute promyelocytic leukemia (APL). However, recent evidence indicates that ATRA can also promote differentiation of leukemia cells that are PML-RARα negative, such as HL-60 cells. Here, gene expression profiling of HL-60 cells was used to investigate the alternative mechanism of impaired differentiation in APL. The expression of peptidylarginine deiminase 4 (PADI4), encoding PAD4, a protein that post-translationally converts arginine into citrulline, was restored during ATRA-induced differentiation. We further identified that hypermethylation in the PADI4 promoter was associated with its transcriptional repression in HL-60 and NB4 (PML-RARα positive) cells. Functionally, PAD4 translocated into the nucleus upon ATRA exposure and promoted ATRA-mediated differentiation. Mechanistic studies using RNAi knockdown or electroporation-mediated delivery of PADI4, along with chromatin immunoprecipitation, helped identify PU.1 as an indirect target and SOX4 as a direct target of PAD4 regulation. Indeed, PAD4 regulates SOX4-mediated PU.1 expression, and thereby the differentiation process, in a SOX4-dependent manner. Taken together, our results highlight an association between PAD4 and DNA hypermethylation in APL and demonstrate that targeting PAD4 or regulating its downstream effectors may be a promising strategy to control differentiation in the clinic. PMID:26673819

  17. Comprehensive mutational analysis of primary and relapse acute promyelocytic leukemia.

    PubMed

    Madan, V; Shyamsunder, P; Han, L; Mayakonda, A; Nagata, Y; Sundaresan, J; Kanojia, D; Yoshida, K; Ganesan, S; Hattori, N; Fulton, N; Tan, K-T; Alpermann, T; Kuo, M-C; Rostami, S; Matthews, J; Sanada, M; Liu, L-Z; Shiraishi, Y; Miyano, S; Chendamarai, E; Hou, H-A; Malnassy, G; Ma, T; Garg, M; Ding, L-W; Sun, Q-Y; Chien, W; Ikezoe, T; Lill, M; Biondi, A; Larson, R A; Powell, B L; Lübbert, M; Chng, W J; Tien, H-F; Heuser, M; Ganser, A; Koren-Michowitz, M; Kornblau, S M; Kantarjian, H M; Nowak, D; Hofmann, W-K; Yang, H; Stock, W; Ghavamzadeh, A; Alimoghaddam, K; Haferlach, T; Ogawa, S; Shih, L-Y; Mathews, V; Koeffler, H P

    2016-08-01

    Acute promyelocytic leukemia (APL) is a subtype of myeloid leukemia characterized by differentiation block at the promyelocyte stage. Besides the presence of chromosomal rearrangement t(15;17), leading to the formation of PML-RARA (promyelocytic leukemia-retinoic acid receptor alpha) fusion, other genetic alterations have also been implicated in APL. Here, we performed comprehensive mutational analysis of primary and relapse APL to identify somatic alterations, which cooperate with PML-RARA in the pathogenesis of APL. We explored the mutational landscape using whole-exome (n=12) and subsequent targeted sequencing of 398 genes in 153 primary and 69 relapse APL. Both primary and relapse APL harbored an average of eight non-silent somatic mutations per exome. We observed recurrent alterations of FLT3, WT1, NRAS and KRAS in the newly diagnosed APL, whereas mutations in other genes commonly mutated in myeloid leukemia were rarely detected. The molecular signature of APL relapse was characterized by emergence of frequent mutations in PML and RARA genes. Our sequencing data also demonstrates incidence of loss-of-function mutations in previously unidentified genes, ARID1B and ARID1A, both of which encode for key components of the SWI/SNF complex. We show that knockdown of ARID1B in APL cell line, NB4, results in large-scale activation of gene expression and reduced in vitro differentiation potential. PMID:27063598

  18. Comprehensive mutational analysis of primary and relapse acute promyelocytic leukemia

    PubMed Central

    Madan, V; Shyamsunder, P; Han, L; Mayakonda, A; Nagata, Y; Sundaresan, J; Kanojia, D; Yoshida, K; Ganesan, S; Hattori, N; Fulton, N; Tan, K-T; Alpermann, T; Kuo, M-C; Rostami, S; Matthews, J; Sanada, M; Liu, L-Z; Shiraishi, Y; Miyano, S; Chendamarai, E; Hou, H-A; Malnassy, G; Ma, T; Garg, M; Ding, L-W; Sun, Q-Y; Chien, W; Ikezoe, T; Lill, M; Biondi, A; Larson, R A; Powell, B L; Lübbert, M; Chng, W J; Tien, H-F; Heuser, M; Ganser, A; Koren-Michowitz, M; Kornblau, S M; Kantarjian, H M; Nowak, D; Hofmann, W-K; Yang, H; Stock, W; Ghavamzadeh, A; Alimoghaddam, K; Haferlach, T; Ogawa, S; Shih, L-Y; Mathews, V; Koeffler, H P

    2016-01-01

    Acute promyelocytic leukemia (APL) is a subtype of myeloid leukemia characterized by differentiation block at the promyelocyte stage. Besides the presence of chromosomal rearrangement t(15;17), leading to the formation of PML-RARA (promyelocytic leukemia-retinoic acid receptor alpha) fusion, other genetic alterations have also been implicated in APL. Here, we performed comprehensive mutational analysis of primary and relapse APL to identify somatic alterations, which cooperate with PML-RARA in the pathogenesis of APL. We explored the mutational landscape using whole-exome (n=12) and subsequent targeted sequencing of 398 genes in 153 primary and 69 relapse APL. Both primary and relapse APL harbored an average of eight non-silent somatic mutations per exome. We observed recurrent alterations of FLT3, WT1, NRAS and KRAS in the newly diagnosed APL, whereas mutations in other genes commonly mutated in myeloid leukemia were rarely detected. The molecular signature of APL relapse was characterized by emergence of frequent mutations in PML and RARA genes. Our sequencing data also demonstrates incidence of loss-of-function mutations in previously unidentified genes, ARID1B and ARID1A, both of which encode for key components of the SWI/SNF complex. We show that knockdown of ARID1B in APL cell line, NB4, results in large-scale activation of gene expression and reduced in vitro differentiation potential. PMID:27063598

  19. Tretinoin and Arsenic Trioxide in Treating Patients With Untreated Acute Promyelocytic Leukemia

    ClinicalTrials.gov

    2016-07-08

    Adult Acute Promyelocytic Leukemia With t(15;17)(q22;q12); PML-RARA; Childhood Acute Promyelocytic Leukemia With t(15;17)(q22;q12); PML-RARA; Untreated Adult Acute Myeloid Leukemia; Untreated Childhood Myeloid Neoplasm

  20. Tretinoin, Cytarabine, and Daunorubicin Hydrochloride With or Without Arsenic Trioxide Followed by Tretinoin With or Without Mercaptopurine and Methotrexate in Treating Patients With Acute Promyelocytic Leukemia

    ClinicalTrials.gov

    2013-06-04

    Adult Acute Myeloid Leukemia With t(15;17)(q22;q12); Adult Acute Promyelocytic Leukemia (M3); Childhood Acute Promyelocytic Leukemia (M3); Untreated Adult Acute Myeloid Leukemia; Untreated Childhood Acute Myeloid Leukemia and Other Myeloid Malignancies

  1. Thrombo-hemorrhagic deaths in acute promyelocytic leukemia.

    PubMed

    Breccia, Massimo; Lo Coco, Francesco

    2014-05-01

    Acute promyelocytic leukemia (APL) has become the most curable form of acute myeloid leukemia after the advent of all-trans retinoic acid (ATRA). However, early deaths (ED) mostly due to the disease-associated coagulopathy remain the major cause of treatment failure. In particular, hemorrhagic events account for 40-65% of ED and several prognostic factors have been identified for such hemorrhagic deaths, including poor performance status, high white blood cell (WBC) count and coagulopathy. Occurrence of thrombosis during treatment with ATRA may be associated with differentiation syndrome (DS) or represent an isolated event. Some prognostic factors have been reported to be associated with thrombosis, including increased WBC or aberrant immunophenotype of leukemic promyelocytes. Aim of this review is to report the incidence, severity, possible pathogenesis and clinical manifestations of thrombo-haemorrhagic deaths in APL.

  2. Thrombo-hemorrhagic deaths in acute promyelocytic leukemia.

    PubMed

    Breccia, Massimo; Lo Coco, Francesco

    2014-05-01

    Acute promyelocytic leukemia (APL) has become the most curable form of acute myeloid leukemia after the advent of all-trans retinoic acid (ATRA). However, early deaths (ED) mostly due to the disease-associated coagulopathy remain the major cause of treatment failure. In particular, hemorrhagic events account for 40-65% of ED and several prognostic factors have been identified for such hemorrhagic deaths, including poor performance status, high white blood cell (WBC) count and coagulopathy. Occurrence of thrombosis during treatment with ATRA may be associated with differentiation syndrome (DS) or represent an isolated event. Some prognostic factors have been reported to be associated with thrombosis, including increased WBC or aberrant immunophenotype of leukemic promyelocytes. Aim of this review is to report the incidence, severity, possible pathogenesis and clinical manifestations of thrombo-haemorrhagic deaths in APL. PMID:24862130

  3. Regulated expression of the MRP8 and MRP14 genes in human promyelocytic leukemic HL-60 cell treated with the differentiation-inducing agents mycophenolic acid and 1{alpha},25-Dihydroxyvitamin D{sub 3}

    SciTech Connect

    Warner-Bartnicki, A.L.; Murao, S.; Collart, F.R.; Huberman, E.

    1992-12-31

    The calcium-binding proteins MRP8 and MEP14 are present in mature monomyelocytic cells and are induced during differentiation. Previous studies have demonstrated that the proteins may mediate the growth arrest in differentiating HL-60 cells. We determined the levels of a protein complex (PC) containing MRP8 and MRP14 and investigated the mechanism by which the genes encoding these proteins are regulated in HL-60 cells treated with the differentiation-inducing agent mycophenorc acid (MPA)While the PC was barely detectable in untreated cells, MPA treatment resulted in elevated levels of the PC which were maximal at 3-4 d, and were found to directly parallel gains in the steady-state levels of MRP8 and MRP14 MRNA. Transcription studies with the use of nuclear run-on experiments revealed increased transcription initiation at the MRP8 and MRP14 promoters after MPA treatment. 1{alpha},25-Dihydroxyvitamin D{sub 3}, which induces HL-60 cell differentiation by another mechanism, was also found to increase transcription initiation at the MRP8 and MRP14 promoters. Our results suggest that this initiation is the major control of maturation agent-mediated increases in MRP8 and MRPl4 gene expression, and support a role for the PC in terminal differentiation of human monomyelocytic cells.

  4. Libraries of 2β-(N-substituted piperazino)-5α-androstane-3α, 17β-diols: chemical synthesis and cytotoxic effects on human leukemia HL-60 cells and on normal lymphocytes.

    PubMed

    Roy, Jenny; Maltais, René; Jegham, Hajer; Poirier, Donald

    2011-05-01

    Libraries of steroid derivatives with two levels of molecular diversity were prepared to optimize the antiproliferative activity on leukemia HL-60 cells by first varying the amino acid (AA) at R(1) (libraries A, B, C, and D: with 45, 45, 20, and 20 members, respectively) and, subsequently, the capping group at R(2) (library E: 168 members). The screening of these aminosteroids revealed interesting structure-activity relationships. In library A, the compounds bearing a tetrahydroisoquinolone residue as the first element of diversity showed potent cytotoxicity, principally when isovaleric or cyclohexyl acetic acid was used as a capping group (>40% of cell growth inhibition at 1 μM). In library B, the phenylalanine (Phe) derivatives bearing a cyano group induced a higher growth inhibition than the other Phe derivatives. The screening of library C indicated the increase of hydrophobicity of proline (Pro) seems to preserve the cytotoxic effect achieved by the lead compound. However, the synthesis of structural Pro variants (library D) clearly shows weaker activities when compared to L-Pro building blocks. Finally, by incorporating some of the most active AA of libraries A-D in library E, we observed that the amide coupling functionality gave stronger cytotoxic activity compared to the corresponding sulfonamides or benzylamines. Six of the most active amide derivatives (E-37P, E-41P, E-42P, E-46P, E-48F, and E-12T) were selected and IC(50) determined on HL-60 cells as well as on normal human lymphocytes. Among this series of new anticancer agents, good to high selectivity indices (SI = IC(50) (lymphocytes)/IC(50) (HL-60 cells) = 5 - 55) were obtained.

  5. Vildagliptin and its metabolite M20.7 induce the expression of S100A8 and S100A9 in human hepatoma HepG2 and leukemia HL-60 cells

    PubMed Central

    Asakura, Mitsutoshi; Karaki, Fumika; Fujii, Hideaki; Atsuda, Koichiro; Itoh, Tomoo; Fujiwara, Ryoichi

    2016-01-01

    Vildagliptin is a potent, orally active inhibitor of dipeptidyl peptidase-4 (DPP-4) for the treatment of type 2 diabetes mellitus. It has been reported that vildagliptin can cause hepatic dysfunction in patients. However, the molecular-mechanism of vildagliptin-induced liver dysfunction has not been elucidated. In this study, we employed an expression microarray to determine hepatic genes that were highly regulated by vildagliptin in mice. We found that pro-inflammatory S100 calcium-binding protein (S100) a8 and S100a9 were induced more than 5-fold by vildagliptin in the mouse liver. We further examined the effects of vildagliptin and its major metabolite M20.7 on the mRNA expression levels of S100A8 and S100A9 in human hepatoma HepG2 and leukemia HL-60 cells. In HepG2 cells, vildagliptin, M20.7, and sitagliptin – another DPP-4 inhibitor – induced S100A9 mRNA. In HL-60 cells, in contrast, S100A8 and S100A9 mRNAs were significantly induced by vildagliptin and M20.7, but not by sitagliptin. The release of S100A8/A9 complex in the cell culturing medium was observed in the HL-60 cells treated with vildagliptin and M20.7. Therefore, the parental vildagliptin- and M20.7-induced release of S100A8/A9 complex from immune cells, such as neutrophils, might be a contributing factor of vildagliptin-associated liver dysfunction in humans. PMID:27759084

  6. Massive Pulmonary Embolism at the Onset of Acute Promyelocytic Leukemia

    PubMed Central

    Sorà, Federica; Chiusolo, Patrizia; Laurenti, Luca; Autore, Francesco; Giammarco, Sabrina; Sica, Simona

    2016-01-01

    Life-threatening bleeding is a major and early complication of acute promyelocytic leukemia (APL), but in the last years there is a growing evidence of thromboses in APL. We report the first case of a young woman with dyspnea as the first symptom of APL due to massive pulmonary embolism (PE) successfully treated with thrombolysis for PE and heparin. APL has been processed with a combination of all-trans retinoic acid (ATRA) and arsenic trioxide (ATO) obtaining complete remission. PMID:27413520

  7. Purification and Characterization of Glutaminase Free Asparaginase from Enterobacter cloacae: In-Vitro Evaluation of Cytotoxic Potential against Human Myeloid Leukemia HL-60 Cells.

    PubMed

    Husain, Islam; Sharma, Anjana; Kumar, Suresh; Malik, Fayaz

    2016-01-01

    Asparaginase is an important antileukemic agent extensively used worldwide but the intrinsic glutaminase activity of this enzymatic drug is responsible for serious life threatening side effects. Hence, glutaminase free asparaginase is much needed for upgradation of therapeutic index of asparaginase therapy. In the present study, glutaminase free asparaginase produced from Enterobacter cloacae was purified to apparent homogeneity. The purified enzyme was found to be homodimer of approximately 106 kDa with monomeric size of approximately 52 kDa and pI 4.5. Purified enzyme showed optimum activity between pH 7-8 and temperature 35-40°C, which is close to the internal environment of human body. Monovalent cations such as Na+ and K+ enhanced asparaginase activity whereas divalent and trivalent cations, Ca2+, Mg2+, Zn2+, Mn2+, and Fe3+ inhibited the enzyme activity. Kinetic parameters Km, Vmax and Kcat of purified enzyme were found to be 1.58×10-3 M, 2.22 IU μg-1 and 5.3 × 104 S-1, respectively. Purified enzyme showed prolonged in vitro serum (T1/2 = ~ 39 h) and trypsin (T1/2 = ~ 32 min) half life, which is therapeutically remarkable feature. The cytotoxic activity of enzyme was examined against a panel of human cancer cell lines, HL-60, MOLT-4, MDA-MB-231 and T47D, and highest cytotoxicity observed against HL-60 cells (IC50 ~ 3.1 IU ml-1), which was comparable to commercial asparaginase. Cell and nuclear morphological studies of HL-60 cells showed that on treatment with purified asparaginase symptoms of apoptosis were increased in dose dependent manner. Cell cycle progression analysis indicates that enzyme induces apoptosis by cell cycle arrest in G0/G1 phase. Mitochondrial membrane potential loss showed that enzyme also triggers the mitochondrial pathway of apoptosis. Furthermore, the enzyme was found to be nontoxic for human noncancerous cells FR-2 and nonhemolytic for human erythrocytes. PMID:26891220

  8. Purification and Characterization of Glutaminase Free Asparaginase from Enterobacter cloacae: In-Vitro Evaluation of Cytotoxic Potential against Human Myeloid Leukemia HL-60 Cells

    PubMed Central

    Husain, Islam; Sharma, Anjana; Kumar, Suresh; Malik, Fayaz

    2016-01-01

    Asparaginase is an important antileukemic agent extensively used worldwide but the intrinsic glutaminase activity of this enzymatic drug is responsible for serious life threatening side effects. Hence, glutaminase free asparaginase is much needed for upgradation of therapeutic index of asparaginase therapy. In the present study, glutaminase free asparaginase produced from Enterobacter cloacae was purified to apparent homogeneity. The purified enzyme was found to be homodimer of approximately 106 kDa with monomeric size of approximately 52 kDa and pI 4.5. Purified enzyme showed optimum activity between pH 7–8 and temperature 35–40°C, which is close to the internal environment of human body. Monovalent cations such as Na+ and K+ enhanced asparaginase activity whereas divalent and trivalent cations, Ca2+, Mg2+, Zn2+, Mn2+, and Fe3+ inhibited the enzyme activity. Kinetic parameters Km, Vmax and Kcat of purified enzyme were found to be 1.58×10−3 M, 2.22 IU μg-1 and 5.3 × 104 S-1, respectively. Purified enzyme showed prolonged in vitro serum (T1/2 = ~ 39 h) and trypsin (T1/2 = ~ 32 min) half life, which is therapeutically remarkable feature. The cytotoxic activity of enzyme was examined against a panel of human cancer cell lines, HL-60, MOLT-4, MDA-MB-231 and T47D, and highest cytotoxicity observed against HL-60 cells (IC50 ~ 3.1 IU ml-1), which was comparable to commercial asparaginase. Cell and nuclear morphological studies of HL-60 cells showed that on treatment with purified asparaginase symptoms of apoptosis were increased in dose dependent manner. Cell cycle progression analysis indicates that enzyme induces apoptosis by cell cycle arrest in G0/G1 phase. Mitochondrial membrane potential loss showed that enzyme also triggers the mitochondrial pathway of apoptosis. Furthermore, the enzyme was found to be nontoxic for human noncancerous cells FR-2 and nonhemolytic for human erythrocytes. PMID:26891220

  9. Five novel naphthylisoquinoline alkaloids with growth inhibitory activities against human leukemia cells HL-60, K562 and U937 from stems and leaves of Ancistrocladus tectorius.

    PubMed

    Jiang, Chao; Li, Zhan-Lin; Gong, Ping; Kang, Sheng-Li; Liu, Ming-Sheng; Pei, Yue-Hu; Jing, Yong-Kui; Hua, Hui-Ming

    2013-12-01

    Two new 7,6'-coupled naphthylisoquinolines, namely ancistrotectorines A (1) and B (2), two new 5,3'-coupled naphthylisoquinolines, namely ancistrotectorines C (3) and D (4), and one new 7,8-coupled naphthylisoquinoline, namely ancistrotectorine E (5), together with 9 known naphthylisoquinoline alkaloids, hamatine (6), ancistrobertsonine B (7), ancistrocladinine (8), hamatinine (9), ancistrotanzanine A (10), ancistrotanzanine B (11), ancistrotectoriline B (12), 7-epi-ancistrobrevine D (13), and ancistrotectorine (14), were isolated from the 70% EtOH extract of Ancistrocladus tectorius. Their structures were elucidated based on the extensive analysis of spectroscopic data (1D, 2D NMR and MS). Compound 5 exhibited inhibitory activities against HL-60, K562 and U937 cell lines with IC50 values of 1.70, 4.18 and 2.56 μM respectively.

  10. Synthesis of a fluorescently labeled compound for the detection of arsenic-induced apoptotic HL60 cells.

    PubMed

    Femia, A Lis; Temprana, C Facundo; Amor, M Silvia; Grasselli, Mariano; Alonso, Silvia Del V

    2012-03-01

    Arsenic compounds have shown medical usefulness since they proved to be effective in causing complete remission of acute promyelocytic leukemia. In this work we obtained a fluorescently labeled arsenic compound that can be used with current fluorescence techniques for basic and applied research, focused on arsenic-induced apoptosis studies. This compound is an arsanilic acid bearing a covalently linked FITC that was chemically synthesized and characterized by fluorescence, UV-Vis, mass and FTIR spectrometry. In addition, we assessed its apoptotic activity as well as its fluorescent labeling properties in HL60 cell line as a leukemia cell model through flow cytometry. We obtained a compound with a 1:1 FITC:arsenic ratio and a 595 m/z, confirming its structure by FTIR. This compound proved to be useful at inducing apoptosis in the leukemia cell model and labeling this apoptotic cell population, in such a way that the highest FITC fluorescence correlated with the highest arsenic amount.

  11. Delirium in acute promyelocytic leukemia patients: two case reports

    PubMed Central

    2013-01-01

    Background Delirium is a frequently misdiagnosed and inadequately treated neuropsychiatric complication most commonly observed in terminally ill cancer patients. To our knowledge this is the first report describing delirium in two patients aged less than 60 years and enrolled in an intensive chemotherapeutic protocol for acute promyelocytic leukemia. Case presentation Two female Caucasian acute promyelocytic leukemia patients aged 46 and 56 years developed delirium during their induction treatment with all-trans retinoic acid and idarubicin. In both cases symptoms were initially attributed to all-trans retinoic acid that was therefore immediately suspended. In these two patients several situations may have contribute to the delirium: in patient 1 a previous psychiatric disorder, concomitant treatments with steroids and benzodiazepines, a severe infection and central nervous system bleeding while in patient 2 steroid treatment and isolation. In patient 1 delirium was treated with short-term low-doses of haloperidol while in patient 2 non-pharmacologic interventions had a beneficial role. When the diagnosis of delirium was clear, induction treatment was resumed and both patients completed their therapeutic program without any relapse of the psychiatric symptoms. Both patients are alive and in complete remission as far as their leukemia is concerned. Conclusions We suggest that patients with acute promyelocytic leukemia eligible to intensive chemotherapy should be carefully evaluated by a multisciplinary team including psychiatrists in order to early recognize symptoms of delirium and avoid inadequate treatments. In case of delirium, both pharmacologic and non-pharmacologic interventions may be considered. PMID:24237998

  12. Undifferentiated HL-60 cells internalize an antitumor alkyl ether phospholipid more rapidly than resistant K562 cells.

    PubMed

    Tsutsumi, T; Tokumura, A; Kitazawa, S

    1998-02-01

    In this study, we confirmed a previous finding that 1-O-octadecyl-2-O-methyl-rac-glycero-3-phosphocholine (methyl-PAF) expresses higher antineoplastic activity against the promyelocytic leukemia cell line HL-60, than against the erythroleukemic cell line K562, and intended to clarify the reason for this. Using an albumin back-exchange method, we measured the rates of binding and internalization of [3H]methyl-PAF by HL-60 and K562 cells. We found that methyl-PAF associated very rapidly and to similar extents with the two types of cells at low concentrations of extracellular bovine serum albumin, but that when bound to the cell surface, it was internalized into HL-60 cells faster than into K562 cells. The internalization of methyl-PAF by HL-60 cells was concentration-independent, intracellular ATP-independent and susceptible to thiol group-modifying reagents and cytochalasin B. Thus the inward transbilayer movement of methyl-PAF seems to occur by cytochalasin B-sensitive protein-mediated mechanism based on passive diffusion not requiring energy, in which SH-groups of protein play a critical role. We also found that the internalization of 1-hexadecanoyl-2-(4,4-difluoro-5,7- dimethyl-4-bora-3a, 4a-diaza-s-indacene-3-pentanoyl)-sn-glycero-3-phosphocholine (Bodipy-C5-PC), whose structure resembles that of methyl-PAF, into HL-60 cells was faster than that into K562 cells. Using a combination of an albumin back-exchange method and observation by confocal laser scanning microscopy, we next examined the intracellular distribution of this fluorescent phospholipid probe after its internalization. Intracellular membranes, especially those peripheral to nuclei, were fluorescence-labeled in both HL-60 and K562 cells, but fluorescence of the nuclear membranes was weak, suggesting that this probe seems mainly to accumulate in intracellular granules, and may interact directly with several key enzymes for phospholipid metabolism, leading to cell injury. Because the difference between

  13. Chemical modulation of the ultra-weak photon emission from Saccharomyces cerevisiae and differentiated HL-60 cells

    NASA Astrophysics Data System (ADS)

    Červinková, Kateřina; Nerudová, Michaela; Hašek, Jiří; Cifra, Michal

    2015-01-01

    The ultra-weak photon emission (UPE) is a universal phenomenon common to all cells with active oxidative metabolism. Generally accepted mechanism of the origin of the ultra-weak photon emission considers reactions of radical or nonradical reactive oxygen species (ROS) with biomolecules such as lipids and proteins which lead to the formation of electron excited species. During the transition to the ground state the excess energy is released as a photon with a wavelength in the visible range of the electromagnetic spectrum. Since the intensity of the light is very low it is possible to be measured only by highly sensitive devices. We used Hamamatsu Photonics PMT module H7360-01 mounted into a light-tight chamber for the purposes of this work. The goal of our research is to delineate an origin of UPE from two model organisms; differentiated HL-60 cells (human promyelocytic leukemia) and yeast cells Saccharomyces cerevisiae. While the UPE from the yeast cells arises spontaneously during the growth without any external stimuli, UPE from HL-60 is induced by phorbol 12-myristate, 13-acetate (PMA). It is possible to modulate the UPE production by certain antioxidants which scavenge ROS formed during the metabolism (yeast cells) or respiratory burst (HL-60 cells). The experiments are focused on the description of effects caused by antioxidants. Several kinds of antioxidants (ascorbic acid, mannitol, glutathione) with different concentration were used and we studied the changes in the UPE intensities of and the temporal developments of the optical signal.

  14. Proteomic profile of aminoglutethimide-induced apoptosis in HL-60 cells: Role of myeloperoxidase and arylamine free radicals.

    PubMed

    Khan, Saifur R; Baghdasarian, Argishti; Nagar, Prarthna H; Fahlman, Richard; Jurasz, Paul; Michail, Karim; Aljuhani, Naif; Siraki, Arno G

    2015-09-01

    In this study, the cellular effects resulting from the metabolism of aminoglutethimide by myeloperoxidase were investigated. Human promyelocytic leukemia (HL-60) cells were treated with aminoglutethimide (AG), an arylamine drug that has a risk of adverse drug reactions, including drug-induced agranulocytosis. HL-60 cells contain abundant amounts of myeloperoxidase (MPO), a hemoprotein, which catalyzes one-electron oxidation of arylamines using H2O2 as a cofactor. Previous studies have shown that arylamine metabolism by MPO results in protein radical formation. The purpose of this study was to determine if pathways associated with a toxic response could be determined from conditions that produced protein radicals. Conditions for AG-induced protein radical formation (with minimal cytotoxicity) were optimized, and these conditions were used to carry out proteomic studies. We identified 43 proteins that were changed significantly upon AG treatment among which 18 were up-regulated and 25 were down-regulated. The quantitative proteomic data showed that AG peroxidative metabolism led to the down-regulation of critical anti-apoptotic proteins responsible for inhibiting the release of pro-apoptotic factors from the mitochondria as well as cytoskeletal proteins such as nuclear lamina. This overall pro-apoptotic response was confirmed with flow cytometry which demonstrated apoptosis to be the main mode of cell death, and this was attenuated by MPO inhibition. This response correlated with the intensity of AG-induced protein radical formation in HL-60 cells, which may play a role in cell death signaling mechanisms.

  15. Scavenging of superoxide anions by lecithinized superoxide dismutase in HL-60 cells.

    PubMed

    Ishihara, Tsutomu; Shibui, Misaki; Hoshi, Takaya; Mizushima, Tohru

    2016-01-01

    Superoxide dismutase covalently bound to four lecithin molecules (PC-SOD) has been found to have beneficial therapeutic effects in animal models of various diseases. However, the mechanism underlying these improved therapeutic effects has not yet been elucidated. It has previously been shown that PC-SOD localizes on the plasma membrane and in the lysosomes of cells. In this study, we evaluated the superoxide anion-scavenging activity of PC-SOD in HL-60 human promyelocytic leukemia cells. Compared to SOD, PC-SOD had only 17% scavenging activity in cell-free systems. Nevertheless, by analyzing enzyme activities in cell suspensions containing PC-SOD or SOD, PC-SOD and SOD showed almost equal activity for scavenging extracellular superoxide anions produced by HL-60 cells. Furthermore, the activity for scavenging extracellular superoxide anions increased with increased amount of PC-SOD on the plasma membrane. Moreover, PC-SOD exhibited no obvious inhibitory effect on the scavenging of intracellular superoxide anions. These results suggested that the association of PC-SOD with the plasma membrane plays a key role in its beneficial therapeutic effects. Thus, this finding may provide a rationale for selecting target diseases for PC-SOD treatment.

  16. Cytoprotective effect of isoniazid against H2O2 derived injury in HL-60 cells.

    PubMed

    Khan, Saifur R; Aljuhani, Naif; Morgan, Andrew G M; Baghdasarian, Argishti; Fahlman, Richard P; Siraki, Arno G

    2016-01-25

    To combat tuberculosis (TB), host phagocytic cells need to survive against self-generating oxidative stress-induced necrosis. However, the effect of isoniazid (INH) in protecting cells from oxidative stress-induced necrosis has not been previously investigated. In this in vitro study, the cytotoxic effect of H2O2 generation using glucose oxidase (a model of oxidative stress) was found to be abrogated by INH in a concentration-dependent manner in HL-60 cells (a human promyelocytic leukemia cell). In cells treated with glucose oxidase, both ATP and mitochondrial membrane potential were found to be decreased. However, treatment with INH demonstrated small but significant attenuation in decreasing ATP levels, and complete reversal for the decrease in mitochondrial membrane potential. Quantitative proteomics analysis identified up-regulation of 15 proteins and down-regulation of 14 proteins which all together suggest that these proteomic changes signal for increasing cellular replication, structural integrity, ATP synthesis, and inhibiting cell death. In addition, studies demonstrated that myeloperoxidase (MPO) was involved in catalyzing INH-protein adduct formation. Unexpectedly, these covalent protein adducts were correlated with INH-induced cytoprotection in HL-60 cells. Further studies are needed to determine whether the INH-protein adducts were causative in the mechanism of cytoprotection.

  17. Retinoic acid induces nuclear accumulation of Raf1 during differentiation of HL-60 cells

    SciTech Connect

    Smith, James; Bunaciu, Rodica P.; Reiterer, Gudrun; Coder, David; George, Thaddeus; Asaly, Michael; Yen, Andrew

    2009-08-01

    All trans-retinoic acid (RA) is a standard therapeutic agent used in differentiation induction therapy treatment of acute promyelocytic leukemia (APL). RA and its metabolites use a diverse set of signal transduction pathways during the differentiation program. In addition to the direct transcriptional targets of the nuclear RAR and RXR receptors, signals derived from membrane receptors and the Raf-MEK-ERK pathway are required. Raf1 phosphorylation and the prolonged activation of Raf1 persisting during the entire differentiation process are required for RA-dependent differentiation of HL-60 cells. Here we identify a nuclear redistribution of Raf1 during the RA-induced differentiation of HL-60 cells. In addition, the nuclear accumulation of Raf1 correlates with an increase in Raf1 phosphorylated at serine 621. The serine 621 phosphorylated Raf1 is predominantly localized in the nucleus. The RA-dependent nuclear accumulation of Raf1 suggests a novel nuclear role for Raf1 during the differentiation process.

  18. Therapy Related Acute Myeloid Leukemia with t(8;16) Mimicking Acute Promyelocytic Leukemia.

    PubMed

    Chharchhodawala, Taher; Gajendra, Smeeta; Tiwari, Priya; Gogia, Ajay; Gupta, Ritu

    2016-06-01

    Acute myeloid leukemia (AML) with t(8;16)(p11;q13) is a distinct clinical and morphological entity with poor prognosis, which is characterized by a high frequency of extramedullary involvement, most commonly leukemia cutis; association with therapy related AML; frequent coagulopathy and morphologic features overlapping acute promyelocytic leukemia(APL). Herein, we present a case of 47 year-old post-menopausal woman developing secondary AML with t(8;16)(p11;q13) after 1 year of completion of therapy for breast carcinoma. Blasts were granulated with few showing clefted nucleus resembling promyelocytes and immnuophenotyping showed high side scatter with MPO positivity and CD 34 and HLA-DR negativity. In view of promyelocyte like morphology and immunophenotyping of blasts, possibility of APL was considered but, reverse transcription polymerase chain reaction (RT-PCR) for PML-RARα fusion transcript came out to be negative. Conventional cytogenetics showed t(8;16)(p11;q13). So, we should keep possibility of t(8;16) (p11;q13) in therapy related acute myeloid leukemia in patient showing clinical and morphological features of acute promyelocytic leukemia. PMID:27408347

  19. Ethyl Gallate Induces Apoptosis of HL-60 Cells by Promoting the Expression of Caspases-8, -9, -3, Apoptosis-Inducing Factor and Endonuclease G

    PubMed Central

    Kim, Woong-Hyun; Song, Hyun-Ok; Choi, Hwa-Jung; Bang, Ho-Il; Choi, Du-Young; Park, Hyun

    2012-01-01

    Many phytochemicals have been recognized to have potential therapeutic efficacy in cancer treatment. In this study, we investigated ethyl gallate (EG) for possible proapoptotic effects in the human promyelocytic leukemia cell line, HL-60. We examined cell viability, morphological changes, DNA content and fragmentation, and expression of apoptosis-related proteins for up to 48 h after EG treatment. The results showed that EG induced morphological changes and DNA fragmentation and reduced HL-60 cell viability in a dose-dependent and time-dependent manner. Western blotting analysis indicated that EG-mediated HL-60 apoptosis mainly occurred through the mitochondrial pathway, as shown by the release of cytochrome c, apoptosis-inducing factor (AIF), and endonuclease G (Endo G), as well as the upregulation of Bcl-2-associated X protein (Bax). EG also activated the death receptor-dependent pathway of apoptosis by enhancing the expression of caspases-8, -9, and -3 and the Bcl-2 interacting domain (Bid). Collectively, our results showed that EG induces apoptosis in HL-60 via mitochondrial-mediated pathways. PMID:23109891

  20. Expression of human kinase suppressor of Ras 2 (hKSR-2) gene in HL60 leukemia cells is directly upregulated by 1,25-dihydroxyvitamin D{sub 3} and is required for optimal cell differentiation

    SciTech Connect

    Wang Xuening; Wang, T.-T.; White, John H.; Studzinski, George P. . E-mail: studzins@umdnj.edu

    2007-08-15

    Induction of terminal differentiation of neoplastic cells offers potential for a novel approach to cancer therapy. One of the agents being investigated for this purpose in preclinical studies is 1,25-dihydroxyvitamin D{sub 3} (1,25D), which can convert myeloid leukemia cells into normal monocyte-like cells, but the molecular mechanisms underlying this process are not fully understood. Here, we report that 1,25D upregulates the expression of hKSR-2, a new member of a small family of proteins that exhibit evolutionarily conserved function of potentiating ras signaling. The upregulation of hKSR-2 is direct, as it occurs in the presence of cycloheximide, and occurs primarily at the transcriptional level, via activation of vitamin D receptor, which acts as a ligand-activated transcription factor. Two VDRE-type motifs identified in the hKSR-2 gene bind VDR-RXR alpha heterodimers present in nuclear extracts of 1,25D-treated HL60 cells, and chromatin immunoprecipitation assays show that these VDRE motifs bind VDR in 1,25D-dependent manner in intact cells, coincident with the recruitment of RNA polymerase II to these motifs. Treatment of the cells with siRNA to hKSR-2 reduced the proportion of the most highly differentiated cells in 1,25D-treated cultures. These results demonstrate that hKSR-2 is a direct target of 1,25D in HL60 cells, and is required for optimal monocytic differentiation.

  1. Opposite effects of two trichothecene mycotoxins, deoxynivalenol and nivalenol, on the levels of macrophage inflammatory protein (MIP)-1α and MIP-1β in HL60 cells.

    PubMed

    Nagashima, Hitoshi; Nakagawa, Hiroyuki; Kushiro, Masayo

    2012-11-01

    To elucidate the mechanisms underlying the toxicities of the trichothecene mycotoxins deoxynivalenol and nivalenol, their effects on the secretion of anti-hematopoietic chemokines, macrophage inflammatory protein-1α (MIP-1α) and MIP-1β in human promyelocytic leukemia cell line HL60 were investigated. Exposure to deoxynivalenol for 24h significantly induced the secretion of chemokines. The induction of these chemokines may account for the leukopenia after exposure to trichothecene mycotoxins. Treatment with nivalenol decreased the secretion of these chemokines. Our finding that deoxynivalenol induces the secretion of these chemokines, whereas nivalenol has the opposite effect, clearly indicates that the toxicity mechanisms of deoxynivalenol and nivalenol differ.

  2. Curcumin suppresses activation of NF-kappaB and AP-1 induced by phorbol ester in cultured human promyelocytic leukemia cells.

    PubMed

    Han, Seong-Su; Keum, Young-Sam; Seo, Hyo-Joung; Surh, Young-Joon

    2002-05-31

    Many components that are derived from medicinal or dietary plants possess potential chemopreventive properties. Curcumin, a yellow coloring agent from turmeric (Curcuma longa Linn, Zingiberaceae), possesses strong antimutagenic and anticarcinogenic activities. In this study, we have found that curcumin inhibits the 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced nuclear factor kB (NF-kappaB) activation by preventing the degradation of the inhibitory protein IkBalpa; and the subsequent translocation of the p65 subunit in cultured human promyelocytic leukemia (HL-60) cells. Alternatively, curcumin repressed the TPA-induced activation of NF-kappaB through direct interruption of the binding of NF-kappaB to its consensus DNA sequences. Likewise, the TPA-induced DNA binding of the activator protein-1 (AP-1) was inhibited by curcumin pretreatment. PMID:12297018

  3. Interferon regulatory factor-1 binds c-Cbl, enhances mitogen activated protein kinase signaling and promotes retinoic acid-induced differentiation of HL-60 human myelo-monoblastic leukemia cells.

    PubMed

    Shen, Miaoqing; Bunaciu, Rodica P; Congleton, Johanna; Jensen, Holly A; Sayam, Lavanya G; Varner, Jeffrey D; Yen, Andrew

    2011-12-01

    All-trans retinoic acid (RA) and interferons (IFNs) have efficacy in treating certain leukemias and lymphomas, respectively, motivating interest in their mechanism of action to improve therapy. Both RA and IFNs induce interferon regulatory factor-1 (IRF-1). We find that in HL-60 myeloblastic leukemia cells which undergo mitogen activated protien kinase (MAPK)-dependent myeloid differentiation in response to RA, IRF-1 propels differentiation. RA induces MAPK-dependent expression of IRF-1. IRF-1 binds c-Cbl, a MAPK related adaptor. Ectopic IRF-1 expression causes CD38 expression and activation of the Raf/MEK/ERK axis, and enhances RA-induced differentiation by augmenting CD38, CD11b, respiratory burst and G0 arrest. Ectopic IRF-1 expression also decreases the activity of aldehyde dehydrogenase 1, a stem cell marker, and enhances RA-induced ALDH1 down-regulation. Interestingly, expression of aryl hydrocarbon receptor (AhR), which is RA-induced and known to down-regulate Oct4 and drive RA-induced differentiation, also enhances IRF-1 expression. The data are consistent with a model whereby IRF-1 acts downstream of RA and AhR to enhance Raf/MEK/ERK activation and propel differentiation.

  4. The pleiotropic effects of fisetin and hesperetin on human acute promyelocytic leukemia cells are mediated through apoptosis, cell cycle arrest, and alterations in signaling networks.

    PubMed

    Adan, Aysun; Baran, Yusuf

    2015-11-01

    Fisetin and hesperetin, flavonoids from various plants, have several pharmaceutical activities including antioxidative, anti-inflammatory, and anticancer effects. However, studies elucidating the role and the mechanism(s) of action of fisetin and hesperetin in acute promyelocytic leukemia are absent. In this study, we investigated the mechanism of the antiproliferative and apoptotic actions exerted by fisetin and hesperetin on human HL60 acute promyelocytic leukemia cells. The viability of HL60 cells was evaluated using the MTT assay, apoptosis by annexin V/propidium iodide (PI) staining and cell cycle distribution using flow cytometry, and changes in caspase-3 enzyme activity and mitochondrial transmembrane potential. Moreover, we performed whole-genome microarray gene expression analysis to reveal genes affected by fisetin and hesperetin that can be important for developing of future targeted therapy. Based on data obtained from microarray analysis, we also described biological networks modulated after fisetin and hesperetin treatment by KEGG and IPA analysis. Fisetin and hesperetin treatment showed a concentration- and time-dependent inhibition of proliferation and induced G2/M arrest for both agents and G0/G1 arrest for hesperetin at only the highest concentrations. There was a disruption of mitochondrial membrane potential together with increased caspase-3 activity. Furthermore, fisetin- and hesperetin-triggered apoptosis was confirmed by annexin V/PI analysis. The microarray gene profiling analysis revealed some important biological pathways including mitogen-activated protein kinases (MAPK) and inhibitor of DNA binding (ID) signaling pathways altered by fisetin and hesperetin treatment as well as gave a list of genes modulated ≥2-fold involved in cell proliferation, cell division, and apoptosis. Altogether, data suggested that fisetin and hesperetin have anticancer properties and deserve further investigation.

  5. Enhanced expression of extracellular calcium sensing receptor in monocyte-differentiated versus undifferentiated HL-60 cells: potential role in regulation of a nonselective cation channel

    NASA Technical Reports Server (NTRS)

    Yamaguchi, T.; Ye, C.; Chattopadhyay, N.; Sanders, J. L.; Vassilev, P. M.; Brown, E. M.; O'Malley, B. W. (Principal Investigator)

    2000-01-01

    Human promyelocytic leukemia cells (HL-60) have been used widely as a model for studying the differentiation of hematopoietic progenitor cells in vitro. After treatment with phorbol-12-myristate-13-acetate (PMA) or 1,25-dihydroxyvitamin D(3) [1,25(OH)(2)D(3)], HL-60 cells differentiate into cells with the phenotype of monocytes/macrophages. We previously showed that peripheral blood monocytes and the murine J774 monocytic cell line express the CaR, and myeloid progenitors in the bone marrow and myeloid cells in peripheral blood other than monocytes express lower levels of the CaR. Therefore, we investigated whether undifferentiated HL-60 cells express a functional G protein-coupled, extracellular calcium (Ca(2+)(o))-sensing receptor (CaR) and if the expression of the CaR increases as these cells differentiate along the monocytic lineage. The use of reverse transcription-polymerase chain reaction (RT-PCR) with CaR-specific primers, followed by sequencing of the amplified products, identified an authentic CaR transcript in undifferentiated HL-60 cells. Both immunocytochemistry and Western blot analysis using a CaR-specific antiserum detected low levels of CaR protein expression in undifferentiated HL-60 cells. The levels of CaR protein increased considerably following treatment of the cells with PMA (50 nM) or 1,25(OH)(2)D(3) (100 nM) for 5 days. Northern analysis using a CaR-specific riboprobe identified CaR transcripts in undifferentiated HL-60 cells, but CaR mRNA levels did not change appreciably after treatment with either agent, suggesting that upregulation of CaR protein occurs at a translational level. PMA-treated HL-60 cells expressed a nonselective cation channel (NCC), and the calcimimetic CaR activator, NPS R-467, but not its less active stereoisomer, NPS S-467, as well as the polycationic CaR agonist, neomycin, activated this NCC, demonstrating that the CaR expressed in these cells is functionally active. Therefore, HL-60 cells exhibit an increase in Ca

  6. Induction of promyelocytic leukemia (PML) oncogenic domains (PODs) by papillomavirus

    SciTech Connect

    Nakahara, Tomomi; Lambert, Paul F.

    2007-09-30

    Promyelocytic leukemia oncogenic domains (PODs), also called nuclear domain 10 (ND10), are subnuclear structures that have been implicated in a variety of cellular processes as well as the life cycle of DNA viruses including papillomaviruses. In order to investigate the interplay between papillomaviruses and PODs, we analyzed the status of PODs in organotypic raft cultures of human keratinocytes harboring HPV genome that support the differentiation-dependent HPV life cycle. The number of PODs per nucleus was increased in the presence of HPV genomes selectively within the poorly differentiated layers but was absent in the terminally differentiated layers of the stratified epithelium. This increase in PODs was correlated with an increase in abundance of post-translationally modified PML protein. Neither the E2-dependent transcription nor viral DNA replication was reliant upon the presence of PML. Implications of these findings in terms of HPV's interaction with its host are discussed.

  7. From molecular interaction to acute promyelocytic leukemia: Calculating leukemogenesis and remission from endogenous molecular-cellular network

    PubMed Central

    Yuan, Ruoshi; Zhu, Xiaomei; Radich, Jerald P.; Ao, Ping

    2016-01-01

    Acute promyelocytic leukemia (APL) remains the best example of a malignancy that can be cured clinically by differentiation therapy. We demonstrate that APL may emerge from a dynamical endogenous molecular-cellular network obtained from normal, non-cancerous molecular interactions such as signal transduction and translational regulation under physiological conditions. This unifying framework, which reproduces APL, normal progenitor, and differentiated granulocytic phenotypes as different robust states from the network dynamics, has the advantage to study transition between these states, i.e. critical drivers for leukemogenesis and targets for differentiation. The simulation results quantitatively reproduce microarray profiles of NB4 and HL60 cell lines in response to treatment and normal neutrophil differentiation, and lead to new findings such as biomarkers for APL and additional molecular targets for arsenic trioxide therapy. The modeling shows APL and normal states mutually suppress each other, both in “wiring” and in dynamical cooperation. Leukemogenesis and recovery under treatment may be a consequence of spontaneous or induced transitions between robust states, through “passes” or “dragging” by drug effects. Our approach rationalizes leukemic complexity and constructs a platform towards extending differentiation therapy by performing “dry” molecular biology experiments. PMID:27098097

  8. Up- or downregulation of tescalcin in HL-60 cells is associated with their differentiation to either granulocytic or macrophage-like lineage.

    PubMed

    Levay, Konstantin; Slepak, Vladlen Z

    2010-04-15

    Tescalcin is a 25-kDa EF-hand Ca(2+)-binding protein that is differentially expressed in several mammalian tissues. Previous studies demonstrated that expression of this protein is essential for differentiation of hematopoietic precursor cell lines and primary stem cells into megakaryocytes. Here we show that tescalcin is expressed in primary human granulocytes and is upregulated in human promyelocytic leukemia HL-60 cells that have been induced to differentiate along the granulocytic lineage. However, during induced macrophage-like differentiation of HL-60 cells the expression of tescalcin is downregulated. The decrease in expression is associated with a rapid drop in tescalcin mRNA level, whereas upregulation occurs via a post-transcriptional mechanism. Tescalcin is necessary for HL-60 differentiation into granulocytes as its knockdown by shRNA impairs the ability of HL-60 cells to acquire the characteristic phenotypes such as phagocytic activity and generation of reactive oxygen species measured by respiratory burst assay. Both up- and downregulation of tescalcin require activation of the MEK/ERK cascade. It appears that commitment of HL-60 cells toward granulocytic versus macrophage-like lineage correlates with expression of tescalcin and kinetics of ERK activation. In retinoic acid-induced granulocytic differentiation, the activation of ERK and upregulation of tescalcin occurs slowly (16-48 h). In contrast, in PMA-induced macrophage-like differentiation the activation of ERK is rapid (15-30 min) and tescalcin is downregulated. These studies indicate that tescalcin is one of the key gene products that is involved in switching differentiation program in some cell types.

  9. Current management of newly diagnosed acute promyelocytic leukemia.

    PubMed

    Cicconi, L; Lo-Coco, F

    2016-08-01

    The management of acute promyelocytic leukemia (APL) has considerably evolved during the past two decades. The advent of all-trans retinoic acid (ATRA) and its inclusion in combinatorial regimens with anthracycline chemotherapy has provided cure rates exceeding 80%; however, this widely adopted approach also conveys significant toxicity including severe myelosuppression and rare occurrence of secondary leukemias. More recently, the advent of arsenic trioxide (ATO) and its use in association with ATRA with or without chemotherapy has further improved patient outcome by allowing to minimize the intensity of chemotherapy, thus reducing serious toxicity while maintaining high anti-leukemic efficacy. The advantage of ATRA-ATO over ATRA chemotherapy has been recently demonstrated in two large randomized trials and this option has now become the new standard of care in low-risk (i.e. non-hyperleukocytic) patients. In light of its rarity, abrupt onset and high risk of early death and due to specific treatment requirements, APL remains a challenging condition that needs to be managed in highly experienced centers. We review here the results of large clinical studies conducted in newly diagnosed APL as well as the recommendations for appropriate diagnosis, prevention and management of the main complications associated with modern treatment of the disease. PMID:27084953

  10. Retinoid receptor signaling and autophagy in acute promyelocytic leukemia

    SciTech Connect

    Orfali, Nina; McKenna, Sharon L.; Cahill, Mary R.; Gudas, Lorraine J.; Mongan, Nigel P.

    2014-05-15

    Retinoids are a family of signaling molecules derived from vitamin A with well established roles in cellular differentiation. Physiologically active retinoids mediate transcriptional effects on cells through interactions with retinoic acid (RARs) and retinoid-X (RXR) receptors. Chromosomal translocations involving the RARα gene, which lead to impaired retinoid signaling, are implicated in acute promyelocytic leukemia (APL). All-trans-retinoic acid (ATRA), alone and in combination with arsenic trioxide (ATO), restores differentiation in APL cells and promotes degradation of the abnormal oncogenic fusion protein through several proteolytic mechanisms. RARα fusion-protein elimination is emerging as critical to obtaining sustained remission and long-term cure in APL. Autophagy is a degradative cellular pathway involved in protein turnover. Both ATRA and ATO also induce autophagy in APL cells. Enhancing autophagy may therefore be of therapeutic benefit in resistant APL and could broaden the application of differentiation therapy to other cancers. Here we discuss retinoid signaling in hematopoiesis, leukemogenesis, and APL treatment. We highlight autophagy as a potential important regulator in anti-leukemic strategies. - Highlights: • Normal and aberrant retinoid signaling in hematopoiesis and leukemia is reviewed. • We suggest a novel role for RARα in the development of X-RARα gene fusions in APL. • ATRA therapy in APL activates transcription and promotes onco-protein degradation. • Autophagy may be involved in both onco-protein degradation and differentiation. • Pharmacologic autophagy induction may potentiate ATRA's therapeutic effects.

  11. Quantitation of minimal residual disease in acute promyelocytic leukemia patients with t(15;17) translocation using real-time RT-PCR.

    PubMed

    Cassinat, B; Zassadowski, F; Balitrand, N; Barbey, C; Rain, J D; Fenaux, P; Degos, L; Vidaud, M; Chomienne, C

    2000-02-01

    We took advantage of a recently developed system allowing performance of real-time quantitation of polymerase chain reaction to develop a quantitative method of measurement of PML-RARalpha transcripts which are hallmarks of acute promyelocytic leukemia (APL) with t(15;17) translocation. Indeed, although quantitation of minimal residual disease has proved to be useful in predicting clinical outcome in other leukemias such as chronic myeloid leukemia or acute lymphoblastic leukemia, no quantitative data have been provided in the case of APL. We present here a method for quantitation of the most frequent subtypes of t(15;17) transcripts (namely bcr1 and bcr3). One specific forward primer is used for each subtype in order to keep amplicon length under 200 bp. The expression of PML-RARalpha transcripts is normalized using the housekeeping porphobilinogen deaminase (PBGD) gene. This technique allows detection of 10 copies of PML-RARalpha or PBGD plasmids, and quantitation was efficient up to 100 copies. One t(15;17)-positive NB4 cell could be detected among 106 HL60 cells, although quantitation was efficient up to one cell among 105. Repeatability and reproducibility of the method were satisfying as intra- and inter-assay variation coefficients were not higher than 15%. The efficiency of the method was finally tested in patient samples, showing a decrease of the PML-RARalpha copy number during therapy, and an increase at the time of relapse.

  12. Global protein expression dataset acquired during isoniazid-induced cytoprotection against H2O2 challenge in HL-60 cells

    PubMed Central

    Khan, Saifur R.; Baghdasarian, Argishti; Fahlman, Richard P.; Siraki, Arno G.

    2016-01-01

    Isoniazid (INH) is one of the first-line anti-tuberculosis drugs. Its effect on oxidative stress, however, is unknown. Here we used a model of oxidative stress by employing glucose/glucose oxidase (GOx), which (based on the availability of glucose and oxygen) is known to produce H2O2. This reaction induces oxidative stress culminating in necrotic cell death in HL-60 cells (a human promyelocytic leukemia cell line). The changes in protein levels have been quantified using global proteome expression changes through stable isotope labeling by amino acids in cell culture (SILAC) followed by LC–MS/MS analysis. A total of 1459 and 1712 proteins were identified in forward and reverse experiments, respectively. However, only 390 proteins were reproducibly identified in both samples. These 390 proteins were taken into account for further analysis which has been described in “Cytoprotective effect of isoniazid against H2O2 derived injury in HL-60 cells” [1]. PMID:26937455

  13. Acute promyelocytic leukemia during pregnancy: a systematic analysis of outcome.

    PubMed

    Verma, Vivek; Giri, Smith; Manandhar, Samyak; Pathak, Ranjan; Bhatt, Vijaya Raj

    2016-01-01

    The outcomes of acute promyelocytic leukemia (APL) in pregnancy are largely unknown. The MEDLINE database was systematically searched to obtain 43 articles with 71 patients with new-onset APL during pregnancy. Induction therapy included various regimens of all-trans retinoic acid (ATRA), cytarabine, and anthracycline and resulted in a complete remission rate of 93%. Obstetric and fetal complications included pre-term deliveries (46%), spontaneous/therapeutic abortion/intrauterine death (33.3%) and other neonatal complications (25.9%). Mothers diagnosed in the first trimester were more likely to experience obstetric (p < 0.01) and fetal (p < 0.01) complications. To our knowledge, this is the largest systematic review of APL in pregnancy. The vast majority of APL patients in pregnancy may achieve remission with initial induction therapy. APL or its therapy in pregnancy, however, is associated with a high risk of fetal and obstetrical complications. The results of our study may help in patient counseling and informed decision-making. PMID:26110880

  14. Promyelocytic leukemia nuclear bodies associate with transcriptionally active genomic regions

    PubMed Central

    Wang, Jayson; Shiels, Carol; Sasieni, Peter; Wu, Pei Jun; Islam, Suhail A.; Freemont, Paul S.; Sheer, Denise

    2004-01-01

    The promyelocytic leukemia (PML) protein is aggregated into nuclear bodies that are associated with diverse nuclear processes. Here, we report that the distance between a locus and its nearest PML body correlates with the transcriptional activity and gene density around the locus. Genes on the active X chromosome are more significantly associated with PML bodies than their silenced homologues on the inactive X chromosome. We also found that a histone-encoding gene cluster, which is transcribed only in S-phase, is more strongly associated with PML bodies in S-phase than in G0/G1 phase of the cell cycle. However, visualization of specific RNA transcripts for several genes showed that PML bodies were not themselves sites of transcription for these genes. Furthermore, knock-down of PML bodies by RNA interference did not preferentially change the expression of genes closely associated with PML bodies. We propose that PML bodies form in nuclear compartments of high transcriptional activity, but they do not directly regulate transcription of genes in these compartments. PMID:14970191

  15. Pathogenesis and treatment of thrombohemorrhagic diathesis in acute promyelocytic leukemia.

    PubMed

    Falanga, Anna; Russo, Laura; Tartari, Carmen J

    2011-01-01

    Acute promyelocytic leukemia (APL) is a distinct subtype of myeloid leukemia characterized by t(15;17) chromosomal translocation, which involves the retinoic acid receptor-alpha (RAR-alpha). APL typically presents with a life-threatening hemorrhagic diathesis. Before the introduction of all-trans retinoic acid (ATRA) for the cure of APL, fatal hemorrhages due, at least in part, to the APL-associated coagulopathy, were a major cause of induction remission failure. The laboratory abnormalities of blood coagulation found in these patients indicate the occurrence of a hypercoagulable state. Major determinants of the coagulopathy of APL are endogenous factors expressed by the leukemic cells, including procoagulant factors, fibrinolytic proteins, and non-specific proteolytic enzymes. In addition, these cells have an increased capacity to adhere to the vascular endothelium, and to secrete inflammatory cytokines [i.e. interleukin-1beta (IL-1beta) and tumor necrosis factor (TNF-alpha)], which in turn stimulate the expression of prothrombotic activities by endothelial cells and leukocytes. ATRA can interfere with each of the principal hemostatic properties of the leukemic cell, thus reducing the APL cell procoagulant potential, in parallel to the induction of cellular differentiation. This effect occurs in vivo, in the bone marrow of APL patients receiving ATRA, and is associated with the improvement of the bleeding symptoms. Therapy with arsenic trioxide (ATO) also beneficially affects coagulation in APL. However, early deaths from bleeding still remain a major problem in APL and further research is required in this field. In this review, we will summarize our current knowledge of the pathogenesis of the APL-associated coagulopathy and will overview the therapeutic approaches for the management of this complication. PMID:22220265

  16. Pathogenesis and Treatment of Thrombohemorrhagic Diathesis in Acute Promyelocytic Leukemia

    PubMed Central

    Falanga, Anna; Russo, Laura; Tartari, Carmen J

    2011-01-01

    Acute promyelocytic leukemia (APL) is a distinct subtype of myeloid leukemia characterized by t(15;17) chromosomal translocation, which involves the retinoic acid receptor-alpha (RAR-alpha). APL typically presents with a life-threatening hemorrhagic diathesis. Before the introduction of all-trans retinoic acid (ATRA) for the cure of APL, fatal hemorrhages due, at least in part, to the APL-associated coagulopathy, were a major cause of induction remission failure. The laboratory abnormalities of blood coagulation found in these patients indicate the occurrence of a hypercoagulable state. Major determinants of the coagulopathy of APL are endogenous factors expressed by the leukemic cells, including procoagulant factors, fibrinolytic proteins, and non-specific proteolytic enzymes. In addition, these cells have an increased capacity to adhere to the vascular endothelium, and to secrete inflammatory cytokines [i.e. interleukin-1beta (IL-1beta) and tumor necrosis factor (TNF-alpha)], which in turn stimulate the expression of prothrombotic activities by endothelial cells and leukocytes. ATRA can interfere with each of the principal hemostatic properties of the leukemic cell, thus reducing the APL cell procoagulant potential, in parallel to the induction of cellular differentiation. This effect occurs in vivo, in the bone marrow of APL patients receiving ATRA, and is associated with the improvement of the bleeding symptoms. Therapy with arsenic trioxide (ATO) also beneficially affects coagulation in APL. However, early deaths from bleeding still remain a major problem in APL and further research is required in this field. In this review, we will summarize our current knowledge of the pathogenesis of the APL-associated coagulopathy and will overview the therapeutic approaches for the management of this complication. PMID:22220265

  17. Safrole induces G0/G1 phase arrest via inhibition of cyclin E and provokes apoptosis through endoplasmic reticulum stress and mitochondrion-dependent pathways in human leukemia HL-60 cells.

    PubMed

    Yu, Chun-Shu; Huang, An-Cheng; Yang, Jai-Sing; Yu, Chien-Chih; Lin, Chin-Chung; Chung, Hsiung-Kwang; Huang, Yi-Ping; Chueh, Fu-Shin; Chung, Jing-Gung

    2012-05-01

    Safrole, a component of Piper betle inflorescence, is a carcinogen which has been demonstrated to induce apoptosis on human oral cancer HSC-3 cells in vitro and to inhibit HSC-3 cells in xenograft tumor cells in vivo. In our previous study, safrole promoted phagocytosis by macrophages and natural killer cell cytotoxicity in normal BALB/c mice. The cytotoxic effects of safrole on HL-60 cells were investigated by using flow cytometric analysis, comet assay, 4',6-diamidino-2-phenylindole (DAPI) staining, western blotting and confocal laser microscopy. The obtained results indicate that safrole induced a cytotoxic response through reducing the percentage of viable cells and induction of apoptosis in HL-60 cells in a dose-dependent manner. DAPI staining and comet assay also showed that safrole induced apoptosis (chromatin condensation) and DNA damage in HL-60 cells. The flow cytometric assay showed that safrole increased the production of reactive oxygen species (ROS) and Ca(2+) and reduced the mitochondrial membrane potential in HL-60 cells. Safrole enhanced the levels of the pro-apoptotic protein BAX, inhibited those of the anti-apoptotic protein BCL-2 and promoted the levels of apoptosis-inducing factor (AIF) and endonuclease G (Endo G) in HL-60 cells. Furthermore, safrole promoted the expression of glucose-regulated protein 78 (GRP78), growth arrest- and DNA damage-inducible gene 153 (GADD153) and of activating transcription factor 6α (ATF-6α). Based on these findings, we suggest that safrole-induced apoptosis in HL-60 cells is mediated through the ER stress and intrinsic signaling pathways.

  18. The role of copper in HL-60 cell differentiation

    SciTech Connect

    Bae, B.; Percival, S.S. )

    1991-03-15

    Copper deficiency in humans has been shown to result in neutropenia. This research asks what is copper's function in the development of neutrophils HL-60 cells, a promyelocyte cell line, was induced to differentiate towards the granulocytic lineage with 1 {mu}M retinoic acid for 5 days. Both noninduced and induced cells were incubated in either complete medium or in medium supplemented with 8 {mu}M copper. Intracellular copper levels, Cu/Zn superoxide dismutase activity and the respiratory burst (RB) activity of the cells were measured. The respiratory burst of neutrophils is a measure of cellular function and degree of differentiation. Induced cells, as expected, showed greater RB activity than the non-induced cells. Copper supplementation, however, had no effect on this activity. Differentiated HL-60 cells had two times more intracellular copper but ten times less Cu/Zn-SOD activity. Copper supplementation enhanced Cu/Zn-SOD activity in both noninduced and induced cells. This suggests that the availability of intracellular copper is important in expressing Cu/ZN-SOD activity and that differentiated cells, although they have more intracellular copper under basal conditions, cannot utilize that copper for Cu/Zn-SOD enzyme activity. When supplemental copper was provided during differentiation, Cu/Zn-SOD activity was maintained.

  19. Disruption of the PI3K/AKT/mTOR signaling cascade and induction of apoptosis in HL-60 cells by an essential oil from Monarda citriodora.

    PubMed

    Pathania, Anup Singh; Guru, Santosh Kumar; Verma, M K; Sharma, Chetna; Abdullah, Sheikh Tasduq; Malik, Fayaz; Chandra, Suresh; Katoch, Meenu; Bhushan, Shashi

    2013-12-01

    We have isolated an essential oil from Monarda citriodora (MC) and characterized its 22 chemical constituents with thymol (82%), carvacrol (4.82%), β-myrcene (3.45%), terpinen-4-ol (2.78%) and p-cymene (1.53%) representing the major constituents. We have reported for the first time the chemotherapeutic potential of MC in human promyelocytic leukemia HL-60 cells by means of apoptosis and disruption of the PI3K/AKT/mTOR signaling cascade. MC and its major constituent, thymol, inhibit the cell proliferation in different types of cancer cell lines like HL-60, MCF-7, PC-3, A-549 and MDAMB-231. MC was found to be more cytotoxic than thymol in HL-60 cells with an IC50 value of 22 μg/ml versus 45 μg/ml for thymol. Both MC and thymol induce apoptosis in HL-60 cells, which is evident by Hoechst staining, cell cycle analysis and immuno-expression of Bcl-xL, caspase-3,-8,-9 and PARP-1 cleavage. Both induce apoptosis by extrinsic and intrinsic apoptotic pathways that were confirmed by enhanced expression of death receptors (TNF-R1, Fas), caspase-9, loss of mitochondrial membrane potential and regression of Bcl-2/Bax ratio. Interestingly, both MC and thymol inhibit the downstream and upstream signaling of PI3K/AKT/mTOR pathway. The degree of apoptosis induction and disruption of the PI3K signaling cascade by MC was significantly higher when compared to thymol. PMID:23994707

  20. Disruption of the PI3K/AKT/mTOR signaling cascade and induction of apoptosis in HL-60 cells by an essential oil from Monarda citriodora.

    PubMed

    Pathania, Anup Singh; Guru, Santosh Kumar; Verma, M K; Sharma, Chetna; Abdullah, Sheikh Tasduq; Malik, Fayaz; Chandra, Suresh; Katoch, Meenu; Bhushan, Shashi

    2013-12-01

    We have isolated an essential oil from Monarda citriodora (MC) and characterized its 22 chemical constituents with thymol (82%), carvacrol (4.82%), β-myrcene (3.45%), terpinen-4-ol (2.78%) and p-cymene (1.53%) representing the major constituents. We have reported for the first time the chemotherapeutic potential of MC in human promyelocytic leukemia HL-60 cells by means of apoptosis and disruption of the PI3K/AKT/mTOR signaling cascade. MC and its major constituent, thymol, inhibit the cell proliferation in different types of cancer cell lines like HL-60, MCF-7, PC-3, A-549 and MDAMB-231. MC was found to be more cytotoxic than thymol in HL-60 cells with an IC50 value of 22 μg/ml versus 45 μg/ml for thymol. Both MC and thymol induce apoptosis in HL-60 cells, which is evident by Hoechst staining, cell cycle analysis and immuno-expression of Bcl-xL, caspase-3,-8,-9 and PARP-1 cleavage. Both induce apoptosis by extrinsic and intrinsic apoptotic pathways that were confirmed by enhanced expression of death receptors (TNF-R1, Fas), caspase-9, loss of mitochondrial membrane potential and regression of Bcl-2/Bax ratio. Interestingly, both MC and thymol inhibit the downstream and upstream signaling of PI3K/AKT/mTOR pathway. The degree of apoptosis induction and disruption of the PI3K signaling cascade by MC was significantly higher when compared to thymol.

  1. Enhancement of the incorporation of 5-fluorodeoxyuridylate into DNA of HL-60 cells by metabolic modulations

    SciTech Connect

    Tanaka, M.; Kimura, K.; Yoshida, S.

    1983-11-01

    The exposure of HL-60 human promyelocytic leukemia cells to 0.5 microM 5-fluoro-2'-(/sup 3/H)deoxyuridine (FdUrd) for 16 hr resulted in the incorporation of 5.14 +/- 0.31 (S.D.) X 10(-7) mol FdUrd into DNA per mol of DNA nucleotide, which corresponds to 0.146 +/- 0.082 pmol FdUrd per 10(7) cells. Pretreatment with 50 microM deoxythymidine for 24 hr led to a 2.7-fold increase in the incorporation of this analogue into newly synthesized DNA during the ensuing 16-hr exposure to 0.5 microM (/sup 3/H)FdUrd. Pretreatment with 0.5 microM methotrexate for 3 hr also increased the (/sup 3/H)FdUrd incorporation into newly synthesized DNA approximately 5-fold. The coexistence of deoxythymidine or methotrexate with (/sup 3/H)FdUrd, however, led to decreased incorporation of FdUrd into DNA. More than 50% of the radioactivity in DNA separated by Cs2SO4 equilibrium density gradient centrifugation was proven to be fluorodeoxyuridylate by means of its binding to Lactobacillus casei deoxythymidine monophosphate synthetase.

  2. PML, a growth suppressor disrupted in acute promyelocytic leukemia.

    PubMed Central

    Mu, Z M; Chin, K V; Liu, J H; Lozano, G; Chang, K S

    1994-01-01

    The nonrandom chromosomal translocation t(15;17)(q22;q21) in acute promyelocytic leukemia (APL) juxtaposes the genes for retinoic acid receptor alpha (RAR alpha) and the putative zinc finger transcription factor PML. The breakpoint site encodes fusion protein PML-RAR alpha, which is able to form a heterodimer with PML. It was hypothesized that PML-RAR alpha is a dominant negative inhibitor of PML. Inactivation of PML function in APL may play a critical role in APL pathogenesis. Our results demonstrated that PML, but not PML-RAR alpha, is a growth suppressor. This is supported by the following findings: (i) PML suppressed anchorage-independent growth of APL-derived NB4 cells on soft agar and tumorigenicity in nude mice, (ii) PML suppressed the oncogenic transformation of rat embryo fibroblasts by cooperative oncogenes, and (iii) PML suppressed transformation of NIH 3T3 cells by the activated neu oncogene. Cotransfection of PML with PML-RAR alpha resulted in a significant reduction in PML's transformation suppressor function in vivo, indicating that the fusion protein can be a dominant negative inhibitor of PML function in APL cells. This observation was further supported by the finding that cotransfection of PML and PML-RAR alpha resulted in altered normal cellular localization of PML. Our results also demonstrated that PML, but not PML-RAR alpha, is a promoter-specific transcription suppressor. Therefore, we hypothesized that disruption of the PML gene, a growth or transformation suppressor, by the t(15;17) translocation in APL is one of the critical events in leukemogenesis. Images PMID:7935403

  3. Metabolism of arsenic trioxide in acute promyelocytic leukemia cells.

    PubMed

    Khaleghian, Ali; Ghaffari, Seyed H; Ahmadian, Shahin; Alimoghaddam, Kamran; Ghavamzadeh, Ardeshir

    2014-10-01

    Arsenic trioxide (As2O3) effectively induces complete clinical and molecular remissions in acute promyelocytic leukemia (APL) patients and triggers apoptosis in APL cells. The effect induced by As2O3 is also associated with extensive genomic-wide epigenetic changes with large-scale alterations in DNA methylation. We investigated the As2O3 metabolism in association with factors involved in the production of its methylated metabolites in APL-derived cell line, NB4. We used high performance liquid chromatography (HPLC) technique to detect As2O3 metabolites in NB4 cells. The effects of As2O3 on glutathione level, S-Adenosylmethionine (SAM) and S-adenosylhomocysteine (SAH) levels were investigated. Also, we studied the expression levels of arsenic methyltransferase (AS3MT) and DNA methyltransferases (DNMT1, DNMT3a, and DNMT3b) by real-time PCR. Our results show that after As2O3 entry into the cell, it was converted into methylated metabolites, mono-methylarsenic (MMA) and dimethylarsenic (DMA). The glutathione (GSH) production was increased in parallel with the methylated metabolites formations. As2O3 treatment inhibited DNMTs (DNMT1, DNMT3a, and DNMT3b) in dose- and time-dependent manners. The SAH levels in As2O3-treated cells were increased; however, the SAM level was not affected. The present study shows that APL cell is capable of metabolizing As2O3. The continuous formation of intracellular methylated metabolites, the inhibition of DNMTs expression levels and the increase of SAH level by As2O3 biotransformation would probably affect the DNMTs-methylated DNA methylation in a manner related to the extent of DNA hypomethylation. Production of intracellular methylated metabolites and epigenetic changes of DNA methylation during As2O3 metabolism may contribute to the therapeutic effect of As2O3 in APL. PMID:24819152

  4. Development of Acute Promyelocytic Leukemia in a Patient With Gouty Arthritis on Long Term Colchicine.

    PubMed

    Buyukkurt, Nurhilal; Korur, Asli; Boga, Can

    2016-06-01

    Colchicine is a frequently used drug in rheumatological diseases. Acute promyelocytic leukemia developed in a patient who used colchicine for gouty arthritis since 10 years is presented and the possible relation between the long term use of colchicine and hematological malignancies is discussed. PMID:27408362

  5. Xestospongin C induces monocytic differentiation of HL60 cells through activation of the ERK pathway.

    PubMed

    Moon, Dong-Oh; Asami, Yukihiro; Kim, Mun-Ock; Jang, Jae-Hyuk; Kim, Bo Yeon; Ahn, Jong Seog; Kim, Gi-Young; Yun, Sung Gyu

    2013-05-01

    Xestospongin C (XC), which is a group of macrocyclic bis-1-oxaquinolizidines, is a potent inhibitor of sarcoendoplasmic reticulum calcium transport ATPase and IP3 receptor. Nevertheless, very less information is available regarding whether XC induces AML differentiation. We investigated the potential role of XC in the differentiation of human leukemia HL60 cells and mechanisms underlying XC actin. XC treatment inhibited proliferation by inducing G1-phase cell cycle arrest in the HL60 cells. In addition, XC induced differentiation of HL60 cells into the CD14(+) monocytic lineage, which was indicated by morphological changes, nitroblue tetrazolium reduction assay, and expressions of CD11b and CD14 surface antigens. Our results also showed that XC promotes phagocytic activity and granularity in HL60 cells, suggesting that the cells are functionally activated. Furthermore, XC enhanced tumor necrosis factor (TNF)-α-mediated cytotoxic effect by increasing the numbers of TNF receptors. Moreover, we showed that XC activates extracellular signal-regulated kinase (ERK) pathway in the differentiation stages. Inhibition of ERK activation using PD98059 significantly decreased NBT+HL60 cells induced by XC treatment. Taken together, the results show that XC promotes monocytic differentiation of HL60 cells via ERK pathway activation, suggesting that XC could be a candidate for use as a differentiation-inducing agent for AML treatment.

