Sample records for prong electrical plug

  1. Electrical grounding prong socket

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leong, R.

    1990-01-01

    The invention is a socket for a grounding prong used in a three prong electrical plug and a receptacle for the three prong plug. The socket being sufficiently spacious to prevent the socket from significantly stretching when a larger, U-shaped grounding prong is inserted into the socket, and having a ridge to allow a snug fit when a smaller tubular shape grounding prong is inserted into the socket. 17 figs.

  2. Electrical grounding prong socket

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leong, R.

    1990-12-31

    The invention is a socket for a grounding prong used in a three prong electrical plug and a receptacle for the three prong plug. The socket being sufficiently spacious to prevent the socket from significantly stretching when a larger, U-shaped grounding prong is inserted into the socket, and having a ridge to allow a snug fit when a smaller tubular shape grounding prong is inserted into the socket. 17 figs.

  3. Electrical grounding prong socket

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leong, R.

    1991-06-18

    This patent describes a socket for a grounding prong used in a three prong electrical plug and a receptacle for the three prong plug. The socket being sufficiently spacious to prevent the socket from significantly stretching when a larger, U-shaped grounding prong is inserted into the socket, and having a ridge to allow a snug fit when a smaller tubular shape grounding prong is inserted into the socket.

  4. Electrical grounding prong socket

    DOEpatents

    Leong, Robert

    1991-01-01

    The invention is a socket for a grounding prong used in a three prong electrical plug and a receptacle for the three prong plug. The socket being sufficiently spacious to prevent the socket from significantly stretching when a larger, U-shaped grounding prong is inserted into the socket, and having a ridge to allow a snug fit when a smaller tubular shape grounding prong is inserted into the socket.

  5. Electrical grounding prong socket

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leong, R.

    1989-09-12

    This paper describes a socket for a grounding prong used in a three prong electrical plug. The socket being sufficiently spacious to prevent the socket from significantly stretching when a larger, U-shaped grounding prong is inserted into the socket, and having a ridge to allow a snug fit when a smaller tubular shape grounding prong is inserted into the socket. 11 figs.

  6. Electrical receptacle

    DOEpatents

    Leong, R.

    1993-06-22

    The invention is a receptacle for a three prong electrical plug which has either a tubular or U-shaped grounding prong. The inventive receptacle has a grounding prong socket which is sufficiently spacious to prevent the socket from significantly stretching when a larger, U-shaped grounding prong is inserted into the socket, and having two ridges to allow a snug fit when a smaller tubular shape grounding prong is inserted into the socket. The two ridges are made to prevent the socket from expanding when either the U-shaped grounding prong or the tubular grounding prong is inserted.

  7. Electrical receptacle

    DOEpatents

    Leong, Robert

    1993-01-01

    The invention is a receptacle for a three prong electrical plug which has either a tubular or U-shaped grounding prong. The inventive receptacle has a grounding prong socket which is sufficiently spacious to prevent the socket from significantly stretching when a larger, U-shaped grounding prong is inserted into the socket, and having two ridges to allow a snug fit when a smaller tubular shape grounding prong is inserted into the socket. The two ridges are made to prevent the socket from expanding when either the U-shaped grounding prong or the tubular grounding prong is inserted.

  8. Electrical Circuit Tester

    DOEpatents

    Love, Frank

    2006-04-18

    An electrical circuit testing device is provided, comprising a case, a digital voltage level testing circuit with a display means, a switch to initiate measurement using the device, a non-shorting switching means for selecting pre-determined electrical wiring configurations to be tested in an outlet, a terminal block, a five-pole electrical plug mounted on the case surface and a set of adapters that can be used for various multiple-pronged electrical outlet configurations for voltages from 100 600 VAC from 50 100 Hz.

  9. Electric and Plug-In Hybrid Electric Fleet Vehicle Testing | Transportation

    Science.gov Websites

    Research | NREL Electric and Plug-In Hybrid Electric Fleet Vehicle Evaluations Electric and Plug-In Hybrid Electric Fleet Vehicle Evaluations How Electric and Plug-In Hybrid Electric Vehicles Work EVs use batteries to store the electric energy that powers the motor. EV batteries are charged by

  10. Odyne Plug-In Hybrid Electric Utility Truck Testing | Transportation

    Science.gov Websites

    Research | NREL Odyne Plug-In Hybrid Electric Utility Truck Evaluation Odyne Plug-In Hybrid data on plug-in hybrid electric utility trucks operated by a variety of companies. Photo courtesy of Odyne, NREL NREL is evaluating the in-service performance of about 120 plug-in hybrid electric utility

  11. Alternative Fuels Data Center: Charging Plug-In Electric Vehicles in Public

    Science.gov Websites

    in Public to someone by E-mail Share Alternative Fuels Data Center: Charging Plug-In Electric Vehicles in Public on Facebook Tweet about Alternative Fuels Data Center: Charging Plug-In Electric Vehicles in Public on Twitter Bookmark Alternative Fuels Data Center: Charging Plug-In Electric Vehicles in

  12. Plug-In Hybrid Electric Vehicle Basics | NREL

    Science.gov Websites

    Plug-In Hybrid Electric Vehicle Basics Plug-In Hybrid Electric Vehicle Basics Imagine being able to one that's in a standard hybrid electric vehicle. The larger battery pack allows plug-in hybrids to fuel from its onboard tank, and this provides a driving range (the distance a vehicle can travel

  13. National Plug-In Electric Vehicle Infrastructure Analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wood, Eric; Rames, Clement; Muratori, Matteo

    This report addresses the fundamental question of how much plug-in electric vehicle (PEV) charging infrastructure—also known as electric vehicle supply equipment (EVSE)—is needed in the United States to support both plug-in hybrid electric vehicles (PHEVs) and battery electric vehicles (BEVs).

  14. Alternative Fuels Data Center: Los Angeles Sets the Stage for Plug-In

    Science.gov Websites

    Electric Vehicles Los Angeles Sets the Stage for Plug-In Electric Vehicles to someone by E-mail Share Alternative Fuels Data Center: Los Angeles Sets the Stage for Plug-In Electric Vehicles on Facebook Tweet about Alternative Fuels Data Center: Los Angeles Sets the Stage for Plug-In Electric

  15. Alternative Fuels Data Center: Developing Infrastructure to Charge Plug-In

    Science.gov Websites

    Electric Vehicles Developing Infrastructure to Charge Plug-In Electric Vehicles to someone by E -mail Share Alternative Fuels Data Center: Developing Infrastructure to Charge Plug-In Electric Vehicles on Facebook Tweet about Alternative Fuels Data Center: Developing Infrastructure to Charge Plug-In

  16. Hybrid and Plug-in Electric Vehicles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    2014-05-20

    Hybrid and plug-in electric vehicles use electricity either as their primary fuel or to improve the efficiency of conventional vehicle designs. This new generation of vehicles, often called electric drive vehicles, can be divided into three categories: hybrid electric vehicles (HEVs), plug-in hybrid electric vehicles(PHEVs), and all-electric vehicles (EVs). Together, they have great potential to reduce U.S. petroleum use.

  17. NREL Validates Plug-In Hybrid Truck for Pacific Gas and Electric Company |

    Science.gov Websites

    Energy Systems Integration Facility | NREL Pacific Gas and Electric Company NREL Validates Plug -In Hybrid Truck for Pacific Gas and Electric Company NREL is evaluating and analyzing a Pacific Gas and Electric Company (PG&E) plug-in hybrid electric utility truck developed by Efficient

  18. Alternative Fuels Data Center: Maintenance and Safety of Hybrid and Plug-In

    Science.gov Websites

    Electric Vehicles Maintenance and Safety of Hybrid and Plug-In Electric Vehicles to someone by E-mail Share Alternative Fuels Data Center: Maintenance and Safety of Hybrid and Plug-In Electric Vehicles on Facebook Tweet about Alternative Fuels Data Center: Maintenance and Safety of Hybrid and Plug

  19. System and method for charging a plug-in electric vehicle

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bassham, Marjorie A.; Spigno, Jr., Ciro A.; Muller, Brett T.

    2017-05-02

    A charging system and method that may be used to automatically apply customized charging settings to a plug-in electric vehicle, where application of the settings is based on the vehicle's location. According to an exemplary embodiment, a user may establish and save a separate charging profile with certain customized charging settings for each geographic location where they plan to charge their plug-in electric vehicle. Whenever the plug-in electric vehicle enters a new geographic area, the charging method may automatically apply the charging profile that corresponds to that area. Thus, the user does not have to manually change or manipulate themore » charging settings every time they charge the plug-in electric vehicle in a new location.« less

  20. Alternative Fuels Data Center: North Carolina Airport Advances With Plug-In

    Science.gov Websites

    Electric BusesA> North Carolina Airport Advances With Plug-In Electric Buses to someone by E-mail passengers with plug-in hybrid electric buses. For information about this project, contact Centralina Clean . Provided by Maryland Public Television Related Videos Photo of a car Electric Vehicles Charge up at State

  1. Hybrid and Plug-In Electric Vehicles (Spanish Version); Clean Cities, Energy Efficiency & Renewable Energy (EERE) (in Spanish)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    This is a Spanish-language brochure about hybrid and plug-in electric vehicles, which use electricity as their primary fuel or to improve the efficiency of conventional vehicle designs. These vehicles can be divided into three categories: hybrid electric vehicles (HEVs), plug-in hybrid electric vehicles (PHEVs), all-electric vehicles (EVs). Together, they have great potential to cut U.S. petroleum use and vehicle emissions.

  2. City of Las Vegas Plug-in Hybrid Electric Vehicle Demonstration Program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    2013-12-31

    The City of Las Vegas was awarded Department of Energy (DOE) project funding in 2009, for the City of Las Vegas Plug-in Hybrid Electric Vehicle Demonstration Program. This project allowed the City of Las Vegas to purchase electric and plug-in hybrid electric vehicles and associated electric vehicle charging infrastructure. The City anticipated the electric vehicles having lower overall operating costs and emissions similar to traditional and hybrid vehicles.

  3. 78 FR 70395 - Buy America Waiver Notification

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-25

    ...--light, medium, and heavy duty plug-in battery electric and compressed natural gas vehicles by Chicago..., medium, and heavy duty plug-in battery electric and compressed natural gas vehicles by Chicago DOT. In...--light, medium, and heavy duty plug-in battery electric and compressed natural gas vehicles ( http://www...

  4. NREL Research Determines Integration of Plug-in Electric Vehicles Should

    Science.gov Websites

    transportation and energy systems engineer at NREL and author of the new Nature Energy paper, "Impact of Muratori, author of the new Nature Energy paper "Impact of Uncoordinated Plug-in Electric Vehicle Integration of Plug-in Electric Vehicles Should Play a Big Role in Future Electric System Planning News

  5. Smith and Navistar Electric and Plug-In Hybrid Vehicle Testing |

    Science.gov Websites

    plug-in hybrid electric vehicles operated by a variety of companies in diverse climates across the plug-in hybrid electric drive systems in medium-duty trucks operating in fleet service across the nation. U.S. companies agreeing to participate in this evaluation project received funding from the

  6. 40 CFR 600.302-12 - Fuel economy label-general provisions.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... includes hybrid electric vehicles that do not have plug-in capability. Include a logo corresponding to the..., include a fuel pump logo and the designation “E85”. (iii) Identify plug-in hybrid electric vehicles as... fuel pump logo as specified in paragraph (b)(3)(i) of this section and an electric plug logo to the...

  7. 40 CFR 600.302-12 - Fuel economy label-general provisions.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... includes hybrid electric vehicles that do not have plug-in capability. Include a logo corresponding to the..., include a fuel pump logo and the designation “E85”. (iii) Identify plug-in hybrid electric vehicles as... fuel pump logo as specified in paragraph (b)(3)(i) of this section and an electric plug logo to the...

  8. Alternative Fuels Data Center: Hybrid and Plug-In Electric Vehicle

    Science.gov Websites

    Emissions Data Sources and Assumptions Hybrid and Plug-In Electric Vehicle Emissions Data Sources and Assumptions to someone by E-mail Share Alternative Fuels Data Center: Hybrid and Plug-In Electric Vehicle Emissions Data Sources and Assumptions on Facebook Tweet about Alternative Fuels Data

  9. Electric-Drive Vehicles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Septon, Kendall K

    Electric-drive vehicles use electricity as their primary fuel or to improve the efficiency of conventional vehicle designs. These vehicles can be divided into three categories: Hybrid electric vehicles (HEVs), Plug-in hybrid electric vehicles (PHEVs), All-electric vehicles (EVs). Together, PHEVs and EVs can also be referred to as plug-in electric vehicles (PEVs).

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    Electric-drive vehicles use electricity as their primary fuel or to improve the efficiency of conventional vehicle designs. These vehicles can be divided into three categories: Hybrid electric vehicles (HEVs), Plug-in hybrid electric vehicles (PHEVs), All-electric vehicles (EVs). Together, PHEVs and EVs can also be referred to as plug-in electric vehicles (PEVs).

  11. How Much Do Electric Cars Pollute? Depends on When and Where You Plug In |

    Science.gov Websites

    News | NREL How Much Do Electric Cars Pollute? Depends on When and Where You Plug In How Much Do Electric Cars Pollute? Depends on When and Where You Plug In May 19, 2016 The transportation the potential for emissions reduction depends on when and where drivers charge their vehicles. The

  12. [Dampness in an electric plug as a cause of electricity failure in an operation theatre].

    PubMed

    Andersen, C; Pold, R; Nielsen, H D

    2000-02-07

    Two cases of electricity failure in an operation theatre during open heart surgery are discussed. The fuse for the patient monitor, ventilator, surgery instruments and heart lung machine was blown. Short-circuit was established because of humidity in the plug of the heater for fluid and blood. We recommend sealed or founded plugs and that anaesthesia equipment should not be used as an electrical supply for other electronic apparatus.

  13. AVTA Federal Fleet PEV Readiness Data Logging and Characterization Study for NASA White Sands Test Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schey, Stephen; Francfort, Jim

    This report focuses on the NASA White Sands Test Facility (WSTF) fleet to identify daily operational characteristics of select vehicles and report findings on vehicle and mission characterizations to support the successful introduction of plug-in electric vehicles (PEVs) into the agencies’ fleets. Individual observations of these selected vehicles provide the basis for recommendations related to electric vehicle adoption and whether a battery electric vehicle (BEV) or plug-in hybrid electric vehicle (PHEV) (collectively plug-in electric vehicles, or PEVs) can fulfill the mission requirements.

  14. AVTA Federal Fleet PEV Readiness Data Logging and Characterization Study for National Institute of Health

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schey, Stephen; Francfort, Jim

    2014-11-01

    This report focuses on the National Institute of Health (NIH) fleet to identify daily operational characteristics of select vehicles and report findings on vehicle and mission characterizations to support the successful introduction of plug-in electric vehicles (PEVs) into the agencies’ fleets. Individual observations of these selected vehicles provide the basis for recommendations related to electric vehicle adoption and whether a battery electric vehicle (BEV) or plug-in hybrid electric vehicle (PHEV) (collectively plug-in electric vehicles, or PEVs) can fulfill the mission requirements.

  15. 30 CFR 18.41 - Plug and receptacle-type connectors.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... electrically interlocked with an automatic circuit-interrupting device. (i) Mechanically interlocked connectors... shall be removed before the plug can be withdrawn and the electrical energy in the interlocking pilot.... (d) Molded-elastomer connectors will be acceptable provided: (1) Any free space within the plug or...

  16. 30 CFR 18.41 - Plug and receptacle-type connectors.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... electrically interlocked with an automatic circuit-interrupting device. (i) Mechanically interlocked connectors... shall be removed before the plug can be withdrawn and the electrical energy in the interlocking pilot.... (d) Molded-elastomer connectors will be acceptable provided: (1) Any free space within the plug or...

  17. 30 CFR 18.41 - Plug and receptacle-type connectors.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... electrically interlocked with an automatic circuit-interrupting device. (i) Mechanically interlocked connectors... shall be removed before the plug can be withdrawn and the electrical energy in the interlocking pilot.... (d) Molded-elastomer connectors will be acceptable provided: (1) Any free space within the plug or...

  18. 30 CFR 18.41 - Plug and receptacle-type connectors.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... electrically interlocked with an automatic circuit-interrupting device. (i) Mechanically interlocked connectors... shall be removed before the plug can be withdrawn and the electrical energy in the interlocking pilot.... (d) Molded-elastomer connectors will be acceptable provided: (1) Any free space within the plug or...

  19. 30 CFR 18.41 - Plug and receptacle-type connectors.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... electrically interlocked with an automatic circuit-interrupting device. (i) Mechanically interlocked connectors... shall be removed before the plug can be withdrawn and the electrical energy in the interlocking pilot.... (d) Molded-elastomer connectors will be acceptable provided: (1) Any free space within the plug or...

  20. Alternative Fuels Data Center: Availability of Hybrid and Plug-In Electric

    Science.gov Websites

    AddThis.com... More in this section... Electricity Basics Benefits & Considerations Stations Vehicles electricity to improve fuel efficiency. Pre-Owned Vehicles Learn about buying and selling pre-owned and plug-in electric vehicles. Learn more about the benefits and considerations of electricity as a

  1. AVTA Federal Fleet PEV Readiness Data Logging and Characterization Study for the National Park Service: Sleeping Bear Dunes National Lakeshore

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schey, Stephen; Francfort, Jim

    This report focuses on the Sleeping Bear Dunes National Lakeshore (SLBE) fleet to identify daily operational characteristics of select vehicles and report findings on vehicle and mission characterizations to support the successful introduction of plug-in electric vehicles (PEVs) into the agencies’ fleets. Individual observations of these selected vehicles provide the basis for recommendations related to electric vehicle adoption and whether a battery electric vehicle (BEV) or plug-in hybrid electric vehicle (PHEV) (collectively plug-in electric vehicles, or PEVs) can fulfill the mission requirements.

  2. 76 FR 72028 - Buy America Waiver Notification

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-21

    ...-battery electric vehicles, 12 plug-in hybrid vehicles, and 5 neighborhood electric vehicles in San... a partial Buy America waiver is appropriate for the purchase of 12 all-battery electric vehicles, 12 plug-in hybrid vehicles, and 5 neighborhood electric vehicles in San Francisco County, California. In...

  3. Alternative Fuels Data Center

    Science.gov Websites

    Charging Rate Incentive - Georgia Power Georgia Power offers a Plug-in Electric Vehicle (PEV) time -of-use electricity rate for residential customers who own an electric or plug-in hybrid electric vehicle. The PEV rate is optional and does not require a separate meter. For more information, see the

  4. Electric and Plug-In Hybrid Electric Vehicle Publications | Transportation

    Science.gov Websites

    , Kandler Smith, and Kevin Walkowicz. (2016) Medium-Duty Plug-in Electric Delivery Truck Fleet Evaluation . (2014) Smith Newton Electric Delivery Trucks Smith Newton Vehicle Performance Evaluation (Gen 1 ), Cumulative Report: November 2011-June 2014. Adam Ragatz. (2014) Smith Newton Vehicle Performance Evaluation

  5. Deploying Electric Vehicles and Electric Vehicle Supply Equipment: Tiger Teams Offer Project Assistance for Federal Fleets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    To assist federal agencies with the transition to plug-in electric vehicles (PEVs), including battery electric vehicles (BEVs) and plug-in hybrid electric vehicles (PHEVs), FEMP offers technical guidance on electric vehicle supply equipment (EVSE) installations and site-specific planning through partnerships with the National Renewable Energy Laboratory’s EVSE Tiger Teams.

  6. 40 CFR 600.116-12 - Special procedures related to electric vehicles, hybrid electric vehicles, and plug-in hybrid...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... technology under § 86.1870-12, and requires the measurement of electrical current (in amps) flowing into the... 40 Protection of Environment 31 2013-07-01 2013-07-01 false Special procedures related to electric vehicles, hybrid electric vehicles, and plug-in hybrid electric vehicles. 600.116-12 Section 600.116-12...

  7. Integrating plug-in electric vehicles into the electric power system

    NASA Astrophysics Data System (ADS)

    Wu, Di

    This dissertation contributes to our understanding of how plug-in hybrid electric vehicles (PHEVs) and plug-in battery-only electric vehicles (EVs)---collectively termed plug-in electric vehicles (PEVs)---could be successfully integrated with the electric power system. The research addresses issues at a diverse range of levels pertaining to light-duty vehicles, which account for the majority of highway vehicle miles traveled, energy consumed by highway travel modes, and carbon dioxide emissions from on-road sources. Specifically, the following topics are investigated: (i) On-board power electronics topologies for bidirectional vehicle-to-grid and grid-to-vehicle power transfer; (ii) The estimation of the electric energy and power consumption by fleets of light-duty PEVs; (iii) An operating framework for the scheduling and dispatch of electric power by PEV aggregators; (iv) The pricing of electricity by PHEV aggregators and how it affects the decision-making process of a cost-conscious PHEV owner; (v) The impacts on distribution systems from PEVs under aggregator control; (vi) The modeling of light-duty PEVs for long-term energy and transportation planning at a national scale.

  8. Alternative Fuels Data Center: Plug-In Hybrid Electric Vehicles

    Science.gov Websites

    Data Center: Plug-In Hybrid Electric Vehicles on AddThis.com... More in this section... Electricity other propulsion source. Using electricity from the grid to run the vehicle some or all of the time levels of emissions, depending on the electricity source. There are several light-duty PHEVs commercially

  9. Understanding the Distributional Impacts of Vehicle Policy : Who Buys New and Used Alternative Vehicles?

    DOT National Transportation Integrated Search

    2018-02-02

    This research project explores the plug-in electric vehicle (PEV) market, including both Battery Electric Vehicles (BEVs) and Plug-in Hybrid Electric Vehicles (PHEVs), and the sociodemographic characteristics of purchasing households. We use detailed...

  10. Miniature electrical connector

    DOEpatents

    Casper, Robert F.

    1976-01-01

    A miniature coaxial cable electrical connector includes an annular compressible gasket in a receptacle member, the gasket having a generally triangular cross section resiliently engaging and encircling a conically tapered outer surface of a plug member to create an elongated current leakage path at their interface; means for preventing rotation of the plug relative to the receptacle; a metal sleeve forming a portion of the receptacle and encircling the plug member when interconnected; and a split ring in the plug having outwardly and rearwardly projecting fingers spaced from and encircling a portion of a coaxial cable and engageable with the metal sleeve to interlock the receptacle and plug.

  11. 40 CFR 600.116-12 - Special procedures related to electric vehicles and plug-in hybrid electric vehicles.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) ENERGY POLICY FUEL ECONOMY AND GREENHOUSE GAS EXHAUST EMISSIONS OF MOTOR VEHICLES Fuel Economy and Carbon-Related Exhaust Emission Test Procedures § 600.116-12 Special procedures related to electric vehicles and plug-in hybrid electric vehicles. (a) Determine fuel economy...

  12. Plug-in electric vehicles: future market conditions and adoption rates

    EIA Publications

    2017-01-01

    This report, the first of four Issues in Focus articles from the International Energy Outlook 2017, analyzes the effects of uncertainties in the adoption of plug-in electric vehicles (PEVs) on worldwide transportation energy consumption. Uncertainties surrounding consumer acceptance, vehicle cost, policies, and other market conditions could affect future adoption rates of plug-in electric vehicles. Two side cases are presented in this report that assume different levels of PEV adoption and result in different levels of worldwide transportation energy consumption.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Melaina, Marc; Helwig, Michael

    The California Statewide Plug-In Electric Vehicle Infrastructure Assessment conveys to interested parties the Energy Commission’s conclusions, recommendations, and intentions with respect to plug-in electric vehicle (PEV) infrastructure development. There are several relatively low-risk and high-priority electric vehicle supply equipment (EVSE) deployment options that will encourage PEV sales and

  14. Predicting the market potential of plug-in electric vehicles using multiday GPS data.

    DOT National Transportation Integrated Search

    2011-12-01

    "Detailed GPS data for a years worth of travel by 255 households from the Seattle area were used to : investigate how plug-in electric vehicle types may affect adoption rates and use levels. The results suggest : that a battery-electric vehicle (B...

  15. 77 FR 64379 - Proposed Collection; Comment Request for Notice 2009-58

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-19

    ... Notice 2009-58, Manufacturers' Certification of Specified Plug-in Electric Vehicles. DATES: Written... Electric Vehicles. OMB Number: 1545-2150. Notice Number: Notice 2009-58. Abstract: The American Recovery... certain new specified plug-in electric drive vehicles. This notice provides procedures for a vehicle...

  16. Consumer adoption and grid impact models for plug-in hybrid electric vehicles in Wisconsin.

    DOT National Transportation Integrated Search

    2010-05-01

    This proposed study focuses on assessing the demand for plug-in hybrid electric vehicles (PHEV) in Wisconsin and its economic : impacts on the States energy market and the electric grid. PHEVs are expected to provide a range of about 40 miles per ...

  17. 40 CFR 86.1816-18 - Emission standards for heavy-duty vehicles.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... as specified in this section. (4) Measure emissions from hybrid electric vehicles (including plug-in hybrid electric vehicles) as described in 40 CFR part 1066, subpart F, except that these procedures do not apply for plug-in hybrid electric vehicles during charge-depleting operation. (b) Tier 3 exhaust...

  18. Alternative Fuels Data Center: Truck Stop Electrification for Heavy-Duty

    Science.gov Websites

    -board equipment so trucks can plug into electrical outlets at the truck stop. To use dual-system electrification, trucks must be equipped with AC equipment or an inverter to convert 120-volt power, electrical equipment, and hardware to plug in to the electrical outlet. Necessary electrical equipment might include an

  19. Guide to Federal Funding, Financing, and Technical Assistance for Plug-in Electric Vehicles and Charging Stations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None, None

    The U.S. Department of Energy and the U.S. Department of Transportation have published a guide to highlight examples of federal support and technical assistance for plug-in electric vehicles (PEVs) and charging stations. The guide provides a description of each opportunity and a point of contact to assist those interested in advancing PEV technology. The Department of Energy’s Alternative Fuels Data Center provides a comprehensive database of federal and state programs that support plug-in electric vehicles and infrastructure.

  20. Maximizing the Benefits of Plug-in Electric Vehicles - Continuum Magazine

    Science.gov Websites

    Testing and Integration Facility. Photo by Dennis Schroeder, NREL Maximizing the Benefits of Plug-in . Electric vehicle charging stations in NREL's parking garage. Photo by Dennis Schroder, NREL An NREL

  1. Sizing community energy storage systems to reduce transformer overloading with emphasis on plug-in electric vehicle loads

    NASA Astrophysics Data System (ADS)

    Trowler, Derik Wesley

    The research objective of this study was to develop a sizing method for community energy storage systems with emphasis on preventing distribution transformer overloading due to plug-in electric vehicle charging. The method as developed showed the formulation of a diversified load profile based upon residential load data for several customers on the American Electric Power system. Once a load profile was obtained, plug-in electric vehicle charging scenarios which were based upon expected adoption and charging trends were superimposed on the load profile to show situations where transformers (in particular 25 kVA, 50 kVA, and 100 kVA) would be overloaded during peak hours. Once the total load profiles were derived, the energy and power requirements of community energy storage systems were calculated for a number of scenarios with different combinations of numbers of homes and plug-in electric vehicles. The results were recorded and illustrated into charts so that one could determine the minimum size per application. Other topics that were covered in this thesis were the state of the art and future trends in plug-in electric vehicle and battery chemistry adoption and development. The goal of the literature review was to confirm the already suspected notion that Li-ion batteries are best suited and soon to be most cost-effective solution for applications requiring small, efficient, reliable, and light-weight battery systems such as plug-in electric vehicles and community energy storage systems. This thesis also includes a chapter showing system modeling in MATLAB/SimulinkRTM. All in all, this thesis covers a wide variety of considerations involved in the designing and deploying of community energy storage systems intended to mitigate the effects of distribution transformer overloading.

  2. The effectiveness of plug-in hybrid electric vehicles and renewable power in support of holistic environmental goals: Part 2 - Design and operation implications for load-balancing resources on the electric grid

    NASA Astrophysics Data System (ADS)

    Tarroja, Brian; Eichman, Joshua D.; Zhang, Li; Brown, Tim M.; Samuelsen, Scott

    2015-03-01

    A study has been performed that analyzes the effectiveness of utilizing plug-in vehicles to meet holistic environmental goals across the combined electricity and transportation sectors. In this study, plug-in hybrid electric vehicle (PHEV) penetration levels are varied from 0 to 60% and base renewable penetration levels are varied from 10 to 63%. The first part focused on the effect of installing plug-in hybrid electric vehicles on the environmental performance of the combined electricity and transportation sectors. The second part addresses impacts on the design and operation of load-balancing resources on the electric grid associated with fleet capacity factor, peaking and load-following generator capacity, efficiency, ramp rates, start-up events and the levelized cost of electricity. PHEVs using smart charging are found to counteract many of the disruptive impacts of intermittent renewable power on balancing generators for a wide range of renewable penetration levels, only becoming limited at high renewable penetration levels due to lack of flexibility and finite load size. This study highlights synergy between sustainability measures in the electric and transportation sectors and the importance of communicative dispatch of these vehicles.

  3. New Technology Sparks Smoother Engines and Cleaner Air

    NASA Technical Reports Server (NTRS)

    2001-01-01

    Automotive Resources, Inc. (ARI) has developed a new device for igniting fuel in engines-the SmartPlug.TM SmartPlug is a self-contained ignition system that may be retrofitted to existing spark-ignition and compression-ignition engines. The SmartPlug needs as little as six watts of power for warm-up, and requires no electricity at all when the engine is running. Unlike traditional spark plugs, once the SmartPlug ignites the engine, and the engine heats up, the power supply for the plug is no longer necessary. In the utility industry, SmartPlugs can be used in tractors, portable generators, compressors, and pumps. In addition to general-purpose applications, such as lawn mowers and chainsaws, SmartPlugs can also be used in the recreational, marine, aviation, and automotive industries. Unlike traditional ignition systems, the SmartPlug system requires no distributor, coil points, or moving parts. SmartPlugs are non-fouling, with a faster and cleaner burn than traditional spark plugs. They prevent detonation and are not sensitive to moisture, allowing them to be used on a variety of engines. Other advantages include no electrical noise, no high voltage, exceptionally high altitude capabilities, and better cold-start statistics than those of standard spark ignition systems. Future applications for the SmartPlug are being evaluated by manufacturers in the snowmobile industry.

  4. Dust-tolerant electrical connector

    NASA Technical Reports Server (NTRS)

    Sadick, Shazad (Inventor); Herman, Jason (Inventor); Roberts, Dustyn (Inventor)

    2011-01-01

    A connector assembly includes releasably mateable plug and receptacle units. At least one socket is enclosed within the receptacle unit and is aligned with at least one permeable membrane disposed in the front end of the receptacle unit. The plug unit includes a body slidably mounted within a longitudinal bore therein. At least one pin extends from the front end of the body and is aligned with at least one permeable membrane disposed in the front end of the plug unit. The plug unit is biased toward a first, de-mate position in which the body is extended rearwardly such that the pin is enclosed with the plug unit and is slidable to a second, mate position in which the body is compressed forwardly such that the pin projects through the permeable membranes of the plug and receptacle units to electrically connect with the socket.

  5. Sustainable Federal Fleets: Deploying Electric Vehicles and Electric Vehicle Supply Equipment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    The U.S. Department of Energy (DOE) Federal Energy Management Program (FEMP) helps federal agencies reduce petroleum consumption and increase alternative fuel use through its resources for Sustainable Federal Fleets. To assist agencies with the transition to plug-in electric vehicles (PEVs), including battery electric vehicles (BEVs) and plug-in hybrid electric vehicles (PHEVs), FEMP offers technical guidance on electric vehicle supply equipment (EVSE) installations and site-specific planning through partnerships with the National Renewable Energy Laboratory's (NREL's) EVSE Tiger Teams.