  6. UV irradiation-induced apoptosis leads to activation of a 36-kDa myelin basic protein kinase in HL-60 cells

    SciTech Connect

    Lu, M.L.; Sato, Mitsuhiro; Cao, Boliang; Richie, J.P.

    1996-08-20

    UV irradiation induces apoptosis (or programmed cell death) in HL-60 promyelocytic leukemia cells within 3 h. UV-induced apoptosis is accompanied by activation of a 36-kDa myelin basic protein kinase (p36 MBP kinase). This kinase is also activated by okadaic acid and retinoic acid-induced apoptosis. Irrespective of the inducing agent, p36 MBP kinase activation is restricted to the subpopulation of cells actually undergoing apoptosis. Activation of p36 MBP kinase occurs in enucleated cytoplasts, indicating no requirements for a nucleus or fragmented DNA in signaling. We also demonstrate the activation of p36 kinase in tumor necrosis factor-{alpha}-and serum starvation-induced cell death using the human prostatic tumor cell line LNCap and NIH 3T3 fibroblasts, respectively. We postulate that p36 MBP kinase is a common component in diverse signaling pathways leading to apoptosis. 40 refs., 5 figs.

  7. Using cell fate attractors to uncover transcriptional regulation of HL60 neutrophil differentiation

    PubMed Central

    Huang, Albert C; Hu, Limei; Kauffman, Stuart A; Zhang, Wei; Shmulevich, Ilya

    2009-01-01

    Background The process of cellular differentiation is governed by complex dynamical biomolecular networks consisting of a multitude of genes and their products acting in concert to determine a particular cell fate. Thus, a systems level view is necessary for understanding how a cell coordinates this process and for developing effective therapeutic strategies to treat diseases, such as cancer, in which differentiation plays a significant role. Theoretical considerations and recent experimental evidence support the view that cell fates are high dimensional attractor states of the underlying molecular networks. The temporal behavior of the network states progressing toward different cell fate attractors has the potential to elucidate the underlying molecular mechanisms governing differentiation. Results Using the HL60 multipotent promyelocytic leukemia cell line, we performed experiments that ultimately led to two different cell fate attractors by two treatments of varying dosage and duration of the differentiation agent all-trans-retinoic acid (ATRA). The dosage and duration combinations of the two treatments were chosen by means of flow cytometric measurements of CD11b, a well-known early differentiation marker, such that they generated two intermediate populations that were poised at the apparently same stage of differentiation. However, the population of one treatment proceeded toward the terminally differentiated neutrophil attractor while that of the other treatment reverted back toward the undifferentiated promyelocytic attractor. We monitored the gene expression changes in the two populations after their respective treatments over a period of five days and identified a set of genes that diverged in their expression, a subset of which promotes neutrophil differentiation while the other represses cell cycle progression. By employing promoter based transcription factor binding site analysis, we found enrichment in the set of divergent genes, of transcription

  8. Caffeine induces a second wave of apoptosis after low dose-rate gamma radiation of HL-60 cells.

    PubMed

    Vávrová, Jirina; Mareková-Rezácová, Martina; Vokurková, Doris; Szkanderová, Sylva; Psutka, Jan

    2003-10-01

    Most cell lines that lack functional p53 protein are arrested in the G(2) phase of the cell cycle due to DNA damage. It was previously found that the human promyelocyte leukemia cells HL-60 (TP53 negative) that had been exposed to ionizing radiation at doses up to 10 Gy were arrested in the G(2) phase for a period of 24 h. The radioresistance of HL-60 cells that were exposed to low dose-rate gamma irradiation of 3.9 mGy/min, which resulted in a pronounced accumulation of the cells in the G(2) phase during the exposure period, increased compared with the radioresistance of cells that were exposed to a high dose-rate gamma irradiation of 0.6 Gy/min. The D(0) value (i.e. the radiation dose leading to 37% cell survival) for low dose-rate radiation was 3.7 Gy and for high dose-rate radiation 2.2 Gy. In this study, prevention of G(2) phase arrest by caffeine (2 mM) and irradiation of cells with low dose-rate irradiation in all phases of the cell cycle proved to cause radiosensitization (D(0)=2.2 Gy). The irradiation in the presence of caffeine resulted in a second wave of apoptosis on days 5-7 post-irradiation. Caffeine-induced apoptosis occurring later than day 7 post-irradiation is postulated to be a result of unscheduled DNA replication and cell cycle progress.

  9. Viability study of HL60 cells in contact with commonly used microchip materials.

    PubMed

    Wolbers, Floor; ter Braak, Paul; Le Gac, Severine; Luttge, Regina; Andersson, Helene; Vermes, Istvan; van den Berg, Albert

    2006-12-01

    This paper presents a study in which different commonly used microchip materials (silicon oxide, borosilicate glass, and PDMS) were analyzed for their effect on human promyelocytic leukemic (HL60) cells. Copper-coated silicon was analyzed for its toxicity and therefore served as a positive control. With quantitative PCR, the expression of the proliferation marker Cyclin D1 and the apoptosis marker tissue transglutaminase were measured. Flow cytometry was used to analyze the distribution through the different phases of the cell cycle (propidium iodide, PI) and the apoptotic cascade (Annexin V in combination with PI). All microchip materials, with the exception of Cu, appeared to be suitable for HL60 cells, showing a ratio apoptosis/proliferation (R(ap)) comparable to materials used in conventional cell culture (polystyrene). These results were confirmed with cell cycle analysis and apoptosis studies. Precoating the microchip material surfaces with serum favor the proliferation, as demonstrated by a lower R(ap) as compared to uncoated surfaces. The Cu-coated surface appeared to be toxic for HL60 cells, showing over 90% decreased viability within 24 h. From these results, it can be concluded that the chosen protocol is suitable for selection of the cell culture material, and that the most commonly used microchip materials are compatible with HL60 culturing. PMID:17124709

  10. Acute promyelocytic leukemia after renal transplant and filgrastim treatment for neutropenia

    PubMed Central

    Krause, John R.

    2016-01-01

    Prolonged immunosuppression in solid organ transplant recipients has been considered a risk for developing opportunistic infections and malignancies. Acute leukemia is a rare complication. We report a case of acute promyelocytic leukemia (APL) (FAB M3) after cadaveric renal transplant for focal segmental glomerulosclerosis in a 24-year-old woman. Her immunosuppressive therapy included tacrolimus, mycophenolate mofetil, and prednisone. Approximately 2 years after transplant, she became pancytopenic, prompting administration of filgrastim. A few doses caused a markedly increased blast count, resulting in a diagnosis of APL. She was successfully treated with all-trans-retinoic acid and arsenic trioxide. Myeloproliferative neoplasms after organ transplant or due to filgrastim are rare. PMID:27695174

  11. Acute promyelocytic leukemia after renal transplant and filgrastim treatment for neutropenia

    PubMed Central

    Krause, John R.

    2016-01-01

    Prolonged immunosuppression in solid organ transplant recipients has been considered a risk for developing opportunistic infections and malignancies. Acute leukemia is a rare complication. We report a case of acute promyelocytic leukemia (APL) (FAB M3) after cadaveric renal transplant for focal segmental glomerulosclerosis in a 24-year-old woman. Her immunosuppressive therapy included tacrolimus, mycophenolate mofetil, and prednisone. Approximately 2 years after transplant, she became pancytopenic, prompting administration of filgrastim. A few doses caused a markedly increased blast count, resulting in a diagnosis of APL. She was successfully treated with all-trans-retinoic acid and arsenic trioxide. Myeloproliferative neoplasms after organ transplant or due to filgrastim are rare.

  12. Retinoic acid plus arsenic trioxide, the ultimate panacea for acute promyelocytic leukemia?

    PubMed

    Lallemand-Breitenbach, Valérie; de Thé, Hugues

    2013-09-19

    Rarely in the field of cancer treatment did we experience as many surprises as with acute promyelocytic leukemia (APL). Yet, the latest clinical trial reported by Lo-Coco et al in the New England Journal of Medicine is a practice-changing study, as it reports a very favorable outcome of virtually all enrolled low-intermediate risk patients with APL without any DNA-damaging chemotherapy. Although predicted from previous small pilot studies, these elegant and stringently controlled results open a new era in leukemia therapy.

  13. Bioreductive activation of mitoxantrone by NADPH cytochrome P450 reductase does not change its apoptotic stimuli properties in regard to sensitive and multidrug resistant leukaemia HL60 cells.

    PubMed

    Kostrzewa-Nowak, Dorota; Tarasiuk, Jolanta

    2013-12-01

    The objective of this study was to examine the effect of bioreductive activation of antitumour drug, mitoxantrone (MX), by liver NADPH cytochrome P450 reductase (CPR) on inducing apoptosis of human promyelocytic sensitive leukaemia HL60 cell line and its multidrug resistance (MDR) sublines exhibiting two different phenotypes of MDR related to the overexpression of P-glycoprotein (HL60/VINC) or MRP1 (HL60/DOX). It was found that non-activated as well as CPR-activated form of MX used at IC90 were able to influence cell cycle of sensitive HL60 as well as resistant cells and induce apoptosis. Interestingly, it was evidenced that HL60/VINC cells were more susceptible to undergo caspase-3/caspase-8-dependent apoptosis induced by both studied forms of MX compared to HL60 and HL60/DOX cells. However, the examined agent did not change the expression of Fas receptors on the surface of HL60 sensitive as well as resistant cells regardless of its form used in the study. Obtained results suggest that CPR-dependent reductive activation of MX does not change its apoptotic stimuli properties in regard to sensitive HL60 and multidrug resistant (HL60/VINC and HL60/DOX) leukaemia cells. Nevertheless, taking into account that side toxic effects observed in course of patient treatment with antitumour drugs are dose-dependent, it seems that the reported increase in antiproliferative activity and ability to induce apoptosis of MX after its reductive activation by exogenous CPR against the MDR cells overexpressing both P-glycoprotein and MRP1 at much more lower concentrations of this drug could be of clinical importance for the treatment of tumours resistant to classical chemotherapy. PMID:24076328

  14. High frequency of acute promyelocytic leukemia among Latinos with acute myeloid leukemia.

    PubMed

    Douer, D; Preston-Martin, S; Chang, E; Nichols, P W; Watkins, K J; Levine, A M

    1996-01-01

    A high frequency (24%) of acute promyelocytic leukemia (APL) was noted among acute myelocytic leukemia (AML) cases at the Los Angeles County-University of Southern California (LAC-USC) Medical Center, in comparison with the expected frequency of 5% to 15%. Because of the high proportion of Latinos in this center, we questioned if APL is more common in this ethnic group. The proportion of APL among the 80 AML patients of Latino origin was significantly higher (30; 37.5%) when compared with the 62 non-Latinos (4; 6.5%) (P = .00001). In an attempt to verify this finding on a larger group of patients, we analyzed 276 pathologically verified cases of AML in patients aged 30 to 69 years from the entire County of Los Angeles, registered on an ongoing population-based epidemiologic study of AML. APL was more frequent among the 47 Latinos (24.3%) than in the 229 non-Latinos (8.3%) (P = .0075). APL is seen in younger patients with AML, but Latino AML patients also had a higher frequency of APL after accounting for their younger age (age-adjusted odds ratio for APL among Latinos in LAC-USC Medical Center, 9.4 [95% confidence interval (CI) 2.9, 30] P = .0002; among Latinos in the population-based study, 3.0 [95% CI 1.3 to 6.9] P = .01). The different ethnic distribution of AML was found to be due to a higher proportion of APL cases per se, and not to a lower proportion of any other French-American-British subtype (P = .0004). These results, from two different populations of AML patients, indicate that Latinos with AML have a higher likelihood of the APL subtype of disease, which may suggest a genetic predisposition to APL and/or exposure to distinct environmental factor(s).

  15. Antiproliferative activity of O4-benzo[c]phenanthridine alkaloids against HCT-116 and HL-60 tumor cells.

    PubMed

    Hatae, Noriyuki; Fujita, Erina; Shigenobu, Saori; Shimoyama, Sayumi; Ishihara, Yuhsuke; Kurata, Yuhki; Choshi, Tominari; Nishiyama, Takashi; Okada, Chiaki; Hibino, Satoshi

    2015-07-15

    The O4-benzo[c]phenanthridine alkaloids exhibit potent antiproliferative activity against cancer cells, which is derived from their ability to inhibit of topoisomerase I and II. It has been reported that in the alkaloids a cationic quaternary ammonium atom, which results in resonance effects between ring A and B, is necessary for increased antiproliferative activity. These findings indicate the role of their substituents at ring A on inhibition of tumor cell proliferation. In the present study, we systematically assessed the cytotoxic activities of naturally occurring alkaloids and their derivatives containing various ring A substituents against two tumor cell lines, HCT-116 colon tumor cells and HL-60 promyelocytic leukemia cells. Among the cationic iminium alkaloids, which displayed more potent activity than the corresponding neutral derivatives, and the 7,8-oxygenated benzo[c]phenanthridine alkaloids, chelerythrine and NK109, exhibited stronger antiproliferative activity than the 8,9- and 9,10-oxygenated alkaloids. The activity of cationic iminium alkaloids could be correlated with the bond lengths of their ring A substituents and the electrostatic potentials of their ammonium molecules by DFT calculation.

  16. Epidemiology and Treatment of Acute Promyelocytic Leukemia in Latin America

    PubMed Central

    Rego, E.M.; Jácomo, R.H.

    2011-01-01

    Distinct epidemiological characteristics have been described in Acute Promielocytic Leukemia (APL). Populations from Latin America have a higher incidence of APL and in some geographic areas a distinct distribution of the PML-RARA isoforms is present. Here, we review the main differences in APL epidemilogy in Latin America as well as treatment outcomes. PMID:22110899

  17. Co-operative leukemogenesis in acute myeloid leukemia and acute promyelocytic leukemia reveals C/EBPα as a common target of TRIB1 and PML/RARA

    PubMed Central

    Keeshan, Karen; Vieugué, Pauline; Chaudhury, Shahzya; Rishi, Loveena; Gaillard, Coline; Liang, Lu; Garcia, Elaine; Nakamura, Takuro; Omidvar, Nader; Kogan, Scott C.

    2016-01-01

    The PML/RARA fusion protein occurs as a result of the t(15;17) translocation in the acute promyelocytic leukemia subtype of human acute myeloid leukemia. Gain of chromosome 8 is the most common chromosomal gain in human acute myeloid leukemia, including acute promyelocytic leukemia. We previously demonstrated that gain of chromosome 8-containing MYC is of central importance in trisomy 8, but the role of the nearby TRIB1 gene has not been experimentally addressed in this context. We have now tested the hypothesis that both MYC and TRIB1 have functional roles underlying leukemogenesis of trisomy 8 by using retroviral vectors to express MYC and TRIB1 in wild-type bone marrow and in marrow that expressed a PML/RARA transgene. Interestingly, although MYC and TRIB1 readily co-operated in leukemogenesis for wild-type bone marrow, TRIB1 provided no selective advantage to cells expressing PML/RARA. We hypothesized that this lack of co-operation between PML/RARA and TRIB1 reflected a common pathway for their effect: both proteins targeting the myeloid transcription factor C/EBPα. In support of this idea, TRIB1 expression abrogated the all-trans retinoic acid response of acute promyelocytic leukemia cells in vitro and in vivo. Our data delineate the common and redundant inhibitory effects of TRIB1 and PML/RARA on C/EBPα providing a potential explanation for the lack of selection of TRIB1 in human acute promyelocytic leukemia, and highlighting the key role of C/EBPs in acute promyelocytic leukemia pathogenesis and therapeutic response. In addition, the co-operativity we observed between MYC and TRIB1 in the absence of PML/RARA show that, outside of acute promyelocytic leukemia, gain of both genes may drive selection for trisomy 8. PMID:27390356

  18. LG-362B targets PML-RARα and blocks ATRA resistance of acute promyelocytic leukemia.

    PubMed

    Wang, X; Lin, Q; Lv, F; Liu, N; Xu, Y; Liu, M; Chen, Y; Yi, Z

    2016-07-01

    Acute promyelocytic leukemia (APL) is a M3 subtype of acute myeloid leukemia (AML). Promyelocytic leukemia (PML)-retinoic acid receptor α (RARα) translocation generally occurs in APL patients and makes APL unique both for diagnosis and treatment. However, some conventional drugs like all-transretinoic acid (ATRA) and arsenic trioxide (ATO), as the preferred ones for APL therapy, induce irreversible resistance and responsible for clinical failure of complete remission. Herein, we screened a library of novel chemical compounds with structural diversity and discovered a novel synthetic small compound, named LG-362B, specifically inhibited the proliferation of APL and induced apoptosis. Notably, the differentiation arrest was also relieved by LG-362B in cultured APL cells and APL mouse models. Moreover, LG-362B overcame the ATRA resistance on cellular differentiation and transplantable APL mice. These positive effects were driven by caspases-mediated degradation of PML-RARα when treated with LG-362B, making it specific to APL and reasonable for ATRA resistance relief. We propose that LG-362B would be a potential candidate agent for the treatment of the relapsed APL with ATRA resistance in the future.

  19. Heterogeneous nuclear expression of the promyelocytic leukemia (PML) protein in normal and neoplastic human tissues.

    PubMed Central

    Gambacorta, M.; Flenghi, L.; Fagioli, M.; Pileri, S.; Leoncini, L.; Bigerna, B.; Pacini, R.; Tanci, L. N.; Pasqualucci, L.; Ascani, S.; Mencarelli, A.; Liso, A.; Pelicci, P. G.; Falini, B.

    1996-01-01

    The RING-finger promyelocytic leukemia (PML) protein is the product of the PML gene that fuses with the retinoic acid receptor-alpha gene in the t(15; 17) translocation of acute promyelocytic leukemia. Wild-type PML localizes in the nucleus with a typical speckled pattern that is a consequence of the concentration of the protein within discrete subnuclear domains known as nuclear bodies. Delocalization of PML from nuclear bodies has been documented in acute promyelocytic leukemia cells and suggested to contribute to leukemogenesis. In an attempt to get new insights into the function of the wild-type PML protein and to investigate whether it displays an altered expression pattern in neoplasms other than acute promyelocytic leukemia, we stained a large number of normal and neoplastic human tissues with a new murine monoclonal antibody (PG-M3) directed against the amino-terminal region of PML. As the PG-M3 epitope is partially resistant to fixatives, only cells that overexpress PML are detected by the antibody in microwave-heated paraffin sections. Among normal tissues, PML was characteristically up-regulated in activated epithelioid histiocytes and fibroblasts in a variety of pathological conditions, columnar epithelium in small active thyroid follicles, well differentiated foamy cells in the center of sebaceous glands, and hypersecretory endometria (Arias-Stella). Interferons, the PML of which is a primary target gene, and estrogens are likely to represent some of the cytokines and/or hormones that may be involved in the up-regulation of PML under these circumstances. In keeping with this concept, we found that PML is frequently overexpressed in Hodgkin and Reed-Sternberg cells of Hodgkin's disease, a tumor of cytokine-producing cells. Among solid tumors, overexpression of PML was frequently found in carcinomas of larynx and thyroid (papillary), epithelial thymomas, and Kaposi's sarcoma, whereas carcinomas of the lung, thyroid (follicular), breast, and colon were

  20. The cell biology of disease: Acute promyelocytic leukemia, arsenic, and PML bodies.

    PubMed

    de Thé, Hugues; Le Bras, Morgane; Lallemand-Breitenbach, Valérie

    2012-07-01

    Acute promyelocytic leukemia (APL) is driven by a chromosomal translocation whose product, the PML/retinoic acid (RA) receptor α (RARA) fusion protein, affects both nuclear receptor signaling and PML body assembly. Dissection of APL pathogenesis has led to the rediscovery of PML bodies and revealed their role in cell senescence, disease pathogenesis, and responsiveness to treatment. APL is remarkable because of the fortuitous identification of two clinically effective therapies, RA and arsenic, both of which degrade PML/RARA oncoprotein and, together, cure APL. Analysis of arsenic-induced PML or PML/RARA degradation has implicated oxidative stress in the biogenesis of nuclear bodies and SUMO in their degradation.

  1. Additional chromosome abnormalities in patients with acute promyelocytic leukemia treated with all-trans retinoic acid and chemotherapy

    PubMed Central

    Cervera, José; Montesinos, Pau; Hernández-Rivas, Jesús M.; Calasanz, María J.; Aventín, Anna; Ferro, María T.; Luño, Elisa; Sánchez, Javier; Vellenga, Edo; Rayón, Chelo; Milone, Gustavo; de la Serna, Javier; Rivas, Concha; González, José D.; Tormo, Mar; Amutio, Elena; González, Marcos; Brunet, Salut; Lowenberg, Bob; Sanz, Miguel A.

    2010-01-01

    Background Acute promyelocytic leukemia is a subtype of acute myeloid leukemia characterized by the t(15;17). The incidence and prognostic significance of additional chromosomal abnormalities in acute promyelocytic leukemia is still a controversial matter. Design and Methods Based on cytogenetic data available for 495 patients with acute promyelocytic leukemia enrolled in two consecutive PETHEMA trials (LPA96 and LPA99), we analyzed the incidence, characteristics, and outcome of patients with acute promyelocytic leukemia with and without additional chromosomal abnormalities who had been treated with all-trans retinoic acid plus anthracycline monochemotherapy for induction and consolidation. Results Additional chromosomal abnormalities were observed in 140 patients (28%). Trisomy 8 was the most frequent abnormality (36%), followed by abn(7q) (5%). Patients with additional chromosomal abnormalities more frequently had coagulopathy (P=0.03), lower platelet counts (P=0.02), and higher relapse-risk scores (P=0.02) than their counterparts without additional abnormalities. No significant association with FLT3/ITD or other clinicopathological characteristics was demonstrated. Patients with and without additional chromosomal abnormalities had similar complete remission rates (90% and 91%, respectively). Univariate analysis showed that additional chromosomal abnormalities were associated with a lower relapse-free survival in the LPA99 trial (P=0.04), but not in the LPA96 trial. However, neither additional chromosomal abnormalities overall nor any specific abnormality was identified as an independent risk factor for relapse in multivariate analysis. Conclusions The lack of independent prognostic value of additional chromosomal abnormalities in acute promyelocytic leukemia does not support the use of alternative therapeutic strategies when such abnormalities are found. PMID:19903674

  2. Transcription and methylation analyses of preleukemic promyelocytes indicate a dual role for PML/RARA in leukemia initiation.

    PubMed

    Gaillard, Coline; Tokuyasu, Taku A; Rosen, Galit; Sotzen, Jason; Vitaliano-Prunier, Adeline; Roy, Ritu; Passegué, Emmanuelle; de Thé, Hugues; Figueroa, Maria E; Kogan, Scott C

    2015-08-01

    Acute promyelocytic leukemia is an aggressive malignancy characterized by the accumulation of promyelocytes in the bone marrow. PML/RARA is the primary abnormality implicated in this pathology, but the mechanisms by which this chimeric fusion protein initiates disease are incompletely understood. Identifying PML/RARA targets in vivo is critical for comprehending the road to pathogenesis. Utilizing a novel sorting strategy, we isolated highly purified promyelocyte populations from normal and young preleukemic animals, carried out microarray and methylation profiling analyses, and compared the results from the two groups of animals. Surprisingly, in the absence of secondary lesions, PML/RARA had an overall limited impact on both the transcriptome and methylome. Of interest, we did identify down-regulation of secondary and tertiary granule genes as the first step engaging the myeloid maturation block. Although initially not sufficient to arrest terminal granulopoiesis in vivo, such alterations set the stage for the later, complete differentiation block seen in leukemia. Further, gene set enrichment analysis revealed that PML/RARA promyelocytes exhibit a subtle increase in expression of cell cycle genes, and we show that this leads to both increased proliferation of these cells and expansion of the promyelocyte compartment. Importantly, this proliferation signature was absent from the poorly leukemogenic p50/RARA fusion model, implying a critical role for PML in the altered cell-cycle kinetics and ability to initiate leukemia. Thus, our findings challenge the predominant model in the field and we propose that PML/RARA initiates leukemia by subtly shifting cell fate decisions within the promyelocyte compartment.

  3. AM580, a stable benzoic derivative of retinoic acid, has powerful and selective cyto-differentiating effects on acute promyelocytic leukemia cells.

    PubMed

    Gianní, M; Li Calzi, M; Terao, M; Guiso, G; Caccia, S; Barbui, T; Rambaldi, A; Garattini, E

    1996-02-15

    All-trans retinoic acid (ATRA) is successfully used in the cyto-differentiating treatment of acute promyelocytic leukemia (APL). Paradoxically, APL cells express PML-RAR, an aberrant form of the retinoic acid receptor type alpha (RAR alpha) derived from the leukemia-specific t(15;17) chromosomal translocation. We show here that AM580, a stable retinobenzoic derivative originally synthesized as a RAR alpha agonist, is a powerful inducer of granulocytic maturation in NB4, an APL-derived cell line, and in freshly isolated APL blasts. After treatment of APL cells with AM580 either alone or in combination with granulocyte colony-stimulating factor (G-CSF), the compound induces granulocytic maturation, as assessed by determination of the levels of leukocyte alkaline phosphatase, CD11b, CD33, and G-CSF receptor mRNA, at concentrations that are 10- to 100-fold lower than those of ATRA necessary to produce similar effects. By contrast, AM580 is not effective as ATRA in modulating the expression of these differentiation markers in the HL-60 cell line and in freshly isolated granulocytes obtained from the peripheral blood of chronic myelogenous leukemia patients during the stable phase of the disease. In NB4 cells, two other synthetic nonselective RAR ligands are capable of inducing LAP as much as AM580, whereas RAR beta- or RAR gamma-specific ligands are totally ineffective. These results show that AM580 is more powerful than ATRA in modulating the expression of differentiation antigens only in cells in which PML-RAR is present. Binding experiments, using COS-7 cells transiently transfected with PML-RAR and the normal RAR alpha, show that AM580 has a lower affinity than ATRA for both receptors. However, in the presence of PML-RAR, the synthetic retinoid is a much better transactivator of retinoic acid-responsive element-containing promoters than the natural retinoid, whereas, in the presence of RAR alpha, AM580 and ATRA have similar activity. This may explain the strong cyto

  4. NPM and BRG1 Mediate Transcriptional Resistance to Retinoic Acid in Acute Promyelocytic Leukemia.

    PubMed

    Nichol, Jessica N; Galbraith, Matthew D; Kleinman, Claudia L; Espinosa, Joaquín M; Miller, Wilson H

    2016-03-29

    Perturbation in the transcriptional control of genes driving differentiation is an established paradigm whereby oncogenic fusion proteins promote leukemia. From a retinoic acid (RA)-sensitive acute promyelocytic leukemia (APL) cell line, we derived an RA-resistant clone characterized by a block in transcription initiation, despite maintaining wild-type PML/RARA expression. We uncovered an aberrant interaction among PML/RARA, nucleophosmin (NPM), and topoisomerase II beta (TOP2B). Surprisingly, RA stimulation in these cells results in enhanced chromatin association of the nucleosome remodeler BRG1. Inhibition of NPM or TOP2B abrogated BRG1 recruitment. Furthermore, NPM inhibition and targeting BRG1 restored differentiation when combined with RA. Here, we demonstrate a role for NPM and BRG1 in obstructing RA differentiation and implicate chromatin remodeling in mediating therapeutic resistance in malignancies. NPM mutations are the most common genetic change in patients with acute leukemia (AML); therefore, our model may be applicable to other more common leukemias driven by NPM.

  5. Identification and cloning of the SNARE proteins VAMP-2 and syntaxin-4 from HL-60 cells and human neutrophils.

    PubMed

    Smolen, J E; Hessler, R J; Nauseef, W M; Goedken, M; Joe, Y

    2001-08-01

    Degranulation and membrane fusion by neutrophils are essential to host defense. We sought homologues of neuron-specific fusion proteins in human neutrophils and in their precursors, the promyelocytic cell line HL-60. We screened a differentiated HL-60 library and obtained an 848 bp sequence with a 351 bp open reading frame, identical to that published for human VAMP-2 and including 5' and 3' untranslated regions. RNA from HL-60 cells during differentiation into the neutrophil lineage was subjected to Northern blot analysis. which revealed a transcript of approximately 1050 bp at all stages of differentiation. The amount of these transcripts increased approximately threefold during differentiation, a finding confirmed by quantitative RT-PCR. We also detected mRNA for VAMP-2 in human neutrophils and monocytes using RT-PCR. In like fashion, transcripts of syntaxin-4, another fusion protein, were recovered from a neutrophil cDNA library. As with VAMP-2, expression of syntaxin-4 (determined by Northern blots) also increased, but by only 50%, during differentiation of HL-60 cells. These studies demonstrate that neutrophils and their progenitors possess mRNA for the fusion proteins VAMP-2 and syntaxin-4, and that their transcription increases during differentiation, concurrent with the functional maturation of myeloid cells.

  6. Oncogene Regulation during the Growth and Differentiation of a Human Promyelocytic Leukemia Cell Line.

    NASA Astrophysics Data System (ADS)

    Ely, Constance Marie

    To determine the significance of the regulation of the cellular oncogenes c-myc and c-myb during myeloid and monocytic differentiation, we analyzed oncogene expression concurrent with functional and morphological differences in HL-60 cells and in a partial differentiation resistant HL-60 clone (HL-60-1E3). Although HL-60-1E3 cells are unable to develop mature terminally differentiated features with PDBu or DMSO stimulation, they do exhibit partial differentiation features with these conditions. Treatments of HL-60-1E3 cells with PDBu preceded by treatment with dimethylsulfoxide (DMSO), results in complete maturation to macrophage-like cells. Using parallel PDBu-induction studies, we analyzed the kinetics of expression of c-myc, c-myb, c-fms, c-fos, c-raf, and histone H4, together with cell cycle frequency distribution, cytotoxic effector activity and clonogenic potential in HL-60 and HL-60-1E3 cells. The results of these studies revealed altered c-myc and c-myb regulation in resistant cells corresponding to a lack of terminal commitment as assessed by an increase in clonogenic potential and the inability to acquire cytotoxic function. These data suggest that maintenance of the suppressed state of c-myc and c-myb gene expression may be an important component of the regulatory mechanisms which allow HL-60 cells to complete macrophage-like terminal differentiation. A similar series of experiments examining the DMSO-induced granulocyte pathway revealed that differentiation resistance of HL-60-1E3 cells corresponded to altered regulation of both c-myc and c-myb, strengthening the hypothesis that regulation of both of these genes is integral to HL-60 differentiation. Biphasic c-myb expression was observed in both cell populations in the presence of DMSO where maximal expression took place at approximately 72 hours post-induction and was not linked to proliferation. Introduction of SV40:c-myc recombinant plasmids into HL-60 cells resulted in altered nuclear morphology

  7. Synergy against PML-RARa: targeting transcription, proteolysis, differentiation, and self-renewal in acute promyelocytic leukemia

    PubMed Central

    dos Santos, Guilherme Augusto; Kats, Lev

    2013-01-01

    Acute promyelocytic leukemia (APL) is a hematological malignancy driven by a chimeric oncoprotein containing the C terminus of the retinoic acid receptor-a (RARa) fused to an N-terminal partner, most commonly promyelocytic leukemia protein (PML). Mechanistically, PML-RARa acts as a transcriptional repressor of RARa and non-RARa target genes and antagonizes the formation and function of PML nuclear bodies that regulate numerous signaling pathways. The empirical discoveries that PML-RARa–associated APL is sensitive to both all-trans-retinoic acid (ATRA) and arsenic trioxide (ATO), and the subsequent understanding of the mechanisms of action of these drugs, have led to efforts to understand the contribution of molecular events to APL cell differentiation, leukemia-initiating cell (LIC) clearance, and disease eradication in vitro and in vivo. Critically, the mechanistic insights gleaned from these studies have resulted not only in a better understanding of APL itself, but also carry valuable lessons for other malignancies. PMID:24344243

  8. Extracellular DNA traps released by acute promyelocytic leukemia cells through autophagy.

    PubMed

    Ma, R; Li, T; Cao, M; Si, Y; Wu, X; Zhao, L; Yao, Z; Zhang, Y; Fang, S; Deng, R; Novakovic, V A; Bi, Y; Kou, J; Yu, B; Yang, S; Wang, J; Zhou, J; Shi, J

    2016-01-01

    Acute promyelocytic leukemia (APL) cells exhibit disrupted regulation of cell death and differentiation, and therefore the fate of these leukemic cells is unclear. Here, we provide the first evidence that a small percentage of APL cells undergo a novel cell death pathway by releasing extracellular DNA traps (ETs) in untreated patients. Both APL and NB4 cells stimulated with APL serum had nuclear budding of vesicles filled with chromatin that leaked to the extracellular space when nuclear and cell membranes ruptured. Using immunofluorescence, we found that NB4 cells undergoing ETosis extruded lattice-like structures with a DNA-histone backbone. During all-trans retinoic acid (ATRA)-induced cell differentiation, a subset of NB4 cells underwent ETosis at days 1 and 3 of treatment. The levels of tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6) were significantly elevated at 3 days, and combined treatment with TNF-α and IL-6 stimulated NB4 cells to release ETs. Furthermore, inhibition of autophagy by pharmacological inhibitors or by small interfering RNA against Atg7 attenuated LC3 autophagy formation and significantly decreased ET generation. Our results identify a previously unrecognized mechanism for death in promyelocytes and suggest that ATRA may accelerate ET release through increased cytokines and autophagosome formation. Targeting this cellular death pathway in addition to conventional chemotherapy may provide new therapeutic modalities for APL. PMID:27362801

  9. Acute promyelocytic leukemia: where did we start, where are we now, and the future

    PubMed Central

    Coombs, C C; Tavakkoli, M; Tallman, M S

    2015-01-01

    Historically, acute promyelocytic leukemia (APL) was considered to be one of the most fatal forms of acute leukemia with poor outcomes before the introduction of the vitamin A derivative all-trans retinoic acid (ATRA). With considerable advances in therapy, including the introduction of ATRA initially as a single agent and then in combination with anthracyclines, and more recently by development of arsenic trioxide (ATO)-containing regimens, APL is now characterized by complete remission rates of 90% and cure rates of ∼80%, even higher among low-risk patients. Furthermore, with ATRA–ATO combinations, chemotherapy may safely be omitted in low-risk patients. The disease is now considered to be the most curable subtype of acute myeloid leukemia (AML) in adults. Nevertheless, APL remains associated with a significant incidence of early death related to the characteristic bleeding diathesis. Early death, rather than resistant disease so common in all other subtypes of AML, has emerged as the major cause of treatment failure. PMID:25885425

  10. Acute promyelocytic leukemia presenting as pulmonary thromboembolism: Not all APLs bleed

    PubMed Central

    Vaid, Ashok K; Batra, Sandeep; Karanth, Suman S; Gupta, Sachin

    2015-01-01

    We present a rare case of acute promyelocytic leukemia (APL) presenting as pulmonary thromboembolism being misdiagnosed as community-acquired pneumonia. Thrombotic phenomenon in APL are poorly understood and grossly underreported. In our case, following no response to standard antibiotic treatment, the patient was further investigated and detected to have an acute pulmonary thromboembolism following right lower limb deep vein thrombosis (DVT). Though, complete blood picture revealed only mild hyperleukocytosis, bone marrow biopsy and aspiration revealed 60% blasts and a positive t (15,17)(q22,12) and PML retinoic acid receptor alpha (RARA) fusion protein on molecular cytogenetics. He was diagnosed as APL and received treatment with all-transretinoic acid (ATRA) and arsenic trioxide (ATO) and therapeutic anticoagulation PMID:26629469

  11. Erythema multiforme due to arsenic trioxide in a case of acute promyelocytic leukemia: A diagnostic challenge

    PubMed Central

    Badarkhe, Girish V.; Sil, Amrita; Bhattacharya, Sabari; Nath, Uttam Kumar; Das, Nilay Kanti

    2016-01-01

    Erythema multiforme (EM) is an acute, self-limited, Type IV hypersensitivity reactions associated with infections and drugs. In this case of acute promyelocytic leukemia, EM diagnosed during the induction phase was mistakenly attributed to vancomycin used to treat febrile neutropenia during that period. However, the occurrence of the lesions of EM again during the consolidation phase with arsenic trioxide (ATO) lead to a re-evaluation of the patient and both the Naranjo and World Health Organization-Uppsala Monitoring Centre scale showed the causality association as “probable.” The rash responded to topical corticosteroids and antihistamines. This rare event of EM being caused by ATO may be attributed to the genetic variation of methyl conjugation in the individual which had triggered the response, and the altered metabolic byproducts acted as a hapten in the subsequent keratinocyte necrosis. PMID:27114640

  12. Transient ischemic attack as an unusual initial manifestation of acute promyelocytic leukemia.

    PubMed

    Liu, Lifeng; Yuan, Xiaoling

    2016-07-01

    Patients with acute promyelocytic leukemia (APL) are prone to both bleeding and thrombosis. Both of these have a significant impact on the morbidity and mortality of patients with this disease. Here we report a case of a 41-year-old male, who presented with transient ischemic attack (TIA) and early neurological deterioration (END) as initial manifestations prior to an ultimate diagnosis of APL. This patient had no cerebrovascular risk factors or familial cerebrovascular disease. The patient experienced an acute ischemic stroke, verified by magnetic resonance imaging (MRI), in less than 24 h after his second hospital admission. Some APL patients suffer from cerebral ischemia as an initial manifestation or during induction therapy, and patients presenting this condition may continue to deteriorate until their death during hospitalization. Thus, APL should be considered as a possible underlying disease in patients with TIA without cerebrovascular risk factors. Delayed diagnosis and treatment of APL can be fatal.

  13. Retinoic acid signaling in cancer: The parable of acute promyelocytic leukemia.

    PubMed

    Ablain, Julien; de Thé, Hugues

    2014-11-15

    Inevitably fatal some 40 years, acute promyelocytic leukemia (APL) can now be cured in more than 95% of cases. This clinical success story is tightly linked to tremendous progress in our understanding of retinoic acid (RA) signaling. The discovery of retinoic acid receptor alpha (RARA) was followed by the cloning of the chromosomal translocations driving APL, all of which involve RARA. Since then, new findings on the biology of nuclear receptors have progressively enlightened the basis for the clinical efficacy of RA in APL. Reciprocally, the disease offered a range of angles to approach the cellular and molecular mechanisms of RA action. This virtuous circle contributed to make APL one of the best-understood cancers from both clinical and biological standpoints. Yet, some important questions remain unanswered including how lessons learnt from RA-triggered APL cure can help design new therapies for other malignancies. PMID:25130873

  14. Acute myocardial/cerebral infarction as first/relapse manifestation in one acute promyelocytic leukemia patient

    PubMed Central

    Li, Ying; Suo, Shanshan; Mao, Liping; Wang, Lei; Yang, Chunmei; Xu, Weilai; Lou, Yinjun; Mai, Wenyuan

    2015-01-01

    In the clinical setting, bleeding is a common manifestation of acute promyelocytic leukemia (APL), whereas thrombosis is relatively rare, especially as an initial symptom. Here, we report an unusual case of APL with acute myocardial infarction as the first manifestation and cerebral infarction as the relapse manifestation in a healthy young woman. This unique case emphasizes that a thrombotic event could be the first manifestation of an underlying hematological disorder such as APL and could also be a sign of relapse. Rapid detection of the underlying disorder and the timely use of anticoagulation therapy and ATRA are crucial for preventing further deterioration of the disease and saving the patient’s life. PMID:26550398

  15. Retinoic acid signaling in cancer: The parable of acute promyelocytic leukemia.

    PubMed

    Ablain, Julien; de Thé, Hugues

    2014-11-15

    Inevitably fatal some 40 years, acute promyelocytic leukemia (APL) can now be cured in more than 95% of cases. This clinical success story is tightly linked to tremendous progress in our understanding of retinoic acid (RA) signaling. The discovery of retinoic acid receptor alpha (RARA) was followed by the cloning of the chromosomal translocations driving APL, all of which involve RARA. Since then, new findings on the biology of nuclear receptors have progressively enlightened the basis for the clinical efficacy of RA in APL. Reciprocally, the disease offered a range of angles to approach the cellular and molecular mechanisms of RA action. This virtuous circle contributed to make APL one of the best-understood cancers from both clinical and biological standpoints. Yet, some important questions remain unanswered including how lessons learnt from RA-triggered APL cure can help design new therapies for other malignancies.

  16. Combined staurosporine and retinoic acid induces differentiation in retinoic acid resistant acute promyelocytic leukemia cell lines

    PubMed Central

    Ge, Dong-zheng; Sheng, Yan; Cai, Xun

    2014-01-01

    All-trans retinoic acid (ATRA) resistance has been a critical problem in acute promyelocytic leukemia (APL) relapsed patients. In ATRA resistant APL cell lines NB4-R1 and NB4-R2, the combination of staurosporine and ATRA synergized to trigger differentiation accompanied by significantly enhanced protein level of CCAAT/enhancer binding protein ε (C/EBPε) and C/EBPβ as well as the phosphorylation of mitogen-activated protein (MEK) and extracellular signal-regulated kinase (ERK). Furthermore, attenuation of the MEK activation blocked not only the differentiation but also the increased protein level of C/EBPε and C/EBPβ. Taken together, we concluded that the combination of ATRA and staurosporine could overcome differentiation block via MEK/ERK signaling pathway in ATRA-resistant APL cell lines. PMID:24769642

  17. The histone demethylase PHF8 governs retinoic acid response in acute promyelocytic leukemia.

    PubMed

    Arteaga, Maria Francisca; Mikesch, Jan-Henrik; Qiu, Jihui; Christensen, Jesper; Helin, Kristian; Kogan, Scott C; Dong, Shuo; So, Chi Wai Eric

    2013-03-18

    While all-trans retinoic acid (ATRA) treatment in acute promyelocytic leukemia (APL) has been the paradigm of targeted therapy for oncogenic transcription factors, the underlying mechanisms remain largely unknown, and a significant number of patients still relapse and become ATRA resistant. We identified the histone demethylase PHF8 as a coactivator that is specifically recruited by RARα fusions to activate expression of their downstream targets upon ATRA treatment. Forced expression of PHF8 resensitizes ATRA-resistant APL cells, whereas its downregulation confers resistance. ATRA sensitivity depends on the enzymatic activity and phosphorylation status of PHF8, which can be pharmacologically manipulated to resurrect ATRA sensitivity to resistant cells. These findings provide important molecular insights into ATRA response and a promising avenue for overcoming ATRA resistance.

  18. Erythema multiforme due to arsenic trioxide in a case of acute promyelocytic leukemia: A diagnostic challenge.

    PubMed

    Badarkhe, Girish V; Sil, Amrita; Bhattacharya, Sabari; Nath, Uttam Kumar; Das, Nilay Kanti

    2016-01-01

    Erythema multiforme (EM) is an acute, self-limited, Type IV hypersensitivity reactions associated with infections and drugs. In this case of acute promyelocytic leukemia, EM diagnosed during the induction phase was mistakenly attributed to vancomycin used to treat febrile neutropenia during that period. However, the occurrence of the lesions of EM again during the consolidation phase with arsenic trioxide (ATO) lead to a re-evaluation of the patient and both the Naranjo and World Health Organization-Uppsala Monitoring Centre scale showed the causality association as "probable." The rash responded to topical corticosteroids and antihistamines. This rare event of EM being caused by ATO may be attributed to the genetic variation of methyl conjugation in the individual which had triggered the response, and the altered metabolic byproducts acted as a hapten in the subsequent keratinocyte necrosis. PMID:27114640

  19. Arsenic trioxide-based therapy of relapsed acute promyelocytic leukemia: registry results from the European LeukemiaNet.

    PubMed

    Lengfelder, E; Lo-Coco, F; Ades, L; Montesinos, P; Grimwade, D; Kishore, B; Ramadan, S M; Pagoni, M; Breccia, M; Huerta, A J G; Nloga, A M; González-Sanmiguel, J D; Schmidt, A; Lambert, J-F; Lehmann, S; Di Bona, E; Cassinat, B; Hofmann, W-K; Görlich, D; Sauerland, M-C; Fenaux, P; Sanz, M

    2015-05-01

    In 2008, a European registry of relapsed acute promyelocytic leukemia was established by the European LeukemiaNet. Outcome data were available for 155 patients treated with arsenic trioxide in first relapse. In hematological relapse (n=104), 91% of the patients entered complete hematological remission (CR), 7% had induction death and 2% resistance, 27% developed differentiation syndrome and 39% leukocytosis, whereas no death or side effects occurred in patients treated in molecular relapse (n=40). The rate of molecular (m)CR was 74% in hematological and 62% in molecular relapse (P=0.3). All patients with extramedullary relapse (n=11) entered clinical and mCR. After 3.2 years median follow-up, the 3-year overall survival (OS) and cumulative incidence of second relapse were 68% and 41% in hematological relapse, 66% and 48% in molecular relapse and 90 and 11% in extramedullary relapse, respectively. After allogeneic or autologous transplantation in second CR (n=93), the 3-year OS was 80% compared with 59% without transplantation (n=55) (P=0.03). Multivariable analysis demonstrated the favorable prognostic impact of first remission duration ⩾1.5 years, achievement of mCR and allogeneic or autologous transplantation on OS of patients alive after induction (P=0.03, P=0.01, P=0.01) and on leukemia-free survival (P=0.006, P<0.0001, P=0.003), respectively. PMID:25627637

  20. Effects of arsenic on modification of promyelocytic leukemia (PML): PML responds to low levels of arsenite

    SciTech Connect

    Hirano, Seishiro; Watanabe, Takayuki; Kobayashi, Yayoi

    2013-12-15

    Inorganic arsenite (iAs{sup 3+}) is a two-edged sword. iAs{sup 3+} is a well-known human carcinogen; nevertheless, it has been used as a therapeutic drug for acute promyelocytic leukemia (APL), which is caused by a fusion protein comprising retinoic acid receptor-α and promyelocytic leukemia (PML). PML, a nuclear transcription factor, has a RING finger domain with densely positioned cysteine residues. To examine PML-modulated cellular responses to iAs{sup 3+}, CHO-K1 and HEK293 cells were each used to establish cell lines that expressed ectopic human PML. Overexpression of PML increased susceptibility to iAs{sup 3+} in CHO-K1 cells, but not in HEK293 cells. Exposure of PML-transfected cells to iAs{sup 3+} caused PML to change from a soluble form to less soluble forms, and this modification of PML was observable even with just 0.1 μM iAs{sup 3+} (7.5 ppb). Western blot and immunofluorescent microscopic analyses revealed that the biochemical changes of PML were caused at least in part by conjugation with small ubiquitin-like modifier proteins (SUMOylation). A luciferase reporter gene was used to investigate whether modification of PML was caused by oxidative stress or activation of antioxidant response element (ARE) in CHO-K1 cells. Modification of PML protein occurred faster than activation of the ARE in response to iAs{sup 3+}, suggesting that PML was not modified as a consequence of oxidative stress-induced ARE activation. - Highlights: • PML was found in nuclear microspecles in response to arsenite. • Arsenite triggers SUMOylation of PML. • Arsenite modifies PML at as low as 0.1 μM. • Modification of PML is not caused by ARE activation.

  1. Evolution of a FLT3-TKD mutated subclone at meningeal relapse in acute promyelocytic leukemia

    PubMed Central

    Bochtler, Tilmann; Fröhling, Stefan; Weichert, Wilko; Endris, Volker; Thiede, Christian; Hutter, Barbara; Hundemer, Michael; Ho, Anthony D.; Krämer, Alwin

    2016-01-01

    Here, we report the case of an acute promyelocytic leukemia (APL) patient who—although negative for FLT3 mutations at diagnosis—developed isolated FLT3 tyrosine kinase II domain (FLT3-TKD)-positive meningeal relapse, which, in retrospect, could be traced back to a minute bone marrow subclone present at first diagnosis. Initially, the 48-yr-old female diagnosed with high-risk APL had achieved complete molecular remission after standard treatment with all-trans retinoic acid (ATRA) and chemotherapy according to the AIDA (ATRA plus idarubicin) protocol. Thirteen months after the start of ATRA maintenance, the patient suffered clinically overt meningeal relapse along with minute molecular traces of PML/RARA (promyelocytic leukemia/retinoic acid receptor alpha) in the bone marrow. Following treatment with arsenic trioxide and ATRA in combination with intrathecal cytarabine and methotrexate, the patient achieved a complete molecular remission in both cerebrospinal fluid (CSF) and bone marrow, which currently lasts for 2 yr after completion of therapy. Whole-exome sequencing and subsequent ultradeep targeted resequencing revealed a heterozygous FLT3-TKD mutation in CSF leukemic cells (p.D835Y, c.2503G>T, 1000/1961 reads [51%]), which was undetectable in the concurrent bone marrow sample. Interestingly, the FLT3-TKD mutated meningeal clone originated from a small bone marrow subclone present in a variant allele frequency of 0.4% (6/1553 reads) at initial diagnosis. This case highlights the concept of clonal evolution with a subclone harboring an additional mutation being selected as the “fittest” and leading to meningeal relapse. It also further supports earlier suggestions that FLT3 mutations may play a role for migration and clonal expansion in the CSF sanctuary site. PMID:27626069

  2. The Promyelocytic Leukemia Zinc Finger Protein: Two Decades of Molecular Oncology

    PubMed Central

    Suliman, Bandar Ali; Xu, Dakang; Williams, Bryan Raymond George

    2012-01-01

    The promyelocytic leukemia zinc finger (PLZF) protein, also known as Zbtb16 or Zfp145, was first identified in a patient with acute promyelocytic leukemia, where a reciprocal chromosomal translocation t(11;17)(q23;q21) resulted in a fusion with the RARA gene encoding retinoic acid receptor alpha. The wild-type Zbtb16 gene encodes a transcription factor that belongs to the POK (POZ and Krüppel) family of transcriptional repressors. In addition to nine Krüppel-type sequence-specific zinc fingers, which make it a member of the Krüppel-like zinc finger protein family, the PLZF protein contains an N-terminal BTB/POZ domain and RD2 domain. PLZF has been shown to be involved in major developmental and biological processes, such as spermatogenesis, hind limb formation, hematopoiesis, and immune regulation. PLZF is localized mainly in the nucleus where it exerts its transcriptional repression function, and many post-translational modifications affect this ability and also have an impact on its cytoplasmic/nuclear dissociation. PLZF achieves its transcriptional regulation by binding to many secondary molecules to form large multi-protein complexes that bind to the regulatory elements in the promoter region of the target genes. These complexes are also capable of physically interacting with its target proteins. Recently, PLZF has become implicated in carcinogenesis as a tumor suppressor gene, since it regulates the cell cycle and apoptosis in many cell types. This review will examine the major advances in our knowledge of PLZF biological activities that augment its value as a therapeutic target, particularly in cancer and immunological diseases. PMID:22822476

  3. Evolution of a FLT3-TKD mutated subclone at meningeal relapse in acute promyelocytic leukemia

    PubMed Central

    Bochtler, Tilmann; Fröhling, Stefan; Weichert, Wilko; Endris, Volker; Thiede, Christian; Hutter, Barbara; Hundemer, Michael; Ho, Anthony D.; Krämer, Alwin

    2016-01-01

    Here, we report the case of an acute promyelocytic leukemia (APL) patient who—although negative for FLT3 mutations at diagnosis—developed isolated FLT3 tyrosine kinase II domain (FLT3-TKD)-positive meningeal relapse, which, in retrospect, could be traced back to a minute bone marrow subclone present at first diagnosis. Initially, the 48-yr-old female diagnosed with high-risk APL had achieved complete molecular remission after standard treatment with all-trans retinoic acid (ATRA) and chemotherapy according to the AIDA (ATRA plus idarubicin) protocol. Thirteen months after the start of ATRA maintenance, the patient suffered clinically overt meningeal relapse along with minute molecular traces of PML/RARA (promyelocytic leukemia/retinoic acid receptor alpha) in the bone marrow. Following treatment with arsenic trioxide and ATRA in combination with intrathecal cytarabine and methotrexate, the patient achieved a complete molecular remission in both cerebrospinal fluid (CSF) and bone marrow, which currently lasts for 2 yr after completion of therapy. Whole-exome sequencing and subsequent ultradeep targeted resequencing revealed a heterozygous FLT3-TKD mutation in CSF leukemic cells (p.D835Y, c.2503G>T, 1000/1961 reads [51%]), which was undetectable in the concurrent bone marrow sample. Interestingly, the FLT3-TKD mutated meningeal clone originated from a small bone marrow subclone present in a variant allele frequency of 0.4% (6/1553 reads) at initial diagnosis. This case highlights the concept of clonal evolution with a subclone harboring an additional mutation being selected as the “fittest” and leading to meningeal relapse. It also further supports earlier suggestions that FLT3 mutations may play a role for migration and clonal expansion in the CSF sanctuary site.

  4. Evolution of a FLT3-TKD mutated subclone at meningeal relapse in acute promyelocytic leukemia.

    PubMed

    Bochtler, Tilmann; Fröhling, Stefan; Weichert, Wilko; Endris, Volker; Thiede, Christian; Hutter, Barbara; Hundemer, Michael; Ho, Anthony D; Krämer, Alwin

    2016-09-01

    Here, we report the case of an acute promyelocytic leukemia (APL) patient who-although negative for FLT3 mutations at diagnosis-developed isolated FLT3 tyrosine kinase II domain (FLT3-TKD)-positive meningeal relapse, which, in retrospect, could be traced back to a minute bone marrow subclone present at first diagnosis. Initially, the 48-yr-old female diagnosed with high-risk APL had achieved complete molecular remission after standard treatment with all-trans retinoic acid (ATRA) and chemotherapy according to the AIDA (ATRA plus idarubicin) protocol. Thirteen months after the start of ATRA maintenance, the patient suffered clinically overt meningeal relapse along with minute molecular traces of PML/RARA (promyelocytic leukemia/retinoic acid receptor alpha) in the bone marrow. Following treatment with arsenic trioxide and ATRA in combination with intrathecal cytarabine and methotrexate, the patient achieved a complete molecular remission in both cerebrospinal fluid (CSF) and bone marrow, which currently lasts for 2 yr after completion of therapy. Whole-exome sequencing and subsequent ultradeep targeted resequencing revealed a heterozygous FLT3-TKD mutation in CSF leukemic cells (p.D835Y, c.2503G>T, 1000/1961 reads [51%]), which was undetectable in the concurrent bone marrow sample. Interestingly, the FLT3-TKD mutated meningeal clone originated from a small bone marrow subclone present in a variant allele frequency of 0.4% (6/1553 reads) at initial diagnosis. This case highlights the concept of clonal evolution with a subclone harboring an additional mutation being selected as the "fittest" and leading to meningeal relapse. It also further supports earlier suggestions that FLT3 mutations may play a role for migration and clonal expansion in the CSF sanctuary site. PMID:27626069

  5. Epigenetic modification and preliminary investigation of the mechanism of the immune evasion of HL-60 cells.

    PubMed

    Liu, Jin Hong; Bian, Yong Mei; Xie, Yi; Lu, Dao Pei

    2015-07-01

    The aim of the present study was to explore the effect of epigenetic modification of class II transactivator (CIITA) methylation on histocompatibility complex (MHC) class II expression and the immune evasion of leukemia HL-60 cells. HL-60 cells were treated with various concentrations of 5-aza-2'deoxycytidine (5-Aza-CdR) and 0.5 µmol/l suberoylanilide hydroxamic acid (SAHA) for 24 h and then stimulated by interferon γ (IFN-γ) for 48 h. The mRNA levels of MHC class I, II and co-stimulatory molecules were quantified by reverse transcription polymerase chain reaction (RT-PCR). The levels of CIITA protein were determined by western blot analysis, and the CpG island methylation ratios in the CIITA promoter IV (CIITApIV) were analyzed by bisulfite-sequencing PCR (BSP). MHC I as well as the co-stimulatory molecules CD40 and CD80 were significantly increased following treatment with 5-Aza-CdR + SAHA + IFN-γ (epigenetic groups) compared with those in the control group and IFN-γ group (P<0.05). The expression of MHC class II and CIITA was restored and increased in an 5-Aza-CdR concentration-dependent manner in the three epigenetic groups. The results of the BSP assay showed that the methylation rate of CIITApIV CpG sites decreased with the treatment of epigenetic modification and negatively correlated to the 5-Aza-CdR concentration. This demonstrated that the negative expression of CIITA protein was the key reason for the loss of MHC II expression in HL-60 cells. The results of the present study may help to illustrate the mechanism of immune evasion in HL-60 cells. PMID:25815463

  6. Dose- and schedule-dependent activation and drug synergism between thymidine and 5-aza-2'-deoxycytidine in a human promyelocytic leukemia cell line.

    PubMed

    Grant, S; Rauscher, F; Margolin, J; Cadman, E

    1982-02-01

    The ability of thymidine (dThd) to enhance the metabolism and cytotoxicity of subsequent administered 5-aza-2'-deoxycytidine (5-aza-dCyd) was studied in L1210 cells and in the human promyelocytic leukemic cell line, HL-60. Exposure of L1210 cells to 0.1 mM dThd for 5 h resulted in an increase in the total intracellular and acid-precipitable accumulation of 5-aza-dCyd. Higher dThd concentrations and longer exposure intervals resulted in smaller increments in 5-aza-dCyd accumulation. In contrast, in HL-60 cells, a 24-hr exposure in 1 mM dThd resulted in the greatest intracellular accumulation of 5-aza-dCyd, 3.3 times more accumulation than in control cells. There was also a 4-fold increase in the acid-precipitable accumulation and nearly a 3-fold increase in DNA incorporation of 5-aza-dCyd in HL-60 cells exposed to the same dThd schedule. High-pressure liquid chromatographic analysis demonstrated a greater than 3-fold increase in the intracellular amounts of 5-aza-dCyd metabolites eluting in the triphosphate region in these human cells under identical conditions. Shorter dThd incubation exposure intervals (6 hr) and lower dThd concentration (0.1 mM) produced smaller increments in these studies. Both growth and clonogenic assays of HL-60 cells demonstrated a dose- and schedule sequence-dependent synergism between dThd and 5-aza-dCyd.

  7. Citrus flavone tangeretin inhibits leukaemic HL-60 cell growth partially through induction of apoptosis with less cytotoxicity on normal lymphocytes.

    PubMed Central

    Hirano, T.; Abe, K.; Gotoh, M.; Oka, K.

    1995-01-01

    Certain anti-cancer agents are known to induce apoptosis in human tumour cells. However, these agents are intrinsically cytotoxic against cells of normal tissue origin, including myelocytes and immunocytes. Here we show that a naturally occurring flavone of citrus origin, tangeretin (5,6,7,8,4'-pentamethoxyflavone), induces apoptosis in human promyelocytic leukaemia HL-60 cells, whereas the flavone showed no cytotoxicity against human peripheral blood mononuclear cells (PBMCs). The growth of HL-60 cells in vitro assessed by [3H]thymidine incorporation or tetrazolium crystal formation was strongly suppressed in the presence of tangeretin; the IC50 values range between 0.062 and 0.173 microM. Apoptosis of HL-60 cells, assessed by cell morphology and DNA fragmentation, was demonstrated in the presence of > 2.7 microM tangeretin. Flow cytometric analysis of tangeretin-treated HL-60 cells also demonstrated apoptotic cells with low DNA content and showed a decrease of G1 cells and a concomitant increase of S and/or G2/M cells. Apoptosis was evident after 24 h of incubation with tangeretin, and the tangeretin effect as assessed by DNA fragmentation or growth inhibition was significantly attenuated in the presence of Zn2+, which is known to inhibit Ca(2+)-dependent endonuclease activity. Ca2+ and Mg2+, in contrast, promoted the effect of tangeretin. Cycloheximide significantly decreased the tangeretin effect on HL-60 cell growth, suggesting that protein synthesis is required for flavonoid-induced apoptosis. Tangeretin showed no cytotoxicity against either HL-60 cells or mitogen-activated PBMCs even at high concentration (27 microM) as determined by a dye exclusion test. Moreover, the flavonoid was less effective on growth of human T-lymphocytic leukaemia MOLT-4 cells or on blastogenesis of PBMCs. These results suggest that tangeretin inhibits growth of HL-60 cells in vitro, partially through induction of apoptosis, without causing serious side-effects on immune cells

  8. FLT3 and NPM-1 mutations in a cohort of acute promyelocytic leukemia patients from India

    PubMed Central

    Swaminathan, Suchitra; Garg, Swati; Madkaikar, Manisha; Gupta, Maya; Jijina, Farah; Ghosh, Kanjaksha

    2014-01-01

    Background: Acute promyelocytic leukemia (APL) with t (15;17) is a distinct category of acute myeloid leukemia (AML) and is reported to show better response to anthracyclin based chemotherapy. A favorable overall prognosis over other subtypes of AML has been reported for APL patients but still about 15% patients relapse. Methods: This study evaluated the presence of Famus like tyrosine kinase-3 (FLT3) and nucleophosmin-1 (NPM1) gene mutations in a cohort of 40 APL patients. Bone marrow/peripheral blood samples from patients at the time of diagnosis and follow-up were processed for immunophenotyping, cytogenetic markers and isolation of DNA and RNA. Samples were screened for the presence of mutations in FLT3 and NPM1 genes using polymerase chain reaction followed by sequencing. Results: Frequency of FLT3/internal tandem duplication and FLT3/tyrosine kinase domain was found to be 25% and 7% respectively. We observed a high frequency of NPM1 mutation (45%) in the present population of APL patients. PMID:25400345

  9. Effect of the orthoquinone moiety in 9,10-phenanthrenequinone on its ability to induce apoptosis in HCT-116 and HL-60 cells.

    PubMed

    Hatae, Noriyuki; Nakamura, Jun; Okujima, Tetsuo; Ishikura, Minoru; Abe, Takumi; Hibino, Satoshi; Choshi, Tominari; Okada, Chiaki; Yamada, Hiroko; Uno, Hidemitsu; Toyota, Eiko

    2013-08-15

    9,10-Phenanthrenequinone (9,10-PQ) is one of the most abundant quinones among diesel exhaust particulates. Recent data have suggested that quinones induce apoptosis in immune, epithelial and tumor cells, leading to respirator illness; however, the mechanisms by which quinones induce apoptosis and the structure required for this remain unknown. We studied the antitumor activity of 9,10-PQ analogs against two human tumor cell lines, HCT-116 colon tumor cells and HL-60 promyelocytic leukemia cells. The loss of the cis-orthoquinone unit in 9,10-PQ abrogated its ability to induce apoptosis in the two tumor cell lines, and the LC50 values of these analogs were indicated over 10 μM. An analog of 9,10-PQ in which the biaryl unit had been deleted displayed a reduced ability to induce tumor cell apoptosis, while the analogs 1,10-phenanthroline-5,6-dione (9) and pyrene-4,5-dione (10), which also had modified biaryl units, exhibited increased tumor cell apoptotic activity. The cis-orthoquinone unit in 9,10-PQ was identified as essential for its ability to induce apoptosis in tumor cells, and its biaryl unit is also considered to influence orthoquinone-mediated apoptotic activity.

  10. Hibiscus anthocyanins rich extract-induced apoptotic cell death in human promyelocytic leukemia cells

    SciTech Connect

    Chang, Y.-C.; Huang, H.-P.; Hsu, J.-D.; Yang, S.-F.; Wang, C.-J. . E-mail: wcj@csmu.edu.tw

    2005-06-15

    Hibiscus sabdariffa Linne (Malvaceae), an attractive plant believed to be native to Africa, is cultivated in the Sudan and Eastern Taiwan. Anthocyanins exist widely in many vegetables and fruits. Some reports demonstrated that anthocyanins extracted from H. sabdariffa L., Hibiscus anthocyanins (HAs) (which are a group of natural pigments existing in the dried calyx of H. sabdariffa L.) exhibited antioxidant activity and liver protection. Therefore, in this study, we explored the effect of HAs on human cancer cells. The result showed that HAs could cause cancer cell apoptosis, especially in HL-60 cells. Using flow cytometry, we found that HAs treatment (0-4 mg/ml) markedly induced apoptosis in HL-60 cells in a dose- and time-dependent manner. The result also revealed increased phosphorylation in p38 and c-Jun, cytochrome c release, and expression of tBid, Fas, and FasL in the HAs-treated HL-60 cells. We further used SB203580 (p38 inhibitor), PD98059 (MEK inhibitor), SP600125 (JNK inhibitor), and wortmannin (phosphatidylinositol 3-kinase; PI-3K inhibitor) to evaluate their effect on the HAs-induced HL-60 death. The data showed that only SB203580 had strong potential in inhibiting HL-60 cell apoptosis and related protein expression and phosphorylation. Therefore, we suggested that HAs mediated HL-60 apoptosis via the p38-FasL and Bid pathway. According to these results, HAs could be developed as chemopreventive agents. However, further investigations into the specificity and mechanism(s) of HAs are needed.

  11. Acute promyelocytic leukemia co-existing with JAK2 V617F positive myeloproliferative neoplasm: a case report

    PubMed Central

    Mamorska-Dyga, Aleksandra; Wu, Jingjing; Khattar, Pallavi; Ronny, Faisal M. H.; Islam, Humayun; Seiter, Karen

    2016-01-01

    The V617F mutation of Janus-associated kinase 2 (JAK2) is commonly seen in myeloproliferative neoplasms (MPN). Transformation of JAK2 positive MPNs to acute leukemia has been reported. We here report a case of acute promyelocytic leukemia which was later confirmed to have a co-existing JAK2 V617F positive MPN. In addition, the patient was found to have FLT3-TKD mutation, which, together with PML/RARa, could play a role in the MPN transformation to APL. PMID:27358900

  12. Opposite effects of the acute promyelocytic leukemia PML-retinoic acid receptor alpha (RAR alpha) and PLZF-RAR alpha fusion proteins on retinoic acid signalling.

    PubMed Central

    Ruthardt, M; Testa, U; Nervi, C; Ferrucci, P F; Grignani, F; Puccetti, E; Grignani, F; Peschle, C; Pelicci, P G

    1997-01-01

    Fusion proteins involving the retinoic acid receptor alpha (RAR alpha) and the PML or PLZF nuclear protein are the genetic markers of acute promyelocytic leukemias (APLs). APLs with the PML-RAR alpha or the PLZF-RAR alpha fusion protein are phenotypically indistinguishable except that they differ in their sensitivity to retinoic acid (RA)-induced differentiation: PML-RAR alpha blasts are sensitive to RA and patients enter disease remission after RA treatment, while patients with PLZF-RAR alpha do not. We here report that (i) like PML-RAR alpha expression, PLZF-RAR alpha expression blocks terminal differentiation of hematopoietic precursor cell lines (U937 and HL-60) in response to different stimuli (vitamin D3, transforming growth factor beta1, and dimethyl sulfoxide); (ii) PML-RAR alpha, but not PLZF-RAR alpha, increases RA sensitivity of hematopoietic precursor cells and restores RA sensitivity of RA-resistant hematopoietic cells; (iii) PML-RAR alpha and PLZF-RAR alpha have similar RA binding affinities; and (iv) PML-RAR alpha enhances the RA response of RA target genes (those for RAR beta, RAR gamma, and transglutaminase type II [TGase]) in vivo, while PLZF-RAR alpha expression has either no effect (RAR beta) or an inhibitory activity (RAR gamma and type II TGase). These data demonstrate that PML-RAR alpha and PLZF-RAR alpha have similar (inhibitory) effects on RA-independent differentiation and opposite (stimulatory or inhibitory) effects on RA-dependent differentiation and that they behave in vivo as RA-dependent enhancers or inhibitors of RA-responsive genes, respectively. Their different activities on the RA signalling pathway might underlie the different responses of PML-RAR alpha and PLZF-RAR alpha APLs to RA treatment. The PLZF-RAR alpha fusion protein contains an approximately 120-amino-acid N-terminal motif (called the POZ domain), which is also found in a variety of zinc finger proteins and a group of poxvirus proteins and which mediates protein

  13. Autologous is Superior to Allogeneic Hematopoietic Cell Transplantation for Acute Promyelocytic Leukemia in Second Complete Remission

    PubMed Central

    Chakrabarty, Jennifer L. Holter; Rubinger, Morel; Le-Rademacher, Jennifer; Wang, Hai-Lin; Grigg, Andrew; Selby, George B.; Szer, Jeffrey; Rowe, Jacob M.; Weisdorf, Daniel J.; Tallman, Martin S.

    2014-01-01

    PURPOSE To identify favored choice of transplantation in patients with acute promyelocytic leukemia in second complete remission. PATIENTS We studied 294 acute promyelocytic leukemia (APL) patients receiving allogeneic (n=232) or autologous (62) hematopoietic cell transplantation (HCT) in second complete remission (CR2) reported to the Center for International Blood and Marrow Transplantation Research (CIBMTR) from 1995 to 2006 including pre-HCT PML/RAR∝ status in 155 (49% of allogeneic and 66% of autologous). METHODS Patient characteristics and transplant characteristics including treatment related mortality, overall survival, and disease free survival were collected and analyzed for both univariate and multivariate outcomes. RESULTS With median follow-up of 115 (allogeneic) and 72 months (autologous), 5-year disease-free survival (DFS) favored autologous 63% (49-75%) compared to allogeneic 50% (44-57%) (p=0.10) and overall survival (OS) 75% (63-85%) vs. 54% (48-61%) (p=.002) Multivariate analysis showed significantly worse DFS after allogeneic HCT (HR=1.88, 95% CI=1.16-3.06, p=0.011) and age >40 years (HR=2.30, 95% CI 1.44-3.67, p=0.0005). OS was significantly worse after allogeneic HCT (HR=2.66, 95%CI 1.52-4.65, p=0.0006; age >40 (HR=3.29, 95% CI 1.95-5.54, p<0.001) and CR1<12 months (HR=1.56 95% CI 1.07-2.26, p=0.021). Positive pre-HCT PML-RAR∝ status in 17/114 allogeneic and 6/41 autologous transplants did not influence relapse, treatment failure or survival in either group. The survival advantage for autografting was attributable to increased 3 years TRM: allogeneic 30%; autologous 2%, and GVHD. CONCLUSION We conclude that autologous HCT yields superior overall survival for APL in CR2. Long term DFS in autologous recipients, even with MRD+ grafts remains an important subject for further study. PMID:24691221

  14. Characterization of high affinity neurotensin receptor NTR1 in HL-60 cells and its down regulation during granulocytic differentiation

    PubMed Central

    Choi, Se-Young; Chae, Hee-Don; Park, Tae-Ju; Ha, Hyunjung; Kim, Kyong-Tai

    1999-01-01

    We investigated responses to neurotensin in human promyelocytic leukaemia HL-60 cells. Neurotensin increased the cytosolic calcium concentration ([Ca2+]i) in a concentration-dependent manner and also produced inositol 1,4,5-trisphosphate (InsP3). Among the tested neurotensin analogues, neurotensin 8-13, neuromedin-N, and xenopsin also increased [Ca2+]i, whereas neurotensin 1–11 and neurotensin 1–8 did not elicit detectable responses. SR48692, an antagonist of NTR1 neurotensin receptors, blocked the neurotensin-induced [Ca2+]i increase, whereas levocabastine, which is known as an NTR2 neurotensin receptor antagonist, did not attenuate the neurotensin-evoked effect. The expression of NTR1 neurotensin receptors was confirmed by Northern blot analysis and reverse transcriptase-polymerase chain reaction (RT–PCR). During 1.25% dimethylsulfoxide (DMSO)-triggered granulocytic differentiation of HL-60 cells, the neurotensin-induced [Ca2+]i rise became gradually smaller and completely disappeared 4 days after treatment with DMSO. The mRNA level for neurotensin receptors was also decreased after differentiation. The results show that HL-60 cells express NTR1 neurotensin receptors and suggest that granulocytic differentiation involves transcriptional regulation of the receptors resulting in down-regulation of the neurotensin-induced signalling. PMID:10193787

  15. Activity of cyclin B1 in HL-60 cells treated with etoposide.

    PubMed

    Żuryń, Agnieszka; Krajewski, Adrian; Szulc, Dawid; Litwiniec, Anna; Grzanka, Alina

    2016-06-01

    Cyclin B1 triggers G2/M phase transition phosphorylating with its catalytical partner - Cdc2 many of the molecular targets essential for cell cycle progression. Human leukemia cell line HL-60 were treated with increasing doses of etoposide (ETP) (0.5; 0.75; 1μM) to investigate how the drug affects cell morphology, viability, cell cycle distribution and expression of cyclin B1. To achieve this aim we applied light and transmission electron microscopy to observe morphological and ultra structural changes, image-based cytometry for apoptosis evaluation and cell cycle analysis, and then we conducted immunohistochemical and immunofluorescence staining to visualize cyclin localization and expression. Quantitive data about cyclin B1 expression were obtained from flow cytometry. Etoposide caused decrease in cell viability, induced apoptosis and G2/M arrest accompanied by enhanced expression of cyclin B1. Changes in expression and localization of cyclin B1 may constitute a part of the mechanism responsible for resistance of HL-60 cells to etoposide. Our results may reflect involvement of cyclin B1 in opposite processes - apoptosis induction and maintenance of cell viability in leukemia cells. We hypothesized possible roles and pathways by which cyclin B1 takes part in drug treatment response and chemosensitivity. PMID:27297620

  16. Loss of irreversibility of granulocytic differentiation induced by dimethyl sulfoxide in HL-60 sublines with a homogeneously staining region.

    PubMed

    Kitajima, K; Haque, M; Nakamura, H; Hirano, T; Utiyama, H

    2001-11-16

    The human HL-60 acute leukemia cell line harbors double minutes (dmins) during early passages. During its continuous culture for a long term, a single marker chromosome with a homogeneously staining region (HSR) replaces the dmins. The both structures harbor amplified c-MYC sequences. Here we ask how the cellular phenotype is altered by the c-MYC integration into a HSR. Treatment with dimethyl sulfoxide induces granulocytic differentiation in the both types of cells. In contrast to HL-60/dmin cells, however, no apoptosis followed differentiation and the differentiation phenotype was reverted upon withdrawal of the drug in HL-60/HSR cells. Terminal differentiation and loss of DNase I hypersensitivity sites at c-MYC P2 promoter appeared to be unlinked in the both types of cells. By comparison with HL-60/dmin cells, we conclude that the integration into a HSR of an extrachromosomal gene(s) but not c-MYC likely leads to the loss of irreversibility of the differentiation phenotype.

  17. Stimulation of hydrogen peroxide production by drinking water contaminants in HL-60 cells sensitized by retinoic acid.

    PubMed

    Yoshida, H; Inoue, S; Yoshida, K; Nakajima, O; Mizuno, S

    1998-07-01

    Chemical carcinogens, such as chloroform and trichloroethylene, are present in drinking water in Japan. As these contaminants are believed to have a role in carcinogenesis, we examined if chloroform and trichloroethylene, as well as methylene chloride, xylene, benzene, and ethanol, have the ability to generate hydrogen peroxide (H(2)O(2)) in human polymorphonuclear leukocytes (PMN) and human leukemia (HL-60) cells. Methylene chloride, benzene, xylene, trichloroethylene, and ethanol did not increase cellular H(2)O(2): production as measured by flow cytometry nor as observed by confocal laser microscopy. In PMN and RAuntreated HL-60 cells chloroform did not significantly affect H(2)O(2) levels. However, in HL-60 cells sensitized by pretreatment of 10 nM retinoic acid (RA) for 12 h, chloroform induced a significant increase in H(2)O(2), but the increase induced by trichloroethylene was not significant. The observed increase in fluorescence was confirmed using a confocal laser microscope. These results indicate that chloroform and trichloroethylene may stimulate H(2)O(2) production in HL60 cells sensitized by pretreatment of RA. Our method may be useful to test if weak stimulants can stimulate intracellular H(2)O(2) production.

  18. An antiviral disulfide compound blocks interaction between arenavirus Z protein and cellular promyelocytic leukemia protein

    SciTech Connect

    Garcia, C.C.; Topisirovic, I.; Djavani, M.; Borden, K.L.B.; Damonte, E.B.; Salvato, M.S.

    2010-03-19

    The promyelocytic leukemia protein (PML) forms nuclear bodies (NB) that can be redistributed by virus infection. In particular, lymphocytic choriomeningitis virus (LCMV) influences disruption of PML NB through the interaction of PML with the arenaviral Z protein. In a previous report, we have shown that the disulfide compound NSC20625 has antiviral and virucidal properties against arenaviruses, inducing unfolding and oligomerization of Z without affecting cellular RING-containing proteins such as the PML. Here, we further studied the effect of the zinc-finger-reactive disulfide NSC20625 on PML-Z interaction. In HepG2 cells infected with LCMV or transiently transfected with Z protein constructs, treatment with NSC20625 restored PML distribution from a diffuse-cytoplasmic pattern to punctate, discrete NB which appeared identical to NB found in control, uninfected cells. Similar results were obtained in cells transfected with a construct expressing a Z mutant in zinc-binding site 2 of the RING domain, confirming that this Z-PML interaction requires the integrity of only one zinc-binding site. Altogether, these results show that the compound NSC20625 suppressed Z-mediated PML NB disruption and may be used as a tool for designing novel antiviral strategies against arenavirus infection.

  19. [New Retinoid SX-116 Induces Apoptosis of Acute Promyelocytic Leukemia Cell Line NB4

    PubMed

    Yao, Yi-Yun; Sun, Guan-Lin; Guo, Zong-Ru; Wu, Wei-Li; Wang, Yun; Su, Hui

    2001-03-01

    In this research, the effect of novel retinoid SX-116 on acute promyelocytic leukemia cell line NB4 was studied in vitro. Cell proliferation, cell morphological characters, flow cytometry, DNA electrophoresis and RT-PCR were observational parameters. The results showed that treated with SX-116 at 10(-6) mol/L, the growth and survival of NB4 cells were markedly inhibited, morphological changes of apoptosis, including membrane blebbing, chromosome condensation and fragmentation of nuclei were observed in NB4 cells after 24 hours exposure of SX-116. Further studies showed "DNA ladder" in genomic DNA electrophoresis, as well as a typical apoptotic peak below G(1) phase presented in flow cytometry. The expression of apoptosis - related gene bcl-2 and p53 were examined. The level of bcl-2 mRNA was downregulated by 6-hour treatment of SX-116, while the gene restored to the normal level by following 12-, 24- and 48-hour exposure. However, p53 mRNA was unchanged during the treatment. The results demonstrated that SX-116 could induce apoptosis of NB4 cells while the mechanism remains to be studied.

  20. Single-Nucleotide Polymorphism Array-Based Karyotyping of Acute Promyelocytic Leukemia

    PubMed Central

    Gómez-Seguí, Inés; Sánchez-Izquierdo, Dolors; Barragán, Eva; Such, Esperanza; Luna, Irene; López-Pavía, María; Ibáñez, Mariam; Villamón, Eva; Alonso, Carmen; Martín, Iván; Llop, Marta; Dolz, Sandra; Fuster, Óscar; Montesinos, Pau; Cañigral, Carolina; Boluda, Blanca; Salazar, Claudia

    2014-01-01

    Acute promyelocytic leukemia (APL) is characterized by the t(15;17)(q22;q21), but additional chromosomal abnormalities (ACA) and other rearrangements can contribute in the development of the whole leukemic phenotype. We hypothesized that some ACA not detected by conventional techniques may be informative of the onset of APL. We performed the high-resolution SNP array (SNP-A) 6.0 (Affymetrix) in 48 patients diagnosed with APL on matched diagnosis and remission sample. Forty-six abnormalities were found as an acquired event in 23 patients (48%): 22 duplications, 23 deletions and 1 Copy-Neutral Loss of Heterozygocity (CN-LOH), being a duplication of 8(q24) (23%) and a deletion of 7(q33-qter) (6%) the most frequent copy-number abnormalities (CNA). Four patients (8%) showed CNAs adjacent to the breakpoints of the translocation. We compared our results with other APL series and found that, except for dup(8q24) and del(7q33-qter), ACA were infrequent (≤3%) but most of them recurrent (70%). Interestingly, having CNA or FLT3 mutation were mutually exclusive events. Neither the number of CNA, nor any specific CNA was associated significantly with prognosis. This study has delineated recurrent abnormalities in addition to t(15;17) that may act as secondary events and could explain leukemogenesis in up to 40% of APL cases with no ACA by conventional cytogenetics. PMID:24959826

  1. Nucleus accumbens associated 1 is recruited within the promyelocytic leukemia nuclear body through SUMO modification

    PubMed Central

    Tatemichi, Yoshinori; Shibazaki, Masahiko; Yasuhira, Shinji; Kasai, Shuya; Tada, Hiroshi; Oikawa, Hiroki; Suzuki, Yuji; Takikawa, Yasuhiro; Masuda, Tomoyuki; Maesawa, Chihaya

    2015-01-01

    Nucleus accumbens associated 1 (NACC1) is a cancer-associated BTB/POZ (pox virus and zinc finger/bric-a-brac tramtrack broad complex) gene, and is involved in several cellular functions in neurons, cancer and stem cells. Some of the BTB/POZ proteins associated with cancer biology are SUMOylated, which appears to play an important role in transcription regulation. We show that NACC1 is SUMOylated on a phylogenetically conserved lysine (K167) out of three consensus SUMOylation motif sites. Amino acid substitution in the SIM sequence (SIM/M) within the BTB/POZ domain partially reduced K167 SUMOylation activity of NACC1. Overexpression of GFP-NACC1 fusion protein leads to formation of discrete nuclear foci similar to promyelocytic leukemia nuclear bodies (PML-NB), which colocalized with SUMO paralogues (SUMO1/2/3). Both NACC1 nuclear body formation and colocalization with SUMO paralogues were completely suppressed in the GFP-NACC1-SIM/M mutant, whereas they were partially maintained in the NACC1 K167R mutant. Confocal immunofluorescence analysis showed that endogenous and exogenous NACC1 proteins colocalized with endogenous PML protein. A pull-down assay revealed that the consensus motifs of the SUMO acceptor site at K167 and the SIM within the BTB/POZ domain were both necessary for efficient binding to PML protein. Our study demonstrates that NACC1 can be modified by SUMO paralogues, and cooperates with PML protein. PMID:25891951

  2. Cardiac Glycosides Activate the Tumor Suppressor and Viral Restriction Factor Promyelocytic Leukemia Protein (PML)

    PubMed Central

    Milutinovic, Snezana; Heynen-Genel, Susanne; Chao, Elizabeth; Dewing, Antimone; Solano, Ricardo; Milan, Loribelle; Barron, Nikki; He, Min; Diaz, Paul W.; Matsuzawa, Shu-ichi; Reed, John C.; Hassig, Christian A.

    2016-01-01

    Cardiac glycosides (CGs), inhibitors of Na+/K+-ATPase (NKA), used clinically to treat heart failure, have garnered recent attention as potential anti-cancer and anti-viral agents. A high-throughput phenotypic screen designed to identify modulators of promyelocytic leukemia protein (PML) nuclear body (NB) formation revealed the CG gitoxigenin as a potent activator of PML. We demonstrate that multiple structurally distinct CGs activate the formation of PML NBs and induce PML protein SUMOylation in an NKA-dependent fashion. CG effects on PML occur at the post-transcriptional level, mechanistically distinct from previously described PML activators and are mediated through signaling events downstream of NKA. Curiously, genomic deletion of PML in human cancer cells failed to abrogate the cytotoxic effects of CGs and other apoptotic stimuli such as ceramide and arsenic trioxide that were previously shown to function through PML in mice. These findings suggest that alternative pathways can compensate for PML loss to mediate apoptosis in response to CGs and other apoptotic stimuli. PMID:27031987

  3. Severe Acute Axonal Neuropathy following Treatment with Arsenic Trioxide for Acute Promyelocytic Leukemia: a Case Report

    PubMed Central

    Kühn, Marcus; Sammartin, Kety; Nabergoj, Mitja; Vianello, Fabrizio

    2016-01-01

    Peripheral neuropathy is a common complication of arsenic toxicity. Symptoms are usually mild and reversible following discontinuation of treatment. A more severe chronic sensorimotor polyneuropathy characterized by distal axonal-loss neuropathy can be seen in chronic arsenic exposure. The clinical course of arsenic neurotoxicity in patients with coexistence of thiamine deficiency is only anecdotally known but this association may potentially lead to severe consequences. We describe a case of acute irreversible axonal neuropathy in a patient with hidden thiamine deficiency who was treated with a short course of arsenic trioxide for acute promyelocytic leukemia. Thiamine replacement therapy and arsenic trioxide discontinuation were not followed by neurological recovery and severe polyneuropathy persisted at 12-month follow-up. Thiamine plasma levels should be measured in patients who are candidate to arsenic trioxide therapy. Prophylactic administration of vitamin B1 may be advisable. The appearance of polyneuropathy signs early during the administration of arsenic trioxide should prompt electrodiagnostic testing to rule out a pattern of axonal neuropathy which would need immediate discontinuation of arsenic trioxide. PMID:27158436

  4. Genital ulcers during treatment with ALL-trans retinoic acid for acute promyelocytic leukemia.

    PubMed

    Fukuno, Kenji; Tsurumi, Hisashi; Goto, Hideko; Oyama, Masami; Tanabashi, Shinobu; Moriwaki, Hisataka

    2003-11-01

    Scrotal ulcer is a unique adverse effect of all-trans retinoic acid (ATRA) in patients with acute promyelocytic leukemia (APL). The pathogenesis of scrotal ulceration remains unknown. We describe genital ulcers that developed in four patients with APL who were undergoing ATRA therapy (45 mg/m2 per day p.o.). Two of the patients were female, in whom this condition is quite rare. Genital ulcers with concomitant fever appeared between 17 and 32 days of therapy in all four patients. Genital ulcers healed in three of the patients while another patient developed Fournier's gangrene and underwent left testectomy. Ulcer healing was brought by either local or intravenous corticosteroids. Intravenous dexamethasone actually enabled continued ATRA administration in one patient, while ATRA was discontinued in other two patients. If corticosteroids cannot control progression of genital ulcers nor concomitant fever, ATRA administration should be discontinued so as not to induce Fournier's gangrene nor retionic acid syndrome. Our experience indicates the importance of recognizing genital ulcers associated with ATRA in order that appropriate countermeasures can be taken.

  5. Lithium chloride antileukemic activity in acute promyelocytic leukemia is GSK-3 and MEK/ERK dependent.

    PubMed

    Zassadowski, F; Pokorna, K; Ferre, N; Guidez, F; Llopis, L; Chourbagi, O; Chopin, M; Poupon, J; Fenaux, P; Ann Padua, R; Pla, M; Chomienne, C; Cassinat, B

    2015-12-01

    We recently identified that the MEK/ERK1/2 pathway synergized with retinoic acid (RA) to restore both transcriptional activity and RA-induced differentiation in RA-resistant acute promyelocytic leukemia (APL) cells. To target the MEK/ERK pathway, we identified glycogen synthase kinase-3β (GSK-3β) inhibitors including lithium chloride (LiCl) as activators of this pathway in APL cells. Using NB4 (RA-sensitive) and UF-1 (RA-resistant) APL cell lines, we observed that LiCl as well as synthetic GSK-3β inhibitors decreased proliferation, induced apoptosis and restored, in RA-resistant cells, the expression of RA target genes and the RA-induced differentiation. Inhibition of the MEK/ERK1/2 pathway abolished these effects. These results were corroborated in primary APL patient cells and translated in vivo using an APL preclinical mouse model in which LiCl given alone was as efficient as RA in increasing survival of leukemic mice compared with untreated mice. When LiCl was combined with RA, we observed a significant survival advantage compared with mice treated by RA alone. In this work, we demonstrate that LiCl, a well-tolerated agent in humans, has antileukemic activity in APL and that it has the potential to restore RA-induced transcriptional activation and differentiation in RA-resistant APL cells in an MEK/ERK-dependent manner. PMID:26108692

  6. Serum-dependent expression of promyelocytic leukemia protein suppresses propagation of influenza virus

    SciTech Connect

    Iki, Shigeo; Yokota, Shin-ichi; Okabayashi, Tamaki; Yokosawa, Noriko; Nagata, Kyosuke; Fujii, Nobuhiro . E-mail: fujii@sapmed.ac.jp

    2005-12-05

    The rate of propagation of influenza virus in human adenocarcinoma Caco-2 cells was found to negatively correlate with the concentration of fetal bovine serum (FBS) in the culture medium. Virus replicated more rapidly at lower FBS concentrations (0 or 2%) than at higher concentrations (10 or 20%) during an early stage of infection. Basal and interferon (IFN)-induced levels of typical IFN-inducible anti-viral proteins, such as 2',5'-oligoadenylate synthetase, dsRNA-activated protein kinase and MxA, were unaffected by variation in FBS concentrations. But promyelocytic leukemia protein (PML) was expressed in a serum-dependent manner. In particular, the 65 to 70 kDa isoform of PML was markedly upregulated following the addition of serum. In contrast, other isoforms were induced by IFN treatment, and weakly induced by FBS concentrations. Immunofluorescence microscopy indicated that PML was mainly formed nuclear bodies in Caco-2 cells at various FBS concentrations, and the levels of the PML-nuclear bodies were upregulated by FBS. Overexpression of PML isoform consisting of 560 or 633 amino acid residues by transfection of expression plasmid results in significantly delayed viral replication rate in Caco-2 cells. On the other hand, downregulation of PML expression by RNAi enhanced viral replication. These results indicate that PML isoforms which are expressed in a serum-dependent manner suppress the propagation of influenza virus at an early stage of infection.

  7. Analysis of factors affecting hemorrhagic diathesis and overall survival in patients with acute promyelocytic leukemia

    PubMed Central

    Lee, Ho Jin; Kim, Dong Hyun; Lee, Seul; Koh, Myeong Seok; Kim, So Yeon; Lee, Ji Hyun; Lee, Suee; Oh, Sung Yong; Han, Jin Yeong; Kim, Hyo-Jin; Kim, Sung-Hyun

    2015-01-01

    Background/Aims: This study investigated whether patients with acute promyelocytic leukemia (APL) truly fulfill the diagnostic criteria of overt disseminated intravascular coagulation (DIC), as proposed by the International Society on Thrombosis and Haemostasis (ISTH) and the Korean Society on Thrombosis and Hemostasis (KSTH), and analyzed which component of the criteria most contributes to bleeding diathesis. Methods: A single-center retrospective analysis was conducted on newly diagnosed APL patients between January 1995 and May 2012. Results: A total of 46 newly diagnosed APL patients were analyzed. Of these, 27 patients (58.7%) showed initial bleeding. The median number of points per patient fulfilling the diagnostic criteria of overt DIC by the ISTH and the KSTH was 5 (range, 1 to 7) and 3 (range, 1 to 4), respectively. At diagnosis of APL, 22 patients (47.8%) fulfilled the overt DIC diagnostic criteria by either the ISTH or KSTH. In multivariate analysis of the ISTH or KSTH diagnostic criteria for overt DIC, the initial fibrinogen level was the only statistically significant factor associated with initial bleeding (p = 0.035), but it was not associated with overall survival (OS). Conclusions: Initial fibrinogen level is associated with initial presentation of bleeding of APL patients, but does not affect OS. PMID:26552464

  8. Promyelocytic leukemia protein enhances apoptosis of gastric cancer cells through Yes-associated protein.

    PubMed

    Xu, Zhipeng; Chen, Jiamin; Shao, Liming; Ma, Wangqian; Xu, Dingting

    2015-09-01

    It has been shown that Yes-associated protein (YAP) acts as a transcriptional co-activator to regulate p73-dependent apoptosis in response to DNA damage in some cell types, and promyelocytic leukemia (PML) protein is involved in the regulation loop through stabilization of YAP through sumoylation. Although YAP has been shown to be significantly upregulated in gastric cancer, whether the YAP/PML/p73 regulation loop also functions in gastric cancer is unknown. Here, we show significantly higher levels of YAP and significantly lower levels of PML in the gastric cancer specimen. Overexpression of YAP in gastric cancer cells significantly increased cell growth, but did not affect apoptosis. However, overexpression of PML in gastric cancer cells significantly increased cell apoptosis, resulting in decreases in cell growth, which seemed to require the presence of YAP. The effect of PML on apoptosis appeared to be conducted through p73-mediated modulation of apoptosis-associated genes, Bcl-2, Bak, and caspase9. Thus, our study suggests the presence of a YAP/PML/p73 regulatory loop in gastric cancer, and highlights PML as a promising tumor suppressor in gastric cancer through YAP-coordinated cancer cell apoptosis.

  9. Cardiac Glycosides Activate the Tumor Suppressor and Viral Restriction Factor Promyelocytic Leukemia Protein (PML).

    PubMed

    Milutinovic, Snezana; Heynen-Genel, Susanne; Chao, Elizabeth; Dewing, Antimone; Solano, Ricardo; Milan, Loribelle; Barron, Nikki; He, Min; Diaz, Paul W; Matsuzawa, Shu-ichi; Reed, John C; Hassig, Christian A

    2016-01-01

    Cardiac glycosides (CGs), inhibitors of Na+/K+-ATPase (NKA), used clinically to treat heart failure, have garnered recent attention as potential anti-cancer and anti-viral agents. A high-throughput phenotypic screen designed to identify modulators of promyelocytic leukemia protein (PML) nuclear body (NB) formation revealed the CG gitoxigenin as a potent activator of PML. We demonstrate that multiple structurally distinct CGs activate the formation of PML NBs and induce PML protein SUMOylation in an NKA-dependent fashion. CG effects on PML occur at the post-transcriptional level, mechanistically distinct from previously described PML activators and are mediated through signaling events downstream of NKA. Curiously, genomic deletion of PML in human cancer cells failed to abrogate the cytotoxic effects of CGs and other apoptotic stimuli such as ceramide and arsenic trioxide that were previously shown to function through PML in mice. These findings suggest that alternative pathways can compensate for PML loss to mediate apoptosis in response to CGs and other apoptotic stimuli. PMID:27031987

  10. Live Cell Dynamics of Promyelocytic Leukemia Nuclear Bodies upon Entry into and Exit from Mitosis

    PubMed Central

    Chen, Yi-Chun M.; Kappel, Constantin; Beaudouin, Joel; Eils, Roland

    2008-01-01

    Promyelocytic leukemia nuclear bodies (PML NBs) have been proposed to be involved in tumor suppression, viral defense, DNA repair, and/or transcriptional regulation. To study the dynamics of PML NBs during mitosis, we developed several U2OS cell lines stably coexpressing PML-enhanced cyan fluorescent protein with other individual marker proteins. Using three-dimensional time-lapse live cell imaging and four-dimensional particle tracking, we quantitatively demonstrated that PML NBs exhibit a high percentage of directed movement when cells progressed from prophase to prometaphase. The timing of this increased dynamic movement occurred just before or upon nuclear entry of cyclin B1, but before nuclear envelope breakdown. Our data suggest that entry into prophase leads to a loss of tethering between regions of chromatin and PML NBs, resulting in their increased dynamics. On exit from mitosis, Sp100 and Fas death domain-associated protein (Daxx) entered the daughter nuclei after a functional nuclear membrane was reformed. However, the recruitment of these proteins to PML NBs was delayed and correlated with the timing of de novo PML NB formation. Together, these results provide insight into the dynamic changes associated with PML NBs during mitosis. PMID:18480407

  11. Metformin induces differentiation in acute promyelocytic leukemia by activating the MEK/ERK signaling pathway

    SciTech Connect

    Huai, Lei; Wang, Cuicui; Zhang, Cuiping; Li, Qihui; Chen, Yirui; Jia, Yujiao; Li, Yan; Xing, Haiyan; Tian, Zheng; Rao, Qing; Wang, Min; Wang, Jianxiang

    2012-06-08

    Highlights: Black-Right-Pointing-Pointer Metformin induces differentiation in NB4 and primary APL cells. Black-Right-Pointing-Pointer Metformin induces activation of the MEK/ERK signaling pathway in APL cells. Black-Right-Pointing-Pointer Metformin synergizes with ATRA to trigger maturation of NB4 and primary APL cells. Black-Right-Pointing-Pointer Metformin induces the relocalization and degradation of the PML-RAR{alpha} fusion protein. Black-Right-Pointing-Pointer The study may be applicable for new differentiation therapy in cancer treatment. -- Abstract: Recent studies have shown that metformin, a widely used antidiabetic agent, may reduce the risk of cancer development. In this study, we investigated the antitumoral effect of metformin on both acute myeloid leukemia (AML) and acute promyelocytic leukemia (APL) cells. Metformin induced apoptosis with partial differentiation in an APL cell line, NB4, but only displayed a proapoptotic effect on several non-M3 AML cell lines. Further analysis revealed that a strong synergistic effect existed between metformin and all-trans retinoic acid (ATRA) during APL cell maturation and that metformin induced the hyperphosphorylation of extracellular signal-regulated kinase (ERK) in APL cells. U0126, a specific MEK/ERK activation inhibitor, abrogated metformin-induced differentiation. Finally, we found that metformin induced the degradation of the oncoproteins PML-RAR{alpha} and c-Myc and activated caspase-3. In conclusion, these results suggest that metformin treatment may contribute to the enhancement of ATRA-induced differentiation in APL, which may deepen the understanding of APL maturation and thus provide insight for new therapy strategies.

  12. Proliferation inhibition, cell cycle arrest and apoptosis induced in HL-60 cells by a natural diterpene ester from Daphne mucronata

    PubMed Central

    Nouri, K.; Yazdanparast, R.

    2011-01-01

    Background and the purpose of the study Gnidilatimonoein (Gn), a new diterpene ester from Daphne mucronata, possesses strong anti-metastasis and anti-tumor activities. In this study, its apoptosis and differentiation capabilities were evaluated by using the leukemia HL-60 cell line. Material and methods Cell prolifaration inhibition was estimated by MTT assay. The occurrence of apoptosis was evaluated by EtBr/AO double staining technique, cell cycle analyses and detection of apoptotic cells by Annexin V-FITC and propodium iodide (PI). Differentiation of the cells was determined by NBT reduction assay and the expression of specific cell surface markers such as CD14 and CD11b, were analyzed by flow cytometry. Results The drug decreased the growth of the cells dose- and time-dependently and the IC50 was found to be 1.3 µM. Our data suggested that Gn induced both monocytic differentiation and apoptosis among HL-60 cells. In addition, cell cycle analyses showed an increase in G1 phase population by 24 hrs, which was gradually replaced by Sub-G1 cell population (apoptotic cells) by 72 hrs. Conclusion Based on these data, the Gn-treated HL-60 cells displayed differentiation-dependent apoptosis. Thus, Gn might be a good candidate for differentiation therapy of leukemia, pending full biological evaluation of the compound among the wide array of leukemia cells. PMID:22615651

  13. Improving acute promyelocytic leukemia (APL) outcome in developing countries through networking, results of the International Consortium on APL.

    PubMed

    Rego, Eduardo M; Kim, Haesook T; Ruiz-Argüelles, Guillermo J; Undurraga, Maria Soledad; Uriarte, Maria del Rosario; Jacomo, Rafael H; Gutiérrez-Aguirre, Homero; Melo, Raul A M; Bittencourt, Rosane; Pasquini, Ricardo; Pagnano, Katia; Fagundes, Evandro M; Chauffaille, Maria de Lourdes; Chiattone, Carlos S; Martinez, Lem; Meillón, Luis A; Gómez-Almaguer, David; Kwaan, Hau C; Garcés-Eisele, Javier; Gallagher, Robert; Niemeyer, Charlotte M; Schrier, Stanley L; Tallman, Martin; Grimwade, David; Ganser, Arnold; Berliner, Nancy; Ribeiro, Raul C; Lo-Coco, Francesco; Löwenberg, Bob; Sanz, Miguel A

    2013-03-14

    Thanks to modern treatment with all-trans retinoic acid and chemotherapy, acute promyelocytic leukemia (APL) is now the most curable type of leukemia. However, this progress has not yielded equivalent benefit in developing countries. The International Consortium on Acute Promyelocytic Leukemia (IC-APL) was established to create a network of institutions in developing countries that would exchange experience and data and receive support from well-established US and European cooperative groups. The IC-APL formulated expeditious diagnostic, treatment, and supportive guidelines that were adapted to local circumstances. APL was chosen as a model disease because of the potential impact on improved diagnosis and treatment. The project included 4 national coordinators and reference laboratories, common clinical record forms, 5 subcommittees, and laboratory and data management training programs. In addition, participating institutions held regular virtual and face-to-face meetings. Complete hematological remission was achieved in 153/180 (85%) patients and 27 (15%) died during induction. After a median follow-up of 28 months, the 2-year cumulative incidence of relapse, overall survival (OS), and disease-free survival (DFS) were 4.5%, 80%, and 91%, respectively. The establishment of the IC-APL network resulted in a decrease of almost 50% in early mortality and an improvement in OS of almost 30% compared with historical controls, resulting in OS and DFS similar to those reported in developed countries. PMID:23319575

  14. Selective induction of G2/M arrest and apoptosis in HL-60 by a potent anticancer agent, HMJ-38.

    PubMed

    Yang, Jai-Sing; Hour, Mann-Jen; Kuo, Sheng-Chu; Huang, Li-Jiau; Lee, Miau-Rong

    2004-01-01

    We previously reported that HMJ-38 was the most potent 2-phenyl-4-quinozolinone derivative in inhibiting tubulin polymerization and showed significant cytotoxicity against several human tumor cell lines. In this work, we studied its cytotoxic effect on HL-60 leukemia cells and the underlying mechanisms. We first investigated the effects of HMJ-38 on viability, cell cycle and induction of apoptosis in HL-60 and normal human peripheral blood mononuclear cells (PBMC). After 24-hour treatment with HMJ-38, a dose- and time-dependent decrease in the viability of HL-60 cells was observed and the approximate IC50 was 4.48 microM. The cytotoxic effect of HMJ-38 on PBMC was less significant than that on HL-60 cells, either with 24 or 48 hours of treatment. Cell cycle analysis showed that HMJ-38 induced significant G2/M arrest and apoptosis in HL-60 cells. The HMJ-38-induced G2/M arrest occurred before the onset of apoptosis. Within 24 hours of treatment, HMJ-38 influenced the CDK/cyclin B activity by increasing Chk1, Wee1 and p21 and decreasing Cdc25C protein levels. The HMJ-38-induced apoptosis was further confirmed by morphological assessment and DNA fragmentation assay. Induction of apoptosis in HMJ-38-treated HL-60 cells was accompanied by an apparent increase of cytosolic cytochrome c, down-regulation of Bcl-2, up-regulation of Bax and cleavage of pro-caspase-9, -3 and poly(ADP)ribosylpolymerase (PARP). The results of the significant reduction of caspase activities and apoptosis by caspase inhibitors indicated that the HMJ-38-induced apoptosis was mainly mediated by activation of caspases-9 and -3. HMJ-38 also activated ERK in HL-60 cells. Pre-incubating cells with ERK inhibitors (U0126 and PD98059) attenuated the HMJ-38-induced ERK activation and apoptosis. Nevertheless, cells remained arrested in G2/M. These results suggest that HMJ-38 is a potent anticancer drug and it shows a remarkable action on cell cycle before commitment for apoptosis is reached. PMID:15274354

  15. Clinical impact of FLT3 mutation load in acute promyelocytic leukemia with t(15;17)/PML-RARA

    PubMed Central

    Schnittger, Susanne; Bacher, Ulrike; Haferlach, Claudia; Kern, Wolfgang; Alpermann, Tamara; Haferlach, Torsten

    2011-01-01

    Background Combined treatment with all-trans-retinoic acid and chemotherapy is extremely efficient in patients with acute promyelocytic leukemia with t(15;17)/PML-RARA, but up to 15% of patients relapse. Design and Methods To further clarify the prognostic impact of parameters such as FLT3 mutations, we comprehensively characterized the relation between genetic features and outcome in 147 patients (aged 19.7–86.3 years) with acute promyelocytic leukemia. Results Internal tandem duplications of the FLT3 gene (FLT3-ITD) were detected in 47/147 (32.0%) and tyrosine kinase domain mutations (FLT3-TKD) in 19/147 (12.9%) patients. FLT3-ITD or FLT3-TKD mutation status did not have a significant prognostic impact, whereas FLT3-ITD mutation load, as defined by a mutation/wild-type ratio of less than 0.5 was associated with trends to a better 2-year overall survival rate (86.7% versus 72.7%; P=0.075) and 2-year event-free survival rate (84.5% versus 62.1%, P=0.023) compared to the survival rates of patients with a ratio of 0.5 or more. Besides the t(15;17), an additional chromosomal abnormality was detected in 57 of 147 cases and did not show a significant impact on survival. White blood cell counts of 10×109/L or less versus more than 10×109/L were associated with a better 2-year overall survival rate (88.3% versus 69.4%, respectively; P=0.015), as was male sex (P=0.040). In multivariate analysis, only higher age had a significant adverse impact. Conclusions Prospective trials should further investigate the clinical impact of the FLT3-ITD/wild-type mutation load aiming to evaluate whether this parameter might be included in risk stratification in patients with acute promyelocytic leukemia. PMID:21859732

  16. High pseudotumor cerebri incidence in tretinoin and arsenic treated acute promyelocytic leukemia and the role of topiramate after acetazolamide failure

    PubMed Central

    Smith, Morgan B.; Griffiths, Elizabeth A.; Thompson, James E.; Wang, Eunice S.; Wetzler, Meir; Freyer, Craig W.

    2014-01-01

    Dual differentiation therapy with arsenic trioxide and tretinoin (all-trans-retinoic acid; ATRA) for the management of low and intermediate risk acute promyelocytic leukemia has recently been recommended by the National Comprehensive Cancer Network. Some less common toxicities of the combination may have yet to be fully realized. Of ten patients we have treated thus far, five (50%) have developed pseudotumor cerebri. In one patient, temporary discontinuation of ATRA and initiation of acetazolamide controlled symptoms. In four patients, topiramate was substituted for acetazolamide to relieve symptoms and allow ATRA dose re-escalation. We conclude that providers should monitor for pseudotumor cerebri and consider topiramate if acetazolamide fails. PMID:25180154

  17. Neutrophilic differentiation modulates the apoptotic response of HL-60 cells to sodium butyrate and sodium valproate.

    PubMed

    Vrba, J; Dolezel, P; Ulrichova, J

    2010-01-01

    Differentiation of myeloid leukemic cells may result in less sensitivity to various apoptotic stimuli. We examined whether human leukemia HL-60 cells differentiating by all-trans retinoic acid (ATRA) acquired resistance to the apoptogenic activity of two histone deacetylase (HDAC) inhibitors, butyrate and valproate. In undifferentiated cells, the cytotoxicity of both butyrate and valproate was associated with activation of the intrinsic apoptotic pathway since we observed dissipation of mitochondrial membrane potential, induction of caspase-9 and caspase-3 activities, appearance of sub-G1 DNA and loss of plasma membrane asymmetry and/or integrity. Both HDAC inhibitors were also able to induce accumulation of undifferentiated cells in the G0/G1 phase of the cell cycle. ATRA was found to enhance the apoptotic effect of both butyrate and valproate in undifferentiated cells. This aside, ATRA appeared to synergize with butyrate in the induction of the G0/G1 cell cycle arrest. In cells pretreated for 72 h with ATRA, butyrate and valproate in combination with ATRA induced lower dissipation of mitochondrial membrane potential and weaker apoptotic and/or necrotic changes in plasma membrane, whereas DNA fragmentation was not diminished compared to undifferentiated cells. Similar results were also obtained when butyrate or valproate were combined with another neutrophilic differentiation inducer, dimethyl sulfoxide. We conclude that neutrophilic differentiation modulates but does not abrogate the apoptotic response of HL-60 cells to butyrate and valproate, and nuclei are preferentially affected during apoptosis in differentiated cells.

  18. Arsenic trioxide therapy for relapsed acute promyelocytic leukemia: an useful salvage therapy.

    PubMed

    Huan, S Y; Yang, C H; Chen, Y C

    2000-07-01

    Arsenic trioxide (As2O3) was recently identified as a very potent agent against acute promyelocytic leukemia (APL). Intravenous infusion of 10 mg As2O3 daily for one to two months can induce significant complete remission (CR) of APL, and there is no cross drug-resistance between As2O3 and other antileukemic agents, including all-trans retinoic acid (ATRA). The CR rate of relapsed and/or refractory APL patients who received As2O3 treatment ranged from 52.3% to 93.3%. The median duration to CR ranged from 38 to 51 days, with accumulative As2O3 dosage of 340-430 mg. Although most adverse reactions of As2O3 treatment were tolerable, certain infrequent but severe toxicities related to As2O3 were observed, including renal failure, hepatic damage, cardiac arrhythmia and chronic neuromuscular degeneration, which should be monitored carefully. As2O3 can induce partial differentiation and subsequent apoptosis of APL cells through degradation of wild type PML and PML/RAR alpha chimeric proteins and possible anti-mitochondrial effects. Like the treatment of ATRA in APL, early relapses from As2O3 treatment within a few months were not infrequently seen, indicating that rapid emerging resistance to As2O3 can occur. Nevertheless, the PML/RAR alpha fusion protein was reported to disappear in some APL patients who received As2O3, and who might earn long-survival. However, the follow-up is still too short to draw the conclusion. Intriguingly, it has been shown that As2O3 can also induce apoptosis of other non-APL tumor cells with clinical achievable concentrations. However, the detailed molecular mechanisms are not yet fully understood. Further studies regarding to the pharmacological characters, clinical efficacies, toxicities, apoptogenic mechanisms, and spectrum of anti-tumor activity of As2O3 are warranted.

  19. Significance of AZD1152 as a potential treatment against Aurora B overexpression in acute promyelocytic leukemia.

    PubMed

    Ghanizadeh-Vesali, Samad; Zekri, Ali; Zaker, Farhad; Zaghal, Azam; Yousefi, Meysam; Alimoghaddam, Kamran; Ghavamzadeh, Ardeshir; Ghaffari, Seyed H

    2016-06-01

    Aurora B kinase as a chromosomal passenger protein plays multiple roles in regulating mitosis and cytokinesis. The function of Aurora B in leukemic cells has made it an important treatment target. In this study, we explored the expressions of Aurora (A, B, and C) kinases in newly diagnosed acute promyelocytic leukemia (APL) patients. In addition, we investigated the effects of AZD1152 as a specific inhibitor of Aurora B on cell survival, DNA synthesis, nuclear morphology, apoptosis induction, cell cycle distribution, and gene expression in an APL-derived NB4 cell line. Our results showed that Aurora B was overexpressed in 88 % of APL patients. AZD1152 treatment of NB4 cells led to viability reduction and G2/M arrest followed by an increase in cell size and polyploidy induction. These giant cells showed morphological evidence of mitotic catastrophe. AZD1152 treatment induced activation of G2/M checkpoint which in turn led to transient G2/M arrest in a p21-independent manner. Lack of functional p53 in NB4 cells might provide an opportunity to escape from G2/M block and to endure repeated rounds of replication and polyploidy. Treated cells were probably eliminated via p73-mediated overexpression of BAX, PUMA, and APAF1 and downregulation of survivin and MCL-1. In summary, AZD1152 treatment led to endomitosis and polyploidy in TP53-mutated NB4 cells. These giant polyploid cells might undergo mitotic catastrophe and p73-mediated apoptosis. It seems that induction of polyploidy via AZD1152 could be a novel form of anti-cancer therapy for APL that may be clinically accessible in the near future. PMID:27091351

  20. Simple, rapid and accurate molecular diagnosis of acute promyelocytic leukemia by loop mediated amplification technology.

    PubMed

    Spinelli, Orietta; Rambaldi, Alessandro; Rigo, Francesca; Zanghì, Pamela; D'Agostini, Elena; Amicarelli, Giulia; Colotta, Francesco; Divona, Mariadomenica; Ciardi, Claudia; Coco, Francesco Lo; Minnucci, Giulia

    2015-01-01

    The diagnostic work-up of acute promyelocytic leukemia (APL) includes the cytogenetic demonstration of the t(15;17) translocation and/or the PML-RARA chimeric transcript by RQ-PCR or RT-PCR. This latter assays provide suitable results in 3-6 hours. We describe here two new, rapid and specific assays that detect PML-RARA transcripts, based on the RT-QLAMP (Reverse Transcription-Quenching Loop-mediated Isothermal Amplification) technology in which RNA retrotranscription and cDNA amplification are carried out in a single tube with one enzyme at one temperature, in fluorescence and real time format. A single tube triplex assay detects bcr1 and bcr3 PML-RARA transcripts along with GUS housekeeping gene. A single tube duplex assay detects bcr2 and GUSB. In 73 APL cases, these assays detected in 16 minutes bcr1, bcr2 and bcr3 transcripts. All 81 non-APL samples were negative by RT-QLAMP for chimeric transcripts whereas GUSB was detectable. In 11 APL patients in which RT-PCR yielded equivocal breakpoint type results, RT-QLAMP assays unequivocally and accurately defined the breakpoint type (as confirmed by sequencing). Furthermore, RT-QLAMP could amplify two bcr2 transcripts with particularly extended PML exon 6 deletions not amplified by RQ-PCR. RT-QLAMP reproducible sensitivity is 10(-3) for bcr1 and bcr3 and 10(-)2 for bcr2 thus making this assay particularly attractive at diagnosis and leaving RQ-PCR for the molecular monitoring of minimal residual disease during the follow up. In conclusion, PML-RARA RT-QLAMP compared to RT-PCR or RQ-PCR is a valid improvement to perform rapid, simple and accurate molecular diagnosis of APL. PMID:25815362

  1. Aberrant phenotypic expression of CD15 and CD56 identifies poor prognostic acute promyelocytic leukemia patients.

    PubMed

    Breccia, Massimo; De Propris, Maria Stefania; Minotti, Clara; Stefanizzi, Caterina; Raponi, Sara; Colafigli, Gioia; Latagliata, Roberto; Guarini, Anna; Foà, Robin

    2014-02-01

    Limited information is available on the relationship between expression of some additional aberrant phenotypic features and outcome of acute promyelocytic leukemia (APL) patients. Here, we set out to assess the frequency of CD15 and CD56 expression, and their prognostic value in a large series of APL patients. One hundred and fourteen adult patients consecutively diagnosed with PML/RARα-positive APL and homogeneously treated with the AIDA induction schedule at a single institution were included in the study. Twelve (10.5%) and 9 (8%) of the 114 patients expressed CD15 and CD56, respectively. CD15 expression identified a subset of patients with a classic morphologic subtype (92%), a prevalent association with a bcr1 expression (67%) with an unexpectedly higher frequency of relapses (42% vs 20% for the CD15- patients, p=0.03) and a low overall survival (OS) (median OS at 5 years 58% vs 85% for the CD15- patients, p=0.01). CD56 expression was detected only in patients with a classic morphologic subtype, a prevalent bcr3 expression (67%), high incidence of differentiation syndrome (55%), higher frequency of relapse (34% vs 20% for the CD56- population, p=0.04) and a low OS (60% vs 85% for the CD56- population p=0.02). We hereby confirm the negative prognostic value of CD56 and we show that the same applies also to cases expressing CD15. These aberrant markers may be considered for the refinement of risk-adapted therapeutic strategies in APL patients.

  2. Acute promyelocytic leukemia in patients aged >70 years: the cure beyond the age.

    PubMed

    Finsinger, Paola; Breccia, Massimo; Minotti, Clara; Carmosino, Ida; Girmenia, Corrado; Chisini, Marta; Volpicelli, Paola; Vozella, Federico; Romano, Angela; Montagna, Chiara; Colafigli, Gioia; Cimino, Giuseppe; Avvisati, Giuseppe; Petti, Maria Concetta; Lo-Coco, Francesco; Foà, Roberto; Latagliata, Roberto

    2015-02-01

    All-trans retinoic acid (ATRA) has made acute promyelocytic leukemia (APL) a very curable disease also in patients aged >60 years; however, there are only few case reports in very elderly APL patients. To address this issue, we reviewed treatment results in 13 patients aged >70 years with newly diagnosed APL followed at our institution from January 1991 to December 2008. According to Sanz score, seven patients were at low risk, five at intermediate risk, and one at high risk. Induction therapy consisted of ATRA + idarubicin in nine patients (3/9 with reduced idarubicin dosage) and ATRA alone in four patients; in this latter group, however, 2/4 needed to add chemotherapy (CHT) due to hyperleukocytosis during ATRA treatment. All patients achieved both morphological and molecular complete remission (CR) after a median time of 51 [interquartile range (IR) 43-55] and 114 (IR 74-155) days, respectively. Infective complications were observed in 10/13 patients, APL differentiation syndrome in 3/13 patients. Twelve patients received consolidation therapy, followed by maintenance treatment in nine patients. Five patients relapsed after 7, 8, 11, 35, and 56 months. At present, seven patients are still alive, five died due to disease progression (four) or senectus while in CR (one), and one was lost to follow-up while in CR. The 5-year event-free survival was 56.1 % (95 % CI, 26.0-86.2); the 5-year overall survival (OS) was 64.5 % (95 % CI, 35.6-93.4). ATRA-based treatment of APL is safe and effective also in very elderly patients, with long-lasting disease-free OS. PMID:25186786

  3. The Promyelocytic Leukemia Zinc Finger Transcription Factor Is Critical for Human Endometrial Stromal Cell Decidualization.

    PubMed

    Kommagani, Ramakrishna; Szwarc, Maria M; Vasquez, Yasmin M; Peavey, Mary C; Mazur, Erik C; Gibbons, William E; Lanz, Rainer B; DeMayo, Francesco J; Lydon, John P

    2016-04-01

    Progesterone, via the progesterone receptor (PGR), is essential for endometrial stromal cell decidualization, a cellular transformation event in which stromal fibroblasts differentiate into decidual cells. Uterine decidualization supports embryo implantation and placentation as well as subsequent events, which together ensure a successful pregnancy. Accordingly, impaired decidualization results not only in implantation failure or early fetal miscarriage, but also may lead to potential adverse outcomes in all three pregnancy trimesters. Transcriptional reprogramming on a genome-wide scale underlies progesterone dependent decidualization of the human endometrial stromal cell (hESC). However, identification of the functionally essential signals encoded by these global transcriptional changes remains incomplete. Importantly, this knowledge-gap undercuts future efforts to improve diagnosis and treatment of implantation failure based on a dysfunctional endometrium. By integrating genome-wide datasets derived from decidualization of hESCs in culture, we reveal that the promyelocytic leukemia zinc finger (PLZF) transcription factor is rapidly induced by progesterone and that this induction is indispensable for progesterone-dependent decidualization. Chromatin immunoprecipitation followed by next generation sequencing (ChIP-Seq) identified at least ten progesterone response elements within the PLZF gene, indicating that PLZF may act as a direct target of PGR signaling. The spatiotemporal expression profile for PLZF in both the human and mouse endometrium offers further support for stromal PLZF as a mediator of the progesterone decidual signal. To identify functional targets of PLZF, integration of PLZF ChIP-Seq and RNA Pol II RNA-Seq datasets revealed that the early growth response 1 (EGR1) transcription factor is a PLZF target for which its level of expression must be reduced to enable progesterone dependent hESC decidualization. Apart from furnishing essential insights

  4. Simple, rapid and accurate molecular diagnosis of acute promyelocytic leukemia by loop mediated amplification technology

    PubMed Central

    Spinelli, Orietta; Rambaldi, Alessandro; Rigo, Francesca; Zanghì, Pamela; D'Agostini, Elena; Amicarelli, Giulia; Colotta, Francesco; Divona, Mariadomenica; Ciardi, Claudia; Coco, Francesco Lo; Minnucci, Giulia

    2015-01-01

    The diagnostic work-up of acute promyelocytic leukemia (APL) includes the cytogenetic demonstration of the t(15;17) translocation and/or the PML-RARA chimeric transcript by RQ-PCR or RT-PCR. This latter assays provide suitable results in 3-6 hours. We describe here two new, rapid and specific assays that detect PML-RARA transcripts, based on the RT-QLAMP (Reverse Transcription-Quenching Loop-mediated Isothermal Amplification) technology in which RNA retrotranscription and cDNA amplification are carried out in a single tube with one enzyme at one temperature, in fluorescence and real time format. A single tube triplex assay detects bcr1 and bcr3 PML-RARA transcripts along with GUS housekeeping gene. A single tube duplex assay detects bcr2 and GUSB. In 73 APL cases, these assays detected in 16 minutes bcr1, bcr2 and bcr3 transcripts. All 81 non-APL samples were negative by RT-QLAMP for chimeric transcripts whereas GUSB was detectable. In 11 APL patients in which RT-PCR yielded equivocal breakpoint type results, RT-QLAMP assays unequivocally and accurately defined the breakpoint type (as confirmed by sequencing). Furthermore, RT-QLAMP could amplify two bcr2 transcripts with particularly extended PML exon 6 deletions not amplified by RQ-PCR. RT-QLAMP reproducible sensitivity is 10−3 for bcr1 and bcr3 and 10−2 for bcr2 thus making this assay particularly attractive at diagnosis and leaving RQ-PCR for the molecular monitoring of minimal residual disease during the follow up. In conclusion, PML-RARA RT-QLAMP compared to RT-PCR or RQ-PCR is a valid improvement to perform rapid, simple and accurate molecular diagnosis of APL. PMID:25815362

  5. The Promyelocytic Leukemia Zinc Finger Transcription Factor Is Critical for Human Endometrial Stromal Cell Decidualization

    PubMed Central

    Kommagani, Ramakrishna; Szwarc, Maria M.; Vasquez, Yasmin M.; Peavey, Mary C.; Mazur, Erik C.; Gibbons, William E.; Lanz, Rainer B.; DeMayo, Francesco J.; Lydon, John P.

    2016-01-01

    Progesterone, via the progesterone receptor (PGR), is essential for endometrial stromal cell decidualization, a cellular transformation event in which stromal fibroblasts differentiate into decidual cells. Uterine decidualization supports embryo implantation and placentation as well as subsequent events, which together ensure a successful pregnancy. Accordingly, impaired decidualization results not only in implantation failure or early fetal miscarriage, but also may lead to potential adverse outcomes in all three pregnancy trimesters. Transcriptional reprogramming on a genome-wide scale underlies progesterone dependent decidualization of the human endometrial stromal cell (hESC). However, identification of the functionally essential signals encoded by these global transcriptional changes remains incomplete. Importantly, this knowledge-gap undercuts future efforts to improve diagnosis and treatment of implantation failure based on a dysfunctional endometrium. By integrating genome-wide datasets derived from decidualization of hESCs in culture, we reveal that the promyelocytic leukemia zinc finger (PLZF) transcription factor is rapidly induced by progesterone and that this induction is indispensable for progesterone-dependent decidualization. Chromatin immunoprecipitation followed by next generation sequencing (ChIP-Seq) identified at least ten progesterone response elements within the PLZF gene, indicating that PLZF may act as a direct target of PGR signaling. The spatiotemporal expression profile for PLZF in both the human and mouse endometrium offers further support for stromal PLZF as a mediator of the progesterone decidual signal. To identify functional targets of PLZF, integration of PLZF ChIP-Seq and RNA Pol II RNA-Seq datasets revealed that the early growth response 1 (EGR1) transcription factor is a PLZF target for which its level of expression must be reduced to enable progesterone dependent hESC decidualization. Apart from furnishing essential insights

  6. Single pre-treatment with hypericin, a St. John's wort secondary metabolite, attenuates cisplatin- and mitoxantrone-induced cell death in A2780, A2780cis and HL-60 cells.

    PubMed

    Jendželovská, Zuzana; Jendželovský, Rastislav; Hiľovská, Lucia; Kovaľ, Ján; Mikeš, Jaromír; Fedoročko, Peter

    2014-10-01

    St. John's wort (SJW, Hypericum perforatum L.) is a commonly used natural antidepressant responsible for the altered toxicity of some anticancer agents. These interactions have been primarily attributed to the hyperforin-mediated induction of some pharmacokinetic mechanisms. However, as previously demonstrated by our group, hypericin induces the expression of two ABC transporters: multidrug resistance-associated protein 1 (MRP1) and breast cancer resistance protein (BCRP). Because cisplatin (CDDP) and mitoxantrone (MTX) are potential substrates of ABC transporters, we investigated the effect of 24h hypericin pre-treatment on the cytotoxicity of CDDP and MTX in human cancer cell lines. CDDP-sensitive and -resistant ovarian adenocarcinoma cell lines A2780/A2780cis, together with HL-60 promyelocytic leukemia cells and ABCG2-over-expressing cBCRP subclone, were used in our experiments. We present CDDP cytotoxicity attenuated by hypericin pre-treatment in both A2780 and A2780cis cells and MTX cytotoxicity in HL-60 cells. In contrast, hypericin potentiated MTX-induced death in cBCRP cells. Interestingly, hypericin did not restore cell proliferation in rescued cells. Nevertheless, hypericin did increase the expression of MRP1 transporter in A2780 and A2780cis cells indicating the impact of hypericin on certain resistance mechanisms. Additionally, our results indicate that hypericin may be the potential substrate of BCRP transporter. In conclusion, for the first time, we report the ability of hypericin to affect the onset and/or progress of CDDP- and MTX-induced cell death, despite strong cell cycle arrest. Thus, hypericin represents another SJW metabolite that might be able to affect the effectiveness of anti-cancer drugs and that could interact with ABC transporters, particularly with BCRP.

  7. High ΔNp73/TAp73 ratio is associated with poor prognosis in acute promyelocytic leukemia

    PubMed Central

    Lucena-Araujo, Antonio R.; Kim, Haesook T.; Thomé, Carolina; Jacomo, Rafael H.; Melo, Raul A.; Bittencourt, Rosane; Pasquini, Ricardo; Pagnano, Katia; Glória, Ana Beatriz F.; Chauffaille, Maria de Lourdes; Athayde, Melina; Chiattone, Carlos S.; Mito, Ingrid; Bendlin, Rodrigo; Souza, Carmino; Bortolheiro, Cristina; Coelho-Silva, Juan L.; Schrier, Stanley L.; Tallman, Martin S.; Grimwade, David; Ganser, Arnold; Berliner, Nancy; Ribeiro, Raul C.; Lo-Coco, Francesco; Löwenberg, Bob; Sanz, Miguel A.

    2015-01-01

    The TP73 gene transcript is alternatively spliced and translated into the transcriptionally active (TAp73) or inactive (ΔNp73) isoforms, with opposite effects on the expression of p53 target genes and on apoptosis induction. The imbalance between ΔNp73 and TAp73 may contribute to tumorigenesis and resistance to chemotherapy in human cancers, including hematologic malignancies. In acute promyelocytic leukemia (APL), both isoforms are expressed, but their relevance in determining response to therapy and contribution to leukemogenesis remains unknown. Here, we provide the first evidence that a higher ΔNp73/TAp73 RNA expression ratio is associated with lower survival, lower disease-free survival, and higher risk of relapse in patients with APL homogeneously treated with all-trans retinoic acid and anthracycline-based chemotherapy, according to the International Consortium on Acute Promyelocytic Leukemia (IC-APL) study. Cox proportional hazards modeling showed that a high ΔNp73/TAp73 ratio was independently associated with shorter overall survival (hazard ratio, 4.47; 95% confidence interval, 1.64-12.2; P = .0035). Our data support the hypothesis that the ΔNp73/TAp73 ratio is an important determinant of clinical response in APL and may offer a therapeutic target for enhancing chemosensitivity in blast cells. PMID:26429976

  8. ZBTB16-RARα variant of acute promyelocytic leukemia with tuberculosis: a case report and review of literature

    PubMed Central

    Palta, Anshu; Cruz, Sanjay D.

    2012-01-01

    A 23-year-old male presented with pulmonary tuberculosis and swelling of both lower limbs. He was put on antitubercular treatment. Hemogram showed mild anemia and Pseudo Pelger-huet cells. The bone marrow (BM) examination showed 52% promyelocytes with regular round to oval nuclei, few granules and were positive for CD13 and CD33, and negative for HLA-DR. Cytogenetic analysis of the BM aspirate revealed an apparently balanced t(11;17)(q23;q21). Final diagnosis rendered was acute promyelocytic leukemia (APL) with t(11;17)(q23;q21); ZBTB16/RARA. APL is a distinct subtype of acute myeloid leukemia. The variant APL with t(11;17)(q23;q21) cases that are associated with the ZBTB16/RARA fusion gene have been reported as being resistant to all-trans-retinoic acid (ATRA). Therefore, differential diagnosis of variant APL with t(11;17)(q23;q12) from classical APL with t(15;17)(q22;q12); PML-RARA is very important. Here we have discussed the importance of distinct morphology of variant APL and also significance of rare presentation with tuberculosis. PMID:23071480

  9. In vitro anticancer activity of loquat tea by inducing apoptosis in human leukemia cells.

    PubMed

    Zar, Phyu Phyu Khine; Yano, Satoshi; Sakao, Kozue; Hashimoto, Fumio; Nakano, Takayuki; Fujii, Makoto; Hou, De-Xing

    2014-01-01

    Fresh loquat leaves have been used as folk health herb in Asian countries for long time, although the evidence supporting their functions is still minimal. This study aimed to clarify the chemopreventive effect of loquat tea extract (LTE) by investigating the inhibition on proliferation, and underlying mechanisms in human promyelocytic leukemia cells (HL-60). LTE inhibited proliferation of HL-60 in a dose-dependent manner. Molecular data showed that the isolated fraction of LTE induced apoptosis of HL-60 as characterized by DNA fragmentation; activation of caspase-3, -8, and -9; and inactivation of poly(ADP)ribose polymerase. Moreover, LTE fraction increased the ratio of pro-apoptotic Bcl-2-associated X protein (Bax)/anti-apoptotic myeloid cell leukemia 1 (Mcl-1) that caused mitochondrial membrane potential loss and cytochrome c released to cytosol. Thus, our data indicate that LTE might induce apoptosis in HL-60 cells through a mitochondrial dysfunction pathway. These findings enhance our understanding for chemopreventive function of loquat tea.

  10. Synthesis of minoxidil conjugates and their evaluation as HL-60 differentiation agents.

    PubMed

    Stoica, Sonia; Magoulas, George E; Antoniou, Antonia I; Suleiman, Sherif; Cassar, Analisse; Gatt, Lucienne; Papaioannou, Dionissios; Athanassopoulos, Constantinos M; Schembri-Wismayer, Pierre

    2016-02-15

    Activation of minoxidil (MNX) with N,N'-carbonyldiimidazole and coupling with natural polyamines (PAs) and commercially available aliphatic or aromatic amines provided a series of new conjugates which were evaluated for their ability to induce differentiation to HL-60 acute myeloid leukemia cancer cells, using a modified NBTZ reduction test. Although neither MNX nor 4,4'-methylenedianiline (MDA) or 2,7-diaminofluorene (DAF), alone or in combination, had any effect, the MNX-spermine (SPM) conjugate (11) and the conjugates 7 and 8 of MNX with MDA and DAF exhibited a differentiation-inducing effect at a concentration of 10 μM without being toxic on proliferating human peripheral blood mononuclear cells. PMID:26832215

  11. Flow-Through Electroporation of HL-60 White Blood Cell Suspensions using Nanoporous Membrane Electrodes.

    PubMed

    Chen, Zhiqiang; Akenhead, Michael A; Sun, Xinghua; Sapper, Harrison; Shin, Hainsworth Y; Hinds, Bruce J

    2016-08-01

    A flow-through electroporation system, based on a novel nanoporous membrane/electrode design, for the delivery of cell wall-impermeant molecules into model leukocytes, HL-60 promyelocytes, was demonstrated. The ability to apply low voltages to cell populations, with nm-scale concentrated electric field in a periodic array, contributes to high cell viability. With applied biases of 1-4V, delivery of target molecules was achieved with 90% viability and up to 65% transfection efficiency. More importantly, the system allowed electrophoretic pumping of molecules from a microscale reservoir across the membrane/electrode system into a microfluidic flow channel for transfection of cells, a design that can reduce reagent amount by eightfold compared to current strategies. The flow-through system, which forces intimate membrane/electrode contact by using a 10μm channel height, can be easily scaled-up by adjusting the microfluidic channel geometry and/or the applied voltage pulse frequency to control cell residence times at the cell membrane/electrode interface. The demonstrated system shows promise in clinical applications where low-cost, high cell viability and high volume transfection methods are needed without the risk of viral vectors. In particular genetic modification of freely mobile white blood cells to either target disease cells or to express desired protein/enzyme biomolecules is an important target platform enabled by this device system. PMID:27377174

  12. TRIM32 promotes retinoic acid receptor {alpha}-mediated differentiation in human promyelogenous leukemic cell line HL60

    SciTech Connect

    Sato, Tomonobu; Okumura, Fumihiko; Iguchi, Akihiro; Ariga, Tadashi; Hatakeyama, Shigetsugu

    2012-01-06

    Highlights: Black-Right-Pointing-Pointer TRIM32 enhanced RAR{alpha}-mediated transcriptional activity even in the absence of RA. Black-Right-Pointing-Pointer TRIM32 stabilized RAR{alpha} in the human promyelogenous leukemic cell line HL60. Black-Right-Pointing-Pointer Overexpression of TRIM32 in HL60 cells induced granulocytic differentiation. Black-Right-Pointing-Pointer TRIM32 may function as a coactivator for RAR{alpha}-mediated transcription in APL cells. -- Abstract: Ubiquitination, one of the posttranslational modifications, appears to be involved in the transcriptional activity of nuclear receptors including retinoic acid receptor {alpha} (RAR{alpha}). We previously reported that an E3 ubiquitin ligase, TRIM32, interacts with several important proteins including RAR{alpha} and enhances transcriptional activity of RAR{alpha} in mouse neuroblastoma cells and embryonal carcinoma cells. Retinoic acid (RA), which acts as a ligand to nuclear receptors including RAR{alpha}, plays crucial roles in development, differentiation, cell cycles and apoptosis. In this study, we found that TRIM32 enhances RAR{alpha}-mediated transcriptional activity even in the absence of RA and stabilizes RAR{alpha} in the human promyelogenous leukemic cell line HL60. Moreover, we found that overexpression of TRIM32 in HL60 cells suppresses cellular proliferation and induces granulocytic differentiation even in the absence of RA. These findings suggest that TRIM32 functions as one of the coactivators for RAR{alpha}-mediated transcription in acute promyelogenous leukemia (APL) cells, and thus TRIM32 may become a potentially therapeutic target for APL.

  13. The differentiation syndrome in patients with acute promyelocytic leukemia: experience of the pethema group and review of the literature.

    PubMed

    Montesinos, Pau; Sanz, Miguel A

    2011-01-01

    Differentiation syndrome (DS), formerly known as retinoic acid syndrome, is the main life-threatening complication of therapy with differentiating agents (all-trans retinoic acid [ATRA] or arsenic trioxide [ATO]) in patients with acute promyelocytic leukemia (APL). The differentiation of leukemic blasts and promyelocytes induced by ATRA and/or ATO may lead to cellular migration, endothelial activation, and release of interleukins and vascular factors responsible of tissue damage. Roughly one quarter of patients with APL undergoing induction therapy will develop the DS, characterized by unexplained fever, acute respiratory distress with interstitial pulmonary infiltrates, and/or a vascular capillary leak syndrome leading to acute renal failure. Although the development of the DS, particularly of the severe form, is still associated with a significant increase in morbidity and mortality during induction, the early administration of high-dose dexamethasone at the onset of the first symptoms seems likely to have dramatically reduced the mortality rate of this complication. In this article, we will review the clinical features, incidence, prognostic factors, management, and outcome of the DS reported in the scientific literature. We will make focus in the experience of the three consecutive Programa Español de Tratamientos en Hematología trials (PETHEMA LPA96, LPA99, and LPA2005), in which more than one thousand patients were treated with ATRA plus idarubicin for induction.

  14. Rubratoxin-B-induced secretion of chemokine ligands of cysteine-cysteine motif chemokine receptor 5 (CCR5) and its dependence on heat shock protein 90 in HL60 cells.

    PubMed

    Nagashima, Hitoshi

    2015-11-01

    To elucidate the mechanism underlying rubratoxin B toxicity, the effects of rubratoxin B on the secretion of CCR5 chemokines, CCL3, CCL4, and CCL5, in a human promyelocytic leukemia cell line, HL60, were investigated. In addition, to examine whether the molecular chaperone 90-kDa heat shock protein (Hsp90) contributes to rubratoxin B toxicity, the effects of Hsp90-specific inhibitors, radicicol and geldanamycin, were investigated. Exposure to rubratoxin B for 24h induced secretion of each CCR5 chemokine, although the effect on CCL5 secretion was modest, and it enhanced secretion of proinflammatory cytokines tumor necrosis factor-α, CXCL8, and CCL2. Concomitant treatment with radicicol abolished the rubratoxin-induced secretion of all cytokines investigated. Geldanamycin antagonized the rubratoxin B-induced effects on CCL3 and CCL5, but not CCL4; the effects of geldanamycin were less than that of radicicol. Taken together, the results suggest that rubratoxin B, with the contribution of Hsp90, induces secretion of CCR5 chemokines.

  15. Arsenic Mediated Disruption of Promyelocytic Leukemia Protein Nuclear Bodies Induces Ganciclovir Susceptibility in Epstein-Barr Positive Epithelial Cells

    PubMed Central

    Sides, Mark D.; Block, Gregory J.; Shan, Bin; Esteves, Kyle C.; Lin, Zhen; Flemington, Erik K.; Lasky, Joseph A.

    2011-01-01

    Promyelocytic leukemia protein nuclear bodies (PML NBs) have been implicated in host immune response to viral infection. PML NBs are targeted for degradation during reactivation of herpes viruses, suggesting that disruption of PML NB function supports this aspect of the viral life cycle. The Epstein-Barr virus (EBV) Latent Membrane Protein 1 (LMP1) has been shown to suppress EBV reactivation. Our finding that LMP1 induces PML NB immunofluorescence intensity led to the hypothesis that LMP1 may modulate PML NBs as a means of maintaining EBV latency. Increased PML protein and morphometric changes in PML NBs were observed in EBV infected alveolar epithelial cells and nasopharyngeal carcinoma cells. Treatment with low dose arsenic trioxide disrupted PML NBs, induced expression of EBV lytic proteins, and conferred ganciclovir susceptibility. This study introduces an effective modality to induce susceptibility to ganciclovir in epithelial cells with implications for the treatment of EBV associated pathologies. PMID:21605886

  16. Arsenic mediated disruption of promyelocytic leukemia protein nuclear bodies induces ganciclovir susceptibility in Epstein-Barr positive epithelial cells.

    PubMed

    Sides, Mark D; Block, Gregory J; Shan, Bin; Esteves, Kyle C; Lin, Zhen; Flemington, Erik K; Lasky, Joseph A

    2011-07-20

    Promyelocytic leukemia protein nuclear bodies (PML NBs) have been implicated in host immune response to viral infection. PML NBs are targeted for degradation during reactivation of herpes viruses, suggesting that disruption of PML NB function supports this aspect of the viral life cycle. The Epstein-Barr virus (EBV) Latent Membrane Protein 1 (LMP1) has been shown to suppress EBV reactivation. Our finding that LMP1 induces PML NB immunofluorescence intensity led to the hypothesis that LMP1 may modulate PML NBs as a means of maintaining EBV latency. Increased PML protein and morphometric changes in PML NBs were observed in EBV infected alveolar epithelial cells and nasopharyngeal carcinoma cells. Treatment with low dose arsenic trioxide disrupted PML NBs, induced expression of EBV lytic proteins, and conferred ganciclovir susceptibility. This study introduces an effective modality to induce susceptibility to ganciclovir in epithelial cells with implications for the treatment of EBV associated pathologies. PMID:21605886

  17. Induction of high-affinity GM-CSF receptors during all-trans retinoic acid treatment of acute promyelocytic leukemia.

    PubMed

    de Gentile, A; Toubert, M E; Dubois, C; Krawice, I; Schlageter, M H; Balitrand, N; Castaigne, S; Degos, L; Rain, J D; Najean, Y

    1994-10-01

    Differentiation of normal myeloid cells is accompanied by the increase of high-affinity GM-CSF receptors necessary for progenitor proliferation/differentiation and mature neutrophil function. All-trans retinoic acid (ATRA) induces terminal differentiation of acute promyelocytic leukemia cells (AML3 subtype). We report in this study that AML3 cells, like other AML subtypes, harbor high-affinity GM-CSF R (n = 138.3 +/- 69.3 sites/cell, Kd = 76.9 +/- 68.8 pM). In all cases, incubation with ATRA induces either an increase in the number of affinity of GM-CSF R (n = 212.7 +/- 116.2 sites/cell, Kd = 43.2 +/- 22.5 pM). The data presented show that modulation of GM-CSF receptors cells is correlated to the degree of ATRA-induced granulocytic differentiation but not to increased cell growth.

  18. Genital ulcers after treatment with all-trans-retinoic acid in a child with acute promyelocytic leukemia.

    PubMed

    Unal, Selma; Gümrük, Fatma; Cetin, Mualla; Hiçsönmez, Gönül

    2005-01-01

    All-trans-retinoic acid (ATRA) has been shown to improve the outcome of patients with acute promyelocytic leukemia (APL). However, various adverse effects of ATRA treatment have been noted, such as scrotal and genital ulcers in adult patients. The authors report genital ulcers that developed in a child with APL after ATRA treatment. An 8-year-old girl with APL was treated with ATRA for 21 days and after discontinuation of ATRA treatment she developed genital ulcers. Systemic and local antibiotic pomades were applied and the lesions improved within 15 days. In conclusion, genital ulcers may develop in children with APL as a complication of ATRA treatment and physicians should be alert to this possibility.

  19. Arsenic mediated disruption of promyelocytic leukemia protein nuclear bodies induces ganciclovir susceptibility in Epstein-Barr positive epithelial cells

    SciTech Connect

    Sides, Mark D.; Block, Gregory J.; Shan, Bin; Esteves, Kyle C.; Lin, Zhen; Flemington, Erik K.; Lasky, Joseph A.

    2011-06-20

    Promyelocytic leukemia protein nuclear bodies (PML NBs) have been implicated in host immune response to viral infection. PML NBs are targeted for degradation during reactivation of herpes viruses, suggesting that disruption of PML NB function supports this aspect of the viral life cycle. The Epstein-Barr virus (EBV) Latent Membrane Protein 1 (LMP1) has been shown to suppress EBV reactivation. Our finding that LMP1 induces PML NB immunofluorescence intensity led to the hypothesis that LMP1 may modulate PML NBs as a means of maintaining EBV latency. Increased PML protein and morphometric changes in PML NBs were observed in EBV infected alveolar epithelial cells and nasopharyngeal carcinoma cells. Treatment with low dose arsenic trioxide disrupted PML NBs, induced expression of EBV lytic proteins, and conferred ganciclovir susceptibility. This study introduces an effective modality to induce susceptibility to ganciclovir in epithelial cells with implications for the treatment of EBV associated pathologies.

  20. Nucleocytoplasmic Shuttling of p62/SQSTM1 and Its Role in Recruitment of Nuclear Polyubiquitinated Proteins to Promyelocytic Leukemia Bodies*

    PubMed Central

    Pankiv, Serhiy; Lamark, Trond; Bruun, Jack-Ansgar; Øvervatn, Aud; Bjørkøy, Geir; Johansen, Terje

    2010-01-01

    p62, also known as sequestosome1 (SQSTM1), A170, or ZIP, is a multifunctional protein implicated in several signal transduction pathways. p62 is induced by various forms of cellular stress, is degraded by autophagy, and acts as a cargo receptor for autophagic degradation of ubiquitinated targets. It is also suggested to shuttle ubiquitinated proteins for proteasomal degradation. p62 is commonly found in cytosolic protein inclusions in patients with protein aggregopathies, it is up-regulated in several forms of human tumors, and mutations in the gene are linked to classical adult onset Paget disease of the bone. To this end, p62 has generally been considered to be a cytosolic protein, and little attention has been paid to possible nuclear roles of this protein. Here, we present evidence that p62 shuttles continuously between nuclear and cytosolic compartments at a high rate. The protein is also found in nuclear promyelocytic leukemia bodies. We show that p62 contains two nuclear localization signals and a nuclear export signal. Our data suggest that the nucleocytoplasmic shuttling of p62 is modulated by phosphorylations at or near the most important nuclear localization signal, NLS2. The aggregation of p62 in cytosolic bodies also regulates the transport of p62 between the compartments. We found p62 to be essential for accumulation of polyubiquitinated proteins in promyelocytic leukemia bodies upon inhibition of nuclear protein export. Furthermore, p62 contributed to the assembly of proteasome-containing degradative compartments in the vicinity of nuclear aggregates containing polyglutamine-expanded Ataxin1Q84 and to the degradation of Ataxin1Q84. PMID:20018885

  1. Dissection of mechanisms of Chinese medicinal formula Realgar-Indigo naturalis as an effective treatment for promyelocytic leukemia.

    PubMed

    Wang, Lan; Zhou, Guang-Biao; Liu, Ping; Song, Jun-Hong; Liang, Yang; Yan, Xiao-Jing; Xu, Fang; Wang, Bing-Shun; Mao, Jian-Hua; Shen, Zhi-Xiang; Chen, Sai-Juan; Chen, Zhu

    2008-03-25

    To enhance therapeutic efficacy and reduce adverse effects, practitioners of traditional Chinese medicine (TCM) prescribe a combination of plant species/minerals, called formulae, based on clinical experience. Nearly 100,000 formulae have been recorded, but the working mechanisms of most remain unknown. In trying to address the possible beneficial effects of formulae with current biomedical approaches, we use Realgar-Indigo naturalis formula (RIF), which has been proven to be very effective in treating human acute promyelocytic leukemia (APL) as a model. The main components of RIF are realgar, Indigo naturalis, and Salvia miltiorrhiza, with tetraarsenic tetrasulfide (A), indirubin (I), and tanshinone IIA (T) as major active ingredients, respectively. Here, we report that the ATI combination yields synergy in the treatment of a murine APL model in vivo and in the induction of APL cell differentiation in vitro. ATI causes intensified ubiquitination/degradation of promyelocytic leukemia (PML)-retinoic acid receptor alpha (RARalpha) oncoprotein, stronger reprogramming of myeloid differentiation regulators, and enhanced G(1)/G(0) arrest in APL cells through hitting multiple targets compared with the effects of mono- or biagents. Furthermore, ATI intensifies the expression of Aquaglyceroporin 9 and facilitates the transportation of A into APL cells, which in turn enhances A-mediated PML-RARalpha degradation and therapeutic efficacy. Our data also indicate A as the principal component of the formula, whereas T and I serve as adjuvant ingredients. We therefore suggest that dissecting the mode of action of clinically effective formulae at the molecular, cellular, and organism levels may be a good strategy in exploring the value of traditional medicine.

  2. Nucleocytoplasmic shuttling of p62/SQSTM1 and its role in recruitment of nuclear polyubiquitinated proteins to promyelocytic leukemia bodies.