  6. Plug-In Electric Vehicle Handbook for Fleet Managers (Brochure)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    2012-04-01

    Plug-in electric vehicles (PEVs) are entering the automobile market and are viable alternatives to conventional vehicles. This guide for fleet managers describes the basics of PEV technology, PEV benefits for fleets, how to select the right PEV, charging a PEV, and PEV maintenance.

  7. Lessons Learned about Plug-in Electric Vehicle Charging Infrastructure from The EV Project and ChargePoint America

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smart, John Galloway; Salisbury, Shawn Douglas

    2015-07-01

    This report summarizes key findings in two national plug-in electric vehicle charging infrastructure demonstrations: The EV Project and ChargePoint America. It will be published to the INL/AVTA website for the general public.

  8. Valuation of plug-in vehicle life-cycle air emissions and oil displacement benefits

    PubMed Central

    Michalek, Jeremy J.; Chester, Mikhail; Jaramillo, Paulina; Samaras, Constantine; Shiau, Ching-Shin Norman; Lave, Lester B.

    2011-01-01

    We assess the economic value of life-cycle air emissions and oil consumption from conventional vehicles, hybrid-electric vehicles (HEVs), plug-in hybrid-electric vehicles (PHEVs), and battery electric vehicles in the US. We find that plug-in vehicles may reduce or increase externality costs relative to grid-independent HEVs, depending largely on greenhouse gas and SO2 emissions produced during vehicle charging and battery manufacturing. However, even if future marginal damages from emissions of battery and electricity production drop dramatically, the damage reduction potential of plug-in vehicles remains small compared to ownership cost. As such, to offer a socially efficient approach to emissions and oil consumption reduction, lifetime cost of plug-in vehicles must be competitive with HEVs. Current subsidies intended to encourage sales of plug-in vehicles with large capacity battery packs exceed our externality estimates considerably, and taxes that optimally correct for externality damages would not close the gap in ownership cost. In contrast, HEVs and PHEVs with small battery packs reduce externality damages at low (or no) additional cost over their lifetime. Although large battery packs allow vehicles to travel longer distances using electricity instead of gasoline, large packs are more expensive, heavier, and more emissions intensive to produce, with lower utilization factors, greater charging infrastructure requirements, and life-cycle implications that are more sensitive to uncertain, time-sensitive, and location-specific factors. To reduce air emission and oil dependency impacts from passenger vehicles, strategies to promote adoption of HEVs and PHEVs with small battery packs offer more social benefits per dollar spent. PMID:21949359

  9. Valuation of plug-in vehicle life-cycle air emissions and oil displacement benefits.

    PubMed

    Michalek, Jeremy J; Chester, Mikhail; Jaramillo, Paulina; Samaras, Constantine; Shiau, Ching-Shin Norman; Lave, Lester B

    2011-10-04

    We assess the economic value of life-cycle air emissions and oil consumption from conventional vehicles, hybrid-electric vehicles (HEVs), plug-in hybrid-electric vehicles (PHEVs), and battery electric vehicles in the US. We find that plug-in vehicles may reduce or increase externality costs relative to grid-independent HEVs, depending largely on greenhouse gas and SO(2) emissions produced during vehicle charging and battery manufacturing. However, even if future marginal damages from emissions of battery and electricity production drop dramatically, the damage reduction potential of plug-in vehicles remains small compared to ownership cost. As such, to offer a socially efficient approach to emissions and oil consumption reduction, lifetime cost of plug-in vehicles must be competitive with HEVs. Current subsidies intended to encourage sales of plug-in vehicles with large capacity battery packs exceed our externality estimates considerably, and taxes that optimally correct for externality damages would not close the gap in ownership cost. In contrast, HEVs and PHEVs with small battery packs reduce externality damages at low (or no) additional cost over their lifetime. Although large battery packs allow vehicles to travel longer distances using electricity instead of gasoline, large packs are more expensive, heavier, and more emissions intensive to produce, with lower utilization factors, greater charging infrastructure requirements, and life-cycle implications that are more sensitive to uncertain, time-sensitive, and location-specific factors. To reduce air emission and oil dependency impacts from passenger vehicles, strategies to promote adoption of HEVs and PHEVs with small battery packs offer more social benefits per dollar spent.

  10. Cost Effectiveness Analysis of Quasi-In-Motion Wireless Power Transfer for Plug-In Hybrid Electric Transit Buses from Fleet Perspective

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Lijuan; Gonder, Jeff; Brooker, Aaron

    This study evaluated the costs and benefits associated with the use of stationary-wireless-power-transfer-enabled plug-in hybrid electric buses and determined the cost effectiveness relative to conventional buses and hybrid electric buses. A factorial design was performed over a number of different battery sizes, charging power levels, and f bus stop charging stations. The net present costs were calculated for each vehicle design and provided the basis for design evaluation. In all cases, given the assumed economic conditions, the conventional bus achieved the lowest net present cost while the optimal plug-in hybrid electric bus scenario beat out the hybrid electric comparison scenario.more » The parameter sensitivity was also investigated under favorable and unfavorable market penetration assumptions.« less

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Lijuan; Gonder, Jeff; Burton, Evan

    This study evaluates the costs and benefits associated with the use of a plug-in hybrid electric bus and determines the cost effectiveness relative to a conventional bus and a hybrid electric bus. A sensitivity sweep analysis was performed over a number of a different battery sizes, charging powers, and charging stations. The net present value was calculated for each vehicle design and provided the basis for the design evaluation. In all cases, given present day economic assumptions, the conventional bus achieved the lowest net present value while the optimal plug-in hybrid electric bus scenario reached lower lifetime costs than themore » hybrid electric bus. The study also performed parameter sensitivity analysis under low market potential assumptions and high market potential assumptions. The net present value of plug-in hybrid electric bus is close to that of conventional bus.« less

  12. Clean Cities Plug-In Electric Vehicle Handbook for Fleet Managers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    2012-04-01

    Plug-in electric vehicles (PEVs) are entering the automobile market and are viable alternatives to conventional vehicles. This guide for fleet managers describes the basics of PEV technology, PEV benefits for fleets, how to select the right PEV, charging a PEV, and PEV maintenance.

  13. Effect of plug-in hybrid electric vehicle adoption on gas tax revenue, local pollution, and greenhouse gas emissions.

    DOT National Transportation Integrated Search

    2015-12-01

    Plug-in hybrid electric vehicles (PHEV) are likely to increase in popularity in the near future. However, the : environmental benefits of PHEVs involve tradeoffs between the benefits of reduced tailpipe emissions : against the drawbacks of increased ...

  14. 29 CFR 1910.334 - Use of equipment.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    .... (a) Portable electric equipment. This paragraph applies to the use of cord- and plug-connected... in a manner which will not cause damage. Flexible electric cords connected to equipment may not be...) Portable cord- and plug-connected equipment and flexible cord sets (extension cords) shall be visually...

  15. The Quiet Plug Crisis: A Digital Generation Scours the Library for Electrical Outlets

    ERIC Educational Resources Information Center

    Kelley, Michael

    2011-01-01

    Thirty years ago, the only person in a library looking for an electrical outlet was a blue-smocked cleaning person who had to plug in a vacuum cleaner with a very long cord. Now, hordes of patrons outfitted with amp-devouring laptops and cell phones expect and need the library to offer an endless supply of electricity. The overall demand for…

  16. Enabling fast charging - Introduction and overview

    NASA Astrophysics Data System (ADS)

    Michelbacher, Christopher; Ahmed, Shabbir; Bloom, Ira; Burnham, Andrew; Carlson, Barney; Dias, Fernando; Dufek, Eric J.; Jansen, Andrew N.; Keyser, Matthew; Markel, Anthony; Meintz, Andrew; Mohanpurkar, Manish; Pesaran, Ahmad; Scoffield, Don; Shirk, Matthew; Stephens, Thomas; Tanim, Tanvir; Vijayagopal, Ram; Zhang, Jiucai

    2017-11-01

    The pursuit of U.S. energy security and independence has taken many different forms throughout the many production and consumption sectors. For consumer transportation, a greater reliance on power train electrification has gained traction due to the inherent efficiencies of these platforms, particularly through the use of electric motors and batteries. Vehicle electrification can be generalized into three primary categories-hybrid electric vehicles (HEVs), plug-in hybrid electric vehicles (PHEVs), and battery electric vehicles (BEVs); the latter two, PHEVs and BEVs, are often referred to as plug-in electric vehicles (PEVs).

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Lijuan; Gonder, Jeff; Burton, Evan

    This study evaluates the costs and benefits associated with the use of a stationary-wireless- power-transfer-enabled plug-in hybrid electric bus and determines the cost effectiveness relative to a conventional bus and a hybrid electric bus. A sensitivity sweep was performed over many different battery sizes, charging power levels, and number/location of bus stop charging stations. The net present cost was calculated for each vehicle design and provided the basis for design evaluation. In all cases, given the assumed economic conditions, the conventional bus achieved the lowest net present cost while the optimal plug-in hybrid electric bus scenario beat out the hybridmore » electric comparison scenario. The study also performed parameter sensitivity analysis under favorable and high unfavorable market penetration assumptions. The analysis identifies fuel saving opportunities with plug-in hybrid electric bus scenarios at cumulative net present costs not too dissimilar from those for conventional buses.« less

  18. In-use measurement of activity, energy use, and emissions of a plug-in hybrid electric vehicle.

    PubMed

    Graver, Brandon M; Frey, H Christopher; Choi, Hyung-Wook

    2011-10-15

    Plug-in hybrid electric vehicles (PHEVs) could reduce transportation air emissions and energy use. However, a method is needed for estimating on-road emissions of PHEVs. To develop a framework for quantifying microscale energy use and emissions (EU&E), measurements were conducted on a Toyota Prius retrofitted with a plug-in battery system on eight routes. Measurements were made using the following: (1) a data logger for the hybrid control system; (2) a portable emissions measurement system; and (3) a global positioning system with barometric altimeter. Trends in EU&E are estimated based on vehicle specific power. Energy economy is quantified based on gasoline consumed by the engine and grid energy consumed by the plug-in battery. Emissions from electricity consumption are estimated based on the power generation mix. Fuel use is approximately 30% lower during plug-in battery use. Grid emissions were higher for CO₂, NO(x), SO₂, and PM compared to tailpipe emissions but lower for CO and hydrocarbons. EU&E depends on engine and plug-in battery operation. The use of two energy sources must be addressed in characterizing fuel economy; overall energy economy is 11% lower if including grid energy use than accounting only for fuel consumption.

  19. Fabrication method for miniature plastic gripper

    DOEpatents

    Benett, William J.; Krulevitch, Peter A.; Lee, Abraham P.; Northrup, Milton A.; Folta, James A.

    1998-01-01

    A miniature plastic gripper actuated by inflation of a miniature balloon and method of fabricating same. The gripper is constructed of either heat-shrinkable or heat-expandable plastic tubing and is formed around a mandrel, then cut to form gripper prongs or jaws and the mandrel removed. The gripper is connected at one end with a catheter or tube having an actuating balloon at its tip, whereby the gripper is opened or dosed by inflation or deflation of the balloon. The gripper is designed to removably retain a member to which is connected a quantity or medicine, plugs, or micro-components. The miniature plastic gripper is inexpensive to fabricate and can be used for various applications, such as gripping, sorting, or placing of micron-scale particles for analysis.

  20. Miniature plastic gripper and fabrication method

    DOEpatents

    Benett, William J.; Krulevitch, Peter A.; Lee, Abraham P.; Northrup, Milton A.; Folta, James A.

    1997-01-01

    A miniature plastic gripper actuated by inflation of a miniature balloon and method of fabricating same. The gripper is constructed of either heat-shrinkable or heat-expandable plastic tubing and is formed around a mandrel, then cut to form gripper prongs or jaws and the mandrel removed. The gripper is connected at one end with a catheter or tube having an actuating balloon at its tip, whereby the gripper is opened or closed by inflation or deflation of the balloon. The gripper is designed to removably retain a member to which is connected a quantity or medicine, plugs, or micro-components. The miniature plastic gripper is inexpensive to fabricate and can be used for various applications, such as gripping, sorting, or placing of micron-scale particles for analysis.

  1. Optimal control of a repowered vehicle: Plug-in fuel cell against plug-in hybrid electric powertrain

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tribioli, L., E-mail: laura.tribioli@unicusano.it; Cozzolino, R.; Barbieri, M.

    2015-03-10

    This paper describes two different powertrain configurations for the repowering of a conventional vehicle, equipped with an internal combustion engine (ICE). A model of a mid-sized ICE-vehicle is realized and then modified to model both a parallel plug-in hybrid electric powertrain and a proton electrolyte membrane (PEM) fuel cell (FC) hybrid powertrain. The vehicle behavior under the application of an optimal control algorithm for the energy management is analyzed for the different scenarios and results are compared.

  2. Toyota Prius Plug-In HEV: A Plug-In Hybrid Electric Car in NREL's Advanced Technology Vehicle Fleet (Fact Sheet)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    This fact sheet highlights the Toyota Prius plug-in HEV, a plug-in hybrid electric car in the advanced technology vehicle fleet at the National Renewable Energy Laboratory (NREL). In partnership with the University of Colorado, NREL uses the vehicle for grid-integration studies and for testing new hardware and charge-management algorithms. NREL's advanced technology vehicle fleet features promising technologies to increase efficiency and reduce emissions without sacrificing safety or comfort. The fleet serves as a technology showcase, helping visitors learn about innovative vehicles that are available today or are in development. Vehicles in the fleet are representative of current, advanced, prototype, andmore » emerging technologies.« less

  3. Simulating the potential effects of plug-in hybrid electric vehicles on the energy budget and tax revenues for Onondaga County, New York

    NASA Astrophysics Data System (ADS)

    Balogh, Stephen B.

    My objectives were to predict the energetic effects of a large increase in plug-in hybrid electric vehicles (PHEV) and their implications on fuel tax collections in Onondaga County. I examined two alternative taxation policies. To do so, I built a model of county energy consumption based on prorated state-level energy consumption data and census data. I used two scenarios to estimate energy consumption trends over the next 30 years and the effects of PHEV on energy use and fuel tax revenues. I found that PHEV can reduce county gasoline consumption, but they would curtail fuel tax revenues and increase residential electricity demand. A one-cent per VMT tax on PHEV users provides insufficient revenue to replace reduced fuel tax collection. A sales tax on electricity consumption generates sufficient replacement revenue at low PHEV market shares. However, at higher shares, the tax on electricity use would exceed the current county tax rate. Keywords: electricity, energy, gasoline, New York State, Onondaga County, plug-in hybrid electric vehicles, transportation model, tax policy

  4. Consumer Views: Fuel Economy, Plug-in Electric Vehicle Battery Range, and Willingness to Pay for Vehicle Technology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Singer, Mark

    This presentation includes data captured by the National Renewable Energy Laboratory (NREL) to support the U.S. Department of Energy's Vehicle Technologies Office (VTO) research efforts. The data capture consumer views on fuel economy, plug-in electric vehicle battery range, and willingness to pay for advanced vehicle technologies.

  5. Alternative Fuels Data Center: Los Angeles Saves With Hybrid and Plug-In

    Science.gov Websites

    Electric VehiclesA> Los Angeles Saves With Hybrid and Plug-In Electric Vehicles to someone by E million gallons last year. For information about this project, contact Los Angeles Clean Cities Coalition - Television's Original Automotive Magazine Provided by Maryland Public Television Related Videos Photo of a car

  6. Households' Stories of Their Encounters with a Plug-In Hybrid Electric Vehicle

    ERIC Educational Resources Information Center

    Caperello, Nicolette D.; Kurani, Kenneth S.

    2012-01-01

    One way to progress toward greenhouse gas reductions is for people to drive plug-in hybrid electric vehicles (PHEVs). Households in this study participated in a 4- to 6-week PHEV driving trial. A narrative of each household's encounter with the PHEV was constructed by the researchers from multiple in-home interviews, questionnaires completed by…

  7. AVTA Federal Fleet PEV Readiness Data Logging and Characterization Study for Department of Veterans Affairs – VA Manhattan Campus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stephen Schey; Jim Francfort

    2014-10-01

    This report focuses on the Department of Veterans Affairs, VA Manhattan Campus (VA- Manhattan) fleet to identify the daily operational characteristics of select vehicles and report findings on vehicle and mission characterizations to support successful introduction of plug-in electric vehicles (PEVs) into the agency’s fleet. Individual observations of these selected vehicles provide the basis for recommendations related to electric vehicle adoption and whether a battery electric vehicle or plug-in hybrid electric vehicle (collectively called PEVs) can fulfill the mission requirements.

  8. Multi-objective component sizing of a power-split plug-in hybrid electric vehicle powertrain using Pareto-based natural optimization machines

    NASA Astrophysics Data System (ADS)

    Mozaffari, Ahmad; Vajedi, Mahyar; Chehresaz, Maryyeh; Azad, Nasser L.

    2016-03-01

    The urgent need to meet increasingly tight environmental regulations and new fuel economy requirements has motivated system science researchers and automotive engineers to take advantage of emerging computational techniques to further advance hybrid electric vehicle and plug-in hybrid electric vehicle (PHEV) designs. In particular, research has focused on vehicle powertrain system design optimization, to reduce the fuel consumption and total energy cost while improving the vehicle's driving performance. In this work, two different natural optimization machines, namely the synchronous self-learning Pareto strategy and the elitism non-dominated sorting genetic algorithm, are implemented for component sizing of a specific power-split PHEV platform with a Toyota plug-in Prius as the baseline vehicle. To do this, a high-fidelity model of the Toyota plug-in Prius is employed for the numerical experiments using the Autonomie simulation software. Based on the simulation results, it is demonstrated that Pareto-based algorithms can successfully optimize the design parameters of the vehicle powertrain.

  9. Implementing Workplace Charging with Federal Agencies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Margaret Smith

    The number of Americans that chose to purchase plug-in electric vehicles (PEVs), which include plug-in hybrid electric vehicles(PHEVs) and all-electric vehicles (EVs), has steadily increased since 2011. Many of these drivers commute to federal worksites in communities across the country. The opportunity to charge a personal vehicle while at work is valuable to PEV drivers. Employees who have access to workplace charging are six times more likely to own a PEV than those who lack such access.

  10. Portable musical instrument amplifier

    DOEpatents

    Christian, David E.

    1990-07-24

    The present invention relates to a musical instrument amplifier which is particularly useful for electric guitars. The amplifier has a rigid body for housing both the electronic system for amplifying and processing signals from the guitar and the system's power supply. An input plug connected to and projecting from the body is electrically coupled to the signal amplifying and processing system. When the plug is inserted into an output jack for an electric guitar, the body is rigidly carried by the guitar, and the guitar is operatively connected to the electrical amplifying and signal processing system without use of a loose interconnection cable. The amplifier is provided with an output jack, into which headphones are plugged to receive amplified signals from the guitar. By eliminating the conventional interconnection cable, the amplifier of the present invention can be used by musicians with increased flexibility and greater freedom of movement.

  11. Making a Back-Illuminated Imager with Back-Side Contact and Alignment Markers

    NASA Technical Reports Server (NTRS)

    Pain, Bedabrata

    2008-01-01

    A design modification and a fabrication process that implements the modification have been conceived to solve two problems encountered in the development of back-illuminated, back-sidethinned complementary metal oxide/ semiconductor (CMOS) image-detector integrated circuits. The two problems are (1) how to form metal electrical-contact pads on the back side that are electrically connected through the thickness in proper alignment with electrical contact points on the front side and (2) how to provide alignment keys on the back side to ensure proper registration of backside optical components (e.g., microlenses and/or color filters) with the front-side pixel pattern. The essence of the design modification is to add metal plugs that extend from the desired front-side locations through the thickness and protrude from the back side of the substrate. The plugs afford the required front-to-back electrical conduction, and the protrusions of the plugs serve as both the alignment keys and the bases upon which the back-side electrical-contact pads can be formed.

  12. Spark Plug Defects and Tests

    NASA Technical Reports Server (NTRS)

    Silsbee, F B; Loeb, L B; Sawyer, L G; Fonseca, E L; Dickinson, H C; Agnew, P G

    1920-01-01

    The successful operation of the spark plug depends to a large extent on the gas tightness of the plug. Part 1 of this report describes the method used for measuring the gas tightness of aviation spark plugs. Part 2 describes the methods used in testing the electrical conductivity of the insulation material when hot. Part 3 describes the testing of the cold dielectric strength of the insulation material, the resistance to mechanical shock, and the final engine test.

  13. Ford Plug-In Project: Bringing PHEVs to Market Demonstration and Validation Project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    D'Annunzio, Julie; Slezak, Lee; Conley, John Jason

    2014-03-26

    This project is in support of our national goal to reduce our dependence on fossil fuels. By supporting efforts that contribute toward the successful mass production of plug-in hybrid electric vehicles, our nation’s transportation-related fuel consumption can be offset with energy from the grid. Over four and a half years ago, when this project was originally initiated, plug-in electric vehicles were not readily available in the mass marketplace. Through the creation of a 21 unit plug-in hybrid vehicle fleet, this program was designed to demonstrate the feasibility of the technology and to help build cross-industry familiarity with the technology andmore » interface of this technology with the grid. Ford Escape PHEV Demonstration Fleet 3 March 26, 2014 Since then, however, plug-in vehicles have become increasingly more commonplace in the market. Ford, itself, now offers an all-electric vehicle and two plug-in hybrid vehicles in North America and has announced a third plug-in vehicle offering for Europe. Lessons learned from this project have helped in these production vehicle launches and are mentioned throughout this report. While the technology of plugging in a vehicle to charge a high voltage battery with energy from the grid is now in production, the ability for vehicle-to-grid or bi-directional energy flow was farther away than originally expected. Several technical, regulatory and potential safety issues prevented progressing the vehicle-to-grid energy flow (V2G) demonstration and, after a review with the DOE, V2G was removed from this demonstration project. Also proving challenging were communications between a plug-in vehicle and the grid or smart meter. While this project successfully demonstrated the vehicle to smart meter interface, cross-industry and regulatory work is still needed to define the vehicle-to-grid communication interface.« less

  14. Solar-to-vehicle (S2V) systems for powering commuters of the future

    NASA Astrophysics Data System (ADS)

    Birnie, Dunbar P.

    Hybrid electric vehicles are growing in popularity and significance in our marketplace as gasoline prices continue to rise. Consumers are also increasingly aware of their carbon "footprint" and seek ways of lowering their carbon dioxide output. Plug-in hybrid and electric vehicles appear to be the next wave in helping transition from a gasoline-based transportation infrastructure to an electric-grid-sourced mode, though most plug-in scenarios ultimately rely on having the electric utilities converted from fossil sources to renewable generation in the long run. At present, one of the key advantages of plug-in hybrid/electric vehicles is that they can be charged at home, at night, when lower off-peak rates could apply. The present analysis considers a further advancement: the impact of daytime recharging using solar arrays located at commuters' work sites. This would convert large parking areas into solar recharge stations for commuters. The solar power would be large enough to supply many commuters' needs. The implications for electric car design in relation to commuter range are discussed in detail.

  15. Miniature plastic gripper and fabrication method

    DOEpatents

    Benett, W.J.; Krulevitch, P.A.; Lee, A.P.; Northrup, M.A.; Folta, J.A.

    1997-03-11

    A miniature plastic gripper actuated by inflation of a miniature balloon and method of fabricating same are disclosed. The gripper is constructed of either heat-shrinkable or heat-expandable plastic tubing and is formed around a mandrel, then cut to form gripper prongs or jaws and the mandrel removed. The gripper is connected at one end with a catheter or tube having an actuating balloon at its tip, whereby the gripper is opened or closed by inflation or deflation of the balloon. The gripper is designed to removably retain a member to which is connected a quantity or medicine, plugs, or micro-components. The miniature plastic gripper is inexpensive to fabricate and can be used for various applications, such as gripping, sorting, or placing of micron-scale particles for analysis. 8 figs.

  16. Fabrication method for miniature plastic gripper

    DOEpatents

    Benett, W.J.; Krulevitch, P.A.; Lee, A.P.; Northrup, M.A.; Folta, J.A.

    1998-07-21

    A miniature plastic gripper is described actuated by inflation of a miniature balloon and method of fabricating same. The gripper is constructed of either heat-shrinkable or heat-expandable plastic tubing and is formed around a mandrel, then cut to form gripper prongs or jaws and the mandrel removed. The gripper is connected at one end with a catheter or tube having an actuating balloon at its tip, whereby the gripper is opened or dosed by inflation or deflation of the balloon. The gripper is designed to removably retain a member to which is connected a quantity or medicine, plugs, or micro-components. The miniature plastic gripper is inexpensive to fabricate and can be used for various applications, such as gripping, sorting, or placing of micron-scale particles for analysis. 8 figs.

  17. ENVIRONMENTAL TECHNOLOGY VERIFICATION REPORT: RESIDENTIAL ELECTRIC POWER GENERATION USING THE PLUG POWER SU1 FUEL CELL SYSTEM

    EPA Science Inventory

    The Environmental Technology Verification report discusses the technology and performance of the Plug Power SU1 Fuel Cell System manufactured by Plug Power. The SU1 is a proton exchange membrane fuel cell that requires hydrogen (H2) as fuel. H2 is generally not available, so the ...

  18. Battery Second Use for Plug-In Electric Vehicles | Transportation Research

    Science.gov Websites

    -ion battery cost barriers to the deployment of both plug-in electric vehicles (PEVs) and grid application, the total lifetime value of the battery is increased, and the cost of the battery can be shared second use B2U Repurposing Cost Calculator For B2U, NRELs repurposing cost calculator is available for

  19. Electrically heated particulate matter filter with recessed inlet end plugs

    DOEpatents

    Gonze, Eugene V [Pinckney, MI; Ament, Frank [Troy, MI

    2012-02-21

    A particulate matter (PM) filter includes filter walls having inlet ends and outlet ends. First adjacent pairs of the filter walls define inlet channels. Second adjacent pairs of the filter walls define outlet channels. Outlet end plugs are arranged in the inlet channels adjacent to the output ends. Inlet end plugs arranged in the outlet channels spaced from the inlet ends.

  20. AVTA Federal Fleet PEV Readiness Data Logging and Characterization Study for NASA Glenn Research Center

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schey, Stephen; Francfort, Jim

    The Advanced Vehicle Testing Activity’s study seeks to collect and evaluate data to validate the utilization of advanced plug-in electric vehicle (PEV) transportation. This report focuses on the NASA Glenn Research Center (GRC) fleet to identify daily operational characteristics of select vehicles and report findings on vehicle and mission characterizations to support the successful introduction of PEVs into the agencies’ fleets. Individual observations of these selected vehicles provide the basis for recommendations related to electric vehicle adoption and whether a battery electric vehicle or plug-in hybrid electric vehicle (collectively referred to as PEVs) can fulfill the mission requirements.

  1. Plug-in hybrid electric vehicle LiFePO4 battery life implications of thermal management, driving conditions, and regional climate

    NASA Astrophysics Data System (ADS)

    Yuksel, Tugce; Litster, Shawn; Viswanathan, Venkatasubramanian; Michalek, Jeremy J.

    2017-01-01

    Battery degradation strongly depends on temperature, and many plug-in electric vehicle applications employ thermal management strategies to extend battery life. The effectiveness of thermal management depends on the design of the thermal management system as well as the battery chemistry, cell and pack design, vehicle system characteristics, and operating conditions. We model a plug-in hybrid electric vehicle with an air-cooled battery pack composed of cylindrical LiFePO4/graphite cells and simulate the effect of thermal management, driving conditions, regional climate, and vehicle system design on battery life. We estimate that in the absence of thermal management, aggressive driving can cut battery life by two thirds; a blended gas/electric-operation control strategy can quadruple battery life relative to an all-electric control strategy; larger battery packs can extend life by an order of magnitude relative to small packs used for all-electric operation; and batteries last 73-94% longer in mild-weather San Francisco than in hot Phoenix. Air cooling can increase battery life by a factor of 1.5-6, depending on regional climate and driving patterns. End of life criteria has a substantial effect on battery life estimates.

  2. Electrokinetic focusing injection methods on microfluidic devices.

    PubMed

    Fu, Lung-Ming; Yang, Ruey-Jen; Lee, Gwo-Bin

    2003-04-15

    This paper presents an experimental and numerical investigation into electrokinetic focusing injection on microfluidic chips. The valving characteristics on microfluidic devices are controlled through appropriate manipulations of the electric potential strengths during the sample loading and dispensing steps. The present study also addresses the design and testing of various injection systems used to deliver a sample plug. A novel double-cross injection microfluidic chip is fabricated, which employs electrokinetic focusing to deliver sample plugs of variable volume. The proposed design combines several functions of traditional sample plug injection systems on a single microfluidic chip. The injection technique uses an unique sequence of loading steps with different electric potential distributions and magnitudes within the various channels to effectuate a virtual valve.

  3. Quantum well infrared photodetectors (QWIP) with selectively regrown N-GaAs plugs

    NASA Astrophysics Data System (ADS)

    Matsukura, Yusuke; Nishino, Hironori; Tanaka, Hitoshi; Fujii, Toshio

    2001-10-01

    We fabricated the GaAs/AlGaAs Quantum Well Infrared Photo detector (QWIP) focal plane array with selectively re-grown N- GaAs interconnection plugs and demonstrated its device operation, in order to establish the technology to obtain both complex device functions and device manufacturability. MBE (Molecular Beam Epitaxy) grown QWIP MQW wafers were covered with SiON and SiNx mask films to obtain selectivity of the re-growth process. N-GaAs plugs were re-grown selectively with low-pressure MOCVD (Metal-Organic Chemical Vapor Deposition) with AsH3 and Dimethylgalliumchloride as precursors, only on the bottom surfaces of the holes for the interconnection to extract the electrodes from the underlying epilayer. Cross- sectional SEM observation revealed that the feature of the re- grown N-GaAs plugs was triangular, rather than rectangular as expected. The reason for this discrepancy is not yet clear. The electrical contact between the epilayer and re-grown N- GaAs plug was 'ohmic-like,' without any trace of interfacial barrier. The Current-Voltage characteristics of the fabricated QWIP device showed no tangible leakage current between the N- GaAs plug and device structure, indicating that electrical insulation between the N-GaAs plugs and device structure was sufficient. Fabricated devices were successfully operated as a hybrid focal plane array, indicating the selective re-growth was a promising technique to realize complex QWIP based devices.

  4. Life cycle air emissions impacts and ownership costs of light-duty vehicles using natural gas as a primary energy source.

    PubMed

    Luk, Jason M; Saville, Bradley A; MacLean, Heather L

    2015-04-21

    This paper aims to comprehensively distinguish among the merits of different vehicles using a common primary energy source. In this study, we consider compressed natural gas (CNG) use directly in conventional vehicles (CV) and hybrid electric vehicles (HEV), and natural gas-derived electricity (NG-e) use in plug-in battery electric vehicles (BEV). This study evaluates the incremental life cycle air emissions (climate change and human health) impacts and life cycle ownership costs of non-plug-in (CV and HEV) and plug-in light-duty vehicles. Replacing a gasoline CV with a CNG CV, or a CNG CV with a CNG HEV, can provide life cycle air emissions impact benefits without increasing ownership costs; however, the NG-e BEV will likely increase costs (90% confidence interval: $1000 to $31 000 incremental cost per vehicle lifetime). Furthermore, eliminating HEV tailpipe emissions via plug-in vehicles has an insignificant incremental benefit, due to high uncertainties, with emissions cost benefits between -$1000 and $2000. Vehicle criteria air contaminants are a relatively minor contributor to life cycle air emissions impacts because of strict vehicle emissions standards. Therefore, policies should focus on adoption of plug-in vehicles in nonattainment regions, because CNG vehicles are likely more cost-effective at providing overall life cycle air emissions impact benefits.