    PubMed

    Pankiv, Serhiy; Lamark, Trond; Bruun, Jack-Ansgar; Øvervatn, Aud; Bjørkøy, Geir; Johansen, Terje

    2010-02-19

    p62, also known as sequestosome1 (SQSTM1), A170, or ZIP, is a multifunctional protein implicated in several signal transduction pathways. p62 is induced by various forms of cellular stress, is degraded by autophagy, and acts as a cargo receptor for autophagic degradation of ubiquitinated targets. It is also suggested to shuttle ubiquitinated proteins for proteasomal degradation. p62 is commonly found in cytosolic protein inclusions in patients with protein aggregopathies, it is up-regulated in several forms of human tumors, and mutations in the gene are linked to classical adult onset Paget disease of the bone. To this end, p62 has generally been considered to be a cytosolic protein, and little attention has been paid to possible nuclear roles of this protein. Here, we present evidence that p62 shuttles continuously between nuclear and cytosolic compartments at a high rate. The protein is also found in nuclear promyelocytic leukemia bodies. We show that p62 contains two nuclear localization signals and a nuclear export signal. Our data suggest that the nucleocytoplasmic shuttling of p62 is modulated by phosphorylations at or near the most important nuclear localization signal, NLS2. The aggregation of p62 in cytosolic bodies also regulates the transport of p62 between the compartments. We found p62 to be essential for accumulation of polyubiquitinated proteins in promyelocytic leukemia bodies upon inhibition of nuclear protein export. Furthermore, p62 contributed to the assembly of proteasome-containing degradative compartments in the vicinity of nuclear aggregates containing polyglutamine-expanded Ataxin1Q84 and to the degradation of Ataxin1Q84.

  3. Comparative proteomic analysis of all-trans-retinoic acid treatment reveals systematic posttranscriptional control mechanisms in acute promyelocytic leukemia.

    PubMed

    Harris, Michael N; Ozpolat, Bulent; Abdi, Fadi; Gu, Sheng; Legler, Allison; Mawuenyega, Kwasi G; Tirado-Gomez, Maribel; Lopez-Berestein, Gabriel; Chen, Xian

    2004-09-01

    All-trans-retinoic acid (ATRA) induces growth inhibition, differentiation, and apoptosis in cancer cells, including acute promyelocytic leukemia (APL). In APL, expression of promyelocytic leukemia protein retinoic acid receptor-alpha (PML-RARalpha) fusion protein, owing to the t(15; 17) reciprocal translocation, leads to a block in the promyelocytic stage of differentiation. Here, we studied molecular mechanisms involved in ATRA-induced growth inhibition and myeloid cell differentiation in APL. By employing comprehensive high-throughput proteomic methods of 2-dimensional (2-D) gel electrophoresis and amino acid-coded mass tagging coupled with electrospray ionization (ESI) mass spectrometry, we systematically identified a total of 59 differentially expressed proteins that were consistently modulated in response to ATRA treatment. The data revealed significant down-regulation of eukaryotic initiation and elongation factors, initiation factor 2 (IF2), eukaryotic initiation factor 4AI (eIF4AI), eIF4G, eIF5, eIF6, eukaryotic elongation factor 1A-1 (eEF1A-1), EF-1-delta, eEF1gamma, 14-3-3epsilon, and 14-3-3zeta/delta (P <.05). The translational inhibitor DAP5/p97/NAT1 (death-associated protein 5) and PML isoform-1 were found to be up-regulated (P <.05). Additionally, the down-regulation of heterogeneous nuclear ribonucleoproteins (hnRNPs) C1/C2, UP2, K, and F; small nuclear RNPs (snRNPs) D3 and E; nucleoprotein tumor potentiating region (TPR); and protein phosphatase 2A (PP2A) were found (P <.05); these were found to function in pre-mRNA processing, splicing, and export events. Importantly, these proteomic findings were validated by Western blot analysis. Our data in comparison with previous cDNA microarray studies and our reverse transcription-polymerase chain reaction (RT-PCR) experiments demonstrate that broad networks of posttranscriptional suppressive pathways are activated during ATRA-induced growth inhibition processes in APL. PMID:15142884

  4. In situ real-time monitoring of apoptosis on leukemia cells by surface infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Yamaguchi, Ryo-taro; Hirano-Iwata, Ayumi; Kimura, Yasuo; Niwano, Michio; Miyamoto, Ko-ichiro; Isoda, Hiroko; Miyazaki, Hitoshi

    2009-01-01

    We have investigated in situ real-time monitoring of apoptosis on human promyelocytic leukemia (HL-60) cells using infrared absorption spectroscopy with the multiple internal reflection (MIR-IRAS) geometry. Actinomycin D (Act D)-induced apoptosis on HL-60 cells was monitored for 24 h. Apoptotic cells showed two strong peaks around the protein amide I and amide II bands probably due to the leakage of cytoplasmic proteins, while growing viable cells showed a peak corresponding to the secretion of metabolites and two downward peaks corresponding to uptake of nutrients from culture media. In addition, IR absorption peak intensity of the amide I and amide II bands was proportional to the extracellular concentration of lactate dehydrogenase, a marker protein for cell damage. These results demonstrate that our MIR-IRAS method is useful for discrimination of apoptotic cells from viable ones and cell apoptotic processes can be monitored in situ by analyzing the amide I and amide II peak intensity.

  5. Modulation of cytokine production by interferential current in differentiated HL-60 cells.

    PubMed

    Sontag, W

    2000-04-01

    The influence of interferential current (IFC) on the release of four cytokines was investigated. IFC is an amplitude-modulated 4 kHz current used in therapeutic applications. Human promyelocytes (HL-60) were differentiated to monocytes/macrophages by treatment with calcitriol. Release of tumor necrosis factor alpha (TNFalpha) and interleukines 1beta, 6, and 8 (IL-1beta, IL-6, and IL-8) into the supernatant was measured after exposure to IFC at different modulation frequencies. TNFalpha release was stimulated about twofold by 4 kHz sine waves alone. The influences of exposure time (5-30 min) and current density (2.5-2500 microA/c m(2)) were tested. A maximum field effect was found at an exposure time of 15 min and a current density of 250 microA/cm(2). With these exposure conditions (15 min and 250 microA/cm(2) ), cells were treated at different modulation frequencies and reacted for TNFalpha, IL-1beta, and IL-8 release in a complex manner. Within the frequencies studied (0-125 Hz), we found stimulation as well as depression of the release. In a second run the cells were activated by pretreatment with 10 microg/ml lipopolysaccharide (LPS) and exposed in the same way as the nonactivated cells. Again the modulation frequency influenced, in a complex way, the induction of TNFalpha, IL-1beta, and IL-8, resulting in a pattern of stimulation and depression of release different from that found in nonactivated cells. For IL-6 production no significant changes were detected in activated or non-activated cells.

  6. Ecto-alkaline phosphatase activity identified at physiological pH range on intact P19 and HL-60 cells is induced by retinoic acid.

    PubMed

    Scheibe, R J; Kuehl, H; Krautwald, S; Meissner, J D; Mueller, W H

    2000-01-01

    The activity of membrane-bound alkaline phosphatase (ALP) expressed on the external surface of cultured murine P19 teratocarcinoma and human HL-60 myeloblastic leukemia cells was studied at physiological pH using p-nitrophenylphosphate (pNPP) as substrate. The rate of substrate hydrolysis catalyzed by intact viable cells remained constant for eight successive incubations of 30 min and was optimal at micromolar substrate concentrations over the pH range 7.4-8.5. The value of apparent K(m) for pNPP in P19 and HL-60 cells was 120 microM. Hydrolytic activity of the ecto-enzyme at physiological pH decreased by the addition of levamisole, a specific and noncompetitive inhibitor of ALP (K(i) P19 = 57 microM; K(i) HL-60 = 50 microM). Inhibition of hydrolysis was reversed by removal of levamisole within 30 min. Retinoic acid (RA), which promotes the differentiation of P19 and HL-60 cells, induced levamisole-sensitive ecto-phosphohydrolase activity at pH 7.4. After its autophosphorylation by ecto-kinase activity, a 98-kDa membrane protein in P19 cells was found to be sensitive to ecto-ALP, and protein dephosphorylation increased after incubation of cells with RA for 24 h and 48 h. Orthovanadate, an inhibitor of all phosphatase activities, blocked the levamisole-sensitive dephosphorylation of the membrane phosphoproteins, while (R)-(-)-epinephrine reversed the effect by complexation of the inhibitor. The results demonstrate that the levamisole-sensitive phosphohydrolase activity on the cell surface is consistent with ecto-ALP activity degrading both physiological concentrations of exogenously added substrate and endogenous surface phosphoproteins under physiological pH conditions. The dephosphorylating properties of ecto-ALP are induced by RA, suggesting a specific function in differentiating P19 teratocarcinoma and HL-60 myeloblastic leukemia cells. PMID:10649440

  7. Queuine, a tRNA anticodon wobble base, maintains the proliferative and pluripotent potential of HL-60 cells in the presence of the differentiating agent 6-thioguanine.

    PubMed Central

    French, B T; Patrick, D E; Grever, M R; Trewyn, R W

    1991-01-01

    6-Thioguanine (6-TG)-induced differentiation of hypoxanthine phosphoribosyltransferase (IMP: pyrophosphate phosphoribosyltransferase, EC 2.4.2.8)-deficient HL-60 cells is characterized by 2 days of growth, after which morphological differentiation proceeds. Addition of the tRNA wobble base queuine, in the presence of 6-TG, maintains the proliferative capability of the cells. The ability of 6-TG to induce differentiation correlates with c-myc mRNA down-regulation, but queuine has no effect on this parameter. Treatment with 6-TG for 2-3 days commits HL-60 cells to granulocytic differentiation, and, once committed, these cells do not respond to the monocytic inducer phorbol 12-myristate 13-acetate. Nonetheless, when cells are treated with queuine and 6-TG, they maintain the promyelocytic morphology and are capable of being induced down the monocytic pathway by phorbol 12-myristate 13-acetate as indicated by stabilization of c-fms mRNA and cell adherence. In the absence of queuine, phorbol 12-myristate 13-acetate is incapable of inducing monocytic markers in the 6-TG-treated cells. The data presented indicate that 6-TG-induced differentiation of HL-60 cells is a tRNA-facilitated event and that the tRNA wobble base queuine is capable of maintaining both the proliferative and pluripotent potential of the cells. Images PMID:1988936

  8. Pathogenesis of disseminated intravascular coagulation in patients with acute promyelocytic leukemia, and its treatment using recombinant human soluble thrombomodulin.

    PubMed

    Ikezoe, Takayuki

    2014-07-01

    Acute promyelocytic leukemia (APL) is an uncommon subtype of acute myelogenous leukemia characterized by the proliferation of blasts with distinct morphology, a specific balanced reciprocal translocation t(15;17), and life-threatening hemorrhage caused mainly by enhanced fibrinolytic-type disseminated intravascular coagulation (DIC). The introduction of all-trans retinoic acid (ATRA) into anthracycline-based induction chemotherapy regimens has dramatically improved overall survival of individuals with APL, although hemorrhage-related death during the early phase of therapy remains a serious problem. Moreover, population-based studies have shown that the incidence of early death during induction chemotherapy is nearly 30 %, and the most common cause of death is associated with hemorrhage. Thus, development of a novel treatment strategy to alleviate abnormal coagulation in APL patients is urgently required. Recombinant human soluble thrombomodulin (rTM) comprises the active extracellular domain of TM, and has been used for treatment of DIC since 2008 in Japan. Use of rTM in combination with remission induction chemotherapy, including ATRA, produces potent resolution of DIC without exacerbation of bleeding tendency in individuals with APL. This review article discusses the pathogenesis and features of DIC caused by APL, as well as the possible anticoagulant and anti-leukemic action of rTM in APL patients.

  9. [PML-RARα and p21 are key factors for maintaining acute promyelocytic leukemia stem cells survival].

    PubMed

    Ding, Fei; Li, Jun-Min

    2011-10-01

    Tumor stem/progenitor cells are the cells with the characteristics of self-renewal, differentiating to all the other cell populations within tumor, which are also regarded as the source of tumor relapse, drug-resistance and metastasis. As a subtype of acute myeloid leukemia, acute promyelocytic leukemia (APL) represents the target of therapy due to the good response of the oncogenic protein PML-RARα to all-trans retinoic acid (ATRA) and arsenic trioxide (ATO). This review summarizes the latest research results of APL as follows: (1) there probably are two APL stem/progenitor cell populations within APL, and self-renewal and survival of APL stem/progenitor cells highly depend on PML-RARα expression, cell cycle inhibitor p21, self-renewal associated molecules and chemokines; and (2) ATRA and ATO eradicate APL stem/progenitor cells mainly by PML-RARα degradation, FOXO3A activation and the inhibition of self-renewal-associated signaling pathway of sonic hedgehog. These findings are helpful to improve other tumor therapy.

  10. Acute promyelocytic leukemia with cryptic t(15;17) on isochromosome 17: a case report and review of literature

    PubMed Central

    Tang, Yuting; Wang, Ying; Hu, Liang; Meng, Fankai; Xu, Danmei; Wan, Kai; Huang, Lifang; Li, Chunrui; Zhou, Jianfeng

    2015-01-01

    Acute Promyelocytic Leukemia (APL) is one of the most curable leukemia which shows great sensitivity to all-trans retinoic acid (ATRA) although a small number of the patients present poor prognosis and short survival. Isochromosome 17 in APL which usually bears an additional copy of RARA/PML fusion gene is considered to be a negative factor on its prognosis. Cryptic t(15;17) on i(17q) leads to an extra copy of PML/RARA rather than RARA/PML which may confer a worse prognosis. We describe here a rare APL case with complex chromosomal abnormality including isochromosome 17 bearing cryptic t(15;17) showing poor outcome. The patient lacks a classic t(15;17) and fluorescence in situ hybridization (FISH) presents 2 PML/RARA fusion signals on both long arms of the isochromosome. The patient also acquired a secondary mutation at relapse when the initial karyotype was already a complex karyotype involving chromosome 13, 17 and 22 at the same time. The poor response of this patient to traditional chemotherapy like ATRA and novel therapy like arsenic trioxide (ATO) suggests that early auto-hematological stem cell transplantation may be the choice of APL with isochromosome 17 especially with cryptic t(15;17) on i(17q). We are the first to show a clear history and evidence of FISH of these kind of cases. A small summary of cases with cryptic t(15;17) on isochromosome 17 is also made. PMID:26823883

  11. Recurrent Arterial Thrombosis as a Presenting Feature of a Variant M3-Acute Promyelocytic Leukemia

    PubMed Central

    Chotai, Pranit N.; Kasangana, Kalenda; Chandra, Abhinav B.; Rao, Atul S.

    2016-01-01

    Acute limb ischemia (ALI) is a common vascular emergency. Hematologic malignancies are commonly associated with derangement of normal hemostasis and thrombo-hemorrhagic symptoms during the course of the disease are common. However, ALI as an initial presenting feature of acute leukemia is rare. Due to the rarity of this presentation, there is a scarcity of prospective randomized data to optimally guide the management of these patients. Current knowledge is mainly based on isolated cases. We report our experience managing a patient who presented with ALI and was found to have occult leukemia. A review of all cases with ALI as a presenting feature of acute leukemia is also presented. PMID:27386455

  12. Recurrent Arterial Thrombosis as a Presenting Feature of a Variant M3-Acute Promyelocytic Leukemia.

    PubMed

    Chotai, Pranit N; Kasangana, Kalenda; Chandra, Abhinav B; Rao, Atul S

    2016-06-01

    Acute limb ischemia (ALI) is a common vascular emergency. Hematologic malignancies are commonly associated with derangement of normal hemostasis and thrombo-hemorrhagic symptoms during the course of the disease are common. However, ALI as an initial presenting feature of acute leukemia is rare. Due to the rarity of this presentation, there is a scarcity of prospective randomized data to optimally guide the management of these patients. Current knowledge is mainly based on isolated cases. We report our experience managing a patient who presented with ALI and was found to have occult leukemia. A review of all cases with ALI as a presenting feature of acute leukemia is also presented. PMID:27386455

  13. Recurrent Arterial Thrombosis as a Presenting Feature of a Variant M3-Acute Promyelocytic Leukemia.

    PubMed

    Chotai, Pranit N; Kasangana, Kalenda; Chandra, Abhinav B; Rao, Atul S

    2016-06-01

    Acute limb ischemia (ALI) is a common vascular emergency. Hematologic malignancies are commonly associated with derangement of normal hemostasis and thrombo-hemorrhagic symptoms during the course of the disease are common. However, ALI as an initial presenting feature of acute leukemia is rare. Due to the rarity of this presentation, there is a scarcity of prospective randomized data to optimally guide the management of these patients. Current knowledge is mainly based on isolated cases. We report our experience managing a patient who presented with ALI and was found to have occult leukemia. A review of all cases with ALI as a presenting feature of acute leukemia is also presented.

  14. Phase I Dose-Escalation Trial of Clofarabine Followed by Escalating Doses of Fractionated Cyclophosphamide in Children With Relapsed or Refractory Acute Leukemias

    ClinicalTrials.gov

    2010-09-21

    Myelodysplastic Syndrome; Acute Myeloid Leukemia; Myeloproliferative Disorders; Acute Lymphocytic Leukemia; Acute Promyelocytic Leukemia; Acute Leukemia; Chronic Myelogenous Leukemia; Myelofibrosis; Chronic Myelomonocytic Leukemia; Juvenile Myelomonocytic Leukemia

  15. Microgranular variant of acute promyelocytic leukemia with der(17) ins(17;15): A case report and review of the literature

    PubMed Central

    GUAN, HONGZAI; LIU, JING; GUO, XIAOFANG; WU, CHUNMEI; YU, HUAWEI

    2015-01-01

    Acute promyelocytic leukemia (APL) with variant translocations is rare. The patient of the present case report, a 2-year-old male with a microgranular variant of APL carrying der(17) ins(17;15) translocation, exhibited fever and epistaxis. The complete blood count showed marked leukocytosis with 72% atypical promyelocytes, anemia and thrombocytopenia. Conventional cytogenetic analysis of the bone marrow cells revealed a karyotype of 47, XY, add(3)(q29), −7, ins(17;15)(q12;q14q22),+21,+mar. The promyelocytic leukemia/retinoic acid receptor α (PML/RARα) rearrangement and insertion were confirmed by fluorescence in situ hybridization. The PML/RARα transcripts were not detected by the reverse transcription polymerase chain reaction, and the patient was diagnosed with microgranular variant M3 APL. The patient achieved remission after a 30-day treatment and was still in remission during a recent follow-up. The present findings suggest that the ins(17;15) variant in APL may not be associated with an unfavorable prognosis. In summary, we reported an extremely rare case of APL with der(17) ins(17;15) abnormality in a pediatric patient and reviewed the literature. PMID:26622430

  16. Physical and functional interactions of human endogenous retrovirus proteins Np9 and rec with the promyelocytic leukemia zinc finger protein.

    PubMed

    Denne, Miriam; Sauter, Marlies; Armbruester, Vivienne; Licht, Jonathan D; Roemer, Klaus; Mueller-Lantzsch, Nikolaus

    2007-06-01

    Only few of the human endogenous retrovirus (HERV) sequences in the human genome can produce proteins. We have previously reported that (i) patients with germ cell tumors often make antibodies against proteins encoded by HERV-K elements, (ii) expression of the HERV-K rec gene in transgenic mice can interfere with germ cell development and induce carcinoma in situ, and (iii) HERV-K np9 transcript is overproduced in many tumors including breast cancers. Here we document that both Np9 and Rec physically and functionally interact with the promyelocytic leukemia zinc finger (PLZF) tumor suppressor, a transcriptional repressor and chromatin remodeler implicated in cancer and the self-renewal of spermatogonial stem cells. Interaction is mediated via two different central and C-terminal domains of Np9 and Rec and the C-terminal zinc fingers of PLZF. One major target of PLZF is the c-myc proto-oncogene. Coexpression of Np9 and Rec with PLZF abrogates the transcriptional repression of the c-myc gene promoter by PLZF and results in c-Myc overproduction, altered expression of c-Myc-regulated genes, and corresponding effects on cell proliferation and survival. Thus, the human endogenous retrovirus proteins Np9 and Rec may act oncogenically by derepressing c-myc through the inhibition of PLZF.

  17. Active Pin1 is a key target of all-trans retinoic acid in acute promyelocytic leukemia and breast cancer

    PubMed Central

    Wei, Shuo; Kozono, Shingo; Kats, Lev; Nechama, Morris; Li, Wenzong; Guarnerio, Jlenia; Luo, Manli; You, Mi-Hyeon; Yao, Yandan; Kondo, Asami; Hu, Hai; Bozkurt, Gunes; Moerke, Nathan J.; Cao, Shugeng; Reschke, Markus; Chen, Chun-Hau; Rego, Eduardo M.; LoCoco, Francesco; Cantley, Lewis; Lee, Tae Ho; Wu, Hao; Zhang, Yan; Pandolfi, Pier Paolo; Zhou, Xiao Zhen; Lu, Kun Ping

    2015-01-01

    A common key regulator of oncogenic signaling pathways in multiple tumor types is the unique isomerase Pin1. However, available Pin1 inhibitors lack the required specificity and potency. Using mechanism-based screening, here we find that all-trans retinoic acid (ATRA)--a therapy for acute promyelocytic leukemia (APL) that is considered the first example of targeted therapy in cancer, but its drug target remains elusive--inhibits and degrades active Pin1 selectively in cancer cells by directly binding to the substrate phosphate- and proline-binding pockets in the Pin1 active site. ATRA-induced Pin1 ablation degrades the fusion oncogene PML-RARα and treats APL in cell and animal models and human patients. ATRA-induced Pin1 ablation also inhibits triple negative breast cancer cell growth in human cells and in animal models by acting on many Pin1 substrate oncogenes and tumor suppressors. Thus, ATRA simultaneously blocks multiple Pin1-regulated cancer-driving pathways, an attractive property for treating aggressive and drug-resistant tumors. PMID:25849135

  18. The Mutational Landscape of Acute Promyelocytic Leukemia Reveals an Interacting Network of Co-Occurrences and Recurrent Mutations.

    PubMed

    Ibáñez, Mariam; Carbonell-Caballero, José; García-Alonso, Luz; Such, Esperanza; Jiménez-Almazán, Jorge; Vidal, Enrique; Barragán, Eva; López-Pavía, María; LLop, Marta; Martín, Iván; Gómez-Seguí, Inés; Montesinos, Pau; Sanz, Miguel A; Dopazo, Joaquín; Cervera, José

    2016-01-01

    Preliminary Acute Promyelocytic Leukemia (APL) whole exome sequencing (WES) studies have identified a huge number of somatic mutations affecting more than a hundred different genes mainly in a non-recurrent manner, suggesting that APL is a heterogeneous disease with secondary relevant changes not yet defined. To extend our knowledge of subtle genetic alterations involved in APL that might cooperate with PML/RARA in the leukemogenic process, we performed a comprehensive analysis of somatic mutations in APL combining WES with sequencing of a custom panel of targeted genes by next-generation sequencing. To select a reduced subset of high confidence candidate driver genes, further in silico analysis were carried out. After prioritization and network analysis we found recurrent deleterious mutations in 8 individual genes (STAG2, U2AF1, SMC1A, USP9X, IKZF1, LYN, MYCBP2 and PTPN11) with a strong potential of being involved in APL pathogenesis. Our network analysis of multiple mutations provides a reliable approach to prioritize genes for additional analysis, improving our knowledge of the leukemogenesis interactome. Additionally, we have defined a functional module in the interactome of APL. The hypothesis is that the number, or the specific combinations, of mutations harbored in each patient might not be as important as the disturbance caused in biological key functions, triggered by several not necessarily recurrent mutations. PMID:26886259

  19. The Mutational Landscape of Acute Promyelocytic Leukemia Reveals an Interacting Network of Co-Occurrences and Recurrent Mutations

    PubMed Central

    García-Alonso, Luz; Such, Esperanza; Jiménez-Almazán, Jorge; Vidal, Enrique; Barragán, Eva; López-Pavía, María; LLop, Marta; Martín, Iván; Gómez-Seguí, Inés; Montesinos, Pau; Sanz, Miguel A.; Dopazo, Joaquín; Cervera, José

    2016-01-01

    Preliminary Acute Promyelocytic Leukemia (APL) whole exome sequencing (WES) studies have identified a huge number of somatic mutations affecting more than a hundred different genes mainly in a non-recurrent manner, suggesting that APL is a heterogeneous disease with secondary relevant changes not yet defined. To extend our knowledge of subtle genetic alterations involved in APL that might cooperate with PML/RARA in the leukemogenic process, we performed a comprehensive analysis of somatic mutations in APL combining WES with sequencing of a custom panel of targeted genes by next-generation sequencing. To select a reduced subset of high confidence candidate driver genes, further in silico analysis were carried out. After prioritization and network analysis we found recurrent deleterious mutations in 8 individual genes (STAG2, U2AF1, SMC1A, USP9X, IKZF1, LYN, MYCBP2 and PTPN11) with a strong potential of being involved in APL pathogenesis. Our network analysis of multiple mutations provides a reliable approach to prioritize genes for additional analysis, improving our knowledge of the leukemogenesis interactome. Additionally, we have defined a functional module in the interactome of APL. The hypothesis is that the number, or the specific combinations, of mutations harbored in each patient might not be as important as the disturbance caused in biological key functions, triggered by several not necessarily recurrent mutations. PMID:26886259

  20. All-transretinoic acid (ATRA) treatment-related pancarditis and severe pulmonary edema in a child with acute promyelocytic leukemia.

    PubMed

    Işık, Pamir; Çetin, Ilker; Tavil, Betul; Azik, Fatih; Kara, Abdurrahman; Yarali, Nese; Tunc, Bahattin

    2010-11-01

    Use of all-transretinoic acid (ATRA) with other chemotherapeutic agents in the treatment of acute promyelocytic leukemia (APL) has been shown to cause the differentiation of abnormally granulated specific blast cells into mature granulocytes by acting on the t(15; 17) fusion gene product. The complete remission rate is increased and survival time is prolonged in APL patients who receive chemotherapy plus ATRA, whereas ATRA syndrome and other ATRA-related adverse effects including pseudo tumor cerebri, headache, severe bone pain, mucosal and skin dryness, hypercholesterolemia, and cheilitis may be observed especially during induction phase of the treatment. In this paper, we report a 9-year-old girl with APL who developed pancarditis while receiving the APL-93 treatment protocol. In our patient, endocarditis and myocarditis were initially determined after ATRA treatment during the induction part of the protocol. All findings disappeared after ATRA was discontinued. When ATRA was readministered in the maintenance part of the treatment protocol, she developed pancarditis and severe pulmonary edema. As her symptoms decreased dramatically with the discontinuation of ATRA and the initiation of steroid treatment, the clinical picture strongly suggested the ATRA treatment as the causative factor. To the best of our knowledge, this clinical picture of pancarditis secondary to ATRA treatment has not been reported earlier in the English literature. PMID:20881874

  1. Promyelocytic leukemia zinc-finger induction signs mesenchymal stem cell commitment: identification of a key marker for stemness maintenance?

    PubMed Central

    2014-01-01

    Introduction Mesenchymal stem cells (MSCs) are an attractive cell source for cartilage and bone tissue engineering given their ability to differentiate into chondrocytes and osteoblasts. However, the common origin of these two specialized cell types raised the question about the identification of regulatory pathways determining the differentiation fate of MSCs into chondrocyte or osteoblast. Methods Chondrogenesis, osteoblastogenesis, and adipogenesis of human and mouse MSC were induced by using specific inductive culture conditions. Expression of promyelocytic leukemia zinc-finger (PLZF) or differentiation markers in MSCs was determined by RT-qPCR. PLZF-expressing MSC were implanted in a mouse osteochondral defect model and the neotissue was analyzed by routine histology and microcomputed tomography. Results We found out that PLZF is not expressed in MSCs and its expression at early stages of MSC differentiation is the mark of their commitment toward the three main lineages. PLZF acts as an upstream regulator of both Sox9 and Runx2, and its overexpression in MSC enhances chondrogenesis and osteogenesis while it inhibits adipogenesis. In vivo, implantation of PLZF-expressing MSC in mice with full-thickness osteochondral defects resulted in the formation of a reparative tissue resembling cartilage and bone. Conclusions Our findings demonstrate that absence of PLZF is required for stemness maintenance and its expression is an early event at the onset of MSC commitment during the differentiation processes of the three main lineages. PMID:24564963

  2. Pondering the puzzle of PML (promyelocytic leukemia) nuclear bodies: Can we fit the pieces together using an RNA regulon?

    PubMed Central

    Borden, Katherine L.B.

    2008-01-01

    Summary The promyelocytic leukemia protein PML and its associated nuclear bodies are hot topics of investigation. This interest arises for multiple reasons including the tight link between the integrity of PML nuclear bodies and several disease states and the impact of the PML protein and PML nuclear bodies on proliferation, apoptosis and viral infection. Unfortunately, an understanding of the molecular underpinnings of PML nuclear body function remains elusive. Here, a general overview of the PML field is provided and is extended to discuss whether some of the basic tenets of “PML-ology” are still valid. For instance, recent findings suggest that some components of PML nuclear bodies form bodies in the absence of the PML protein. Also, a new model for PML nuclear body function is proposed which provides a unifying framework for its effects on diverse biochemical pathways such as Akt signaling and the p53-Mdm2 axis. In this model, the PML protein acts as an inhibitor of gene expression post-transcriptionally via inhibiting a network node in the eIF4E RNA regulon. An example is given for how the PML RNA regulon model provided the basis for the development of a new anti-cancer strategy being tested in the clinic. PMID:18616965

  3. A Corticosteroid-Responsive Transcription Factor, Promyelocytic Leukemia Zinc Finger Protein, Mediates Protection of the Cochlea from Acoustic Trauma

    PubMed Central

    Peppi, Marcello; Kujawa, Sharon G.; Sewell, William F.

    2012-01-01

    Animals can be induced to resist cochlear damage associated with acoustic trauma by exposure to a variety of “conditioning” stimuli, including restraint stress, moderate level sound, heat stress, hypoxia, and corticosteroids. Here we identify in mice a corticosteroid-responsive transcription factor, PLZF (promyelocytic leukemia zinc finger protein), which mediates conditioned protection of the cochlea from acoustic trauma. PLZF mRNA levels in the cochlea are increased following conditioning stimuli, including restraint stress, dexamethasone administration, and moderate-to-high level acoustic stimulation. Heterozygous mutant (luxoid.Zbtb16LU/J) mice deficient in PLZF have hearing and responses to acoustic trauma similar to their wild type littermates but are unable to generate conditioning-induced protection from acoustic trauma. PLZF immunoreactivity is present in the spiral ganglion, lateral wall of the cochlea, and organ of Corti, all targets for acoustic trauma. PLZF is also present in the brain and PLZF mRNA in brain is elevated following conditioning stimuli. The identification of a transcription factor that mediates conditioned protection from trauma provides a tool for understanding the protective action of corticosteroids, which are widely used in treating acute hearing loss, and has relevance to understanding the role of corticosteroids in trauma protection. PMID:21228182

  4. Acute promyelocytic leukemia: a 5-year experience with new antileukemic agents and a new approach to preventing fatal hemorrhage.

    PubMed

    Feldman, E J; Arlin, Z A; Ahmed, T; Mittelman, A; Ascensao, J L; Puccio, C A; Coombe, N; Baskind, P

    1989-01-01

    Forty-six induction courses were administered to 32 patients with acute promyelocytic leukemia. There were 28 males and 18 females with a median age of 39.5 (range 19-68). Twelve patients were previously untreated, 32 were in relapse, and 2 were refractory to primary induction chemotherapy. Heparin 7.5-10 units/kg/h by continuous infusion, 4-6 units of platelets and 1-2 units of fresh-frozen plasma (FFP) every 12 h were given to all patients. Previously untreated patients received either daunorubicin, idarubicin or mitoxantrone in combination with cytarabine (Ara-C). For relapsed and refractory patients, regimens included amsacrine with high-dose cytarabine (Amsa/HiDac), homoharringtonine (HHT) alone, or with Ara-C, mitoxantrone and bisantrene. Hemorrhagic complications occurred in only 1 out of 46 courses (2%). Complete remission rates (CR) were as follows: previously untreated 83% (10/12), relapsed 66% (21/32), primary refractory 50% (1/2). Amsa/HiDac resulted in a 71% (10/14) CR and HHT-based regimens achieved a 46% (6/13) CR. These regimens are effective and the value of their incorporation into primary therapy should be studied. The use of heparin with platelet and FFP transfusions every 12 h reduces the risk of hemorrhage during induction therapy.

  5. Retinoid-dependent growth inhibition, differentiation and apoptosis in acute promyelocytic leukemia cells. Expression and activation of caspases.

    PubMed

    Gianni, M; Ponzanelli, I; Mologni, L; Reichert, U; Rambaldi, A; Terao, M; Garattini, E

    2000-05-01

    In the NB4 model of acute promyelocytic leukemia (APL), ATRA, 9-cis retinoic acid (9-cis RA), the pan-RAR and RARalpha-selective agonists, TTNPB and AM580, induce growth inhibition, granulocytic differentiation and apoptosis. By contrast, two RXR agonists, a RARbeta agonist and an anti-AP1 retinoid have very limited activity, ATRA- and AM580-dependent effects are completely inhibited by RAR antagonistic blockade, while 9-cis RA-induced cell-growth-inhibition and apoptosis are equally inhibited by RAR and RXR antagonists. ATRA, 9-cis RA and AM580 cause upregulation of the mRNAs coding for pro-caspase-1, -7, -8, and -9, which, however, results in increased synthesis of only pro-caspase-1 and -7 proteins. These phenomena are associated with activation of pro-caspase-6, -7 and -8, cytochrome c release from the mitochondria, inversion of Bcl-2/Bax ratio and degradation of PML-RARalpha. Caspase activation is fundamental for retinoid-induced apoptosis, which is suppressed by the caspase-inhibitor z-VAD.

  6. Comparison of Newly Diagnosed and Relapsed Patients with Acute Promyelocytic Leukemia Treated with Arsenic Trioxide: Insight into Mechanisms of Resistance

    PubMed Central

    Chendamarai, Ezhilarasi; Ganesan, Saravanan; Alex, Ansu Abu; Kamath, Vandana; Nair, Sukesh C.; Nellickal, Arun Jose; Janet, Nancy Beryl; Srivastava, Vivi; Lakshmi, Kavitha M.; Viswabandya, Auro; Abraham, Aby; Aiyaz, Mohammed; Mullapudi, Nandita; Mugasimangalam, Raja; Padua, Rose Ann; Chomienne, Christine; Chandy, Mammen; Srivastava, Alok; George, Biju; Balasubramanian, Poonkuzhali; Mathews, Vikram

    2015-01-01

    There is limited data on the clinical, cellular and molecular changes in relapsed acute promyeloytic leukemia (RAPL) in comparison with newly diagnosed cases (NAPL). We undertook a prospective study to compare NAPL and RAPL patients treated with arsenic trioxide (ATO) based regimens. 98 NAPL and 28 RAPL were enrolled in this study. RAPL patients had a significantly lower WBC count and higher platelet count at diagnosis. IC bleeds was significantly lower in RAPL cases (P=0.022). The ability of malignant promyelocytes to concentrate ATO intracellularly and their in-vitro IC50 to ATO was not significantly different between the two groups. Targeted NGS revealed PML B2 domain mutations in 4 (15.38%) of the RAPL subset and none were associated with secondary resistance to ATO. A microarray GEP revealed 1744 genes were 2 fold and above differentially expressed between the two groups. The most prominent differentially regulated pathways were cell adhesion (n=92), cell survival (n=50), immune regulation (n=74) and stem cell regulation (n=51). Consistent with the GEP data, immunophenotyping revealed significantly increased CD34 expression (P=0.001) in RAPL cases and there was in-vitro evidence of significant microenvironment mediated innate resistance (EM-DR) to ATO. Resistance and relapse following treatment with ATO is probably multi-factorial, mutations in PML B2 domain while seen only in RAPL may not be the major clinically relevant cause of subsequent relapses. In RAPL additional factors such as expansion of the leukemia initiating compartment along with EM-DR may contribute significantly to relapse following treatment with ATO based regimens. PMID:25822503

  7. Arsenic trioxide and radiation enhance apoptotic effects in HL-60 cells through increased ROS generation and regulation of JNK and p38 MAPK signaling pathways.

    PubMed

    Ho, Sheng-Yow; Wu, Wei-Jr; Chiu, Hui-Wen; Chen, Yi-An; Ho, Yuan-Soon; Guo, How-Ran; Wang, Ying-Jan

    2011-09-01

    The induction of apoptotic cell death is a significant mechanism of tumor cells under the influence of radio-/chemotherapy, and resistance to these treatments has been linked to some cancer cell lines with a low propensity for apoptosis. The present study aimed to investigate the enhanced effects and mechanisms in apoptosis and the cycle distribution of HL-60 cells, a human leukemia cell line lacking a functional p53 protein, after combination treatment with arsenic trioxide (ATO) and irradiation (IR). Our results indicated that combined treatment led to increased cytotoxicity and apoptotic cell death in HL-60 cells, which was correlated with the activation of cdc-2 and increased expression of cyclin B, the induction of intracellular reactive oxygen species (ROS) generation, the loss of mitochondria membrane potential, and the activation of caspase-3. The combined treatment of HL-60 cells pre-treated with Z-VAD or NAC resulted in a significant reduction in apoptotic cells. In addition, activation of JNK and p38 MAPK may be involved in combined treatment-mediated apoptosis. The data suggest that a combination of IR and ATO could be a potential therapeutic strategy against p53-deficient leukemia cells.

  8. Identification of a retinoic acid responsive aldoketoreductase expressed in HL60 leukaemic cells.

    PubMed

    Mills, K I; Gilkes, A F; Sweeney, M; Choudhry, M A; Woodgate, L J; Bunce, C M; Brown, G; Burnett, A K

    1998-11-27

    Neutrophil and monocyte differentiation can be induced in HL60 leukaemia cells by all-trans-retinoic acid (ATRA) and 1alpha,25-dihydroxyvitamin D3 (D3), respectively, whose differentiating effects can be enhanced by exposure to 'anti-inflammatory agents' and steroids. We have provided evidence that this potentiation is via inhibition of the activity of an enzyme of the aldoketoreductase (AKR) family, but had failed to identify expression of known AKRs in HL60 cells. In this study, we have identified a previously unclassified aldoketoreductase family member (termed HAKR e) that is expressed in HL60 cells. HAKR e is dramatically and transiently up-regulated in HL60 cells within 24 h of exposure to ATRA, further supporting the proposition that a member(s) of this family of enzymes play(s) a role in controlling cell growth and/or differentiation.

  9. Levels of phospho-Smad2/3 are sensors of the interplay between effects of TGF-beta and retinoic acid on monocytic and granulocytic differentiation of HL-60 cells.

    PubMed

    Cao, Zhouhong; Flanders, Kathleen C; Bertolette, Daniel; Lyakh, Lyudmila A; Wurthner, Jens U; Parks, W Tony; Letterio, John J; Ruscetti, Francis W; Roberts, Anita B

    2003-01-15

    We have investigated the role of Smad family proteins, known to be important cytoplasmic mediators of signals from the transforming growth factor-beta (TGF-beta) receptor serine/threonine kinases, in TGF-beta-dependent differentiation of hematopoietic cells, using as a model the human promyelocytic leukemia cell line, HL-60. TGF-beta-dependent differentiation of these cells to monocytes, but not retinoic acid-dependent differentiation to granulocytes, was accompanied by rapid phosphorylation and nuclear translocation of Smad2 and Smad3. Vitamin D(3) also induced phosphorylation of Smad2/3 and monocytic differentiation; however the effects were indirect, dependent on its ability to induce expression of TGF-beta1. Simultaneous treatment of these cells with TGF-beta1 and all-trans-retinoic acid (ATRA), which leads to almost equal numbers of granulocytes and monocytes, significantly reduced the level of phospho-Smad2/3 and its nuclear accumulation, compared with that in cells treated with TGF-beta1 alone. TGF-beta1 and ATRA activate P42/44 mitogen-activated protein (MAP) kinase with nearly identical kinetics, ruling out its involvement in these effects on Smad phosphorylation. Addition of the inhibitor-of-protein serine/threonine phosphatases, okadaic acid, blocks the ATRA-mediated reduction in TGF-beta-induced phospho-Smad2 and shifts the differentiation toward monocytic end points. In HL-60R mutant cells, which harbor a defective retinoic acid receptor-alpha (RAR-alpha), ATRA is unable to reduce levels of TGF-beta-induced phospho-Smad2/3, coincident with its inability to differentiate these cells along granulocytic pathways. Together, these data suggest a new level of cross-talk between ATRA and TGF-beta, whereby a putative RAR-alpha-dependent phosphatase activity limits the levels of phospho-Smad2/3 induced by TGF-beta, ultimately reducing the levels of nuclear Smad complexes mediating the TGF-beta-dependent differentiation of the cells to monocytic end points.

  10. Differential impact of bortezomib on HL-60 and K562 cells.

    PubMed

    Kliková, Katarína; Štefaniková, Andrea; Pilchová, Ivana; Hatok, Jozef; Chudý, Peter; Chudej, Juraj; Dobrota, Dušan; Račay, Peter

    2015-01-01

    Bortezomib (PS-341, or Velcade), reversible inhibitor of 20S proteasome approved for the treatment of multiple myeloma and mantle cell lymphoma, exhibited a cytotoxic effect toward other malignancies including leukaemia. In this study, we have documented that incubation of both HL-60 and K562 leukaemia cells with nanomolar concentrations of bortezomib is associated with the death of HL-60 cells observed within 24 hours of incubation with bortezomib and the death of K562 cells that were observed after 72 hours of incubation with bortezomib. The relative resistance of K562 cells to bortezomib correlated well with significantly higher expression of HSP27, HSP70, HSP90α, HSP90β and GRP75 in these cells. Incubation of both HL-60 and K562 cells with bortezomib induced a cleavage of HSP90β as well as expression of HSP70 and HSP90β but bortezomib did not affect levels of HSP27, HSP90α, GRP75 and GRP78. The death of both types of cells was accompanied with proteolytic activation of caspase 3 that was observed in HL-60 cells and proteolytic degradation of procaspase 3 in K562 cells. Our study has also pointed to essential role of caspase 8 in bortezomib-induced cleavage of HSP90β in both HL-60 and K562 cells. Finally, we have shown that bortezomib induced activation of caspase 9/caspase 3 axis in HL-60 cells, while the mechanism of death of K562 cells remains unknown.

  11. [RXR, a key member of the oncogenic complex in acute promyelocytic leukemia].

    PubMed

    Halftermeyer, Juliane; Le Bras, Morgane; De Thé, Hugues

    2011-11-01

    Acute promyelocytic leukaemia (APL) is induced by fusion proteins always implying the retinoic acid receptor RARa. Although PML-RARa and other fusion oncoproteins are able to bind DNA as homodimers, in vivo they are always found in association with the nuclear receptor RXRa (Retinoid X Receptor). Thus, RXRa is an essential cofactor of the fusion protein for the transformation. Actually, RXRa contributes to several aspects of in vivo -transformation: RARa fusion:RXRa hetero-oligomeric complexes bind DNA with a much greater affinity than RARa fusion homodimers. Besides, PML-RARa:RXRa recognizes an enlarged repertoire of DNA binding sites. Thus the association between fusion proteins and RXRa regulates more genes than the homodimer alone. Titration of RXRa by the fusion protein may also play a role in the transformation process, as well as post-translational modifications of RXRa in the complex. Finally, RXRa is required for rexinoid-induced APL differentiation. Thus, RXRa is a key member of the oncogenic complex.

  12. Low Doses of Cisplatin Induce Gene Alterations, Cell Cycle Arrest, and Apoptosis in Human Promyelocytic Leukemia Cells

    PubMed Central

    Velma, Venkatramreddy; Dasari, Shaloam R.; Tchounwou, Paul B.

    2016-01-01

    Cisplatin is a known antitumor drug, but its mechanisms of action are not fully elucidated. In this research, we studied the anticancer potential of cisplatin at doses of 1, 2, or 3 µM using HL-60 cells as a test model. We investigated cisplatin effects at the molecular level using RNA sequencing, cell cycle analysis, and apoptotic assay after 24, 48, 72, and 96 hours of treatment. The results show that many genes responsible for molecular and cellular functions were significantly altered. Cisplatin treatment also caused the cells to be arrested at the DNA synthesis phase, and as the time increases, the cells gradually accumulated at the sub-G1 phase. Also, as the dose increases, a significant number of cells entered into the apoptotic and necrotic stages. Altogether, the data show that low doses of cisplatin significantly impact the viability of HL-60 cells, through modulation of gene expression, cell cycle, and apoptosis. PMID:27594783

  13. Low Doses of Cisplatin Induce Gene Alterations, Cell Cycle Arrest, and Apoptosis in Human Promyelocytic Leukemia Cells

    PubMed Central

    Velma, Venkatramreddy; Dasari, Shaloam R.; Tchounwou, Paul B.

    2016-01-01

    Cisplatin is a known antitumor drug, but its mechanisms of action are not fully elucidated. In this research, we studied the anticancer potential of cisplatin at doses of 1, 2, or 3 µM using HL-60 cells as a test model. We investigated cisplatin effects at the molecular level using RNA sequencing, cell cycle analysis, and apoptotic assay after 24, 48, 72, and 96 hours of treatment. The results show that many genes responsible for molecular and cellular functions were significantly altered. Cisplatin treatment also caused the cells to be arrested at the DNA synthesis phase, and as the time increases, the cells gradually accumulated at the sub-G1 phase. Also, as the dose increases, a significant number of cells entered into the apoptotic and necrotic stages. Altogether, the data show that low doses of cisplatin significantly impact the viability of HL-60 cells, through modulation of gene expression, cell cycle, and apoptosis.

  14. Low Doses of Cisplatin Induce Gene Alterations, Cell Cycle Arrest, and Apoptosis in Human Promyelocytic Leukemia Cells.

    PubMed

    Velma, Venkatramreddy; Dasari, Shaloam R; Tchounwou, Paul B

    2016-01-01

    Cisplatin is a known antitumor drug, but its mechanisms of action are not fully elucidated. In this research, we studied the anticancer potential of cisplatin at doses of 1, 2, or 3 µM using HL-60 cells as a test model. We investigated cisplatin effects at the molecular level using RNA sequencing, cell cycle analysis, and apoptotic assay after 24, 48, 72, and 96 hours of treatment. The results show that many genes responsible for molecular and cellular functions were significantly altered. Cisplatin treatment also caused the cells to be arrested at the DNA synthesis phase, and as the time increases, the cells gradually accumulated at the sub-G1 phase. Also, as the dose increases, a significant number of cells entered into the apoptotic and necrotic stages. Altogether, the data show that low doses of cisplatin significantly impact the viability of HL-60 cells, through modulation of gene expression, cell cycle, and apoptosis. PMID:27594783

  15. Central nervous system involvement at first relapse in patients with acute promyelocytic leukemia treated with all-trans retinoic acid and anthracycline monochemotherapy without intrathecal prophylaxis

    PubMed Central

    Montesinos, Pau; Díaz-Mediavilla, Joaquín; Debén, Guillermo; Prates, Virginia; Tormo, Mar; Rubio, Vicente; Pérez, Inmaculada; Fernández, Isolda; Viguria, Maricruz; Rayón, Chelo; González, José; de la Serna, Javier; Esteve, Jordi; Bergua, Juan M.; Rivas, Concha; González, Marcos; González, Jose D.; Negri, Silvia; Brunet, Salut; Lowenberg, Bob; Sanz, Miguel A.

    2009-01-01

    Background The prevalence of and risk factors for central nervous system recurrence in patients with acute promyelocytic leukemia are not well established and remain a controversial matter. Design and Methods Between 1996 and 2005, 739 patients with newly diagnosed acute promyelocytic leukemia enrolled in two consecutive trials (PETHEMA LPA96 and LPA99) received induction therapy with all-trans retinoic acid and idarubicin. Consolidation therapy comprised three courses of anthracycline monochemotherapy (LPA96), with all-trans retinoic acid and reinforced doses of idarubicin in patients with an intermediate or high risk of relapse (LPA99). Central nervous system prophylaxis was not given. Results Central nervous system relapse was documented in 11 patients. The 5-year cumulative incidence of central nervous system relapse was 1.7% (LPA96 3.2% and LPA99 1.2%; p=0.09). The cumulative incidence was 0%, 0.8%, and 5.5% in low-, intermediate-, and high-risk patients, respectively. Relapse risk score (p=0.0001) and the occurrence of central nervous system hemorrhage during induction (5-year cumulative incidence 18.7%, p=0.006) were independent risk factors for central nervous system relapse. Conclusions This study shows a low incidence of central nervous system relapse in patients with acute promyelocytic leukemia following therapy with all-trans retinoic acid and anthracycline without specific central nervous system prophylaxis. Central nervous system relapse was significantly associated with high white blood cell counts and prior central nervous system hemorrhage, which emerged as independent prognostic factors. PMID:19608685

  16. In vitro inhibition of promyelocytic leukemia/retinoic acid receptor-alpha (PML/RARalpha) expression and leukemogenic activity by DNA/LNA chimeric antisense oligos.

    PubMed

    Caprodossi, Sara; Galluzzi, Luca; Biagetti, Simona; Della Chiara, Giulia; Pelicci, Pier Giuseppe; Magnani, Mauro; Fanelli, Mirco

    2005-01-01

    Acute promyelocytic leukemia (APL) is a subtype of myeloid leukemia characterized by the chromosomal translocation t(15:17) that leads to the expression of promyelocytic leukemia/retinoic acid receptor-alpha (PML/ RARalpha) oncofusion protein. The block of differentiation at the promyelocytic stage of the blasts and their increased survival induced by PML/RARalpha are the principal biological features of the disease. Therapies based on pharmacological doses of retinoic acid (RA, 10(-6) M) are able to restore APL cell differentiation in most cases, but not to achieve complete hematological remission because retinoic acid resistance occurs in many patients. In order to elaborate alternative therapeutic approaches, we focused our attention on the use of antisense oligonucleotides as gene-specific drug directed to PML/RARalpha mRNA target. We used antisense molecules containing multiple locked nucleic acid (LNA) modifications. The LNAs are nucleotide analogues that are able to form duplexes with complementary DNA or RNA sequences with highly increased thermal stability and are resistant to 3'-exonuclease degradation in vitro. The DNA/LNA chimeric molecules were designed on the fusion sequence of PML and RARalpha genes to specifically target the oncofusion protein. Cell-free and in vitro experiments using U937-PR9-inducible cell line showed that DNA/LNA oligonucleotides were able to interfere with PML/RARalpha expression more efficiently than the corresponding unmodified DNA oligo. Moreover, the treatment of U937-PR9 cells with these chimeric antisense molecules was able to abrogate the block of differentiation induced by PML/RARalpha oncoprotein. These data suggest a possible application of oligonucleotides containing LNA in an antisense therapeutic strategy for APL.

  17. Two distinctly regulated events, priming and triggering, during retinoid-induced maturation and resistance of NB4 promyelocytic leukemia cell line.

    PubMed Central

    Ruchaud, S; Duprez, E; Gendron, M C; Houge, G; Genieser, H G; Jastorff, B; Doskeland, S O; Lanotte, M

    1994-01-01

    In t(15;17) acute promyelocytic leukemia, all-trans retinoic acid (RA) induces leukemic cell maturation in vitro and remission in acute promyelocytic leukemia patients, but in vivo treatments invariably lead to relapse with resistance to RA. NB4, a maturation-inducible cell line, and NB4-RAr sublines (R1 and R2) displaying no maturation in the presence of RA have been isolated from a patient in relapse. We show that resistance to maturation is not a mere unresponsiveness to RA: rather, R1 "resistant" cells do respond to RA (1 microM) by sustained growth, become competent to undergo terminal maturation, and up-regulate CD11c/CD18 integrins. Interestingly, maturation of "resistant" cells, rendered competent by RA, can be achieved by cAMP-elevating agents (prostaglandin E, isoproterenol, cholera toxin, or phosphodiesterase inhibitor) or stable agonistic cAMP analogs such as (SP)-8-chloroadenosine cyclic 3',5'-phosphorothioate. This shows that activation of cAMP-dependent protein kinase (cA kinase) can override the RA resistance and suggests interdependent RA and cAMP signaling pathways in acute promyelocytic leukemia maturation. No such cooperation was observed in the R2 resistant cells, though their cA-kinase was functional. (RP)-8-Chloroadenosine cyclic 3',5'-phosphorothioate, which by displacing endogenous cAMP inhibits the basal cA-kinase activity, decreased the response of sensitive cells to RA. This raises the possibility that cA-kinase plays a key role in the maturation also of RA-sensitive cells. Our results define two discrete steps in the maturation process: an RA-dependent priming step that maintains proliferation while cells become competent to undergo maturation in response to retinoids and a cAMP-dependent step that triggers RA-primed cells to undergo terminal maturation. Uncoupling RA and cAMP action might cause the so-called "resistance." Images PMID:7915840

  18. Establishment of two-dimensional gel electrophoresis profiles of the human acute promyelocytic leukemia cell line NB4.

    PubMed

    He, Pengcheng; Liu, Yanfeng; Zhang, Mei; Wang, Xiaoning; Wang, Huaiyu; Xi, Jieying; Wei, Kaihua; Wang, Hongli; Zhao, Jing

    2012-09-01

    To explore optimum conditions for establishing a two‑dimensional gel electrophoresis (2-DE) map of the human acute promyelocytic leukemia (APL) cell line NB4 and to analyze its protein profiles, we extracted total proteins from NB4 cells using cell disruption, liquid nitrogen freeze-thawing and fracturing by ultrasound, and quantified the extracted protein samples using Bradford's method. 2-DE was applied to separate the proteins, which were silver-stained in the gel. Well‑separated protein spots were selected from the gel using the ImageMaster™ 2D Platinum analysis system. Moreover, the effects of various protein sample sizes (140, 160 and 180 µg) on the 2-DE maps of the NB4 cells were determined and compared. Matrix-assisted laser desorption/ionization time of flight-mass spectrometry (MALDI-TOF-MS), peptide mass fingerprinting (PMF) and database searching were used to identify the proteins. When the quantity of loading proteins was 160 µg, clear, well-resolved, reproducible 2-DE proteomic profiles of the NB4 cells were obtained. The average number of protein spots in 3 gels was 1160±51 with an average matching rate of 81%. A total of 10 proteins were identified by mass spectrometry and database queries, certain proteins were products of oncogenes and others were involved in cell cycle regulation and signal transduction. In summary, 2-DE profiles of the proteome of NB4 cells were established and certain proteins were identified by MALDI-TOF-MS and PMF which lay the foundation of further proteomic research of NB4 cells. These data should be useful for establishing a human APL proteome database. PMID:22736039

  19. Absolute quantification of the pretreatment PML-RARA transcript defines the relapse risk in acute promyelocytic leukemia.

    PubMed

    Albano, Francesco; Zagaria, Antonella; Anelli, Luisa; Coccaro, Nicoletta; Tota, Giuseppina; Brunetti, Claudia; Minervini, Crescenzio Francesco; Impera, Luciana; Minervini, Angela; Cellamare, Angelo; Orsini, Paola; Cumbo, Cosimo; Casieri, Paola; Specchia, Giorgina

    2015-05-30

    In this study we performed absolute quantification of the PML-RARA transcript by droplet digital polymerase chain reaction (ddPCR) in 76 newly diagnosed acute promyelocytic leukemia (APL) cases to verify the prognostic impact of the PML-RARA initial molecular burden. ddPCR analysis revealed that the amount of PML-RARA transcript at diagnosis in the group of patients who relapsed was higher than in that with continuous complete remission (CCR) (272 vs 89.2 PML-RARA copies/ng, p = 0.0004, respectively). Receiver operating characteristic analysis detected the optimal PML-RARA concentration threshold as 209.6 PML-RARA/ng (AUC 0.78; p < 0.0001) for discriminating between outcomes (CCR versus relapse). Among the 67 APL cases who achieved complete remission after the induction treatment, those with >209.6 PML-RARA/ng had a worse relapse-free survival (p = 0.0006). At 5-year follow-up, patients with >209.6 PML-RARA/ng had a cumulative incidence of relapse of 50.3% whereas 7.5% of the patients with suffered a relapse (p < 0.0001). Multivariate analysis identified the amount of PML-RARA before induction treatment as the sole independent prognostic factor for APL relapse.Our results show that the pretreatment PML-RARA molecular burden could therefore be used to improve risk stratification in order to develop more individualized treatment regimens for high-risk APL cases. PMID:25944686

  20. Dual oncogenic and tumor suppressor roles of the promyelocytic leukemia gene in hepatocarcinogenesis associated with hepatitis B virus surface antigen.

    PubMed

    Chung, Yih-Lin; Wu, Mei-Ling

    2016-05-10

    Proteasome-mediated degradation of promyelocytic leukemia tumor suppressor (PML) is upregulated in many viral infections and cancers. We previously showed that PML knockdown promotes early-onset hepatocellular carcinoma (HCC) in hepatitis B virus surface antigen (HBsAg)-transgenic mice. Here we report the effects of PML restoration on late-onset HBsAg-induced HCC. We compared protein expression patterns, genetic mutations and the effects of pharmacologically targeting PML in wild-type, PML-/-, PML+/+HBsAgtg/o and PML-/-HBsAgtg/o mice. PML-/- mice exhibited somatic mutations in DNA repair genes and developed severe steatosis and proliferative disorders, but not HCC. PML-/-HBsAgtg/o mice exhibited early mutations in cancer driver genes and developed hyperplasia, fatty livers and indolent adipose-like HCC. In PML+/+HBsAg-transgenic mice, HBsAg expression declined over time, and HBsAg-associated PML suppression was concomitantly relieved. Nevertheless, these mice accumulated mutations in genes contributing to oxidative stress pathways and developed aggressive late-onset angiogenic trabecular HCC. PML inhibition using non-toxic doses of arsenic trioxide selectively killed long-term HBsAg-affected liver cells in PML+/+HBsAgtg/o mice with falling HBsAg and rising PML levels, but not normal liver cells or early-onset HCC cells in PML-/-HBsAgtg/0 mice. These findings suggest dual roles for PML as a tumor-suppressor lost in early-onset HBsAg-induced hepatocarcinogenesis and as an oncogenic promoter in late-onset HBsAg-related HCC progression. PMID:27058621

  1. Dual oncogenic and tumor suppressor roles of the promyelocytic leukemia gene in hepatocarcinogenesis associated with hepatitis B virus surface antigen

    PubMed Central

    Chung, Yih-Lin; Wu, Mei-Ling

    2016-01-01

    Proteasome-mediated degradation of promyelocytic leukemia tumor suppressor (PML) is upregulated in many viral infections and cancers. We previously showed that PML knockdown promotes early-onset hepatocellular carcinoma (HCC) in hepatitis B virus surface antigen (HBsAg)-transgenic mice. Here we report the effects of PML restoration on late-onset HBsAg-induced HCC. We compared protein expression patterns, genetic mutations and the effects of pharmacologically targeting PML in wild-type, PML−/−, PML+/+HBsAgtg/o and PML−/−HBsAgtg/o mice. PML−/− mice exhibited somatic mutations in DNA repair genes and developed severe steatosis and proliferative disorders, but not HCC. PML−/−HBsAgtg/o mice exhibited early mutations in cancer driver genes and developed hyperplasia, fatty livers and indolent adipose-like HCC. In PML+/+HBsAg-transgenic mice, HBsAg expression declined over time, and HBsAg-associated PML suppression was concomitantly relieved. Nevertheless, these mice accumulated mutations in genes contributing to oxidative stress pathways and developed aggressive late-onset angiogenic trabecular HCC. PML inhibition using non-toxic doses of arsenic trioxide selectively killed long-term HBsAg-affected liver cells in PML+/+HBsAgtg/o mice with falling HBsAg and rising PML levels, but not normal liver cells or early-onset HCC cells in PML−/−HBsAgtg/0 mice. These findings suggest dual roles for PML as a tumor-suppressor lost in early-onset HBsAg-induced hepatocarcinogenesis and as an oncogenic promoter in late-onset HBsAg-related HCC progression. PMID:27058621

  2. A drug from poison: how the therapeutic effect of arsenic trioxide on acute promyelocytic leukemia was discovered.

    PubMed

    Rao, Yi; Li, Runhong; Zhang, Daqing

    2013-06-01

    It is surprising that, while arsenic trioxide (ATO) is now considered as "the single most active agent in patients with acute promyelocytic leukemia (APL)", the most important discoverer remains obscure and his original papers have not been cited by a single English paper. The discovery was made during the Cultural Revolution when most Chinese scientists and doctors struggled to survive. Beginning with recipes from a countryside practitioner that were vague in applicable diseases, Zhang TingDong and colleagues proposed in the 1970s that a single chemical in the recipe is most effective and that its target is APL. More than 20 years of work by Zhang and colleagues eliminated the confusions about whether and how ATO can be used effectively. Other researchers, first in China and then in the West, followed his lead. Retrospective analysis of data from his own group proved that APL was indeed the most sensitive target. Removal of a trace amount of mercury chloride from the recipe by another group in his hospital proved that only ATO was required. Publication of Western replication in 1998 made the therapy widely accepted, though neither Western, nor Chinese authors of English papers on ATO cited Zhang's papers in the 1970s. This article focuses on the early papers of Zhang, but also suggests it worth further work to validate Chinese reports of ATO treatment of other cancers, and infers that some findings published in Chinese journals are of considerable value to patients and that doctors from other countries can benefit from the clinical experience of Chinese doctors with the largest population of patients.

  3. Positive Role of Promyelocytic Leukemia Protein in Type I Interferon Response and Its Regulation by Human Cytomegalovirus

    PubMed Central

    Kim, Young-Eui; Ahn, Jin-Hyun

    2015-01-01

    Promyelocytic leukemia protein (PML), a major component of PML nuclear bodies (also known as nuclear domain 10), is involved in diverse cellular processes such as cell proliferation, apoptosis, gene regulation, and DNA damage response. PML also acts as a restriction factor that suppresses incoming viral genomes, therefore playing an important role in intrinsic defense. Here, we show that PML positively regulates type I interferon response by promoting transcription of interferon-stimulated genes (ISGs) and that this regulation by PML is counteracted by human cytomegalovirus (HCMV) IE1 protein. Small hairpin RNA-mediated PML knockdown in human fibroblasts reduced ISG induction by treatment of interferon-β or infection with UV-inactivated HCMV. PML was required for accumulation of activated STAT1 and STAT2, interacted with them and HDAC1 and HDAC2, and was associated with ISG promoters after HCMV infection. During HCMV infection, viral IE1 protein interacted with PML, STAT1, STAT2, and HDACs. Analysis of IE1 mutant viruses revealed that, in addition to the STAT2-binding domain, the PML-binding domain of IE1 was necessary for suppression of interferon-β-mediated ISG transcription, and that IE1 inhibited ISG transcription by sequestering interferon-stimulated gene factor 3 (ISGF3) in a manner requiring its binding of PML and STAT2, but not of HDACs. In conclusion, our results demonstrate that PML participates in type I interferon-induced ISG expression by regulating ISGF3, and that this regulation by PML is counteracted by HCMV IE1, highlighting a widely shared viral strategy targeting PML to evade intrinsic and innate defense mechanisms. PMID:25812002

  4. A drug from poison: how the therapeutic effect of arsenic trioxide on acute promyelocytic leukemia was discovered.

    PubMed

    Rao, Yi; Li, Runhong; Zhang, Daqing

    2013-06-01

    It is surprising that, while arsenic trioxide (ATO) is now considered as "the single most active agent in patients with acute promyelocytic leukemia (APL)", the most important discoverer remains obscure and his original papers have not been cited by a single English paper. The discovery was made during the Cultural Revolution when most Chinese scientists and doctors struggled to survive. Beginning with recipes from a countryside practitioner that were vague in applicable diseases, Zhang TingDong and colleagues proposed in the 1970s that a single chemical in the recipe is most effective and that its target is APL. More than 20 years of work by Zhang and colleagues eliminated the confusions about whether and how ATO can be used effectively. Other researchers, first in China and then in the West, followed his lead. Retrospective analysis of data from his own group proved that APL was indeed the most sensitive target. Removal of a trace amount of mercury chloride from the recipe by another group in his hospital proved that only ATO was required. Publication of Western replication in 1998 made the therapy widely accepted, though neither Western, nor Chinese authors of English papers on ATO cited Zhang's papers in the 1970s. This article focuses on the early papers of Zhang, but also suggests it worth further work to validate Chinese reports of ATO treatment of other cancers, and infers that some findings published in Chinese journals are of considerable value to patients and that doctors from other countries can benefit from the clinical experience of Chinese doctors with the largest population of patients. PMID:23645104

  5. Late onset post-transfusion hepatitis E developing during chemotherapy for acute promyelocytic leukemia.

    PubMed

    Fuse, Kyoko; Matsuyama, Yuichi; Moriyama, Masato; Miyakoshi, Shukuko; Shibasaki, Yasuhiko; Takizawa, Jun; Furukawa, Tatsuo; Fuse, Ichiro; Matsumura, Hiro; Uchida, Shigeharu; Takahashi, Yoshifumi; Kamimura, Kenya; Abe, Hiroyuki; Suda, Takeshi; Aoyagi, Yutaka; Sone, Hirohito; Masuko, Masayoshi

    2015-01-01

    We herein report the case of a leukemia patient who developed hepatitis E seven months after undergoing a transfusion with contaminated blood products. The latency period in this case was significantly longer than that of typical hepatitis E. Recently, chronic infection with hepatitis E virus (HEV) genotype 3 has been reported in immunocompromised patients. There is a possibility that our patient was unable to eliminate the virus due to immunosuppression following chemotherapy and the administration of steroids. The prevalence of HEV in healthy Japanese individuals is relatively high and constitutes a critical source of infection via transfusion. Hepatitis E is an important post-transfusion infection, and immunocompromised patients may exhibit a long latency period before developing the disease.

  6. A Rare Occurrence of Simultaneous Venous and Arterial Thromboembolic Events – Lower Limb Deep Venous Thrombosis and Pulmonary Thromboembolism as Initial Presentation in Acute Promyelocytic Leukemia

    PubMed Central

    Kutiyal, Aditya S.; Dharmshaktu, Pramila; Kataria, Babita; Garg, Abhilasha

    2016-01-01

    The development of acute myeloid leukemia has been attributed to various factors, including hereditary, radiation, drugs, and certain occupational exposures. The association between malignancy and venous thromboembolism events is well established. Here, we present a case of a 70-year-old Indian man who had presented with arterial and venous thrombosis, and the patient was later diagnosed with acute promyelocytic leukemia (APL). In our case, the patient presented with right lower limb deep venous thrombosis and pulmonary thromboembolism four months prior to the diagnosis of APL. Although thromboembolic event subsequent to the diagnosis of malignancy, and especially during the chemotherapy has been widely reported, this prior presentation with simultaneous occurrence of both venous and arterial thromboembolism has rarely been reported. We take this opportunity to state the significance of a complete medical evaluation in cases of recurrent or unusual thrombotic events. PMID:26949347

  7. Extramedullary relapse in lumbar spine of patient with acute promyelocytic leukemia after remission for 16 years: a case report and literature review.

    PubMed

    He, Zhengmei; Tao, Shandong; Deng, Yuan; Chen, Yue; Song, Lixiao; Ding, Banghe; Chen, Kankan; Yu, Liang; Wang, Chunling

    2015-01-01

    Acute promyelocytic leukemia (APL) is a common myeloid leukemia. At the newly diagnosed stage, it can be fatal because of the serious complication-disseminated intravascular coagulation. With the advent and early application of all-trans retinoic acid, most APL patients can achieve a long-term survival, and only a minority of patients will develop extramedullary relapse after remission. The most common site of extramedullary relapse is central nervous system, while other sites are relatively rare. Here, we report a particularly rare APL patient who experienced extramedullary relapse with lumbar spine as the isolated site after a rather long time of remission for 16 years. At the time of relapse, the main clinical manifestations of the patient are obvious low back pain, weakness in lower limbs and limitation of activity. After treatment of local radiotherapy combined with ATRA and arsenic trioxide, the patient achieved and maintained a second complete remission by now. PMID:26885224

  8. Extramedullary relapse in lumbar spine of patient with acute promyelocytic leukemia after remission for 16 years: a case report and literature review

    PubMed Central

    He, Zhengmei; Tao, Shandong; Deng, Yuan; Chen, Yue; Song, Lixiao; Ding, Banghe; Chen, Kankan; Yu, Liang; Wang, Chunling

    2015-01-01

    Acute promyelocytic leukemia (APL) is a common myeloid leukemia. At the newly diagnosed stage, it can be fatal because of the serious complication-disseminated intravascular coagulation. With the advent and early application of all-trans retinoic acid, most APL patients can achieve a long-term survival, and only a minority of patients will develop extramedullary relapse after remission. The most common site of extramedullary relapse is central nervous system, while other sites are relatively rare. Here, we report a particularly rare APL patient who experienced extramedullary relapse with lumbar spine as the isolated site after a rather long time of remission for 16 years. At the time of relapse, the main clinical manifestations of the patient are obvious low back pain, weakness in lower limbs and limitation of activity. After treatment of local radiotherapy combined with ATRA and arsenic trioxide, the patient achieved and maintained a second complete remission by now. PMID:26885224

  9. BCOR as a novel fusion partner of retinoic acid receptor alpha in a t(X;17)(p11;q12) variant of acute promyelocytic leukemia.

    PubMed

    Yamamoto, Yukiya; Tsuzuki, Sachiko; Tsuzuki, Motohiro; Handa, Kousuke; Inaguma, Yoko; Emi, Nobuhiko

    2010-11-18

    The majority of acute promyelocytic leukemia (APL) cases are characterized by the presence of a promyelocytic leukemia-retinoic acid receptor alpha(RARA) fusion gene. In a small subset, RARA is fused to a different partner, usually involved in regulating cell growth and differentiation. Here, we identified a novel RARA fusion transcript, BCOR-RARA, in a t(X;17)(p11;q12) variant of APL with unique morphologic features, including rectangular and round cytoplasmic inclusion bodies. Although the patient was clinically responsive to all-trans retinoic acid, several relapses occurred with standard chemotherapy and all-trans retinoic acid. BCOR is a transcriptional corepressor through the proto-oncoprotein, BCL6, recruiting histone deacetylases and polycomb repressive complex 1 components. BCOR-RARA was found to possess common features with other RARA fusion proteins. These included: (1) the same break point in RARA cDNA; (2) self-association; (3) retinoid X receptor alpha is necessary for BCOR-RARA to associate with the RARA responsive element; (4) action in a dominant-negative manner on RARA transcriptional activation; and (5) aberrant subcellular relocalization. It should be noted that there was no intact BCOR found in the 45,-Y,t(X;17)(p11;q12) APL cells because they featured only a rearranged X chromosome. These results highlight essential features of pathogenesis in APL in more detail. BCOR appears to be involved not only in human congenital diseases, but also in a human cancer. PMID:20807888

  10. Matrine cooperates with all-trans retinoic acid on differentiation induction of all-trans retinoic acid-resistant acute promyelocytic leukemia cells (NB4-LR1): possible mechanisms.

    PubMed

    Wu, Dijiong; Shao, Keding; Sun, Jie; Zhu, Fuyun; Ye, Baodong; Liu, Tingting; Shen, Yiping; Huang, He; Zhou, Yuhong

    2014-03-01

    Retinoic acid resistance results in refractory disease, and recovery in acute promyelocytic leukemia remains a challenge in clinical practice, with no ideal chemotherapeutic drug currently available. Here we report on the effect of an active compound of Sophora flavescens called matrine (0.1 mmol/L) combined with all-trans retinoic acid (1 µmol/L) in alleviating retinoic acid resistance in acute promyelocytic leukemia-derived NB4-LR1 cells by differentiation induction, as can be seen by an induced morphology change, increased CD11b expression, and nitro blue tetrazolium reduction activity, and a decreased expression of the promyelocytic leukemia-retinoic acid receptor α fusion gene and protein product. We further explored the probable mechanism of how matrine promotes the recovery of differentiation ability in NB4-LR1 cells when exposed to all-trans retinoic acid. We observed that the combination of all-trans retinoic acid and matrine can increase the level of cyclic adenosine monophosphate and protein kinase A activity, reduce telomerase activity, and downregulate the protein expression of topoisomerase II beta in NB4-LR1 cells. The results of this study suggest the possible clinical utility of matrine in the treatment of retinoic acid-resistant acute promyelocytic leukemia.

  11. A Multicenter Experience from Lebanon in Childhood and Adolescent Acute Myeloid Leukemia: High rate of Early Death in Childhood Acute Promyelocytic Leukemia

    PubMed Central

    Farah, Roula A.; Horkos, Jessy G.; Bustros, Youssef D.; Farhat, Hussein Z.; Abla, Oussama

    2015-01-01

    Background Acute myeloid leukemia (AML) is a disease with marked heterogeneity. Despite major improvement in outcome, it remains a life-threatening malignancy. Demographic and clinical data on pediatric AML is lacking among the Lebanese population. Purpose We aimed to identify clinical, molecular and outcome data in children with AML in Lebanon. Methods A retrospective chart review of children with AML diagnosed in three Lebanese hospitals during the past 8 years was conducted. Results From May 2002 through March 2010, we identified 24 children with AML in Saint George Hospital University Medical Center, University Medical Center Rizk Hospital, and Abou-Jaoude Hospital. Males and females were equally represented; median age at diagnosis was 9 years (range 1–24) and median WBC at diagnosis was 31 × 109/L (range: 2.1–376 × 109/L). Twenty five percent of patients (6 out of 24) had acute promyelocytic leukemia (APL). Karyotype was normal in 33% of patients; t(8;21), inv (16), t(8;9), t(7;11), t(9;11), complex chromosomal abnormality, monosomy 7 and trisomy 8 were the most common cytogenetic abnormalities encountered. Patients were treated on different European and North American protocols. Twelve patients (50%) achieved morphologic CR after cycle 1, 6 of them (50%) had bone marrow relapse within 11 months from diagnosis. Nine patients underwent allogeneic stem cell transplant, and 3 of them are alive at 5 years post-transplant. Early death rate was 16.6% of patients, mainly those with APL and a presenting WBC > 10 × 109/L. Fifty per cent of APL patients had an early death due to DIC despite starting ATRA therapy. Overall, median survival for AML patients who died from disease progression was 25.8 months (range: 1–60 months). Overall disease-free survival was 30.4%. Patients < 10 years of age had a 50% survival rate compared to 0% in patients > 10 years. Conclusions Our report highlights the needs in Lebanon for better supportive care of children with APL

  12. Cancer procoagulant and tissue factor are differently modulated by all-trans-retinoic acid in acute promyelocytic leukemia cells.