  5. Dual-Drive Production Prototype Project

    DOT National Transportation Integrated Search

    2009-06-01

    This project was an initiative to engineer, develop and build a plug-in hybrid-electric vehicle using the Dual-Drive system. The project aimed to build a plug-in hybrid utilitarian vehicle on a light commercial vehicle platform. The hybrid vehicle wi...

  6. National Economic Value Assessment of Plug-in Electric Vehicles: Volume I

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Melaina, Marc; Bush, Brian; Eichman, Joshua

    The adoption of plug-in electric vehicles (PEVs) can reduce household fuel expenditures by substituting electricity for gasoline while reducing greenhouse gas emissions and petroleum imports. A scenario approach is employed to provide insights into the long-term economic value of increased PEV market growth across the United States. The analytic methods estimate fundamental costs and benefits associated with an economic allocation of PEVs across households based upon household driving patterns, projected vehicle cost and performance attributes, and simulations of a future electricity grid. To explore the full technological potential of PEVs and resulting demands on the electricity grid, very high PEVmore » market growth projections from previous studies are relied upon to develop multiple future scenarios.« less

  7. Plug-in Hybrid Initiative

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goodman, Angie; Moore, Ray; Rowden, Tim

    Our main project objective was to implement Plug-in Electric Vehicles (PEV) and charging infrastructure into our electric distribution service territory and help reduce barriers in the process. Our research demonstrated the desire for some to be early adopters of electric vehicles and the effects lack of education plays on others. The response of early adopters was tremendous: with the initial launch of our program we had nearly 60 residential customers interested in taking part in our program. However, our program only allowed for 15 residential participants. Our program provided assistance towards purchasing a PEV and installation of Electric Vehicle Supplymore » Equipment (EVSE). The residential participants have all come to love their PEVs and are more than enthusiastic about promoting the many benefits of driving electric.« less

  8. Alternative Fuels Data Center: How Do Plug-In Hybrid Electric Cars Work?

    Science.gov Websites

    the pack. Power electronics controller: This unit manages the flow of electrical energy delivered by , electric motor, power electronics, and other components. Traction battery pack: Stores electricity for use

  9. Electric vehicle life cycle cost analysis : final research project report.

    DOT National Transportation Integrated Search

    2017-02-01

    This project compared total life cycle costs of battery electric vehicles (BEV), plug-in hybrid electric vehicles (PHEV), hybrid electric vehicles (HEV), and vehicles with internal combustion engines (ICE). The analysis considered capital and operati...

  10. Plug-In Electric Vehicle Handbook for Workplace Charging Hosts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    2013-08-01

    Plug-in electric vehicles (PEVs) have immense potential for increasing the country's energy, economic, and environmental security, and they will play a key role in the future of U.S. transportation. By providing PEV charging at the workplace, employers are perfectly positioned to contribute to and benefit from the electrification of transportation. This handbook answers basic questions about PEVs and charging equipment, helps employers assess whether to offer workplace charging for employees, and outlines important steps for implementation.

  11. Space Heaters, Computers, Cell Phone Chargers: How Plugged In AreCommercial Buildings?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sanchez, Marla; Webber, Carrie; Brown, Richard

    2007-02-28

    Evidenceof electric plug loads in commercial buildings isvisible everyday: space heaters, portable fans, and the IT technician'stwo monitors connected to one PC. The Energy Information Administrationestimates that office and miscellaneous equipment together will consume2.18 quads in 2006, nearly 50 percent of U.S. commercial electricity use.Although the importance of commercial plug loads is documented, its verynature (diverse product types, products not installed when buildinginitially constructed, and products often hidden in closets) makes itdifficult to accurately count and categorize the end use.We auditedsixteen buildings in three cities (San Francisco, Atlanta, Pittsburgh)including office, medical and education building types. We inventoriedthe number and typesmore » of office and miscellaneous electric equipment aswell as estimated total energy consumption due to these product types. Intotal, we audited approximately 4,000 units of office equipment and 6,000units of miscellaneous equipment and covered a diverse range of productsranging from electric pencil sharpeners with a unit energy consumption(UEC) of 1 kWh/yr to a kiln with a UEC of 7,000 kWh/yr. Our paperpresents a summary of the density and type of plug load equipment foundas well as the estimated total energy consumption of the equipment.Additionally, we present equipment trends observed and provide insightsto how policy makers can target energy efficiency for this growing enduse.« less

  12. Opportunity to Plug Your Car Into the Electric Grid is Arriving

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Griego, G.

    2010-06-01

    Plug-in hybrid electric vehicles are hitting the U.S. market for the first time this year. Similar to hybrid electric vehicles, they feature a larger battery and plug-in charger that allows consumers to replace a portion of their fossil fuel by simply plugging their cars into standard 110-volt outlets at home or wherever outlets are available. If these vehicles become widely accepted, consumers and the environment will benefit, according to a computer modeling study by Xcel Energy and the Department of Energy's National Renewable Energy Laboratory. Researchers found that each PHEV would cut carbon dioxide emissions in half and save ownersmore » up to $450 in annual fuel costs and up to 240 gallons of gasoline. The study also looked at the impact of PHEVs on the electric grid in Colorado if used on a large scale. Integrating large numbers of these vehicles will depend on the adoption of smart-grid technology - adding digital elements to the electric power system to improve efficiency and enable more dynamic communication between consumers and producers of electricity. Using an intelligent monitoring system that keeps track of all electricity flowing in the system, a smart grid could enable optimal PHEV battery-charging much the same way it would enable users to manage their energy use in household appliances and factory processes to reduce energy costs. When a smart grid is implemented, consumers will have many low-cost opportunities to charge PHEVs at different times of the day. Plug-in vehicles could contribute electricity at peak times, such as summer evenings, while taking electricity from the grid at low-use times such as the middle of the night. Electricity rates could offer incentives for drivers to 'give back' electricity when it is most needed and to 'take' it when it is plentiful. The integration of PHEVs, solar arrays and wind turbines into the grid at larger scales will require a more modern electricity system. Technology already exists to allow customers to feed excess power from their own renewable energy systems back to the grid. As more homes and businesses find opportunities to plan power flows to and from the grid for economic gain using their renewable energy systems and PHEVs, more sophisticated systems will be needed. A smart grid will improve the efficiency of energy consumption, manage real-time power flows and provide two-way metering needed to compensate small power producers. Many states are working toward the smart-grid concept, particularly to incorporate renewable sources into their utility grids. According to the Department of Energy, 30 states have developed and adopted renewable portfolio standards, which require up to 20 percent of a state's energy portfolio to come exclusively from renewable sources by this year, and up to 30 percent in the future. NREL has been laying the foundation for both PHEVs and the smart grid for many years with work including modifying hybrid electric cars with plug-in technology; studying fuel economy, batteries and power electronics; exploring options for recharging batteries with solar and wind technologies; and measuring reductions in greenhouse gas emissions. The laboratory participated in development of smart-grid implementation standards with industry, utilities, government and others to guide the integration of renewable and other small electricity generation and storage sources. Dick DeBlasio, principal program manager for electricity programs, is now leading the Institute of Electrical and Electronics Engineers Standards efforts to connect the dots regarding power generation, communication and information technologies.« less

  13. Electric vehicle fleet implications and analysis : final research project report.

    DOT National Transportation Integrated Search

    2016-11-01

    The objective of this project was to evaluate the implementation and effectiveness of : electric vehicles (EVs) used in fleet operations. The study focuses on Battery-Electric : Vehicles (BEVs) and Plug-In Hybrid Electric Vehicles (PHEVs); collective...

  14. Study of microvascular non-Newtonian blood flow modulated by electroosmosis.

    PubMed

    Tripathi, Dharmendra; Yadav, Ashu; Anwar Bég, O; Kumar, Rakesh

    2018-05-01

    An analytical study of microvascular non-Newtonian blood flow is conducted incorporating the electro-osmosis phenomenon. Blood is considered as a Bingham rheological aqueous ionic solution. An externally applied static axial electrical field is imposed on the system. The Poisson-Boltzmann equation for electrical potential distribution is implemented to accommodate the electrical double layer in the microvascular regime. With long wavelength, lubrication and Debye-Hückel approximations, the boundary value problem is rendered non-dimensional. Analytical solutions are derived for the axial velocity, volumetric flow rate, pressure gradient, volumetric flow rate, averaged volumetric flow rate along one time period, pressure rise along one wavelength and stream function. A plug swidth is featured in the solutions. Via symbolic software (Mathematica), graphical plots are generated for the influence of Bingham plug flow width parameter, electrical Debye length and Helmholtz-Smoluchowski velocity (maximum electro-osmotic velocity) on the key hydrodynamic variables. This study reveals that blood flow rate accelerates with decreasing the plug width (i.e. viscoplastic nature of fluids) and also with increasing the Debye length parameter. Copyright © 2018 Elsevier Inc. All rights reserved.

  15. Impact of uncoordinated plug-in electric vehicle charging on residential power demand - supplementary data

    DOE Data Explorer

    Muratori, Matteo (ORCID:0000000316886742)

    2017-06-15

    This data set is provided in support of a forthcoming paper: "Impact of uncoordinated plug-in electric vehicle charging on residential power demand," [1]. These files include electricity demand profiles for 200 households randomly selected among the ones available in the 2009 RECS data set for the Midwest region of the United States. The profiles have been generated using the modeling proposed by Muratori et al. [2], [3], that produces realistic patterns of residential power consumption, validated using metered data, with a resolution of 10 minutes. Households vary in size and number of occupants and the profiles represent total electricity use, in watts. The files also include in-home plug-in electric vehicle recharging profiles for 348 vehicles associated with the 200 households assuming both Level 1 (1920 W) and Level 2 (6600 W) residential charging infrastructure. The vehicle recharging profiles have been generated using the modeling proposed by Muratori et al. [4], that produces real-world recharging demand profiles, with a resolution of 10 minutes. [1] M. Muratori, "Impact of uncoordinated plug-in electric vehicle charging on residential power demand." Forthcoming. [2] M. Muratori, M. C. Roberts, R. Sioshansi, V. Marano, and G. Rizzoni, "A highly resolved modeling technique to simulate residential power demand," Applied Energy, vol. 107, no. 0, pp. 465 - 473, 2013. [3] M. Muratori, V. Marano, R. Sioshansi, and G. Rizzoni, "Energy consumption of residential HVAC systems: a simple physically-based model," in 2012 IEEE Power and Energy Society General Meeting. San Diego, CA, USA: IEEE, 22-26 July 2012. [4] M. Muratori, M. J. Moran, E. Serra, and G. Rizzoni, "Highly-resolved modeling of personal transportation energy consumption in the United States," Energy, vol. 58, no. 0, pp. 168-177, 2013.

  16. How Do The EV Project Participants Feel About Their EVS?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Francfort, James E.

    2015-02-01

    The EV Project is an infrastructure study that enrolled over 8,000 residential participants. These participants purchased or leased a Nissan Leaf battery electric vehicle (BEV) or Chevrolet Volt extended range electric vehicle (EREV) and were among the first to explore this new electric drive technology. Collectively, BEV, EREV, and plug-in hybrid electric vehicles (PHEVs) are called plug-in electric vehicles (PEVs). The EV Project participants were very cooperative and enthusiastic about their participation in the project and very supportive in providing feedback and information. The information and attitudes of these participants concerning their experience with their PEVs were solicited using amore » survey in June 2013. At that time, some had up to 3 years of experience with their PEVs.« less

  17. Alternative Fuels Data Center: Hybrid and Plug-In Electric Vehicles

    Science.gov Websites

    in this section... Electricity Basics Benefits & Considerations Stations Vehicles Availability -electric vehicles (EVs)-also called electric-drive vehicles collectively-use electricity either as their charge the battery. Some can travel more than 70 miles on electricity alone, and all can operate solely

  18. An Integrated Onboard Charger and Accessary Power Converter for Plug-in Electric Vehicles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Su, Gui-Jia; Tang, Lixin

    2013-01-01

    Abstract: In this paper, an integrated onboard battery charger and accessary dc-dc converter for plug-in electric vehicles (PEVs) is presented. The idea is to utilize the already available traction drive inverters and motors of a PEV as the frond converter of the charger circuit and the transformer of the 14 V accessary dc-dc converter to provide galvanic isolation. The topology was verified by modeling and experimental results on a 5 kW charger prototype

  19. 0-6763 : accounting for electric vehicles in air quality conformity.

    DOT National Transportation Integrated Search

    2014-08-01

    Electric vehicles (EVs) are broadly defined as : vehicles that obtain at least a part of the energy : required for their propulsion from electricity. This : research focused on the three main types of EVs: : Hybrid electric vehicles. : Plug-i...

  20. 40 CFR 600.507-12 - Running change data requirements.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... calibration of an electric vehicle, fuel cell vehicle, hybrid electric vehicle, plug-in hybrid electric vehicle or other advanced technology vehicle in such a way that the city or highway fuel economy of the...

  1. 40 CFR 600.507-12 - Running change data requirements.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... calibration of an electric vehicle, fuel cell vehicle, hybrid electric vehicle, plug-in hybrid electric vehicle or other advanced technology vehicle in such a way that the city or highway fuel economy of the...

  2. 40 CFR 600.507-12 - Running change data requirements.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... calibration of an electric vehicle, fuel cell vehicle, hybrid electric vehicle, plug-in hybrid electric vehicle or other advanced technology vehicle in such a way that the city or highway fuel economy of the...

  3. Highway vehicle electric drive in the United States : 2009 status and issues.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Santini, D. J.; Energy Systems

    2011-02-16

    The status of electric drive technology in the United States as of early 2010 is documented. Rapidly evolving electric drive technologies discussed include hybrid electric vehicles, multiple types of plug-in hybrid electric vehicles, and battery electric vehicles. Recent trends for hybrids are quantified. Various plug-in vehicles entering the market in the near term are examined. The technical and economic requirements for electric drive to more broadly succeed in a wider range of highway vehicle applications are described, and implications for the most promising new markets are provided. Federal and selected state government policy measures promoting and preparing for electric drivemore » are discussed. Taking these into account, judgment on areas where increased Clean Cities funds might be most productively focused over the next five years are provided. In closing, the request by Clean Cities for opinion on the broad range of research needs providing near-term support to electric drive is fulfilled.« less

  4. Semi-flexible gas-insulated transmission line using protection tube in conductor plug-in joint

    DOEpatents

    Kommineni, P.R.

    1983-01-25

    A gas-insulated transmission line includes an outer sheath, an inner conductor, an insulating gas electrically insulating the inner conductor from the outer sheath, and insulating supports insulatably supporting the inner conductor within the outer sheath. The inner conductor is provided with flexibility by main conductor sections which are joined together through a conductor hub section and flexible flexing elements. Stress shields are provided to control the electric field at the locations of the conductor hub sections where the insulating supports are contacting the inner conductor. A plug and socket arrangement is utilized for joining adjacent sections of the inner conductor, and a protection tube is utilized inside the hollow plug to maintain proper alignment of the joint when the transmission line is bent. 3 figs.

  5. Semi-flexible gas-insulated transmission line using protection tube in conductor plug-in joint

    DOEpatents

    Kommineni, Prasad R.

    1983-01-25

    A gas-insulated transmission line includes an outer sheath, an inner conductor, an insulating gas electrically insulating the inner conductor from the outer sheath, and insulating supports insulatably supporting the inner conductor within the outer sheath. The inner conductor is provided with flexibility by main conductor sections which are joined together through a conductor hub section and flexible flexing elements. Stress shields are provided to control the electric field at the locations of the conductor hub sections where the insulating supports are contacting the inner conductor. A plug and socket arrangement is utilized for joining adjacent sections of the inner conductor, and a protection tube is utilized inside the hollow plug to maintain proper alignment of the joint when the transmission line is bent.

  6. 21 CFR 876.5320 - Nonimplanted electrical continence device.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Nonimplanted electrical continence device. 876... Nonimplanted electrical continence device. (a) Identification. A nonimplanted electrical continence device is a device that consists of a pair of electrodes on a plug or a pessary that are connected by an electrical...

  7. 21 CFR 876.5320 - Nonimplanted electrical continence device.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Nonimplanted electrical continence device. 876... Nonimplanted electrical continence device. (a) Identification. A nonimplanted electrical continence device is a device that consists of a pair of electrodes on a plug or a pessary that are connected by an electrical...

  8. 21 CFR 876.5320 - Nonimplanted electrical continence device.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Nonimplanted electrical continence device. 876... Nonimplanted electrical continence device. (a) Identification. A nonimplanted electrical continence device is a device that consists of a pair of electrodes on a plug or a pessary that are connected by an electrical...

  9. 21 CFR 876.5320 - Nonimplanted electrical continence device.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Nonimplanted electrical continence device. 876... Nonimplanted electrical continence device. (a) Identification. A nonimplanted electrical continence device is a device that consists of a pair of electrodes on a plug or a pessary that are connected by an electrical...

  10. Hybrid and plug-in hybrid electric vehicle performance testing by the US Department of Energy Advanced Vehicle Testing Activity

    NASA Astrophysics Data System (ADS)

    Karner, Donald; Francfort, James

    The Advanced Vehicle Testing Activity (AVTA), part of the U.S. Department of Energy's FreedomCAR and Vehicle Technologies Program, has conducted testing of advanced technology vehicles since August 1995 in support of the AVTA goal to provide benchmark data for technology modeling, and vehicle development programs. The AVTA has tested full size electric vehicles, urban electric vehicles, neighborhood electric vehicles, and hydrogen internal combustion engine powered vehicles. Currently, the AVTA is conducting baseline performance, battery benchmark and fleet tests of hybrid electric vehicles (HEV) and plug-in hybrid electric vehicles (PHEV). Testing has included all HEVs produced by major automotive manufacturers and spans over 2.5 million test miles. Testing is currently incorporating PHEVs from four different vehicle converters. The results of all testing are posted on the AVTA web page maintained by the Idaho National Laboratory.

  11. Accounting for electric vehicles in air quality conformity \\0x2012 final report.

    DOT National Transportation Integrated Search

    2014-12-01

    Electric vehicles (EVs) obtain at least a part of the energy required for their propulsion from electricity. The : market for EVs, including hybrid, plug-in hybrid, and battery electric vehicles continues to grow, as many : new and affordable models ...

  12. The Effect of Plug-in Electric Vehicles on Harmonic Analysis of Smart Grid

    NASA Astrophysics Data System (ADS)

    Heidarian, T.; Joorabian, M.; Reza, A.

    2015-12-01

    In this paper, the effect of plug-in electric vehicles is studied on the smart distribution system with a standard IEEE 30-bus network. At first, harmonic power flow analysis is performed by Newton-Raphson method and by considering distorted substation voltage. Afterward, proper sizes of capacitors is selected by cuckoo optimization algorithm to reduce the power losses and cost and by imposing acceptable limit for total harmonic distortion and RMS voltages. It is proposed that the impact of generated current harmonics by electric vehicle battery chargers should be factored into overall load control strategies of smart appliances. This study is generalized to the different hours of a day by using daily load curve, and then optimum time for charging of electric vehicles batteries in the parking lots are determined by cuckoo optimization algorithm. The results show that injecting harmonic currents of plug-in electric vehicles causes a drop in the voltage profile and increases power loss. Moreover, charging the vehicle batteries has more impact on increasing the power losses rather than the harmonic currents effect. Also, the findings showed that the current harmonics has a great influence on increasing of THD. Finally, optimum working times of all parking lots was obtained for the utilization cost reduction.

  13. California Plug-In Electric Vehicle Infrastructure Projections: 2017-2025 - Future Infrastructure Needs for Reaching the State's Zero Emission-Vehicle Deployment Goals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wood, Eric W; Rames, Clement L; Bedir, Abdulkadir

    This report analyzes plug-in electric vehicle (PEV) infrastructure needs in California from 2017 to 2025 in a scenario where the State's zero-emission vehicle (ZEV) deployment goals are achieved by household vehicles. The statewide infrastructure needs are evaluated by using the Electric Vehicle Infrastructure Projection tool, which incorporates representative statewide travel data from the 2012 California Household Travel Survey. The infrastructure solution presented in this assessment addresses two primary objectives: (1) enabling travel for battery electric vehicles and (2) maximizing the electric vehicle-miles traveled for plug-in hybrid electric vehicles. The analysis is performed at the county-level for each year between 2017more » and 2025 while considering potential technology improvements. The results from this study present an infrastructure solution that can facilitate market growth for PEVs to reach the State's ZEV goals by 2025. The overall results show a need for 99k-130k destination chargers, including workplaces and public locations, and 9k-25k fast chargers. The results also show a need for dedicated or shared residential charging solutions at multi-family dwellings, which are expected to host about 120k PEVs by 2025. An improvement to the scientific literature, this analysis presents the significance of infrastructure reliability and accessibility on the quantification of charger demand.« less

  14. Coordinating plug-in electric vehicle charging with electric grid: Valley filling and target load following

    NASA Astrophysics Data System (ADS)

    Zhang, Li; Jabbari, Faryar; Brown, Tim; Samuelsen, Scott

    2014-12-01

    Plug-in electric vehicles (PEVs) shift energy consumption from petroleum to electricity for the personal transportation sector. This work proposes a decentralized charging protocol for PEVs with grid operators updating the cost signal. Each PEV calculates its own optimal charging profile only once based on the cost signal, after it is plugged in, and sends the result back to the grid operators. Grid operators only need to aggregate charging profiles and update the load and cost. The existing PEV characteristics, national household travel survey (NHTS), California Independent System Operator (CAISO) demand, and estimates for future renewable generation in California are used to simulate PEV operation, PEV charging profiles, grid demand, and grid net load (demand minus renewable). Results show the proposed protocol has good performance for overnight net load valley filling if the costs to be minimized are proportional to the net load. Annual results are shown in terms of overnight load variation and comparisons are made with grid level valley filling results. Further, a target load can be approached in the same manner by using the gap between current load and the target load as the cost. The communication effort involved is quite modest.

  15. AVTA Federal Fleet PEV Readiness Data Logging and Characterization Study: Final Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schey, Stephen; Francfort, Jim

    2015-06-01

    Collect and evaluate data on federal fleet operations as part of the Advanced Vehicle Testing Activity’s Federal Fleet Vehicle Data Logging and Characterization Study. The Advanced Vehicle Testing Activity study seeks to collect and evaluate data to validate the utilization of advanced plug-in electric vehicle (PEV) transportation. This report summarizes the fleets studied to identify daily operational characteristics of select vehicles and report findings on vehicle and mission characterizations to support the successful introduction of PEVs into the agencies’ fleets. Individual observations of these selected vehicles provide the basis for recommendations related to electric vehicle adoption and whether a batterymore » electric vehicle or plug-in hybrid electric vehicle (collectively referred to as PEVs) can fulfill the mission requirements.« less

  16. Research on HOPE communication and data processing equipment

    NASA Astrophysics Data System (ADS)

    Yamamoto, Satoru; Kikuchi, Toshio

    1992-08-01

    An overview of the research on heat-resisting antenna is presented. Candidate heat-resisting antennas which were selected as the result of review on seven kinds of antenna are the antennas of micro strip, cavity, and horn types. Heat resistance characteristics of electric power supplying section (connectors) of heat-resisting antenna were studied. Heat cycling test and heat shock tests were conducted on the subject plugs and it was confirmed that they can be usable at - 80 C to + 200 C against - 65 C to + 125 C for the existing plugs. Fundamental electric data such as antenna pattern were acquired mating trial produced components simulating electric characteristics of heat-resisting antenna and trial-produced ceramic tiles.

  17. Magnetic electrical connectors for biomedical percutaneous implants

    NASA Technical Reports Server (NTRS)

    Owens, L. J. (Inventor)

    1977-01-01

    A biomedical percutaneous connector is described which includes a socket having an enlarged disk shaped base portion for being implanted below the patient's skin and cylindrical portion which is integral with the base portion and extends outwardly of the skin. A conical recess in an upper end of the cylindrical portion has a magnet located in the base. Inclined conductive strips are carried on an upper end of the cylindrical portion to which electrical conductors are attached and extend into the patient's body. A complementary shaped plug which also has electrical contacts provided thereon is adapted to fit within the conical recess of the socket. The plug is held in the socket by magnetic force.

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    Electric-drive vehicles use electricity as their primary fuel or to improve the efficiency of conventional vehicle designs. With the range of styles and options available, there is likely one to meet your needs. The vehicles can be divided into three categories: 1) Hybrid electric vehicles (HEVs), 2) Plug-in hybrid electric vehicles (PHEVs), and 3) All-electric vehicles (EVs).

  19. Next Generation Inverter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao, Zilai; Gough, Charles

    The goal of this Cooperative Agreement was the development of a Next Generation Inverter for General Motors’ electrified vehicles, including battery electric vehicles, range extended electric vehicles, plug-in hybrid electric vehicles and hybrid electric vehicles. The inverter is a critical electronics component that converts battery power (DC) to and from the electric power for the motor (AC).

  20. At A Glance: Electric-Drive Vehicles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    2016-07-01

    Electric-drive vehicles use electricity as their primary fuel or to improve the efficiency of conventional vehicle designs. With the range of styles and options available, there is likely one to meet your needs. The vehicles can be divided into three categories: 1) Hybrid electric vehicles (HEVs), 2) Plug-in hybrid electric vehicles (PHEVs), and 3) All-electric vehicles (EVs).

  1. 30 CFR 75.831 - Electrical work; troubleshooting and testing.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... disconnecting device: (i) Remove the plug from the power receptacle and connect it to the grounding receptacle... coupler is used as a disconnecting device: (i) Remove the plug from the power receptacle and connect it to...) or (2): (1) If a trailing cable disconnecting switch is provided: (i) Open and ground the power...

  2. National Plug-In Electric Vehicle Infrastructure Analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wood, Eric W.; Rames, Clement L.; Muratori, Matteo

    This document describes a study conducted by the National Renewable Energy Laboratory quantifying the charging station infrastructure required to serve the growing U.S. fleet of plug-in electric vehicles (PEVs). PEV sales, which include plug-in hybrid electric vehicles (PHEVs) and battery electric vehicles (BEVs), have surged recently. Most PEV charging occurs at home, but widespread PEV adoption will require the development of a national network of non-residential charging stations. Installation of these stations strategically would maximize the economic viability of early stations while enabling efficient network growth as the PEV market matures. This document describes what effective co-evolution of the PEVmore » fleet and charging infrastructure might look like under a range of scenarios. To develop the roadmap, NREL analyzed PEV charging requirements along interstate corridors and within urban and rural communities. The results suggest that a few hundred corridor fast-charging stations could enable long-distance BEV travel between U.S. cities. Compared to interstate corridors, urban and rural communities are expected to have significantly larger charging infrastructure requirements. About 8,000 fast-charging stations would be required to provide a minimum level of coverage nationwide. In an expanding PEV market, the total number of non-residential charging outlets or 'plugs' required to meet demand ranges from around 100,000 to more than 1.2 million. Understanding what drives this large range in capacity requirements is critical. For example, whether consumers prefer long-range or short-range PEVs has a larger effect on plug requirements than does the total number of PEVs on the road. The relative success of PHEVs versus BEVs also has a major impact, as does the number of PHEVs that charge away from home. This study shows how important it is to understand consumer preferences and driving behaviors when planning charging networks.« less

  3. National Plug-In Electric Vehicle Infrastructure Analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Muratori, Matteo; Rames, Clement L; Srinivasa Raghavan, Sesha

    This presentation describes a study conducted by the National Renewable Energy Laboratory quantifying the charging station infrastructure required to serve the growing U.S. fleet of plug-in electric vehicles (PEVs). PEV sales, which include plug-in hybrid electric vehicles (PHEVs) and battery electric vehicles (BEVs), have surged recently. Most PEV charging occurs at home, but widespread PEV adoption will require the development of a national network of non-residential charging stations. Installation of these stations strategically would maximize the economic viability of early stations while enabling efficient network growth as the PEV market matures. This document describes what effective co-evolution of the PEVmore » fleet and charging infrastructure might look like under a range of scenarios. To develop the roadmap, NREL analyzed PEV charging requirements along interstate corridors and within urban and rural communities. The results suggest that a few hundred corridor fast-charging stations could enable long-distance BEV travel between U.S. cities. Compared to interstate corridors, urban and rural communities are expected to have significantly larger charging infrastructure requirements. About 8,000 fast-charging stations would be required to provide a minimum level of coverage nationwide. In an expanding PEV market, the total number of non-residential charging outlets or 'plugs' required to meet demand ranges from around 100,000 to more than 1.2 million. Understanding what drives this large range in capacity requirements is critical. For example, whether consumers prefer long-range or short-range PEVs has a larger effect on plug requirements than does the total number of PEVs on the road. The relative success of PHEVs versus BEVs also has a major impact, as does the number of PHEVs that charge away from home. This study shows how important it is to understand consumer preferences and driving behaviors when planning charging networks.« less

  4. Alternative Fuels Data Center: Electricity Fuel Basics

    Science.gov Websites

    , coal, nuclear energy, hydropower, natural gas, wind energy, solar energy, and stored hydrogen. Plug-in Links Benefits & Considerations Stations Vehicles Laws & Incentives Electricity Fuel Basics

  5. Alternative Fuels Data Center

    Science.gov Websites

    Plug-In Electric Vehicle (PEV) Charging Rate Incentive - Austin Energy Austin Energy offers a pilot time-of-use charging rate to residential customers with PEVs and electric vehicle supply equipment. For

  6. Alternative Fuels Data Center

    Science.gov Websites

    Hydrogen and Plug-In Electric Vehicle (PEV) Rebate The Hydrogen and Electric Automobile Purchase Rebate Program (CHEAPR) offers rebates for the incremental cost of the purchase or lease of a hydrogen

  7. 40 CFR 1066.1010 - Incorporation by reference.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ....305, and 1066.310(b). (2) SAE J1634, Battery Electric Vehicle Energy Consumption and Range Test... Measuring the Exhaust Emissions and Fuel Economy of Hybrid-Electric Vehicles, Including Plug-In Hybrid... Measuring Fuel Economy and Emissions of Hybrid-Electric and Conventional Heavy-Duty Vehicles, issued...

  8. Life cycle assessment of greenhouse gas emissions from plug-in hybrid vehicles: implications for policy.

    PubMed

    Samaras, Constantine; Meisterling, Kyle

    2008-05-01

    Plug-in hybrid electric vehicles (PHEVs), which use electricity from the grid to power a portion of travel, could play a role in reducing greenhouse gas (GHG) emissions from the transport sector. However, meaningful GHG emissions reductions with PHEVs are conditional on low-carbon electricity sources. We assess life cycle GHG emissions from PHEVs and find that they reduce GHG emissions by 32% compared to conventional vehicles, but have small reductions compared to traditional hybrids. Batteries are an important component of PHEVs, and GHGs associated with lithium-ion battery materials and production account for 2-5% of life cycle emissions from PHEVs. We consider cellulosic ethanol use and various carbon intensities of electricity. The reduced liquid fuel requirements of PHEVs could leverage limited cellulosic ethanol resources. Electricity generation infrastructure is long-lived, and technology decisions within the next decade about electricity supplies in the power sector will affectthe potential for large GHG emissions reductions with PHEVs for several decades.

  9. AVTA Federal Fleet PEV Readiness Data Logging and Characterization Study for NASA Stennis Space Center

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schey, Stephen; Francfort, Jim

    Federal agencies are mandated to purchase alternative fuel vehicles, increase consumption of alternative fuels, and reduce petroleum consumption. Available plug-in electric vehicles (PEVs) provide an attractive option in the selection of alternative fuel vehicles. PEVs, which consist of both battery electric vehicles (BEVs) and plug-in hybrid electric vehicles (PHEVs), have significant advantages over internal combustion engine (ICE) vehicles in terms of energy efficiency, reduced petroleum consumption, and reduced production of greenhouse gas (GHG) emissions, and they provide performance benefits with quieter, smoother operation. This study intended to evaluate the extent to which NASA Stennis Space Center (Stennis) could convert partmore » or all of their fleet of vehicles from petroleum-fueled vehicles to PEVs.« less

  10. Integration Issues of Cells into Battery Packs for Plug-in and Hybrid Electric Vehicles: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pesaran, A. A.; Kim, G. H.; Keyser, M.

    2009-05-01

    The main barriers to increased market share of hybrid electric vehicles (HEVs) and commercialization of plug-in HEVs are the cost, safety, and life of lithium ion batteries. Significant effort is being directed to address these issues for lithium ion cells. However, even the best cells may not perform as well when integrated into packs for vehicles because of the environment in which vehicles operate. This paper discusses mechanical, electrical, and thermal integration issues and vehicle interface issues that could impact the cost, life, and safety of the system. It also compares the advantages and disadvantages of using many small cellsmore » versus a few large cells and using prismatic cells versus cylindrical cells.« less

  11. From Pump to Plug: Measuring the Public's Attitude about Plug-In Electric

    Science.gov Websites

    -National Benchmark Report, presents the findings of a study on the public's sentiments regarding PEVs, with February 2015, the study covered a 1,015-household sample designed to be representative of the U.S . population. NREL plans to repeat the study annually to track changing consumer perceptions. Consumer Views

  12. Commercializing light-duty plug-in/plug-out hydrogen-fuel-cell vehicles: "Mobile electricity" technologies, early California household markets, and innovation management

    NASA Astrophysics Data System (ADS)

    Williams, Brett David

    Starting from the premise that new consumer value must drive hydrogen-fuel-cell-vehicle (H2FCV) commercialization, a group of opportunities collectively called "Mobile Electricity" (Me-) is characterized. Me- redefines H2 FCVs as innovative products able to provide home recharging and mobile power, for example for tools, mobile activities, emergencies, and electric-grid-support services. To characterize such opportunities, this study first integrates and extends previous analyses of H2FCVs, plug-in hybrids, and vehicle-to-grid (V2G) power. It uses a new model to estimate zero-emission-power vs. zero-emission-driving tradeoffs, costs, and grid-support revenues for various electric-drive vehicle types and levels of infrastructure service. Next, the initial market potential for Me- enabled vehicles, such as H2FCVs and plug-in hybrids, is estimated by eliminating unlikely households from consideration for early adoption. 5.2 million of 33.9 million Californians in the 2000 Census live in households pre-adapted to Me-, 3.9 million if natural gas is required for home refueling. The possible sales base represented by this population is discussed. Several differences in demographic and other characteristics between the target market and the population as a whole are highlighted, and two issues related to the design of H2FCVs and their supporting infrastructure are discussed: vehicle range and home hydrogen refueling. These findings argue for continued investigation of this and similar target segments-which represent more efficient research populations for subsequent study by product designers and other decision-makers wishing to understand the early market dynamics facing Me- innovations. Next, Me-H2FCV commercialization issues are raised from the perspectives of innovation, product development, and strategic marketing. Starting with today's internalcombustion hybrids, this discussion suggests a way to move beyond the battery vs. fuel-cell zero-sum game and towards the development of integrated plug-in/plug-out hybrid platforms. H2FCVs are described as one possible extension of this Me- product platform for the supply of clean, high-power, and profitable Me- services as the technologies and markets mature. Finally, the major findings of this study are summarized and directions for future work discussed. Together, the parts of this Me- innovation assessment reveal an initially expensive and limited but compelling (and possibly necessary) set of opportunities to help drive H2FCV and other electric-drive-vehicle commercialization.

  13. The load shift potential of plug-in electric vehicles with different amounts of charging infrastructure

    NASA Astrophysics Data System (ADS)

    Gnann, Till; Klingler, Anna-Lena; Kühnbach, Matthias

    2018-06-01

    Plug-in electric vehicles are the currently favoured option to decarbonize the passenger car sector. However, a decarbonisation is only possible with electricity from renewable energies and plug-in electric vehicles might cause peak loads if they started to charge at the same time. Both these issues could be solved with coordinated load shifting (demand response). Previous studies analyzed this research question by focusing on private vehicles with domestic and work charging infrastructure. This study additionally includes the important early adopter group of commercial fleet vehicles and reflects the impact of domestic, commercial, work and public charging. For this purpose, two models are combined. In a comparison of three scenarios, we find that charging of commercial vehicles does not inflict evening load peaks in the same magnitude as purely domestic charging of private cars does. Also for private cars, charging at work occurs during the day and may reduce the necessity of load shifting while public charging plays a less important role in total charging demand as well as load shifting potential. Nonetheless, demand response reduces the system load by about 2.2 GW or 2.8% when domestic and work charging are considered compared to a scenario with only domestic charging.

  14. 75 FR 59673 - Public Hearing Locations for the Proposed Fuel Economy Labels

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-28

    ... types, including electric vehicles (EV), plug-in hybrid electric vehicles (PHEV), and conventional... purchase decisions and to address the entrance of advanced technology vehicles into the U.S. market. The...

  15. Pacific Gas & Electric Plug-In Hybrid Electric Utility Truck Testing |

    Science.gov Websites

    improving efficiency and decreasing emissions during various modes of operation NREL results will help issues and requirements associated with vehicle operation, and fine-tune the design of such vehicles

  16. Alternative Fuels Data Center: Arizona Transportation Data for Alternative

    Science.gov Websites

    Additions and Updates Plug-In Electric Vehicle (PEV) Charging Rate Incentive - Tucson Electric Power (TEP School Bus/Vehicle Incentive, and Green Jobs Outreach Program Heavy-Duty Natural Gas Drayage Truck

  17. Alternative Fuels Data Center

    Science.gov Websites

    In Electric Vehicle (PEV) Fee In addition to standard registration fees, PEV owners must pay an annual fee of $140 and plug-in hybrid electric vehicle owners must pay an annual fee of $75. Neighborhood

  18. Alternative Fuels Data Center

    Science.gov Websites

    with natural gas, hydrogen, or electricity must pay an annual fee of $200. Plug-in hybrid electric vehicle owners must pay an annual fee of $100. (Reference West Virginia Code 17A-10-3c

  19. Connected vehicle assessment. Vehicle electrification and the smart grid : the supporting role of safety and mobility services.

    DOT National Transportation Integrated Search

    2013-01-01

    Electric Vehicles are the only type of cars that get cleaner over time, as electrical power generation begins to convert slowly over time to lower-polluting energy sources. Hybrids, plug-in hybrids, and battery electrics are conservatively esti...

  20. Plug-Load Control and Behavioral Change Research in GSA Office Buildings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Metzger, I.; Cutler, D.; Sheppy, M.

    2012-10-01

    The U.S. General Services Administration (GSA) owns and leases over 354 million square feet (ft2) of space in over 9,600 buildings [1]. GSA is a leader among federal agencies in aggressively pursuing energy efficiency (EE) opportunities for its facilities and installing renewable energy (RE) systems to provide heating, cooling, and power to these facilities. According to several energy assessments of GSA's buildings conducted by the National Renewable Energy Laboratory (NREL), plug-loads account for approximately 21% of the total electricity consumed within a standard GSA Region 3 office building. This study aims to provide insight on how to effectively manage plug-loadmore » energy consumption and attain higher energy and cost savings for plug-loads. As GSA improves the efficiency of its building stock, plug-loads will become an even greater portion of its energy footprint.« less

  1. Alternative Fuels Data Center: Emissions from Hybrid and Plug-In Electric

    Science.gov Websites

    ... More in this section... Electricity Basics Benefits & Considerations Stations Vehicles Availability vehicles do. When measuring well-to-wheel emissions, the electricity source is important: for PHEVs and EVs , part or all of the power provided by the battery comes from off-board sources of electricity. There are

  2. Alternative Fuels Data Center: Fisher Coachworks Develops Plug-In Electric

    Science.gov Websites

    vehicle charging stations. Rental Cars Go Electric in Florida Feb. 15, 2014 Renzenberger Inc Saves Money Kansas City Save Money Nov. 12, 2011 Metropolitan Utilities District Fuels Vehicles With Natural Gas Oct Electric Buses Aug. 21, 2010 Hybrid Electric Shuttle Buses Offer Free Rides in Maryland June 18, 2010 Texas

  3. 40 CFR 600.507-12 - Running change data requirements.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... previously tested subconfiguration in the base level. (iv) Revising the calibration of an electric vehicle, fuel cell vehicle, hybrid electric vehicle, plug-in hybrid electric vehicle or other advanced technology vehicle in such a way that the city or highway fuel economy of the vehicle (or the energy...

  4. 46 CFR 111.79-11 - Lifeboat receptacles.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 4 2013-10-01 2013-10-01 false Lifeboat receptacles. 111.79-11 Section 111.79-11 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS... for connection to a vessel's electrical system must allow the plug to pull free when the lifeboat is...

  5. 46 CFR 111.79-11 - Lifeboat receptacles.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 4 2012-10-01 2012-10-01 false Lifeboat receptacles. 111.79-11 Section 111.79-11 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS... for connection to a vessel's electrical system must allow the plug to pull free when the lifeboat is...

  6. 46 CFR 111.79-11 - Lifeboat receptacles.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 4 2011-10-01 2011-10-01 false Lifeboat receptacles. 111.79-11 Section 111.79-11 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS... for connection to a vessel's electrical system must allow the plug to pull free when the lifeboat is...

  7. 46 CFR 111.79-11 - Lifeboat receptacles.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Lifeboat receptacles. 111.79-11 Section 111.79-11 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS... for connection to a vessel's electrical system must allow the plug to pull free when the lifeboat is...

  8. 46 CFR 111.79-11 - Lifeboat receptacles.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 4 2014-10-01 2014-10-01 false Lifeboat receptacles. 111.79-11 Section 111.79-11 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS... for connection to a vessel's electrical system must allow the plug to pull free when the lifeboat is...

  9. Data port security lock

    DOEpatents

    Quinby, Joseph D [Albuquerque, NM; Hall, Clarence S [Albuquerque, NM

    2008-06-24

    In a security apparatus for securing an electrical connector, a plug may be fitted for insertion into a connector receptacle compliant with a connector standard. The plug has at least one aperture adapted to engage at least one latch in the connector receptacle. An engagement member is adapted to partially extend through at least one aperture and lock to at least one structure within the connector receptacle.

  10. Alternative Fuels Data Center

    Science.gov Websites

    purchase or lease of a new qualifying all-electric vehicle on or after May 30, 2017. Qualifying plug-in hybrid electric vehicles purchased or leased on or after June 8, 2017, are eligible for a $600 rebate

  11. Alternative Fuels Data Center: Deployment of Hybrid and Plug-In Electric

    Science.gov Websites

    standard permit for residential charging stations that allows for quick, safe installation of electric and inspector prepare homes for safe and reliable vehicle charging. Clean Cities Project Awards The

  12. Advancing Plug-In Hybrid Technology and Flex Fuel Application on a Chrysler Minivan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bazzi, Abdullah; Barnhart, Steven

    2014-12-31

    FCA US LLC viewed this DOE funding as a historic opportunity to begin the process of achieving required economies of scale on technologies for electric vehicles. The funding supported FCA US LLC’s light-duty electric drive vehicle and charging infrastructure-testing activities and enabled FCA US LLC to utilize the funding on advancing Plug-in Hybrid Electric Vehicle (PHEV) technologies to future programs. FCA US LLC intended to develop the next generations of electric drive and energy batteries through a properly paced convergence of standards, technology, components, and common modules, as well as first-responder training and battery recycling. To support the development ofmore » a strong, commercially viable supplier base, FCA US LLC also used this opportunity to evaluate various designated component and sub-system suppliers. The original project proposal was submitted in December 2009 and selected in January 2010. The project ended in December 2014.« less

  13. Electric Vehicle Preparedness: Task 1, Assessment of Fleet Inventory for Marine Corps Base Camp Lejeune

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schey, Stephen; Francfort, Jim

    2015-01-01

    Several U.S. Department of Defense-based studies were conducted to identify potential U.S. Department of Defense transportation systems that are strong candidates for introduction or expansion of plug-in electric vehicles (PEVs). Task 1 included a survey of the inventory of non-tactical fleet vehicles at the Marine Corps Base Camp Lejeune (MCBCL) to characterize the fleet. This information and characterization will be used to select vehicles for monitoring that takes place during Task 2. This monitoring involves data logging of vehicle operation in order to identify the vehicle’s mission and travel requirements. Individual observations of these selected vehicles provide the basis formore » recommendations related to PEV adoption. It also identifies whether a battery electric vehicle or plug-in hybrid electric vehicle (collectively referred to as PEVs) can fulfill the mission requirements and provides observations related to placement of PEV charging infrastructure.« less

  14. AVTA Federal Fleet PEV Readiness Data Logging and Characterization Study for United States Coast Guard Headquarters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schey, Stephen; Francfort, Jim

    2015-05-01

    Federal agencies are mandated to purchase alternative fuel vehicles, increase consumption of alternative fuels, and reduce petroleum consumption. Available plug-in electric vehicles (PEVs) provide an attractive option in the selection of alternative fuel vehicles. PEVs, which consist of both battery electric vehicles (BEVs) and plug-in hybrid electric vehicles (PHEVs), have significant advantages over internal combustion engine (ICE) vehicles in terms of energy efficiency, reduced petroleum consumption, and reduced production of greenhouse gas (GHG) emissions, and they provide performance benefits with quieter, smoother operation. This study intended to evaluate the extent to which the United States Coast Guard Headquarters (USCG HQ)more » could convert part or all of their fleet of vehicles from petroleum-fueled vehicles to PEVs.« less

  15. 2011 Chevrolet Volt VIN 0815 Plug-In Hybrid Electric Vehicle Battery Test Results

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tyler Gray; Matthew Shirk; Jeffrey Wishart

    2013-07-01

    The U.S. Department of Energy (DOE) Advanced Vehicle Testing Activity (AVTA) program consists of vehicle, battery, and infrastructure testing on advanced technology related to transportation. The activity includes tests on plug-in hybrid electric vehicles (PHEVs), including testing the PHEV batteries when both the vehicles and batteries are new and at the conclusion of 12,000 miles of on-road fleet testing. This report documents battery testing performed for the 2011 Chevrolet Volt PHEV (VIN 1G1RD6E48BU100815). The battery testing was performed by the Electric Transportation Engineering Corporation (eTec) dba ECOtality North America. The Idaho National Laboratory and ECOtality North America collaborate on themore » AVTA for the Vehicle Technologies Program of the DOE.« less

  16. Emissions impacts and benefits of plug-in hybrid electric vehicles and vehicle-to-grid services

    DOE PAGES

    Sioshansi, Ramteen; Denholm, Paul

    2009-01-22

    Plug-in hybrid electric vehicles (PHEVs) have been promoted as a potential technology to reduce emissions of greenhouse gases and other pollutants by using electricity instead of petroleum, and by improving electric system efficiency by providing vehicle-to-grid (V2G) services. We use an electric power system model to explicitly evaluate the change in generator dispatches resulting from PHEV deployment in the Texas grid, and apply fixed and non-parametric estimates of generator emissions rates, to estimate the resulting changes in generation emissions. Here, we find that by using the flexibility of when vehicles may be charged, generator efficiency can be increased substantially. Bymore » changing generator dispatch, a PHEV fleet of up to 15% of light-duty vehicles can actually decrease net generator NO x emissions during the ozone season, despite the additional charging load. By adding V2G services, such as spinning reserves and energy storage, CO 2, SO 2, and NO x emissions can be reduced even further.« less

  17. Impact of Uncoordinated Plug-in Electric Vehicle Charging on Residential Power Demand

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Muratori, Matteo

    Electrification of transport offers opportunities to increase energy security, reduce carbon emissions, and improve local air quality. Plug-in electric vehicles (PEVs) are creating new connections between the transportation and electric sectors, and PEV charging will create opportunities and challenges in a system of growing complexity. Here, I use highly resolved models of residential power demand and PEV use to assess the impact of uncoordinated in-home PEV charging on residential power demand. While the increase in aggregate demand might be minimal even for high levels of PEV adoption, uncoordinated PEV charging could significantly change the shape of the aggregate residential demand,more » with impacts for electricity infrastructure, even at low adoption levels. Clustering effects in vehicle adoption at the local level might lead to high PEV concentrations even if overall adoption remains low, significantly increasing peak demand and requiring upgrades to the electricity distribution infrastructure. This effect is exacerbated when adopting higher in-home power charging.« less

  18. Impact of uncoordinated plug-in electric vehicle charging on residential power demand

    NASA Astrophysics Data System (ADS)

    Muratori, Matteo

    2018-03-01

    Electrification of transport offers opportunities to increase energy security, reduce carbon emissions, and improve local air quality. Plug-in electric vehicles (PEVs) are creating new connections between the transportation and electric sectors, and PEV charging will create opportunities and challenges in a system of growing complexity. Here, I use highly resolved models of residential power demand and PEV use to assess the impact of uncoordinated in-home PEV charging on residential power demand. While the increase in aggregate demand might be minimal even for high levels of PEV adoption, uncoordinated PEV charging could significantly change the shape of the aggregate residential demand, with impacts for electricity infrastructure, even at low adoption levels. Clustering effects in vehicle adoption at the local level might lead to high PEV concentrations even if overall adoption remains low, significantly increasing peak demand and requiring upgrades to the electricity distribution infrastructure. This effect is exacerbated when adopting higher in-home power charging.

  19. Emissions impacts and benefits of plug-in hybrid electric vehicles and vehicle-to-grid services.

    PubMed

    Sioshansi, Ramteen; Denholm, Paul

    2009-02-15

    Plug-in hybrid electric vehicles (PHEVs) have been promoted as a potential technology to reduce emissions of greenhouse gases and other pollutants by using electricity instead of petroleum, and byimproving electric system efficiency by providing vehicle-to-grid (V2G) services. We use an electric power system model to explicitly evaluate the change in generator dispatches resulting from PHEV deployment in the Texas grid, and apply fixed and non-parametric estimates of generator emissions rates, to estimate the resulting changes in generation emissions. We find that by using the flexibility of when vehicles may be charged, generator efficiency can be increased substantially. By changing generator dispatch, a PHEVfleet of up to 15% of light-duty vehicles can actually decrease net generator NOx emissions during the ozone season, despite the additional charging load. By adding V2G services, such as spinning reserves and energy storage, CO2, SO2, and NOx emissions can be reduced even further.

  20. Innovations for ISS Plug-In Plan (IPiP) Operations

    NASA Technical Reports Server (NTRS)

    Moore, Kevin D.

    2013-01-01

    Limited resources and increasing requirements will continue to influence decisions on ISS. The ISS Plug-In Plan (IPiP) supports power and data for utilization, systems, and daily operations through the Electrical Power System (EPS) Secondary Power/Data Subsystem. Given the fluid launch schedule, the focus of the Plug-In Plan has evolved to anticipate future requirements by judicious development and delivery of power supplies, power strips, Alternating Current (AC) power inverters, along with innovative deployment strategies. A partnership of ISS Program Office, Engineering Directorate, Mission Operations, and International Partners poses unique solutions with existing on-board equipment and resources.

  1. Alternative Fuels Data Center: How Do Hybrid Electric Cars Work?

    Science.gov Websites

    , and the air/fuel mix is ignited by the spark from a spark plug. Power electronics controller: This maintains a proper operating temperature range of the engine, electric motor, power electronics, and other

  2. Alternative Fuels Data Center

    Science.gov Websites

    of $150. This fee expires if the legislature imposes a vehicle miles traveled fee or tax in the state . Plug-in hybrid electric vehicles with an all-electric range of at least 30 miles are subject to the

  3. Alternative Fuels Data Center

    Science.gov Websites

    members who purchase a new or used plug-in hybrid electric vehicle (PHEV) and a $500 bill credit to members who purchase a new or used all-electric vehicle (EV). Members who lease a PHEV are eligible for an

  4. Alternative Fuels Data Center

    Science.gov Websites

    registration fees, all-electric vehicle owners must pay an annual fee of $100, and plug-in hybrid electric vehicle (PHEV) and HEV owners must pay an annual fee of $75. Vehicles with a battery capacity of less than

  5. Quantifying the energy-storage benefits of controlled plug-in electric vehicle charging

    DOE PAGES

    Xi, Xiaomin; Sioshansi, Ramteen

    2016-01-01

    Flexibility in plug-in electric vehicle (PEV) charging can reduce PEV charging costs. Moreover, controlled PEV charging can be viewed as a limited form of energy storage, insomuch as charging loads are shifted from high-cost periods to lower-cost ones. Energy storage that is used for generation shifting is used in much the same manner. In this paper, we study these benefits of PEV charging, demonstrating that controlled PEV charging can reduce generation costs. As a result, we also determine how much energy storage would be needed to provide the same cost-reduction benefits that the PEV fleet does.

  6. Quantifying the energy-storage benefits of controlled plug-in electric vehicle charging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xi, Xiaomin; Sioshansi, Ramteen

    Flexibility in plug-in electric vehicle (PEV) charging can reduce PEV charging costs. Moreover, controlled PEV charging can be viewed as a limited form of energy storage, insomuch as charging loads are shifted from high-cost periods to lower-cost ones. Energy storage that is used for generation shifting is used in much the same manner. In this paper, we study these benefits of PEV charging, demonstrating that controlled PEV charging can reduce generation costs. As a result, we also determine how much energy storage would be needed to provide the same cost-reduction benefits that the PEV fleet does.

  7. Hybrid optimal online-overnight charging coordination of plug-in electric vehicles in smart grid

    NASA Astrophysics Data System (ADS)

    Masoum, Mohammad A. S.; Nabavi, Seyed M. H.

    2016-10-01

    Optimal coordinated charging of plugged-in electric vehicles (PEVs) in smart grid (SG) can be beneficial for both consumers and utilities. This paper proposes a hybrid optimal online followed by overnight charging coordination of high and low priority PEVs using discrete particle swarm optimization (DPSO) that considers the benefits of both consumers and electric utilities. Objective functions are online minimization of total cost (associated with grid losses and energy generation) and overnight valley filling through minimization of the total load levels. The constraints include substation transformer loading, node voltage regulations and the requested final battery state of charge levels (SOCreq). The main challenge is optimal selection of the overnight starting time (toptimal-overnight,start) to guarantee charging of all vehicle batteries to the SOCreq levels before the requested plug-out times (treq) which is done by simultaneously solving the online and overnight objective functions. The online-overnight PEV coordination approach is implemented on a 449-node SG; results are compared for uncoordinated and coordinated battery charging as well as a modified strategy using cost minimizations for both online and overnight coordination. The impact of toptimal-overnight,start on performance of the proposed PEV coordination is investigated.

  8. Emissions Associated with Electric Vehicle Charging: Impact of Electricity Generation Mix, Charging Infrastructure Availability, and Vehicle Type

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McLaren, Joyce; Miller, John; O'Shaughnessy, Eric

    With the aim of reducing greenhouse gas emissions associated with the transportation sector, policy-makers are supporting a multitude of measures to increase electric vehicle adoption. The actual level of emission reduction associated with the electrification of the transport sector is dependent on the contexts that determine when and where drivers charge electric vehicles. This analysis contributes to our understanding of the degree to which a particular electricity grid profile, vehicle type, and charging patterns impact CO2 emissions from light-duty, plug-in electric vehicles. We present an analysis of emissions resulting from both battery electric and plug-in hybrid electric vehicles for fourmore » charging scenarios and five electricity grid profiles. A scenario that allows drivers to charge electric vehicles at the workplace yields the lowest level of emissions for the majority of electricity grid profiles. However, vehicle emissions are shown to be highly dependent on the percentage of fossil fuels in the grid mix, with different vehicle types and charging scenarios resulting in fewer emissions when the carbon intensity of the grid is above a defined level. Restricting charging to off-peak hours results in higher total emissions for all vehicle types, as compared to other charging scenarios.« less

  9. 76 FR 7898 - Wheego Electric Cars, Inc.; Grant of Application for Temporary Exemption From Advanced Air Bag...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-11

    ...-0118] Wheego Electric Cars, Inc.; Grant of Application for Temporary Exemption From Advanced Air Bag... grants the petition of Wheego Electric Cars, Inc. (Wheego) for the temporary exemption of its Whip LiFe... manufacturer of a plug-in electric car. The stated basis of the petition was that requiring compliance would...

  10. Remote Coupling of Electrical Connectors

    NASA Technical Reports Server (NTRS)

    Barbour, R. T.

    1985-01-01

    Device alines plug and receptacle axially and radially. Standard multiple-pin plug and socket mounted in mechanism. As threaded shaft moves out from its mounting bracket, two sets of petals engage each other and correct misalinement. Misalinement absorbed by spring-mounted swivels. Designed for umbilical cables between Space Shuttle and payload, mechanism adaptable to other remote or hazardous situations in which human not available to connect mating parts by hand.

  11. NREL, Toyota Partnering on Plug-In Hybrid Electric Vehicle Grid Integration

    Science.gov Websites

    find out how all those new vehicles charging up at the same time will affect power quality on the distribution grid. Knowing how much is too much for the grid will lead to better strategies to monitor and control distribution, ensuring that as more PHEV owners plug in, the grid is ready. To learn more about

  12. Computational study of arc discharges: Spark plug and railplug ignitors

    NASA Astrophysics Data System (ADS)

    Ekici, Ozgur

    A theoretical study of electrical arc discharges that focuses on the discharge processes in spark plug and railplug ignitors is presented. The aim of the study is to gain a better understanding of the dynamics of electrical discharges, more specifically the transfer of electrical energy into the gas and the effect of this energy transfer on the flow physics. Different levels of computational models are presented to investigate the types of arc discharges seen in spark plugs and railplugs (i.e., stationary and moving arc discharges). Better understanding of discharge physics is important for a number of applications. For example, improved fuel economy under the constraint of stricter emissions standards and improved plug durability are important objectives of current internal combustion engine designs. These goals can be achieved by improving the existing systems (spark plug) and introducing more sophisticated ignition systems (railplug). In spite of the fact spark plug and railplug ignitors are the focus of this work, the methods presented in this work can be extended to study the discharges found in other applications such as plasma torches, laser sparks, and circuit breakers. The system of equations describing the physical processes in an air plasma is solved using computational fluid dynamics codes to simulate thermal and flow fields. The evolution of the shock front, temperature, pressure, density, and flow of a plasma kernel were investigated for both stationary and moving arcs. Arc propagation between the electrodes under the effects of gas dynamics and electromagnetic processes was studied for moving arcs. The air plasma is regarded as a continuum, single substance material in local thermal equilibrium. Thermophysical properties of high temperature air are used to take into consideration the important processes such as dissociation and ionization. The different mechanisms and the relative importance of several assumptions in gas discharges and thermal plasma modeling were investigated. Considering the complex nature of the studied problem, the computational models aid in analyzing the analytical theory and serve as relatively inexpensive tools when compared to experiments in design process.

  13. 75 FR 76337 - 2017 and Later Model Year Light-Duty Vehicle GHG Emissions and CAFE Standards: Supplemental...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-08

    ... all technologies. Nearly every OEM stressed that the agencies' costs estimates for lithium-ion batteries for HEVs/ PHEVs/EVs and mass reduction in particular were significantly too low compared to their... vehicles, hybrid-electric vehicles, plug-in hybrid electric vehicles, and battery-electric vehicles, during...

  14. Alternative Fuels Data Center: Electricity Related Links

    Science.gov Websites

    -performance safe lithium-ion (Li-ion) batteries for hybrid electric vehicles (HEVs), plug-in HEVs (PHEVs) and ) manufacturers alternative energy vehicles, specializing in battery electric vehicles (BEV) and range extended (NREL) Energy Storage Project is leading the charge on battery thermal management, modeling, and systems

  15. Alternative Fuels Data Center

    Science.gov Websites

    Plug-In Electric Vehicle (PEV) Charging Rates - Indianapolis Power & Light The Indianapolis Power & Light Co (IPL) offers special PEV charging rates, including year-round time-of-use based & Light Company Phone: (317) 261-5178 electric.vehicle@aes.com

  16. Commercial Vehicle Technology Evaluation Publications | Transportation

    Science.gov Websites

    Research | NREL Commercial Vehicle Technology Evaluation Publications Commercial Vehicle Technology Evaluation Publications NREL publishes technical reports, fact sheets, and other documents about its fleet evaluation activities: Hybrid electric vehicle publications Electric and plug-in hybrid

  17. 40 CFR 86.1871-12 - [Reserved

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... credits, air conditioning leakage credits, air conditioning efficiency credits, early advanced technology credits, and early off-cycle technology credits. Manufacturers generating any credits under this section... value. (F) Carbon-related exhaust emission values for electric, fuel cell, and plug-in hybrid electric...

  18. Free-jet acoustic investigation of high-radius-ratio coannular plug nozzles

    NASA Technical Reports Server (NTRS)

    Knott, P. R.; Janardan, B. A.; Majjigi, R. K.; Bhutiani, P. K.; Vogt, P. G.

    1984-01-01

    The experimental and analytical results of a scale model simulated flight acoustic exploratory investigation of high radius ratio coannular plug nozzles with inverted velocity and temperature profiles are summarized. Six coannular plug nozzle configurations and a baseline convergent conical nozzle were tested for simulated flight acoustic evaluation. The nozzles were tested over a range of test conditions that are typical of a Variable Cycle Engine for application to advanced high speed aircraft. It was found that in simulate flight, the high radius ratio coannular plug nozzles maintain their jet noise and shock noise reduction features previously observed in static testing. The presence of nozzle bypass struts will not significantly affect the acousticn noise reduction features of a General Electric type nozzle design. A unique coannular plug nozzle flight acoustic spectral prediction method was identified and found to predict the measured results quite well. Special laser velocimeter and acoustic measurements were performed which have given new insights into the jet and shock noise reduction mechanisms of coannular plug nozzles with regard to identifying further benificial research efforts.

  19. Free-jet acoustic investigation of high-radius-ratio coannular plug nozzles. Comprehensive data report, volume 1

    NASA Technical Reports Server (NTRS)

    Knott, P. R.; Janardan, B. A.; Majjigi, R. K.; Shutiani, P. K.; Vogt, P. G.

    1981-01-01

    Six coannular plug nozzle configurations having inverted velocity and temperature profiles, and a baseline convergent conical nozzle were tested for simulated flight acoustic evaluation in General Electric's Anechoic Free-Jet Acoustic Facility. The nozzles were tested over a range of test conditions that are typical of a Variable Cycle Engine for application to advanced high speed aircraft. The outer stream radius ratio for most of the configurations was 0.853, and the inner-stream-outer-stream area ratio was tested in the range of 0.54. Other variables investigated were the influence of bypass struts, a simple noncontoured convergent-divergent outer stream nozzle for forward quadrant shock noise control, and the effects of varying outer stream radius and inner-stream-to-outer-stream velocity ratios on the flight noise signatures of the nozzles. It was found that in simulated flight, the high-radius-ratio coannular plug nozzles maintain their jet noise and shock noise reduction features previously observed in static testing. The presence of nozzle bypass structs will not significantly effect the acoustic noise reduction features of a General Electric-type nozzle design. A unique coannular plug nozzle flight acoustic spectral prediction method was identified and found to predict the measured results quite well. Special laser velocimeter and acoustic measurements were performed which have given new insight into the jet and shock noise reduction mechanisms of coannular plug nozzles with regard to identifying further beneficial research efforts.