    PubMed

    Falanga, A; Consonni, R; Marchetti, M; Locatelli, G; Garattini, E; Passerini, C G; Gordon, S G; Barbui, T

    1998-07-01

    All-trans-retinoic acid (ATRA) downregulates the expression of two cellular procoagulants, tissue factor (TF) and cancer procoagulant (CP), in human promyelocytic leukemia cells. To evaluate whether or not changes of the procoagulant activities (PCAs) may share mechanisms with the ATRA-induced cyto-differentiation process, we have characterized the effect of ATRA on the TF and CP expression by NB4 cells, an ATRA maturation-inducible cell line, and two NB4-derived cell lines resistant to ATRA-induced maturation, the NB4. 306 and NB4.007/6 cells. Next, we evaluated the effect on the PCAs of the NB4 parental cells of three synthetic retinoid analogues, ie: AM580 (selective for the retinoic acid receptor [RAR] alpha), capable to induce the granulocytic differentiation of NB4 cells; and CD2019 (selective for RARbeta) and CD437 (selective for RARgamma), both lacking this capability. Cells were treated with either ATRA or the analogues (10(-6) to 10(-8) mol/L) for 96 hours. The effect on cell differentiation was evaluated by morphologic changes, cell proliferation, nitro blue tetrazolium reduction assay, and flow cytometry analysis of the CD33 and CD11b surface-antigen expression. PCA was first measured in 20 mmol/L Veronal Buffer cell extracts by the one-stage clotting assay of normal and FVII-deficient plasmas. Further TF and CP have been characterized and quantified in cell-sample preparations by chromogenic and immunological assays. In the first series of experiments, ATRA downregulates both TF and CP in NB4 parental cells, as expected. However, in the differentiation-resistant cell lines, it induced a significant loss of TF but had little or no effect on CP. In a second series of experiments, in the NB4 parental cells, the RARalpha agonist (AM580) induced cell maturation and reduced 91% CP expression, whereas CD437 and CD2019 had no cyto-differentiating effects and did not affect CP levels. On the other hand, in the same cells the TF expression was reduced by ATRA

  13. Dynamic Response of IFI16 and Promyelocytic Leukemia Nuclear Body Components to Herpes Simplex Virus 1 Infection

    PubMed Central

    2015-01-01

    ABSTRACT Intrinsic immunity is an aspect of antiviral defense that operates through diverse mechanisms at the intracellular level through a wide range of constitutively expressed cellular proteins. In the case of herpesviruses, intrinsic resistance involves the repression of viral gene expression during the very early stages of infection, a process that is normally overcome by viral tegument and/or immediate-early proteins. Thus, the balance between cellular repressors and virus-counteracting proteins determines whether or not a cell becomes productively infected. One aspect of intrinsic resistance to herpes simplex virus 1 (HSV-1) is conferred by components of promyelocytic leukemia nuclear bodies (PML NBs), which respond to infection by accumulating at sites that are closely associated with the incoming parental HSV-1 genomes. Other cellular proteins, including IFI16, which has been implicated in sensing pathogen DNA and initiating signaling pathways that lead to an interferon response, also respond to viral genomes in this manner. Here, studies of the dynamics of the response of PML NB components and IFI16 to invading HSV-1 genomes demonstrated that this response is extremely rapid, occurring within the first hour after addition of the virus, and that human Daxx (hDaxx) and IFI16 respond more rapidly than PML. In the absence of HSV-1 regulatory protein ICP0, which counteracts the recruitment process, the newly formed, viral-genome-induced PML NB-like foci can fuse with existing PML NBs. These data are consistent with a model involving viral genome sequestration into such structures, thereby contributing to the low probability of initiation of lytic infection in the absence of ICP0. IMPORTANCE Herpesviruses have intimate interactions with their hosts, with infection leading either to the productive lytic cycle or to a quiescent infection in which viral gene expression is suppressed while the viral genome is maintained in the host cell nucleus. Whether a cell

  14. Retinoid-induced differentiation of acute promyelocytic leukemia involves PML-RARalpha-mediated increase of type II transglutaminase.

    PubMed

    Benedetti, L; Grignani, F; Scicchitano, B M; Jetten, A M; Diverio, D; Lo Coco, F; Avvisati, G; Gambacorti-Passerini, C; Adamo, S; Levin, A A; Pelicci, P G; Nervi, C

    1996-03-01

    All-trans retinoic acid (t-RA) administration leads to complete remission in acute promyelocytic leukemia (APL) patients by inducing growth arrest and differentiation of the leukemic clone. In the present study, we show that t-RA treatment dramatically induced type II transglutaminase (type II TGase) expression in cells carrying the t(15;17) translocation and expressing the PML-RARalpha product such as the APL-derived NB4 cell line and fresh leukemic cells from APL patients. This induction correlated with t-RA-induced growth arrest, granulocytic differentiation, and upregulation of the leukocyte adherence receptor beta subunit (CD18) gene expression. The increase in type II TGase was not abolished by cycloheximide treatment, suggesting that synthesis of a protein intermediate was not required for the induction. t-RA did not significantly alter the rate of growth arrest and did not stimulate differentiation and type II TGase activity in NB4.306 cells, a t-RA-resistant subclone of the NB4 cell line, or in leukemic cells derived from two patients morphologically defined as APL but lacking the t(15;17). However, in NB4.306 cells, t-RA treatment was able to increase CD18 mRNA expression in a manner similar to NB4 cells. The molecular mechanisms involved in the induction of these genes were investigated. In NB4 cells, using novel receptor-selective ligands such as 9-cis-RA, TTNPB, AM580, and SR11217, we found that RAR- and RARalpha-selective retinoids were able to induce growth arrest, granulocytic differentiation, and type II TGase, whereas the RXR-selective retinoid SR11217 was inactive. Moreover, an RAR alpha-antagonist completely inhibited the expression of type II TGase and CD18 induced by these selective retinoids in NB4 cells. In NB4.306 cells, an RARalpha-dependent signaling pathway was found involved in the modulation of CD18 expression. In addition, expression of the PML-RARalpha gene in myeloid U937 precursor cells resulted in the ability of these cells to

  15. Misfolded N-CoR is Linked to the Ectopic Reactivation of CD34/Flt3-Based Stem-Cell Phenotype in Promyelocytic and Monocytic Acute Myeloid Leukemia

    PubMed Central

    Nin, Dawn Sijin; Li, Feng; Visvanathan, Sridevi; Khan, Matiullah

    2015-01-01

    Nuclear receptor co-repressor (N-CoR) is the key component of generic co-repressor complex essential for the transcriptional control of genes involved in cellular hemostasis. We have recently reported that N-CoR actively represses Flt3, a key factor of hematopoietic stem cells (HSC) self-renewal and growth, and that de-repression of Flt3 by the misfolded N-CoR plays an important role in the pathogenesis of promyelocytic and monocytic acute myeloid leukemia (AML). The leukemic cells derived from the promyelocytic and monocytic AML are distinctly characterized by the ectopic reactivation of stem cell phenotypes in relatively committed myeloid compartment. However, the molecular mechanism underlying this phenomenon is not known. Here, we report that N-CoR function is essential for the commitment of primitive hematopoietic cells to the cells of myeloid lineage and that loss of N-CoR function due to misfolding is linked to the ectopic reactivation of generic stem cell phenotypes in promyelocytic and monocytic AML. Analysis of N-CoR and Flt3 transcripts in mouse hematopoietic cells revealed a positive correlation between N-CoR level and the commitment of myeloid cells and an inverse correlation between N-CoR and Flt3 levels in primitive as well as committed myeloid cells. Enforced N-CoR expression in mouse HSCs inhibited their growth and self-renewal potentials and promoted maturation toward cells of myeloid lineage, suggesting a role of N-CoR in the commitment of cells of myeloid lineage. In contrast to AML cells with natively folded N-CoR, primary and secondary promyelocytic and monocytic AML cells harboring the misfolded N-CoR were highly positive for Flt3 and myeloid antigen-based HSC marker CD34. Genetic and therapeutic restoration of N-CoR conformation significantly down-regulated the CD34 levels in monocytic AML cells, suggesting an important role of N-CoR in the suppression of CD34-based HSC phenotypes. These findings collectively suggest that N-CoR is crucial

  16. Nuclear CD38 in retinoic acid-induced HL-60 cells

    SciTech Connect

    Yalcintepe, Leman . E-mail: lemany@istanbul.edu.tr; Albeniz, Isil; Adin-Cinar, Suzan; Tiryaki, Demir; Bermek, Engin; Graeff, Richard M.; Lee, Hon Cheung

    2005-02-01

    The cell surface antigen, CD38, is a 45-kDa transmembrane protein which is predominantly expressed on hematopoietic cells during differentiation. As a bifunctional ectoenzyme, it catalyzes the synthesis of cyclic ADP-ribose (cADPR) from NAD{sup +} and hydrolysis of either NAD{sup +} or cADPR to ADP-ribose. All-trans-retinoic acid (RA) is a potent and specific inducer of CD38 in myeloid cells. In this report, we demonstrate that the nuclei of RA-treated human HL-60 myeloblastic cells reveal enzymatic activities inherent to CD38. Thus, GDP-ribosyl cyclase and NAD{sup +} glycohydrolase activities in the nuclear fraction increased very significantly in response to incubation with RA. With Western blotting, we detected in the nuclear protein fraction from RA-treated cells a {approx}43-kDa protein band which was reactive with the CD38-specific monoclonal antibody OKT10. The expression of CD38 in HL-60 nuclei was also shown with FACScan analysis. RA treatment gave rise to an increase in in vitro ADP ribosylation of the {approx}43-kDa nuclear protein. Moreover, nuclei isolated from RA-treated HL-60 cells revealed calcium release in response to cADPR, whereas a similar response was not observed in control nuclei. These results suggest that CD38 is expressed in HL-60 cell nuclei during RA-induced differentiation.

  17. [Enhancement of Fas-mediated apoptosis in leukemic cell line HL-60 by Bay 11 - 7082].

    PubMed

    Wang, Li; Liu, Ling-Bo; Li, Lei; Zou, Ping

    2007-10-01

    The aim of study was to explore the effects of NF-kappaB inhibitor Bay 11 - 7082 on Fas/FasL system and Fas-mediated apoptosis in HL-60 cells. The mRNA and protein expression levels of Fas, FasL and XIAP after treatment with Bay 11 - 7082 were detected by RT-PCR and FCM respectively. The level of sFasL was detected by ELISA before and after treatment with Bay 11 - 7082; apoptosis was detected by FCM before and after treatment with Bay 11 - 7082. The results showed that after treating HL-60 cells with Bay 11 - 7082, the mRNA and protein levels of FasL and XIAP were lower than that of controls, the difference was significant by statistic analysis (p < 0.05). Neither the mRNA and protein levels of Fas, nor the level of sFasL changed significantly (p > 0.05). Apoptotic rate of HL-60 cells treated with Bay 11 - 7082 was significantly higher as compared with controls (p < 0.05). It is concluded that Bay 11 - 7082 can enhance Fas-mediated apoptosis in HL-60 cells by down-regulation of FasL and XIAP levels.

  18. [Effect of nimodipine on mechanisms of HL-60 cell apoptosis induced by cytarabine].

    PubMed

    Sun, Li-Rong; Gao, Bin-Chang; Pang, Xiu-Ying; Lu, Yuan; Li, Xue-Rong; Song, Ai-Qin

    2007-02-01

    The aim was to study the mechanisms of HL-60 cell apoptosis induced by nimodipine (NMDP) and cytarabine (Ara-C). The DNA fragment was detected by agarose gel electrophoresis. The expressions of bcl-2 and bax gene proteins related with apoptosis were investigated by immunohistochemistry. The results showed that HL-60 cell apoptosis rate had been increasing in the experimental groups compared with the control group since culturing 8 hours. The expression of Bcl-2 protein was lower and the expression of Bax protein was higher in the experimental groups than that in the control group, while ratio of bcl-2/bax was lower in the experimental groups than that in the control group. It is concluded that NMDP and Ara-C induce apoptosis of HL-60 cells, and the mechanism of apoptosis induced by them may down-regulate the expression of bcl-2 gene and up-regulate the expression of bax gene. The mechanism of HL-60 cell apoptosis induced by Ara-C and NMDP is probably associated with the down-regulation of Bcl-2 protein expression.

  19. [Effects of baicalin on HL-60 cell xenografts in nude mice and its mechanism].

    PubMed

    Zheng, Jing; Hu, Jian-Da; Huang, Yi; Chen, Ying-Yu; Li, Jing; Chen, Bu-Yuan

    2012-10-01

    This study was aimed to investigate the effects of baicalin on HL-60 cell xenografts in nude mice in vivo and explore its mechanism. Xenograft tumor model of HL-60 cells in nude mice was established, which was divided randomly into 6 groups: negative control group (injection of 5% NaHCO(3)), 25, 50 and 100 mg/kg baicalin groups, combination group (50 mg/kg baicalin + 2 mg/kg VP16) and positive control group (VP16 4 mg/kg). The nude mice with HL-60 cell xenografts were treated with drugs via intraperitoneal injection daily. After treatment for 14 days average weigh and inhibitory rate of transplanted tumor stripped from 5 nude mice in each group were calculated, and the ultrastructure change of xenografts cells were tested by transmission electron microscopy. Histopathologic examination was used to observed the change of main organs in nude mice. The expression of signaling molecular PI3K/Akt proteins extracted from xenografts was detected by Western blot. The effects of baicalin on overall survival time in nude mice with HL-60 cell xenografts were evaluated. The results showed that baicalin could inhibit the growth of transplanted tumors in dose-dependent manner. There were more necrotic and apoptotic cells in mice of baicalin-treated groups and combination group than that in mice of negative control group. Baicalin could inhibit the proliferation of HL-60 cells in vivo by down-regulating the PI3K/Akt/mTOR signal pathway, where the expressions of p-Akt, mTOR and p-mTOR proteins decreased compared with negative control group, and no significant difference of Akt expression was found between different groups. Compared with negative control group, the median survival time of mice in combination group was more prolongated (P < 0.05). It is concluded that baicalin can inhibit growth and induce apoptosis of HL-60 cell xenografts in nude mice, and prolong median survival time of nude mice. The possible mechanisms may be related to inhibition of Akt activity and down

  20. Phospholipase D catalyzes phospholipid metabolism in chemotactic peptide-stimulated HL-60 granulocytes

    SciTech Connect

    Pai, J.K.; Siegel, M.I.; Egan, R.W.; Billah, M.M.

    1988-09-05

    There exists circumstantial evidence for activation of phospholipase D (PLD) in intact cells. However, because of the complexity of phospholipid remodeling processes, it is essential to distinguish PLD clearly from other phospholipases and phospholipid remodeling enzymes. Therefore, to establish unequivocally PLD activity in dimethyl sulfoxide-differentiated HL-60 granulocytes, to demonstrate the relative contribution of PLD to phospholipid turnover, and to validate the hypothesis that the formation of phosphatidylethanol is an expression of PLD-catalyzed transphosphatidylation, we have developed methodologies to label HL-60 granulocytes in 1-O-alkyl-2-acyl-sn-glycero-3-phosphocholine (alkyl-PC) with 32P without labeling cellular ATP. These methodologies involve (a) synthesis of alkyl-lysoPC containing 32P by a combination of enzymatic and chemical procedures and (b) incubation of HL-60 granulocytes with this alkyl-(32P) lysoPC which enters the cell and becomes acylated into membrane-associated alkyl-(32P)PC. Upon stimulation of these 32P-labeled cells with the chemotactic peptide, N-formyl-Met-Leu-Phe (fMLP), alkyl-(32P)phosphatidic acid (alkyl-(32P)PA) is formed rapidly. Because, under these conditions, cellular ATP has not been labeled with 32P, alkyl-(32P)PA must be formed via PLD-catalyzed hydrolysis of alkyl-(32P)PC at the terminal phosphodiester bond. This result conclusively demonstrates fMLP-induced activation of PLD in HL-60 granulocytes. These 32P-labeled HL-60 granulocytes have also been stimulated in the presence of ethanol to produce alkyl-(32P)phosphatidylethanol (alkyl-(32P)PEt). Formation of alkyl-(32P)PEt parallels that of alkyl-(32P)PA with respect to time course, fMLP concentration, inhibition by a specific fMLP antagonist (t-butoxycarbonyl-Met-Leu-Phe), and Ca2+ concentration.

  1. Homogeneously staining region in anthracycline-resistant HL-60/AR cells not associated with MDR1 amplification.

    PubMed

    Gervasoni, J E; Taub, R N; Yu, M T; Warburton, D; Sabbath, M; Gilleran, S; Coppock, D L; D'Alessandri, J; Krishna, S; Rosado, M

    1992-10-01

    Anthracycline-resistant HL-60/AR cells and their drug-sensitive HL-60/S counterparts were characterized by karyotypic analysis and examined for the overexpression of DNA and mRNA sequences coding for P-glycoprotein (Pgp). The HL-60/S cells were karyotypically stable over a 5-year period of study (1986-1991), except for an additional small Giemsa-positive band noted at 7q22 in cultures harvested in 1987, but not in 1986. This change did not affect drug sensitivity. The drug-resistant HL-60/AR cells examined in 1986, 1987, and 1991 demonstrated a very stable karyotype. The most striking feature was a large homogeneously staining region in the long arm of chromosome 7 (7q11.2), and translocation of the remainder of the long arm to another centromere. Other changes in the HL-60/AR cells included inversion in 9q, partial deletion of the short arm of chromosome 10p, addition of material to the p arm of der(16), loss of chromosome 22, and the appearance of a new marker chromosome. Both HL-60/S and the HL-60/AR cells were found not to amplify DNA or mRNA sequences coding for the Pgp. Thus, although the HL-60/AR cells possess the classical multidrug resistance phenotype and demonstrate a homogeneously staining region near the region of the MDR1 gene, their resistance is due to mechanisms other than those coded for by MDR1.

  2. Drug uptake and pharmacological modulation of drug sensitivity in leukemia by AQP9.

    PubMed

    Bhattacharjee, Hiranmoy; Carbrey, Jennifer; Rosen, Barry P; Mukhopadhyay, Rita

    2004-09-24

    Leukemia is the most common childhood cancer. Trisenox, the active ingredient of which is trivalent arsenic, is the first line of treatment for acute promyelocytic leukemia. Since drug action usually requires uptake of the drug, it is of importance to determine the transport system responsible for Trisenox uptake. Recently, human aquaglyceroporin 9 (AQP9) has been shown to transport As(III) in Xenopus oocytes. In this study we report to show that AQP9 expression modulates the drug sensitivity of leukemic cells. AQP9 was transfected into the chronic myelogenous leukemia cell line K562. The transfectants became hypersensitive to Trisenox and Sb(III). The promyelocytic leukemia cell line HL60 treated with vitamin D showed higher expression of AQP9 and hypersensitivity to Trisenox and Sb(III). This sensitivity was due to higher rates of uptake of the trivalent metalloids by the cell lines overexpressing AQP9. Trisenox hypersensitivity results from increased expression of AQP9 drug uptake system. The possibility of using pharmacological agents to increase expression of AQP9 gene delivers the promise of new therapies for the treatment of leukemia. Thus, drug hypersensitivity can be correlated with increased expression of the drug uptake system. This is the first demonstration that AQP9 can modulate drug sensitivity in cancer.

  3. NPM-RAR, not the RAR-NPM reciprocal t(5;17)(q35;q21) acute promyelocytic leukemia fusion protein, inhibits myeloid differentiation.

    PubMed

    Pollock, Sheri L; Rush, Elizabeth A; Redner, Robert L

    2014-06-01

    The t(5;17) variant of acute promyelocytic leukemia (APL) fuses the nucleophosmin (NPM) gene at 5q35 with the retinoic acid receptor alpha (RARA) at 17q12-22. We have previously shown that leukemic cells express both NPM-RAR and RAR- NPM reciprocal translocation products. In this study we investigated the potential role of both proteins in modulating myeloid differentiation. Expression of NPM-RAR inhibited vitamin D3/transforming growth factor β (TGFβ)-mediated differentiation of U937 cells by more than 50%. In contrast, RAR-NPM expression did not alter vitamin D3/TGFβ-induced differentiation of U937 clones. These results indicate that NPM-RAR, not RAR-NPM, is the prime mediator of myeloid differentiation arrest in t(5;17) APL.

  4. Treatment of an acute promyelocytic leukemia relapse using arsenic trioxide and all-trans-retinoic in a 6-year-old child.

    PubMed

    Rock, Nathalie; Mattiello, V; Judas, C; Huezo-Diaz, P; Bourquin, J P; Gumy-Pause, F; Ansari, M

    2014-03-01

    In adult therapy, arsenic trioxide (ATO) and all-trans-retinoic acid (ATRA) are recognized as active treatment of relapsed acute promyelocytic leukemia (APL). The efficacy of this combination in pediatric APL has not yet been well established. We report the case of a 6-year-old girl with relapsed APL, with a PML-RARα mutation, treated with a combination of ATO and ATRA. Over a period of 5 months, she received in total, 75 doses of intravenous ATO and 40 doses of oral ATRA. Currently, 22 months after relapse, she is still in complete remission. Here, we describe treatment of a relapsed APL in a child with limited treatment of ATO and ATRA and review the literature. PMID:24498972

  5. The evolution of arsenic in the treatment of acute promyelocytic leukemia and other myeloid neoplasms: Moving toward an effective oral, outpatient therapy.

    PubMed

    Falchi, Lorenzo; Verstovsek, Srdan; Ravandi-Kashani, Farhad; Kantarjian, Hagop M

    2016-04-15

    The therapeutic potential of arsenic derivatives has long been recognized and was recently rediscovered in modern literature. Early studies demonstrated impressive activity of this compound in patients with relapsed acute promyelocytic leukemia (APL). Over the last 2 decades, intravenous arsenic trioxide has been used successfully, both alone and in combination with other agents, for the treatment of APL and, with some success, of other myeloid neoplasms. Arsenic trioxide is currently part the standard of care for patients with APL. More recently, oral formulations of this compound have been developed and are entering clinical practice. In this review, the authors discuss the evolution of arsenic in the treatment of APL and other myeloid neoplasms. PMID:26716387

  6. Prolonged weightlessness affects promyelocytic multidrug resistance.

    PubMed

    Piepmeier, E H; Kalns, J E; McIntyre, K M; Lewis, M L

    1997-12-15

    An immortalized promyelocytic cell line was studied to detect how doxorubicin uptake is affected by microgravity. The purpose of this experiment was to identify the effect that microgravity may have on multidrug resistance in leukocytes. HL60 cells and HL60 cells resistant to anthracycline (HL60/AR) were grown in RPMI and 10% FBS. Upon reaching orbit in the Space Shuttle Endeavour, the cells were robotically mixed with doxorubicin. Three days after mixing, cells were fixed with paraformaldehyde/glutaraldehyde. Ground control experiments were conducted concurrently using a robot identical to the one used on the Shuttle. Fixed cells were analyzed within 2 weeks of launch. Confocal micrographs identified changes in cell structure (transmittance), drug distribution (fluorescence), and microtubule polymerization (fluorescence). Flight cells showed a lack of cytoskeletal polymerization resulting in an overall amorphic globular shape. Doxorubicin distribution in ground cells included a large numbers of vesicles relative to flight cells. There was a greater amount of doxorubicin present in flight cells (85% +/- 9.7) than in ground control cells (43% +/- 26) as determined by image analysis. Differences in microtubule formation between flight cells and ground cells could be partially responsible for the differences in drug distribution. Cytoskeletal interactions are critical to the function of P-glycoprotein as a drug efflux pump responsible for multidrug resistance.

  7. Possible benefit of consolidation therapy with high-dose cytarabine on overall survival of adults with non-promyelocytic acute myeloid leukemia

    PubMed Central

    Azevedo, M.C.; Velloso, E.D.R.P.; Buccheri, V.; Chamone, D.A.F.; Dorlhiac-Llacer, P.E.

    2014-01-01

    In adults with non-promyelocytic acute myeloid leukemia (AML), high-dose cytarabine consolidation therapy has been shown to influence survival in selected patients, although the appropriate doses and schemes have not been defined. We evaluated survival after calculating the actual dose of cytarabine that patients received for consolidation therapy and divided them into 3 groups according to dose. We conducted a single-center, retrospective study involving 311 non-promyelocytic AML patients with a median age of 36 years (16-79 years) who received curative treatment between 1978 and 2007. The 131 patients who received cytarabine consolidation were assigned to study groups by their cytarabine dose protocol. Group 1 (n=69) received <1.5 g/m2 every 12 h on 3 alternate days for up to 4 cycles. The remaining patients received high-dose cytarabine (≥1.5 g/m2 every 12 h on 3 alternate days for up to 4 cycles). The actual dose received during the entire consolidation period in these patients was calculated, allowing us to divide these patients into 2 additional groups. Group 2 (n=27) received an intermediate-high-dose (<27 g/m2), and group 3 (n=35) received a very-high-dose (≥27 g/m2). Among the 311 patients receiving curative treatment, the 5-year survival rate was 20.2% (63 patients). The cytarabine consolidation dose was an independent determinant of survival in multivariate analysis; age, karyotype, induction protocol, French-American-British classification, and de novo leukemia were not. Comparisons showed that the risk of death was higher in the intermediate-high-dose group 2 (hazard ratio [HR]=4.51; 95% confidence interval [CI]: 1.81-11.21) and the low-dose group 1 (HR=4.43; 95% CI: 1.97-9.96) than in the very-high-dose group 3, with no significant difference between those two groups. Our findings indicated that very-high-dose cytarabine during consolidation in adults with non-promyelocytic AML may improve survival. PMID:25517921

  8. Manipulation of neutrophil-like HL-60 cells for the study of directed cell migration.

    PubMed

    Millius, Arthur; Weiner, Orion D

    2010-01-01

    Many cells undergo directed cell migration in response to external cues in a process known as chemotaxis. This ability is essential for many single-celled organisms to hunt and mate, the development of multicellular organisms, and the functioning of the immune system. Because of their relative ease of manipulation and their robust chemotactic abilities, the neutrophil-like cell line (HL-60) has been a powerful system to analyze directed cell migration. In this chapter, we describe the maintenance and transient transfection of HL-60 cells and explain how to analyze their behavior with two standard chemotactic assays (micropipette and EZ-TAXIS). Finally, we demonstrate how to fix and stain the actin cytoskeleton of polarized cells for fluorescent microscopy imaging.

  9. Z-ajoene induces apoptosis of HL-60 cells: involvement of Bcl-2 cleavage.

    PubMed

    Li, Min; Min, Ji-Mei; Cui, Jing-Rong; Zhang, Li-He; Wang, Kui; Valette, Annie; Davrinche, Christian; Wright, Michel; Leung-Tack, Jeanne

    2002-01-01

    Garlic organosulfur components exhibit antitumor activity, but the molecular mechanisms underlying these effects have not been well characterized. We showed that Z-ajoene, a sulfur-rich compound purified from garlic, induced time- and dose-dependent apoptosis in HL-60 cells. This process implied the activation of caspase-3 and the cleavage of the antiapoptotic protein Bcl-2. The caspase inhibitor benzyloxycarbonyl-Val-Ala-Asp-[OMe]-fluoromethylketone inhibited Bcl-2 cleavage and apoptosis induced by Z-ajoene. This effect was partially prevented by treatment of HL-60 cells with the antioxidant N-acetylcysteine. Hence, the transmission of apoptotic signal induced by Z-ajoene involved a reactive oxygen species-dependent pathway leading to caspase-dependent Bcl-2 cleavage.

  10. Induction of apoptosis by Citrus paradisi essential oil in human leukemic (HL-60) cells.

    PubMed

    Hata, Tomona; Sakaguchi, Ikuyo; Mori, Masahiro; Ikeda, Norikazu; Kato, Yoshiko; Minamino, Miki; Watabe, Kazuhito

    2003-01-01

    Limonene is a primary component of citrus essential oils (EOs) and has been reported to induce apoptosis on tumor cells. Little is known about induction of apoptosis by citrus EOs. In this study, we examined induction of apoptosis by Citrus aurantium var. dulcis (sweet orange) EO, Citrus paradisi (grapefruit) EO and Citrus limon (lemon) EO. These EOs induced apoptosis in HL-60 cells and the apoptosis activities were related to the limonene content of the EOs. Moreover, sweet orange EO and grapefruit EO may contain components besides limonene that have apoptotic activity. To identify the components with apoptotic activity, grapefruit EO was fractionated using silica gel columns, and the components were analyzed by GC-MS. The n-hexane fraction contained limonene, and the dichloromethane fraction (DF) contained aldehyde compounds and nootkatone. Decanal, octanal and citral in the DF showed strong apoptotic activity, suggesting that the aldehyde compounds induced apoptosis strongly in HL-60 cells. PMID:14758720

  11. Isoprenoid metabolism is required for stimulation of the respiratory burst oxidase of HL-60 cells.

    PubMed Central

    Bokoch, G M; Prossnitz, V

    1992-01-01

    The formation of oxygen radicals by phagocytic cells occurs through the activation of a multiple-component NADPH oxidase system. An unidentified low molecular weight GTP-binding protein has been proposed to modulate the activity of the NADPH oxidase. The low molecular weight GTP-binding proteins undergo posttranslational processing, including an initial covalent incorporation of an isoprenyl group. To test whether such an isoprenylation reaction might be required for the activity of the oxidase, we utilized compactin and lovastatin as inhibitors of the isoprenylation pathway. Treatment of DMSO-differentiated HL-60 cells with compactin produced a concentration-dependent inhibition of O2- formation in response to FMLP or phorbol myristate acetate. Cell viability was not affected nor was normal differentiation of the HL-60 cells into a neutrophil-like cell. The inhibitory effect of compactin was specifically prevented by addition of exogenous mevalonic acid to the HL-60 cells, indicating that the inhibitory effects of the drug were due to blockade of the pathway leading to isoprenoid synthesis. Addition of cholesterol, ubiquinone, or dolichol, which are also downstream products of the isoprenoid pathway, did not override the inhibitory effects of the drug. Subcellular fractions were prepared from compactin-treated cells, and the location of the compactin-sensitive factor was determined by complementation analysis in a cell-free NADPH oxidase system. The inhibited factor was localized to the HL-60 cytosol. These data suggest that an isoprenoid pathway intermediate is necessary for activation of the phagocyte NADPH oxidase. This is likely to represent the requirement for an isoprenoid moiety in the posttranslational modification of a low molecular weight GTP-binding protein. Our studies provide support for the involvement of such a low molecular weight GTP-binding protein in NADPH oxidase activation. Images PMID:1310693

  12. Lipid Raft Is Required for PSGL-1 Ligation Induced HL-60 Cell Adhesion on ICAM-1

    PubMed Central

    Xu, Tingshuang; Liu, Wenai; Luo, Jixian; Li, Chunfeng; Ba, Xueqing; Ampah, Khamal Kwesi; Wang, Xiaoguang; Jiang, Yong; Zeng, Xianlu

    2013-01-01

    P-selectin glycoprotein ligand-1 (PSGL-1) and integrins are adhesion molecules that play critical roles in host defense and innate immunity. PSGL-1 mediates leukocyte rolling and primes leukocytes for integrin-mediated adhesion. However, the mechanism that PSGL-1 as a rolling receptor in regulating integrin activation has not been well characterized. Here, we investigate the function of lipid raft in regulating PSGL-1 induced β2 integrin-mediated HL-60 cells adhesion. PSGL-1 ligation with antibody enhances the β2 integrin activation and β2 integrin-dependent adhesion to ICAM-1. Importantly, with the treatment of methyl-β-cyclodextrin (MβCD), we confirm the role of lipid raft in regulating the activation of β2 integrin. Furthermore, we find that the protein level of PSGL-1 decreased in raft fractions in MβCD treated cells. PSGL-1 ligation induces the recruitment of spleen tyrosine kinase (Syk), a tyrosine kinase and Vav1 (the pivotal downstream effector of Syk signaling pathway involved in cytoskeleton regulation) to lipid raft. Inhibition of Syk activity with pharmacologic inhibitor strongly reduces HL-60 cells adhesion, implicating Syk is crucial for PSGL-1 mediated β2 integrin activation. Taken together, we report that ligation of PSGL-1 on HL-60 cells activates β2 integrin, for which lipid raft integrity and Syk activation are responsible. These findings have shed new light on the mechanisms that connect leukocyte initial rolling with subsequent adhesion. PMID:24312591

  13. The antiproliferative effect of hexadecylphosphocholine toward HL60 cells is prevented by exogenous lysophosphatidylcholine.

    PubMed

    Boggs, K; Rock, C O; Jackowski, S

    1998-01-01

    The mechanisms that account for the anti-proliferative properties of the biologically active lysophospholipid analog hexadecylphosphocholine (HexPC) were investigated in HL60 cells. HexPC inhibited the incorporation of choline into phosphatidylcholine and the pattern of accumulation of soluble choline-derived metabolites pinpointed CTP:phosphocholine cytidylyltransferase (CT) as the inhibited step in vivo. HexPC also inhibited recombinant CT in vitro. HexPC treatment led to accumulation of cells in G2/M phase, triggered DNA fragmentation and caused morphological changes associated with apoptosis. The supplementation of HexPC-treated cells with exogenous lysophosphatidylcholine (LPC) completely reversed the cytotoxic effects of HexPC and restored HL60 cell proliferation in the presence of the drug. LPC provided an alternate pathway for phosphatidylcholine synthesis via the acylation of exogenous LPC. This result contrasted with the response of HL60 cells to 1-O-octadecyl-2-O-methyl-rac-glycero-3-phosphocholine (ET-18-OCH3) where LPC overcame the cytotoxic effects but did not support continued cell proliferation. Morphological integrity, DNA stability and cell viability were maintained in cells treated with LPC plus either antineoplastic agent. Thus the inhibition of phosphatidylcholine biosynthesis at the CT step accounts for the cytotoxicity of both HexPC and ET-18-OCH3 which is overridden by providing an alternate pathway for phosphatidylcholine synthesis via the acylation of exogenous LPC.

  14. Involvement of calreticulin in cell proliferation, invasion and differentiation in diallyl disulfide-treated HL-60 cells

    PubMed Central

    Yi, Lan; Shan, Jian; Chen, Xin; Li, Guoqing; Li, Linwei; Tan, Hui; Su, Qi

    2016-01-01

    Diallyl disulfide (DADS) has shown potential as a therapeutic agent in various cancers. Previously, calreticulin (CRT) was found to be downregulated in differentiated HL-60 cells treated with DADS. The present study investigated the role of CRT proteins in DADS-induced proliferation, invasion and differentiation in HL-60 cells. The present study demonstrated that DADS treatment significantly changed the morphology of HL-60 cells and caused the significant time-dependent downregulation of CRT. Small interfering RNA (siRNA)-mediated knockdown of CRT expression significantly inhibited proliferation, decreased invasion ability, increased the expression of cluster of differentiation (CD)11b and reduced the expression of CD33 in DADS-treated HL-60 cells. DADS also significantly affected cell proliferation, invasion and differentiation in CRT-overexpressed HL-60 cells. Nitroblue tetrazolium (NBT) reduction assays showed decreased NBT reduction activity in the CRT overexpression group and increased NBT reduction in the CRT siRNA group. Following treatment with DADS, the NBT reduction abilities in all groups were increased. In conclusion, the present study clearly demonstrates the downregulation of CRT during DADS-induced differentiation in HL-60 cells and indicates that CRT is involved in cell proliferation, invasion and differentiation in DADS-treated HL-60 cells. PMID:27588133

  15. Mechanism study of PEGylated polyester and β-cyclodextrin integrated micelles on drug resistance reversal in MRP1-overexpressed HL60/ADR cells.

    PubMed

    Ji, Qian; Qiu, Liyan

    2016-08-01

    Chemotherapy is one of the main strategies for cancer treatment, but its effective application is seriously limited by the development of drug resistance. In this study, we designed micellar vectors for doxorubicin based on amphiphilic copolymers sequentially linking β-cyclodextrin (β-CD), polylacticacid (PLA) or polycaprolactone (PCL) block, and polyethylene glycol (PEG) block to overcome drug resistance in human acute myeloid leukemia cells (HL60/ADR) overexpressing multidrug resistance protein 1 (MRP1). The significant enhancement in cytotoxicity and inhibited HL60/ADR tumor growth in mouse was achieved. More importantly, several analyses were performed to understand the interactions between various polymers and MRP1 at the cellular level. The results showed that the polymers did not show remarkable correlation of MRP1 gene and protein expression, but could decrease intracellular ATP, mitochondrial membrane potential and glutathione levels, which was greatly dependent on the molecular structure of polymers. In conclusion, these novel micelles can be considered as a kind of promising drug delivery system for tumor therapy to reverse drug resistance related to MRP1 overexpression. PMID:27088190

  16. Clinical significance of CD56 expression in patients with acute promyelocytic leukemia treated with all-trans retinoic acid and anthracycline-based regimens.

    PubMed

    Montesinos, Pau; Rayón, Chelo; Vellenga, Edo; Brunet, Salut; González, José; González, Marcos; Holowiecka, Aleksandra; Esteve, Jordi; Bergua, Juan; González, José D; Rivas, Concha; Tormo, Mar; Rubio, Vicente; Bueno, Javier; Manso, Félix; Milone, Gustavo; de la Serna, Javier; Pérez, Inmaculada; Pérez-Encinas, Manuel; Krsnik, Isabel; Ribera, Josep M; Escoda, Lourdes; Lowenberg, Bob; Sanz, Miguel A

    2011-02-10

    The expression of CD56 antigen in acute promyelocytic leukemia (APL) blasts has been associated with short remission duration and extramedullary relapse. We investigated the clinical significance of CD56 expression in a large series of patients with APL treated with all-trans retinoic acid and anthracycline-based regimens. Between 1996 and 2009, 651 APL patients with available data on CD56 expression were included in 3 subsequent trials (PETHEMA LPA96 and LPA99 and PETHEMA/HOVON LPA2005). Seventy-two patients (11%) were CD56(+) (expression of CD56 in ≥ 20% leukemic promyelocytes). CD56(+) APL was significantly associated with high white blood cell counts; low albumin levels; BCR3 isoform; and the coexpression of CD2, CD34, CD7, HLA-DR, CD15, and CD117 antigens. For CD56(+) APL, the 5-year relapse rate was 22%, compared with a 10% relapse rate for CD56(-) APL (P = .006). In the multivariate analysis, CD56 expression retained the statistical significance together with the relapse-risk score. CD56(+) APL also showed a greater risk of extramedullary relapse (P < .001). In summary, CD56 expression is associated with the coexpression of immaturity-associated and T-cell antigens and is an independent adverse prognostic factor for relapse in patients with APL treated with all-trans-retinoic acid plus idarubicin-derived regimens. This marker may be considered for implementing risk-adapted therapeutic strategies in APL. The LPA2005 trial is registered at http://www.clinicaltrials.gov as NCT00408278.

  17. PML/RARα-Regulated miR-181a/b Cluster Targets the Tumor Suppressor RASSF1A in Acute Promyelocytic Leukemia.

    PubMed

    Bräuer-Hartmann, Daniela; Hartmann, Jens-Uwe; Wurm, Alexander Arthur; Gerloff, Dennis; Katzerke, Christiane; Verga Falzacappa, Maria Vittoria; Pelicci, Pier Giuseppe; Müller-Tidow, Carsten; Tenen, Daniel G; Niederwieser, Dietger; Behre, Gerhard

    2015-08-15

    In acute promyelocytic leukemia (APL), all-trans retinoic acid (ATRA) treatment induces granulocytic maturation and complete remission of leukemia. microRNAs are known to be critical players in the formation of the leukemic phenotype. In this study, we report downregulation of the miR-181a/b gene cluster in APL blasts and NB4 leukemia cells upon ATRA treatment as a key event in the drug response. We found that miR-181a/b expression was activated by the PML/RARα oncogene in cells and transgenic knock-in mice, an observation confirmed and extended by evidence of enhanced expression of miR-181a/b in APL patient specimens. RNA interference (RNAi)-mediated attenuation of miR-181a/b expression in NB4 cells was sufficient to reduce colony-forming capacity, proliferation, and survival. Mechanistic investigations revealed that miR-181a/b targets the ATRA-regulated tumor suppressor gene RASSF1A by direct binding to its 3'-untranslated region. Enforced expression of miR-181a/b or RNAi-mediated attenuation of RASSF1A inhibited ATRA-induced granulocytic differentiation via regulation of the cell-cycle regulator cyclin D1. Conversely, RASSF1A overexpression enhanced apoptosis. Finally, RASSF1A levels were reduced in PML/RARα knock-in mice and APL patient samples. Taken together, our results define miR-181a and miR-181b as oncomiRs in PML/RARα-associated APL, and they reveal RASSF1A as a pivotal element in the granulocytic differentiation program induced by ATRA in APL. PMID:26041820

  18. Cdc6 is a rate-limiting factor for proliferative capacity during HL60 cell differentiation

    SciTech Connect

    Barkley, Laura R.; Hong, Hye Kyung; Kingsbury, Sarah R.; James, Michelle; Stoeber, Kai Williams, Gareth H.

    2007-10-15

    The DNA replication (or origin) licensing pathway represents a critical step in cell proliferation control downstream of growth signalling pathways. Repression of origin licensing through down-regulation of the MCM licensing factors (Mcm2-7) is emerging as a ubiquitous route for lowering proliferative capacity as metazoan cells exit the cell division cycle into quiescent, terminally differentiated and senescent 'out-of-cycle' states. Using the HL60 monocyte/macrophage differentiation model system and a cell-free DNA replication assay, we have undertaken direct biochemical investigations of the coupling of origin licensing to the differentiation process. Our data show that down-regulation of the MCM loading factor Cdc6 acts as a molecular switch that triggers loss of proliferative capacity during early engagement of the somatic differentiation programme. Consequently, addition of recombinant Cdc6 protein to in vitro replication reactions restores DNA replication competence in nuclei prepared from differentiating cells. Differentiating HL60 cells over-expressing either wild-type Cdc6 or a CDK phosphorylation-resistant Cdc6 mutant protein (Cdc6A4) exhibit an extended period of cell proliferation compared to mock-infected cells. Notably, differentiating HL60 cells over-expressing the Cdc6A4 mutant fail to down-regulate Cdc6 protein levels, suggesting that CDK phosphorylation of Cdc6 is linked to its down-regulation during differentiation and the concomitant decrease in cell proliferation. In this experimental model, Cdc6 therefore plays a key role in the sequential molecular events leading to repression of origin licensing and loss of proliferative capacity during execution of the differentiation programme.

  19. Targeting SLUG sensitizes leukemia cells to ADR-induced apoptosis

    PubMed Central

    Wei, Chang-Rong; Liu, Jun; Yu, Xiao-Jun

    2015-01-01

    Background and Aims: Slug is an E-cadherin repressor and a suppressor of PUMA (p53 upregulated modulator of apoptosis) and it has recently been demonstrated that Slug plays an important role in controlling apoptosis. In this study, we examined whether Slug’s ability to silence expression suppresses the growth of leukemia HL-60 cells and/or sensitizes leukemia HL-60 cells to adriamycin (ADR) through induction of apoptosis. Methods: SLUG siRNA was transfected into the HL-60 and HL-60ADR cell lines (an adriamycin resistant cell line). The stably SLUG siRNA transfected HL-60 and HL-60ADR cells was transiently transfected with PUMA siRNA. The mRNA and protein expression of SLUG and PUMA were determined by Quantitative real-time RT-PCR and Western blot assay. The effects of SLUG siRNA alone or combined with ADR or PUMA siRNA on growth and apoptosis in HL-60 and HL-60ADR cells was detected by MTT, ELISA and terminal deoxynucleotidyl transferase-mediated nick end labeling (TUNEL) assay. Results: The results showed that SLUG was less expressed in the HL-60 cells, and high expressed in the HL-60ADR cells. Obvious down-regulation of SLUG mRNA and protein levels and up-regulation of PUMA mRNA and protein levels after SLUG siRNA transfection was showed in the HL-60ADR cells. Treatment with ADR induced SLUG mRNA and protein in the HL-60 cells. Significant positive correlation was observed between basal SLUG mRNA and protein and ADR sensitivity. SLUG gene silencing by SLUG siRNA transfection inhibited growth and induced apoptosis, and increased ADR killing of the HL-60 and HL-60ADR cell lines. After the SLUG siRNA transfected HL-60 and HL-60ADR cells was transiently transfected with PUMA siRNA, did not increase ADR killing of the HL-60 and HL-60ADR cell lines. Conclusion: SLUG level positively correlated with sensitivity to ADR. SLUG siRNA could effectively reduce SLUG expression and induce PUMA expression and restore the drug sensitivity of resistant leukemic cells to

  20. Overexpression of Promyelocytic Leukemia Protein Precludes the Dispersal of ND10 Structures and Has No Effect on Accumulation of Infectious Herpes Simplex Virus 1 or Its Proteins

    PubMed Central

    Lopez, Pascal; Jacob, Robert J.; Roizman, Bernard

    2002-01-01

    A key early event in the replication of herpes simplex virus 1 (HSV-1) is the localization of infected-cell protein no. 0 (ICP0) in nuclear structures knows as ND10 or promyelocytic leukemia oncogenic domains (PODs). This is followed by dispersal of ND10 constituents such as the promyelocytic leukemia protein (PML), CREB-binding protein (CBP), and Daxx. Numerous experiments have shown that this dispersal is mediated by ICP0. PML is thought to be the organizing structural component of ND10. To determine whether the virus targets PML because it is inimical to viral replication, telomerase-immortalized human foreskin fibroblasts and HEp-2 cells were transduced with wild-type baculovirus or a baculovirus expressing the Mr 69,000 form of PML. The transduced cultures were examined for expression and localization of PML in mock-infected and HSV-1-infected cells. The results obtained from studies of cells overexpressing PML were as follows. (i) Transduced cells accumulate large amounts of unmodified and SUMO-I-modified PML. (ii) Mock-infected cells exhibited enlarged ND10 structures containing CBP and Daxx in addition to PML. (iii) In infected cells, ICP0 colocalized with PML in ND10 early in infection, but the two proteins did not overlap or were juxtaposed in orderly structures. (iv) The enlarged ND10 structures remained intact at least until 12 h after infection and retained CBP and Daxx in addition to PML. (v) Overexpression of PML had no effect on the accumulation of viral proteins representative of α, β, or γ groups and had no effect on the accumulation of infectious virus in cells infected with wild-type virus or a mutant (R7910) from which the α0 genes had been deleted. These results indicate the following: (i) PML overexpressed in transduced cells cannot be differentiated from endogenous PML with respect to sumoylation and localization in ND10 structures. (ii) PML does not affect viral replication or the changes in the localization of ICP0 through infection

  1. Evidence for apoptosis of human macrophage-like HL-60 cells by Legionella pneumophila infection.

    PubMed Central

    Müller, A; Hacker, J; Brand, B C

    1996-01-01

    Legionella pneumophila, the causative agent of Legionnaires' disease and Pontiac fever, replicates within and eventually kills human macrophages. In this study, we show that L. pneumophila is cytotoxic to HL-60 cells, a macrophage-like cell line. We demonstrate that cell death mediated by L. pneumophila occurred at least in part through apoptosis, as shown by changes in nuclear morphology, an increase in the proportion of fragmented host cell DNA, and the typical ladder pattern of DNA fragmentation indicative of apoptosis. We further sought to determine whether potential virulence factors like the metalloprotease and the macrophage infectivity potentiator of L. pneumophila are involved in the induction of apoptosis. None of these factors are essential for the induction of apoptosis in HL-60 cells but may be involved in other cytotoxic mechanisms that lead to accidental cell death (necrosis). The ability of L. pneumophila to promote cell death may be important for the initiation of infection, bacterial survival, and escape from the host immune response. Alternatively, the triggering of apoptosis in response to bacterial infection may have evolved as a means of the host immune system to reduce or inhibit bacterial replication. PMID:8945524

  2. miR-299-5p promotes cell growth and regulates G1/S transition by targeting p21Cip1/Waf1 in acute promyelocytic leukemia

    PubMed Central

    WU, SHUN-QUAN; ZHANG, LANG-HUI; HUANG, HAO-BO; LI, YA-PING; NIU, WEN-YAN; ZHAN, RONG

    2016-01-01

    MicroRNAs (miRs) are often located in genomic breakpoint regions and are hypothesized to be important regulators involved in the regulation of critical cell processes, including cell apoptosis, proliferation and differentiation. miR-299 has been reported to be upregulated in acute promyelocytic leukemia (APL); however, the function and mechanistic role of miR-299 in APL remains unknown. The present study demonstrated mir-299 significantly induced cell growth and cell cycle progression at the G1/S transition in APL cells. Notably, the present study revealed that miR-299-5p induces these effects, whereas miR-299-3p does not. Additional studies demonstrated that in APL cells the tumor suppressor p21Cip1/Waf1 is a downstream target of miR-299; miR-299 binds directly to the 3′ untranslated region of p21Cip1/Waf1, and reduces protein, but not mRNA, levels of p21Cip1/Waf1. The present findings demonstrate that miR-299 exerts growth-promoting effects in APL cells through the suppression of p21Cip1/Waf1. Overall, the present study demonstrates that p21Cip1/Waf1 is a direct functional target of miR-299 in APL. PMID:27347210

  3. Long intergenic non-coding RNA HOTAIRM1 regulates cell cycle progression during myeloid maturation in NB4 human promyelocytic leukemia cells

    PubMed Central

    Zhang, Xueqing; Weissman, Sherman M; Newburger, Peter E

    2014-01-01

    HOTAIRM1 is a long intergenic non-coding RNA encoded in the human HOXA gene cluster, with gene expression highly specific for maturing myeloid cells. Knockdown of HOTAIRM1 in the NB4 acute promyelocytic leukemia cell line retarded all-trans retinoid acid (ATRA)-induced granulocytic differentiation, resulting in a significantly larger population of immature and proliferating cells that maintained cell cycle progression from G1 to S phases. Correspondingly, HOTAIRM1 knockdown resulted in retained expression of many otherwise ATRA-suppressed cell cycle and DNA replication genes, and abated ATRA induction of cell surface leukocyte activation, defense response, and other maturation-related genes. Resistance to ATRA-induced cell cycle arrest at the G1/S phase transition in knockdown cells was accompanied by retained expression of ITGA4 (CD49d) and decreased induction of ITGAX (CD11c). The coupling of cell cycle progression with temporal dynamics in the expression patterns of these integrin genes suggests a regulated switch to control the transit from the proliferative phase to granulocytic maturation. Furthermore, ITGAX was among a small number of genes showing perturbation in transcript levels upon HOTAIRM1 knockdown even without ATRA treatment, suggesting a direct pathway of regulation. These results indicate that HOTAIRM1 provides a regulatory link in myeloid maturation by modulating integrin-controlled cell cycle progression at the gene expression level. PMID:24824789

  4. Clinical Study on Prospective Efficacy of All-Trans Acid, Realgar-Indigo Naturalis Formula Combined with Chemotherapy as Maintenance Treatment of Acute Promyelocytic Leukemia

    PubMed Central

    Lu-Qun, Wang; Hao, Li; Xiao-Peng, He; Fang-Lin, Li; Ling-Ling, Wang; Xue-Liang, Chen; Ming, Hou

    2014-01-01

    Objectives. To test the efficiency and safety of sequential application of retinoic acid (ATRA), Realgar-Indigo naturalis formula (RIF) and chemotherapy (CT) were used as the maintenance treatment in patients with acute promyelocytic leukemia (APL). Methods. This was a retrospective study of 98 patients with newly diagnosed APL who accepted two different maintenance treatments. After remission induction and consolidation chemotherapy according to their Sanz scores, patients received two different kinds of maintenance scheme. The first regimen was using ATRA, RIF, and standard dose of CT sequentially (ATRA/RIF/CT regimen), while the second one was using ATRA and low dose of chemotherapy with methotrexate (MTX) plus 6-mercaptopurine (6-MP) alternately (ATRA/CTlow regimen). The OS, DFS, relapse rate, minimal residual disease, and adverse reactions in two groups were monitored and evaluated. Results. ATRA/RIF/CT regimen could effectively reduce the chance of relapse in different risk stratification of patients, but there was no significant difference in 5-year DFS rate and OS rate between the two groups. Besides, the patients in the experimental group suffered less severe adverse reactions than those in the control group. Conclusions. The repeated sequential therapeutic regimen to APL with ATRA, RIF, and chemotherapy is worth popularizing for its high effectiveness and low toxicity. PMID:24963332

  5. Design and stereoselective synthesis of retinoids with ferrocene or N-butylcarbazole pharmacophores that induce post-differentiation apoptosis in acute promyelocytic leukemia cells.

    PubMed

    Ivanova, Diana; Gronemeyer, Hinrich; de Lera, Angel R

    2011-08-01

    New ferrocene and N-alkylcarbazole retinoids were designed and synthesized stereoselectively in good yields. A number of these synthesized ligands, in particular 2, 3, and 11, were found to exhibit a high RARα activation potential and to effectively induce post-differentiation apoptosis in NB4 acute promyelocytic leukemia (APL) cells. Increasing the length of the side chain attached to the heterocycle of the carbazole arotinoids creates new opportunities for altered compound catabolism and for fine-tuning of the apoptosis-inducing potential of the ligand. In the carbazole series of new retinoids, maximal activity was established for N-butylcarbazole analogue 11 in all assays (i.e., RARα activation, differentiation induction, and apoptosis induction). Study of the mechanism of apoptosis revealed an activation of initiator caspases-8 and -9, followed by efficient cleavage of effector caspase-3 on day 6 of treatment. Subsequent induction of a caspase cascade in NB4 cells triggered ultimate leukemic cell death. The selected ligands 2, 3, and 11 may provide alternate options for the treatment of APL in cases of life-threatening ATRA syndrome, resistance, and high toxicity to conventionally used retinoids.

  6. Influence of time to complete remission and duration of all-trans retinoic acid therapy on the relapse risk in patients with acute promyelocytic leukemia receiving AIDA protocols.

    PubMed

    Breccia, Massimo; Minotti, Clara; Latagliata, Roberto; Loglisci, Giuseppina; Salaroli, Adriano; Loglisci, Maria Giovanna; Lo-Coco, Francesco

    2013-04-01

    Despite the impressive results obtained with standard chemotherapy, approximately 20% of acute promyelocytic leukemia (APL) patients undergo disease relapse thereby requiring salvage therapy. Few data is available on long-term prognosis in relation to time to complete remission (CR): we reviewed 142 patients treated with AIDA protocols and we found that 42 out of 142 (29.6%) patients achieved CR after 35 days (median time, 42 days). No significant differences in presenting features, including FAB subtype, type of PML/RARA transcript and relapse risk at presentation between the two patient groups achieving CR > or <35 days were revealed, except for male sex and older age that were significantly associated with delayed CR. Rate of relapse was 31% in patients with delayed CR compared to 17% in the group of patients who achieved CR<35 days (p=0.001), with a 5-year CIR of 29.6% compared to 12% (p=0.03). APL patients with delayed CR should be more closely monitored during follow-up for early identification of relapse and prompt administration of pre-emptive salvage therapy.

  7. Increased BMI correlates with higher risk of disease relapse and differentiation syndrome in patients with acute promyelocytic leukemia treated with the AIDA protocols.

    PubMed

    Breccia, Massimo; Mazzarella, Luca; Bagnardi, Vincenzo; Disalvatore, Davide; Loglisci, Giuseppina; Cimino, Giuseppe; Testi, Anna Maria; Avvisati, Giuseppe; Petti, Maria Concetta; Minotti, Clara; Latagliata, Roberto; Foà, Robin; Pelicci, Pier Giuseppe; Lo-Coco, Francesco

    2012-01-01

    We investigated whether body mass index (BMI) correlates with distinct outcomes in newly diagnosed acute promyelocytic leukemia (APL). The study population included 144 patients with newly diagnosed and genetically confirmed APL consecutively treated at a single institution. All patients received All-trans retinoic acid and idarubicin according to the GIMEMA protocols AIDA-0493 and AIDA-2000. Outcome estimates according to the BMI were carried out together with multivariable analysis for the risk of relapse and differentiation syndrome. Fifty-four (37.5%) were under/normal weight (BMI < 25), whereas 90 (62.5%) patients were overweight/obese (BMI ≥ 25). An increased BMI was associated with older age (P < .0001) and male sex (P = .02). BMI was the most powerful predictor of differentiation syndrome in multivariable analysis (odds ratio = 7.24; 95% CI, 1.50-34; P = .014). After a median follow-up of 6 years, the estimated cumulative incidence of relapse at 5 years was 31.6% (95% CI, 22.7%-43.8%) in overweight/obese and 11.2% (95% CI, 5.3%-23.8%) in underweight/normal weight patients (P = .029). Multivariable analysis showed that BMI was an independent predictor of relapse (hazard ratio = 2.45, 95% CI, 1.00-5.99, in overweight/obese vs under/normal weight patients, P = .049). An increased BMI at diagnosis is associated with a higher risk of developing differentiation syndrome and disease relapse in APL patients treated with AIDA protocols.

  8. Differentiation syndrome in patients with acute promyelocytic leukemia treated with all-trans retinoic acid and anthracycline chemotherapy: characteristics, outcome, and prognostic factors.

    PubMed

    Montesinos, Pau; Bergua, Juan M; Vellenga, Edo; Rayón, Chelo; Parody, Ricardo; de la Serna, Javier; León, Angel; Esteve, Jordi; Milone, Gustavo; Debén, Guillermo; Rivas, Concha; González, Marcos; Tormo, Mar; Díaz-Mediavilla, Joaquín; González, Jose D; Negri, Silvia; Amutio, Elena; Brunet, Salut; Lowenberg, Bob; Sanz, Miguel A

    2009-01-22

    Differentiation syndrome (DS) can be a life-threatening complication in patients with acute promyelocytic leukemia (APL) undergoing induction therapy with all-trans retinoic acid (ATRA). Detailed knowledge about DS has remained limited. We present an analysis of the incidence, characteristics, prognostic factors, and outcome of 739 APL patients treated with ATRA plus idarubicin in 2 consecutive trials (Programa Español de Tratamientos en Hematología [PETHEMA] LPA96 and LPA99). Overall, 183 patients (24.8%) experienced DS, 93 with a severe form (12.6%) and 90 with a moderate form (12.2%). Severe but not moderate DS was associated with an increase in mortality. A bimodal incidence of DS was observed, with peaks occurring in the first and third weeks after the start of ATRA therapy. A multivariate analysis indicated that a WBC count greater than 5 x 10(9)/L and an abnormal serum creatinine level correlated with an increased risk of developing severe DS. Patients receiving systematic prednisone prophylaxis (LPA99 trial) in contrast to those receiving selective prophylaxis with dexamethasone (LPA96 trial) had a lower incidence of severe DS. Patients developing severe DS showed a reduced 7-year relapse-free survival in the LPA96 trial (60% vs 85%, P = .003), but this difference was not apparent in the LPA99 trial (86% vs 88%).

  9. International Society of Thrombosis and Hemostasis Scoring System for disseminated intravascular coagulation ≥ 6: a new predictor of hemorrhagic early death in acute promyelocytic leukemia.

    PubMed

    Mitrovic, Mirjana; Suvajdzic, Nada; Bogdanovic, Andrija; Kurtovic, Nada Kraguljac; Sretenovic, Aleksandra; Elezovic, Ivo; Tomin, Dragica

    2013-03-01

    High-hemorrhagic early death (ED) rate is a major impediment in the managing of acute promyelocytic leukemia (APL). In our group of 56 newly diagnosed APL patients, ED occurred in 12 subjects, due to endocranial bleeding (8/12), differentiation syndrome (2/12), or infection (2/12). Predictors of hemorrhagic ED were as follows: white blood cells count ≥ 20 × 10(9)/L (P = 0.002337), Eastern cooperative oncology group performance status ≥ 3 (P = 0.00173), fibrinogen level <2 g/L (P = 0.004907), prothrombin time <50% (P = 0.0124), and International Society of Thrombosis and Hemostasis Scoring System for disseminated intravascular coagulation (ISTH DIC score) ≥ 6 (P = 0.00741). Multivariate analysis indicated ISTH DIC score ≥ 6 to be the most significant predictor for hemorrhagic ED (P = 0.008). The main finding of this study is that simple coagulation-related tests, performed on hospital admission and combined in the ISTH DIC score, might help to identify patients at high risk for fatal bleeding needing more aggressive supportive measures.

  10. Long-term efficacy and safety of all-trans retinoic acid/arsenic trioxide-based therapy in newly diagnosed acute promyelocytic leukemia.

    PubMed

    Hu, Jiong; Liu, Yuan-Fang; Wu, Chuan-Feng; Xu, Fang; Shen, Zhi-Xiang; Zhu, Yong-Mei; Li, Jun-Min; Tang, Wei; Zhao, Wei-Li; Wu, Wen; Sun, Hui-Ping; Chen, Qiu-Sheng; Chen, Bing; Zhou, Guang-Biao; Zelent, Arthur; Waxman, Samuel; Wang, Zhen-Yi; Chen, Sai-Juan; Chen, Zhu

    2009-03-01

    All-trans retinoic acid (ATRA)/arsenic trioxide (ATO) combination-based therapy has benefitted newly diagnosed acute promyelocytic leukemia (APL) in short-term studies, but the long-term efficacy and safety remained unclear. From April 2001, we have followed 85 patients administrated ATRA/ATO with a median follow-up of 70 months. Eighty patients (94.1%) entered complete remission (CR). Kaplan-Meier estimates of the 5-year event-free survival (EFS) and overall survival (OS) for all patients were 89.2% +/- 3.4% and 91.7% +/- 3.0%, respectively, and the 5-year relapse-free survival (RFS) and OS for patients who achieved CR (n = 80) were 94.8% +/- 2.5% and 97.4% +/- 1.8%, respectively. Upon ATRA/ATO, prognosis was not influenced by initial white blood cell count, distinct PML-RARalpha types, or FLT3 mutations. The toxicity profile was mild and reversible. No secondary carcinoma was observed, and 24 months after the last dose of ATRA/ATO, patients had urine arsenic concentrations well below the safety limit. These results demonstrate the high efficacy and minimal toxicity of ATRA/ATO treatment for newly diagnosed APL in long-term follow-up, suggesting a potential frontline therapy for de novo APL.

  11. Role of Promyelocytic Leukemia Zinc Finger (PLZF) in Cell Proliferation and Cyclin-dependent Kinase Inhibitor 1A (p21WAF/CDKN1A) Gene Repression*

    PubMed Central

    Choi, Won-Il; Kim, Min-Young; Jeon, Bu-Nam; Koh, Dong-In; Yun, Chae-Ok; Li, Yan; Lee, Choong-Eun; Oh, Jiyoung; Kim, Kunhong; Hur, Man-Wook

    2014-01-01

    Promyelocytic leukemia zinc finger (PLZF) is a transcription repressor that was initially isolated as a fusion protein with retinoic acid receptor α. PLZF is aberrantly overexpressed in various human solid tumors, such as clear cell renal carcinoma, glioblastoma, and seminoma. PLZF causes cellular transformation of NIH3T3 cells and increases cell proliferation in several cell types. PLZF also increases tumor growth in the mouse xenograft tumor model. PLZF may stimulate cell proliferation by controlling expression of the genes of the p53 pathway (ARF, TP53, and CDKN1A). We found that PLZF can directly repress transcription of CDKN1A encoding p21, a negative regulator of cell cycle progression. PLZF binds to the proximal Sp1-binding GC-box 5/6 and the distal p53-responsive elements of the CDKN1A promoter to repress transcription. Interestingly, PLZF interacts with Sp1 or p53 and competes with Sp1 or p53. PLZF interacts with corepressors, such as mSin3A, NCoR, and SMRT, thereby deacetylates Ac-H3 and Ac-H4 histones at the CDKN1A promoter, which indicated the involvement of the corepressor·HDACs complex in transcription repression by PLZF. Also, PLZF represses transcription of TP53 and also decreases p53 protein stability by ubiquitination. PLZF may act as a potential proto-oncoprotein in various cell types. PMID:24821727

  12. Severe stomatitis and ileocecal perforation developed after all-trans retinoic acid monotherapy in an HLA-B51-positive patient with acute promyelocytic leukemia.

    PubMed

    Kimura, Kenji; Takeuchi, Masahiro; Hasegawa, Nagisa; Togasaki, Emi; Shimizu, Ryoh; Kawajiri, Chika; Muto, Tomoya; Tsukamoto, Shokichi; Takeda, Yusuke; Ohwada, Chikako; Sakaida, Emiko; Sakai, Shio; Mimura, Naoya; Ota, Satoshi; Iseki, Tohru; Nakaseko, Chiaki

    2016-06-01

    A 34-year-old man who had been referred to our hospital was diagnosed with acute promyelocytic leukemia (APL). All-trans retinoic acid (ATRA), oral administration, was initiated. On day 25, he developed fever and respiratory distress with bilateral pulmonary infiltrates, suggesting differentiation syndrome (DS) caused by ATRA. These symptoms showed amelioration after discontinuing ATRA and initiating methylprednisolone. ATRA was re-started on day 29 at half the original dose because of residual APL blasts. The patient subsequently developed fever, severe stomatitis, and oropharyngeal ulcers, which persisted even after discontinuing ATRA. On day 48, he suddenly developed severe abdominal pain with free air, observable on an abdominal X-ray, and underwent emergency ileocecal resection. Pathological examination of the resected ileocecal intestines revealed multiple ulcers and perforations. No leukemic cell infiltration was observed. In this case, only ATRA was administered for APL treatment. These findings suggest that ileocecal ulcerations and perforations, as well as oropharyngeal ulcers, might have been caused by DS or ATRA. Furthermore, DNA typing of the HLA-B locus revealed that the patient had HLA-B51 associated with Behçet's disease. Therefore, hypercytokinemia with DS might have induced Behçet's disease-like symptoms, including stomatitis and ileocecal perforation, complications that are particularly observed in patients with HLA-B51. PMID:27384858

  13. Expression of retinoic acid receptor alpha mRNA in human leukemia cells.

    PubMed

    Largman, C; Detmer, K; Corral, J C; Hack, F M; Lawrence, H J

    1989-07-01

    The expression of the newly described human retinoic acid receptor alpha (RAR alpha) in six nonlymphoid and six lymphoid leukemia cell lines and nine freshly obtained samples of leukemia cells from patients with acute nonlymphoid leukemia was assessed by Northern blot analysis, using a full length cDNA clone of RAR alpha as probe. RAR alpha was expressed in all 12 cell lines and in all fresh leukemia samples as two major transcripts of 2.6 and 3.5 kb in size. Levels of RAR alpha expression and transcript sizes in retinoid-sensitive cells (such as HL60 or fresh promyelocytic leukemia cells) were not different from those in other samples. Moreover, expression of RAR alpha was not significantly modulated by exposure to cis-retinoic acid (cisRA) in either cisRA-responsive or unresponsive cells. By using a 3' fragment of the RAR alpha gene as a probe, we confirmed that the transcripts visualized did not represent the homologous RAR beta gene. RAR alpha appears to be expressed in most human leukemia cells regardless of the type of biologic response to retinoic acid.

  14. Raf-1 signaling is required for the later stages of 1,25-dihydroxyvitamin D3-induced differentiation of HL60 cells but is not mediated by the MEK/ERK module.

    PubMed

    Wang, Xuening; Studzinski, George P

    2006-11-01

    We are interested in determining the signaling pathways for 1,25-dihydroxyvitamin D3 (1,25D)-induced differentiation of HL60 leukemic cells. One possible candidate is Raf-1, which is known to signal cell proliferation and neoplastic transformation through MEK, ERK, and downstream targets. It can also participate in the regulation of cell survival and various forms of cell differentiation, though the precise pathways are less well delineated. Here we report that Raf-1 has a role in monocytic differentiation of human myeloid leukemia HL60, which is not mediated by MEK and ERK, but likely by direct interaction with p90RSK. Specifically, we show that Raf-1 and p90RSK are increasingly activated in the later stages of differentiation of HL60 cells, at the same time as activation of MEK and ERK is decreasing. Transfection of a wild-type Raf-1 construct enhances 1,25D-induced differentiation, while antisense Raf-1 or short interfering (si) Raf-1 reduces 1,25D-induced differentiation. In contrast, antisense oligodeoxynucleotides (ODN) and siRNAs to MEK or ERK have no detectable effect on differentiation. In late stage differentiating cells Raf-1 and p90RSK are found as a complex, and inhibition of Raf-1, but not MEK or ERK expression reduces the levels of phosphorylated p90 RSK. These findings support the thesis that Raf-1 signals cell proliferation and cell differentiation through different intermediary proteins.

  15. Coexistence of tetrasomy 8 and trisomy 8 in acute promyelocytic leukemia (AML-M3) with t(15;17)(q22;q12).

    PubMed

    Wang, Hui-Ping; Li, Guo-Xia; Qiao, Zhen-Hua; Ren, Wen-Ying; Wang, Hong-Wei

    2004-08-01

    This study was purposed to characterize the first case of acute promyelocitic leukemia (AML-M(3a)) with t(15;17), trisomy 8 and tetrasomy 8, and explore its characteristics of morphology, cytogenetics, molecular biology, immunology and clinical features. Morphological changes of peripheral blood and bone marrow smears were observed under microscope. Chromosome specimen was prepared by 24 h short-term culture of bone marrow cell, RHG-banding technique was used for karyotypic analysis. PML-RARa fusion gene transcript was detected by nested-reverse transcription-polymerase chain reaction (nested RT-PCR). Interphase fluorescence in situ hybridization (FISH) using chromosome 8 centromere specific probe were carried out to detect abnormal numbers of chromosome 8. Immunophenotypic analysis was performed by flow cytometry. The results showed that peripheral blood smear revealed 65% promyelocyte, and bone marrow aspirate was hypercellular with 72.4% promyelocyte, moderately basophilic cytoplasm with numerous azurophilic granules. Karyotype analysis demonstrated 48, XY, +8, +8, t(15;17)(q22;q12) [16]/47, XY, +8, t(15;17)(q22;q12) [3]/46, XY, t(15;17)(q22;q12) [1]. RT-PCR assay revealed PML-RARa fusion gene transcript (+). FISH showed that the percentages of cells exhibiting 1, 2, 3, 4, 5, 6 green fluorescence signals were 0.5, 7, 19, 55, 18 and 0.5, respectively. This confirmed the presence of tetrasomy 8 and trisomy 8 and also revealed a low percentage of a pentasomy 8 clone. Immunophenotypes of the blasts displayed that CD13 (96.2%), CD33 (55.9%), CYMPO (93.5%) were positive. All the lymphoid markers tested were negative. The patient survival time was just 10 days. It is concluded that tetrasomy 8 is secondary cytogenetic event after t(15;17) in this case. It may be a consequence of clonal evolution of trisomy 8. t(15;17) AML-M(3) with tetrasomy 8 heralds a poor prognosis. PMID:15363120

  16. Herbo-mineral ayurvedic treatment in a high risk acute promyelocytic leukemia patient with second relapse: 12 years follow up

    PubMed Central

    Prakash, Balendu; Parikh, Purvish M.; Pal, Sanjoy K.

    2010-01-01

    A 47 year old diabetic male patient was diagnosed and treated for high risk AML-M3 at Tata Memorial Hospital (BJ 17572), Mumbai in September 1995. His bone marrow aspiration cytology indicated 96% promyelocytes with abnormal forms, absence of lymphocytic series and myeloperoxide test 100% positive. Initially treated with ATRA, he achieved hematological remission on day 60, but cytogenetically the disease persisted. The patient received induction and consolidated chemotherapy with Daunorubicin and Cytarabine combination from 12.01.96 to 14.05.96, following which he achieved remission. However, his disease relapsed in February 97. The patient was given two cycles of chemotherapy with Idarubicine and Etoposide, after which he achieved remission. His disease again relapsed in December 97. The patient then refused more chemotherapy and volunteered for a pilot Ayurvedic study conducted by the Central Council for Research in Ayurveda and Siddha, New Delhi. The patient was treated with a proprietary Ayurvedic medicine Navajeevan, Kamadudha Rasa and Keharuba Pisti for one year. For the subsequent 5 years the patient received three months of intermittent Ayurvedic treatment every year. The patient achieved complete disease remission with the alternative treatment without any adverse side effects. The patient has so far completed 13 years of survival after the start of Ayurvedic therapy. PMID:21547051

  17. Herbo-mineral ayurvedic treatment in a high risk acute promyelocytic leukemia patient with second relapse: 12 years follow up.