  20. How Do The EV Project Participants Feel about Charging Their EV at Home?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Francfort, James E.

    Key Observations from the Survey of the EV Project Participants; In June 2013, 72% of EV Project participants were very satisfied with their home charging experience; 21% of participants relied totally on home charging for all of their charging needs; Volt owners relied more on home charging than Leaf owners, who reported more use of away-from-home charging; 74% of participants reported that they plug in their plug-in electric vehicle (PEV) every time they park at home. Others plugged in as they determined necessary to support their driving needs; 40% of participants reported that they would not have or are unsuremore » that in June 2013 whether they would have purchased an alternating current (AC) Level 2 electric vehicle supply equipment (EVSE) for home charging if it had not been provided by The EV Project; and 61% of participants reported that The EV Project incentive was very important or important in their decision to obtain a PEV.« less

  1. Protecting Public Health: Plug-In Electric Vehicle Charging and the Healthcare Industry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ryder, Carrie; Lommele, Stephen

    In 2014, the U.S. transportation sector consumed more than 13 million barrels of petroleum a day, approximately 70% of all domestic petroleum consumption. Internal combustion engine vehicles are major sources of greenhouse gases (GHGs), smog-forming compounds, particulate matter, and other air pollutants. Widespread use of alternative fuels and advanced vehicles, including plug-in electric vehicles (PEVs), can reduce our national dependence on petroleum and decrease the emissions that impact our air quality and public health. Healthcare organizations are major employers and community leaders that are committed to public well-being and are often early adopters of employer best practices. A growing numbermore » of hospitals are offering PEV charging stations for employees to help promote driving electric vehicles, reduce their carbon footprint, and improve local air quality.« less

  2. An Agent-Based Information System for Electric Vehicle Charging Infrastructure Deployment

    DOT National Transportation Integrated Search

    2012-08-18

    The current scarcity of public charging infrastructure is one of the major barriers to mass household adoption of plug-in electric vehicles (PEVs). Although most PEV drivers can recharge their vehicles at home, the limited driving range of the vehicl...

  3. 40 CFR 600.007 - Vehicle acceptability.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... a different maximum value for electric vehicles, plug-in hybrid electric vehicles, and fuel cell... 600.007 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) ENERGY POLICY FUEL... Administrator will judge the acceptability of a fuel economy data vehicle on the basis of the information...

  4. 40 CFR 600.007 - Vehicle acceptability.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... a different maximum value for electric vehicles, plug-in hybrid electric vehicles, and fuel cell... 600.007 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) ENERGY POLICY FUEL... Administrator will judge the acceptability of a fuel economy data vehicle on the basis of the information...

  5. 40 CFR 600.007 - Vehicle acceptability.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... a different maximum value for electric vehicles, plug-in hybrid electric vehicles, and fuel cell... 600.007 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) ENERGY POLICY FUEL... Administrator will judge the acceptability of a fuel economy data vehicle on the basis of the information...

  6. Emissions from Plug-in Hybrid Electric Vehicle (PHEV) During Real World Driving Under Various Weather Conditions

    DOT National Transportation Integrated Search

    2018-02-02

    Exposure to particulate matter (PM) and pollutant gas (NOx) is associated with increased cardiopulmonary morbidity and mortality. Mobile source emissions contribute to PM and NOx emissions significantly in urban areas. Hybrid Electric Vehicles (HEVs)...

  7. 46 CFR 58.25-5 - General.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ..., means a ball, plug, spool, or similar valve with a handle connected for quick manual operation. Followup... its associated electrical equipment, including motor controller, disconnect switch, and feeder circuit. (2) In the case of an electro-hydraulic steering gear, an electric motor, connected pump, and...

  8. 2015 electric vehicle market summary and barriers.

    DOT National Transportation Integrated Search

    2016-06-01

    The object of this research report is to present the current market status of plug-in-electric : vehicles (PEVs) and to predict their future penetration within the world and U.S. markets. The : sales values for 2015 show that China leads in yearly sa...

  9. Prediction of electric vehicle penetration.

    DOT National Transportation Integrated Search

    2017-05-01

    The object of this report is to present the current market status of plug-in-electric : vehicles (PEVs) and to predict their future penetration within the world and U.S. : markets. The sales values for 2016 show a strong year of PEV sales both in the...

  10. Parallax visualization of full motion video using the Pursuer GUI

    NASA Astrophysics Data System (ADS)

    Mayhew, Christopher A.; Forgues, Mark B.

    2014-06-01

    In 2013, the Authors reported to the SPIE on the Phase 1 development of a Parallax Visualization (PV) plug-in toolset for Wide Area Motion Imaging (WAMI) data using the Pursuer Graphical User Interface (GUI).1 In addition to the ability to PV WAMI data, the Phase 1 plug-in toolset also featured a limited ability to visualize Full Motion video (FMV) data. The ability to visualize both WAMI and FMV data is highly advantageous capability for an Electric Light Table (ELT) toolset. This paper reports on the Phase 2 development and addition of a full featured FMV capability to the Pursuer WAMI PV Plug-in.

  11. An innovation and policy agenda for commercially competitive plug-in hybrid electric vehicles

    NASA Astrophysics Data System (ADS)

    Lemoine, D. M.; Kammen, D. M.; Farrell, A. E.

    2008-01-01

    Plug-in hybrid electric vehicles (PHEVs) can use both grid-supplied electricity and liquid fuels. We show that under recent conditions, millions of PHEVs could have charged economically in California during both peak and off-peak hours even with modest gasoline prices and real-time electricity pricing. Special electricity rate tariffs already in place for electric vehicles could successfully render on-peak charging uneconomical and off-peak charging very attractive. However, unless battery prices fall by at least a factor of two, or gasoline prices double, the present value of fuel savings is smaller than the marginal vehicle costs, likely slowing PHEV market penetration in California. We also find that assumptions about how PHEVs are charged strongly influence the number of PHEVs that can be charged before the electric power system must be expanded. If most PHEVs are charged after the workday, and thus after the time of peak electricity demand, our forecasts suggest that several million PHEVs could be deployed in California without requiring new generation capacity, and we also find that the state's PHEV fleet is unlikely to reach into the millions within the current electricity sector planning cycle. To ensure desirable outcomes, appropriate technologies and incentives for PHEV charging will be needed if PHEV adoption becomes mainstream.

  12. Alternative Fuels Data Center: Benefits and Considerations of Electricity

    Science.gov Websites

    tailpipe emissions when in all-electric mode. The life cycle emissions of an EV or PHEV depend on the low-polluting energy sources for electricity production, plug-in vehicles typically have a life cycle strong life cycle emissions benefit. Use the Vehicle Cost Calculator to compare life cycle emissions of

  13. Alternative Fuels Data Center: Vehicle Search

    Science.gov Websites

    ZeroTruck Search Engines and Hybrid Systems For medium- and heavy-duty vehicles: Engine & Power Sources Hydraulic hybrid Hybrid - CNG Hybrid - Diesel Electric Hybrid - LNG Hybrid Search x Pick Engine Fuel Natural Gas Propane Electric Plug-in Hybrid Electric Hydraulic hybrid Hybrid Search x Pick Engine Fuel

  14. Master-slave control scheme in electric vehicle smart charging infrastructure.

    PubMed

    Chung, Ching-Yen; Chynoweth, Joshua; Chu, Chi-Cheng; Gadh, Rajit

    2014-01-01

    WINSmartEV is a software based plug-in electric vehicle (PEV) monitoring, control, and management system. It not only incorporates intelligence at every level so that charge scheduling can avoid grid bottlenecks, but it also multiplies the number of PEVs that can be plugged into a single circuit. This paper proposes, designs, and executes many upgrades to WINSmartEV. These upgrades include new hardware that makes the level 1 and level 2 chargers faster, more robust, and more scalable. It includes algorithms that provide a more optimal charge scheduling for the level 2 (EVSE) and an enhanced vehicle monitoring/identification module (VMM) system that can automatically identify PEVs and authorize charging.

  15. Consumer Views on Plug-in Electric Vehicles -- National Benchmark Report (Second Edition)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Singer, Mark

    2016-12-01

    Vehicle manufacturers, government agencies, universities, private researchers, and organizations worldwide are pursuing advanced vehicle technologies that aim to reduce the consumption of petroleum in the forms of gasoline and diesel. Plug-in electric vehicles (PEVs) are one such technology. This report, an update to the version published in January 2016, details findings from a study in February 2015 of broad American public sentiments toward issues that surround PEVs. This report is supported by the U.S. Department of Energy's Vehicle Technologies Office in alignment with its mission to develop and deploy these technologies to improve energy security, enhance mobility flexibility, reduce transportationmore » costs, and increase environmental sustainability.« less

  16. The Barriers to Acceptance of Plug-in Electric Vehicles: 2017 Update

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Singer, Mark R.

    Vehicle manufacturers, government agencies, universities, private researchers, and organizations worldwide are pursuing advanced vehicle technologies that aim to reduce the consumption of petroleum in the forms of gasoline and diesel. Plug-in electric vehicles (PEVs) are one such technology. This report, an update to the previous version published in December 2016, details findings from a study in February 2017 of broad American public sentiments toward issues that surround PEVs. This report is supported by the U.S. Department of Energy's Vehicle Technologies Office in alignment with its mission to develop and deploy these technologies to improve energy security, enhance mobility flexibility, reducemore » transportation costs, and increase environmental sustainability.« less

  17. Master-Slave Control Scheme in Electric Vehicle Smart Charging Infrastructure

    PubMed Central

    Chung, Ching-Yen; Chynoweth, Joshua; Chu, Chi-Cheng; Gadh, Rajit

    2014-01-01

    WINSmartEV is a software based plug-in electric vehicle (PEV) monitoring, control, and management system. It not only incorporates intelligence at every level so that charge scheduling can avoid grid bottlenecks, but it also multiplies the number of PEVs that can be plugged into a single circuit. This paper proposes, designs, and executes many upgrades to WINSmartEV. These upgrades include new hardware that makes the level 1 and level 2 chargers faster, more robust, and more scalable. It includes algorithms that provide a more optimal charge scheduling for the level 2 (EVSE) and an enhanced vehicle monitoring/identification module (VMM) system that can automatically identify PEVs and authorize charging. PMID:24982956

  18. Consumer Behavior and the Plug-In Electric Vehicle Purchase Decision Process: A Research Synthesis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Taylor, Margaret; Fujita, K. Sydney

    This report synthesizes consumer behavior research as it pertains to the plug-in electric vehicle (PEV) purchase decision process. The purpose is to clarify what is known about the vital role consumers play in the U.S. PEV market as it matures to become less policy-reliant and more representative of the U.S., both spatially and demographically. A more representative PEV market will: help OEMs recoup more of their R&D investments in PEVs; help American consumers access the economic and performance benefits of PEVs; and help the U.S. become more energy independent while improving air quality-related public health and reducing greenhouse gas emissions.

  19. Integrated Vehicle Thermal Management - Combining Fluid Loops in Electric Drive Vehicles (Presentation)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rugh, J. P.

    2013-07-01

    Plug-in hybrid electric vehicles and electric vehicles have increased vehicle thermal management complexity, using separate coolant loop for advanced power electronics and electric motors. Additional thermal components result in higher costs. Multiple cooling loops lead to reduced range due to increased weight. Energy is required to meet thermal requirements. This presentation for the 2013 Annual Merit Review discusses integrated vehicle thermal management by combining fluid loops in electric drive vehicles.

  20. Charging Electric Vehicles in Smart Cities: An EVI-Pro Analysis of Columbus, Ohio

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wood, Eric W.; Rames, Clement L.; Muratori, Matteo

    With the support of the U.S. Department of Energy's Vehicle Technologies Office, the National Renewable Energy Laboratory (NREL) worked with the City of Columbus, Ohio, to develop a plan for the expansion of the region's network of charging stations to support increased adoption of plug-in electric vehicles (PEVs) in the local market. NREL's Electric Vehicle Infrastructure Projection (EVI-Pro) model was used to generate scenarios of regional charging infrastructure to support consumer PEV adoption. Results indicate that approximately 400 Level 2 plugs at multi-unit dwellings and 350 Level 2 plugs at non-residential locations are required to support Columbus' primary PEV goalmore » of 5,300 PEVs on the road by the end of 2019. This analysis finds that while consumer demand for fast charging is expected to remain low (due to modest anticipated adoption of short-range battery electric vehicles), a minimum level of fast charging coverage across the city is required to ease consumer range anxiety concerns by providing a safety net for unexpected charging events. Sensitivity analyses around some key assumptions have also been performed; of these, consumer preference for PHEV versus BEV and for their electric driving range, ambient conditions, and availability of residential charging at multi-unit dwellings were identified as key determinants of the non-residential PEV charging infrastructure required to support PEV adoption. The results discussed in this report can be leveraged by similar U.S. cities as part of a strategy to accelerate PEV adoption in the light-duty vehicle market.« less

  1. ORNL Surges Forward With 20-kilowatt Wireless Charging for Electric Vehicles

    ScienceCinema

    Onar, Omer

    2018-01-16

    A 20-kilowatt wireless charging system demonstrated at Department of Energy’s Oak Ridge National Laboratory has achieved 90 percent efficiency and at three times the rate of the plug-in systems commonly used for electric vehicles today.

  2. Structural determinants of electric vehicle market growth : a National Center for Sustainable Transportation research report.

    DOT National Transportation Integrated Search

    2017-02-01

    Zero emission vehicles (ZEV) and plug-in electric vehicles (PEV) are critical technologies to attain deep reductions in greenhouse gases from transportation. PEV markets, however, have grown more slowly than anticipated by many observers. In this stu...

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Melaina, Marc W; Wood, Eric W

    The plug-in electric vehicle (PEV) market is experiencing rapid growth with dozens of battery electric (BEV) and plug-in hybrid electric (PHEV) models already available and billions of dollars being invested by automotive manufacturers in the PEV space. Electric range is increasing thanks to larger and more advanced batteries and significant infrastructure investments are being made to enable higher power fast charging. Costs are falling and PEVs are becoming more competitive with conventional vehicles. Moreover, new technologies such as connectivity and automation hold the promise of enhancing the value proposition of PEVs. This presentation outlines a suite of projects funded bymore » the U.S. Department of Energy's Vehicle Technology Office to conduct assessments of the economic value and charging infrastructure requirements of the evolving PEV market. Individual assessments include national evaluations of PEV economic value (assuming 73M PEVs on the road in 2035), national analysis of charging infrastructure requirements (with community and corridor level resolution), and case studies of PEV ownership in Columbus, OH and Massachusetts.« less

  4. INL Fleet Vehicle Characterization Study for the U.S. Department of Navy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bennett, Brion Dale; Francfort, James Edward; Smart, John Galloway

    Battelle Energy Alliance, LLC, managing and operating contractor for the U.S. Department of Energy’s Idaho National Laboratory, is the lead laboratory for U.S. Department of Energy Advanced Vehicle Testing. Battelle Energy Alliance, LLC collected and evaluated data on federal fleet operations as part of the Advanced Vehicle Testing Activity’s Federal Fleet Vehicle Data Logging and Characterization Study. The Advanced Vehicle Testing Activity’s study seeks to collect and evaluate data to validate use of advanced plug-in electric vehicle (PEV) transportation. This report focuses on US Department of Navy's fleet to identify daily operational characteristics of select vehicles and report findings onmore » vehicle and mission characterizations to support the successful introduction of PEVs into the agency’s fleets. Individual observations of these selected vehicles provide the basis for recommendations related to electric vehicle adoption and whether a battery electric vehicle or plug-in hybrid electric vehicle (collectively referred to as PEVs) can fulfill the mission requirements.« less

  5. CO2 Mitigation Potential of Plug-in Hybrid Electric Vehicles larger than expected.

    PubMed

    Plötz, P; Funke, S A; Jochem, P; Wietschel, M

    2017-11-28

    The actual contribution of plug-in hybrid and battery electric vehicles (PHEV and BEV) to greenhouse gas mitigation depends on their real-world usage. Often BEV are seen as superior as they drive only electrically and do not have any direct emissions during driving. However, empirical evidence on which vehicle electrifies more mileage with a given battery capacity is lacking. Here, we present the first systematic overview of empirical findings on actual PHEV and BEV usage for the US and Germany. Contrary to common belief, PHEV with about 60 km of real-world range currently electrify as many annual vehicles kilometres as BEV with a much smaller battery. Accordingly, PHEV recharged from renewable electricity can highly contribute to green house gas mitigation in car transport. Including the higher CO 2eq emissions during the production phase of BEV compared to PHEV, PHEV show today higher CO 2eq savings then BEVs compared to conventional vehicles. However, for significant CO 2eq improvements of PHEV and particularly of BEVs the decarbonisation of the electricity system should go on.

  6. Optimal integration of a hybrid solar-battery power source into smart home nanogrid with plug-in electric vehicle

    NASA Astrophysics Data System (ADS)

    Wu, Xiaohua; Hu, Xiaosong; Teng, Yanqiong; Qian, Shide; Cheng, Rui

    2017-09-01

    Hybrid solar-battery power source is essential in the nexus of plug-in electric vehicle (PEV), renewables, and smart building. This paper devises an optimization framework for efficient energy management and components sizing of a single smart home with home battery, PEV, and potovoltatic (PV) arrays. We seek to maximize the home economy, while satisfying home power demand and PEV driving. Based on the structure and system models of the smart home nanogrid, a convex programming (CP) problem is formulated to rapidly and efficiently optimize both the control decision and parameters of the home battery energy storage system (BESS). Considering different time horizons of optimization, home BESS prices, types and control modes of PEVs, the parameters of home BESS and electric cost are systematically investigated. Based on the developed CP control law in home to vehicle (H2V) mode and vehicle to home (V2H) mode, the home with BESS does not buy electric energy from the grid during the electric price's peak periods.

  7. Harmonic Analysis of Electric Vehicle Loadings on Distribution System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Yijun A; Xu, Yunshan; Chen, Zimin

    2014-12-01

    With the increasing number of Electric Vehicles (EV) in this age, the power system is facing huge challenges of the high penetration rates of EVs charging stations. Therefore, a technical study of the impact of EVs charging on the distribution system is required. This paper is applied with PSCAD software and aimed to analyzing the Total Harmonic Distortion (THD) brought by Electric Vehicles charging stations in power systems. The paper starts with choosing IEEE34 node test feeder as the distribution system, building electric vehicle level two charging battery model and other four different testing scenarios: overhead transmission line and undergroundmore » cable, industrial area, transformer and photovoltaic (PV) system. Then the statistic method is used to analyze different characteristics of THD in the plug-in transient, plug-out transient and steady-state charging conditions associated with these four scenarios are taken into the analysis. Finally, the factors influencing the THD in different scenarios are found. The analyzing results lead the conclusion of this paper to have constructive suggestions for both Electric Vehicle charging station construction and customers' charging habits.« less

  8. Estimating the HVAC energy consumption of plug-in electric vehicles

    NASA Astrophysics Data System (ADS)

    Kambly, Kiran R.; Bradley, Thomas H.

    2014-08-01

    Plug in electric vehicles are vehicles that use energy from the electric grid to provide tractive and accessory power to the vehicle. Due to the limited specific energy of energy storage systems, the energy requirements of heating, ventilation, and air conditioning (HVAC) systems for cabin conditioning can significantly reduce their range between charges. Factors such as local ambient temperature, local solar radiation, local humidity, length of the trip and thermal soak have been identified as primary drivers of cabin conditioning loads and therefore of vehicle range. The objective of this paper is to develop a detailed systems-level approach to connect HVAC technologies and usage conditions to consumer-centric metrics of vehicle performance including energy consumption and range. This includes consideration of stochastic and transient inputs to the HVAC energy consumption model including local weather, solar loads, driving behavior, charging behavior, and regional passenger fleet population. The resulting engineering toolset is used to determine the summation of and geographical distribution of energy consumption by HVAC systems in electric vehicles, and to identify regions of US where the distributions of electric vehicle range are particularly sensitive to climate.

  9. Potential Impacts of Plug-in Hybrid Electric Vehicles on Regional Power Generation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hadley, Stanton W; Tsvetkova, Alexandra A

    2008-01-01

    Plug-in hybrid electric vehicles (PHEVs) are being developed around the world, with much work aiming to optimize engine and battery for efficient operation, both during discharge and when grid electricity is available for recharging. However, the general expectation has been that the grid will not be greatly affected by the use of PHEVs because the recharging will occur during off-peak hours, or the number of vehicles will grow slowly enough so that capacity planning will respond adequately. This expectation does not consider that drivers will control the timing of recharging, and their inclination will be to plug in when convenient,more » rather than when utilities would prefer. It is important to understand the ramifications of adding load from PHEVs onto the grid. Depending on when and where the vehicles are plugged in, they could cause local or regional constraints on the grid. They could require the addition of new electric capacity and increase the utilization of existing capacity. Usage patterns of local distribution grids will change, and some lines or substations may become overloaded sooner than expected. Furthermore, the type of generation used to meet the demand for recharging PHEVs will depend on the region of the country and the timing of recharging. This paper analyzes the potential impacts of PHEVs on electricity demand, supply, generation structure, prices, and associated emission levels in 2020 and 2030 in 13 regions specified by the North American Electric Reliability Corporation (NERC) and the U.S. Department of Energy's (DOE's) Energy Information Administration (EIA), and on which the data and analysis in EIA's Annual Energy Outlook 2007 are based (Figure ES-1). The estimates of power plant supplies and regional hourly electricity demand come from publicly available sources from EIA and the Federal Energy Regulatory Commission. Electricity requirements for PHEVs are based on analysis from the Electric Power Research Institute, with an optimistic projection of 25% market penetration by 2020, involving a mixture of sedans and sport utility vehicles. The calculations were done using the Oak Ridge Competitive Electricity Dispatch (ORCED) model, a model developed over the past 12 years to evaluate a wide variety of critical electricity sector issues. Seven scenarios were run for each region for 2020 and 2030, for a total of 182 scenarios. In addition to a base scenario of no PHEVs, the authors modeled scenarios assuming that vehicles were either plugged in starting at 5:00 p.m. (evening) or at 10:00 p.m.(night) and left until fully charged. Three charging rates were examined: 120V/15A (1.4 kW), 120V/20A (2 kW), and 220V/30A (6 kW). Most regions will need to build additional capacity or utilize demand response to meet the added demand from PHEVs in the evening charging scenarios, especially by 2030 when PHEVs have a larger share of the installed vehicle base and make a larger demand on the system. The added demands of evening charging, especially at high power levels, can impact the overall demand peaks and reduce the reserve margins for a region's system. Night recharging has little potential to influence peak loads, but will still influence the amount and type of generation.« less

  10. Influence of body position on the displacement of nasal prongs in preterm newborns receiving continuous positive airway pressure

    PubMed Central

    Brunherotti, Marisa Afonso Andrade; Martinez, Francisco Eulógio

    2015-01-01

    Abstract Objective: To evaluate the influence of body position on the displacement of nasal prongs in preterm infants. Methods: This prospective, randomized, crossover study enrolled infants born at a mean gestational age of 29.7±2 weeks, birth weight of 1353±280g and 2.9±2.2 days of life, submitted to continuous positive airway pressure by nasal prongs. The main outcome was the number of times that the nasal prongs were displaced following infant positioning in the following body positions: prone, right lateral, left lateral, and supine, according to a pre-established random order. Moreover, cardiorespiratory variables (respiratory rate, heart rate, and oxygen saturation) were evaluated for each body position. Data for each position were collected every 10 min, over a period of 60 min. An occurrence was defined when the nasal prongs were displaced from the nostrils after 3 min in the desired position, requiring intervention of the examiner. Results: Among the 16 studied infants, the occurrence of nasal prong displacement was only observed in the prone position (9 infants - 56.2%) and in the left lateral position (2 infants - 12.5%). The number of times that the prongs were displaced was 11 in the prone position (7 within the first 10min) and 2 in the left lateral position (1 within the first 10min). No clinically significant changes were observed in the cardiorespiratory variables. Conclusions: Maintenance of the nasal prongs to provide adequate noninvasive respiratory support was harder in the prone position. PMID:26116326

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Graham, Robert L.; Francis, Julieta; Bogacz, Richard J.

    Grid investments that support electric vehicle deployments as a part of planned modernization efforts can enable a more efficient and cost-effective transition to electric transportation and allow investor-owned electric companies and public power companies to realize new revenue resources in times of flat or declining loads. This paper discusses the challenges and opportunities associated with an increase in plug-in electric vehicle (PEV) adoption and how working together both sectors stand to benefit from closer integration.

  12. Vehicle to Electric Vehicle Supply Equipment Smart Grid Communications Interface Research and Testing Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kevin Morrow; Dimitri Hochard; Jeff Wishart

    2011-09-01

    Plug-in electric vehicles (PEVs), including battery electric, plug-in hybrid electric, and extended range electric vehicles, are under evaluation by the U.S. Department of Energy's Advanced Vehicle Testing Activity (AVTA) and other various stakeholders to better understand their capability and potential petroleum reduction benefits. PEVs could allow users to significantly improve fuel economy over a standard hybrid electric vehicles, and in some cases, depending on daily driving requirements and vehicle design, PEVs may have the ability to eliminate petroleum consumption entirely for daily vehicle trips. The AVTA is working jointly with the Society of Automotive Engineers (SAE) to assist in themore » further development of standards necessary for the advancement of PEVs. This report analyzes different methods and available hardware for advanced communications between the electric vehicle supply equipment (EVSE) and the PEV; particularly Power Line Devices and their physical layer. Results of this study are not conclusive, but add to the collective knowledge base in this area to help define further testing that will be necessary for the development of the final recommended SAE communications standard. The Idaho National Laboratory and the Electric Transportation Applications conduct the AVTA for the United States Department of Energy's Vehicle Technologies Program.« less

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schey, Steve

    Several U.S. Department of Defense based studies have been conducted to identify potential U.S. Department of Defense transportation systems that are strong candidates for introduction or expansion of plug-in electric vehicles (PEVs). Task 2 involved identifying daily operational characteristics of select vehicles and initiating data logging of vehicle movements in order to characterize the vehicle’s mission. Individual observations of these selected vehicles provide the basis for recommendations related to PEV adoption and whether a battery electric vehicle or plug-in hybrid electric vehicle (collectively referred to as PEVs) can fulfill the mission requirements and provide observations related to placement of PEVmore » charging infrastructure. This report provides the results of the data analysis and observations related to replacement of current vehicles with PEVs. This fulfills part of the Task 3 requirements. Task 3 also includes an assessment of the charging infrastructure required to support this replacement, which is the subject of a separate report.« less

  14. Self-learning control system for plug-in hybrid vehicles

    DOEpatents

    DeVault, Robert C [Knoxville, TN

    2010-12-14

    A system is provided to instruct a plug-in hybrid electric vehicle how optimally to use electric propulsion from a rechargeable energy storage device to reach an electric recharging station, while maintaining as high a state of charge (SOC) as desired along the route prior to arriving at the recharging station at a minimum SOC. The system can include the step of calculating a straight-line distance and/or actual distance between an orientation point and the determined instant present location to determine when to initiate optimally a charge depleting phase. The system can limit extended driving on a deeply discharged rechargeable energy storage device and reduce the number of deep discharge cycles for the rechargeable energy storage device, thereby improving the effective lifetime of the rechargeable energy storage device. This "Just-in-Time strategy can be initiated automatically without operator input to accommodate the unsophisticated operator and without needing a navigation system/GPS input.

  15. The value of plug-in hybrid electric vehicles as grid resources

    DOE PAGES

    Sioshansi, Ramteen; Denholm, Paul

    2010-07-01

    Here, plug-in hybrid electric vehicles (PHEVs) can become valuable resources for an electric power system by providing vehicle to grid (V2G) services, such as energy storage and ancillary services. We use a unit commitment model of the Texas power system to simulate system operations with different-sized PHEV fleets that do and do not provide V2G services, to estimate the value of those services. We demonstrate that a PHEV fleet can provide benefits to the system, mainly through the provision of ancillary services, reducing the need to reserve conventional generator capacity. Moreover, our analysis shows that PHEV owners are made bettermore » off by providing V2G services and we demonstrate that these benefits can reduce the time it takes to recover the higher upfront capital cost of a PHEV when compared to other vehicle types.« less

  16. Plug-In Electric Vehicle Handbook for Consumers (Spanish Version); Clean Cities, Energy Efficiency & Renewable Energy (EERE)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    This is a Spanish-language handbook designed to answer a consumer's basic questions, as well as point them to additional information they need, to make the best decision about whether an electric-drive vehicle is right for them.

  17. Effect of regional grid mix, driving patterns and climate on the comparative carbon footprint of gasoline and plug-in electric vehicles in the United States

    NASA Astrophysics Data System (ADS)

    Yuksel, Tugce; Tamayao, Mili-Ann M.; Hendrickson, Chris; Azevedo, Inês M. L.; Michalek, Jeremy J.

    2016-04-01

    We compare life cycle greenhouse gas (GHG) emissions from several light-duty passenger gasoline and plug-in electric vehicles (PEVs) across US counties by accounting for regional differences due to marginal grid mix, ambient temperature, patterns of vehicle miles traveled (VMT), and driving conditions (city versus highway). We find that PEVs can have larger or smaller carbon footprints than gasoline vehicles, depending on these regional factors and the specific vehicle models being compared. The Nissan Leaf battery electric vehicle has a smaller carbon footprint than the most efficient gasoline vehicle (the Toyota Prius) in the urban counties of California, Texas and Florida, whereas the Prius has a smaller carbon footprint in the Midwest and the South. The Leaf is lower emitting than the Mazda 3 conventional gasoline vehicle in most urban counties, but the Mazda 3 is lower emitting in rural Midwest counties. The Chevrolet Volt plug-in hybrid electric vehicle has a larger carbon footprint than the Prius throughout the continental US, though the Volt has a smaller carbon footprint than the Mazda 3 in many urban counties. Regional grid mix, temperature, driving conditions, and vehicle model all have substantial implications for identifying which technology has the lowest carbon footprint, whereas regional patterns of VMT have a much smaller effect. Given the variation in relative GHG implications, it is unlikely that blunt policy instruments that favor specific technology categories can ensure emission reductions universally.