    PubMed

    Prakash, Balendu; Parikh, Purvish M; Pal, Sanjoy K

    2010-07-01

    A 47 year old diabetic male patient was diagnosed and treated for high risk AML-M3 at Tata Memorial Hospital (BJ 17572), Mumbai in September 1995. His bone marrow aspiration cytology indicated 96% promyelocytes with abnormal forms, absence of lymphocytic series and myeloperoxide test 100% positive. Initially treated with ATRA, he achieved hematological remission on day 60, but cytogenetically the disease persisted. The patient received induction and consolidated chemotherapy with Daunorubicin and Cytarabine combination from 12.01.96 to 14.05.96, following which he achieved remission. However, his disease relapsed in February 97. The patient was given two cycles of chemotherapy with Idarubicine and Etoposide, after which he achieved remission. His disease again relapsed in December 97. The patient then refused more chemotherapy and volunteered for a pilot Ayurvedic study conducted by the Central Council for Research in Ayurveda and Siddha, New Delhi. The patient was treated with a proprietary Ayurvedic medicine Navajeevan, Kamadudha Rasa and Keharuba Pisti for one year. For the subsequent 5 years the patient received three months of intermittent Ayurvedic treatment every year. The patient achieved complete disease remission with the alternative treatment without any adverse side effects. The patient has so far completed 13 years of survival after the start of Ayurvedic therapy. PMID:21547051

  18. Solubility shift and SUMOylaltion of promyelocytic leukemia (PML) protein in response to arsenic(III) and fate of the SUMOylated PML

    SciTech Connect

    Hirano, Seishiro; Tadano, Mihoko; Kobayashi, Yayoi; Udagawa, Osamu; Kato, Ayaka

    2015-09-15

    Promyelocytic leukemia (PML), which is a tumor suppressor protein that nevertheless plays an important role in the maintenance of leukemia initiating cells, is known to be biochemically modified by As{sup 3+}. We recently developed a simple method to evaluate the modification of PML by As{sup 3+} resulting in a change in solubility and the covalent binding of small ubiquitin-like modifier (SUMO). Here we semi-quantitatively investigated the SUMOylation of PML using HEK293 cells which were stably transfected with PML-VI (HEK-PML). Western blot analyses indicated that PML became insoluble in cold RadioImmunoPrecipitation Assay (RIPA) lysis buffer and was SUMOylated by both SUMO2/3 and SUMO1 by As{sup 3+}. Surprisingly SUMO1 monomers were completely utilized for the SUMOylation of PML. Antimony (Sb{sup 3+}) but not bismuth (Bi{sup 3+}), Cu{sup 2+}, or Cd{sup 2+} biochemically modified PML similarly. SUMOylated PML decreased after removal of As{sup 3+} from the culture medium. However, unSUMOylated PML was still recovered in the RIPA-insoluble fraction, suggesting that SUMOylation is not requisite for changing the RIPA-soluble PML into the RIPA-insoluble form. Immunofluorescence staining of As{sup 3+}-exposed cells indicated that SUMO2/3 was co-localized with PML in the nuclear bodies. However, some PML protein was present in peri-nuclear regions without SUMO2/3. Functional Really Interesting New Gene (RING)-deleted mutant PML neither formed PML nuclear bodies nor was biochemically modified by As{sup 3+}. Conjugation with intracellular glutathione may explain the accessibility of As{sup 3+} and Sb{sup 3+} to PML in the nuclear region evading chelation and entrapping by cytoplasmic proteins such as metallothioneins. - Highlights: • As{sup 3+} is a carcinogen and also a therapeutic agent for leukemia. • PML becomes insoluble in RIPA and SUMOylated by As{sup 3+}. • Sb{sup 3+} modifies PML similar to As{sup 3+}. • Functional RING motif is necessary for As{sup 3

  19. Apoptosis induction by aluminum phthalocyanine tetrasulfonate-based sonodynamic therapy in HL-60 cells

    NASA Astrophysics Data System (ADS)

    Iwase, Yumiko; Yumita, Nagahiko; Nishi, Koji; Kuwahara, Hiroyuki; Fukai, Toshio; Ikeda, Toshihiko; Chen, Fu-shih; Momose, Yasunori; Umemura, Shin-ichiro

    2015-07-01

    The present study aims to investigate sonodynamically-induced apoptosis using the phthalocyanine, chloroaluminum phthalocyanine tetrasulfonate (AlPcTS). HL-60 cells were exposed to ultrasound for up to 3 min in the absence and presence of AlPcTS. Apoptosis was analyzed by cell morphology, DNA fragmentation, and caspase-3 activity. Electron spin resonance was used to measure reactive oxygen species. The number of apoptotic cells showing membrane blebbing and cell shrinkage after combined treatment (ultrasound and AlPcTS) was significantly higher than following other treatments, including ultrasound alone and AlPcTS alone. Furthermore, DNA ladder formation, caspase-3 activation and enhanced nitroxide generation were observed in cells treated with ultrasound and AlPcTS. Sonodynamically induced apoptosis, caspase-3 activation, and nitroxide generation were significantly suppressed by histidine. The significant reduction by histidine indicated that ultrasonically generated reactive oxygen species, such as singlet oxygen, is an important mediator of sonodynamically-induced apoptosis.

  20. Dimethylarsinic acid causes apoptosis in HL-60 cells via interaction with glutathione.

    PubMed

    Ochi, T; Nakajima, F; Sakurai, T; Kaise, T; Oya-Ohta, Y

    1996-01-01

    Inducibility of apoptosis in cultured human HL-60 cells by arsenic compounds, such as arsenite, arsenate, methylarsonic acid (MAA), and dimethylarsinic acid (DMAA), was investigated, together with the role of glutathione (GSH) in the induction. Among the arsenic compounds DMAA was the most potent in terms of the ability to cause the morphological changes (formation of nuclear fragmentation and apoptotic bodies) characteristic of apoptosis. Furthermore, fragmentation of internucleosomal DNA was also induced by DMAA. Depletion of cell GSH by L-buthionine-SR-sulfoximine, a selective inhibitor of gamma-glutamylcysteine synthetase, enhanced the cytotoxicity of arsenite, arsenate, and MAA, while such depletion suppressed the cytotoxicity of DMAA. The depletion of GSH also suppressed the morphological changes and the fragmentation of internucleosomal DNA caused by DMAA, both of which are characteristic features of apoptosis. The results suggest that the death of cells caused by DMAA is due to apoptosis and that GSH is involved in the induction of apoptosis by this arsenic compound.

  1. Association of phorbol ester-induced hyperphosphorylation and reversible regulation of transferrin membrane receptors in HL60 cells.

    PubMed Central

    May, W S; Jacobs, S; Cuatrecasas, P

    1984-01-01

    Phorbol diesters are tumor-promoting agents that cause differentiation of HL60 human leukemic cells and concomitantly alter surface transferrin-receptor expression [Rovera, G., Ferreo, D., Pagliardi, G. L., Vartikar, J., Pessano, S., Bottero, L., Abraham, S. & Lebman, D. (1982) Ann. N.Y. Acad. Sci. 397, 211-220]. Transferrin-receptor regulation is shown here to result from a rapid and reversible internalization process that is temporally associated with reversible increased phosphorylation (hyperphosphorylation) of the transferrin receptor. Such a reversible mechanism involving regulation of these surface proteins could result in the rapid generation of an early signal for HL60 cellular differentiation. Images PMID:6326098

  2. The mechanism of synergistic effects of arsenic trioxide and rapamycin in acute myeloid leukemia cell lines lacking typical t(15;17) translocation.

    PubMed

    Dembitz, Vilma; Lalic, Hrvoje; Ostojic, Alen; Vrhovac, Radovan; Banfic, Hrvoje; Visnjic, Dora

    2015-07-01

    Arsenic trioxide (ATO) has potent clinical activity in the treatment of patients with acute promyelocytic leukemia (APL), but is much less efficacious in acute myeloid leukemia (AML) lacking t(15;17) translocation. Recent studies have indicated that the addition of mammalian target of rapamycin (mTOR) inhibitors may increase the sensitivity of malignant cells to ATO. The aim of the present study was to test for possible synergistic effects of ATO and rapamycin at therapeutically achievable doses in non-APL AML cells. In HL-60 and U937 cell lines, the inhibitory effects of low concentrations of ATO and rapamycin were synergistic and more pronounced in U937 cells. The combination of drugs increased apoptosis in HL-60 cells and increased the percentage of cells in G(0)/G(1) phase in both cell lines. In U937 cells, rapamycin alone increased the activity of mitogen-activated protein kinase/extracellular signal-regulated kinase (MAPK/ERK) and the addition of ATO decreased the level of phosphorylated ERK, Ser473 phosphorylated Akt and anti-apoptotic Mcl-1 protein. Primary AML cells show high sensitivity to growth-inhibitory effects of rapamycin alone or in combination with ATO. The results of the present study reveal the mechanism of the synergistic effects of two drugs at therapeutically achievable doses in non-APL AML cells. PMID:25758096

  3. Azidothymidine hinders arsenic trioxide-induced apoptosis in acute promyelocytic leukemia cells by induction of p21 and attenuation of G2/M arrest.

    PubMed

    Hassani, Saeed; Ghaffari, Seyed H; Zaker, Farhad; Mirzaee, Rohellah; Mardani, Hajar; Bashash, Davood; Zekri, Ali; Yousefi, Meysam; Zaghal, Azam; Alimoghaddam, Kamran; Ghavamzadeh, Ardeshir

    2013-09-01

    To enhance anticancer efficacy of the arsenic trioxide (ATO), the combination of ATO and azidothymidine (AZT), with convergence anti-telomerase activity, were examined on acute promyelocytic leukemia (APL) cell line, NB4. In spite of an induction of apoptosis by both drugs separately and a synergistic effect of them on hTERT down-regulation and telomerase inhibition, the ATO-induced cytotoxicity was reduced when it was used in combination with AZT. AZT attenuated the ATO effects on viability, metabolic activity, DNA synthesis, and apoptosis. These observations, despite the deflection from the main goal of this study, dedicate an especial opportunity to elucidate the importance of some of the mechanisms that have been suggested by which ATO induces apoptosis. Cell cycle distribution, ROS level, and caspase-3 activation analyses suggest that AZT reduced the ATO-induced cytotoxic effect possibly via relative induction and diminution of cells accumulated in (G1, S) and (G2/M) phase, respectively, as well as through attenuation of ROS generation and subsequent caspase-3 inhibition. QRT-PCR assay revealed that induction of p21expression by the combined AZT/ATO compared to ATO alone could be a reason for the relative decline of cells accumulation in G2/M and the increase of cells in G1 and S phases. Therefore, the G2/M arrest and ROS generation are likely principle mediators for the ATO-induced apoptosis and can be used as a guide to design rational combinatorial strategies involving ATO and agents with G2/M arrest or ROS generation capacity to intensify ATO-induced apoptosis.

  4. MIR125B1 represses the degradation of the PML-RARA oncoprotein by an autophagy-lysosomal pathway in acute promyelocytic leukemia.

    PubMed

    Zeng, Cheng-Wu; Chen, Zhen-Hua; Zhang, Xing-Ju; Han, Bo-Wei; Lin, Kang-Yu; Li, Xiao-Juan; Wei, Pan-Pan; Zhang, Hua; Li, Yangqiu; Chen, Yue-Qin

    2014-10-01

    Acute promyelocytic leukemia (APL) is characterized by the t(15;17)-associated PML-RARA fusion gene. We have previously found that MIR125B1 is highly expressed in patients with APL and may be associated with disease pathogenesis; however, the mechanism by which MIR125B1 exerts its oncogenic potential has not been fully elucidated. Here, we demonstrated that MIR125B1 abundance correlates with the PML-RARA status. MIR125B1 overexpression enhanced PML-RARA expression and inhibited the ATRA-induced degradation of the PML-RARA oncoprotein. RNA-seq analysis revealed a direct link between the PML-RARA degradation pathway and MIR125B1-arrested differentiation. We further demonstrated that the MIR125B1-mediated blockade of PML-RARA proteolysis was regulated via an autophagy-lysosomal pathway, contributing to the inhibition of APL differentiation. Furthermore, we identified DRAM2 (DNA-damage regulated autophagy modulator 2), a critical regulator of autophagy, as a novel target that was at least partly responsible for the function of MIR125B1 involved in autophagy. Importantly, the knockdown phenotypes for DRAM2 are similar to the effects of overexpressing MIR125B1 as impairment of PML-RARA degradation, inhibition of autophagy, and myeloid cell differentiation arrest. These effects of MIR125B1 and its target DRAM2 were further confirmed in an APL mouse model. Thus, MIR125B1 dysregulation may interfere with the effectiveness of ATRA-mediated differentiation through an autophagy-dependent pathway, representing a novel potential APL therapeutic target.

  5. Treatment-influenced associations of PML-RARα mutations, FLT3 mutations, and additional chromosome abnormalities in relapsed acute promyelocytic leukemia

    PubMed Central

    Moser, Barry K.; Racevskis, Janis; Poiré, Xavier; Bloomfield, Clara D.; Carroll, Andrew J.; Ketterling, Rhett P.; Roulston, Diane; Schachter-Tokarz, Esther; Zhou, Da-cheng; Chen, I-Ming L.; Harvey, Richard; Koval, Greg; Sher, Dorie A.; Feusner, James H.; Tallman, Martin S.; Larson, Richard A.; Powell, Bayard L.; Appelbaum, Frederick R.; Paietta, Elisabeth; Willman, Cheryl L.; Stock, Wendy

    2012-01-01

    Mutations in the all-trans retinoic acid (ATRA)–targeted ligand binding domain of PML-RARα (PRα/LBD+) have been implicated in the passive selection of ATRA-resistant acute promyelocytic leukemia clones leading to disease relapse. Among 45 relapse patients from the ATRA/chemotherapy arm of intergroup protocol C9710, 18 patients harbored PRα/LBD+ (40%), 7 of whom (39%) relapsed Off-ATRA selection pressure, suggesting a possible active role of PRα/LBD+. Of 41 relapse patients coanalyzed, 15 (37%) had FMS-related tyrosine kinase 3 internal tandem duplication mutations (FLT3-ITD+), which were differentially associated with PRα/LBD+ depending on ATRA treatment status at relapse: positively, On-ATRA; negatively, Off-ATRA. Thirteen of 21 patients (62%) had additional chromosome abnormalities (ACAs); all coanalyzed PRα/LBD mutant patients who relapsed off-ATRA (n = 5) had associated ACA. After relapse Off-ATRA, ACA and FLT3-ITD+ were negatively associated and were oppositely associated with presenting white blood count and PML-RARα type: ACA, low, L-isoform; FLT3-ITD+, high, S-isoform. These exploratory results suggest that differing PRα/LBD+ activities may interact with FLT3-ITD+ or ACA, that FLT3-ITD+ and ACA are associated with different intrinsic disease progression pathways manifest at relapse Off-ATRA, and that these different pathways may be short-circuited by ATRA-selectable defects at relapse On-ATRA. ACA and certain PRα/LBD+ were also associated with reduced postrelapse survival. PMID:22734072

  6. Aquaporin 9, a promising predictor for the cytocidal effects of arsenic trioxide in acute promyelocytic leukemia cell lines and primary blasts.

    PubMed

    Iriyama, Noriyoshi; Yuan, Bo; Yoshino, Yuta; Hatta, Yoshihiro; Horikoshi, Akira; Aizawa, Shin; Takeuchi, Jin; Toyoda, Hiroo

    2013-06-01

    A close correlation between the cytocidal effects of arsenic trioxide (ATO) and aquaporin-9 (AQP9) expression levels has been proposed, yet detailed studies are still needed to confirm this association. Thus, in the present study, the correlation between the expression levels of AQP9 and sensitivity to ATO was investigated using two acute promyelocytic leukemia (APL) cell lines, NB4 and HT93A, as well as primary APL cells from newly diagnosed and relapsed APL patients. A substantially higher sensitivity to ATO-mediated induction of apoptosis was observed in the NB4 cells when compared to that in the HT93A cells. In addition, markedly higher expression levels of AQP9, as assessed using flow cytometry, along with more intracellular arsenic accumulation, were observed in the NB4 cells. More importantly, similar to APL cell lines, the trend of expression levels of AQP9 correlated closely with the differential sensitivity to ATO-mediated induction of apoptosis in primary APL cells. In contrast, no correlation was observed between ATO sensitivity associated with AQP9 expression levels and the expression profiles of cell surface markers as well as chromosomal alterations. These results provide direct evidence that the expression levels of AQP9, rather than other biomarkers such as cell surface markers and chromosomal alterations, correlate closely with the sensitivity to ATO in both APL cell lines and primary blasts. These findings suggest that the AQP9 expression status of APL patients is a predictive marker for the successful outcome of ATO treatment, since AQP9 plays a pivotal role in various arsenite-mediated biological effects on normal and cancer cells. Moreover, flow cytometry may be a new convenient and valuable tool for analyzing the AQP9 status of APL patients compared to current methods such as western blotting.

  7. All-Trans Retinoic Acid plus Arsenic Trioxide versus All-Trans Retinoic Acid plus Chemotherapy for Newly Diagnosed Acute Promyelocytic Leukemia: A Meta-Analysis

    PubMed Central

    Ma, Yafang; Liu, Lu; Jin, Jie; Lou, Yinjun

    2016-01-01

    Background Recently, the all-trans retinoic acid (ATRA) plus arsenic trioxide (ATO) protocol has become a promising first-line therapeutic approach in patients with newly diagnosed acute promyelocytic leukemia (APL), but its benefits compared with standard ATRA plus chemotherapy regimen needs to be proven. Herein, we conducted a meta-analysis comparing the efficacy of ATRA plus ATO with ATRA plus chemotherapy for adult patients with newly diagnosed APL. Methods We systematically searched biomedical electronic databases and conference proceedings through February 2016. Two reviewers independently assessed all studies for relevance and validity. Results Overall, three studies were eligible for inclusion in this meta-analysis, which included a total of 585 patients, with 317 in ATRA plus ATO group and 268 in ATRA plus chemotherapy group. Compared with patients who received ATRA and chemotherapy, patients who received ATRA plus ATO had a significantly better event-free survival (hazard ratio [HR] = 0.38, 95% confidence interval [CI]: 0.22–0.67, p = 0.009), overall survival (HR = 0.44, 95% CI: 0.24–0.82, p = 0.009), complete remission rate (relative risk [RR] = 1.05; 95% CI: 1.01–1.10; p = 0.03). There were no significant differences in early mortality (RR = 0.48; 95% CI: 0.22–1.05; p = 0.07). Conclusion Thus, this analysis indicated that ATRA plus ATO protocol may be preferred to standard ATRA plus chemotherapy protocol, particularly in low-to-intermediate risk APL patients. Further larger trials were needed to provide more evidence in high-risk APL patients. PMID:27391027

  8. Examining the lateral displacement of HL60 cells rolling on asymmetric P-selectin patterns.

    PubMed

    Lee, Chia-Hua; Bose, Suman; Van Vliet, Krystyn J; Karp, Jeffrey M; Karnik, Rohit

    2011-01-01

    The lateral displacement of cells orthogonal to a flow stream by rolling on asymmetrical receptor patterns presents a new opportunity for the label-free separation and analysis of cells. Understanding the nature of cell rolling trajectories on such substrates is necessary to the engineering of substrates and the design of devices for cell separation and analysis. Here, we investigate the statistical nature of cell rolling and the effect of pattern geometry and flow shear stress on cell rolling trajectories using micrometer-scale patterns of biomolecular receptors with well-defined edges. Leukemic myeloid HL60 cells expressing the PSGL-1 ligand were allowed to flow across a field of patterned lines fabricated using microcontact printing and functionalized with the P-selectin receptor, leveraging both the specific adhesion of this ligand-receptor pair and the asymmetry of the receptor pattern inclination angle with respect to the fluid shear flow direction (α = 5, 10, 15, and 20°). The effects of the fluid shear stress magnitude (τ = 0.5, 1, 1.5, and 2.0 dyn/cm(2)), α, and P-selectin incubation concentration were quantified in terms of the rolling velocity and edge tracking length. Rolling cells tracked along the inclined edges of the patterned lines before detaching and reattaching on another line. The detachment of rolling cells after tracking along the edge was consistent with a Poisson process of history-independent interactions. Increasing the edge inclination angle decreased the edge tracking length in an exponential manner, contrary to the shear stress magnitude and P-selectin incubation concentration, which did not have a significant effect. On the basis of these experimental data, we constructed an empirical model that predicted the occurrence of the maximum lateral displacement at an edge angle of 7.5°. We also used these findings to construct a Monte Carlo simulation for the prediction of rolling trajectories of HL60 cells on P

  9. The intracellular distribution of inositol polyphosphates in HL60 promyeloid cells.

    PubMed Central

    Stuart, J A; Anderson, K L; French, P J; Kirk, C J; Michell, R H

    1994-01-01

    1. HL60 promyeloid cells contain high intracellular concentrations of inositol polyphosphates, notably inositol 1,3,4,5,6-pentakisphosphate (InsP5) and inositol hexakisphosphate (InsP6). To determine their intracellular location(s), we studied the release of inositol (poly)phosphates, of ATP, and of cytosolic and granule-enclosed enzymes from cells permeabilized by four different methods. 2. When cells were treated with digitonin, all of the inositol phosphates were released in parallel with the cytosolic constituents. Most of the InsP5 and InsP6 was released before significant permeabilization of azurophil granules. 3. Similar results were obtained from cells preloaded with ethylene glycol and permeabilized by osmotic lysis. 4. Electroporation at approximately 500 V/cm caused rapid release of free inositol. Higher field strengths provoked release of most of the ATP, InsP5 and InsP6, but only slight release of the intracellular enzymes. Multiple discharges released approximately 80-90% of total InsP5 and InsP6. In the absence of bivalent-cation chelators, InsP5 and InsP6 were released less readily than ATP. 5. Treatment of cells with Staphylococcus aureus alpha-toxin caused quantitative release of inositol and ATP, without release of intracellular enzymes. However, inositol phosphates were released much less readily than inositol or ATP. Even after prolonged incubation with a high concentration of alpha-toxin, only approximately 50-70% of InsP2, InsP3 and InsP4 and < or = 20% of InsP5 and InsP6 were released, indicating that the high charge or large hydrated radius of InsP5 and InsP6 might limit their release through small toxin-induced pores. 6. These results indicate that most intracellular inositol metabolites are either in, or in rapid exchange with, the cytosolic compartment of HL60 cells. However, they leave open the possibility that a small proportion of cellular InsP5 and InsP6 (< or = 10-20%) might be in some intracellular bound form. Images Figure 2 PMID

  10. Regulation of shear stress on rolling behaviors of HL-60 cells on P-selectin

    NASA Astrophysics Data System (ADS)

    Ling, YingChen; Fang, Ying; Yang, XiaoFang; Li, QuHuan; Lin, QinYong; Wu, JianHua

    2014-10-01

    Circulating leukocytes in trafficking to the inflammatory sites, will be first tether to, and then roll on the vascular surface. This event is mediated through specific interaction of P-selectin and P-selectin glycoprotein ligand-1 (PSGL-1), and regulated by hemodynamics. Poor data were reported in understanding P-selectin-mediated rolling. With the flow chamber technique, we herein observed HL-60 cell rolling on P-selectin with or without 3% Ficoll at various wall shear stresses from 0.05 to 0.4 dyn/cm2. The results demonstrated that force rather than transport regulated the rolling, similar to rolling on L- and E-selectin. The rolling was accelerated quickly by an increasing force below the optimal shear threshold of 0.15 dyn/cm2 first and then followed by a slowly decelerating phase starting at the optimum, showing a catch-slip transition and serving as a mechanism for the rolling. The catch-slip transition was completely reflected to the tether lifetime and other rolling parameters, such as the mean and fractional stop time. The narrow catch bond regime stabilized the rolling quickly, through steeply increasing fractional stop time to a plateau of about 0.85. Data presented here suggest that the low shear stress threshold serves as a mechanism for most cell rolling events through P-selectin.

  11. Retrotransposon Alu is enriched in the epichromatin of HL-60 cells.

    PubMed

    Olins, Ada L; Ishaque, Naveed; Chotewutmontri, Sasithorn; Langowski, Jörg; Olins, Donald E

    2014-01-01

    Epichromatin, the surface of chromatin facing the nuclear envelope in an interphase nucleus, reveals a "rim" staining pattern with specific mouse monoclonal antibodies against histone H2A/H2B/DNA and phosphatidylserine epitopes. Employing a modified ChIP-Seq procedure on undifferentiated and differentiated human leukemic (HL-60/S4) cells,>95% of assembled epichromatin regions overlapped with Alu retrotransposons. They also exhibited enrichment of the AluS subfamily and of Alu oligomers. Furthermore, mapping epichromatin regions to the human chromosomes revealed highly similar localization patterns in the various cell states and with the different antibodies. Comparisons with available epigenetic databases suggested that epichromatin is neither "classical" heterochromatin nor highly expressing genes, implying another function at the surface of interphase chromatin. A modified chromatin immunoprecipitation procedure (xxChIP) was developed because the studied antibodies react generally with mononucleosomes and lysed chromatin. A second fixation is necessary to securely attach the antibodies to the epichromatin epitopes of the intact nucleus. PMID:24824428

  12. Promyelocytic leukemia zinc finger-retinoic acid receptor α (PLZF-RARα), an oncogenic transcriptional repressor of cyclin-dependent kinase inhibitor 1A (p21WAF/CDKN1A) and tumor protein p53 (TP53) genes.

    PubMed

    Choi, Won-Il; Yoon, Jae-Hyeon; Kim, Min-Young; Koh, Dong-In; Licht, Jonathan D; Kim, Kunhong; Hur, Man-Wook

    2014-07-01

    Promyelocytic leukemia zinc finger-retinoic acid receptor α (PLZF-RARα) is an oncogene transcriptional repressor that is generated by a chromosomal translocation between the PLZF and RARα genes in acute promyelocytic leukemia (APL-type) patients. The molecular interaction between PLZF-RARα and the histone deacetylase corepressor was proposed to be important in leukemogenesis. We found that PLZF-RARα can repress transcription of the p21WAF/CDKN1A gene, which encodes the negative cell cycle regulator p21 by binding to its proximal promoter Sp1-binding GC-boxes 3, 4, 5/6, a retinoic acid response element (RARE), and distal p53-responsive elements (p53REs). PLZF-RARα also acts as a competitive transcriptional repressor of p53, RARα, and Sp1. PLZF-RARα interacts with co-repressors such as mSin3A, NCoR, and SMRT, thereby deacetylating histones Ac-H3 and Ac-H4 at the CDKN1A promoter. PLZF-RARα also interacts with the MBD3-NuRD complex, leading to epigenetic silencing of CDKN1A through DNA methylation. Furthermore, PLZF-RARα represses TP53 and increases p53 protein degradation by ubiquitination, further repressing p21 expression. Resultantly, PLZF-RARα promotes cell proliferation and significantly increases the number of cells in S-phase.

  13. Promyelocytic Leukemia Zinc Finger-Retinoic Acid Receptor α (PLZF-RARα), an Oncogenic Transcriptional Repressor of Cyclin-dependent Kinase Inhibitor 1A (p21WAF/CDKN1A) and Tumor Protein p53 (TP53) Genes*

    PubMed Central

    Choi, Won-Il; Yoon, Jae-Hyeon; Kim, Min-Young; Koh, Dong-In; Licht, Jonathan D.; Kim, Kunhong; Hur, Man-Wook

    2014-01-01

    Promyelocytic leukemia zinc finger-retinoic acid receptor α (PLZF-RARα) is an oncogene transcriptional repressor that is generated by a chromosomal translocation between the PLZF and RARα genes in acute promyelocytic leukemia (APL-type) patients. The molecular interaction between PLZF-RARα and the histone deacetylase corepressor was proposed to be important in leukemogenesis. We found that PLZF-RARα can repress transcription of the p21WAF/CDKN1A gene, which encodes the negative cell cycle regulator p21 by binding to its proximal promoter Sp1-binding GC-boxes 3, 4, 5/6, a retinoic acid response element (RARE), and distal p53-responsive elements (p53REs). PLZF-RARα also acts as a competitive transcriptional repressor of p53, RARα, and Sp1. PLZF-RARα interacts with co-repressors such as mSin3A, NCoR, and SMRT, thereby deacetylating histones Ac-H3 and Ac-H4 at the CDKN1A promoter. PLZF-RARα also interacts with the MBD3-NuRD complex, leading to epigenetic silencing of CDKN1A through DNA methylation. Furthermore, PLZF-RARα represses TP53 and increases p53 protein degradation by ubiquitination, further repressing p21 expression. Resultantly, PLZF-RARα promotes cell proliferation and significantly increases the number of cells in S-phase. PMID:24821728

  14. JC virus inclusions in progressive multifocal leukoencephalopathy: scaffolding promyelocytic leukemia nuclear bodies grow with cell cycle transition through an S-to-G2-like state in enlarging oligodendrocyte nuclei.

    PubMed

    Shishido-Hara, Yukiko; Yazawa, Takuya; Nagane, Motoo; Higuchi, Kayoko; Abe-Suzuki, Shiho; Kurata, Morito; Kitagawa, Masanobu; Kamma, Hiroshi; Uchihara, Toshiki

    2014-05-01

    In progressive multifocal leukoencephalopathy, JC virus-infected oligodendroglia display 2 distinct patterns of intranuclear viral inclusions: full inclusions in which progeny virions are present throughout enlarged nuclei and dot-shaped inclusions in which virions are clustered in subnuclear domains termed "promyelocytic leukemia nuclear bodies" (PML-NBs). Promyelocytic leukemia nuclear bodies may serve a scaffolding role in viral progeny production. We analyzed the formation process of intranuclear viral inclusions by morphometry and assessed PML-NB alterations in the brains of 2 patients with progressive multifocal leukoencephalopathy. By immunohistochemistry, proliferating cell nuclear antigen was most frequently detected in smaller nuclei; cyclin A was detected in larger nuclei. This suggests an S-to-G2 cell cycle transition in infected cells associated with nuclear enlargement. Sizes of PML-NBs were variable, but they were usually either small speckles 200 to 400 nm in diameter or distinct spherical shells with a diameter of 1 μm or more. By confocal microscopy, JC virus capsid proteins were associated with both small and large PML-NBs, but disruption of large PML-NBs was observed by ground-state depletion fluorescence nanoscopy. Clusters of progeny virions were also detected by electron microscopy. Our data suggest that, in progressive multifocal leukoencephalopathy, JC virus produces progeny virions in enlarging oligodendrocyte nuclei in association with growing PML-NBs and with cell cycle transition through an S-to-G2-like state.

  15. Risk-adapted treatment of acute promyelocytic leukemia based on all-trans retinoic acid and anthracycline with addition of cytarabine in consolidation therapy for high-risk patients: further improvements in treatment outcome.

    PubMed

    Sanz, Miguel A; Montesinos, Pau; Rayón, Chelo; Holowiecka, Alexandra; de la Serna, Javier; Milone, Gustavo; de Lisa, Elena; Brunet, Salut; Rubio, Vicente; Ribera, José M; Rivas, Concha; Krsnik, Isabel; Bergua, Juan; González, José; Díaz-Mediavilla, Joaquín; Rojas, Rafael; Manso, Félix; Ossenkoppele, Gert; González, José D; Lowenberg, Bob

    2010-06-24

    A risk-adapted strategy based on all-trans retinoic acid (ATRA) and anthracycline monochemotherapy (PETHEMA LPA99 trial) has demonstrated a high antileukemic efficacy in acute promyelocytic leukemia. We designed a new trial (LPA2005) with the objective of achieving stepwise improvements in outcome. Between July 2005 and April 2009, low- and intermediate-risk patients (leukocytes < 10 x 10(9)/L) received a reduced dose of mitoxantrone for the second consolidation course, whereas high- risk patients younger than 60 years of age received cytarabine combined with ATRA and idarubicin in the first and third consolidation courses. Of 372 patients attaining complete remission after ATRA plus idarubicin (92.5%), 368 proceeded to consolidation therapy. For low- and intermediate-risk patients, duration of neutropenia and thrombocytopenia and hospital stay were significantly reduced without sacrificing antileukemic efficacy, compared with the previous LPA99 trial. For high-risk patients, the 3-year relapse rate was significantly lower in the LPA2005 trial (11%) than in the LPA99 (26%; P = .03). Overall disease-free survival was also better in the LPA2005 trial (P = .04). In conclusion, the lower dose of mitoxantrone resulted in a significant reduction of toxicity and hospital stay while maintaining the antileukemic activity, and the combination of ATRA, idarubicin, and cytarabine for high-risk acute promyelocytic leukemia significantly reduced the relapse rate in this setting. Registered at http://www.clinicaltrials.gov as NCT00408278.

  16. Budgetary impact of treating acute promyelocytic leukemia patients with first-line arsenic trioxide and retinoic acid from an Italian payer perspective.

    PubMed

    Kruse, Morgan; Wildner, Rebecca; Barnes, Gisoo; Martin, Monique; Mueller, Udo; Lo-Coco, Francesco; Pathak, Ashutosh

    2015-01-01

    The objective of this study was to estimate the net cost of arsenic trioxide (ATO) added to all-trans retinoic acid (ATRA) compared to ATRA plus chemotherapy when used in first-line acute promyelocytic leukemia (APL) treatment for low to intermediate risk patients from the perspective of the overall Italian healthcare systemA Markov model was developed with 3 health states: stable disease, disease event and death. Each month, patients could move from stable to disease event or die from either state. After a disease event, patients discontinued initial treatment and switched to the other regimen as second-line therapy. Treatment regimens, efficacy and adverse events were derived from published sources and expert opinion; unit costs were collected from standard Italian sources. Clinical outcomes and costs for pre-ATO and post-ATO scenarios were combined with population and product utilization information to calculate the total budgetary impact using a 3-year time horizon; one-way sensitivity analyses were conducted. Three-year cumulative pharmacy costs for ATO+ATRA were €46,700 per-patient versus €6,500 for ATRA+chemotherapy; however, medical costs for ATO+ATRA were €12,300 per-patient versus €30,200 for ATRA+chemotherapy. The total budgetary impact was estimated to be an additional €127,300, €312,500 and €477,800 in the first, second and third years, respectively. The model was most sensitive to changes in the cost of the ATO+ATRA regimen during the consolidation phase. Budgetary impact models are valuable to payers making formulary decisions regarding the access and affordability of new medicines. The cost of treatment analysis showed that pharmacy costs for ATO+ATRA were higher than for ATRA+chemotherapy, while all other evaluated costs were lower for ATO+ATRA treated patients. The average budgetary impact was €305,900 per year overall, representing a 3.5% increase. Further research is needed to determine the cost-effectiveness of ATO+ATRA compared

  17. Quercus Suber L. Cork Extracts Induce Apoptosis in Human Myeloid Leukaemia HL-60 Cells.

    PubMed

    Bejarano, Ignacio; Godoy-Cancho, Belén; Franco, Lourdes; Martínez-Cañas, Manuel A; Tormo, María A

    2015-08-01

    Quercus suber L. cork contains a diversity of phenolic compounds, mostly low molecular weight phenols. A rising number of reports support with convergent findings that polyphenols evoke pro-apoptotic events in cancerous cells. However, the literature related to the anti-cancer bioactivity of Q. suber L. cork extractives (QSE) is still limited. Herein, we aim to describe the antitumor potential displayed by cork extractives obtained by different extraction methods in the human promyelocytic leukaemia cells. In order to quantify the effects of QSE on cancer cells viability, phosphatidylserine exposure, caspase-3 activity, mitochondrial membrane potential and cell cycle were evaluated. The results indicated that the QSE present a time-dependent and dose-dependent cytotoxicity in the human promyelocytic leukaemia cells. Such a noxious effect leads these leukaemia cells to their death through apoptotic processes by altering the mitochondrial outer membrane potential, activating caspase-3 and externalizing phosphatidylserine. However, cells cycle progression was not affected by the treatments. This study contributes to open a new way to use this natural resource by exploiting its anti-cancer properties. Moreover, it opens new possibilities of application of cork by-products, being more efficient in the sector of cork-based agriculture. Copyright © 2015 John Wiley & Sons, Ltd.

  18. Negative prognostic value of CD34 antigen also if expressed on a small population of acute promyelocytic leukemia cells.

    PubMed

    Breccia, Massimo; De Propris, Maria Stefania; Stefanizzi, Caterina; Raponi, Sara; Molica, Matteo; Colafigli, Gioia; Minotti, Clara; Latagliata, Roberto; Diverio, Daniela; Guarini, Anna; Foà, Robin

    2014-11-01

    Potential clinical significance of CD34 expression in acute promyelocitic leukemia (APL) has not been deeply investigated. We hereby analyzed the clinico-biological features and treatment outcome of APL patients in relation to CD34 expression, even when expressed in a small subpopulation: 114 APL patients homogeneously treated with the AIDA schedule were included in the study and prognostic correlation with respect to CD34 expression, both when expressed in association with CD2 and as isolated expression (cutoff ≥2 to <10 % or ≥10 %), were investigated. CD34 was associated to CD2 in 30 patients and was isolated in 19 patients. When compared to the CD34-negative population, CD34/CD2 expression identified a subgroup with characteristic features: M3 variant subtype (26 vs 7 % in the negative group, p = 0.02), bcr3 transcript subtype (73 vs 32 %, p = 0.001), high risk according to the risk of relapse (66 vs 17 %, p = 0.002), high incidence of differentiation syndrome (26 vs 12 %, p = 0.01), lower overall survival (88 vs 95 %), and a significantly higher rate of relapse (22 vs 13.8 %, p = 0.05). We then evaluated the prognostic value of isolated CD34 expression: it was detected in nine patients with a cutoff of expression ≥10 % and in 10 patients with a cutoff ≥2 but <10 %. Isolated CD34 positivity identified a subgroup with a classic morphology (79 %), bcr1 prevalence (53 %), higher rate of relapse (37 vs 13.8 % in the negative group, p = 0.002), higher incidence of differentiation syndrome (55 vs 12 %, p = 0.03), and lower overall survival (60 vs 95 %, p = 0.001). The results of our study confirm that CD34/CD2 expression characterizes a subset of APL with a high WBC count and a variant morphological subtype, associated with an unfavorable clinical course. We also show that the isolated expression of CD34, even at a low cutoff, identifies a group of classic APL with a negative prognosis. Further studies aimed at identifying other

  19. Negative prognostic value of CD34 antigen also if expressed on a small population of acute promyelocytic leukemia cells.

    PubMed

    Breccia, Massimo; De Propris, Maria Stefania; Stefanizzi, Caterina; Raponi, Sara; Molica, Matteo; Colafigli, Gioia; Minotti, Clara; Latagliata, Roberto; Diverio, Daniela; Guarini, Anna; Foà, Robin

    2014-11-01

    Potential clinical significance of CD34 expression in acute promyelocitic leukemia (APL) has not been deeply investigated. We hereby analyzed the clinico-biological features and treatment outcome of APL patients in relation to CD34 expression, even when expressed in a small subpopulation: 114 APL patients homogeneously treated with the AIDA schedule were included in the study and prognostic correlation with respect to CD34 expression, both when expressed in association with CD2 and as isolated expression (cutoff ≥2 to <10 % or ≥10 %), were investigated. CD34 was associated to CD2 in 30 patients and was isolated in 19 patients. When compared to the CD34-negative population, CD34/CD2 expression identified a subgroup with characteristic features: M3 variant subtype (26 vs 7 % in the negative group, p = 0.02), bcr3 transcript subtype (73 vs 32 %, p = 0.001), high risk according to the risk of relapse (66 vs 17 %, p = 0.002), high incidence of differentiation syndrome (26 vs 12 %, p = 0.01), lower overall survival (88 vs 95 %), and a significantly higher rate of relapse (22 vs 13.8 %, p = 0.05). We then evaluated the prognostic value of isolated CD34 expression: it was detected in nine patients with a cutoff of expression ≥10 % and in 10 patients with a cutoff ≥2 but <10 %. Isolated CD34 positivity identified a subgroup with a classic morphology (79 %), bcr1 prevalence (53 %), higher rate of relapse (37 vs 13.8 % in the negative group, p = 0.002), higher incidence of differentiation syndrome (55 vs 12 %, p = 0.03), and lower overall survival (60 vs 95 %, p = 0.001). The results of our study confirm that CD34/CD2 expression characterizes a subset of APL with a high WBC count and a variant morphological subtype, associated with an unfavorable clinical course. We also show that the isolated expression of CD34, even at a low cutoff, identifies a group of classic APL with a negative prognosis. Further studies aimed at identifying other

  20. Induction of Apoptosis by Functionalized Fullerene-based Sonodynamic Therapy in HL-60 cells.

    PubMed

    Yumita, Nagahiko; Watanabe, Takahiro; Chen, Fu-Shih; Momose, Yasunori; Umemura, Shin-Ichiro

    2016-06-01

    Ultrasound has been widely utilized for medical diagnosis and therapy due to its ability to penetrate deep-seated tissue with less attenuation of energy and minimal undesirable side-effects. Functionalized fullerenes, such as polyhydroxy fullerene (PHF), have attracted particular attention due to their water solubility and potential application in tumor imaging and therapy as carbon nanomaterials. The present study investigated sonodynamically-induced apoptosis using PHF. Cell suspensions were treated with 2-MHz continuous ultrasound in the presence of PHF for 3 min and apoptosis was assessed by cell morphology using confocal microscopy, fragmentation of DNA (ladder pattern after agarose-gel electrophoresis) and caspase-3 activation. Cells were ultrasound-irradiated from the bottom of the culture dishes under the following condition: frequency, 2 MHz; output power, 3 W/cm(2) Electron spin resonance was used to measure reactive oxygen species. The number of apoptotic cells after sonodynamic exposure (ultrasound and PHF) was significantly higher than produced from other treatments, such as ultrasound alone and PHF alone. Furthermore, DNA fragmentation, caspase-3 activation and enhanced 2,2,6,6-tetramethyl-4-piperidinyloxy (4oxoTEMPO) formation were observed in the sonodynamically-treated cells. Histidine, a well-known reactive oxygen scavenger, significantly inhibited sonodynamically-induced apoptosis, caspase-3 activation and 4oxoTEMPO formation. Sonodynamic therapy with PHF induced apoptosis that was characterized by a series of typical morphological features, such as shrinkage of the cell and fragmentation into membrane-bound apoptotic bodies, in HL-60 cells. The significant inhibition of sonodynamically-induced apoptosis, caspase-3 activation, and 4oxoTEMPO formation due to histidine and tryptophan suggests that reactive oxygen species, such as singlet oxygen, are involved in the sonodynamic induction of apoptosis. These findings indicate that PHF

  1. Induction of Apoptosis by Functionalized Fullerene-based Sonodynamic Therapy in HL-60 cells.

    PubMed

    Yumita, Nagahiko; Watanabe, Takahiro; Chen, Fu-Shih; Momose, Yasunori; Umemura, Shin-Ichiro

    2016-06-01

    Ultrasound has been widely utilized for medical diagnosis and therapy due to its ability to penetrate deep-seated tissue with less attenuation of energy and minimal undesirable side-effects. Functionalized fullerenes, such as polyhydroxy fullerene (PHF), have attracted particular attention due to their water solubility and potential application in tumor imaging and therapy as carbon nanomaterials. The present study investigated sonodynamically-induced apoptosis using PHF. Cell suspensions were treated with 2-MHz continuous ultrasound in the presence of PHF for 3 min and apoptosis was assessed by cell morphology using confocal microscopy, fragmentation of DNA (ladder pattern after agarose-gel electrophoresis) and caspase-3 activation. Cells were ultrasound-irradiated from the bottom of the culture dishes under the following condition: frequency, 2 MHz; output power, 3 W/cm(2) Electron spin resonance was used to measure reactive oxygen species. The number of apoptotic cells after sonodynamic exposure (ultrasound and PHF) was significantly higher than produced from other treatments, such as ultrasound alone and PHF alone. Furthermore, DNA fragmentation, caspase-3 activation and enhanced 2,2,6,6-tetramethyl-4-piperidinyloxy (4oxoTEMPO) formation were observed in the sonodynamically-treated cells. Histidine, a well-known reactive oxygen scavenger, significantly inhibited sonodynamically-induced apoptosis, caspase-3 activation and 4oxoTEMPO formation. Sonodynamic therapy with PHF induced apoptosis that was characterized by a series of typical morphological features, such as shrinkage of the cell and fragmentation into membrane-bound apoptotic bodies, in HL-60 cells. The significant inhibition of sonodynamically-induced apoptosis, caspase-3 activation, and 4oxoTEMPO formation due to histidine and tryptophan suggests that reactive oxygen species, such as singlet oxygen, are involved in the sonodynamic induction of apoptosis. These findings indicate that PHF

  2. Force-dependent bond dissociation govern rolling of HL-60 cells through E-selectin.

    PubMed

    Li, Quhuan; Fang, Ying; Ding, Xiaoru; Wu, Jianhua

    2012-08-15

    E-selectin-mediated rolling on vascular surface of circulating leukocyte on vascular surface is a key initial event during inflammatory response and lymphocyte homing. This event depends not only on the specific interactions of adhesive molecules but also on the hemodynamics of blood flow. Little is still understood about whether wall shear stress or shear rate regulates the rolling. With flow chamber techniques, we here measured the effects of transport, shear stress and cell deformation on rolling of both unfixed and fixed HL-60 cells on E-selectin either in the absence or in the presence of 3% Ficoll in medium at various wall shear stresses from 0.05 to 0.7 dyn/cm(2). The results demonstrated a triphasic force-dependent rolling, that is, as increasing of force, the rolling would be accelerated firstly, then followed a decelerating phase occurred at the initial shear threshold of about 0.1 dyn/cm(2), and lastly returned to an accelerating process starting at the optimal shear threshold of 0.35 dyn/cm(2) approximately. The catch bond regime was completely reflected to rolling behaviors, such as tether lifetime, cell stop time and rolling velocity, meaning that the dominant factor to govern rolling is force. The initial shear threshold might be the minimum level of wall shear stress to sustain a stationary rolling, and the optimal shear threshold would make rolling to the most stable and regular. These findings strongly elucidate the catch bond mechanism for flow-enhanced rolling through E-selectin since longer bond lifetimes led to slower and stabler rolling.

  3. Correlation between secretion and phospholipase D activation in differentiated HL60 cells.

    PubMed Central

    Stutchfield, J; Cockcroft, S

    1993-01-01

    Receptor-directed agonists including N-formylmethionyl-leucyl-phenylalanine (fMetLeuPhe), C5a, ATP and UTP all activate phospholipase D (PLD), which is accompanied by secretion in differentiated HL60 cells. Interference in the production of phosphatidase (PA) by the PLD pathway by diverting it towards the production of phosphatidylethanol (PEt) in the presence of ethanol leads to near-total inhibition of the secretion evoked by ATP and UTP and a partial inhibition of that evoked by fMetLeuPhe and C5a. In streptolysin-O-permeabilized cells, fMetLeuPhe is able to activate PLD, and this is dependent on the presence of a low concentration of guanosine 5'-[gamma-thio]-triphosphate (GTP[S]). Ca2+ (10 microM) and GTP[S] individually or in combination are also able to activate PLD and secretion. The stimulation of secretion in permeabilized cells stimulated by Ca2+ alone or fMetLeuPhe or GTP[S] is also abrogated when the production of PA is diverted to PEt by the presence of ethanol. Activation of PLD by GTP[S] or fMetLeuPhe is decreased if the cells are permeabilized first and GTP[S] or fMetLeuPhe is added subsequently. This corresponds well with the loss of the secretory response. We conclude that the ability of GTP[S] or fMetLeuPhe to stimulate secretion from permeabilized cells is dependent on a prior activation of the PLD signalling pathway. PA, generated as a consequence of PLD activation, acts as second messenger that can provide an initiating signal for secretion and is not required for exocytosis itself. PMID:8352731

  4. Quantitative Analysis of Global Proteome and Lysine Acetylome Reveal the Differential Impacts of VPA and SAHA on HL60 Cells.

    PubMed

    Zhu, Xiaoyu; Liu, Xin; Cheng, Zhongyi; Zhu, Jun; Xu, Lei; Wang, Fengsong; Qi, Wulin; Yan, Jiawei; Liu, Ning; Sun, Zimin; Liu, Huilan; Peng, Xiaojun; Hao, Yingchan; Zheng, Nan; Wu, Quan

    2016-01-29

    Valproic acid (VPA) and suberoylanilide hydroxamic acid (SAHA) are both HDAC inhibitors (HDACi). Previous studies indicated that both inhibitors show therapeutic effects on acute myeloid leukaemia (AML), while the differential impacts of the two different HDACi on AML treatment still remains elusive. In this study, using 3-plex SILAC based quantitative proteomics technique, anti-acetyllysine antibody based affinity enrichment, high resolution LC-MS/MS and intensive bioinformatic analysis, the quantitative proteome and acetylome in SAHA and VPA treated AML HL60 cells were extensively studied. In total, 5,775 proteins and 1,124 lysine acetylation sites were successfully obtained in response to VAP and SAHA treatment. It is found that VPA and SAHA treatment differently induced proteome and acetylome profiling in AML HL60 cells. This study revealed the differential impacts of VPA and SAHA on proteome/acetylome in AML cells, deepening our understanding of HDAC inhibitor mediated AML therapeutics.

  5. Quantitative Analysis of Global Proteome and Lysine Acetylome Reveal the Differential Impacts of VPA and SAHA on HL60 Cells

    PubMed Central

    Zhu, Xiaoyu; Liu, Xin; Cheng, Zhongyi; Zhu, Jun; Xu, Lei; Wang, Fengsong; Qi, Wulin; Yan, Jiawei; Liu, Ning; Sun, Zimin; Liu, Huilan; Peng, Xiaojun; Hao, Yingchan; Zheng, Nan; Wu, Quan

    2016-01-01

    Valproic acid (VPA) and suberoylanilide hydroxamic acid (SAHA) are both HDAC inhibitors (HDACi). Previous studies indicated that both inhibitors show therapeutic effects on acute myeloid leukaemia (AML), while the differential impacts of the two different HDACi on AML treatment still remains elusive. In this study, using 3-plex SILAC based quantitative proteomics technique, anti-acetyllysine antibody based affinity enrichment, high resolution LC-MS/MS and intensive bioinformatic analysis, the quantitative proteome and acetylome in SAHA and VPA treated AML HL60 cells were extensively studied. In total, 5,775 proteins and 1,124 lysine acetylation sites were successfully obtained in response to VAP and SAHA treatment. It is found that VPA and SAHA treatment differently induced proteome and acetylome profiling in AML HL60 cells. This study revealed the differential impacts of VPA and SAHA on proteome/acetylome in AML cells, deepening our understanding of HDAC inhibitor mediated AML therapeutics. PMID:26822725

  6. Quantitative Analysis of Global Proteome and Lysine Acetylome Reveal the Differential Impacts of VPA and SAHA on HL60 Cells.

    PubMed

    Zhu, Xiaoyu; Liu, Xin; Cheng, Zhongyi; Zhu, Jun; Xu, Lei; Wang, Fengsong; Qi, Wulin; Yan, Jiawei; Liu, Ning; Sun, Zimin; Liu, Huilan; Peng, Xiaojun; Hao, Yingchan; Zheng, Nan; Wu, Quan

    2016-01-01

    Valproic acid (VPA) and suberoylanilide hydroxamic acid (SAHA) are both HDAC inhibitors (HDACi). Previous studies indicated that both inhibitors show therapeutic effects on acute myeloid leukaemia (AML), while the differential impacts of the two different HDACi on AML treatment still remains elusive. In this study, using 3-plex SILAC based quantitative proteomics technique, anti-acetyllysine antibody based affinity enrichment, high resolution LC-MS/MS and intensive bioinformatic analysis, the quantitative proteome and acetylome in SAHA and VPA treated AML HL60 cells were extensively studied. In total, 5,775 proteins and 1,124 lysine acetylation sites were successfully obtained in response to VAP and SAHA treatment. It is found that VPA and SAHA treatment differently induced proteome and acetylome profiling in AML HL60 cells. This study revealed the differential impacts of VPA and SAHA on proteome/acetylome in AML cells, deepening our understanding of HDAC inhibitor mediated AML therapeutics. PMID:26822725

  7. AIDA (all-trans retinoic acid + idarubicin) in newly diagnosed acute promyelocytic leukemia: a Gruppo Italiano Malattie Ematologiche Maligne dell'Adulto (GIMEMA) pilot study.

    PubMed

    Avvisati, G; Lo Coco, F; Diverio, D; Falda, M; Ferrara, F; Lazzarino, M; Russo, D; Petti, M C; Mandelli, F

    1996-08-15

    From March 1993 to October 1993, 20 consecutive, newly diagnosed acute promyelocytic leukemia (APL) patients from 13 Italian institutions entered in a pilot study named AIDA, combining all-trans retinoic acid (ATRA) with idarubicin (IDA). ATRA was administered orally beginning on the first day of induction at the dosage of 45 mg/m2/d until complete remission (CR), whereas IDA was administered intravenously at the dosage of 12 mg/m2/d on days 2, 4, 6, and 8 of the induction. Patients who achieved CR were consolidated with 3 courses of chemotherapy without ATRA; thereafter, they were followed up for molecular and hematologic CR. The median age was 35.3 years (range, 6.5 to 67.6 years); 8 patients were males and 12 females; 4 had the hypogranular variant of APL (M3v), and 4 (2 with M3v) presented with leukocyte counts > or = 10,000/microL. Molecular analysis for the promyelocytic leukemia-retinoic acid receptor alpha (PML-RAR alpha) hybrid gene at diagnosis was performed in 16 patients by means of reverse transcription-polymerase chain reaction (RT-PCR) analysis, and all were RT-PCR+ for the hybrid gene. In the remaining 4 patients, the cytogenetic study showed the presence of the t(15;17). After a median time of 36 days (range, 28 to 52 days) 18 (90%) patients achieved CR; the remaining 2 patients died 12 and 34 days after diagnosis from myocardial infarction caused by fungal myocarditis and from massive hemoptysis, respectively. ATRA syndrome was observed in only 2 patients, and, after the prompt discontinuation of ATRA and initiation of dexamethasone, both recovered from the syndrome. However, after recovering, 1 patient achieved CR, whereas the other died at day 34 because of massive hemoptysis; other side effects were very limited. At recovery from the third consolidation course, only 3 of 14 (21.4%) tested patients were RT-PCR+ for the PML-RAR alpha hybrid gene. Of these, 2 relapsed shortly afterwards; however, in the last patient, the PML-RAR alpha disappeared

  8. Phenotypic and functional analysis of HL-60 cells used in opsonophagocytic-killing assay for Streptococcus pneumoniae.

    PubMed

    Kim, Kyung-Hyo; Seoh, Ju Young; Cho, Su Jin

    2015-02-01

    Differentiated HL-60 is an effector cell widely used for the opsonophagocytic-killing assay (OPKA) to measure efficacy of pneumococcal vaccines. We investigated the correlation between phenotypic expression of immunoreceptors and phagocytic ability of HL-60 cells differentiated with N,N-dimethylformamide (DMF), all-trans retinoic acid (ATRA), or 1α, 25-dihydroxyvitamin D3 (VitD3) for 5 days. Phenotypic change was examined by flow cytometry with specific antibodies to CD11c, CD14, CD18, CD32, and CD64. Apoptosis was determined by flow cytometry using 7-aminoactinomycin D. Function was evaluated by a standard OPKA against serotype 19F and chemiluminescence-based respiratory burst assay. The expression of CD11c and CD14 gradually increased upon exposure to all three agents, while CD14 expression increased abruptly after VitD3. The expression of CD18, CD32, and CD64 increased during differentiation with all three agents. Apoptosis remained less than 10% until day 3 but increased after differentiation by DMF or ATRA. Differentiation with ATRA or VitD3 increased the respiratory burst after day 4. DMF differentiation showed a high OPKA titer at day 1 which sustained thereafter while ATRA or VitD3-differentiated cells gradually increased. Pearson analysis between the phenotypic changes and OPKA titers suggests that CD11c might be a useful differentiation marker for HL-60 cells for use in pneumococcal OPKA.

  9. Ascorbic acid inhibits TPA-induced HL-60 cell differentiation by decreasing cellular H₂O₂ and ERK phosphorylation.

    PubMed

    Yiang, Giou-Teng; Chen, Jen-Ni; Wu, Tsai-Kun; Wang, Hsueh-Fang; Hung, Yu-Ting; Chang, Wei-Jung; Chen, Chinshuh; Wei, Chyou-Wei; Yu, Yung-Luen

    2015-10-01

    Retinoic acid (RA), vitamin D and 12-O‑tetradecanoyl phorbol-13-acetate (TPA) can induce HL-60 cells to differentiate into granulocytes, monocytes and macrophages, respectively. Similar to RA and vitamin D, ascorbic acid also belongs to the vitamin family. High‑dose ascorbic acid (>100 µM) induces HL‑60 cell apoptosis and induces a small fraction of HL‑60 cells to express the granulocyte marker, CD66b. In addition, ascorbic acid exerts an anti‑oxidative stress function. Oxidative stress is required for HL‑60 cell differentiation following treatment with TPA, however, the effect of ascorbic acid on HL‑60 cell differentiation in combination with TPA treatment remains to be fully elucidated. The aim of the present study was to investigate the cellular effects of ascorbic acid treatment on TPA-differentiated HL-60 cells. TPA-differentiated HL-60 cells were used for this investigation, this study and the levels of cellular hydrogen peroxide (H2O2), caspase activity and ERK phosphorylation were determined following combined treatment with TPA and ascorbic acid. The results demonstrated that low‑dose ascorbic acid (5 µM) reduced the cellular levels of H2O2 and inhibited the differentiation of HL‑60 cells into macrophages following treatment with TPA. In addition, the results of the present study further demonstrated that low‑dose ascorbic acid inactivates the ERK phosphorylation pathway, which inhibited HL‑60 cell differentiation following treatment with TPA.

  10. Effect of ajoene, a natural antitumor small molecule, on human 20S proteasome activity in vitro and in human leukemic HL60 cells.

    PubMed

    Xu, Bo; Monsarrat, Bernard; Gairin, Jean Edouard; Girbal-Neuhauser, Elisabeth

    2004-04-01

    The pharmacologic properties of ajoene, the major sulfur-containing compound purified from garlic, and its possible role in the prevention and treatment of cancer has received increasing attention. Several studies demonstrated that induction of apoptosis and cell cycle blockade are typical biologic effects observed in tumor cells after proteasome inhibition. The proteasome is responsible for the degradation of a variety of intracellular proteins and plays a key role in the regulation of many cellular processes. The aim of the present work was therefore to explore the effects of ajoene on the proteasome activities. In vitro activities of 20S proteasome purified from human erythrocytes on fluorogenic peptide substrates specific for trypsin-like, chymotrypsin-like and peptidylglutamyl peptide hydrolyzing activities revealed that ajoene inhibited the trypsin-like activity in a dose- and time-dependent manner. Further, the ability of 20S proteasome to degrade the OVA(51-71) peptide, a model proteasomal substrate, was partially but significantly inhibited by ajoene. In addition, when human leukemia cell line HL60 was treated with ajoene, both trypsin- and chymotrypsin-like activities were affected, cells arrested in G2/M phase and total amount of cytosolic proteasome increased. All these data clearly indicate that ajoene may affect proteasome function and activity both in vitro and in the living cell. This is a novel aspect in the biologic profile of this garlic compound giving new insights into the understanding of the molecular mechanisms of its potential antitumor action.

  11. Myeloid differentiation and retinoblastoma phosphorylation changes in HL-60 cells induced by retinoic acid receptor- and retinoid X receptor-selective retinoic acid analogs.

    PubMed

    Brooks, S C; Kazmer, S; Levin, A A; Yen, A

    1996-01-01

    The ability of subtypes of retinoic acid receptors (RARs) and retinoid X receptors (RXRs) singly and in combination to elicit myeloid differentiation, G1/0-specific growth arrest, and retinoblastoma (RB) tumor suppressor protein dephosphorylation was determined in the human myeloblastic leukemia cell line HL-60 using subtype-selective retinoic acid (RA) analogs. RA analogs that selectively bind only to RARs (Am580 and/or TTNPB) or to RXRs (Ro 25-6603, SR11237, and/or SR11234) did not elicit the above-mentioned three cellular responses. In contrast, simultaneous treatment with both an RAR-selective ligand (Am580 or TTNPB) and an RXR-selective ligand (Ro 25-6603, SR11237, or SR11234) induced all three cellular processes. An RAR alpha-selective ligand used with an RXR-selective ligand generated the same responses as did all-trans RA or 9-cis RA, which affect both families of receptors, suggesting an important role for RAR alpha among RAR subtypes in eliciting cellular response. Consistent with this finding, the RAR alpha antagonist, Ro 41-5253, reduced the level of the cellular responses elicited by treatment with an RAR alpha-selective ligand plus RXR-selective ligand. The coupling of the shift of RB to its hypophosphorylated form with G1/0 arrest and differentiation in response to ligands is consistent with a possible role of RB as a downstream target or effector of RAR alpha and RXR in combination.

  12. Cytotoxicity of (-)-vitisin B in human leukemia cells.

    PubMed

    Wu, Shing-Sheng; Chen, Lih-Geeng; Lin, Ren-Jye; Lin, Shyr-Yi; Lo, Yueh-E; Liang, Yu-Chih

    2013-07-01

    Vitis thunbergii var. taiwaniana (VTT) is an indigenous Taiwanese wild grape and is used as a folk medicine in Taiwan. VTT is rich in polyphenols, especially quercetin and resveratrol derivatives, which were demonstrated to exhibit inhibitory activities against carcinogenesis and prevent some neurodegenerative diseases. (-)-Vitisin B is one of the resveratrol tetramers extracted from VTT. In this study, we investigated the mechanisms of (-)-vitisin B on the induction of apoptosis in human HL-60 promyelocytic leukemia cells. First, (-)-vitisin B significantly inhibited cell proliferation through inducing cell apoptosis. This effect appeared to occur in a time- and dose-dependent manner. Cell-cycle distribution was also examined, and we found that (-)-vitisin B significantly induced a sub-G1 population in a dose-dependent manner. In addition, (-)-vitisin B exhibited stronger inhibitory effects on cell proliferation than resveratrol. Second, (-)-vitisin B dose dependently induced apoptosis-related protein expressions, such as the cleavage form of caspase-3, caspase-8, caspase-9, poly(ADP ribose) polymerase, and the proapoptotic Bax protein. Third, (-)-vitisin B treatment also resulted in increases in c-Jun N-terminal kinase (JNK) phosphorylation and Fas ligand (FasL) expression. Moreover, the (-)-vitisin B-induced FasL expression and caspase-3 activation could be reversed by a JNK inhibitor. These results suggest that (-)-vitisin B-induced apoptosis of leukemia cells might be mediated through activation of JNK and Fas death-signal transduction.

  13. A new daunomycin-peptide conjugate: synthesis, characterization and the effect on the protein expression profile of HL-60 cells in vitro.

    PubMed

    Orbán, Erika; Manea, Marilena; Marquadt, Andreas; Bánóczi, Zoltán; Csík, Gabriella; Fellinger, Erzsébet; Bosze, Szilvia; Hudecz, Ferenc

    2011-10-19

    Daunomycin (Dau) is a DNA-binding antineoplastic agent in the treatment of various types of cancer, such as osteosarcomas and acute myeloid leukemia. One approach to improve its selectivity and to decrease the side effects is the conjugation of Dau with oligopeptide carriers, which might alter the drug uptake and intracellular fate. Here, we report on the synthesis, characterization, and in vitro biological properties of a novel conjugate in which Dau is attached, via an oxime bond, to one of the cancer specific small peptides (LTVSPWY) selected from a random phage peptide library. The in vitro cytostatic effect and cellular uptake of Dau═Aoa-LTVSPWY-NH(2) conjugate were studied on various human cancer cell lines expressing different levels of ErbB2 receptor which could be targeted by the peptide. We found that the new daunomycin-peptide conjugate is highly cytostatic and could be taken up efficiently by the human cancer cells studied. However, the conjugate was less effective than the free drug itself. RP-HPLC data indicate that the conjugate is stable at least for 24 h in the pH 2.5-7.0 range of buffers, as well as in cell culture medium. The conjugate in the presence of rat liver lysosomal homogenate, as indicated by LC-MS analysis, could be degraded. The smallest, Dau-containing metabolite (Dau═Aoa-Leu-OH) identified and prepared expresses DNA-binding ability. In order to get insight on the potential mechanism of action, we compared the protein expression profile of HL-60 human leukemia cells after treatment with the free and peptide conjugated daunomycin. Proteomic analysis suggests that the expression of several proteins has been altered. This includes three proteins, whose expression was lower (tubulin β chain) or markedly higher (proliferating cell nuclear antigen and protein kinase C inhibitor protein 1) after administration of cells with Dau-conjugate vs free drug.

  14. BMS-214662 in Treating Patients With Acute Leukemia, Myelodysplastic Syndrome, or Chronic Myeloid Leukemia

    ClinicalTrials.gov

    2013-01-22

    Adult Acute Promyelocytic Leukemia (M3); Blastic Phase Chronic Myelogenous Leukemia; Childhood Myelodysplastic Syndromes; Previously Treated Myelodysplastic Syndromes; Recurrent Adult Acute Lymphoblastic Leukemia; Recurrent Adult Acute Myeloid Leukemia; Recurrent Childhood Acute Lymphoblastic Leukemia; Recurrent Childhood Acute Myeloid Leukemia; Refractory Anemia With Excess Blasts; Refractory Anemia With Excess Blasts in Transformation; Relapsing Chronic Myelogenous Leukemia

  15. Leukemia

    MedlinePlus

    ... version of this page please turn Javascript on. Leukemia What Is Leukemia? Leukemia is a cancer of the blood cells. ... diagnosed with leukemia are over 50 years old. Leukemia Starts in Bone Marrow Click for more information ...

  16. BIGEL analysis of gene expression in HL60 cells exposed to X rays or 60 Hz magnetic fields

    NASA Technical Reports Server (NTRS)

    Balcer-Kubiczek, E. K.; Zhang, X. F.; Han, L. H.; Harrison, G. H.; Davis, C. C.; Zhou, X. J.; Ioffe, V.; McCready, W. A.; Abraham, J. M.; Meltzer, S. J.

    1998-01-01

    We screened a panel of 1,920 randomly selected cDNAs to discover genes that are differentially expressed in HL60 cells exposed to 60 Hz magnetic fields (2 mT) or X rays (5 Gy) compared to unexposed cells. Identification of these clones was accomplished using our two-gel cDNA library screening method (BIGEL). Eighteen cDNAs differentially expressed in X-irradiated compared to control HL60 cells were recovered from a panel of 1,920 clones. Differential expression in experimental compared to control cells was confirmed independently by Northern blotting of paired total RNA samples hybridized to each of the 18 clone-specific cDNA probes. DNA sequencing revealed that 15 of the 18 cDNA clones produced matches with the database for genes related to cell growth, protein synthesis, energy metabolism, oxidative stress or apoptosis (including MYC, neuroleukin, copper zinc-dependent superoxide dismutase, TC4 RAS-like protein, peptide elongation factor 1alpha, BNIP3, GATA3, NF45, cytochrome c oxidase II and triosephosphate isomerase mRNAs). In contrast, BIGEL analysis of the same 1,920 cDNAs revealed no differences greater than 1.5-fold in expression levels in magnetic-field compared to sham-exposed cells. Magnetic-field-exposed and control samples were analyzed further for the presence of mRNA encoding X-ray-responsive genes by hybridization of the 18 specific cDNA probes to RNA from exposed and control HL60 cells. Our results suggest that differential gene expression is induced in approximately 1% of a random pool of cDNAs by ionizing radiation but not by 60 Hz magnetic fields under the present experimental conditions.

  17. Effects of PCB126 and PCB153 on telomerase activity and telomere length in undifferentiated and differentiated HL-60 cells.

    PubMed

    Xin, Xing; Senthilkumar, P K; Schnoor, Jerald L; Ludewig, Gabriele

    2016-02-01

    PCBs are persistent organic pollutants that are carcinogenic and immunotoxic and have developmental toxicity. This suggests that they may interfere with normal cell maturation. Cancer and stem/progenitor cells have telomerase activity to maintain and protect the chromosome ends, but lose this activity during differentiation. We hypothesized that PCBs interfere with telomerase activity and the telomere complex, thereby disturbing cell differentiation and stem/progenitor cell function. HL-60 cells are cancer cells that can differentiated into granulocytes and monocytes. We exposed HL-60 cells to PCB126 (dioxin-like) and PCB153 (nondioxin-like) 6 days before and during 3 days of differentiation. The differentiated cells showed G0/G1 phase arrest and very low telomerase activity. hTERT and hTR, two telomerase-related genes, were downregulated. The telomere shelterins TRF1, TRF2, and POT1 were upregulated in granulocytes, and TRF2 was upregulated and POT1 downregulated in monocytes. Both PCBs further reduced telomerase activity in differentiated cells, but had only small effects on the differentiation and telomere-related genes. Treatment of undifferentiated HL-60 cells for 30 days with PCB126 produced a downregulation of telomerase activity and a decrease of hTERT, hTR, TRF1, and POT1 gene expression. With PCB153, the effects were less pronounced and some shelterin genes were increased after 30 days of exposure. With each PCB, no differentiation of cells was observed and cells continued to proliferate despite reduced telomerase activity, resulting in shortened telomeres after 30 days of exposure. These results indicate cell-type and PCB congener-specific effects on telomere/telomerase-related genes. Although PCBs do not seem to strongly affect differentiation, they may influence stem or progenitor cells through telomere attrition with potential long-term consequences for health.

  18. The effect of 5-azacytidine (5-aza-CR) and its analogue on cell differentiation and DNA methylation of HL-60 cells.

    PubMed

    He, Z X; Rao, H

    1993-04-01

    The effect of 5-aza-CR and 5-aza-2'-deoxycytidine (5-aza-CdR) on cell differentiation and DNA methylation of HL-60 cells was studied. The differentiation index of HL-60 cells was measured after being treated with drugs by using the NBT stain method. DNA methylase activities of HL-60 cells treated with the drugs were assayed by using 3H-methyl-S-adenosylmethionine (3H-SAM) as a methyl donor. The DNA methylation level of HL-60 cells treated with the drugs was measured by HPLC. The results showed that the HL-60 cell differentiation index was increased after being treated with 5-aza-CR or 5-aza-CdR at a certain concentration for 4 days. But, at the same time, DNA methylase activity and the DNA methylation level were decreased. And all these changes were related to the concentration of the drugs. 5-Aza-CdR was more efficient than 5-aza-CR. We also assayed the E. coli RNA polymerase activity in vitro by using different DNA templets different in DNA methylation level. We found that the transcriptional activity of RNA polymerase was increased with the decrease of the DNA methylation level of HL-60 cells.

  19. Genotoxic effects of exposure to radiofrequency electromagnetic fields (RF-EMF) in HL-60 cells are not reproducible.

    PubMed

    Speit, Günter; Gminski, Richard; Tauber, Rudolf

    2013-08-15

    Conflicting results have been published regarding the induction of genotoxic effects by exposure to radiofrequency electromagnetic fields (RF-EMF). Various results indicating a genotoxic potential of RF-EMF were reported by the collaborative EU-funded REFLEX (Risk Evaluation of Potential Environmental Hazards From Low Energy Electromagnetic Field Exposure Using Sensitive in vitro Methods) project. There has been a long-lasting scientific debate about the reliability of the reported results and an attempt to reproduce parts of the results obtained with human fibroblasts failed. Another part of the REFLEX study was performed in Berlin with the human lymphoblastoid cell line HL-60; genotoxic effects of RF-EMF were measured by means of the comet assay and the micronucleus test. The plausibility and reliability of these results were also questioned. In order to contribute to a clarification of the biological significance of the reported findings, a repeat study was performed, involving scientists of the original study. Comet-assay experiments and micronucleus tests were performed under the same experimental conditions that had led to genotoxic effects in the REFLEX study. Here we report that the attempts to reproduce the induction of genotoxic effects by RF-EMF in HL-60 cells failed. No genotoxic effects of RF-EMF were measured in the repeat experiments. We could not find an explanation for the conflicting results. However, the negative repeat experiments suggest that the biological significance of genotoxic effects of RF-EMF reported by the REFLEX study should be re-assessed.

  20. Interactions between P-glycoprotein and drugs used in the supportive care of acute myeloid leukemia patients.

    PubMed

    Möllgård, L; Hellberg, E; Smolowicz, A; Paul, C; Tidefelt, U

    2001-06-01

    Multidrug resistance due to overexpression of P-glycoprotein (Pgp) leads to reduced intracellular drug accumulation and makes the cells resistant to chemotherapy. In this study we focused on how drugs used in the supportive care of acute myeloid leukemia (AML) patients interfere with Pgp. The effect on intracellular accumulation of the fluorescent dye Rhodamine 123 (Rh 123) was studied in the human promyelocytic leukemia cell line HL-60 and two anthracycline resistant, Pgp expressing, sublines. Each drug was used at two different concentrations: plasma peak concentration and half the plasma peak concentration. Drugs which increased the Rh 123 uptake by > 10% were included in the second part of the study where the cytotoxic effect was tested in combination with daunorubicin. In the Rhodamine assay none of the tested drugs had any significant effect on the Rh 123 efflux in the resistant cell lines. Amphotericin B, cefuroxime, erythromycin and dixyrazin had minor effects on Rh 123 uptake but showed a significant additive effect to the toxicity of daunorubicin suggesting other mechanisms of action than reversal of Pgp. In conclusion this in vitro model where Rh 123 uptake was studied in an anthracycline resistant leukemia cell line could not demonstrate any significant interactions with Pgp for the tested drugs.

  1. Antitumor triptycene analogs induce a rapid collapse of mitochondrial transmembrane potential in HL-60 cells and isolated mitochondria.