  18. Alternative Fuels Data Center: Propane Powers School Buses in Tuscaloosa,

    Science.gov Websites

    Efficiency March 8, 2014 Renzenberger Inc Saves Money With Propane Vans Feb. 1, 2014 Photo of a school bus and Plug-In Electric Vehicles March 31, 2012 Natural Gas School Buses Help Kansas City Save Money Nov Electric Shuttle Buses Offer Free Rides in Maryland June 18, 2010 Electric Trolley Boosts Business in

  19. Alternative Fuels Data Center: Frito-Lay Delivers With Electric Truck Fleet

    Science.gov Websites

    . Rental Cars Go Electric in Florida Feb. 15, 2014 Renzenberger Inc Saves Money With Propane Vans Feb. 1 Through Philly March 3, 2012 Natural Gas School Buses Help Kansas City Save Money Nov. 12, 2011 Electric Shuttle Buses Offer Free Rides in Maryland June 18, 2010 Fisher Coachworks Develops Plug-In

  20. Alternative Fuels Data Center: Tennessee Reduces Pollution With Propane

    Science.gov Websites

    Money With Propane Vans Feb. 1, 2014 Photo of an electric vehicle at a charging station Companies Power Natural Gas School Buses Help Kansas City Save Money Nov. 12, 2011 Electric Trucks Deliver at Kansas City Free Rides in Maryland June 18, 2010 Fisher Coachworks Develops Plug-In Electric Bus in Michigan June 3

  1. Socially optimal electric driving range of plug-in hybrid electric vehicles

    DOE PAGES

    Kontou, Eleftheria; Yin, Yafeng; Lin, Zhenhong

    2015-07-25

    Our study determines the optimal electric driving range of plug-in hybrid electric vehicles (PHEVs) that minimizes the daily cost borne by the society when using this technology. An optimization framework is developed and applied to datasets representing the US market. Results indicate that the optimal range is 16 miles with an average social cost of 3.19 per day when exclusively charging at home, compared to 3.27 per day of driving a conventional vehicle. The optimal range is found to be sensitive to the cost of battery packs and the price of gasoline. Moreover, when workplace charging is available, the optimalmore » electric driving range surprisingly increases from 16 to 22 miles, as larger batteries would allow drivers to better take advantage of the charging opportunities to achieve longer electrified travel distances, yielding social cost savings. If workplace charging is available, the optimal density is to deploy a workplace charger for every 3.66 vehicles. Finally, the diversification of the battery size, i.e., introducing a pair and triple of electric driving ranges to the market, could further decrease the average societal cost per PHEV by 7.45% and 11.5% respectively.« less

  2. Variable-Reluctance Motor For Electric Vehicles

    NASA Technical Reports Server (NTRS)

    Lang, Jeffrey H.

    1987-01-01

    Report describes research on variable-reluctance electric-motor drive for eventual use in electric-vehicle propulsion. Primary design and performance criteria were torque and power output per unit mass of motor, cost, and drive efficiency. For each criterion, optimized drive design developed, and designs unified to yield single electric-vehicle drive. Scaled-down motor performed as expected. Prototype of paraplegic lift operated by toggle switch and joystick. Lift plugs into household electrical outlet for recharging when not in use.

  3. Electromagnetic Analysis of ITER Diagnostic Equatorial Port Plugs During Plasma Disruptions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Y. Zhai, R. Feder, A. Brooks, M. Ulrickson, C.S. Pitcher and G.D. Loesser

    2012-08-27

    ITER diagnostic port plugs perform many functionsincluding structural support of diagnostic systems under high electromagnetic loads while allowing for diagnostic access to the plasma. The design of diagnostic equatorial port plugs (EPP) are largely driven by electromagnetic loads and associate responses of EPP structure during plasma disruptions and VDEs. This paper summarizes results of transient electromagnetic analysis using Opera 3d in support of the design activities for ITER diagnostic EPP. A complete distribution of disruption loads on the Diagnostic First Walls (DFWs), Diagnostic Shield Modules (DSMs) and the EPP structure, as well as impact on the system design integration duemore » to electrical contact among various EPP structural components are discussed.« less

  4. 40 CFR 86.1867-12 - Optional early CO2 credit programs.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... efficiency credits, early advanced technology credits, and early off-cycle technology credits. Manufacturers...) Carbon-related exhaust emission values for electric, fuel cell, and plug-in hybrid electric model types... extent that such vehicles are not being used to generate early advanced technology vehicle credits under...

  5. 40 CFR 600.006 - Data and information requirements for fuel economy data vehicles.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... for electric vehicles, plug-in hybrid electric vehicles, and fuel cell vehicles to allow for properly... fuel economy data vehicles. 600.006 Section 600.006 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) ENERGY POLICY FUEL ECONOMY AND GREENHOUSE GAS EXHAUST EMISSIONS OF MOTOR VEHICLES...

  6. 40 CFR 600.006 - Data and information requirements for fuel economy data vehicles.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... for electric vehicles, plug-in hybrid electric vehicles, and fuel cell vehicles to allow for properly... fuel economy data vehicles. 600.006 Section 600.006 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) ENERGY POLICY FUEL ECONOMY AND GREENHOUSE GAS EXHAUST EMISSIONS OF MOTOR VEHICLES...

  7. 40 CFR 600.006 - Data and information requirements for fuel economy data vehicles.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... for electric vehicles, plug-in hybrid electric vehicles, and fuel cell vehicles to allow for properly... fuel economy data vehicles. 600.006 Section 600.006 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) ENERGY POLICY FUEL ECONOMY AND GREENHOUSE GAS EXHAUST EMISSIONS OF MOTOR VEHICLES...

  8. Energy Consumption and Cost Savings of Truck Electrification for Heavy-Duty Vehicle Applications

    DOE PAGES

    Gao, Zhiming; Lin, Zhenhong; Franzese, Oscar

    2017-01-01

    Our paper evaluates the application of battery electric vehicles (BEVs) and genset plug-in hybrid electric vehicles (PHEVs) to Class-7 local delivery trucks and genset PHEV for Class-8 utility bucket trucks over widely real-world driving data performed by conventional heavy-duty trucks.

  9. 40 CFR 86.1866-12 - CO2 credits for advanced technology vehicles.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 20 2013-07-01 2013-07-01 false CO2 credits for advanced technology vehicles. 86.1866-12 Section 86.1866-12 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... advanced technology vehicles. (a) Electric vehicles, plug-in hybrid electric vehicles, and fuel cell...

  10. 40 CFR 86.1866-12 - CO2 credits for advanced technology vehicles.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 19 2014-07-01 2014-07-01 false CO2 credits for advanced technology vehicles. 86.1866-12 Section 86.1866-12 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... technology vehicles. (a) Electric vehicles, plug-in hybrid electric vehicles, and fuel cell vehicles, as...

  11. 77 FR 34872 - Airworthiness Directives; Fokker Services B.V. Airplanes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-12

    ... require modifying galley power supply wiring by disconnecting it from the affected plug/receptacle and reconnecting the power supply wiring through splices. We are proposing this AD to prevent a high electrical load which may lead to overheating of the galley power supply wiring and/or the electrical connector...

  12. 40 CFR 600.514-12 - Reports to the Environmental Protection Agency.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...-cycle technology, advanced technology vehicles, hybrid or low-emission full size pickup trucks, and...-related exhaust emissions for any electric vehicles, fuel cell vehicles and plug-in hybrid vehicles; (vii) A summary by model year (beginning with the 2009 model year) of the number of electric vehicles...

  13. 40 CFR 86.1867-12 - Optional early CO2 credit programs.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... efficiency credits, early advanced technology credits, and early off-cycle technology credits. Manufacturers... an approved value. (F) Carbon-related exhaust emission values for electric, fuel cell, and plug-in hybrid electric model types shall be included in the fleet average determined under paragraph (a)(1) of...

  14. 40 CFR 600.514-12 - Reports to the Environmental Protection Agency.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...-cycle technology, advanced technology vehicles, hybrid or low-emission full size pickup trucks, and...-related exhaust emissions for any electric vehicles, fuel cell vehicles and plug-in hybrid vehicles; (vii) A summary by model year (beginning with the 2009 model year) of the number of electric vehicles...

  15. 40 CFR 86.1871-12 - Optional early CO2 credit programs.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... efficiency credits, early advanced technology credits, and early off-cycle technology credits. Manufacturers... manufacturer may use such an approved value. (F) Carbon-related exhaust emission values for electric, fuel cell, and plug-in hybrid electric model types shall be included in the fleet average determined under...

  16. 40 CFR 86.1867-12 - Optional early CO2 credit programs.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... efficiency credits, early advanced technology credits, and early off-cycle technology credits. Manufacturers...) Carbon-related exhaust emission values for electric, fuel cell, and plug-in hybrid electric model types... extent that such vehicles are not being used to generate early advanced technology vehicle credits under...

  17. Consumer Views on Plug-in Electric Vehicles -- National Benchmark Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Singer, Mark

    2016-01-31

    Vehicle manufacturers, U.S. Department of Energy laboratories, universities, private researchers, and organizations from around the globe are pursuing advanced vehicle technologies that aim to reduce the consumption of petroleum in the form of gasoline and diesel. In order to make these technologies most appealing to the marketplace, they must take consumer sentiment into account. This report details study findings of broad American public sentiments toward issues that surround the advanced vehicle technologies of plug-in electric vehicles and is supported by the U.S. Department of Energy's Vehicle Technology Office in alignment with its mission to develop and deploy these technologies tomore » improve energy security, provide mobility flexibility, reduce transportation costs, and increase environmental sustainability.« less

  18. Cost-Effective and Ecofriendly Plug-In Hybrid Electric Vehicle Charging Management

    DOE PAGES

    Kontou, Eleftheria; Yin, Yafeng; Ge, Ying-en

    2017-01-01

    In this study we explore two charging management schemes for plug-in hybrid electric vehicles (PHEVs). The PHEV drivers and the government were stakeholders who might have preferred different charging control strategies. For the former, a proposed controlled charging scheme minimized the operational cost during PHEV charge-depleting and sustaining modes. For the latter, the research minimized monetized carbon dioxide emissions from electricity generation for the PHEVs charging, as well as tailpipe emissions for the portion of PHEV trips fueled by gasoline. Hourly driving patterns and electricity data were leveraged. Both were representative of each of the eight North American Electric Reliabilitymore » Corporation regions to examine the results of the proposed schemes. The model accounted for drivers' activity patterns and charging availability spatial and temporal heterogeneity. The optimal charging profiles confirmed the differing nature of the objectives of PHEV drivers and the government; cost-effective charge should occur early in the morning, while ecofriendly charge should be late in the afternoon. Each control's trade-offs between operation cost and emission savings are discussed for each North American Electric Reliability Corporation region. The availability of workplace and public charging was found to affect the optimal charging profiles greatly. Charging control is more efficient for drivers and government when PHEVs have greater electric range.« less

  19. Cost-Effective and Ecofriendly Plug-In Hybrid Electric Vehicle Charging Management

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kontou, Eleftheria; Yin, Yafeng; Ge, Ying-en

    In this study we explore two charging management schemes for plug-in hybrid electric vehicles (PHEVs). The PHEV drivers and the government were stakeholders who might have preferred different charging control strategies. For the former, a proposed controlled charging scheme minimized the operational cost during PHEV charge-depleting and sustaining modes. For the latter, the research minimized monetized carbon dioxide emissions from electricity generation for the PHEVs charging, as well as tailpipe emissions for the portion of PHEV trips fueled by gasoline. Hourly driving patterns and electricity data were leveraged. Both were representative of each of the eight North American Electric Reliabilitymore » Corporation regions to examine the results of the proposed schemes. The model accounted for drivers' activity patterns and charging availability spatial and temporal heterogeneity. The optimal charging profiles confirmed the differing nature of the objectives of PHEV drivers and the government; cost-effective charge should occur early in the morning, while ecofriendly charge should be late in the afternoon. Each control's trade-offs between operation cost and emission savings are discussed for each North American Electric Reliability Corporation region. The availability of workplace and public charging was found to affect the optimal charging profiles greatly. Charging control is more efficient for drivers and government when PHEVs have greater electric range.« less

  20. Implications of driving patterns on well-to-wheel performance of plug-in hybrid electric vehicles.

    PubMed

    Raykin, Leon; MacLean, Heather L; Roorda, Matthew J

    2012-06-05

    This study examines how driving patterns (distance and conditions) and the electricity generation supply interact to impact well-to-wheel (WTW) energy use and greenhouse gas (GHG) emissions of plug-in hybrid electric vehicles (PHEVs). The WTW performance of a PHEV is compared with that of a similar (nonplug-in) gasoline hybrid electric vehicle and internal combustion engine vehicle (ICEV). Driving PHEVs for short distances between recharging generally results in lower WTW total and fossil energy use and GHG emissions per kilometer compared to driving long distances, but the extent of the reductions depends on the electricity supply. For example, the shortest driving pattern in this study with hydroelectricity uses 81% less fossil energy than the longest driving pattern. However, the shortest driving pattern with coal-based electricity uses only 28% less fossil energy. Similar trends are observed in reductions relative to the nonplug-in vehicles. Irrespective of the electricity supply, PHEVs result in greater reductions in WTW energy use and GHG emissions relative to ICEVs for city than highway driving conditions. PHEVs charging from coal facilities only reduce WTW energy use and GHG emissions relative to ICEVs for certain favorable driving conditions. The study results have implications for environmentally beneficial PHEV adoption and usage patterns.

  1. Development of Tuning Fork Based Probes for Atomic Force Microscopy

    NASA Astrophysics Data System (ADS)

    Jalilian, Romaneh; Yazdanpanah, Mehdi M.; Torrez, Neil; Alizadeh, Amirali; Askari, Davood

    2014-03-01

    This article reports on the development of tuning fork-based AFM/STM probes in NaugaNeedles LLC for use in atomic force microscopy. These probes can be mounted on different carriers per customers' request. (e.g., RHK carrier, Omicron carrier, and tuning fork on a Sapphire disk). We are able to design and engineer tuning forks on any type of carrier used in the market. We can attach three types of tips on the edge of a tuning fork prong (i.e., growing Ag2Ga nanoneedles at any arbitrary angle, cantilever of AFM tip, and tungsten wire) with lengths from 100-500 μm. The nanoneedle is located vertical to the fork. Using a suitable insulation and metallic coating, we can make QPlus sensors that can detect tunneling current during the AFM scan. To make Qplus sensors, the entire quartz fork will be coated with an insulating material, before attaching the nanoneedle. Then, the top edge of one prong is coated with a thin layer of conductive metal and the nanoneedle is attached to the fork end of the metal coated prong. The metal coating provides electrical connection to the tip for tunneling current readout and to the electrodes and used to read the QPlus current. Since the amount of mass added to the fork is minimal, the resonance frequency spectrum does not change and still remains around 32.6 KHz and the Q factor is around 1,200 in ambient condition. These probes can enhance the performance of tuning fork based atomic microscopy.

  2. Design and development of electric vehicle charging station equipped with RFID

    NASA Astrophysics Data System (ADS)

    Panatarani, C.; Murtaddo, D.; Maulana, D. W.; Irawan, S.; Joni, I. M.

    2016-02-01

    This paper reports the development of electric charging station from distributed renewable for electric vehicle (EV). This designed refer to the input voltage standard of IEC 61851, plugs features of IEC 62196 and standard communication of ISO 15118. The developed electric charging station used microcontroller ATMEGA8535 and RFID as controller and identifier of the EV users, respectively. The charging station successfully developed as desired features for electric vehicle from renewable energy resources grid with solar panel, wind power and batteries storage.

  3. Electric shocks are ineffective in treatment of lethal effects of rattlesnake envenomation in mice.

    PubMed

    Johnson, E K; Kardong, K V; Mackessy, S P

    1987-01-01

    Electrical shocks, even crudely delivered from 'stun guns' and gasoline engine spark plugs, have been reported to be effective in the treatment of snake bite. We thus applied similar electric shocks to mice artificially injected with reconstituted rattlesnake venom at various LD50 multiples. Those envenomated mice treated with electric shock survived no better than the controls. We thus found no evidence that electric shocks crudely administered had any life saving effect in mice.

  4. High-flow nasal prong oxygen therapy or nasopharyngeal continuous positive airway pressure for children with moderate-to-severe respiratory distress?*.

    PubMed

    ten Brink, Fia; Duke, Trevor; Evans, Janine

    2013-09-01

    The aim of this study was to compare the use of high-flow nasal prong oxygen therapy to nasopharyngeal continuous positive airway pressure in a PICU at a tertiary hospital; to understand the safety and effectiveness of high-flow nasal prong therapy; in particular, what proportion of children require escalation of therapy, whether any bedside monitoring data predict stability or need for escalation, and complications of the therapies. This was a prospective observational study of the first 6 months after the introduction of high-flow nasal prong oxygen therapy at the Royal Children's Hospital in Melbourne. Data were collected on all children who were managed with either high-flow nasal prong oxygen therapy or nasopharyngeal continuous positive airway pressure. The mode of respiratory support was determined by the treating medical staff. Data were collected on each patient before the use of high-flow nasal prong or nasopharyngeal continuous positive airway pressure, at 2 hours after starting the therapy, and the children were monitored and data collected until discharge from the ICU. Therapy was considered to be escalated if children on high-flow nasal prong required a more invasive form or higher level of respiratory support, including nasopharyngeal continuous positive airway pressure or mask bilevel positive airway pressure or endotracheal intubation and mechanical ventilation. Therapy was considered to be escalated if children on nasopharyngeal continuous positive airway pressure required bilevel positive airway pressure or intubation and mechanical ventilation. As the first mode of respiratory support, 72 children received high-flow nasal prong therapy and 37 received nasopharyngeal continuous positive airway pressure. Forty-four patients (61%) who received high-flow nasal prong first were weaned to low-flow oxygen or to room air and 21 (29%) required escalation of respiratory support, compared with children on nasopharyngeal continuous positive airway pressure: 21 (57%) weaned successfully and 9 (24%) required escalation. Repeated treatment and crossover were common in this cohort. Throughout the study duration, escalation to a higher level of respiratory support was needed in 26 of 100 high-flow nasal prong treatment episodes (26%) and in 10 of 55 continuous positive airway pressure episodes (18%; p = 0.27). The need for escalation could be predicted by two of failure of normalization of heart rate and respiratory rate, and if the FIO2 did not fall to lower than 0.5, 2 hours after starting high-flow nasal prong therapy. Nasopharyngeal continuous positive airway pressure was required for significantly longer periods than high-flow nasal prong (median 48 and 18 hours, respectively; p ≤ 0.001). High-flow nasal prong therapy is a safe form of respiratory support for children with moderate-to-severe respiratory distress, across a large range of diagnoses, whose increased work of breathing or hypoxemia is not relieved by standard oxygen therapy. About one quarter of all children will require escalation to another form of respiratory support. This can be predicted by simple bedside observations.

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Giles, Carrie; Ryder, Carrie; Lommele, Stephen

    This case study features the experiences of university partners in the U.S. Department of Energy's (DOE) Workplace Charging Challenge with the installation and management of plug-in electric vehicle (PEV) charging stations.

  6. Telematics and Data Science: Informing Energy-Efficient Mobility: October 25, 2016 - October 31, 2017

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sears, Edward B; Daley, Ryan; Helm, Matthew

    The University of Connecticut (UCONN) is exploring the possibility of adding electric vehicles (EVs) - including battery electric vehicles (BEVs), plug-in hybrid electric vehicles (PHEVs), or both - to its vehicle fleet. This report presents results of the UCONN fleet EV Suitability pilot program and offers recommendations for transitioning fleet vehicles to EVs as well as implementing adequate charging infrastructure.

  7. Techno-economic comparison of series hybrid, plug-in hybrid, fuel cell and regular cars

    NASA Astrophysics Data System (ADS)

    van Vliet, Oscar P. R.; Kruithof, Thomas; Turkenburg, Wim C.; Faaij, André P. C.

    We examine the competitiveness of series hybrid compared to fuel cell, parallel hybrid, and regular cars. We use public domain data to determine efficiency, fuel consumption, total costs of ownership and greenhouse gas emissions resulting from drivetrain choices. The series hybrid drivetrain can be seen both as an alternative to petrol, diesel and parallel hybrid cars, as well as an intermediate stage towards fully electric or fuel cell cars. We calculate the fuel consumption and costs of four diesel-fuelled series hybrid, four plug-in hybrid and four fuel cell car configurations, and compared these to three reference cars. We find that series hybrid cars may reduce fuel consumption by 34-47%, but cost €5000-12,000 more. Well-to-wheel greenhouse gas emissions may be reduced to 89-103 g CO 2 km -1 compared to reference petrol (163 g km -1) and diesel cars (156 g km -1). Series hybrid cars with wheel motors have lower weight and 7-21% lower fuel consumption than those with central electric motors. The fuel cell car remains uncompetitive even if production costs of fuel cells come down by 90%. Plug-in hybrid cars are competitive when driving large distances on electricity, and/or if cost of batteries come down substantially. Well-to-wheel greenhouse gas emissions may be reduced to 60-69 g CO 2 km -1.

  8. 40 CFR 600.210-08 - Calculation of fuel economy values for labeling.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... electric vehicles, fuel cell vehicles, plug-in hybrid electric vehicles and vehicles equipped with hydrogen... 40 Protection of Environment 31 2012-07-01 2012-07-01 false Calculation of fuel economy values for... (CONTINUED) ENERGY POLICY FUEL ECONOMY AND GREENHOUSE GAS EXHAUST EMISSIONS OF MOTOR VEHICLES Procedures for...

  9. 40 CFR 600.210-08 - Calculation of fuel economy values for labeling.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... electric vehicles, fuel cell vehicles, plug-in hybrid electric vehicles and vehicles equipped with hydrogen... 40 Protection of Environment 31 2013-07-01 2013-07-01 false Calculation of fuel economy values for... (CONTINUED) ENERGY POLICY FUEL ECONOMY AND GREENHOUSE GAS EXHAUST EMISSIONS OF MOTOR VEHICLES Procedures for...

  10. 40 CFR 600.210-08 - Calculation of fuel economy values for labeling.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... including, but not limited to battery electric vehicles, fuel cell vehicles, plug-in hybrid electric... 40 Protection of Environment 30 2011-07-01 2011-07-01 false Calculation of fuel economy values for... (CONTINUED) ENERGY POLICY FUEL ECONOMY AND CARBON-RELATED EXHAUST EMISSIONS OF MOTOR VEHICLES Procedures for...

  11. Alternative Fuels Data Center: Smart Car Shopping

    Science.gov Websites

    vehicle charging stations. Rental Cars Go Electric in Florida Feb. 15, 2014 Renzenberger Inc Saves Money Help Kansas City Save Money Nov. 12, 2011 Metropolitan Utilities District Fuels Vehicles With Natural Free Rides in Maryland June 18, 2010 Fisher Coachworks Develops Plug-In Electric Bus in Michigan June 3

  12. Alternative Fuels Data Center

    Science.gov Websites

    Plug-In Electric Vehicle (PEV) Charging Rate Incentive - Xcel Energy Xcel Energy offers two rate options to qualified residential customers for charging PEVs. The Electric Vehicle (EV) Rate and the Time -of-Day Plan are optional and require a separate meter. For rate information, including how to qualify

  13. 77 FR 58765 - Airworthiness Directives; Fokker Services B.V. Airplanes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-09-24

    .... This AD requires modifying galley power supply wiring by disconnecting it from the affected plug/ receptacle and reconnecting the power supply wiring through splices. We are issuing this AD to prevent a high electrical load, which might lead to overheating of the galley power supply wiring and/or the electrical...

  14. 40 CFR 600.514-12 - Reports to the Environmental Protection Agency.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...-cycle technology, and various early credit programs; (vi) A description of the method which will be used to calculate the carbon-related exhaust emissions for any electric vehicles, fuel cell vehicles and... number of electric vehicles, fuel cell vehicles and plug-in hybrid vehicles using (or projected to use...

  15. Electromagnetic Analysis For The Design Of ITER Diagnostic Port Plugs During Plasma Disruptions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhai, Y

    2014-03-03

    ITER diagnostic port plugs perform many functions including structural support of diagnostic systems under high electromagnetic loads while allowing for diagnostic access to plasma. The design of diagnotic equatorial port plugs (EPP) are largely driven by electromagnetic loads and associate response of EPP structure during plasma disruptions and VDEs. This paper summarizes results of transient electromagnetic analysis using Opera 3d in support of the design activities for ITER diagnostic EPP. A complete distribution of disruption loads on the Diagnostic First Walls (DFWs). Diagnostic Shield Modules (DSMs) and the EPP structure, as well as impact on the system design integration duemore » to electrical contact among various EPP structural components are discussed.« less

  16. Coil-On-Plug Ignition for Oxygen/Methane Liquid Rocket Engines in Thermal-Vacuum Environments

    NASA Technical Reports Server (NTRS)

    Melcher, John C.; Atwell, Matthew J.; Morehead, Robert L.; Hurlbert, Eric A.; Bugarin, Luz; Chaidez, Mariana

    2017-01-01

    A coil-on-plug ignition system has been developed and tested for Liquid Oxygen (LOX)/liquid methane (LCH4) rocket engines operating in thermal vacuum conditions. The igniters were developed and tested as part of the Integrated Cryogenic Propulsion Test Article (ICPTA), previously tested as part of the Project Morpheus test vehicle. The ICPTA uses an integrated, pressure-fed, cryogenic LOX/LCH4 propulsion system including a reaction control system (RCS) and a main engine. The ICPTA was tested at NASA Glenn Research Center's Plum Brook Station in the Spacecraft Propulsion Research Facility (B-2) under vacuum and thermal vacuum conditions. A coil-on-plug ignition system has been developed to successfully demonstrate ignition reliability at these conditions while preventing corona discharge issues. The ICPTA uses spark plug ignition for both the main engine igniter and the RCS. The coil-on-plug configuration eliminates the conventional high-voltage spark plug cable by combining the coil and the spark plug into a single component. Prior to ICPTA testing at Plum Brook, component-level reaction control engine (RCE) and main engine igniter testing was conducted at NASA Johnson Space Center (JSC), which demonstrated successful hot-fire ignition using the coil-on-plug from sea-level ambient conditions down to 10(exp -2) torr. Integrated vehicle hot-fire testing at JSC demonstrated electrical and command/data system performance. Lastly, hot-fire testing at Plum Brook demonstrated successful ignitions at simulated altitude conditions at 30 torr and cold thermal-vacuum conditions at 6 torr. The test campaign successfully proved that coil-on-plug technology will enable integrated LOX/LCH4 propulsion systems in future spacecraft.

  17. Coil-On-Plug Ignition for LOX/Methane Liquid Rocket Engines in Thermal Vacuum Environments

    NASA Technical Reports Server (NTRS)

    Melcher, John C.; Atwell, Matthew J.; Morehead, Robert L.; Hurlbert, Eric A.; Bugarin, Luz; Chaidez, Mariana

    2017-01-01

    A coil-on-plug ignition system has been developed and tested for Liquid Oxygen (LOX) / liquid methane rocket engines operating in thermal vacuum conditions. The igniters were developed and tested as part of the Integrated Cryogenic Propulsion Test Article (ICPTA), previously tested as part of the Project Morpheus test vehicle. The ICPTA uses an integrated, pressure-fed, cryogenic LOX/methane propulsion system including a reaction control system (RCS) and a main engine. The ICPTA was tested at NASA Glenn Research Center's Plum Brook Station in the Spacecraft Propulsion Research Facility (B-2) under vacuum and thermal vacuum conditions. In order to successfully demonstrate ignition reliability in the vacuum conditions and eliminate corona discharge issues, a coil-on-plug ignition system has been developed. The ICPTA uses spark-plug ignition for both the main engine igniter and the RCS. The coil-on-plug configuration eliminates the conventional high-voltage spark plug cable by combining the coil and the spark-plug into a single component. Prior to ICPTA testing at Plum Brook, component-level reaction control engine (RCE) and main engine igniter testing was conducted at NASA Johnson Space Center (JSC), which demonstrated successful hot-fire ignition using the coil-on-plug from sea-level ambient conditions down to 10(exp.-2) torr. Integrated vehicle hot-fire testing at JSC demonstrated electrical and command/data system performance. Lastly, Plum Brook testing demonstrated successful ignitions at simulated altitude conditions at 30 torr and cold thermal-vacuum conditions at 6 torr. The test campaign successfully proved that coil-on-plug technology will enable integrated LOX/methane propulsion systems in future spacecraft.

  18. The subsidiary gap as a means for improving ignition

    NASA Technical Reports Server (NTRS)

    Gorton, W S

    1920-01-01

    This report was prepared at the Bureau of Standards for the National Advisory Committee for Aeronautics. Additional or subsidiary gaps have frequently been used in jump-spark ignition systems, in order to cause the resumption of sparking in fouled spark plugs. The series gap, to which the greater part of this report is devoted, is a subsidiary gap in the connection between the high tension terminal of the plug and that of the magneto or coil. A brief account is given of the use of this gap up to the present time and also of the statements concerning it which have gained some currency, most of which are shown to be erroneous. The simple theory of the action of the series gap is discussed and a detailed account given of the effect upon the sparking ability of the plug produced by changes in the values of the electrical resistance of the fouling and of the capacities in parallel with the plug and with the magneto or coil. This report presents the results of an investigation into the utility, action, and design of the auxiliary spark gap as a means for insuring freedom from spark plug failure due to fouling, and also to enable the restarting of fouled plugs.

  19. The water intensity of the plugged-in automotive economy.

    PubMed

    King, Carey W; Webber, Michael E

    2008-06-15

    Converting light-duty vehicles from full gasoline power to electric power, by using either hybrid electric vehicles or fully electric power vehicles, is likely to increase demand for water resources. In the United States in 2005, drivers of 234 million cars, lighttrucks, and SUVs drove approximately 2.7 trillion miles and consumed over 380 million gallons of gasoline per day. We compare figures from literature and government surveys to calculate the water usage, consumption, and withdrawal, in the United States during petroleum refining and electricity generation. In displacing gasoline miles with electric miles, approximately 2-3 [corrected] times more water is consumed (0.24 [corrected] versus 0.07--0.14 gallons/mile) and over 12 [corrected] times more water is withdrawn (7.8 [corrected] versus 0.6 gallons/mile) primarily due to increased water cooling of thermoelectric power plants to accommodate increased electricity generation. Overall, we conclude that the impact on water resources from a widespread shift to grid-based transportation would be substantial enough to warrant consideration for relevant public policy decision-making. That is not to say that the negative impacts on water resources make such a shift undesirable, but rather this increase in water usage presents a significant potential impact on regional water resources and should be considered when planning for a plugged-in automotive economy.

  20. Implementation Approach for Plug-in Electric Vehicles at Joint Base Lewis McChord. Task 4

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schey, Stephen; Francfort, Jim

    2014-12-01

    This study focused on Joint Base Lewis McChord (JBLM), which is located in Washington State. Task 1 consisted of a survey of the non-tactical fleet of vehicles at JBLM to begin the review of vehicle mission assignments and the types of vehicles in service. In Task 2, daily operational characteristics of select vehicles were identified and vehicle movements were recorded in data loggers in order to characterize the vehicles’ missions. In Task 3, the results of the data analysis and observations were provided. Individual observations of the selected vehicles provided the basis for recommendations related to PEV adoption (i.e., whethermore » a battery electric vehicle or plug-in hybrid electric vehicle [collectively referred to as PEVs] can fulfill the mission requirements0, as well as the basis for recommendations related to placement of PEV charging infrastructure. This report focuses on an implementation plan for the near-term adoption of PEVs into the JBLM fleet.« less

  1. Battery Test Manual For Plug-In Hybrid Electric Vehicles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jeffrey R. Belt

    2010-09-01

    This battery test procedure manual was prepared for the United States Department of Energy (DOE), Office of Energy Efficiency and Renewable Energy (EERE), Vehicle Technologies Program. It is based on technical targets established for energy storage development projects aimed at meeting system level DOE goals for Plug-in Hybrid Electric Vehicles (PHEV). The specific procedures defined in this manual support the performance and life characterization of advanced battery devices under development for PHEV’s. However, it does share some methods described in the previously published battery test manual for power-assist hybrid electric vehicles. Due to the complexity of some of the proceduresmore » and supporting analysis, a revision including some modifications and clarifications of these procedures is expected. As in previous battery and capacitor test manuals, this version of the manual defines testing methods for full-size battery systems, along with provisions for scaling these tests for modules, cells or other subscale level devices.« less

  2. Battery Test Manual For Plug-In Hybrid Electric Vehicles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jeffrey R. Belt

    2010-12-01

    This battery test procedure manual was prepared for the United States Department of Energy (DOE), Office of Energy Efficiency and Renewable Energy (EERE), Vehicle Technologies Program. It is based on technical targets established for energy storage development projects aimed at meeting system level DOE goals for Plug-in Hybrid Electric Vehicles (PHEV). The specific procedures defined in this manual support the performance and life characterization of advanced battery devices under development for PHEV’s. However, it does share some methods described in the previously published battery test manual for power-assist hybrid electric vehicles. Due to the complexity of some of the proceduresmore » and supporting analysis, a revision including some modifications and clarifications of these procedures is expected. As in previous battery and capacitor test manuals, this version of the manual defines testing methods for full-size battery systems, along with provisions for scaling these tests for modules, cells or other subscale level devices.« less

  3. Real-time dual-loop electric current measurement for label-free nanofluidic preconcentration chip.

    PubMed

    Chung, Pei-Shan; Fan, Yu-Jui; Sheen, Horn-Jiunn; Tian, Wei-Cheng

    2015-01-07

    An electrokinetic trapping (EKT)-based nanofluidic preconcentration device with the capability of label-free monitoring trapped biomolecules through real-time dual-loop electric current measurement was demonstrated. Universal current-voltage (I-V) curves of EKT-based preconcentration devices, consisting of two microchannels connected by ion-selective channels, are presented for functional validation and optimal operation; universal onset current curves indicating the appearance of the EKT mechanism serve as a confirmation of the concentrating action. The EKT mechanism and the dissimilarity in the current curves related to the volume flow rate (Q), diffusion coefficient (D), and diffusion layer (DL) thickness were explained by a control volume model with a five-stage preconcentration process. Different behaviors of the trapped molecular plug were categorized based on four modes associated with different degrees of electroosmotic instability (EOI). A label-free approach to preconcentrating (bio)molecules and monitoring the multibehavior molecular plug was demonstrated through real-time electric current monitoring, rather than through the use of microscope images.

  4. Connecting plug-in vehicles with green electricity through consumer demand

    NASA Astrophysics Data System (ADS)

    Axsen, Jonn; Kurani, Kenneth S.

    2013-03-01

    The environmental benefits of plug-in electric vehicles (PEVs) increase if the vehicles are powered by electricity from ‘green’ sources such as solar, wind or small-scale hydroelectricity. Here, we explore the potential to build a market that pairs consumer purchases of PEVs with purchases of green electricity. We implement a web-based survey with three US samples defined by vehicle purchases: conventional new vehicle buyers (n = 1064), hybrid vehicle buyers (n = 364) and PEV buyers (n = 74). Respondents state their interest in a PEV as their next vehicle, in purchasing green electricity in one of three ways, i.e., monthly subscription, two-year lease or solar panel purchase, and in combining the two products. Although we find that a link between PEVs and green electricity is not presently strong in the consciousness of most consumers, the combination is attractive to some consumers when presented. Across all three respondent segments, pairing a PEV with a green electricity program increased interest in PEVs—with a 23% demand increase among buyers of conventional vehicles. Overall, about one-third of respondents presently value the combination of a PEV with green electricity; the proportion is much higher among previous HEV and PEV buyers. Respondents’ reported motives for interest in both products and their combination include financial savings (particularly among conventional buyers), concerns about air pollution and the environment, and interest in new technology (particularly among PEV buyers). The results provide guidance regarding policy and marketing strategies to advance PEVs and green electricity demand.

  5. Folding-paper-based preconcentrator for low dispersion of preconcentration plug

    NASA Astrophysics Data System (ADS)

    Lee, Kyungjae; Yoo, Yong Kyoung; Han, Sung Il; Lee, Junwoo; Lee, Dohwan; Kim, Cheonjung; Lee, Jeong Hoon

    2017-12-01

    Ion concentration polarization (ICP) has been widely studied for collecting target analytes as it is a powerful preconcentrator method employed for charged molecules. Although the method is quite robust, simple, cheap, and yields a high preconcentration factor, a major hurdle to be addressed is extracting the preconcentrated samples without dispersing the plug. This study investigates a 3D folding-paper-based ICP preconcentrator for preconcentrated plug extraction without the dispersion effect. The ICP preconcentrator is printed on a cellulose paper with pre-patterned hydrophobic wax. To extract and isolate the preconcentration plug with minimal dispersion, a 3D pop-up structure is fabricated via water drain, and a preconcentration factor of 300-fold for 10 min is achieved. By optimizing factors such as the electric field, water drain, and sample volume, the technique was enhanced by facilitating sample preconcentration and isolation, thereby providing the possibility for extensive applications in analytical devices such as lateral flow assays and FTAR cards.

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Onar, Omer

    A 20-kilowatt wireless charging system demonstrated at Department of Energy’s Oak Ridge National Laboratory has achieved 90 percent efficiency and at three times the rate of the plug-in systems commonly used for electric vehicles today.

  7. Alternative Fuels Data Center: Batteries for Hybrid and Plug-In Electric

    Science.gov Websites

    most portable consumer electronics such as cell phones and laptops because of their high energy per unit mass relative to other electrical energy storage systems. They also have a high power-to-weight ratio, high energy efficiency, good high-temperature performance, and low self-discharge. Most

  8. Clean-Burning Diesel Engines.

    DTIC Science & Technology

    1984-12-01

    AFLRL No. 178 By oi Harry E. Dietzmann ,< Engines, Emissions.and Vehicle Research Division Southwest Research Institute San Antonio, Texas Prppared...the possibility of replacing the currently used electric forklift with diesel engine-powered forklifts in handling hazardous materials. Electric ...concern; however, these concerns may be amplified when the vehicle is operating under a malfunction mode. Malfunctions include simulating a plugged

  9. Alternative Fuels Data Center: CNG Shuttles Save Fuel Costs for R&R

    Science.gov Websites

    Go Electric in Florida Feb. 15, 2014 Renzenberger Inc Saves Money With Propane Vans Feb. 1, 2014 Save Money Nov. 12, 2011 Metropolitan Utilities District Fuels Vehicles With Natural Gas Oct. 1, 2011 Hybrid Electric Shuttle Buses Offer Free Rides in Maryland June 18, 2010 Fisher Coachworks Develops Plug

  10. Alternative Fuels Data Center: Knoxville Utilities Board Reduces Petroleum

    Science.gov Websites

    . Rental Cars Go Electric in Florida Feb. 15, 2014 Renzenberger Inc Saves Money With Propane Vans Feb. 1 Kansas City Save Money Nov. 12, 2011 Metropolitan Utilities District Fuels Vehicles With Natural Gas Oct Hybrid Electric Shuttle Buses Offer Free Rides in Maryland June 18, 2010 Fisher Coachworks Develops Plug

  11. Alternative Fuels Data Center: Cities Clean up With Biofuels

    Science.gov Websites

    . 15, 2014 Renzenberger Inc Saves Money With Propane Vans Feb. 1, 2014 Photo of an electric vehicle at Charging Stations Spread Through Philly March 3, 2012 Natural Gas School Buses Help Kansas City Save Money Electric Shuttle Buses Offer Free Rides in Maryland June 18, 2010 Fisher Coachworks Develops Plug-In

  12. Alternative Fuels Data Center: Golden Eagle Delivers Beer With Natural Gas

    Science.gov Websites

    charging stations. Rental Cars Go Electric in Florida Feb. 15, 2014 Renzenberger Inc Saves Money With Charging Stations Spread Through Philly March 3, 2012 Natural Gas School Buses Help Kansas City Save Money Shuttle Buses Offer Free Rides in Maryland June 18, 2010 Fisher Coachworks Develops Plug-In Electric Bus

  13. Alternative Fuels Data Center: North Carolina City Expands Alternative Fuel

    Science.gov Websites

    Electric in Florida Feb. 15, 2014 Renzenberger Inc Saves Money With Propane Vans Feb. 1, 2014 Photo of an School Buses Help Kansas City Save Money Nov. 12, 2011 Metropolitan Utilities District Fuels Vehicles Electric Shuttle Buses Offer Free Rides in Maryland June 18, 2010 Fisher Coachworks Develops Plug-In

  14. Alternative Fuels Data Center: South Florida Fleet Fuels with Propane

    Science.gov Websites

    Alternative Fuel Use and Public Transit Efficiency March 8, 2014 Renzenberger Inc Saves Money With Propane Electric Vehicles March 31, 2012 Natural Gas School Buses Help Kansas City Save Money Nov. 12, 2011 Free Rides in Maryland June 18, 2010 Fisher Coachworks Develops Plug-In Electric Bus in Michigan June 3

  15. MD PHEV/EV ARRA Project Data Collection and Reporting (Presentation)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Walkowicz, K.; Ramroth, L.; Duran, A.

    2012-01-01

    This presentation describes a National Renewable Energy Laboratory project to collect and analyze commercial fleet deployment data from medium-duty plug-in hybrid electric and all-electric vehicles that were deployed using funds from the American Recovery and Reinvestment Act. This work supports the Department of Energy's Vehicle Technologies Program and its Advanced Vehicle Testing Activity.

  16. Plug-In Hybrid Medium-Duty Truck Demonstration and Evaluation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miyasato, Matt; Kosowski, Mark

    2015-10-01

    The Plug-In Hybrid Medium-Duty Truck Demonstration and Evaluation Program was sponsored by the United States Department of Energy (DOE) using American Recovery and Reinvestment Act of 2009 (ARRA) funding. The purpose of the program is to develop a path to migrate plug-in hybrid electric vehicle (PHEV) technology to medium-duty vehicles by demonstrating and evaluating vehicles in diverse applications. The program also provided three production-ready PHEV systems—Odyne Systems, Inc. (Odyne) Class 6 to 8 trucks, VIA Motors, Inc. (VIA) half-ton pickup trucks, and VIA three-quarter-ton vans. The vehicles were designed, developed, validated, produced, and deployed. Data were gathered and tests weremore » run to understand the performance improvements, allow cost reductions, and provide future design changes. A smart charging system was developed and produced during the program. The partnerships for funding included the DOE; the California Energy Commission (CEC); the South Coast Air Quality Management District (SCAQMD); the Electric Power Research Institute (EPRI); Odyne; VIA; Southern California Edison; and utility and municipal industry participants. The reference project numbers are DOE FOA-28 award number EE0002549 and SCAQMD contract number 10659.« less

  17. Smart Grid Maturity Model: Model Definition. A Framework for Smart Grid Transformation

    DTIC Science & Technology

    2010-09-01

    adoption of more efficient and reliable generation sources and would allow consumer-generated electricity (e.g., solar power and wind) to be connected to...program that pays customers (or credits their accounts) for customer-provided electricity such as from solar panels to the grid or electric vehicles...deployed. CUST-5.3 Plug-and-play customer-based generation (e.g., wind and solar ) is supported. This includes the necessary infrastructure, such

  18. Better Building Alliance, Plug and Process Loads in Commercial Buildings: Capacity and Power Requirement Analysis (Brochure)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    2014-09-01

    This brochure addresses gaps in actionable knowledge that can help reduce the plug load capacities designed into buildings. Prospective building occupants and real estate brokers lack accurate references for plug and process load (PPL) capacity requirements, so they often request 5-10 W/ft2 in their lease agreements. This brochure should be used to make these decisions so systems can operate more energy efficiently; upfront capital costs will also decrease. This information can also be used to drive changes in negotiations about PPL energy demands. It should enable brokers and tenants to agree about lower PPL capacities. Owner-occupied buildings will also benefit.more » Overestimating PPL capacity leads designers to oversize electrical infrastructure and cooling systems.« less

  19. Infant Flow Driver or single prong nasal continuous positive airway pressure: short-term physiological effects.

    PubMed

    Ahluwalia, J S; White, D K; Morley, C J

    1998-03-01

    The effectiveness of single prong nasal continuous positive airway pressure (CPAP) was compared with the Infant Flow Driver (IFD) in a crossover study in 20 neonates treated with > or = 30% oxygen by nasal CPAP. They were randomized to the device used at the start of the study. Each infant was studied for four consecutive 2-h periods alternating between single prong nasal CPAP and the IFD. The FiO2 from the IFD read 0.02 higher than the same setting on the ventilators used for single prong nasal CPAP. The IFD improved the mean (95% CI) of the FiO2 by 0.05 (0.02-0.08), p = 0.008. Taking into account the systematic error in the FiO2 between the devices the real mean improvement in FiO2 produced by the IFD was 0.03 (-0.005 to 0.06), p=0.09. There were no significant differences in respiratory rate, heart rate, blood pressure or comfort score of infants during periods of single nasal prong CPAP compared with periods on the IFD.

  20. Nuclear emulsion measurements of the dose contribution from tissue disintegration stars on the Apollo-Soyuz mission

    NASA Technical Reports Server (NTRS)

    Schaefer, H. J.

    1977-01-01

    A total of 996 disintegration stars were prong-counted in two 100 micron llford K.2 emulsions from the dosimeter of the Docking Pilot on Apollo-Soyuz. The change of slope of the distribution at a prong number of about 6 or 7 indicates 219 stars as originating in gelatin. Applying the QF values set forth in official regulations to the energy spectra of the proton and a alpha prongs of the gelatin stars leads to a tissue star dose of 7.8 millirad or 45 millirem. The quoted values do not include the dose contribution from star-produced neutrons since neutrons do not leave visible prongs in emulsion. Nuclear theory, in good agreement with measurements of galactic radiation in the earth's atmosphere, indicates that the dose equivalent from neutrons is about equal to the one from all ionizing secondaries of stars. Application of this proposition to the star prong spectrum found on Apollo-Soyuz would set the total tissue star dose for the mission at approximately 90 millirem.

  1. Important Factors for Early Market Microgrids: Demand Response and Plug-in Electric Vehicle Charging

    NASA Astrophysics Data System (ADS)

    White, David Masaki

    Microgrids are evolving concepts that are growing in interest due to their potential reliability, economic and environmental benefits. As with any new concept, there are many unresolved issues with regards to planning and operation. In particular, demand response (DR) and plug-in electric vehicle (PEV) charging are viewed as two key components of the future grid and both will likely be active technologies in the microgrid market. However, a better understanding of the economics associated with DR, the impact DR can have on the sizing of distributed energy resource (DER) systems and how to accommodate and price PEV charging is necessary to advance microgrid technologies. This work characterizes building based DR for a model microgrid, calculates the DER systems for a model microgrid under DR through a minimization of total cost, and determines pricing methods for a PEV charging station integrated with an individual building on the model microgrid. It is shown that DR systems which consist only of HVAC fan reductions provide potential economic benefits to the microgrid through participation in utility DR programs. Additionally, peak shaving DR reduces the size of power generators, however increasing DR capacity does not necessarily lead to further reductions in size. As it currently stands for a microgrid that is an early adopter of PEV charging, current installation costs of PEV charging equipment lead to a system that is not competitive with established commercial charging networks or to gasoline prices for plug-in hybrid electric vehicles (PHEV).

  2. Healthcare Energy End-Use Monitoring

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sheppy, M.; Pless, S.; Kung, F.

    NREL partnered with two hospitals (MGH and SUNY UMU) to collect data on the energy used for multiple thermal and electrical end-use categories, including preheat, heating, and reheat; humidification; service water heating; cooling; fans; pumps; lighting; and select plug and process loads. Additional data from medical office buildings were provided for an analysis focused on plug loads. Facility managers, energy managers, and engineers in the healthcare sector will be able to use these results to more effectively prioritize and refine the scope of investments in new metering and energy audits.

  3. An Electricity Price-Aware Open-Source Smart Socket for the Internet of Energy.

    PubMed

    Blanco-Novoa, Óscar; Fernández-Caramés, Tiago M; Fraga-Lamas, Paula; Castedo, Luis

    2017-03-21

    The Internet of Energy (IoE) represents a novel paradigm where electrical power systems work cooperatively with smart devices to increase the visibility of energy consumption and create safer, cleaner and sustainable energy systems. The implementation of IoE services involves the use of multiple components, like embedded systems, power electronics or sensors, which are an essential part of the infrastructure dedicated to the generation and distribution energy and the one required by the final consumer. This article focuses on the latter and presents a smart socket system that collects the information about energy price and makes use of sensors and actuators to optimize home energy consumption according to the user preferences. Specifically, this article provides three main novel contributions. First, what to our knowledge is the first hardware prototype that manages in a practical real-world scenario the price values obtained from a public electricity operator is presented. The second contribution is related to the definition of a novel wireless sensor network communications protocol based on Wi-Fi that allows for creating an easy-to-deploy smart plug system that self-organizes and auto-configures to collect the sensed data, minimizing user intervention. Third, it is provided a thorough description of the design of one of the few open-source smart plug systems, including its communications architecture, the protocols implemented, the main sensing and actuation components and the most relevant pieces of the software. Moreover, with the aim of illustrating the capabilities of the smart plug system, the results of different experiments performed are shown. Such experiments evaluate in real-world scenarios the system's ease of use, its communications range and its performance when using HTTPS. Finally, the economic savings are estimated for different appliances, concluding that, in the practical situation proposed, the smart plug system allows certain energy-demanding appliances to save almost €70 per year.

  4. An Electricity Price-Aware Open-Source Smart Socket for the Internet of Energy

    PubMed Central

    Blanco-Novoa, Óscar; Fernández-Caramés, Tiago M.; Fraga-Lamas, Paula; Castedo, Luis

    2017-01-01

    The Internet of Energy (IoE) represents a novel paradigm where electrical power systems work cooperatively with smart devices to increase the visibility of energy consumption and create safer, cleaner and sustainable energy systems. The implementation of IoE services involves the use of multiple components, like embedded systems, power electronics or sensors, which are an essential part of the infrastructure dedicated to the generation and distribution energy and the one required by the final consumer. This article focuses on the latter and presents a smart socket system that collects the information about energy price and makes use of sensors and actuators to optimize home energy consumption according to the user preferences. Specifically, this article provides three main novel contributions. First, what to our knowledge is the first hardware prototype that manages in a practical real-world scenario the price values obtained from a public electricity operator is presented. The second contribution is related to the definition of a novel wireless sensor network communications protocol based on Wi-Fi that allows for creating an easy-to-deploy smart plug system that self-organizes and auto-configures to collect the sensed data, minimizing user intervention. Third, it is provided a thorough description of the design of one of the few open-source smart plug systems, including its communications architecture, the protocols implemented, the main sensing and actuation components and the most relevant pieces of the software. Moreover, with the aim of illustrating the capabilities of the smart plug system, the results of different experiments performed are shown. Such experiments evaluate in real-world scenarios the system’s ease of use, its communications range and its performance when using HTTPS. Finally, the economic savings are estimated for different appliances, concluding that, in the practical situation proposed, the smart plug system allows certain energy-demanding appliances to save almost €70 per year. PMID:28335568

  5. Investigation on the Mechanical and Electrical Behavior of a Tuning Fork-Shaped Ionic Polymer Metal Composite Actuator with a Continuous Water Supply Mechanism

    PubMed Central

    Feng, Guo-Hua; Huang, Wei-Lun

    2016-01-01

    This paper presents an innovative tuning fork-shaped ionic polymer metal composite (IPMC) actuator. With an integrated soft strain gauge and water supply mechanism (WSM), the surface strain of the actuator can be sensed in situ, and providing a continuous water supply maintains the water content inside the IPMC for long-term operation in air. The actuator was fabricated using a micromachining technique and plated with a nickel electrode. The device performance was experimentally characterized and compared with an actuator without a WSM. A large displacement of 1.5 mm was achieved for a 6 mm-long prong with 7-V dc actuation applied for 30 s. The measured current was analyzed using an electrochemical model. The results revealed that the faradaic current plays a crucial role during operation, particularly after 10 s. The measured strain confirms both the bending and axial strain generation during the open-and-close motion of the actuator prongs. Most of the water loss during device operation was due to evaporation rather than hydrolysis. The constructed WSM effectively maintained the water content inside the IPMC for long-term continuous operation. PMID:27023549

  6. Investigation on the Mechanical and Electrical Behavior of a Tuning Fork-Shaped Ionic Polymer Metal Composite Actuator with a Continuous Water Supply Mechanism.

    PubMed

    Feng, Guo-Hua; Huang, Wei-Lun

    2016-03-25

    This paper presents an innovative tuning fork-shaped ionic polymer metal composite (IPMC) actuator. With an integrated soft strain gauge and water supply mechanism (WSM), the surface strain of the actuator can be sensed in situ, and providing a continuous water supply maintains the water content inside the IPMC for long-term operation in air. The actuator was fabricated using a micromachining technique and plated with a nickel electrode. The device performance was experimentally characterized and compared with an actuator without a WSM. A large displacement of 1.5 mm was achieved for a 6 mm-long prong with 7-V dc actuation applied for 30 s. The measured current was analyzed using an electrochemical model. The results revealed that the faradaic current plays a crucial role during operation, particularly after 10 s. The measured strain confirms both the bending and axial strain generation during the open-and-close motion of the actuator prongs. Most of the water loss during device operation was due to evaporation rather than hydrolysis. The constructed WSM effectively maintained the water content inside the IPMC for long-term continuous operation.

  7. Method for in-use measurement and evaluation of the activity, fuel use, electricity use, and emissions of a plug-in hybrid diesel-electric school bus.

    PubMed

    Choi, Hyung-Wook; Frey, H Christopher

    2010-05-01

    The purpose of this study is to demonstrate a methodology for characterizing at high resolution the energy use and emissions of a plug-in parallel-hybrid diesel-electric school bus (PHSB) to support assessments of sensitivity to driving cycles and comparisons to a conventional diesel school bus (CDSB). Data were collected using onboard instruments for a first-of-a-kind prototype PHSB and a CDSB of the same chassis and engine, operated on actual school bus routes. The engine load was estimated on the basis of vehicle specific power (VSP) and an empirically derived relationship between VSP and engine manifold absolute pressure (MAP). VSP depends on speed, acceleration, and road grade. For the PHSB, the observed electrical discharge or recharge to the traction motor battery was characterized on the basis of VSP. The energy use and emission rates of the PHSB from tailpipe and electricity use were estimated for five real-world driving cycles and compared to the engine fuel use and emissions of the CDSB. The PHSB had the greatest advantage on arterial routes and less advantage on highway or local routes. The coupled VSP-MAP modeling approach enables assessment of a wide variety of driving conditions and comparisons of vehicles with different propulsion technologies.

  8. Effects of plug-in hybrid electric vehicles on ozone concentrations in Colorado.

    PubMed

    Brinkman, Gregory L; Denholm, Paul; Hannigan, Michael P; Milford, Jana B

    2010-08-15

    This study explores how ozone concentrations in the Denver, CO area might have been different if plug-in hybrid electric vehicles (PHEVs) had replaced light duty gasoline vehicles in summer 2006. A unit commitment and dispatch model was used to estimate the charging patterns of PHEVs and dispatch power plants to meet electricity demand. Emission changes were estimated based on gasoline displacement and the emission characteristics of the power plants providing additional electricity. The Comprehensive Air Quality Model with extensions (CAMx) was used to simulate the effects of these emissions changes on ozone concentrations. Natural gas units provided most of the electricity used for charging PHEVs in the scenarios considered. With 100% PHEV penetration, nitrogen oxide (NO(x)) emissions were reduced by 27 tons per day (tpd) from a fleet of 1.7 million vehicles and were increased by 3 tpd from power plants; VOC emissions were reduced by 57 tpd. These emission changes reduced modeled peak 8-h average ozone concentrations by approximately 2-3 ppb on most days. Ozone concentration increases were modeled for small areas near central Denver. Future research is needed to forecast when significant PHEV penetration may occur and to anticipate characteristics of the corresponding power plant and vehicle fleets.

  9. Note: Enhanced energy harvesting from low-frequency magnetic fields utilizing magneto-mechano-electric composite tuning-fork.

    PubMed

    Yang, Aichao; Li, Ping; Wen, Yumei; Yang, Chao; Wang, Decai; Zhang, Feng; Zhang, Jiajia

    2015-06-01

    A magnetic-field energy harvester using a low-frequency magneto-mechano-electric (MME) composite tuning-fork is proposed. This MME composite tuning-fork consists of a copper tuning fork with piezoelectric Pb(Zr(1-x)Ti(x))O3 (PZT) plates bonded near its fixed end and with NdFeB magnets attached at its free ends. Due to the resonance coupling between fork prongs, the MME composite tuning-fork owns strong vibration and high Q value. Experimental results show that the proposed magnetic-field energy harvester using the MME composite tuning-fork exhibits approximately 4 times larger maximum output voltage and 7.2 times higher maximum power than the conventional magnetic-field energy harvester using the MME composite cantilever.

  10. Alternative Fuels Data Center: Krug Energy Opens Natural Gas Fueling

    Science.gov Websites

    Cars Go Electric in Florida Feb. 15, 2014 Renzenberger Inc Saves Money With Propane Vans Feb. 1, 2014 Charging Stations Spread Through Philly March 3, 2012 Natural Gas School Buses Help Kansas City Save Money Shuttle Buses Offer Free Rides in Maryland June 18, 2010 Fisher Coachworks Develops Plug-In Electric Bus

  11. Alternative Fuels Data Center: New Hampshire Cleans up with Biodiesel Buses

    Science.gov Websites

    Public Transit Efficiency March 8, 2014 Renzenberger Inc Saves Money With Propane Vans Feb. 1, 2014 Photo Help Kansas City Save Money Nov. 12, 2011 Electric Trucks Deliver at Kansas City Schools Sept. 17, 2011 Shuttle Buses Offer Free Rides in Maryland June 18, 2010 Fisher Coachworks Develops Plug-In Electric Bus

  12. Gasoline-powered series hybrid cars cause lower life cycle carbon emissions than battery cars

    NASA Astrophysics Data System (ADS)

    Meinrenken, Christoph; Lackner, Klaus S.

    2012-02-01

    Battery cars powered by grid electricity promise reduced life cycle green house gas (GHG) emissions from the automotive sector. Such scenarios usually point to the much higher emissions from conventional, internal combustion engine cars. However, today's commercially available series hybrid technology achieves the well known efficiency gains in electric drivetrains (regenerative breaking, lack of gearbox) even if the electricity is generated onboard, from conventional fuels. Here, we analyze life cycle GHG emissions for commercially available, state-of the-art plug-in battery cars (e.g. Nissan Leaf) and those of commercially available series hybrid cars (e.g., GM Volt, at same size and performance). Crucially, we find that series hybrid cars driven on (fossil) gasoline cause fewer emissions (126g CO2eq per km) than battery cars driven on current US grid electricity (142g CO2eq per km). We attribute this novel finding to the significant incremental emissions from plug-in battery cars due to losses during grid transmission and battery dis-/charging, and manufacturing larger batteries. We discuss crucial implications for strategic policy decisions towards a low carbon automotive sector as well as relative land intensity when powering cars by biofuel vs. bioelectricity.

  13. How much do electric drive vehicles matter to future U.S. emissions?

    PubMed

    Babaee, Samaneh; Nagpure, Ajay S; DeCarolis, Joseph F

    2014-01-01

    Hybrid, plug-in hybrid, and battery electric vehicles--known collectively as electric drive vehicles (EDVs)--may represent a clean and affordable option to meet growing U.S. light duty vehicle (LDV) demand. The goal of this study is 2-fold: identify the conditions under which EDVs achieve high LDV market penetration in the U.S. and quantify the associated change in CO2, SO2, and NOX emissions through midcentury. We employ the Integrated MARKAL-EFOM System (TIMES), a bottom-up energy system model, along with a U.S. data set developed for this analysis. To characterize EDV deployment through 2050, varying assumptions related to crude oil and natural gas prices, a CO2 policy, a federal renewable portfolio standard, and vehicle battery cost were combined to form 108 different scenarios. Across these scenarios, oil prices and battery cost have the biggest effect on EDV deployment. The model results do not demonstrate a clear and consistent trend toward lower system-wide emissions as EDV deployment increases. In addition to the trade-off between lower tailpipe and higher electric sector emissions associated with plug-in vehicles, the scenarios produce system-wide emissions effects that often mask the effect of EDV deployment.

  14. The Need for (More) New Guidance Regarding Religious Expression in the Air Force

    DTIC Science & Technology

    2009-04-01

    over another, nor can it act in a way which favors religion over non-religion. Lemon v . Kurtzman 29 remains the Supreme Court’s most influential case...religion. In Lemon v . Kurtzman , the issue was not the effects prong but the “entanglement” or third prong. The states of Rhode Island and Pennsylvania...prong of the Lemon Test and held that the Pennsylvania and Rhode Island systems were in violation of the Constitution. 8 Lemon v . Kurtzman has

  15. A control-oriented lithium-ion battery pack model for plug-in hybrid electric vehicle cycle-life studies and system design with consideration of health management

    NASA Astrophysics Data System (ADS)

    Cordoba-Arenas, Andrea; Onori, Simona; Rizzoni, Giorgio

    2015-04-01

    A crucial step towards the large-scale introduction of plug-in hybrid electric vehicles (PHEVs) in the market is to reduce the cost of its battery systems. Currently, battery cycle- and calendar-life represents one of the greatest uncertainties in the total life-cycle cost of battery systems. The field of battery aging modeling and prognosis has seen progress with respect to model-based and data-driven approaches to describe the aging of battery cells. However, in real world applications cells are interconnected and aging propagates. The propagation of aging from one cell to others exhibits itself in a reduced battery system life. This paper proposes a control-oriented battery pack model that describes the propagation of aging and its effect on the life span of battery systems. The modeling approach is such that it is able to predict pack aging, thermal, and electrical dynamics under actual PHEV operation, and includes consideration of random variability of the cells, electrical topology and thermal management. The modeling approach is based on the interaction between dynamic system models of the electrical and thermal dynamics, and dynamic models of cell aging. The system-level state-of-health (SOH) is assessed based on knowledge of individual cells SOH, pack electrical topology and voltage equalization approach.

  16. 76 FR 66090 - Facility Operating License Amendment From Virginia Electric and Power Company, Surry Power...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-25

    ... operating pressures, leakage from primary water stress corrosion cracking below the proposed limited... discussed in Regulatory Guide (RG) 1.121, ``Bases for Plugging Degraded PWR [Pressurized-Water Reactor...

  17. Experimental Study of Ignition by Hot Spot in Internal Combustion Engines

    NASA Technical Reports Server (NTRS)

    Serruys, Max

    1938-01-01

    In order to carry out the contemplated study, it was first necessary to provide hot spots in the combustion chamber, which could be measured and whose temperature could be changed. It seemed difficult to realize both conditions working solely on the temperature of the cooling water in a way so as to produce hot spots on the cylinder wall capable of provoking autoignition. Moreover, in the majority of practical cases, autoignition is produced by the spark plug, one of the least cooled parts in the engine. The first procedure therefore did not resemble that which most generally occurs in actual engine operation. All of these considerations caused us to reproduce similar hot spots at the spark plugs. The hot spots produced were of two kinds and designated with the name of thermo-electric spark plug and of metallic hot spot.

  18. Electronics technician Bill Clark assembling a cannon plug with the help of Jim Lewis

    NASA Technical Reports Server (NTRS)

    1991-01-01

    There is always something needed for a NASA aircraft before a research flight can take place. This photo shows William J. Clark working on one of those 'somethings' while Jimmie C. Lewis watches ready to help. Working on a research project is a challenge, for there is no set pattern to follow. From the drawings to the final product there are many people who contribute to that final product -- the flight. The electronic technicians in the Instrumentation Laboratory at NASA Ames-Dryden Flight Research Facility are no exception. Bill Clark is busy creating a cannon plug to be used on the CV-990. He is soldering wires in the appropriate order so the plug will transmit electrical currents correctly when installed in the airplane. Jim stands by to give help and support on the project.