    PubMed

    Wang, Yang; Perchellet, Elisabeth M; Ward, Mary M; Lou, Kaiyan; Zhao, Huiping; Battina, Srinivas K; Wiredu, Bernard; Hua, Duy H; Perchellet, Jean-Pierre H

    2006-01-01

    Since synthetic analogs of triptycene (TT code number), such as bisquinones TT2 and TT13, can trigger cytochrome c release without caspase activation and retain their ability to induce apoptosis in multidrug-resistant (MDR) tumor cells, fluorescent probes of transmembrane potential have been used to determine whether these antitumor compounds might directly target mitochondria in cell and cell-free systems to cause the collapse of mitochondrial membrane potential ( downward arrow Deltapsim) that is linked to permeability transition pore (PTP) opening. Using JC-1 dye, the abilities of various TT analogs to induce the downward arrow Deltapsim in wild-type and MDR HL-60 cells are rapid (within 5-20 min), irreversible after drug removal, concentration dependent in the 0.64-25 microM range, and generally related to their antitumor activities in vitro. The downward arrow Deltapsim caused by TT2 and TT13, which are more potent than mitoxantrone, staurosporine and the reference depolarizing agent, carbonyl cyanide m-chlorophenylhydrazone (CCCP), in HL-60 cells, are not prevented by caspase-2 or -8 inhibitors, suggesting that activation of these apical caspases upstream of mitochondria is not involved in this process. Antitumor TT analogs (0.64-25 microM) also mimic the abilities of the known depolarizing agents, CCCP, alamethicin, gramicidin A and 100 microM CaCl(2), to directly induce within 20 min the downward arrow Deltapsim in isolated mitochondria prepared from mouse liver and loaded with rhodamine 123 dye. The fact that 20 microM Ca(2+), which is insufficient to trigger depolarization on its own, is required to reveal the depolarizing effect of TT2 in isolated mitochondria suggests that antitumor TT analogs might interact with the PTP to alter its conformation and increase its Ca(2+) sensitivity. Indeed, such Ca(2+)-dependent downward arrowDeltapsim of isolated mitochondria treated with 25 microM TT2 or 100 microM Ca(2+) are blocked by ruthenium red. Daunorubicin

  2. Activity of elaeochytrin A from Ferula elaeochytris on leukemia cell lines.

    PubMed

    Alkhatib, Racha; Hennebelle, Thierry; Joha, Sami; Idziorek, Thierry; Preudhomme, Claude; Quesnel, Bruno; Sahpaz, Sevser; Bailleul, François

    2008-12-01

    Phytochemical investigation of the roots of Ferula elaeochytris made it possible to isolate two sesquiterpene esters, 6-anthraniloyljaeschkeanadiol (elaeochytrin A) and 4beta-hydroxy-6alpha-(p-hydroxybenzoyloxy)dauc-9-ene (elaeochytrin B), as well as eight known compounds: 6-angeloyljaeschkeanadiol, teferidin, ferutinin, 6-(p-hydroxybenzoyl)epoxyjaeschkeanadiol, 6-(p-hydroxybenzoyl)lancerotriol, 5-caffeoylquinic acid, 1,5-dicaffeoylquinic acid and sandrosaponin IX. The cytotoxic activities of all compounds were investigated on K562R (imatinib-resistant) human chronic myeloid leukaemia and DA1-3b/M2(BCR-ABL) (dasatinib-resistant) mouse leukemia cell line. Elaeochytrin A was the most active compound on both cell lines (IC(50)=12.4 and 7.8microM, respectively). It was also tested on non-resistant human promyelocytic leukemia cells (HL60, IC(50)=13.1microM) and was not toxic to normal peripheral blood mononuclear cells up to 100microM. PMID:18992904

  3. A quantitative method for measurement of HL-60 cell apoptosis based on diffraction imaging flow cytometry technique

    PubMed Central

    Yang, Xu; Feng, Yuanming; Liu, Yahui; Zhang, Ning; Lin, Wang; Sa, Yu; Hu, Xin-Hua

    2014-01-01

    A quantitative method for measurement of apoptosis in HL-60 cells based on polarization diffraction imaging flow cytometry technique is presented in this paper. Through comparative study with existing methods and the analysis of diffraction images by a gray level co-occurrence matrix algorithm (GLCM), we found 4 GLCM parameters of contrast (CON), cluster shade (CLS), correlation (COR) and dissimilarity (DIS) exhibit high sensitivities as the apoptotic rates. It was further demonstrated that the CLS parameter correlates significantly (R2 = 0.899) with the degree of nuclear fragmentation and other three parameters showed a very good correlations (R2 ranges from 0.69 to 0.90). These results demonstrated that the new method has the capability for rapid and accurate extraction of morphological features to quantify cellular apoptosis without the need for cell staining. PMID:25071957

  4. Imaging G Protein-coupled Receptor-mediated Chemotaxis and its Signaling Events in Neutrophil-like HL60 Cells.

    PubMed

    Wen, Xi; Jin, Tian; Xu, Xuehua

    2016-01-01

    Eukaryotic cells sense and move towards a chemoattractant gradient, a cellular process referred as chemotaxis. Chemotaxis plays critical roles in many physiological processes, such as embryogenesis, neuron patterning, metastasis of cancer cells, recruitment of neutrophils to sites of inflammation, and the development of the model organism Dictyostelium discoideum. Eukaryotic cells sense chemo-attractants using G protein-coupled receptors. Visual chemotaxis assays are essential for a better understanding of how eukaryotic cells control chemoattractant-mediated directional cell migration. Here, we describe detailed methods for: 1) real-time, high-resolution monitoring of multiple chemotaxis assays, and 2) simultaneously visualizing the chemoattractant gradient and the spatiotemporal dynamics of signaling events in neutrophil-like HL60 cells. PMID:27684322

  5. Involvement of the histamine H4 receptor in clozapine-induced hematopoietic toxicity: Vulnerability under granulocytic differentiation of HL-60 cells.

    PubMed

    Goto, Aya; Mouri, Akihiro; Nagai, Tomoko; Yoshimi, Akira; Ukigai, Mako; Tsubai, Tomomi; Hida, Hirotake; Ozaki, Norio; Noda, Yukihiro

    2016-09-01

    Clozapine is an effective antipsychotic for treatment-resistant schizophrenia, but can cause fatal hematopoietic toxicity as agranulocytosis. To elucidate the mechanism of hematopoietic toxicity induced by clozapine, we developed an in vitro assay system using HL-60 cells, and investigated the effect on hematopoiesis. HL-60 cells were differentiated by all-trans retinoic acid (ATRA) into three states according to the following hematopoietic process: undifferentiated HL-60 cells, those undergoing granulocytic ATRA-differentiation, and ATRA-differentiated granulocytic cells. Hematopoietic toxicity was evaluated by analyzing cell survival, cell proliferation, granulocytic differentiation, apoptosis, and necrosis. In undifferentiated HL-60 cells and ATRA-differentiated granulocytic cells, both clozapine (50 and 100μM) and doxorubicin (0.2µM) decreased the cell survival rate, but olanzapine (1-100µM) did not. Under granulocytic differentiation for 5days, clozapine, even at a concentration of 25μM, decreased survival without affecting granulocytic differentiation, increased caspase activity, and caused apoptosis rather than necrosis. Histamine H4 receptor mRNA was expressed in HL-60 cells, whereas the expression decreased under granulocytic ATRA-differentiation little by little. Both thioperamide, a histamine H4 receptor antagonist, and DEVD-FMK, a caspase-3 inhibitor, exerted protection against clozapine-induced survival rate reduction, but not of live cell counts. 4-Methylhistamine, a histamine H4 receptor agonist, decreased the survival rate and live cell counts, as did clozapine. HL-60 cells under granulocytic differentiation are vulnerable under in vitro assay conditions to hematopoietic toxicity induced by clozapine. Histamine H4 receptor is involved in the development of clozapine-induced hematopoietic toxicity through apoptosis, and may be a potential target for preventing its occurrence through granulocytic differentiation.

  6. Differential regulation of leukocyte function-associated antigen-1/ intercellular adhesion molecules-1-dependent adhesion and aggregation in HL-60 cells.

    PubMed

    Katagiri, K; Kinashi, T; Irie, S; Katagiri, T

    1996-05-15

    Activation of integrin and organization of cytoskeletal proteins are highly regulated in cell adhesion and aggregation. The interaction of leukocyte function-associated antigen-1 (LFA-1) and intercellular adhesion molecules-1 (ICAM-1) mediates cell adhesion and aggregation, which facilitate leukocyte trafficking to inflamed tissues and augment effector functions. We investigated how LFA-1/ICAM-1-mediated adhesion and aggregation are regulated in HL-60 cells induced to differentiate into neutrophils by retinoic acid (RA). Uninduced HL-60 cells did not bind to ICAM-1 even with stimulation by 12-0-tetradecanoyl phorbol-13-acetate, although they express LFA-1 on the cell surface. When cultured with RA for 24 hours, HL-60 cells were able to adhere to ICAM-1 constitutively. The induction of adhesion did not accompany any change in surface density of LFA-1, indicating that the avidity of LFA-1 was increased. The change in its avidity required de novo synthesis of proteins. Although ICAM-1 was intensely expressed on RA-induced HL-60 cells, these cells did not show any cellular aggregation. The HL-60 cells transfected with the active form of Ras (Val12) exhibited LFA-1/ICAM-1-dependent aggregation by RA stimulation without change in the avidity of LFA-1. In these Ras-transfectants, a cytoskeletal protein, paxillin, was tyrosine-phosphorylated, and the level of F-actin increased. Transforming growth factor (TGF) beta, as well as cytochalasin D, prevented both the tyrosine phosphorylation of paxillin and the aggregation without any effects on the avidity of LFA-1. Thus, an increase in the avidity of LFA-1 was not sufficient for the induction of aggregation, which required activation of Ras and reorganization of cytoskeletal proteins. These results suggest that distinct regulatory mechanisms control LFA-1/ICAM-1-dependent adhesion and aggregation in HL-60 cells differentiating into neutrophils.

  7. Relationship of expression of aquaglyceroporin 9 with arsenic uptake and sensitivity in leukemia cells.

    PubMed

    Leung, Jordy; Pang, Annie; Yuen, Wai-Hung; Kwong, Yok-Lam; Tse, Eric W C

    2007-01-15

    Arsenic trioxide (As2O3) is highly efficacious in acute promyelocytic leukemia (APL). Aquaglyceroporin 9 (AQP9) is a transmembrane protein that may be involved in arsenic uptake. In 10 of 11 myeloid and lymphoid leukemia lines, quantitative polymerase chain reaction (Q-PCR) and Western blotting showed that AQP9 expression correlated positively with As2O3-induced cytotoxicity. As a proof-of-principle, transfection of EGFP-tagged AQP9 to the hepatoma line Hep3B, not expressing AQP9 and As2O3 insensitive, led to membrane AQP9 expression and increased As2O3-induced cytotoxicity. Similarly, the chronic myeloid leukemia line K562 expressed low levels of AQP9 and was As2O3 insensitive. The K562(EGFP-AQP9) transfectant accumulated significantly higher levels of intracellular arsenic than control K562(EGFP) when incubated with As2O3, resulting in significantly increased As2O3-induced cytotoxicity. Pretreatment of the myeloid leukemia line HL-60 with all-trans retinoic acid (ATRA) up-regulated AQP9, leading to a significantly increased arsenic uptake and As2O3-induced cytotoxicity on incubation with As2O3, which might explain the synergism between ATRA and As2O3. Therefore, AQP9 controlled arsenic transport and might determine As2O3 sensitivity. Q-PCR showed that primary APL cells expressed AQP9 significantly (2-3 logs) higher than other acute myeloid leukemias (AMLs), which might explain their exquisite As2O3 sensitivity. However, APL and AML with maturation expressed comparable AQP9 levels, suggesting that AQP9 expression was related to granulocytic maturation.

  8. PLZF-RAR[alpha] fusion proteins generated from the variant t(11; 17)(q23; q21) translocation in acute promyelocytic leukemia inhibit ligand-dependent transactivation of wild-type retinoic acid receptors

    SciTech Connect

    Chen, Zhu; Chen, Sai-Juan; Wang, Zhen-Yi ); Guidez, F.; Rousselot, P.; Agadir, A.; Degos, L.; Chomienne, C. ); Zelent, A. ); Waxman, S. )

    1994-02-01

    Recently, the authors described a recurrent variant translocation, t(11;17)(q23;q21), in acute promyelocytic leukemia (APL) which juxtaposes PLZF, a gene encoding a zinc finger protein, to RARA, encoding retinoic acid receptor [alpha] (RAR[alpha]). They have now cloned cDNAs encoding PLZF-RAR[alpha] chimeric proteins and studied their transactivating activities. In transient-expression assays, both the PLZF(A)-RAR[alpha] and PLZF(B)-RAR[alpha] fusion proteins like the PML-RAR[alpha] protein resulting from the well-known t(15;17) translocation in APL, antagonized endogenous and transfected wild-type RAR[alpha] in the presence of retinoic acid. Cotransfection assays showed that a significant repression of RAR[alpha] transactivation activity was obtained even with a very low PLZF-RAR[alpha]-expressing plasmid concentration. A [open quotes]dominant negative[close quotes] effect was observed with vectors expressing RAR[alpha] and retinoid X receptor [alpha] (RXR[alpha]). These abnormal transactivation properties observed in retinoic acid-sensitive myeloid cells strongly implicate the PLZF-RAR[alpha] fusion proteins in the molecular pathogenesis of APL.

  9. New Role for Granulocyte Colony-Stimulating Factor-Induced Extracellular Signal-Regulated Kinase 1/2 in Histone Modification and Retinoic Acid Receptor α Recruitment to Gene Promoters: Relevance to Acute Promyelocytic Leukemia Cell Differentiation ▿

    PubMed Central

    Cassinat, B.; Zassadowski, F.; Ferry, C.; Llopis, L.; Bruck, N.; Lainey, E.; Duong, V.; Cras, A.; Despouy, G.; Chourbagi, O.; Beinse, G.; Fenaux, P.; Rochette Egly, C.; Chomienne, C.

    2011-01-01

    The induction of the granulocytic differentiation of leukemic cells by all-trans retinoic acid (RA) has been a major breakthrough in terms of survival for acute promyelocytic leukemia (APL) patients. Here we highlight the synergism and the underlying novel mechanism between RA and the granulocyte colony-stimulating factor (G-CSF) to restore differentiation of RA-refractory APL blasts. First, we show that in RA-refractory APL cells (UF-1 cell line), PML-RA receptor alpha (RARα) is not released from target promoters in response to RA, resulting in the maintenance of chromatin repression. Consequently, RARα cannot be recruited, and the RA target genes are not activated. We then deciphered how the combination of G-CSF and RA successfully restored the activation of RA target genes to levels achieved in RA-sensitive APL cells. We demonstrate that G-CSF restores RARα recruitment to target gene promoters through the activation of the extracellular signal-regulated kinase (ERK)/mitogen-activated protein kinase (MAPK) pathway and the subsequent derepression of chromatin. Thus, combinatorial activation of cytokines and RARs potentiates transcriptional activity through epigenetic modifications induced by specific signaling pathways. PMID:21262770

  10. INDUCTION OF CELL PROLIFERATION AND APOPTOSIS IN HL60 AND HACAT CELLS BY ARSENIC, ARSENATE, AND ARSENIC-CONTAMINATED DRINKING WATER

    EPA Science Inventory

    Induction of cell proliferation and apoptosis in HL-60 and HaCaT cells by arsenite, arsenate and arsenic-contaminated drinking water. T-C. Zhang, M. Schmitt, J. L. Mumford National Research Council, Washington DC and U.S. Environmental Protection Agency, NHEERL, Research Triangle...

  11. The effect of IFN-gamma and TNF-alpha on the eosinophilic differentiation and NADPH oxidase activation of human HL-60 clone 15 cells.

    PubMed

    Lopez, Juan A; Newburger, Peter E; Condino-Neto, Antonio

    2003-12-01

    The aim of this study was to investigate the effect of interferon-gamma (IFN-gamma) and tumor necrosis factor-alpha (TNF-alpha) on NADPH oxidase activity and gp91-phox gene expression in HL-60 clone 15 cells as they differentiate along the eosinophilic lineage. The results were compared to the eosoniphilic inducers interleukin-5 (IL-5) and butyric acid. IFN-gamma (100 U/ml) and TNF-alpha (1000 U/ml) or IL-5 (200 pM) caused a significant increase in the expression of the eosinophil peroxidase (EPO) and the major basic protein (MBP) genes. Similar results were observed when the cells were cultured with 0.5 mM butyric acid for 5 days. IFN-gamma (100 U/ml) and TNF-alpha (1000 U/ml) also caused a significant increase in superoxide release by HL-60 clone 15 cells after 2 days compared with control or with butyric acid-induced cells. After 5 days, these cytokines and butyric acid induced an even stronger release of superoxide. HL-60 clone 15 cells cultured with IFN-gamma and TNF-alpha for 2 days showed a significant increase in gp91-phox gene expression. We conclude that IFN-gamma and TNF-alpha are sufficient to induce the differentiation of HL-60 clone 15 cells to the eosinophilic lineage and to upregulate gp91-phox gene expression and activity of the NADPH oxidase system.

  12. Elimination of clonogenic tumor cells from HL-60, Daudi, and U-937 cell lines by laser photoradiation therapy: implications for autologous bone marrow purging

    SciTech Connect

    Gulliya, K.S.; Pervaiz, S.

    1989-03-01

    Laser photoradiation therapy was tested in an in vitro model for its efficacy in the elimination of non-Hodgkin's lymphoma cells. Results show that at 31.2 J/cm2 of laser light in the presence of 20 micrograms/mL of merocyanine 540 (MC540) there was greater than 5 log reduction in Burkitt's lymphoma (Daudi) cells. Similar tumor cell kill was obtained for leukemia (HL-60) cells at a laser light dose of 93.6 J/cm2. However, to obtain the same efficiency of killing for histiocytic lymphoma (U-937) cells, a higher dose of MC540 (25 micrograms/mL) was required. Clonogenic tumor stem cell colony formation was reduced by greater than 5 logs after laser photoradiation therapy. Under identical conditions for each cell line the percent survival for granulocyte-macrophage colony-forming units (CFU-GM, 45.9%, 40%, 17.5%), granulocyte/erythroid/macrophage/megakaryocyte (GEMM, 40.1%, 20.1%, 11.5%), colony-forming units (CFU-C, 16.2%, 9.1%, 1.8%), and erythroid burst-forming units (BFU-E, 33.4%, 17.8%, 3.9%) was significantly higher than the tumor cells. Mixing of gamma ray-irradiated normal marrow cells with tumor cells (1:1 and 10:1 ratio) did not interfere with the elimination of tumor cells. The effect of highly purified recombinant interferon alpha (rIFN) on laser photoradiation therapy of tumor cells was also investigated. In the presence of rIFN (30 to 3,000 U/mL), the viability of leukemic cells was observed to increase from 0% to 1.5% with a concurrent decrease in membrane polarization, suggesting an increase in fluidity of cell membrane in response to rIFN. However, at higher doses of rIFN (6,000 to 12,000 U/mL) this phenomenon was not observed. The viability of lymphoma cells remained unaffected at all doses of rIFN tested.

  13. Pure enantiomers of benzoylamino-tranylcypromine: LSD1 inhibition, gene modulation in human leukemia cells and effects on clonogenic potential of murine promyelocytic blasts.

    PubMed

    Valente, Sergio; Rodriguez, Veronica; Mercurio, Ciro; Vianello, Paola; Saponara, Bruna; Cirilli, Roberto; Ciossani, Giuseppe; Labella, Donatella; Marrocco, Biagina; Monaldi, Daria; Ruoppolo, Giovanni; Tilset, Mats; Botrugno, Oronza A; Dessanti, Paola; Minucci, Saverio; Mattevi, Andrea; Varasi, Mario; Mai, Antonello

    2015-04-13

    The pure enantiomers of the N-(2-, 3-, and 4-(2-aminocyclopropyl)phenyl)benzamides hydrochlorides 11a-j were prepared and tested against LSD1 and MAO enzymes. The evaluation of the regioisomers 11a-j highlighted a net increase of the anti-LSD1 potency by shifting the benzamide moiety from ortho to meta and mainly to para position of tranylcypromine phenyl ring, independently from their trans or cis stereochemistry. In particular, the para-substituted 11a,b (trans) and 11g,h (cis) compounds displayed LSD1 and MAO-A inhibition at low nanomolar levels, while were less potent against MAO-B. The meta analogs 11c,d (trans) and 11i,j (cis) were in general less potent, but more efficient against MAO-A than against LSD1. In cellular assays, all the para and meta enantiomers were able to inhibit LSD1 by inducing Gfi-1b and ITGAM gene expression, with 11b,c and 11g-i giving the highest effects. Moreover, 11b and 11g,h strongly inhibited the clonogenic potential of murine promyelocytic blasts. PMID:25768700

  14. Uvangoletin induces mitochondria-mediated apoptosis in HL-60 cells in vitro and in vivo without adverse reactions of myelosuppression, leucopenia and gastrointestinal tract disturbances.

    PubMed

    Zheng, Zhuanzhen; Qiao, Zhenhua; Gong, Rong; Wang, Yalin; Zhang, Yiqun; Ma, Yanping; Zhang, Li; Lu, Yujin; Jiang, Bo; Li, Guoxia; Dong, Chunxia; Chen, Wenliang

    2016-02-01

    This study investigated the cytotoxic effect of uvangoletin on HL-60 cells, and the effects of uvangoletin on myelosuppression, leucopenia, gastrointestinal tract disturbances and the possible cytotoxic mechanisms by using CCK-8, flow cytometry, western blot, xenograft, cyclophosphamide-induced leucopenia, copper sulfate-induced emesis and ethanol-induced gastric mucosal lesions assays. The results of CCK-8, flow cytometry and western blot assays indicated that uvangoletin showed the cytotoxic effect on HL-60 cells and induced the apoptosis of HL-60 cells by downregulating the expression levels of anti-apoptotic proteins (Survivin, Bcl-xl and Bcl-2), upregulating the expression levels of pro-apoptotic proteins (Smac, Bax, Bad, c-caspase-3 and c-caspase-9), and promoting the release of cytochrome c from mitochondria to cytoplasm. Further, the results of xenograft assay suggested that uvangoletin inhibited the HL-60-induced tumor growth without adverse effect on body weight of nude mice in vivo by regulating the expression levels of above apoptotic proteins. The results indicated that the reductions of WBCs count and thighbone marrow granulocytes percentage in cyclophosphamide-induced leucopenia assay, the incubation period and number of emesis in copper sulfate-induced emesis assay and the gastric mucosal lesions in ethanol-induced gastric mucosal lesions assay were not exacerbated or reversed by uvangoletin. In conclusion, the research preliminarily indicated that uvangoletin induced apoptosis of HL-60 cells in vitro and in vivo without adverse reactions of myelosuppression, leucopenia and gastrointestinal tract disturbances, and the pro-apoptotic mechanisms may be related to mitochondria-mediated apoptotic pathway. PMID:26717974

  15. Apoptotic Efficacy of Etomoxir in Human Acute Myeloid Leukemia Cells. Cooperation with Arsenic Trioxide and Glycolytic Inhibitors, and Regulation by Oxidative Stress and Protein Kinase Activities

    PubMed Central

    Estañ, María Cristina; Calviño, Eva; Calvo, Susana; Guillén-Guío, Beatriz; Boyano-Adánez, María del Carmen; de Blas, Elena; Rial, Eduardo; Aller, Patricio

    2014-01-01

    Fatty acid synthesis and oxidation are frequently exacerbated in leukemia cells, and may therefore represent a target for therapeutic intervention. In this work we analyzed the apoptotic and chemo-sensitizing action of the fatty acid oxidation inhibitor etomoxir in human acute myeloid leukemia cells. Etomoxir caused negligible lethality at concentrations up to 100 µM, but efficaciously cooperated to cause apoptosis with the anti-leukemic agent arsenic trioxide (ATO, Trisenox), and with lower efficacy with other anti-tumour drugs (etoposide, cisplatin), in HL60 cells. Etomoxir-ATO cooperation was also observed in NB4 human acute promyelocytic cells, but not in normal (non-tumour) mitogen-stimulated human peripheral blood lymphocytes. Biochemical determinations in HL60 cells indicated that etomoxir (25–200 µM) dose-dependently inhibited mitochondrial respiration while slightly stimulating glycolysis, and only caused marginal alterations in total ATP content and adenine nucleotide pool distribution. In addition, etomoxir caused oxidative stress (increase in intracellular reactive oxygen species accumulation, decrease in reduced glutathione content), as well as pro-apoptotic LKB-1/AMPK pathway activation, all of which may in part explain the chemo-sensitizing capacity of the drug. Etomoxir also cooperated with glycolytic inhibitors (2-deoxy-D-glucose, lonidamine) to induce apoptosis in HL60 cells, but not in NB4 cells. The combined etomoxir plus 2-deoxy-D-glucose treatment did not increase oxidative stress, caused moderate decrease in net ATP content, increased the AMP/ATP ratio with concomitant drop in energy charge, and caused defensive Akt and ERK kinase activation. Apoptosis generation by etomoxir plus 2-deoxy-D-glucose was further increased by co-incubation with ATO, which is apparently explained by the capacity of ATO to attenuate Akt and ERK activation. In summary, co-treatment with etomoxir may represent an interesting strategy to increase the apoptotic

  16. Leukemia.

    PubMed

    Juliusson, Gunnar; Hough, Rachael

    2016-01-01

    Leukemias are a group of life threatening malignant disorders of the blood and bone marrow. In the adolescent and young adult (AYA) population, the acute leukemias are most prevalent, with chronic myeloid leukemia being infrequently seen. Factors associated with more aggressive disease biology tend to increase in frequency with increasing age, whilst tolerability of treatment strategies decreases. There are also challenges regarding the effective delivery of therapy specific to the AYA group, consequences on the unique psychosocial needs of this age group, including compliance. This chapter reviews the current status of epidemiology, pathophysiology, treatment strategies and outcomes of AYA leukemia, with a focus on acute lymphoblastic leukemia and acute myeloid leukemia. PMID:27595359

  17. Synergistic decrease of clonal proliferation, induction of differentiation, and apoptosis of acute promyelocytic leukemia cells after combined treatment with novel 20-epi vitamin D3 analogs and 9-cis retinoic acid.

    PubMed Central

    Elstner, E; Linker-Israeli, M; Le, J; Umiel, T; Michl, P; Said, J W; Binderup, L; Reed, J C; Koeffler, H P

    1997-01-01

    Patients with acute promyelocytic leukemia (APL) usually relapse after all-trans retinoic acid (RA) treatment because this therapy fails to eradicate the malignant clone. Our data showed that KH 1060 and other 20-epi vitamin D3 analogs alone were potent inhibitors of clonal growth of NB4 cells, an APL cell line (ED50, approximately 5 x 10(-11) M). The combination of KH 1060 and 9-cis-RA synergistically and irreversibly enhanced this effect. Neither KH 1060 nor 9-cis-RA (10(-6) M, 3 d) were strong inducers of differentiation of NB4 cells. However, 98% of the cells underwent differentiation to a mature phenotype with features of both granulocytes and monocytes after exposure to a combination of both compounds. Apoptosis only increased after incubation of NB4 cells with 9-cis-RA alone (28%) or with a combination of 9-cis-RA plus KH1060 (32%). Immunohistochemistry showed that the bcl-2 protein decreased from nearly 100% of the wild-type NB4 cells to 2% after incubation with a combination of KH 1060 and 9-cis-RA, and the bax protein increased from 50% of wild-type NB4 cells to 92% after culture with both analogs (5 x 10(-7) M, 3 d). Western blot analysis paralleled these results. Studies of APL cells from one untreated individual paralleled our results with NB4 cells. Taken together, the data demonstrated that nearly all of the NB4 cells can be irreversibly induced to differentiate terminally when exposed to the combination of KH 1060 and 9-cis-RA. PMID:9006004

  18. Granulocyte colony-stimulating factor potentiates differentiation induction by all-trans retinoic acid and arsenic trioxide and enhances arsenic uptake in the acute promyelocytic leukemia cell line HT93A.

    PubMed

    Iriyama, Noriyoshi; Yuan, Bo; Hatta, Yoshihiro; Horikoshi, Akira; Yoshino, Yuta; Toyoda, Hiroo; Aizawa, Shin; Takeuchi, Jin

    2012-11-01

    The effects of arsenic trioxide (ATO), all-trans retinoic acid (ATRA) and granulocyte colony-stimulating factor (G-CSF), alone or in combination, were investigated by focusing on differentiation, growth inhibition and arsenic uptake in the acute promyelocytic leukemia (APL) cell line HT93A. ATO induced differentiation at low concentrations (0.125 µM) and apoptosis at high concentrations (1-2 µM). Furthermore, ATRA induced greater differentiation than ATO. No synergistic effect of ATRA and ATO was found on differentiation. G-CSF promoted differentiation-inducing activities of both ATO and ATRA. The combination of ATRA and G-CSF showed maximum differentiation and ATO addition was not beneficial. Addition of 1 µM ATRA and/or 50 ng/ml G-CSF to ATO did not affect apoptosis compared to ATO treatment alone. ATRA induced expression of aquaporin-9 (AQP9), a transmembrane transporter recognized as a major pathway of arsenic uptake, in a time- and dose-dependent manner. However, treatment with 1 µM ATRA decreased arsenic uptake by 43.7% compared to control subject. Although G-CSF addition did not enhance AQP9 expression in the cells, the reduced arsenic uptake was recovered to the same level as that in controls. ATRA decreased cell viability and addition of 50 ng/ml G-CSF to ATRA significantly increased the number of viable cells compared with that in ATRA alone treated cells. G-CSF not only promotes differentiation-inducing activities of both ATRA and ATO, but also makes APL cells vulnerable to increased arsenic uptake. These observations provide new insights into combination therapy using these three agents for the treatment of APL.

  19. Does microgranular variant morphology of acute promyelocytic leukemia independently predict a less favorable outcome compared with classical M3 APL? A joint study of the North American Intergroup and the PETHEMA Group.

    PubMed

    Tallman, Martin S; Kim, Haesook T; Montesinos, Pau; Appelbaum, Frederick R; de la Serna, Javier; Bennett, John M; Deben, Guillermo; Bloomfield, Clara D; Gonzalez, Jose; Feusner, James H; Gonzalez, Marcos; Gallagher, Robert; Miguel, Jose D Gonzalez-San; Larson, Richard A; Milone, Gustavo; Paietta, Elisabeth; Rayon, Chelo; Rowe, Jacob M; Rivas, Concha; Schiffer, Charles A; Vellenga, Edo; Shepherd, Lois; Slack, James L; Wiernik, Peter H; Willman, Cheryl L; Sanz, Miguel A

    2010-12-16

    Few studies have examined the outcome of large numbers of patients with the microgranular variant (M3V) of acute promyelocytic leukemia (APL) in the all-trans retinoic acid era. Here, the outcome of 155 patients treated with all-trans retinoic acid-based therapy on 3 clinical trials, North American Intergroup protocol I0129 and Programa para el Estudio de la Terapéutica en Hemopatía Maligna protocols LPA96 and LPA99, are reported. The complete remission rate for all 155 patients was 82%, compared with 89% for 748 patients with classical M3 disease. The incidence of the APL differentiation syndrome was 26%, compared with 25% for classical M3 patients, and the early death rate was 13.6% compared with 8.4% for patients with classical M3 morphology. With a median follow-up time among survivors of 7.6 years (range 3.6-14.5), the 5-year overall survival, disease-free survival, and cumulative incidence of relapse for patients with M3V were 70%, 73%, and 24%, respectively. With a median follow-up time among survivors of 7.6 years (range 0.6-14.3), the 5-year overall survival, disease-free survival, and cumulative incidence of relapse among patients with classical M3 morphology were 80% (P = .006 compared with M3V), 81% (P = .07), and 15% (P = .005), respectively. When outcomes were adjusted for the white blood cell count or the relapse risk score, none of these outcomes were significantly different between patients with M3V and classical M3 APL.

  20. Leukemia

    MedlinePlus

    Leukemia is cancer of the white blood cells. White blood cells help your body fight infection. Your blood cells form in your bone marrow. In leukemia, the bone marrow produces abnormal white blood cells. ...

  1. Leukemia

    MedlinePlus

    ... Acute leukemia in adults. In: Niederhuber JE, Armitage JO, Doroshow JH, Kastan MB, Tepper JE, eds. Abeloff's ... Pui CH. Childhood leukemia. In: Niederhuber JE, Armitage JO, Doroshow JH, Kastan MB, Tepper JE, eds. Abeloff's ...

  2. Simvastatin Inhibits IL-5-Induced Chemotaxis and CCR3 Expression of HL-60-Derived and Human Primary Eosinophils

    PubMed Central

    Fu, Chia-Hsiang; Tsai, Wan-Chun; Lee, Ta-Jen; Huang, Chi-Che; Chang, Po-Hung; Su Pang, Jong-Hwei

    2016-01-01

    IL-5-induced chemotaxis of eosinophils is an important feature of allergic airway inflammatory diseases. Simvastatin, a lipid lowering agent, has been shown to exhibit anti-inflammatory and anti-allergic effects. Our aim was to investigate the effect of simvastatin on IL-5-induced eosinophil chemotaxis and its regulatory mechanisms. Eosinophils were derived by treating HL-60 clone 15 (HC15) cells with butyric acid (BA) in an alkaline condition or through direct isolation from human peripheral blood. The expressions of CC chemokine receptor 3 (CCR3) and interleukin (IL)-5 receptors (IL5Rα and β) were analyzed using RT/real-time PCR. The granular proteins were stained using fast green. Eotaxin-induced chemotaxis was measured using a transwell migration assay. CCR3 protein expression was revealed by immunocytochemistry. An animal model of allergic rhinitis was established by challenging Sprague–Dawley® rats repeatedly with ovalbumin. Butyric acid significantly increased the expression of IL5Rα and IL5Rβ, CCR3 and granular proteins in HC15 cells, indicating the maturation of eosinophils (BA-E cells). IL-5 further enhanced the CCR3 expression at both the mRNA and protein levels and the eotaxin-induced chemotaxis of BA-E cells. Simvastatin inhibited the effects of IL-5 on BA-E cells, but not in the presence of mevalonate. Similar results were also exhibited in human primary eosinophils. In vivo animal studies further confirmed that oral simvastatin could significantly suppress the infiltration of eosinophils into turbinate tissues of allergic rats. Therefore, simvastatin was demonstrated to inhibit IL-5-induced CCR3 expression and chemotaxis of eosinophils mediated via the mevalonate pathway. We confirmed that simvastatin also reduced eosinophilic infiltration in allergic rhinitis. PMID:27275740

  3. PS-341 in Treating Patients With Refractory or Relapsed Acute Myeloid Leukemia, Acute Lymphoblastic Leukemia, Chronic Myeloid Leukemia in Blast Phase, or Myelodysplastic Syndrome

    ClinicalTrials.gov

    2013-01-22

    Adult Acute Promyelocytic Leukemia (M3); Blastic Phase Chronic Myelogenous Leukemia; Previously Treated Myelodysplastic Syndromes; Recurrent Adult Acute Lymphoblastic Leukemia; Recurrent Adult Acute Myeloid Leukemia; Refractory Anemia With Excess Blasts; Refractory Anemia With Excess Blasts in Transformation; Relapsing Chronic Myelogenous Leukemia

  4. Induced expression from the Moloney murine leukemia virus long terminal repeat during differentiation of human myeloid cells is mediated through its transcriptional enhancer.

    PubMed Central

    Reisman, D; Rotter, V

    1989-01-01

    Transcription from the Moloney murine leukemia virus (Mo-MuLV) long terminal repeat (LTR) is inhibited in murine stem cells and induced during maturation of these cells. We have investigated whether alterations in the activity of this viral regulatory element also occur during differentiation of human myeloid leukemia cells. The Mo-MuLV LTR and the simian virus 40 (SV40) early promoter were introduced into HL-60 promyelocytes on Epstein-Barr virus-derived chloramphenicol acetyltransferase expression vectors. When these cells were induced to terminally differentiate, transcription from the Mo-MuLV LTR was induced approximately 10-fold. Expression from the SV40 promoter remained constant during differentiation of these cells. Replacing the SV40 transcriptional enhancer with the Mo-MuLV LTR transcriptional enhancer rendered the SV40 promoter inducible during differentiation. We conclude that sequences within the transcriptional enhancer of the Mo-MuLV LTR contain cis-acting elements responsible for induction of gene expression during differentiation of human myeloid cells. Images PMID:2477690

  5. Flow cytometric analysis of pentakis(aziridino)thiatriazadiphosphorine oxide (SOAz)-induced changes in cell cycle progression of HeLa and HL-60 cells.

    PubMed

    Hecquet, C; Nafziger, J; Ronot, X; Marie, J P; Adolphe, M

    1985-02-01

    The treatment of HeLa and HL-60 cells with various concentrations of pentakis(arizidino)thiatriazadiphosphorine oxide results in inhibition of growth and modification of cell cycle distribution. These phenomena were observed at 10(-4) M and 5 X 10(-5) M for HeLa cells and 10(-5) M and 5 X 10(-6) M for HL-60 cells. The estimation of DNA content by flow cytometry showed an important shift in the distribution of cycling cells with a striking arrest in G2 for both cell lines with a concomitant late S-phase accumulation for HeLa cells. Incubation of cells in drug-free medium 3 days after treatment did not show any change in DNA distribution, suggesting the irreversibility of drug action.

  6. Induction of poly(ADP-ribose) polymerase-1 cleavage by antitumor triptycene bisquinones in wild-type and daunorubicin-resistant HL-60 cell lines.

    PubMed

    Wang, Yang; Perchellet, Elisabeth M; Tamura, Masafumi; Hua, Duy H; Perchellet, Jean Pierre

    2002-12-15

    In contrast to their inactive parent compound triptycene (code name TT0), new synthetic analogs (TT code number) mimic the antitumor effects of the anthracycline quinone antibiotic daunorubicin (DAU) in the nM range in vitro but have the additional advantage of also blocking nucleoside transport and retaining their efficacy in multidrug-resistant (MDR) tumor cells. Since TT bisquinones may induce DNA fragmentation at 24 h by an active mechanism that requires RNA and protein syntheses and protease activities, the most cytotoxic of them, TT24, was tested for its ability to induce poly(ADP-ribose) polymerase-1 (PARP-1) cleavage, an early marker of apoptosis. PARP-1 cleavage starts at 2-3 h and is maximally induced at 6 h by 1.6 microM concentrations of TT24 and DAU in wild-type drug-sensitive HL-60-S cells. However, in MDR HL-60-RV cells, PARP-1 cleavage is still induced by 4 microM TT24 but not by 4-10 microM DAU. The magnitude of PARP-1 cleavage may increase with the number of quinoid rings in the triptych structure and, in contrast to TT0, all lead antitumor TT bisquinones share the ability to fully induce PARP-1 cleavage in HL-60-S cells. A 1 h pulse treatment is sufficient for TT24 and DAU to induce PARP-1 cleavage at 6 h. Since the abilities of TT24 and DAU to induce PARP-1 cleavage are inhibited by benzyloxycarbonyl-Val-Ala-Asp-fluoromethyl ketone but not by N-tosyl-L-phenylalanine chloromethyl ketone, caspase-mediated apoptosis may be involved in the mechanism by which these quinone antitumor drugs induce the proteolytic cleavage of PARP-1 at 6 h and the internucleosomal fragmentation of DNA at 24 h in the HL-60 tumor cell system. PMID:12406551

  7. Ethanolic extract of fermented Thunb induces human leukemic HL-60 and Molt-4 cell apoptosis via oxidative stress and a mitochondrial pathway.

    PubMed

    Banjerdpongchai, Ratana; Kongtawelert, Prachya

    2011-01-01

    Houttuynia cordata Thunb (HCT) is a medicinal plant of the Saururaceae family which features antimutagenic and antiviral properties. For extraction, the whole plants were fermented or non-fermented with yeast and ethanol then the whole plants were dried, ground and extracted with 95% ethanol or water. The aims of this study were to compare cytotoxic effects, apoptosis induction, and mechanism(s) with the ethanolic and water extracts of fermented and non-fermented HCT. Cytotoxicity was assessed using the MTT assay in human leukemic HL-60, Molt-4 and peripheral blood mononuclear cells (PBMCs). Apoptotic death was characterized by staining with propidium iodide and examined under a fluorescence microscope. Peroxide radical production and reduction of mitochondrial transmembrane potential (MTP) were determined using 2',7'-dichlorohydrofluorescein diacetate and 3,3'-dihexyloxacarbocyanine iodide and flow cytometry, respectively. The expression of caspase-9 was identified by immunoblotting. The ethanolic extract of fermented HCT was cytotoxic to HL-60 >Molt- 4 > PBMCs, to a greater extent than the non-fermented preparation and the number of apoptotic cells was higher. The alcoholic (fermented) extract produced more radicals than the non-fermented in HL-60 cells but the converse was observed in Molt-4 cells. Reduction of MTP was found in HL-60 and Molt-4 cells treated with the alcoholic (fermented) extract and caspase-9 was cleaved dose-dependently in both cells. In conclusion, the alcoholic extract of fermented HCT was more toxic to human leukemic cells than the non-fermented and both cell lines underwent apoptosis via oxidative stress and a mitochondrial pathway. PMID:22393956

  8. A novel method to differentiate between ping-pong and simultaneous exchange kinetics and its application to the anion exchanger of the HL60 cell

    PubMed Central

    1992-01-01

    We have developed a new test to differentiate between ping-pong and simultaneous mechanisms for tightly coupled anion exchange. This test requires the use of a dead-end reversible noncompetitive inhibitor. As an example, we have applied the test to the anion exchanger of the HL60 cell using the salicylic acid derivative 3,5-diiodosalicylic acid (DIS), which reversibly inhibits HL60 cell Cl/Cl exchange. The concentration of DIS that causes 50% inhibition (ID50) increased only slightly as either intra- or extracellular chloride was increased, indicating that DIS inhibits HL60 anion exchange in a noncompetitive manner. In agreement with this observation, plots of the slope of the Dixon plot as a function of 1/[Clo] or 1/[Cli] were fit with straight lines with nonzero intercepts, indicating that DIS does not compete with either of the substrates ([Clo] and [Cli]). The secondary Dixon slope test is based on the fact that, for a dead-end inhibitor such as DIS, the slope of the Dixon plot slope vs. 1/[Cli] (secondary Dixon slope or SDS) is independent of extracellular Cl when the exchange mechanism follows ping-pong kinetics. Similarly, the SDS calculated from a plot as a function of 1/[Clo] is also independent of intracellular Cl for a ping-pong exchanger. In contrast to this prediction, we found that for DIS inhibition of Cl/Cl exchange in HL60 cells the slope of the Dixon plot slope vs. 1/[Cli] decreased by a factor of 2.5-fold when [Clo] was increased from 1 to 11 mM (P < 0.0001). This change in the SDS rules out ping-pong kinetics, but is consistent with a simultaneous model of Cl/Cl exchange in which there are extra- and intracellular anion binding sites, both of which must be occupied by suitable anions in order to allow simultaneous exchange of the ions. PMID:1474373

  9. Gemtuzumab Ozogamicin in Treating Patients With Acute Myeloid Leukemia

    ClinicalTrials.gov

    2013-09-23

    Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Del(5q); Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(15;17)(q22;q12); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Adult Acute Promyelocytic Leukemia (M3); Recurrent Adult Acute Myeloid Leukemia

  10. Restoration of CCAAT enhancer binding protein α P42 induces myeloid differentiation and overcomes all-trans retinoic acid resistance in human acute promyelocytic leukemia NB4-R1 cells

    PubMed Central

    WANG, LIMENGMENG; XIAO, HAOWEN; ZHANG, XING; LIAO, WEICHAO; FU, SHAN; HUANG, HE

    2015-01-01

    All-trans retinoic acid (ATRA) is one of the first line agents in differentiation therapy for acute promyelocytic leukemia (APL). However, drug resistance is a major problem influencing the efficacy of ATRA. Identification of mechanisms of ATRA resistance are urgenly needed. In the present study, we found that expression of C/EBPα, an important transcription factor for myeloid differentiation, was significantly suppressed in ATRA resistant APL cell line NB4-R1 compared with ATRA sensitive NB4 cells. Moreover, two forms of C/EBPα were unequally suppressed in NB4-R1 cells. Suppression of the full-length form P42 was more pronounced than the truncated form P30. Inhibition of PI3K/Akt/mTOR pathway was also observed in NB4-R1 cells. Moreover, C/EBPα expression was reduced by PI3K inhibitor LY294002 and mTOR inhibitor RAD001 in NB4 cells, suggesting that inactivation of the PI3K/Akt/mTOR pathway was responsible for C/EBPα suppression in APL cells. We restored C/EBPα P42 and P30 by lentivirus vectors in NB4-R1 cells, respectively, and found C/EBPα P42, but not P30, could increase CD11b, CD14, G-CSFR and GM-CSFR expression, which indicated the occurrence of myeloid differentiation. Further upregulating of CD11b expression and differential morphological changes were found in NB4-R1 cells with restored C/EBPα P42 after ATRA treatment. However, CD11b expression and differential morphological changes could not be induced by ATRA in NB4-R1 cells infected with P30 expressing or control vector. Thus, we inferred that ATRA sensitivity of NB4-R1 cells was enhanced by restoration of C/EBPα P42. In addition, we used histone deacetylase inhibitor trichostatin (TSA) to restore C/EBPα expression in NB4-R1 cells. Similar enhancement of myeloid differentiation and cell growth arrest were detected. Together, the present study demonstrated that suppression of C/EBPα P42 induced by PI3K/Akt/mTOR inhibition impaired the differentiation and ATRA sensitivity of APL cells. Restoring C

  11. SUMO Ligase Protein Inhibitor of Activated STAT1 (PIAS1) Is a Constituent Promyelocytic Leukemia Nuclear Body Protein That Contributes to the Intrinsic Antiviral Immune Response to Herpes Simplex Virus 1

    PubMed Central

    Brown, James R.; Conn, Kristen L.; Wasson, Peter; Charman, Matthew; Tong, Lily; Grant, Kyle; McFarlane, Steven

    2016-01-01

    ABSTRACT Aspects of intrinsic antiviral immunity are mediated by promyelocytic leukemia nuclear body (PML-NB) constituent proteins. During herpesvirus infection, these antiviral proteins are independently recruited to nuclear domains that contain infecting viral genomes to cooperatively promote viral genome silencing. Central to the execution of this particular antiviral response is the small ubiquitin-like modifier (SUMO) signaling pathway. However, the participating SUMOylation enzymes are not fully characterized. We identify the SUMO ligase protein inhibitor of activated STAT1 (PIAS1) as a constituent PML-NB protein. We show that PIAS1 localizes at PML-NBs in a SUMO interaction motif (SIM)-dependent manner that requires SUMOylated or SUMOylation-competent PML. Following infection with herpes simplex virus 1 (HSV-1), PIAS1 is recruited to nuclear sites associated with viral genome entry in a SIM-dependent manner, consistent with the SIM-dependent recruitment mechanisms of other well-characterized PML-NB proteins. In contrast to that of Daxx and Sp100, however, the recruitment of PIAS1 is enhanced by PML. PIAS1 promotes the stable accumulation of SUMO1 at nuclear sites associated with HSV-1 genome entry, whereas the accumulation of other evaluated PML-NB proteins occurs independently of PIAS1. We show that PIAS1 cooperatively contributes to HSV-1 restriction through mechanisms that are additive to those of PML and cooperative with those of PIAS4. The antiviral mechanisms of PIAS1 are counteracted by ICP0, the HSV-1 SUMO-targeted ubiquitin ligase, which disrupts the recruitment of PIAS1 to nuclear domains that contain infecting HSV-1 genomes through mechanisms that do not directly result in PIAS1 degradation. IMPORTANCE Adaptive, innate, and intrinsic immunity cooperatively and efficiently restrict the propagation of viral pathogens. Intrinsic immunity mediated by constitutively expressed cellular proteins represents the first line of intracellular defense against

  12. New flow cytometric method for detection of minimally expressed multidrug resistance P-glycoprotein on normal and acute leukemia cells using biotinylated MRK16 and streptavidin-RED670 conjugate.

    PubMed

    Takeshita, A; Shinjo, K; Ohnishi, K; Ohno, R

    1995-06-01

    To evaluate the expression of multidrug resistance (MDR) on normal and leukemia cells, we examined P-glycoprotein (P-gp) by a newly devised flow cytometric method, utilizing a biotinylated monoclonal antibody (mAb) against P-gp (MRK16), a streptavidin-RED670 conjugate (SA-RED670) and appropriate emission filters. The combination of biotinylated MRK16 (b-MRK16) and SA-RED670 resulted in higher sensitivity as compared with standard methods such as the use of streptavidin-phycoerythrin (SA-PE) conjugate. The sensitivity was examined in K562, K562/ADR, NOMO-1, NOMO-1/ADR and HL60 cells, and compared with the data obtained from reverse transcription polymerase chain reaction (RT-PCR) of mdr-1 gene. P-gp positivity on flow cytometry was 10.4%, 99.9%, 1.4%, 90.4% and 0%, respectively. Mdr-1 mRNA was well expressed in K562/ADR and NOMO-1/ADR cells, but not in NOMO-1 and HL60 cells. In K562 cells, mdr-1 was found after 40 cycles of PCR, but not 25 cycles. These data are well correlated with those from the flow cytometry. We then studied the P-gp expression on normal peripheral blood cells and acute leukemia cells. P-gp was little expressed on peripheral lymphocytes, monocytes and granulocytes. It was also little expressed on blast cells from 5 patients with acute promyelocytic leukemia (AML) and 5 acute lymphocytic leukemia (ALL) expressed P-gp at diagnosis, ranging from 8.5% to 34.5% (16.9 +/- 11.8%) and from 2.3% to 45.6% (24.0 +/- 17.8%), respectively. All 9 relapsed or refractory cases expressed P-gp, ranging from 21.1% to 99.8% (52.2 +/- 29.9%). Significant differences were found in APL, CD34-positive and relapse and refractory cases (P = 0.0006, 0.0007 and 0.0088, respectively). These results indicate that this flow cytometric analysis is useful for the evaluation of clinical MDR status and can identify a group of patients with resistant leukemia. PMID:7622426

  13. Concise synthesis of carbazole-1,4-quinones and evaluation of their antiproliferative activity against HCT-116 and HL-60 cells.

    PubMed

    Nishiyama, Takashi; Hatae, Noriyuki; Yoshimura, Teruki; Takaki, Sawa; Abe, Takumi; Ishikura, Minoru; Hibino, Satoshi; Choshi, Tominari

    2016-10-01

    We report a convenient synthesis of carbazole-1,4-quinone alkaloid koeniginequinones A and B using a tandem ring-closing metathesis with the dehydrogenation reaction sequence under an O2 atmosphere as an important step. Using this method, carbazole-1,4-quinones substituted at the 5-, 6-, 7-, and/or 8-positions have been synthesized. Moreover, 24 compounds, including koeniginequinones A and B, have been evaluated for their antiproliferative activity against HCT-116 and HL-60 cells, and the 6-nitro analog exhibited the most potent activity against both tumor cell types. PMID:27318980

  14. Redox regulation of cAMP levels by ascorbate in 1,25-dihydroxy- vitamin D3-induced differentiation of HL-60 cells.

    PubMed Central

    López-Lluch, G; Burón, M I; Alcaín, F J; Quesada, J M; Navas, P

    1998-01-01

    1alpha,25-Dihydroxyvitamin D3 [1,25-(OH)2D3] induces differentiation to monocyte-macrophage lineage of several leukaemic cell lines such as HL-60, U937, M1 and Mono Mac 6. Ascorbate also modulates growth and differentiation of different animal cells in culture. We have previously reported the stimulating effect of ascorbate on 1, 25-(OH)2D3-induced HL-60 cell differentiation. We show here that 1, 25-(OH)2D3 induces a transient increase in cAMP levels in these cells, and ascorbate significantly increases these cAMP levels. Ascorbate alone does not have any effect. Other cAMP-increasing agents such as isobutylmethylxanthine, forskolin and prostaglandin E2 maintain high levels of cAMP at 48 h of incubation and also enhance differentiation along the monocytic pathway induced by 1, 25-(OH)2D3, as revealed by specific differentiation markers, demonstrating the importance of cAMP in the differentiation process. It is also shown that the presence of ascorbate and its free radical (AFR) during 1,25-(OH)2D3-induced differentiation significantly decreases cytoplasmic NADH levels compared with those induced by 1,25-(OH)2D3 in HL-60 cells. The results indicate that NADH is an inhibitor of adenylate cyclase in these cells. AFR is an electron acceptor of the trans-plasma-membrane electron-transport system, and NADH is the electron donor. Through this system, ascorbate and AFR keep levels of NADH low, thereby decreasing its inhibitory effect on adenylate cyclase activity and so increasing cAMP synthesis. We also demonstrate that other ascorbate derivatives, such as ascorbate 2-phosphate and dehydroascorbate, both of which are unable to produce AFR, do not alter intracellular NADH levels during 1, 25-(OH)2D3-induced differentiation. Also, ascorbate and AFR increase specific differentiation markers (CD14 and NitroBlue Tetrazolium reduction) but neither ascorbate 2-phosphate nor dehydroascorbate show this enhancing activity. In summary, we propose that the effect of ascorbate on 1

  15. Effect of a 2.45-GHz radiofrequency electromagnetic field on neutrophil chemotaxis and phagocytosis in differentiated human HL-60 cells.

    PubMed

    Koyama, Shin; Narita, Eijiro; Suzuki, Yoshihisa; Taki, Masao; Shinohara, Naoki; Miyakoshi, Junji

    2015-01-01

    The potential public health risks of radiofrequency (RF) fields have been discussed at length, especially with the use of mobile phones spreading extensively throughout the world. In order to investigate the properties of RF fields, we examined the effect of 2.45-GHz RF fields at the specific absorption rate (SAR) of 2 and 10 W/kg for 4 and 24 h on neutrophil chemotaxis and phagocytosis in differentiated human HL-60 cells. Neutrophil chemotaxis was not affected by RF-field exposure, and subsequent phagocytosis was not affected either compared with that under sham exposure conditions. These studies demonstrated an initial immune response in the human body exposed to 2.45-GHz RF fields at the SAR of 2 W/kg, which is the maximum value recommended by the International Commission for Non-Ionizing Radiation Protection (ICNIRP) guidelines. The results of our experiments for RF-field exposure at an SAR under 10 W/kg showed very little or no effects on either chemotaxis or phagocytosis in neutrophil-like human HL-60 cells.

  16. Cyclic AMP-dependent protein kinase interferes with GTP. gamma. S stimulated IP sub 3 formation in differentiated HL-60 cell membranes

    SciTech Connect

    Misaki, Naoyuki; Imaizumi, Taro; Watanabe, Yashuiro )

    1989-01-01

    The effects of addition of activated cyclic AMP-dependent protein kinase (PKA) on the function of islet-activating protein (IAP)-sensitive GTP-binding (G) protein were studied in the plasma membranes of {sup 3}H-inositol-labeled differentiated human leukemic (HL-60) cells. Pretreatment of the membranes with activated PKA in the presence of MgATP for 15 min. at 37{degree}C decreased GTP {gamma}S-stimulated inositol trisphosphate (IP{sub 3}) formation by about 30%, but had no influence on Ca{sup 2+}-stimulated IP{sub 3} formation. And autoradiography in the phosphorylation experiments of solubilized HL-60 cell membranes by PKA showed some {sup 32}P incorporated bands, and among them one of the major bands showed the migration at 40 kDa supporting that the G protein coupling with PI response was phosphorylated by PKA. These results showed that pretreatment with activated PKA inhibited the mediating function of the G protein between the fMLP receptor and phospholipase C by its phosphorylation.

  17. Cytotoxic and apoptotic effects of extracts of Artemisia ciniformis Krasch. and Popov ex Poljakov on K562 and HL-60 cell lines.

    PubMed

    Tayarani-Najaran, Zahra; Hajian, Zahra; Mojarrab, Mahdi; Emami, Seyed Ahmad

    2014-01-01

    Artemisia, as one of the largest genera in the tribe Anthemideae of the Asteraceae comprises an important part of Iranian flora. While cytotoxic and apoptotic properties have already been reported for some species of the genus there is not any report on cytotoxic effects of A. ciniformis. Petroleum ether (40-60), dichloromethane, ethyl acetate, ethanol and ethanol-water (50:50) extracts of the aerial parts of A. cinformis were subjected to cytotoxic and apoptotic evaluations on two cancer human cell lines (K562 and HL-60) and on J774 normal cells. Among multiple extracts evaluated for cytotoxicity, dichloromethane (CH2Cl2) and petroleum ether (PE) extracts were shown to possess the highest anti-proliferative effects on HL-60 and K562 cells with IC50 values of 31.3 and 25.5 μg/ml respectively. Apoptosis induction verified by sub-G1 peaks was seen in flow cytometry histograms. Increase in the amount of Bax protein, formation of DNA fragments, and cleavage of PARP to 24 and 89 kDa sub units all confirmed induction of apoptosis by A. cinformis extracts. Taken together according to the result of the present study some extracts of A. cinformis could be considered as sources for natural cytotoxic compounds and further mechanistic and phytochemical studies are recommended to fully understand the underlying mechanisms of cancer cell death as well as identification of responsible phytochemicals. PMID:25227790

  18. Treatment of Acute Promyelocytic (M3) Leukemia

    MedlinePlus

    ... to give ATRA plus another differentiating drug called arsenic trioxide (Trisenox). This is often used in patients ... anthracycline plus cytarabine for at least 2 cycles Arsenic trioxide for 2 cycles (over about 2½ months), ...

  19. Clofarabine, Cytarabine, and G-CSF in Treating Patients With Relapsed or Refractory Acute Myeloid Leukemia

    ClinicalTrials.gov

    2015-05-05

    Acute Myeloid Leukemia; Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(15;17)(q22;q12); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Adult Acute Promyelocytic Leukemia (M3); Recurrent Adult Acute Myeloid Leukemia

  20. Romidepsin in Treating Patients With Relapsed or Refractory Acute Myeloid Leukemia

    ClinicalTrials.gov

    2015-12-03

    Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Del(5q); Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(15;17)(q22;q12); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Adult Acute Promyelocytic Leukemia (M3); Recurrent Adult Acute Myeloid Leukemia

  1. Positive and negative predictive values of HLA-DR and CD34 in the diagnosis of acute promyelocytic leukemia and other types of acute myeloid leukemia with recurrent chromosomal translocations.

    PubMed

    Promsuwicha, Orathai; Auewarakul, Chirayu U

    2009-12-01

    The predictive value of HLA-DR and CD34 in the diagnosis of four distinct genetic entities of acute myeloid leukemia (AML) is presently not established. We evaluated the positive and negative predictive values (PPV and NPV, respectively), sensitivity, specificity, and correlation coefficients of HLA-DR and CD34 in AML patients with t(15;17), t(8;21), inv(16), and abn(11q23). In AML with t(15;17) (n = 64), HLA-DR was expressed in 4.68% and CD34 was expressed in 15.62% and none of the cases expressed both HLA-DR and CD34. In AML with t(8;21) (n = 99), HLA-DR, CD34 or both antigens were expressed in the majority of cases (90.90%, 80.80%, and 79.79%, respectively). AML patients with inv(16) (n = 18) and abn(11q23) (n = 31) also highly expressed HLA-DR and CD34. Eight cases of t(8;21) and 1 case of abn(11q23) did not express either antigen. The highest correlation between CD34 and HLA-DR expression values was observed in cases with t(8;21) (r = 0.72) with the lowest correlation in inv(16) (r = 0.035). The PPV and NPV of HLA-DR-negativity plus CD34-negativity to predict t(15;17) was 85% and 100%, respectively, with 100% sensitivity and 92.74% specificity. The PPV and NPV of other myeloid markers such as CD117, MPO and CD11c to diagnose t(15;17) were much lower than those of HLA-DR and CD34. It was concluded that the absence of double negativity of HLA-DR and CD34 strongly predicts against t(15;17). Rare HLA-DR-positive/CD34-negative cases exist in patients with t(15;17) and 8% of t(8;21) cases expressed neither antigen. Further studies should determine whether HLA-DR-positive t(15;17) and HLA-DR-negative/CD34-negative t(8;21) represent a special entity associated with significant prognostic relevance.

  2. Changes of reactive oxygen and nitrogen species and mitochondrial functioning in human K562 and HL60 cells exposed to ionizing radiation.

    PubMed

    Saenko, Yuriy; Cieslar-Pobuda, Artur; Skonieczna, Magdalena; Rzeszowska-Wolny, Joanna

    2013-10-01

    Free radicals generated by mitochondria are candidates for mediating long-lasting effects of radiation on cells, including genetic instability. To better understand the significance of reactive oxygen species (ROS) and reactive nitrogen species (RNS) in these long-term effects we assayed ROS and RNS levels, the mitochondrial membrane potential and mass, and the frequency of DNA strand breaks, apoptosis and necrosis in human leukemic cells (K562 and HL60) after 12 Gy of X irradiation. An increase in intracellular ROS level was observed immediately post-irradiation, and about 24 h later a second increase of ROS was accompanied by increase in nitrogen oxide, mitochondrial potential and mitochondrial mass in both cell types. The second peak of ROS level was partially inhibited by rotenone, an inhibitor of mitochondrial complex I, in K562 but not in HL60 cells suggesting that the sources of ROS differed in the two cell types. The frequency of DNA breaks showed kinetics similar to ROS levels, with a sharp peak immediately after irradiation and a second increase 24 and 48 h later, which was significantly higher in K562 cells. Forty-eight hours after irradiation an increase in the frequency of apoptotic cells was observed in both cell lines, which became larger and statistically significant in K562 cells after inhibition of mitochondrial complex I. Our results show that ionizing radiation activates cellular processes which produce long-lasting ROS and RNS radicals, which may have different sources in different cell types and could participate in cellular signaling networks important for radiosensitivity and mode of cell death.

  3. (4-Methoxyphenyl)(3,4,5-trimethoxyphenyl)methanone inhibits tubulin polymerization, induces G{sub 2}/M arrest, and triggers apoptosis in human leukemia HL-60 cells

    SciTech Connect

    Magalhães, Hemerson I.F.; Wilke, Diego V.; Bezerra, Daniel P.; Cavalcanti, Bruno C.; Rotta, Rodrigo; Lima, Dênis P. de; Beatriz, Adilson; Moraes, Manoel O.; Diniz-Filho, Jairo; Pessoa, Claudia

    2013-10-01

    (4-Methoxyphenyl)(3,4,5-trimethoxyphenyl)methanone (PHT) is a known cytotoxic compound belonging to the phenstatin family. However, the exact mechanism of action of PHT-induced cell death remains to be determined. The aim of this study was to investigate the mechanisms underlying PHT-induced cytotoxicity. We found that PHT displayed potent cytotoxicity in different tumor cell lines, showing IC{sub 50} values in the nanomolar range. Cell cycle arrest in G{sub 2}/M phase along with the augmented metaphase cells was found. Cells treated with PHT also showed typical hallmarks of apoptosis such as cell shrinkage, chromatin condensation, phosphatidylserine exposure, increase of the caspase 3/7 and 8 activation, loss of mitochondrial membrane potential, and internucleosomal DNA fragmentation without affecting membrane integrity. Studies conducted with isolated tubulin and docking models confirmed that PHT binds to the colchicine site and interferes in the polymerization of microtubules. These results demonstrated that PHT inhibits tubulin polymerization, arrests cancer cells in G{sub 2}/M phase of the cell cycle, and induces their apoptosis, exhibiting promising anticancer therapeutic potential. - Highlights: • PHT inhibits tubulin polymerization. • PHT arrests cancer cells in G{sub 2}/M phase of the cell cycle. • PHT induces caspase-dependent apoptosis.

  4. Vorinostat and Idarubicin in Treating Patients With Relapsed or Refractory Leukemia or Myelodysplastic Syndromes

    ClinicalTrials.gov

    2013-09-27

    Acute Myeloid Leukemia With Multilineage Dysplasia Following Myelodysplastic Syndrome; Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(15;17)(q22;q12); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Adult Acute Promyelocytic Leukemia (M3); Blastic Phase Chronic Myelogenous Leukemia; Myelodysplastic/Myeloproliferative Neoplasm, Unclassifiable; Previously Treated Myelodysplastic Syndromes; Recurrent Adult Acute Lymphoblastic Leukemia; Recurrent Adult Acute Myeloid Leukemia; Relapsing Chronic Myelogenous Leukemia; Secondary Acute Myeloid Leukemia; Secondary Myelodysplastic Syndromes

  5. Ethanol extract of Hedyotis diffusa willd upregulates G0/G1 phase arrest and induces apoptosis in human leukemia cells by modulating caspase cascade signaling and altering associated genes expression was assayed by cDNA microarray.

    PubMed

    Kuo, Yu-Jui; Yang, Jai-Sing; Lu, Chi-Cheng; Chiang, Su-Yin; Lin, Jaung-Geng; Chung, Jing-Gung

    2015-09-01

    The authors' previous study has shown that water extract of Hedyotis diffusa Willd (HDW) promoted immune response and exhibited anti-leukemic activity in BALB/c leukemic mice in vivo. In this study, the anti-proliferation effects of ethanol extract of H. diffusa Willd (EEHDW) on lung cancer cell lines (A549, H1355, and LLC), leukemia cell lines (HL-60, WEHI-3), and a mouse melanoma cell line (B16F10) in vitro were investigated. The results demonstrated that EEHDW suppressed the cell proliferation of A549, H1355, HL-60, WEHI-3, and B16F10 cells as well as reduced cell viability in a concentration-dependent manner. We found that EEHDW inhibited the cell proliferation of HL-60 cells in concentration-dependent manner. In addition, EEHDW triggered an arrest of HL-60 cells at G0/G1 phase and sub-G1 population (apoptotic cells). EEHDW provoked DNA condensation and DNA damage in HL-60 cells. The activities of caspase-3, caspase-8, and caspase-9 were elevated in EEHDW-treated HL-60 cells. DNA microarray to investigate and display the gene levels related to cell growth, signal transduction, apoptosis, cell adhesion, cell cycle, DNA damage and repair, transcription and translation was also used. These findings suggest that EEHDW may be a potential herbal medicine and therapeutic agent for the treatment of leukemia.

  6. Mangiferin activates Nrf2-antioxidant response element signaling without reducing the sensitivity to etoposide of human myeloid leukemia cells in vitro

    PubMed Central

    Zhang, Ben-ping; Zhao, Jie; Li, Shan-shan; Yang, Li-jing; Zeng, Ling-lan; Chen, Yan; Fang, Jun

    2014-01-01

    Aim: Mangiferin is glucosylxanthone extracted from plants of the Anacardiaceae and Gentianaceae families. The aim of this study was to investigate the effects of mangiferin on Nrf2-antioxidant response element (ARE) signaling and the sensitivity to etoposide of human myeloid leukemia cells in vitro. Methods: Human HL-60 myeloid leukemia cells and mononuclear human umbilical cord blood cells (MNCs) were examined. Nrf2 protein was detected using immunofluorescence staining and Western blotting. Binding of Nrf2 to ARE was examined with electrophoretic mobility shift assay. The level of NQO1 was assessed with real-time RT-PCR and Western blotting. DCFH-DA was used to evaluate intracellular ROS level. Cell proliferation and apoptosis were analyzed using MTT and flow cytometry, respectively. Results: Mangiferin (50 μmol/L) significantly increased Nrf2 protein accumulation in HL-60 cells, particularly in the nucleus. Mangiferin also enhanced the binding of Nrf2 to an ARE, significantly up-regulated NQO1 expression and reduced intracellular ROS in HL60 cells. Mangiferin alone dose-dependently inhibited the proliferation of HL-60 cells. Mangiferin (50 mol/L) did not attenuate etoposide-induced cytotoxicity in HL-60 cells, and combined treatment of mangiferin with low concentration of etoposide (0.8 μg/mL) even increased the cell inhibition rate. Nor did mangiferin change the rate of etoposide-induced apoptosis in HL-60 cells. In MNCs, mangiferin significantly relieved oxidative stress, but attenuated etoposide-induced cytotoxicity. Conclusion: Mangiferin is a novel Nrf2 activator that reduces oxidative stress and protects normal cells without reducing the sensitivity to etoposide of HL-60 leukemia cells in vitro. Mangiferin may be a potential chemotherapy adjuvant. PMID:24374812

  7. Role of the p70 S6 kinase cascade in neutrophilic differentiation and proliferation of HL-60 cells-a study of transferrin receptor-positive and -negative cells obtained from dimethyl sulfoxide- or retinoic acid-treated HL-60 cells.

    PubMed

    Kanayasu-Toyoda, Toshie; Yamaguchi, Teruhide; Oshizawa, Tadashi; Kogi, Mieko; Uchida, Eriko; Hayakawa, Takao

    2002-09-01

    Previously, we suggested that p70 S6 kinase (p70 S6K) plays an important role in the regulation of neutrophilic differentiation of HL-60 cells; this conclusion was based on our analysis of transferrin receptor (Trf-R) positive (Trf-R(+)) and negative (Trf-R(-)) cells that appeared after treatment with dimethyl sulfoxide (Me(2)SO). In this study, we analyzed the upstream of p70 S6K in relation to the differentiation and proliferation of both cell types. The granulocyte colony-stimulating factor (G-CSF)-induced enhancement of phosphatidylinositol 3-kinase (PI3K) activity in Trf-R(+) cells was markedly higher than that in Trf-R(-) cells. Wortmannin, a specific inhibitor of PI3K, partially inhibited G-CSF-induced p70 S6K activity and G-CSF-dependent proliferation, whereas rapamycin, an inhibitor of p70 S6K, completely inhibited these activities. The wortmannin-dependent enhancement of neutrophilic differentiation was similar to that induced by rapamycin. From these results, we conclude that the PI3K/p70 S6K cascade may play an important role in negative regulation of neutrophilic differentiation in HL-60 cells. For the G-CSF-dependent proliferation, however, p70 S6K appears to be a highly important pathway through not only a PI3K-dependent but also possibly an independent cascade.

  8. Cytoplasmic proliferating cell nuclear antigen connects glycolysis and cell survival in acute myeloid leukemia

    PubMed Central

    Ohayon, Delphine; De Chiara, Alessia; Chapuis, Nicolas; Candalh, Céline; Mocek, Julie; Ribeil, Jean-Antoine; Haddaoui, Lamya; Ifrah, Norbert; Hermine, Olivier; Bouillaud, Frédéric; Frachet, Philippe; Bouscary, Didier; Witko-Sarsat, Véronique

    2016-01-01

    Cytosolic proliferating cell nuclear antigen (PCNA), a scaffolding protein involved in DNA replication, has been described as a key element in survival of mature neutrophil granulocytes, which are non-proliferating cells. Herein, we demonstrated an active export of PCNA involved in cell survival and chemotherapy resistance. Notably, daunorubicin-resistant HL-60 cells (HL-60R) have a prominent cytosolic PCNA localization due to increased nuclear export compared to daunorubicin-sensitive HL-60 cells (HL-60S). By interacting with nicotinamide phosphoribosyltransferase (NAMPT), a protein involved in NAD biosynthesis, PCNA coordinates glycolysis and survival, especially in HL-60R cells. These cells showed a dramatic increase in intracellular NAD+ concentration as well as glycolysis including increased expression and activity of hexokinase 1 and increased lactate production. Furthermore, this functional activity of cytoplasmic PCNA was also demonstrated in patients with acute myeloid leukemia (AML). Our data uncover a novel pathway of nuclear export of PCNA that drives cell survival by increasing metabolism flux. PMID:27759041

  9. 2,2',4,4'-Tetrachlorobiphenyl upregulates cyclooxygenase-2 in HL-60 cells via p38 mitogen-activated protein kinase and NF-{kappa}B

    SciTech Connect

    Bezdecny, Steven A.; Karmaus, Peer; Roth, Robert A.; Ganey, Patricia E. . E-mail: ganey@msu.edu

    2007-06-15

    Polychlorinated biphenyls (PCBs) are ubiquitous, persistent environmental contaminants that affect a number of cellular systems, including neutrophils. Among the effects caused by the noncoplanar PCB 2,2',4,4'-tetrachlorobiphenyl (2244-TCB) in granulocytic HL-60 cells are increases in superoxide anion production, activation of phospholipase A{sub 2} with subsequent release of arachidonic acid (AA) and upregulation of the inflammatory gene cyclooxygenase-2 (COX-2). The objective of this study was to determine the signal transduction pathways involved in the upregulation of COX-2 by 2244-TCB. Treatment of HL-60 cells with 2244-TCB led to increased expression of COX-2 mRNA. This increase was prevented by the transcriptional inhibitor actinomycin D in cells pretreated with 2244-TCB for 10 min. The increase in COX-2 mRNA was associated with release of {sup 3}H-AA, phosphorylation of p38 and extracellular signal-regulated kinase (ERK) mitogen-activated protein (MAP) kinases, increased levels of nuclear NF-{kappa}B and increased superoxide anion production. Bromoenol lactone, an inhibitor of the calcium-independent phospholipase A{sub 2}, reduced {sup 3}H-AA release but had no effect on COX-2 mRNA, protein or activity. Pretreatment with SB-202190 or SB-203580, inhibitors of the p38 MAP kinase pathway, prevented the 2244-TCB-mediated induction of COX-2 and phosphorylation of p38 and ERK MAP kinases. These inhibitors did not alter {sup 3}H-AA release. Treatment with PD 98059 or U 0126, inhibitors of the MAP/ERK (MEK) pathway, prevented the 2244-TCB-mediated activation of ERK but had no effect on COX-2 induction or p38 phosphorylation. 2244-TCB treatment did not affect c-Jun N-terminal kinase (JNK) phosphorylation. 2244-TCB exposure increased the amount of nuclear NF-{kappa}B. This increase was prevented by pretreatment with p38 MAP kinase inhibitors, but not by pretreatment with MEK inhibitors. Pretreatment with inhibitors of NF-{kappa}B prevented the 2244-TCB

  10. Induction of apoptosis in human leukemia cells by naturally fermented sugar cane vinegar (kibizu) of Amami Ohshima Island.

    PubMed

    Mimura, Akio; Suzuki, Yoshihiro; Toshima, Youhei; Yazaki, Shin-ichi; Ohtsuki, Takashi; Ui, Sadaharu; Hyodoh, Fuminori

    2004-01-01

    Naturally fermented vinegar such as Kibizu (sugar cane vinegar in Amami Ohshima, Japan), Kurozu (black rice vinegar in Kagoshima, Japan), Kouzu (black rice vinegar in China) and red wine vinegar in Italy had potent radical-scavenging activity analyzed by DPPH method. For the elucidation of food factor for cancer prevention contained in naturally fermented vinegar, the induction of apoptosis in human leukemia cell HL-60 was investigated with sugar cane vinegar Kibizu. Fraction eluted by 40% methanol from Amberlite XAD 2 chromatography of sugar cane vinegar showed potent radical scavenging activity. The fraction also showed the activity repressing growth of typical human leukemia cells such as HL-60, THP-1, Molt-4, U-937, Jurkat, Raji and K-562. On the other hand, the fraction did not have any growth inhibition activity against human fetal lung cell TIG-1. The most potent radical-scavenging activity and the growth repression activity of the leukemia cell were observed in the same chromatographic fraction of methanol 40%. From cell sorting FACS analyses, electron microscopic observations and cytochemical staining of chromatin and nuclear segments in human leukemia cell HL-60 treated with the active fraction, it was concluded that apoptosis was induced in the leukemia cell by the fraction of sugar cane vinegar and resulted in the repression of growth of the human leukemia cells. Chromatographic fraction of sugar cane juice eluted by 20% methanol showed potent activities of radical-scavenging and growth repression of HL-60. These results led us the consideration that active components in sugar cane juice could be converted to more lipophilic compounds with activity to induce apoptosis in HL-60 by microbial fermentation with yeast and acetic acid bacteria.

  11. Bortezomib in Treating Patients With High-Risk Acute Myeloid Leukemia in Remission

    ClinicalTrials.gov

    2014-10-30

    Acute Myeloid Leukemia With Multilineage Dysplasia Following Myelodysplastic Syndrome; Adult Acute Minimally Differentiated Myeloid Leukemia (M0); Adult Acute Myeloblastic Leukemia Without Maturation (M1); Adult Acute Myeloid Leukemia in Remission; Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Del(5q); Adult Acute Myeloid Leukemia With t(15;17)(q22;q12); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Promyelocytic Leukemia (M3); Adult Erythroleukemia (M6a); Adult Pure Erythroid Leukemia (M6b); Secondary Acute Myeloid Leukemia

  12. Sequential enrichment with titania-coated magnetic mesoporous hollow silica microspheres and zirconium arsenate-modified magnetic nanoparticles for the study of phosphoproteome of HL60 cells.

    PubMed

    Yu, Qiong-Wei; Li, Xiao-Shui; Xiao, Yongsheng; Guo, Lei; Zhang, Fan; Cai, Qian; Feng, Yu-Qi; Yuan, Bi-Feng; Wang, Yinsheng

    2014-10-24

    As one of the most important types of post-translational modifications, reversible phosphorylation of proteins plays crucial roles in a large number of biological processes. However, owing to the relatively low abundance and dynamic nature of phosphorylation and the presence of the unphosphorylated peptides in large excess, phosphopeptide enrichment is indispensable in large-scale phosphoproteomic analysis. Metal oxides including titanium dioxide have become prominent affinity materials to enrich phosphopeptides prior to their analysis using liquid chromatography-mass spectrometry (LC-MS). In the current study, we established a novel strategy, which encompassed strong cation exchange chromatography, sequential enrichment of phosphopeptides using titania-coated magnetic mesoporous hollow silica microspheres (TiO2/MHMSS) and zirconium arsenate-modified magnetic nanoparticles (ZrAs-Fe3O4@SiO2), and LC-MS/MS analysis, for the proteome-wide identification of phosphosites of proteins in HL60 cells. In total, we were able to identify 11,579 unique phosphorylation sites in 3432 unique proteins. Additionally, our results suggested that TiO2/MHMSS and ZrAs-Fe3O4@SiO2 are complementary in phosphopeptide enrichment, where the two types of materials displayed preferential binding of peptides carrying multiple and single phosphorylation sites, respectively.

  13. Sequential enrichment with titania-coated magnetic mesoporous hollow silica microspheres and zirconium arsenate-modified magnetic nanoparticles for the study of phosphoproteome of HL60 cells.

    PubMed

    Yu, Qiong-Wei; Li, Xiao-Shui; Xiao, Yongsheng; Guo, Lei; Zhang, Fan; Cai, Qian; Feng, Yu-Qi; Yuan, Bi-Feng; Wang, Yinsheng

    2014-10-24

    As one of the most important types of post-translational modifications, reversible phosphorylation of proteins plays crucial roles in a large number of biological processes. However, owing to the relatively low abundance and dynamic nature of phosphorylation and the presence of the unphosphorylated peptides in large excess, phosphopeptide enrichment is indispensable in large-scale phosphoproteomic analysis. Metal oxides including titanium dioxide have become prominent affinity materials to enrich phosphopeptides prior to their analysis using liquid chromatography-mass spectrometry (LC-MS). In the current study, we established a novel strategy, which encompassed strong cation exchange chromatography, sequential enrichment of phosphopeptides using titania-coated magnetic mesoporous hollow silica microspheres (TiO2/MHMSS) and zirconium arsenate-modified magnetic nanoparticles (ZrAs-Fe3O4@SiO2), and LC-MS/MS analysis, for the proteome-wide identification of phosphosites of proteins in HL60 cells. In total, we were able to identify 11,579 unique phosphorylation sites in 3432 unique proteins. Additionally, our results suggested that TiO2/MHMSS and ZrAs-Fe3O4@SiO2 are complementary in phosphopeptide enrichment, where the two types of materials displayed preferential binding of peptides carrying multiple and single phosphorylation sites, respectively. PMID:25262027

  14. Seed dormancy breaking diterpenoids, including novel brassicicenes J and K, from fungus Alternaria brassicicola, and their necrotic/apoptotic activities in HL-60 cells.

    PubMed

    Kenmoku, Hiromichi; Takeue, Sayaka; Oogushi, Megumi; Yagi, Yasuyuki; Sassa, Takeshi; Toyota, Masao; Asakawa, Yoshinori

    2014-03-01

    To find new metabolites similar to cotylenins and fusicoccins from the fungus Alternaria brassicicola, screening tests were carried out using the lettuce seed dormancy breaking assay. Activity-guided fractionation of the EtOAc extract from the culture using the assay afforded the isolation of two novel fusicoccane diterpenoids named brassicicenes J (1) and K (2), along with three known brassicicenes A (3), B (4), and F (5). Their structures were elucidated from extensive NMR spectral data and by comparison of these with those reported in the literature. Brassicicenes (1-5) exhibited weak to moderate seed dormancy breaking activities against lettuce seeds in the presence of abscisic acid. In addition, the necrotic/apoptotic activities of the brassicicenes (1-5), fusicoccin A (6) and cotylenin A (7) were evaluated by determining their cytotoxicity, cell viability and caspase-3/7 activation on the HL-60 cell line. Brassicicene K (2) exhibited similar cytostatic profiles to that of cotylenin A (7), and brassicicenes J (1), A (3), B (4), and F (5) exhibited necrotic activity. This is the first report of the seed dormancy breaking activity of brassicicenes in plants, and of necrotic/apoptotic activity in mammalian cells. PMID:24689212

  15. Cytotoxic and DNA-damaging effects of methyl tert-butyl ether and its metabolites on HL-60 cells in vitro

    SciTech Connect

    Tang, G.H.; Shen, Y.; Shen, H.M.

    1996-12-31

    Methyl tert-butyl ether (MTBE) is a widely used oxygenate in unleaded gasoline; however, few studies have been conducted on the toxicity of this compound. This study evaluates the cytotoxic and DNA-damaging effects of MTBE and its metabolites in a human haemopoietic cell line, HL-60. The metabolites of MTBE studied include tertiary butyl alcohol (TBA), {alpha}-hydroxyisobutyric acid (HIBA), and formaldehyde. Comet assay is used to assess DNA damage, and the cytotoxicity is investigated by lactate dehydrogenease (LDH) release. The results show no significant cytotoxic effects of MTBE, TBA, and HIBA over a concentration ranging from 1 to 30 mM. Formaldehyde, in contrast, causes a substantial LDH release at a concentration of 5 {mu}M. Hydrogen peroxide, a known oxidative agent, at concentrations ranging from 10 to 100 {mu}M, produces a significant dose-related increase in DNA damage, whereas a much higher concentration of MTBE (1 to 30 mM) is required to produce a similar observation. The genotoxic effects of TBA and HIBA appear to be identical to that of MTBE. Conversely, DNA damage is observed for formaldehyde at a relatively low concentration range (5 to 100 {mu}M). These findings suggest that MTBE and its metabolites, except formaldehyde, have relatively low cytotoxic and genotoxic effects. 16 refs., 4 figs.

  16. Neoplastic transformation of BALB/3T3 cells and cell cycle of HL-60 cells are inhibited by mango (Mangifera indica L.) juice and mango juice extracts.

    PubMed

    Percival, Susan S; Talcott, Stephen T; Chin, Sherry T; Mallak, Anne C; Lounds-Singleton, Angela; Pettit-Moore, Jennifer

    2006-05-01

    The mango, Mangifera indica L., is a fruit with high levels of phytochemicals, suggesting that it might have chemopreventative properties. In this study, whole mango juice and juice extracts were screened for antioxidant and anticancer activity. Antioxidant activity of the mango juice and juice extracts was measured by 3 standard in vitro methods. The results of the 3 methods were in general agreement, although different radicals were measured in each. Anticancer activity was measured by examining the effect on cell cycle kinetics and the ability to inhibit chemically induced neoplastic transformation of mammalian cell lines. Incubation of HL-60 cells with whole mango juice and mango juice fractions resulted in an inhibition of the cell cycle in the G(0)/G(1) phase. A fraction of the eluted mango juice with low peroxyl radical scavenging ability was most effective in arresting cells in the G(0)/G(1) phase. Whole mango juice was effective in reducing the number of transformed foci in the neoplastic transformation assay in a dose-dependent manner. These techniques provide valuable screening tools for health benefits derived from mango phytochemicals.

  17. Role of caspase-10 in the death of acute leukemia cells

    PubMed Central

    Guo, Wenjian; Dong, Aishu; Pan, Xiahui; Lin, Xiaoji; Lin, Ying; He, Muqing; Zhu, Baoling; Jin, Liming; Yao, Rongxing

    2016-01-01

    Autophagy can protect cells from stress, but can also induce cancer cell death. Caspase-10 is now considered to be a factor that is associated with autophagy in cancer. The present study therefore investigated whether caspase-10 affects autophagy in acute leukemia cells. The rates of survival vs. apoptosis in acute leukemia HL-60 and Jurkat cells treated with drugs were tested using cell viability assays and flow cytometry, and the levels of caspase-3 and −10 were tested by western blotting. In HL-60 cells that were treated with chemotherapy drugs combined with a caspase-10 inhibitor, the rate of survival decreased significantly compared with HL-60 cells treated with chemotherapy drugs alone. In contrast, the rate of survival of Jurkat cells treated with chemotherapy drugs combined with the caspase-10 inhibitor increased significantly compared with Jurkat cells treated with chemotherapy drugs alone. The results of the flow cytometry and western blotting showed that the changes in the survival rate may be caused by a change in the amount of apoptosis occurring in the Jurkat cells treated with chemotherapy drugs combined with the caspase-10 inhibitor. However, in HL-60 cells undergoing this combination treatment, the change in the survival rate was not caused by a change in the rate of apoptosis. When HL-60 cells were treated with the chemotherapy drugs combined with the caspase-10 inhibitor and the autophagy inhibitor 3-methyl adenine, the survival rate increased, whereas the rate of apoptosis did not change. These results show that caspase-10 may be associated with autophagy in acute myeloid leukemia cells, but not in acute lymphatic leukemia cells. PMID:27446483

  18. Semisynthetic homoharringtonine induces apoptosis via inhibition of protein synthesis and triggers rapid myeloid cell leukemia-1 down-regulation in myeloid leukemia cells.

    PubMed

    Tang, Ruoping; Faussat, Anne-Marie; Majdak, Patricia; Marzac, Christophe; Dubrulle, Sabine; Marjanovic, Zora; Legrand, Ollivier; Marie, Jean-Pierre

    2006-03-01

    Semisynthetic homoharringtonine (ssHHT) is now being evaluated in phase II clinical trials for the treatment of chronic myelogenous leukemia and acute myelogenous leukemia patients. Here, we examined the mechanism of the apoptosis induced by ssHHT in myeloid leukemia cells. First, we have shown that ssHHT induces apoptosis in HL60 and HL60/MRP cell lines in a time- and dose-dependent manner, and independently of the expression of Bax. The decrease of mitochondrial membrane potential and the release of cytochrome c were observed in the apoptotic cells induced by ssHHT. To unveil the relationship between ssHHT and the mitochondrial disruption, we have shown that ssHHT decreased myeloid cell leukemia-1 (Mcl-1) expression and induced Bcl-2 cleavage in HL60 and HL60/MRP cell lines. The Bcl-2 cleavage could be inhibited by the Z-VAD.fmk caspase inhibitor. However, Mcl-1 turnover was very rapid and occurred before caspase activation. The Mcl-1 turnover was only induced by ssHHT and cycloheximide, but not by daunorubicin and cytosine arabinoside, and could be restored by proteasome inhibitors. Second, we confirmed that ssHHT rapidly induced massive apoptosis in acute myelogenous leukemia patient cells. We have also confirmed the release of cytochrome c and a rapid turnover of Mcl-1 in these patient cells, taking place only in apoptotic cells induced by ssHHT but not in cells undergoing spontaneous apoptosis. Finally, we have shown that ssHHT inhibits protein synthesis in both cell line and patient cells. We suggest that the inhibition of protein synthesis and resulting Mcl-1 turnover play a key role in the apoptosis induced by ssHHT. Our results encourage further clinical trials for the use of ssHHT in acute myelogenous leukemia.

  19. Improved viability and activity of neutrophils differentiated from HL-60 cells by co-culture with adipose tissue-derived mesenchymal stem cells

    SciTech Connect

    Park, Yoon Shin; Lim, Goh-Woon; Cho, Kyung-Ah; Woo, So-Youn; Shin, Meeyoung; Yoo, Eun-Sun; Chan Ra, Jeong; Ryu, Kyung-Ha

    2012-06-22

    Highlights: Black-Right-Pointing-Pointer Neutropenia is a principal complication of cancer treatment. Black-Right-Pointing-Pointer Co-culture of neutrophils with AD-MSC retained cell survival and proliferation and inhibited neutrophil apoptosis under serum starved conditions. Black-Right-Pointing-Pointer AD-MSC increased functions of neutrophil. Black-Right-Pointing-Pointer AD-MSC promoted the viability of neutrophils by enhancing respiratory burst through the expression of IFN-{alpha}, G-CSF, and TGF-{beta}. Black-Right-Pointing-Pointer AD-MSC can be used to improve immunity for neutropenia treatment. -- Abstract: Neutropenia is a principal complication of cancer treatment. We investigated the supportive effect of adipose tissue-derived mesenchymal stem cells (AD-MSCs) on the viability and function of neutrophils. Neutrophils were derived from HL-60 cells by dimethylformamide stimulation and cultured with or without AD-MSCs under serum-starved conditions to evaluate neutrophil survival, proliferation, and function. Serum starvation resulted in the apoptosis of neutrophils and decreased cell survival. The co-culture of neutrophils and AD-MSCs resulted in cell survival and inhibited neutrophil apoptosis under serum-starved conditions. The survival rate of neutrophils was prolonged up to 72 h, and the expression levels of interferon (IFN)-{alpha}, granulocyte colony-stimulating factor (G-CSF), granulocyte-macrophage colony-stimulating factor, and transforming growth factor (TGF)-{beta} in AD-MSCs were increased after co-culture with neutrophils. AD-MSCs promoted the viability of neutrophils by inhibiting apoptosis as well as enhancing respiratory burst, which could potentially be mediated by the increased expression of IFN-{alpha}, G-CSF, and TGF-{beta}. Thus, we conclude that the use of AD-MSCs may be a promising cell-based therapy for increasing immunity by accelerating neutrophil function.

  20. Structural development of benzhydrol-type 1'-acetoxychavicol acetate (ACA) analogs as human leukemia cell-growth inhibitors based on quantitative structure-activity relationship (QSAR) analysis.

    PubMed

    Misawa, Takashi; Aoyama, Hiroshi; Furuyama, Taniyuki; Dodo, Kosuke; Sagawa, Morihiko; Miyachi, Hiroyuki; Kizaki, Masahiro; Hashimoto, Yuichi

    2008-10-01

    Benzhydrol-type analogs of 1'-acetoxychavicol acetate (ACA) were developed as inhibitors of human leukemia HL-60 cell growth based on quantitative structure-activity relationship (QSAR) analysis. An analog containing an anthracenyl moiety (8) was a potent inhibitor with the IC(50) value of 0.12 microM.

  1. SB-715992 in Treating Patients With Acute Leukemia, Chronic Myelogenous Leukemia, or Advanced Myelodysplastic Syndromes

    ClinicalTrials.gov

    2013-01-10

    Acute Undifferentiated Leukemia; Adult Acute Megakaryoblastic Leukemia (M7); Adult Acute Minimally Differentiated Myeloid Leukemia (M0); Adult Acute Monoblastic Leukemia (M5a); Adult Acute Monocytic Leukemia (M5b); Adult Acute Myeloblastic Leukemia With Maturation (M2); Adult Acute Myeloblastic Leukemia Without Maturation (M1); Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(15;17)(q22;q12); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Adult Acute Myelomonocytic Leukemia (M4); Adult Acute Promyelocytic Leukemia (M3); Adult Erythroleukemia (M6a); Adult Pure Erythroid Leukemia (M6b); Blastic Phase Chronic Myelogenous Leukemia; de Novo Myelodysplastic Syndromes; Previously Treated Myelodysplastic Syndromes; Recurrent Adult Acute Lymphoblastic Leukemia; Recurrent Adult Acute Myeloid Leukemia; Refractory Anemia With Excess Blasts; Refractory Anemia With Excess Blasts in Transformation; Relapsing Chronic Myelogenous Leukemia; Secondary Acute Myeloid Leukemia; Secondary Myelodysplastic Syndromes; Untreated Adult Acute Myeloid Leukemia

  2. Effect of ozone on platelet-activating factor production in phorbol-differentiated HL60 cells, a human bronchial epithelial cell line (BEAS S6), and primary human bronchial epithelial cells.

    PubMed

    Samet, J M; Noah, T L; Devlin, R B; Yankaskas, J R; McKinnon, K; Dailey, L A; Friedman, M

    1992-11-01

    Platelet-activating factor (PAF) is a phospholipid with a wide spectrum of pro-inflammatory properties. In the lung, PAF induces airway hyperresponsiveness, neutrophil sequestration, and increased vascular permeability. The alveolar macrophage and the bronchial epithelium are tissues that are exposed to inhaled ozone (O3). We studied the effect of an in vitro O3 exposure on PAF production in a macrophage-like HL60 human cell line (dHL60), a human bronchial epithelial cell line (BEAS S6), and also in primary human bronchial epithelial cells. PAF was quantified by thin-layer chromatographic separation of lipid extracts from cells radiolabeled with [3H]lysoPAF and by radioimmunoassay. In vitro exposure of dHL60 cells to 0.05 to 1.0 ppm O3 for 15 to 120 min was found to significantly increase PAF levels above air control values at all exposure levels and time points (average increase of 92%). Similarly, BEAS S6 cells grown on collagen-coated filter supports and exposed to 0.05 to 1.0 ppm O3 for 60 min released an average increase in PAF of 626% above control values. Primary human bronchial epithelial cells also demonstrated significant increases in [3H]PAF release (average increase of 289% after exposure to 1.0 ppm O3 for 60 min) compared with paired air controls. These findings suggest that some of the effects of O3 inhalation may be mediated by PAF.

  3. Azacitidine With or Without Entinostat in Treating Patients With Myelodysplastic Syndromes, Chronic Myelomonocytic Leukemia, or Acute Myeloid Leukemia

    ClinicalTrials.gov

    2016-03-16

    Acute Myeloid Leukemia Arising From Previous Myelodysplastic Syndrome; Adult Acute Myeloid Leukemia in Remission; Adult Acute Myeloid Leukemia With Inv(16)(p13.1q22); CBFB-MYH11; Adult Acute Myeloid Leukemia With t(16;16)(p13.1;q22); CBFB-MYH11; Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); RUNX1-RUNX1T1; Adult Acute Myeloid Leukemia With t(9;11)(p22;q23); MLLT3-MLL; Adult Acute Promyelocytic Leukemia With t(15;17)(q22;q12); PML-RARA; Alkylating Agent-Related Acute Myeloid Leukemia; Chronic Myelomonocytic Leukemia; de Novo Myelodysplastic Syndrome; Previously Treated Myelodysplastic Syndrome; Recurrent Adult Acute Myeloid Leukemia; Secondary Acute Myeloid Leukemia; Secondary Myelodysplastic Syndrome; Untreated Adult Acute Myeloid Leukemia

  4. Expression and role of DJ-1 in leukemia

    SciTech Connect

    Liu Hang; Wang Min Li Min; Wang Donghai; Rao Qing; Wang Yang; Xu Zhifang; Wang Jianxiang

    2008-10-24

    DJ-1 is a multifunctional protein that has been implicated in pathogenesis of some solid tumors. In this study, we found that DJ-1 was overexpressed in acute leukemia (AL) patient samples and leukemia cell lines, which gave the first clue that DJ-1 overexpression might be involved in leukemogenesis and/or disease progression of AL. Inactivation of DJ-1 by RNA-mediated interference (RNAi) in leukemia cell lines K562 and HL60 resulted in inhibition of the proliferation potential and enhancement of the sensitivity of leukemia cells to chemotherapeutic drug etoposide. Further investigation of DJ-1 activity revealed that phosphatase and tensin homolog (PTEN), as well as some proliferation and apoptosis-related genes, was regulated by DJ-1. Thus, DJ-1 might be involved in leukemogesis through regulating cell growth, proliferation, and apoptosis. It could be a potential therapeutic target for leukemia.

  5. Molecular remission in PML/RAR alpha-positive acute promyelocytic leukemia by combined all-trans retinoic acid and idarubicin (AIDA) therapy. Gruppo Italiano-Malattie Ematologiche Maligne dell'Adulto and Associazione Italiana di Ematologia ed Oncologia Pediatrica Cooperative Groups.

    PubMed

    Mandelli, F; Diverio, D; Avvisati, G; Luciano, A; Barbui, T; Bernasconi, C; Broccia, G; Cerri, R; Falda, M; Fioritoni, G; Leoni, F; Liso, V; Petti, M C; Rodeghiero, F; Saglio, G; Vegna, M L; Visani, G; Jehn, U; Willemze, R; Muus, P; Pelicci, P G; Biondi, A; Lo Coco, F

    1997-08-01

    Two hundred fifty-three patients with newly diagnosed acute promyelocytic leukemia (APL) were eligible to enter the multicentric GIMEMA-AIEOP "AIDA" trial during the period July 1993 to February 1996. As a mandatory prerequisite for eligibility, all patients had genetic evidence of the specific t(15;17) lesion in their leukemic cells confirmed by karyotyping or by reverse transcription-polymerase chain reaction (RT-PCR) of the PML/RAR alpha fusion gene (the latter available in 247 cases). Median age was 37.8 years (range, 2.2 to 73.9). Induction treatment consisted of oral all-trans retinoic acid (ATRA), 45 mg/m2/d until complete remission (CR), given with intravenous Idarubicin, 12 mg/m2/d on days 2, 4, 6, and 8. Three polychemotherapy cycles were given as consolidation. Hematologic and molecular response by RT-PCR was assessed after induction and after consolidation. At the time of analysis, 240 of the 253 eligible patients were evaluable for induction. Of these, 11 (5%) died of early complications and 229 (95%) achieved hematologic remission. No cases of resistant leukemia were observed. Of 139 cases studied by RT-PCR after induction, 84 (60.5%) were PCR-negative and 55 (39.5%) PCR-positive. One hundred sixty-two patients were evaluable by RT-PCR at the end of consolidation. Of these, 159 (98%) tested PCR-negative and 3 (2%), PCR-positive. After a median follow up of 12 months (range, 0 to 33), the estimated actuarial event-free survival for the whole series of 253 eligible patients was 83% +/- 2.6% and 79% +/- 3.2% at 1 and 2 years, respectively. This study indicates that the AIDA protocol is a well-tolerated regimen that induces molecular remission in almost all patients with PML/RAR alpha-positive APL. Preliminary survival data suggest that a remarkable cure rate can be obtained with this treatment.

  6. Hyperoside enhances the suppressive effects of arsenic trioxide on acute myeloid leukemia cells

    PubMed Central

    Zhang, Feng; Zhu, Fang-Bing; Li, Jia-Jia; Zhang, Ping-Ping; Zhu, Jun-Feng

    2015-01-01

    Hyperoside (Hyp) is the chief component of some Chinese herbs which has anticancer effect and the present study is to identify whether it could enhance the anti leukemic properties of arsenic trioxide (As2O3) in acute myeloid leukemia (AML). We provide evidence on the concomitant treatment of HL-60 human AML cells with hyperoside potentiates As2O3-dependent induction of apoptosis. The activation of caspase-9, Bcl-2-associated agonist of cell death (BAD), p-BAD, p27 was assessed by Western blot. Results showed that hyperoside inhibited BAD from phosphorylating, reactivated caspase-9, and increased p27 levels. Importantly, hyperoside demonstrated its induction of autophagy effect by upregulation of LC-II in HL-60 AML cell line. Taken together, hyperoside may serve as a great candidate of concomitant treatment for leukemia; these effects were probably related to induction of autophagy and enhancing apoptosis-inducing action of As2O3. PMID:26629016

  7. Leukomogenic factors downregulate heparanase expression in acute myeloid leukemia cells

    SciTech Connect

    Eshel, Rinat; Ben-Zaken, Olga; Vainas, Oded; Nadir, Yona; Minucci, Saverio; Polliack, Aaron; Naparstek, Ella; Vlodavsky, Israel; Katz, Ben-Zion; E-mail: bkatz@tasmc.healt.gov.il

    2005-10-07

    Heparanase is a heparan sulfate-degrading endoglycosidase expressed by mature monocytes and myeloid cells, but not by immature hematopoietic progenitors. Heparanase gene expression is upregulated during differentiation of immature myeloid cells. PML-RAR{alpha} and PLZF-RAR{alpha} fusion gene products associated with acute promyelocytic leukemia abrogate myeloid differentiation and heparanase expression. AML-Eto, a translocation product associated with AML FAB M2, also downregulates heparanase gene expression. The common mechanism that underlines the activity of these three fusion gene products involves the recruitment of histone deacetylase complexes to specific locations within the DNA. We found that retinoic acid that dissociates PML-RAR{alpha} from the DNA, and which is used to treat acute promyelocytic leukemia patients, restores heparanase expression to normal levels in an acute promyelocytic leukemia cell line. The retinoic acid effects were also observed in primary acute promyelocytic leukemia cells and in a retinoic acid-treated acute promyelocytic leukemia patient. Histone deacetylase inhibitor reverses the downregulation of heparanase expression induced by the AML-Eto fusion gene product in M2 type AML. In summary, we have characterized a link between leukomogenic factors and the downregulation of heparanase in myeloid leukemic cells.

  8. Decitabine, Vorinostat, and Cytarabine in Treating Patients With Relapsed or Refractory Acute Myeloid Leukemia

    ClinicalTrials.gov

    2014-12-19

    Adult Acute Myeloid Leukemia With Inv(16)(p13.1q22); CBFB-MYH11; Adult Acute Myeloid Leukemia With t(16;16)(p13.1;q22); CBFB-MYH11; Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); RUNX1-RUNX1T1; Adult Acute Myeloid Leukemia With t(9;11)(p22;q23); MLLT3-MLL; Adult Acute Promyelocytic Leukemia With t(15;17)(q22;q12); PML-RARA; Alkylating Agent-Related Acute Myeloid Leukemia; Recurrent Adult Acute Myeloid Leukemia; Secondary Acute Myeloid Leukemia

  9. Phosphatidylserine index as a marker of the procoagulant phenotype of acute myelogenous leukemia cells

    NASA Astrophysics Data System (ADS)

    Tormoen, Garth W.; Recht, Olivia; Gruber, András; Levine, Ross L.; McCarty, Owen J. T.

    2013-10-01

    Patients with acute myelogenous leukemia (AML) are at risk for thrombotic complications. Risk to develop thrombosis is closely tied to leukemia subtype, and studies have shown an association between leukocytosis and thrombosis in AML M3. We evaluated the relative roles of cell count and the surface expression of tissue factor (TF) and phosphatidylserine (PS) in the procoagulant phenotype of AML cell lines. The TF-positive AML M3 cell lines, NB4 and HL60, and AML M2 cell line, AML14, exhibited both extrinsic tenase and prothrombinase activity in a purified system and promoted experimental thrombus formation. In contrast, the TF-negative AML cell line, HEL, exhibited only prothrombinase activity and did not affect the rate of occlusive thrombus formation. In plasma, NB4, HL60 and AML14 shortened clotting times in a cell-count, PS- and TF-dependent manner. Exposure of cultured NB4, HL60, and AML14 cells to the chemotherapeutic agent daunorubicin increased their extrinsic tenase activity and PS expression. Clot initiation time inversely correlated with logarithm of PS index, defined as the product of multiplying leukocyte count with cell surface PS exposure. We propose that leukemia cell PS index may serve as a biomarker for procoagulant activity.

  10. Elevated PIM2 gene expression is associated with poor survival of patients with acute myeloid leukemia.

    PubMed

    Kapelko-Slowik, Katarzyna; Owczarek, Tomasz B; Grzymajlo, Krzysztof; Urbaniak-Kujda, Donata; Jazwiec, Bozena; Slowik, Miroslaw; Kuliczkowski, Kazimierz; Ugorski, Maciej

    2016-09-01

    The PIM2 gene encodes the serine/threonine kinase involved in cell survival and apoptosis. The aim of the study was to evaluate the expression of the PIM2 gene in acute myeloid leukemia (AML) and to examine its role in apoptosis of the blastic cells. We analyzed the PIM2 expression in 148 patients: 91 with AML, 57 with acute lymphoblastic leukemia and 24 healthy controls by Real-Time PCR and Western blot. Inhibition of the PIM2 gene in human leukemic HL60 cell line was performed with RNAi and apoptosis rate was analyzed. Our results indicate that overexpression of PIM2 in AML is associated with low complete remission rate, high-risk cytogenetics, shorter leukemia-free survival, and event-free survival. Cytometric analysis of HL60/PAC-GFP and HL60/PAC-GFP-shPIM2 cells revealed an increase in the number of apoptotic cells after inhibition of PIM2 gene. In summary, the elevated expression of PIM2 in blastic cells is associated with poor prognosis of AML patients and their resistance to induction therapy. PMID:26764044

  11. Cancerous inhibitor of protein phosphatase 2A determines bortezomib-induced apoptosis in leukemia cells

    PubMed Central

    Liu, Chun-Yu; Shiau, Chung-Wai; Kuo, Hsin-Yu; Huang, Hsiang-Po; Chen, Ming-Huang; Tzeng, Cheng-Hwai; Chen, Kuen-Feng

    2013-01-01

    The multiple cellular targets affected by proteasome inhibition implicate a potential role for bortezomib, a first-in-class proteasome inhibitor, in enhancing antitumor activities in hematologic malignancies. Here, we examined the antitumor activity and drug targets of bortezomib in leukemia cells. Human leukemia cell lines were used for in vitro studies. Drug efficacy was evaluated by apoptosis assays and associated molecular events assessed by Western Blot. Gene silencing was performed by small interference RNA. Drug was tested in vivo in xenograft models of human leukemia cell lines and in primary leukemia cells. Clinical samples were assessed by immunohistochemical staining. Bortezomib differentially induced apoptosis in leukemia cells that was independent of its proteasome inhibition. Cancerous inhibitor of protein phosphatase 2A, a cellular inhibitor of protein phosphatase 2A, mediated the apoptotic effect of bortezomib. Bortezomib increased protein phosphatase 2A activity in sensitive leukemia cells (HL-60 and KG-1), but not in resistant cells (MOLT-3 and K562). Bortezomib’s downregulation of cancerous inhibitor of protein phosphatase 2A and phospho-Akt correlated with its drug sensitivity. Furthermore, cancerous inhibitor of protein phosphatase 2A negatively regulated protein phosphatase 2A activity. Ectopic expression of CIP2A up-regulated phospho-Akt and protected HL-60 cells from bortezomib-induced apoptosis, whereas silencing CIP2A overcame the resistance to bortezomib-induced apoptosis in MOLT3 and K562 cells. Importantly, bortezomib exerted in vivo antitumor activity in HL-60 xenografted tumors and induced cell death in some primary leukemic cells. Cancerous inhibitor of protein phosphatase 2A was expressed in leukemic blasts from bone marrow samples. Cancerous inhibitor of protein phosphatase 2A plays a major role in mediating bortezomib-induced apoptosis in leukemia cells. PMID:22983581

  12. GSH depletion, protein S-glutathionylation and mitochondrial transmembrane potential hyperpolarization are early events in initiation of cell death induced by a mixture of isothiazolinones in HL60 cells.

    PubMed

    Di Stefano, Anna; Frosali, Simona; Leonini, Alessandra; Ettorre, Anna; Priora, Raffaella; Di Simplicio, Francesca Cherubini; Di Simplicio, Paolo

    2006-02-01

    We recently described that brief exposure of HL60 cells to a mixture of 5-chloro-2-methyl-4-isothiazolin-3-one (CMI) and 2-methyl-4-isothiazolin-3-one (MI) induces apoptosis at low concentrations (0.001-0.01%) and necrosis at higher concentrations (0.05-0.1%). In this study, we show that glutathione (GSH) depletion, reactive oxygen species generation, hyperpolarization of mitochondrial transmembrane potential (DeltaPsim) and formation of protein-GSH mixed disulphides (S-glutathionylation) are early molecular events that precede the induction of cell death by CMI/MI. When the cells exhibit common signs of apoptosis, they show activation of caspase-9, reduction of DeltaPsim and, more importantly, decreased protein S-glutathionylation. In contrast, necrosis is associated with severe mitochondrial damage and maximal protein S-glutathionylation. CMI/MI-induced cytotoxicity is also accompanied by decreased activity of GSH-related enzymes. Pre-incubation with L-buthionine-(S,R)-sulfoximine (BSO) clearly switches the mode of cell death from apoptosis to necrosis at 0.01% CMI/MI. Collectively, these results demonstrate that CMI/MI alters the redox status of HL60 cells, and the extent and kinetics of GSH depletion and S-glutathionylation appear to determine whether cells undergo apoptosis or necrosis. We hypothesize that S-glutathionylation of certain thiol groups accompanied by GSH depletion plays a critical role in the molecular mechanism of CMI/MI cytotoxicity.

  13. Apoptotic effect of a novel kefir product, PFT, on multidrug-resistant myeloid leukemia cells via a hole-piercing mechanism

    PubMed Central

    GHONEUM, MAMDOOH; GIMZEWSKI, JAMES

    2014-01-01

    We examined the apoptotic effect of a novel Probiotics Fermentation Technology (PFT) kefir grain product; PFT is a natural mixture composed primarily of Lactobacillus kefiri P-IF, a specific strain of L. kefiri with unique growth characteristics. The aim of this study was to examine the apoptotic effect of PFT on human multidrug-resistant (MDR) myeloid leukemia (HL60/AR) cells in vitro and explore the mechanistic approach underlying its effect. HL60/AR cells were cultured with PFT (0.6–5.0 mg/ml) for 3 days. The apoptotic effect of PFT was assessed through examination of percent apoptosis, caspase 3 activation, Bcl-2 expression levels and changes in mitochondrial membrane potential (MMP). PFT induced apoptosis in HL60/AR cells in a dose-dependent manner which was maximal at 67.5% for 5 mg/ml. Induction of apoptosis was associated with activation of caspase 3, decreased expression of Bcl-2 and decreased polarization of MMP. In addition, PFT showed a unique characteristic of piercing holes in HL60/AR cells, as indicated by AFM studies. This hole induction may be responsible for the apoptotic effect on cancer cells. These results suggest that PFT may act as a potential therapy for the treatment of MDR leukemia. PMID:24430613

  14. 3-O-(E)-p-coumaroyl tormentic acid from Eriobotrya japonica leaves induces caspase-dependent apoptotic cell death in human leukemia cell line.

    PubMed

    Kikuchi, Takashi; Akazawa, Hiroyuki; Tabata, Keiichi; Manosroi, Aranya; Manosroi, Jiradej; Suzuki, Takashi; Akihisa, Toshihiro

    2011-01-01

    Eleven triterpene acids, 1-11, isolated from the leaves of Eriobotrya japonica, were evaluated for inhibition of DNA topoisomerase (Topo) I and cytotoxicity against human leukemia (HL60) and melanoma cell lines (CRL1579). Among the compounds tested, four compounds, δ-oleanolic acid (4), ursolic acid (5), 3-O-(E)-p-coumaroyl tormentic acid (8), and betulinic acid (10), exhibited potent Topo I inhibitory activity (IC(50) 20.3-36.5 µM) and cytotoxicity against HL60 (EC(50) 5.0-8.1 µM). Upon assessing the apoptosis-inducing activity in HL60 cells, compound 8 exhibited induction of apoptosis detected by the observation of DNA fragmentation and membrane phospholipid exposure in flow cytometry. Western blot analysis showed that compound 8 markedly reduced the levels of procaspases-3 and 9, while being increased the levels of cleaved caspases-3 and 9. On the other hand, compound 8 exerted almost no influence on the expression of caspase-8. In addition, compound 8 increased significantly Bax/Bcl-2 ratio and activated caspase-2. These results suggested that compound 8 induced apoptotic cell death in HL60 via mainly mitochondrial pathway by, at least in part, Topo I inhibition. Therefore, compound 8 may be promising lead compound for developing an effective drug for treatment of leukemia.

  15. Clofarabine, Cytarabine, and Filgrastim Followed by Infusion of Non-HLA Matched Ex Vivo Expanded Cord Blood Progenitors in Treating Patients With Acute Myeloid Leukemia

    ClinicalTrials.gov

    2014-08-13

    Adult Acute Megakaryoblastic Leukemia (M7); Adult Acute Minimally Differentiated Myeloid Leukemia (M0); Adult Acute Monoblastic Leukemia (M5a); Adult Acute Monocytic Leukemia (M5b); Adult Acute Myeloblastic Leukemia With Maturation (M2); Adult Acute Myeloblastic Leukemia Without Maturation (M1); Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Del(5q); Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(15;17)(q22;q12); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Adult Acute Myelomonocytic Leukemia (M4); Adult Acute Promyelocytic Leukemia (M3); Adult Erythroleukemia (M6a); Adult Pure Erythroid Leukemia (M6b); Recurrent Adult Acute Myeloid Leukemia; Untreated Adult Acute Myeloid Leukemia

  16. Curcumin enhances the cytogenotoxic effect of etoposide in leukemia cells through induction of reactive oxygen species.

    PubMed

    Papież, Monika A; Krzyściak, Wirginia; Szade, Krzysztof; Bukowska-Straková, Karolina; Kozakowska, Magdalena; Hajduk, Karolina; Bystrowska, Beata; Dulak, Jozef; Jozkowicz, Alicja

    2016-01-01

    Curcumin may exert a more selective cytotoxic effect in tumor cells with elevated levels of free radicals. Here, we investigated whether curcumin can modulate etoposide action in myeloid leukemia cells and in normal cells of hematopoietic origin. HL-60 cell line, normal myeloid progenitor cluster of differentiation (CD)-34(+) cells, and granulocytes were incubated for 4 or 24 hours at different concentrations of curcumin and/or etoposide. Brown Norway rats with acute myeloid leukemia (BNML) were used to prove the influence of curcumin on etoposide action in vivo. Rats were treated with curcumin for 23 days and etoposide was administered for the final 3 days of the experiment. Curcumin synergistically potentiated the cytotoxic effect of etoposide, and it intensified apoptosis and phosphorylation of the histone H2AX induced by this cytostatic drug in leukemic HL-60 cells. In contrast, curcumin did not significantly modify etoposide-induced cytotoxicity and H2AX phosphorylation in normal CD34(+) cells and granulocytes. Curcumin modified the cytotoxic action of etoposide in HL-60 cells through intensification of free radical production because preincubation with N-acetyl-l-cysteine (NAC) significantly reduced the cytotoxic effect of curcumin itself and a combination of two compounds. In contrast, NAC did not decrease the cytotoxic effect of etoposide. Thus, oxidative stress plays a greater role in the cytotoxic effect of curcumin than that of etoposide in HL-60 cells. In vitro results were confirmed in a BNML model. Pretreatment with curcumin enhanced the antileukemic activity of etoposide in BNML rats (1.57-fold tumor reduction versus etoposide alone; P<0.05) and induced apoptosis of BNML cells more efficiently than etoposide alone (1.54-fold change versus etoposide alone; P<0.05), but this treatment protected nonleukemic B-cells from apoptosis. Thus, curcumin can increase the antileukemic effect of etoposide through reactive oxygen species in sensitive myeloid

  17. Curcumin enhances the cytogenotoxic effect of etoposide in leukemia cells through induction of reactive oxygen species

    PubMed Central

    Papież, Monika A; Krzyściak, Wirginia; Szade, Krzysztof; Bukowska-Straková, Karolina; Kozakowska, Magdalena; Hajduk, Karolina; Bystrowska, Beata; Dulak, Jozef; Jozkowicz, Alicja

    2016-01-01

    Curcumin may exert a more selective cytotoxic effect in tumor cells with elevated levels of free radicals. Here, we investigated whether curcumin can modulate etoposide action in myeloid leukemia cells and in normal cells of hematopoietic origin. HL-60 cell line, normal myeloid progenitor cluster of differentiation (CD)-34+ cells, and granulocytes were incubated for 4 or 24 hours at different concentrations of curcumin and/or etoposide. Brown Norway rats with acute myeloid leukemia (BNML) were used to prove the influence of curcumin on etoposide action in vivo. Rats were treated with curcumin for 23 days and etoposide was administered for the final 3 days of the experiment. Curcumin synergistically potentiated the cytotoxic effect of etoposide, and it intensified apoptosis and phosphorylation of the histone H2AX induced by this cytostatic drug in leukemic HL-60 cells. In contrast, curcumin did not significantly modify etoposide-induced cytotoxicity and H2AX phosphorylation in normal CD34+ cells and granulocytes. Curcumin modified the cytotoxic action of etoposide in HL-60 cells through intensification of free radical production because preincubation with N-acetyl-l-cysteine (NAC) significantly reduced the cytotoxic effect of curcumin itself and a combination of two compounds. In contrast, NAC did not decrease the cytotoxic effect of etoposide. Thus, oxidative stress plays a greater role in the cytotoxic effect of curcumin than that of etoposide in HL-60 cells. In vitro results were confirmed in a BNML model. Pretreatment with curcumin enhanced the antileukemic activity of etoposide in BNML rats (1.57-fold tumor reduction versus etoposide alone; P<0.05) and induced apoptosis of BNML cells more efficiently than etoposide alone (1.54-fold change versus etoposide alone; P<0.05), but this treatment protected nonleukemic B-cells from apoptosis. Thus, curcumin can increase the antileukemic effect of etoposide through reactive oxygen species in sensitive myeloid leukemia

  18. Steroidal glycosides from Agave utahensis and their cytotoxic activity.

    PubMed

    Yokosuka, Akihito; Jitsuno, Maki; Yui, Satoru; Yamazaki, Masatoshi; Mimaki, Yoshihiro

    2009-08-01

    Eight new spirostanol saponins (1-8) and three new furostanol saponins (9-11) were isolated from the whole plants of Agave utahensis. The structures of 1-11 were determined by analysis of extensive spectroscopic data. The saponins were evaluated for their cytotoxic activity against HL-60 human promyelocytic leukemia cells. Compound 1 showed cytotoxicity against HL-60 cells with an IC(50) value of 4.9 microg/mL, induced apoptosis in HL-60 cells, and markedly activated caspase-3.

  19. 7-Hydroxystaurosporine and Perifosine in Treating Patients With Relapsed or Refractory Acute Leukemia, Chronic Myelogenous Leukemia or High Risk Myelodysplastic Syndromes

    ClinicalTrials.gov

    2013-09-27

    Accelerated Phase Chronic Myelogenous Leukemia; Adult Acute Megakaryoblastic Leukemia (M7); Adult Acute Minimally Differentiated Myeloid Leukemia (M0); Adult Acute Monoblastic Leukemia (M5a); Adult Acute Monocytic Leukemia (M5b); Adult Acute Myeloblastic Leukemia With Maturation (M2); Adult Acute Myeloblastic Leukemia Without Maturation (M1); Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(15;17)(q22;q12); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Adult Acute Myelomonocytic Leukemia (M4); Adult Acute Promyelocytic Leukemia (M3); Adult Erythroleukemia (M6a); Adult Pure Erythroid Leukemia (M6b); Blastic Phase Chronic Myelogenous Leukemia; Myelodysplastic/Myeloproliferative Neoplasms; Previously Treated Myelodysplastic Syndromes; Recurrent Adult Acute Lymphoblastic Leukemia; Recurrent Adult Acute Myeloid Leukemia; Relapsing Chronic Myelogenous Leukemia; Secondary Acute Myeloid Leukemia; T-cell Adult Acute Lymphoblastic Leukemia; Untreated Adult Acute Lymphoblastic Leukemia; Untreated Adult Acute Myeloid Leukemia

  20. Sorafenib in Treating Patients With Refractory or Relapsed Acute Leukemia, Myelodysplastic Syndromes, or Blastic Phase Chronic Myelogenous Leukemia

    ClinicalTrials.gov

    2015-04-27

    Adult Acute Basophilic Leukemia; Adult Acute Eosinophilic Leukemia; Adult Acute Megakaryoblastic Leukemia; Adult Acute Monoblastic Leukemia; Adult Acute Monocytic Leukemia; Adult Acute Myeloid Leukemia With Inv(16)(p13.1q22); CBFB-MYH11; Adult Acute Myeloid Leukemia With Maturation; Adult Acute Myeloid Leukemia With Minimal Differentiation; Adult Acute Myeloid Leukemia With t(16;16)(p13.1;q22); CBFB-MYH11; Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); RUNX1-RUNX1T1; Adult Acute Myeloid Leukemia With t(9;11)(p22;q23); MLLT3-MLL; Adult Acute Myeloid Leukemia Without Maturation; Adult Acute Myelomonocytic Leukemia; Adult Acute Promyelocytic Leukemia With t(15;17)(q22;q12); PML-RARA; Adult Erythroleukemia; Adult Pure Erythroid Leukemia; Alkylating Agent-Related Acute Myeloid Leukemia; Blastic Phase; de Novo Myelodysplastic Syndrome; Previously Treated Myelodysplastic Syndrome; Recurrent Adult Acute Lymphoblastic Leukemia; Recurrent Adult Acute Myeloid Leukemia; Secondary Acute Myeloid Leukemia; Secondary Myelodysplastic Syndrome

  1. Antitumor triptycene bisquinones induce a caspase-independent release of mitochondrial cytochrome c and a caspase-2-mediated activation of initiator caspase-8 and -9 in HL-60 cells by a mechanism which does not involve Fas signaling.

    PubMed

    Perchellet, Elisabeth M; Wang, Yang; Weber, Rebeka L; Lou, Kaiyan; Hua, Duy H; Perchellet, Jean-Pierre H

    2004-11-01

    Synthetic triptycene analogs (TT code number) mimic the antitumor effects of daunorubicin (DAU) in vitro, but have the advantage of blocking nucleoside transport, inhibiting both DNA topoisomerase I and II activities, and retaining their efficacy in multidrug-resistant (MDR) tumor cells. Since TT bisquinones induce poly(ADP-ribose) polymerase-1 (PARP-1) cleavage at 6 h and internucleosomal DNA fragmentation at 24 h, which are, respectively, early and late markers of apoptosis, these antitumor drugs were tested for their ability to trigger the release of mitochondrial cytochrome c (Cyt c) and the caspase activation cascade in the HL-60 cell system. Based on their ability to reduce the viability of wild-type, drug-sensitive HL-60-S cells in the nanomolar range, six lead antitumor TT bisquinones have been identified so far: TT2, TT13, TT16, TT19, TT24 and TT26. In accord with the fact that effector caspase-3 is responsible for PARP-1 cleavage, 4 microM concentrations of DAU and these TT bisquinones all maximally induce caspase-3 activity at 6 h in HL-60-S cells, an effect which persists when the drugs are removed after a 1-h pulse treatment. Since caspase-3 may be activated by initiator caspase-9 and -8, it is significant to show that such caspase activation cascade is induced by 4 microM DAU and TT bisquinones at 6 h in HL-60-S cells. Although the relationship is not perfect, the ability of TT analogs to induce caspase-3, -8 and -9 activities may be linked to their quinone functionality and cytotoxicity. Interestingly, 4 microM concentrations of TT bisquinones retain their ability to induce caspase-3, -8 and -9 activities at 6 h in the MDR HL-60-RV cell line where 4 microM DAU becomes totally ineffective. The release of mitochondrial Cyt c is also detected within 6 h in HL-60-S cells treated with 4 microM DAU or TT bisquinones, a finding consistent with the fact that Cyt c is the apoptotic trigger that activates caspase-9. Caspase-2 and -8 may both act upstream of

  2. Differentiation and apoptosis induction by lovastatin and γ-tocotrienol in HL-60 cells via Ras/ERK/NF-κB and Ras/Akt/NF-κB signaling dependent down-regulation of glyoxalase 1 and HMG-CoA reductase.

    PubMed

    Chen, Chun-Chia; Liu, Tzu-Yu; Huang, Shih-Pin; Ho, Chi-Tang; Huang, Tzou-Chi

    2015-11-01

    Glyoxalase 1 (GLO1) and HMG-CoA reductase (HMGCR) are highly expressed in most tumor cells and little in normal cells. In this study, treatment of HL-60 cells with lovastatin induced characteristic apoptosis in a dose-dependent manner. We demonstrated that lovastatin treatment inhibited Ras and Raf protein translocation to cell membrane and eliminated the phosphorylation of the downstream effectors Akt and ERK, and the subsequent NF-κB translocation into nucleus. Specific inhibitors and γ-tocotrienol confirmed the Ras/Raf/ERK/NF-κB/GLO1 and Ras/Akt/NF-κB/GLO1 pathways. Data revealed that lovastatin induced HL-60 cell death was attenuated by mevalonate treatment. We demonstrated also that γ-tocotrienol showed its apoptotic effect on the HL-60 cell through the same pathway. γ-Tocotrienol enhanced the apoptotic effect of lovastatin through the down-regulation of GLO1 and HMGCR resulting in an increase of methylglyoxal and a decrease of cholesterol and led to the apoptosis of HL-60 cells. Data also revealed that both lovastatin and gamma-tocotrienol induced significant HL-60 cell differentiation. These results suggest that both lovastatin and gamma-tocotrienol could induce differentiation and followed by apoptosis.

  3. Developing a Novel Indolocarbazole as Histone Deacetylases Inhibitor against Leukemia Cell Lines

    PubMed Central

    Wang, Wenjing; Lv, Maomin; Zhao, Xiong; Zhang, Jingang

    2015-01-01

    A novel indolocarbazole (named as ZW2-1) possessing HDAC inhibition activity was synthesized and evaluated against human leukemia cell lines HL-60 and NB4. ZW2-1 performed anti-population growth effect which was in a concentration-dependent manner (2–12 μM) by inducing both apoptosis and autophagy in cells. The compound also caused differentiation of HL-60 and NB4 cells as shown by increasing expression of CD11b, CD14, and CD38 at moderate concentration (4 μM). At relatively high concentration (8 μM), ZW2-1 significantly decreased intracellular histone deacetylase 1 level which was also observed. All the results indicated that ZW2-1 could be a novel antileukemia lead capable of simultaneously inducing apoptosis, autophagy, and differentiation. PMID:26649226

  4. Characterization of miRNomes in Acute and Chronic Myeloid Leukemia Cell Lines

    PubMed Central

    Xiong, Qian; Yang, Yadong; Wang, Hai; Li, Jie; Wang, Shaobin; Li, Yanming; Yang, Yaran; Cai, Kan; Ruan, Xiuyan; Yan, Jiangwei; Hu, Songnian; Fang, Xiangdong

    2014-01-01

    Myeloid leukemias are highly diverse diseases and have been shown to be associated with microRNA (miRNA) expression aberrations. The present study involved an in-depth miRNome analysis of two human acute myeloid leukemia (AML) cell lines, HL-60 and THP-1, and one human chronic myeloid leukemia (CML) cell line, K562, via massively parallel signature sequencing. mRNA expression profiles of these cell lines that were established previously in our lab facilitated an integrative analysis of miRNA and mRNA expression patterns. miRNA expression profiling followed by differential expression analysis and target prediction suggested numerous miRNA signatures in AML and CML cell lines. Some miRNAs may act as either tumor suppressors or oncomiRs in AML and CML by targeting key genes in AML and CML pathways. Expression patterns of cell type-specific miRNAs could partially reflect the characteristics of K562, HL-60 and THP-1 cell lines, such as actin filament-based processes, responsiveness to stimulus and phagocytic activity. miRNAs may also regulate myeloid differentiation, since they usually suppress differentiation regulators. Our study provides a resource to further investigate the employment of miRNAs in human leukemia subtyping, leukemogenesis and myeloid development. In addition, the distinctive miRNA signatures may be potential candidates for the clinical diagnosis, prognosis and treatment of myeloid leukemias. PMID:24755403

  5. Azacitidine in Combination With Mitoxantrone, Etoposide Phosphate, and Cytarabine in Treating Patients With Relapsed and Refractory Acute Myeloid Leukemia

    ClinicalTrials.gov

    2016-08-23

    Adult Acute Myeloid Leukemia With Inv(16)(p13.1q22); CBFB-MYH11; Adult Acute Myeloid Leukemia With t(16;16)(p13.1;q22); CBFB-MYH11; Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); RUNX1-RUNX1T1; Adult Acute Myeloid Leukemia With t(9;11)(p22;q23); MLLT3-MLL; Adult Acute Promyelocytic Leukemia With t(15;17)(q22;q12); PML-RARA; Alkylating Agent-Related Acute Myeloid Leukemia; Recurrent Adult Acute Myeloid Leukemia

  6. Management of acute promyelocytic leukemia in the elderly.

    PubMed

    Lo-Coco, Francesco; Latagliata, Roberto; Breccia, Massimo

    2013-01-01

    Unlike other forms of AML, APL is less frequently diagnosed in the elderly and has a relatively favourable outcome. Elderly patients with APL seem at least as responsive to therapy as do younger patients, but rates of response and survival are lower in this age setting owing to a higher incidence of early deaths and deaths in remission when conventional treatment with ATRA and chemotherapy is used. Elderly APL patients are more likely to present with low-risk features compared with younger patients, and this may explain the relative low risk of relapse reported in several clinical studies. Alternative approaches, such as arsenic trioxide and gentuzumab ozogamicin have been tested with success in this setting and could replace in the near future frontline conventional chemotherapy and ATRA.

  7. Late differentiation syndrome in acute promyelocytic leukemia: a challenging diagnosis.

    PubMed

    Cabral, Renata; Caballero, Juan Carlos; Alonso, Sara; Dávila, Julio; Cabrero, Monica; Caballero, Dolores; Vázquez, Lourdes; Sánchez-Guijo, Fermin; López, Lucia; Cañizo, Maria C; Mateos, Maria V; González, Marcos

    2014-11-19

    Detailed knowledge about differentiation syndrome (DS) has remained limited. There are 2 large studies conducted by the Spanish workgroup PETHEMA (Programa Español de Tratamientos en Hematología; Spanish Program on Hematology Treatments) and the European group trial (LPA 96-99 and APL 93) in which the incidence, characteristics, prognostic factors and outcome of patients developing DS are evaluated. Both have described the median time of DS development between 10 and 12 days. The severity of the DS has been evaluated in the study conducted by PETHEMA, and severe DS usually occurs at the beginning of the treatment (median of 6 days), as compared with moderate DS (median of 15 days). We report here in two cases of late severe DS, with late diagnosis due to both time and form of presentation. We discuss the physiopathology, clinical presentation, prophylaxis and treatment of DS.

  8. Veliparib and Temozolomide in Treating Patients With Acute Leukemia

    ClinicalTrials.gov

    2016-07-20

    Accelerated Phase of Disease; Acute Myeloid Leukemia Arising From Previous Myelodysplastic Syndrome; Adult Acute Myeloid Leukemia With Inv(16)(p13.1q22); CBFB-MYH11; Adult Acute Myeloid Leukemia With t(16;16)(p13.1;q22); CBFB-MYH11; Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); RUNX1-RUNX1T1; Adult Acute Myeloid Leukemia With t(9;11)(p22;q23); MLLT3-MLL; Adult Acute Promyelocytic Leukemia With t(15;17)(q22;q12); PML-RARA; Adult B Acute Lymphoblastic Leukemia; Adult B Acute Lymphoblastic Leukemia With t(9;22)(q34;q11.2); BCR-ABL1; Adult T Acute Lymphoblastic Leukemia; Alkylating Agent-Related Acute Myeloid Leukemia; Blastic Phase; Chronic Myelomonocytic Leukemia; Recurrent Adult Acute Lymphoblastic Leukemia; Recurrent Adult Acute Myeloid Leukemia; Recurrent Disease; Secondary Acute Myeloid Leukemia; Untreated Adult Acute Lymphoblastic Leukemia; Untreated Adult Acute Myeloid Leukemia

  9. GDC-0152 induces apoptosis through down-regulation of IAPs in human leukemia cells and inhibition of PI3K/Akt signaling pathway.

    PubMed

    Hu, Rong; Li, Jia; Liu, Zhuogang; Miao, Miao; Yao, Kun

    2015-02-01

    The inhibitor of apoptosis proteins (IAPs) is closely related to leukemia apoptosis. The present study was undertaken to determine the molecular mechanisms by which GDC-0152, an IAP inhibitor, induces apoptosis in human leukemia cells (K562 and HL60 cells). GDC-0152 inhibited the proliferation of K562 and HL60 cells in a dose- and time-dependent manner, which was largely attributed to intrinsic apoptosis. GDC-0152 down-regulated the IAPs including X-linked inhibitor of apoptosis protein (XIAP), cellular inhibitor of apoptosis protein-1 (cIAP1), and cellular inhibitor of apoptosis protein-2 (cIAP2) expression and induced the activation of caspase-9 and caspase-3. GDC-0152-induced cell proliferation inhibition in K562 cells was prevented by pan-caspase inhibitor. GDC-0152 also inhibited PI3K and Akt expression in K562 and HL60 cells. Taken together, these findings suggest that GDC-0152 results in human leukemia apoptosis through caspase-dependent mechanisms involving down-regulation of IAPs and inhibition of PI3K/Akt signaling.

  10. Interactions of dimethyl sulfoxide and granulocyte-macrophage colony-stimulating factor on the cell cycle kinetics and phosphoproteins of G1-enriched HL-60 cells: evidence of early effects on lamin B phosphorylation.

    PubMed

    Brennan, J K; Lee, K S; Frazel, M A; Keng, P C; Young, D A

    1991-03-01

    We have found that GM-CSF and DMSO have antagonistic effects on the proliferation but not maturation of asynchronously growing HL-60 cells such that growth in the presence of both more closely resembles normal hematopoiesis (Brennan et al., J. Cell Physiol. 132:246, 1987). Studies were undertaken to determine whether or not the agents affected the same mitogenic pathway and locus in the cell cycle. HL-60 populations containing at least 90% G1 cells were obtained by centrifugal elutriation, exposed to 100 u/ml recombinant human GM-CSF and/or 0-1.25% DMSO, and phosphoprotein changes quantified on autoradiograms of [32P]-orthophosphate-labeled cell proteins separated by giant 2-D gel electrophoresis. Results were correlated with 1) intracellular pH, determined by measurement of BCECF fluorescence; 2) [32P]-orthophosphate uptake; 3) cell cycle progression, determined by flow quantitation of DNA content in mithramycin or propidium iodide-stained cells; and 4) growth, determined by cell volume and concentration. GM-CSF stimulated and DMSO inhibited the GM-CSF-stimulated phosphorylation of 1 protein (approximately 65 kDa, p.i. 5.6) within 2 min of exposure. These effects were sustained through G1, not associated with changes in intracellular pH, and preceded similar antagonistic effects on phosphate uptake (15-30 minutes), cell volume change (16-24 hr), and cell concentration increase (28-32 hr). GM-CSF accelerated and DMSO inhibited G1 to S transit with the most marked antagonism observed in the second cycle following synchronization (28 to 40 hrs). Cell maturation (morphology, NBT reduction) was dominated by DMSO and not antagonized by GM-CSF. We have identified p65 as the nuclear intermediate filament protein, lamin B, on the basis of its locus on gels and its binding of a monoclonal antibody to intermediate filaments and antiserum to human lamin B on immunoblots. These studies suggest that at least part of the GM-CSF-DMSO antagonism is exerted through the same

  11. Vorinostat, Cytarabine, and Etoposide in Treating Patients With Relapsed and/or Refractory Acute Leukemia or Myelodysplastic Syndromes or Myeloproliferative Disorders

    ClinicalTrials.gov

    2013-05-01

    Accelerated Phase Chronic Myelogenous Leukemia; Adult Acute Basophilic Leukemia; Adult Acute Eosinophilic Leukemia; Adult Acute Megakaryoblastic Leukemia (M7); Adult Acute Minimally Differentiated Myeloid Leukemia (M0); Adult Acute Monoblastic Leukemia (M5a); Adult Acute Monocytic Leukemia (M5b); Adult Acute Myeloblastic Leukemia With Maturation (M2); Adult Acute Myeloblastic Leukemia Without Maturation (M1); Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(15;17)(q22;q12); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Adult Acute Myelomonocytic Leukemia (M4); Adult Acute Promyelocytic Leukemia (M3); Adult Erythroleukemia (M6a); Adult Pure Erythroid Leukemia (M6b); Atypical Chronic Myeloid Leukemia, BCR-ABL1 Negative; Blastic Phase Chronic Myelogenous Leukemia; Chronic Eosinophilic Leukemia; Chronic Myelomonocytic Leukemia; Chronic Neutrophilic Leukemia; de Novo Myelodysplastic Syndromes; Essential Thrombocythemia; Myelodysplastic/Myeloproliferative Neoplasm, Unclassifiable; Polycythemia Vera; Previously Treated Myelodysplastic Syndromes; Primary Myelofibrosis; Recurrent Adult Acute Lymphoblastic Leukemia; Recurrent Adult Acute Myeloid Leukemia; Relapsing Chronic Myelogenous Leukemia; Secondary Acute Myeloid Leukemia; Secondary Myelodysplastic Syndromes

  12. Induction of Apoptosis by [8]-shogaol via Reactive Oxygen Species Generation, Glutathione Depletion and Caspase Activation in Human Leukemia Cells

    PubMed Central

    Shieh, Po-Chuen; Chen, Yi-Own; Kuo, Daih-Huang; Chen, Fu-An; Tsai, Mei-Ling; Chang, Ing-Shing; Wu, Hou; Sang, Shengmin; Ho, Chi-Tang; Pan, Min-Hsiung

    2010-01-01

    Ginger, the rhizome of Zingiber officinale, is a traditional medicine with carminative effect, anti-nausea, anti-inflammatory, and anti-carcinogenic properties. This study examined the growth inhibitory effects of [8]-shogaol, one of pungent phenolic compounds in ginger, on human leukemia HL-60 cells. It demonstrated that [8]-shogaol was able to induce apoptosis in a time- and concentration-dependent manner. Treatment with [8]-shogaol caused a rapid loss of mitochondrial transmembrane potential, stimulation of reactive oxygen species (ROS) production, release of mitochondrial cytochrome c into cytosol, and subsequent induction of procaspase-9 and procaspase-3 processing. Taken together, these results suggest for the first time that ROS production and depletion of the glutathione that committed to [8]-shogaol-induced apoptosis in HL-60 cells. PMID:20163181

  13. Modulation of homeobox B6 and B9 genes expression in human leukemia cell lines during myelomonocytic differentiation.

    PubMed

    Ohnishi, K; Tobita, T; Sinjo, K; Takeshita, A; Ohno, R

    1998-11-01

    Homeobox genes (HOX) may have a regulatory function in the differentiation process of hematopoiesis. We examined the change of HOX B6 and HOX B9 mRNA expressions during the in vitro differentiation of four myeloid leukemia cell lines because HOX B6 may be involved closely in myeloid differentiation. HL-60, NB4, NKM-1 and NOMO-1 were established from acute leukemia of M2, M3, M2 and M5 subtype of the French-American-British classification, respectively. All-trans retinoic acid (ATRA), TPA, and G-CSF were used as differentiation inducers. Each cell line was cultured with each inducer and total RNA was isolated on day 1, 2, 3, or 5. HOX B mRNA was detected by Northern blotting and RT-PCR methods. HOX B6 and HOX B9 mRNAs were constitutively expressed in NB4, NKM-1 and NOMO-1, but were expressed at very low levels in HL-60. HOX B6 and HOX B9 mRNAs were also expressed in fresh acute myelocytic leukemia blasts. HOX B6 mRNA expression in HL-60, NB4, and NKM-1 cultured with ATRA increased on day 3 and decreased on day 5. HOX B6 mRNA expression in NB4 and NKM-1 cultured with TPA decreased on day 3. HOX B9 mRNA expression displayed changes similar to those of HOX B6 mRNA in NB4 and NKM-1. These results indicate that myeloid leukemia cell lines express HOX B6 and HOX B9, and that their respective mRNA expressions in NB4 and HL-60 increase at a mid stage of myeloid differentiation by ATRA induction and then decrease during a late stage. HOX B6 mRNA expression decreased in monocytoid differentiation by TPA induction in NB4, HL-60 and NKM-1. HOX B6 antisense-oligonucleotide inhibited the proliferation of NB4 and NKM-1. These results suggest that HOX B gene expression is related to simultaneous activation of cellular proliferation and differentiation in leukemic cells. PMID:9922051

  14. Lenalidomide, Cytarabine, and Idarubicin in Treating Patients With Acute Myeloid Leukemia

    ClinicalTrials.gov

    2014-12-22

    Acute Myeloid Leukemia Arising From Previous Myelodysplastic Syndrome; Adult Acute Myeloid Leukemia With Inv(16)(p13.1q22); CBFB-MYH11; Adult Acute Myeloid Leukemia With t(16;16)(p13.1;q22); CBFB-MYH11; Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); RUNX1-RUNX1T1; Adult Acute Myeloid Leukemia With t(9;11)(p22;q23); MLLT3-MLL; Adult Acute Promyelocytic Leukemia With t(15;17)(q22;q12); PML-RARA; Alkylating Agent-Related Acute Myeloid Leukemia; de Novo Myelodysplastic Syndrome; Previously Treated Myelodysplastic Syndrome; Recurrent Adult Acute Myeloid Leukemia; Secondary Acute Myeloid Leukemia; Secondary Myelodysplastic Syndrome; Untreated Adult Acute Myeloid Leukemia

  15. Evaluation of Antiradical and Anti-Inflammatory Activities of Ethyl Acetate and Butanolic Subfractions of Agelanthus dodoneifolius (DC.) Polhill & Wiens (Loranthaceae) Using Equine Myeloperoxidase and Both PMA-Activated Neutrophils and HL-60 Cells

    PubMed Central

    Boly, Rainatou; Franck, Thierry; Kohnen, Stephan; Lompo, Marius; Guissou, Innocent Pierre; Dubois, Jacques; Serteyn, Didier; Mouithys-Mickalad, Ange

    2015-01-01

    The ethyl acetate and n-butanolic subfractions of Agelanthus dodoneifolius were investigated for their antioxidant and antimyeloperoxidase (MPO) activities. The reactive oxygen species (ROS) generation was assessed by lucigenin-enhanced chemiluminescence (CL) and dichlorofluorescein- (DCF-) induced fluorescence techniques from phorbol myristate acetate- (PMA-) stimulated equine neutrophils and human myeloid cell line HL-60, respectively. In parallel, the effects of the tested subfractions were evaluated on the total MPO release by stimulated neutrophils and on the specific MPO activity by means of immunological assays. The results showed the potent activity of the butanolic subfraction, at least in respect of the chemiluminescence test (IC50 = 0.3 ± 0.1 µg/mL) and the ELISA and SIEFED assays (IC50 = 2.8 ± 1.2 µg/mL and 1.3 ± 1.0 µg/mL), respectively. However, the ethyl acetate subfraction was found to be the most potent in the DCF assay as at the highest concentration, DCF fluorescence intensity decreases of about 50%. Moreover, we demonstrated that the ethyl acetate subfraction was rich in catechin (16.51%) while it was not easy to identify the main compounds in the butanolic subfraction using the UPLC-MS/MS technique. Nevertheless, taken together, our results provide evidence that Agelanthus dodoneifolius subfractions may represent potential sources of natural antioxidants and of antimyeloperoxidase compounds. PMID:25821497

  16. Vorinostat With or Without Isotretinoin in Treating Young Patients With Recurrent or Refractory Solid Tumors, Lymphoma, or Leukemia

    ClinicalTrials.gov

    2014-06-16

    Childhood Acute Promyelocytic Leukemia (M3); Childhood Atypical Teratoid/Rhabdoid Tumor; Childhood Burkitt Lymphoma; Childhood Chronic Myelogenous Leukemia; Childhood Diffuse Large Cell Lymphoma; Childhood Immunoblastic Large Cell Lymphoma; Juvenile Myelomonocytic Leukemia; Recurrent Childhood Acute Lymphoblastic Leukemia; Recurrent Childhood Acute Myeloid Leukemia; Recurrent Childhood Grade III Lymphomatoid Granulomatosis; Recurrent Childhood Large Cell Lymphoma; Recurrent Childhood Lymphoblastic Lymphoma; Recurrent Childhood Medulloblastoma; Recurrent Childhood Small Noncleaved Cell Lymphoma; Recurrent Childhood Supratentorial Primitive Neuroectodermal Tumor; Recurrent Neuroblastoma; Recurrent/Refractory Childhood Hodgkin Lymphoma; Relapsing Chronic Myelogenous Leukemia; Unspecified Childhood Solid Tumor, Protocol Specific

  17. Tetrandrine induces autophagy and differentiation by activating ROS and Notch1 signaling in leukemia cells.

    PubMed

    Liu, Ting; Men, Qiuxu; Wu, Guixian; Yu, Chunrong; Huang, Zan; Liu, Xin; Li, Wenhua

    2015-04-10

    All-trans retinoic acid (ATRA) is a differentiating agent for the treatment of acute promyelocytic leukemia (APL). However, the therapeutic efficacy of ATRA has limitations. Tetrandrine is a traditional Chinese medicinal herb extract with antitumor effects. In this study, we investigated the effects of tetrandrine on human PML-RARα-positive acute promyelocytic leukemia cells. Tetrandrine inhibited tumors in vivo. It induced autophagy and differentiation by triggering ROS generation and activating Notch1 signaling. Tetrandrine induced autophagy and differentiation in M5 type patient primary leukemia cells. The in vivo results indicated that low concentrations of tetrandrine inhibited leukemia cells proliferation and induced autophagy and then facilitated their differentiation, by activating ROS and Notch1 signaling. We suggest that tetrandrine is a potential agent for the treatment of APL by inducing differentiation of leukemia cells. PMID:25797266

  18. Leukemia -- Eosinophilic

    MedlinePlus

    ... Leukemia - Eosinophilic: Overview Request Permissions Print to PDF Leukemia - Eosinophilic: Overview Approved by the Cancer.Net Editorial ... Platelets that help the blood to clot About leukemia Types of leukemia are named after the specific ...

  19. Laboratory-Treated Donor Cord Blood Cell Infusion Following Combination Chemotherapy in Treating Younger Patients With Relapsed or Refractory Acute Myeloid Leukemia

    ClinicalTrials.gov

    2016-09-26

    Acute Leukemia of Ambiguous Lineage; Adult Acute Myeloid Leukemia in Remission; Adult Acute Myeloid Leukemia With Inv(16)(p13.1q22); CBFB-MYH11; Adult Acute Myeloid Leukemia With t(16;16)(p13.1;q22); CBFB-MYH11; Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); RUNX1-RUNX1T1; Adult Acute Myeloid Leukemia With t(9;11)(p22;q23); MLLT3-MLL; Adult Acute Promyelocytic Leukemia With t(15;17)(q22;q12); PML-RARA; Alkylating Agent-Related Acute Myeloid Leukemia; Childhood Acute Myeloid Leukemia in Remission; Recurrent Adult Acute Myeloid Leukemia; Recurrent Childhood Acute Myeloid Leukemia; Untreated Adult Acute Myeloid Leukemia

  20. Force Microscopy of Nonadherent Cells: A Comparison of Leukemia Cell Deformability

    PubMed Central

    Rosenbluth, Michael J.; Lam, Wilbur A.; Fletcher, Daniel A.

    2006-01-01

    Atomic force microscopy (AFM) has become an important tool for quantifying mechanical properties of biological materials ranging from single molecules to cells and tissues. Current AFM techniques for measuring elastic and viscoelastic properties of whole cells are based on indentation of cells firmly adhered to a substrate, but these techniques are not appropriate for probing nonadherent cells, such as passive human leukocytes, due to a lateral instability of the cells under load. Here we present a method for characterizing nonadherent cells with AFM by mechanically immobilizing them in microfabricated wells. We apply this technique to compare the deformability of human myeloid and lymphoid leukemia cells and neutrophils at low deformation rates, and we find that the cells are well described by an elastic model based on Hertzian mechanics. Myeloid (HL60) cells were measured to be a factor of 18 times stiffer than lymphoid (Jurkat) cells and six times stiffer than human neutrophils on average (E∞ = 855 ± 670 Pa for HL60 cells, E∞ = 48 ± 35 Pa for Jurkat cells, E∞ = 156 ± 87 for neutrophils, mean ± SD). This work demonstrates a simple method for extending AFM mechanical property measurements to nonadherent cells and characterizes properties of human leukemia cells that may contribute to leukostasis, a complication associated with acute leukemia. PMID:16443660