  19. Pressure Reducer for Coal Gasifiers

    NASA Technical Reports Server (NTRS)

    Kendall, James M., Sr.

    1983-01-01

    Quasi-porous-plug pressure reducer is designed for gases containing abrasive particles. Gas used to generate high pressure steam to drive electric power generators. In giving up heat to steam, gas drops in temperature. Device used for coal gasification plants.

  20. Alternative Fuels Data Center

    Science.gov Websites

    Qualified Plug-In Electric Vehicle (PEV) Tax Credit A tax credit is available for the purchase of a by that manufacturer for use in the United States. This tax credit applies to vehicles acquired after

  1. 30 CFR 18.29 - Access openings and covers, including unused lead-entrance holes.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ..., DEPARTMENT OF LABOR TESTING, EVALUATION, AND APPROVAL OF MINING PRODUCTS ELECTRIC MOTOR-DRIVEN MINE EQUIPMENT... in use shall be closed with metal plugs secured by spot welding, brazing, or equivalent. (See Figure...

  2. Alternative Fuels Data Center: Hybrid and Plug-In Electric Vehicle

    Science.gov Websites

    components. In some cases, conversions can affect the vehicle's factory warranty. HEV conversions require which point the vehicle acts like an HEV. In some cases, conversions can affect the vehicle's factory

  3. A decentralized charging control strategy for plug-in electric vehicles to mitigate wind farm intermittency and enhance frequency regulation

    NASA Astrophysics Data System (ADS)

    Luo, Xiao; Xia, Shiwei; Chan, Ka Wing

    2014-02-01

    This paper proposes a decentralized charging control strategy for a large population of plug-in electric vehicles (PEVs) to neutralize wind power fluctuations so as to improve the regulation of system frequency. Without relying on a central control entity, each PEV autonomously adjusts its charging or discharging power in response to a communal virtual price signal and based on its own urgency level of charging. Simulation results show that under the proposed charging control, the aggregate PEV power can effectively neutralize wind power fluctuations in real-time while differential allocation of neutralization duties among the PEVs can be realized to meet the PEV users' charging requirements. Also, harmful wind-induced cyclic operations in thermal units can be mitigated. As shown in economic analysis, the proposed strategy can create cost saving opportunities for both PEV users and utility.

  4. Plug-in hybrid electric vehicles in smart grid

    NASA Astrophysics Data System (ADS)

    Yao, Yin

    In this thesis, in order to investigate the impact of charging load from plug-in hybrid electric vehicles (PHEVs), a stochastic model is developed in Matlab. In this model, two main types of PHEVs are defined: public transportation vehicles and private vehicles. Different charging time schedule, charging speed and battery capacity are considered for each type of vehicles. The simulation results reveal that there will be two load peaks (at noon and in evening) when the penetration level of PHEVs increases continuously to 30% in 2030. Therefore, optimization tool is utilized to shift load peaks. This optimization process is based on real time pricing and wind power output data. With the help of smart grid, power allocated to each vehicle could be controlled. As a result, this optimization could fulfill the goal of shifting load peaks to valley areas where real time price is low or wind output is high.

  5. Assessment of Charging Infrastructure for Plug-in Electric Vehicles at Naval Air Station Whidbey Island: Task 3

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schey, Steve; Francfort, Jim

    2015-07-01

    Several U.S. Department of Defense base studies have been conducted to identify potential U.S. Department of Defense transportation systems that are strong candidates for introduction or expansion of plug-in electric vehicles (PEVs). Task 1 consisted of a survey of the non-tactical fleet of vehicles at NASWI to begin the review of vehicle mission assignments and types of vehicles in service. Task 2 selected vehicles for further monitoring and involved identifying daily operational characteristics of these select vehicles. Data logging of vehicle movements was initiated in order to characterize the vehicle’s mission. The Task 3 Vehicle Utilization report provided the resultsmore » of the data analysis and observations related to the replacement of current vehicles with PEVs. This report provides an assessment of charging infrastructure required to support the suggested PEV replacements.« less

  6. Charging, power management, and battery degradation mitigation in plug-in hybrid electric vehicles: A unified cost-optimal approach

    NASA Astrophysics Data System (ADS)

    Hu, Xiaosong; Martinez, Clara Marina; Yang, Yalian

    2017-03-01

    Holistic energy management of plug-in hybrid electric vehicles (PHEVs) in smart grid environment constitutes an enormous control challenge. This paper responds to this challenge by investigating the interactions among three important control tasks, i.e., charging, on-road power management, and battery degradation mitigation, in PHEVs. Three notable original contributions distinguish our work from existing endeavors. First, a new convex programming (CP)-based cost-optimal control framework is constructed to minimize the daily operational expense of a PHEV, which seamlessly integrates costs of the three tasks. Second, a straightforward but useful sensitivity assessment of the optimization outcome is executed with respect to price changes of battery and energy carriers. The potential impact of vehicle-to-grid (V2G) power flow on the PHEV economy is eventually analyzed through a multitude of comparative studies.

  7. A numerical investigation on the efficiency of range extending systems using Advanced Vehicle Simulator

    NASA Astrophysics Data System (ADS)

    Varnhagen, Scott; Same, Adam; Remillard, Jesse; Park, Jae Wan

    2011-03-01

    Series plug-in hybrid electric vehicles of varying engine configuration and battery capacity are modeled using Advanced Vehicle Simulator (ADVISOR). The performance of these vehicles is analyzed on the bases of energy consumption and greenhouse gas emissions on the tank-to-wheel and well-to-wheel paths. Both city and highway driving conditions are considered during the simulation. When simulated on the well-to-wheel path, it is shown that the range extender with a Wankel rotary engine consumes less energy and emits fewer greenhouse gases compared to the other systems with reciprocating engines during many driving cycles. The rotary engine has a higher power-to-weight ratio and lower noise, vibration and harshness compared to conventional reciprocating engines, although performs less efficiently. The benefits of a Wankel engine make it an attractive option for use as a range extender in a plug-in hybrid electric vehicle.

  8. A New Integrated Onboard Charger and Accessory Power Converter for Plug-in Electric Vehicles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Su, Gui-Jia; Tang, Lixin

    2014-01-01

    In this paper, a new approach is presented for integrating the function of onboard battery charging into the traction drive system and accessory dc-dc converter of a plug-in electric vehicle (PEV). The idea is to utilize the segmented traction drive system of a PEV as the frond converter of the charging circuit and the transformer and high voltage converter of the 14 V accessory dc-dc converter to form a galvanically isolated onboard charger. Moreover, a control method is presented for suppressing the battery current ripple component of twice the grid frequency with the reduced dc bus capacitor in the segmentedmore » inverter. The resultant integrated charger has lower cost, weight, and volume than a standalone charger due to a substantially reduced component count. The proposed integrated charger topology was verified by modeling and experimental results on a 5.8 kW charger prototype.« less

  9. Fiber-based generator for wearable electronics and mobile medication.

    PubMed

    Zhong, Junwen; Zhang, Yan; Zhong, Qize; Hu, Qiyi; Hu, Bin; Wang, Zhong Lin; Zhou, Jun

    2014-06-24

    Smart garments for monitoring physiological and biomechanical signals of the human body are key sensors for personalized healthcare. However, they typically require bulky battery packs or have to be plugged into an electric plug in order to operate. Thus, a smart shirt that can extract energy from human body motions to run body-worn healthcare sensors is particularly desirable. Here, we demonstrated a metal-free fiber-based generator (FBG) via a simple, cost-effective method by using commodity cotton threads, a polytetrafluoroethylene aqueous suspension, and carbon nanotubes as source materials. The FBGs can convert biomechanical motions/vibration energy into electricity utilizing the electrostatic effect with an average output power density of ∼0.1 μW/cm(2) and have been identified as an effective building element for a power shirt to trigger a wireless body temperature sensor system. Furthermore, the FBG was demonstrated as a self-powered active sensor to quantitatively detect human motion.

  10. Integration of plug-in hybrid electric vehicles (PHEV) with grid connected residential photovoltaic energy systems

    NASA Astrophysics Data System (ADS)

    Nagarajan, Adarsh; Shireen, Wajiha

    2013-06-01

    This paper proposes an approach for integrating Plug-In Hybrid Electric Vehicles (PHEV) to an existing residential photovoltaic system, to control and optimize the power consumption of residential load. Control involves determining the source from which residential load will be catered, where as optimization of power flow reduces the stress on the grid. The system built to achieve the goal is a combination of the existing residential photovoltaic system, PHEV, Power Conditioning Unit (PCU), and a controller. The PCU involves two DC-DC Boost Converters and an inverter. This paper emphasizes on developing the controller logic and its implementation in order to accommodate the flexibility and benefits of the proposed integrated system. The proposed controller logic has been simulated using MATLAB SIMULINK and further implemented using Digital Signal Processor (DSP) microcontroller, TMS320F28035, from Texas Instruments

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chinthavali, Madhu Sudhan; Campbell, Steven L; Tolbert, Leon M

    So far, vehicular power electronics integration is limited to the integration of on-board battery chargers (OBC) into the traction drive system and sometimes to the accessory dc/dc converters in plug-in electric vehicles (PEV). These integration approaches do not provide isolation from the grid although it is an important feature that is required for user interface systems that have grid connections. This is therefore a major limitation that needs to be addressed along with the integrated functionality. Furthermore, there is no previous study that proposes the integration of wireless charger with the other on-board components. This study features a unique waymore » of combining the wired and wireless charging functionalities with vehicle side boost converter integration and maintaining the isolation to provide the best solution to the plug-in electric vehicle users. The new topology is additionally compared with commercially available OBC systems from manufacturers.« less

  12. Sequential variable fuel injection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weglarz, M.W.; Vincent, M.T.; Prestel, J.F.

    This patent describes a fuel injection system for an engine of an automotive vehicle including cylinders, a spark plug for each of the cylinders, a distributor electrically connected to the spark plug, a throttle body having a throttle valve connected to the engine to allow or prevent air to the cylinders, a fuel source at least one fuel line connected to the fuel source, fuel injectors connected to the fuel line for delivering fuel to the cylinders, a sensor located near the distributor for sensing predetermined states of the distributor, and an electronic control unit (ECU) electrically connected to themore » sensor, distributor and fuel injectors. It comprises calculating a desired total injector on time for current engine conditions; calculating a variable injection time (VIT) and a turn on time based on the VIT; and firing the fuel injectors at the calculated turn on time for the calculated total injector on time.« less

  13. Fuel and Emissions Reduction in Electric Power Take-Off Equipped Utility Vehicles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Konan, Arnaud; Ragatz, Adam; Prohaska, Robert

    The National Renewable Energy Laboratory (NREL) evaluated the performance of Pacific Gas and Electric plug-in hybrid electric power take off (ePTO) utility trucks equipped with Altec, Inc.'s Jobsite Energy Management System. NREL collected on-road performance data from Class 5 utility 'trouble trucks' and Class 8 material handlers and developed representative drive cycles for chassis dynamometer testing. The drive cycles were analyzed and jobsite energy use was quantified for impacts and potential further hybridization for the utility truck vocation.

  14. Bi-Directional Fast Charging Study Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tyler Gray

    2012-02-01

    This report details the hardware and software infrastructure needed to demonstrate the possibility of utilizing battery power in plug-in hybrid electric vehicles (PHEVs) and electric vehicles (EVs) with a bi directional fast charger to support/offset peak building loads. This document fulfills deliverable requirements for Tasks 1.2.1.2, 1.2.1.3, and 1.2.1.4 of Statement of Work (SOW) No.5799 for Electric Transportation Engineering Corporation, now ECOtality North America (NA) support for the Idaho National Laboratory (INL).

  15. Smart Grid Maturity Model: SGMM Model Definition. Version 1.2

    DTIC Science & Technology

    2011-09-01

    electricity (e.g., solar power and wind) to be connected to the grid. If this were the case, any excess generated electricity would flow onto the grid, and... solar panels to the grid or electric vehicles to the grid. CUST-4.7 A common residential customer experience has been integrated. This experience is...individual devices (e.g., appliances) has been deployed. CUST-5.3 Plug-and-play customer-based generation (e.g., wind and solar ) is supported. This

  16. AVTA federal fleet PEV readiness data logging and characterization study for the National Park Service: Grand Canyon National Park

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schey, Stephen; Francfort, Jim; Nienhueser, Ian

    This report focuses on the Grand Canyon National Park (GCNP) fleet to identify daily operational characteristics of select vehicles and report findings on vehicle and mission characterizations to support the successful introduction of PEVs into the agencies’ fleets. Individual observations of these selected vehicles provide the basis for recommendations related to electric vehicle adoption and whether a battery electric vehicle or plug-in hybrid electric vehicle (collectively PEVs) can fulfill the mission requirements.

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schey, Stephen; Francfort, Jim

    Several U.S. Department of Defense base studies have been conducted to identify potential U.S. Department of Defense transportation systems that are strong candidates for introduction or expansion of plug-in electric vehicles (PEVs). This study is focused on the Naval Air Station Whidbey Island (NASWI) located in Washington State. Task 1 consisted of a survey of the non-tactical fleet of vehicles at NASWI to begin the review of vehicle mission assignments and types of vehicles in service. In Task 2, daily operational characteristics of vehicles were identified to select vehicles for further monitoring and attachment of data loggers. Task 3 recordedmore » vehicle movements in order to characterize the vehicles’ missions. The results of the data analysis and observations were provided. Individual observations of the selected vehicles provided the basis for recommendations related to PEV adoption, i.e., whether a battery electric vehicle (BEV) or plug-in hybrid electric vehicle (PHEV) (collectively PEVs) can fulfill the mission requirements. It also provided the basis for recommendations related to placement of PEV charging infrastructure. This report focuses on an implementation plan for the near-term adoption of PEVs into the NASWI fleet.« less

  18. Double-cross hydrostatic pressure sample injection for chip CE: variable sample plug volume and minimum number of electrodes.

    PubMed

    Luo, Yong; Wu, Dapeng; Zeng, Shaojiang; Gai, Hongwei; Long, Zhicheng; Shen, Zheng; Dai, Zhongpeng; Qin, Jianhua; Lin, Bingcheng

    2006-09-01

    A novel sample injection method for chip CE was presented. This injection method uses hydrostatic pressure, generated by emptying the sample waste reservoir, for sample loading and electrokinetic force for dispensing. The injection was performed on a double-cross microchip. One cross, created by the sample and separation channels, is used for formation of a sample plug. Another cross, formed by the sample and controlling channels, is used for plug control. By varying the electric field in the controlling channel, the sample plug volume can be linearly adjusted. Hydrostatic pressure takes advantage of its ease of generation on a microfluidic chip, without any electrode or external pressure pump, thus allowing a sample injection with a minimum number of electrodes. The potential of this injection method was demonstrated by a four-separation-channel chip CE system. In this system, parallel sample separation can be achieved with only two electrodes, which is otherwise impossible with conventional injection methods. Hydrostatic pressure maintains the sample composition during the sample loading, allowing the injection to be free of injection bias.

  19. Alternative Fuels Data Center: Georgia Sets the Pace for Plug-In Electric

    Science.gov Websites

    Georgia ZEV Tax Credit Eligible Battery Electric Vehicles BMW i3 Fiat 500e Ford Focus EV Chevrolet Spark qualify for a state tax credit (discussed below), and Atlanta is currently ranked as the national leader gains in adoption have been aided by a $5,000 state income tax credit for the purchase or lease of a

  20. Argonne ARPA-E Battery Research

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Amine, Khalil; Sinkula, Michael

    Argonne National Laboratory and Envia Systems annouced a licensing agreement for Argonne's patented electrode material technology. Envia plans to commercialize these materials for use in energy storage devices for the next generation of electric, plug-in and hybrid electric vehicles. General Motors Company, LG Chem, BASF and Toda Kyoga have also licensed this suite of Argonne's technologies. For more information visit us at http://www.anl.gov

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    McLaren, Joyce; Miller, John; O’Shaughnessy, Eric

    The emission reduction benefits of EVs are dependent on the time and location of charging. An analysis of battery electric and plug-in hybrid vehicles under four charging scenarios and five electricity grid profiles shows that CO2 emissions are highly dependent on the percentage of fossil fuels in the grid mix. Availability of workplace charging generally results in lower emissions, while restricting charging to off-peak hours results in higher total emissions.

  2. Argonne ARPA-E Battery Research

    ScienceCinema

    Amine, Khalil; Sinkula, Michael

    2018-04-16

    Argonne National Laboratory and Envia Systems annouced a licensing agreement for Argonne's patented electrode material technology. Envia plans to commercialize these materials for use in energy storage devices for the next generation of electric, plug-in and hybrid electric vehicles. General Motors Company, LG Chem, BASF and Toda Kyoga have also licensed this suite of Argonne's technologies. For more information visit us at http://www.anl.gov

  3. [Septum necrosis following CPAP treatment of preterm infant].

    PubMed

    Fjaeldstad, Alexander; Cipliene, Rasa; Ramsgaard-Jensen, Trine; Ebbesen, Finne

    2014-05-26

    This case describes the complications of intensive respiratory support in a preterm infant. During two months of rigorous nasal continuous positive airway pressure (CPAP) therapy with intermittent use of CPAP-mask and -prongs, an ulcer in the nasal mucus membrane developed into septum necrosis. Preterm infants are in high risk of needing long-term respiratory support, why it is important to bear in mind that binasal CPAP-prongs have proved to be more effective than mononasal therapy, and that CPAP-prongs and -mask have different sites of injury.

  4. Helmet Versus Nasal-Prong CPAP in Infants With Acute Bronchiolitis.

    PubMed

    Mayordomo-Colunga, Juan; Rey, Corsino; Medina, Alberto; Martínez-Camblor, Pablo; Vivanco-Allende, Ana; Concha, Andrés

    2018-04-01

    Nasal prongs are frequently used to deliver noninvasive CPAP in bronchiolitis, especially in the youngest children. A helmet interface is an alternative that might be comparable to nasal prongs. We sought to compare these interfaces. We performed a prospective, randomized, crossover, single-center study in an 8-bed multidisciplinary pediatric ICU in a university hospital. Infants age <3 months who were consecutively admitted to the pediatric ICU during a bronchiolitis epidemic season and fulfilled inclusion criteria were recruited. Subjects were randomly allocated to receive CPAP via a helmet or nasal prongs for 60 min. The subjects were then placed on the other CPAP system for another 60-min period (helmet then nasal prongs [H-NP] or nasal prongs then helmet [NP-H]). Measurements were taken at 30, 60, 90, and 120 min. Failure was defined as the need for further respiratory support. Sixteen subjects were included, with 9 in the H-NP group and 7 in the NP-H group. CPAP significantly reduced respiratory distress, showing no differences between the H-NP and NP-H groups in terms of improving the Modified Wood's Clinical Asthma Score from 4.8 ± 1 to 3 ± 0.9 and 2.7 ± 1.7 points at 60 min and 120 min in the H-NP group, respectively, and from 4.2 ± 0.9 to 2.8 ± 0.9 and to 2.9 ± 0.9 at 60 min and 120 min, respectively, in the NP-H group. Sedatives were used in only 3 subjects (2 in the NP-H group, P = .77). The failure rate was similar in both groups (3 of 9 subjects vs 3 of 7 subjects, P = .70). No significant differences were seen for heart rate, breathing frequency, F IO 2 , or transcutaneous oxygen saturation response. Our results suggest that CPAP delivered by nasal prongs and CPAP delivered by helmet are similar in terms of efficacy in young infants with acute bronchiolitis. Copyright © 2018 by Daedalus Enterprises.

  5. A life-cycle approach to technology, infrastructure, and climate policy decision making: Transitioning to plug-in hybrid electric vehicles and low-carbon electricity

    NASA Astrophysics Data System (ADS)

    Samaras, Constantine

    In order to mitigate the most severe effects of climate change, large global reductions in the current levels of anthropogenic greenhouse gas (GHG) emissions are required in this century to stabilize atmospheric carbon dioxide (CO2) concentrations at less than double pre-industrial levels. The Intergovernmental Panel on Climate Change (IPCC) fourth assessment report states that GHG emissions should be reduced to 50-80% of 2000 levels by 2050 to increase the likelihood of stabilizing atmospheric CO2 concentrations. In order to achieve the large GHG reductions by 2050 recommended by the IPCC, a fundamental shift and evolution will be required in the energy system. Because the electric power and transportation sectors represent the largest GHG emissions sources in the United States, a unique opportunity for coupling these systems via electrified transportation could achieve synergistic environmental (GHG emissions reductions) and energy security (petroleum displacement) benefits. Plug-in hybrid electric vehicles (PHEVs), which use electricity from the grid to power a portion of travel, could play a major role in reducing greenhouse gas emissions from the transport sector. However, this thesis finds that life cycle GHG emissions from PHEVs depend on the electricity source that is used to charge the battery, so meaningful GHG emissions reductions with PHEVs are conditional on low-carbon electricity sources. Power plants and their associated GHGs are long-lived, and this work argues that decisions made regarding new electricity supplies within the next ten years will affect the potential of PHEVs to play a role in a low-carbon future in the coming decades. This thesis investigates the life cycle engineering, economic, and policy decisions involved in transitioning to PHEVs and low-carbon electricity. The government has a vast array of policy options to promote low-carbon technologies, some of which have proven to be more successful than others. This thesis uses life cycle assessment to evaluate options and opportunities for large GHG reductions from plug-in hybrids. After the options and uncertainties are framed, engineering economic analysis is used to evaluate the policy actions required for adoption of PHEVs at scale and the implications for low-carbon electricity investments. A logistic PHEV adoption model is constructed to parameterize implications for low-carbon electricity infrastructure investments and climate policy. This thesis concludes with an examination of what lessons can be learned for climate, innovation, and low-carbon energy policies from the evolution of wind power from an emerging alternative energy technology to a utility-scale power source. Policies to promote PHEVs and other emerging energy technologies can take lessons learned from the successes and challenges of wind power's development to optimize low-carbon energy policy and R&D programs going forward. The need for integrated climate policy, energy policy, sustainability, and urban mobility solutions will accelerate in the next two decades as concerns regarding GHG emissions and petroleum resources continue to be environmental and economic priorities. To assist in informing the discussions on climate policy and low-carbon energy R&D, this research and its methods will provide stakeholders in government and industry with plug-in hybrid and energy policy choices based on life cycle assessment, engineering economics, and systems analysis.

  6. A note on the tissue star dose in personnel radiation monitoring in space

    NASA Technical Reports Server (NTRS)

    Schaefer, H. J.

    1978-01-01

    Secondaries from nuclear interactions of high energy primaries in the body tissues themselves contribute substantially to the astronaut's radiation exposure in space. The so-called tissue star dose is assessed from the prong number distribution of disintegration stars in emulsion. Prong counts of 1,000 emulsion stars from the Apollo-Soyuz mission reported earlier were re-evaluated. The original scores were divided into sets of 250, 500, 750, and 1,000 emulsion stars and the respective prong number distributions established. The statistical error of the gelatin star number for the four consecutively larger was found to vary, on the 67 percent confidence level, from + or - 25 percent for the count of 250 emulsion stars to + or - 11 percent for 1,000 stars. Seen in the context of the other limitations of the experimental design, the lowest effort of prong-counting 250 stars appears entirely appropriate.

  7. Household use of insecticide consumer products in a dengue-endemic area in México.

    PubMed

    Loroño-Pino, María Alba; Chan-Dzul, Yamili N; Zapata-Gil, Rocio; Carrillo-Solís, Claudia; Uitz-Mena, Ana; García-Rejón, Julián E; Keefe, Thomas J; Beaty, Barry J; Eisen, Lars

    2014-10-01

    To evaluate the household use of insecticide consumer products to kill mosquitoes and other insect pests, as well as the expenditures for using these products, in a dengue-endemic area of México. A questionnaire was administered to 441 households in Mérida City and other communities in Yucatán to assess household use of insecticide consumer products. A total of 86.6% of surveyed households took action to kill insect pests with consumer products. The most commonly used product types were insecticide aerosol spray cans (73.6%), electric plug-in insecticide emitters (37.4%) and mosquito coils (28.3%). Mosquitoes were targeted by 89.7% of households using insecticide aerosol spray cans and >99% of households using electric plug-in insecticide emitters or mosquito coils. Products were used daily or every 2 days in most of the households for insecticide aerosol spray cans (61.4%), electric plug-in insecticide emitters (76.2%) and mosquito coils (82.1%). For all products used to kill insect pests, the median annual estimated expenditure per household that took action was 408 Mexican pesos ($MXN), which corresponded to approximately 31 $US. These numbers are suggestive of an annual market in excess of 75 million $MXN (>5.7 million $US) for Mérida City alone. Mosquitoes threaten human health and are major nuisances in homes in the study area in México. Households were found to have taken vigorous action to kill mosquitoes and other insect pests and spent substantial amounts of money on insecticide consumer products. © 2014 John Wiley & Sons Ltd.

  8. Alternative Fuels Data Center

    Science.gov Websites

    Plug-In Electric Vehicle (PEV) Discounts - People's Power & Light (PP&L) PP&L's Drive Green with PP&L program provides discounts on qualified PEVs purchased or leased from participating , see the Drive Green with PP&L website.

  9. Effect on lung function of continuous positive airway pressure administered either by infant flow driver or a single nasal prong.

    PubMed

    Kavvadia, V; Greenough, A; Dimitriou, G

    2000-04-01

    The aim of this study was to assess if continuous positive airways pressure (CPAP) delivered by an infant flow driver (IFD) was a more effective method of improving lung function than delivering CPAP by a single nasal prong. A total of 36 infants (median gestational age 29 weeks, range 25-35 weeks) were studied, 12 who received CPAP via an IFD, 12 who received CPAP via a single nasal prong and 12 without CPAP. CPAP was administered post extubation if apnoeas and bradycardias or a respiratory acidosis developed or electively if the infant was of birth weight <1.0 kg. Lung function was assessed by the supplementary oxygen requirement and measurement of compliance of the respiratory system using an occlusion technique. Assessments were made immediately prior to and after 24 h of CPAP administration and at similar postnatal ages in the non-CPAP group. The infants who did not require CPAP had better lung function (non significant) than the other two groups before they received CPAP. After 24 h, lung function had improved in both CPAP groups to the level of the non CPAP infants. The supplementary oxygen requirements of all three groups decreased over the 24 h period, but this only reached significance in the single nasal prong group (P<0.05). Four infants supported by the IFD, but none with a single nasal prong, became hyperoxic. Continuous positive airways pressure administration via the infant flow driver appears to offer no short-term advantage over a single nasal prong system when used after extubation in preterm infants.

  10. Plug and Process Loads Capacity and Power Requirements Analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sheppy, M.; Gentile-Polese, L.

    2014-09-01

    This report addresses gaps in actionable knowledge that would help reduce the plug load capacities designed into buildings. Prospective building occupants and real estate brokers lack accurate references for plug and process load (PPL) capacity requirements, so they often request 5-10 W/ft2 in their lease agreements. Limited initial data, however, suggest that actual PPL densities in leased buildings are substantially lower. Overestimating PPL capacity leads designers to oversize electrical infrastructure and cooling systems. Better guidance will enable improved sizing and design of these systems, decrease upfront capital costs, and allow systems to operate more energy efficiently. The main focus ofmore » this report is to provide industry with reliable, objective third-party guidance to address the information gap in typical PPL densities for commercial building tenants. This could drive changes in negotiations about PPL energy demands.« less

  11. Impacts of Electrification of Light-Duty Vehicles in the United States, 2010 - 2017

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gohlke, David; Zhou, Yan

    This report examines the sales of plug-in electric vehicles (PEVs) in the United States from 2010 to 2017, exploring vehicle sales, electricity consumption, petroleum reduction, and battery production, among other factors. Over 750,000 PEVs have been sold, driving nearly 16 billion miles on electricity, thereby reducing gasoline consumption by 0.1% in 2016 and 600 million gallons cumulatively through 2017, while using over 5 terawatt-hours of electricity. Over 23 gigawatt-hours of battery capacity has been placed in vehicles, and 98% of this is still on the road, assuming typical scrappage rates.

  12. Smith Newton Vehicle Performance Evaluation - Gen 2 - Cumulative (Brochure)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    2014-08-01

    The Fleet Test and Evaluation Team at the U.S. Department of Energy's National Renewable Energy Laboratory is evaluating and documenting the performance of electric and plug-in hybrid electric drive systems in medium-duty trucks across the nation. U.S. companies participating in this evaluation project received funding from the American Recovery and Reinvestment Act to cover part of the cost of purchasing these vehicles. Through this project, Smith Electric Vehicles is building and deploying 500 all-electric medium-duty trucks that will be deployed by a variety of companies in diverse climates across the country.

  13. Stochastic control of smart home energy management with plug-in electric vehicle battery energy storage and photovoltaic array

    NASA Astrophysics Data System (ADS)

    Wu, Xiaohua; Hu, Xiaosong; Moura, Scott; Yin, Xiaofeng; Pickert, Volker

    2016-11-01

    Energy management strategies are instrumental in the performance and economy of smart homes integrating renewable energy and energy storage. This article focuses on stochastic energy management of a smart home with PEV (plug-in electric vehicle) energy storage and photovoltaic (PV) array. It is motivated by the challenges associated with sustainable energy supplies and the local energy storage opportunity provided by vehicle electrification. This paper seeks to minimize a consumer's energy charges under a time-of-use tariff, while satisfying home power demand and PEV charging requirements, and accommodating the variability of solar power. First, the random-variable models are developed, including Markov Chain model of PEV mobility, as well as predictive models of home power demand and PV power supply. Second, a stochastic optimal control problem is mathematically formulated for managing the power flow among energy sources in the smart home. Finally, based on time-varying electricity price, we systematically examine the performance of the proposed control strategy. As a result, the electric cost is 493.6% less for a Tesla Model S with optimal stochastic dynamic programming (SDP) control relative to the no optimal control case, and it is by 175.89% for a Nissan Leaf.

  14. Episodic air quality impacts of plug-in electric vehicles

    NASA Astrophysics Data System (ADS)

    Razeghi, Ghazal; Carreras-Sospedra, Marc; Brown, Tim; Brouwer, Jack; Dabdub, Donald; Samuelsen, Scott

    2016-07-01

    In this paper, the Spatially and Temporally Resolved Energy and Environment Tool (STREET) is used in conjunction with University of California Irvine - California Institute of Technology (UCI-CIT) atmospheric chemistry and transport model to assess the impact of deploying plug-in electric vehicles and integrating wind energy into the electricity grid on urban air quality. STREET is used to generate emissions profiles associated with transportation and power generation sectors for different future cases. These profiles are then used as inputs to UCI-CIT to assess the impact of each case on urban air quality. The results show an overall improvement in 8-h averaged ozone and 24-h averaged particulate matter concentrations in the South Coast Air Basin (SoCAB) with localized increases in some cases. The most significant reductions occur northeast of the region where baseline concentrations are highest (up to 6 ppb decrease in 8-h-averaged ozone and 6 μg/m3 decrease in 24-h-averaged PM2.5). The results also indicate that, without integration of wind energy into the electricity grid, the temporal vehicle charging profile has very little to no effect on urban air quality. With the addition of wind energy to the grid mix, improvement in air quality is observed while charging at off-peak hours compared to the business as usual scenario.

  15. Plug-in hybrid electric vehicles: battery degradation, grid support, emissions, and battery size tradeoffs

    NASA Astrophysics Data System (ADS)

    Peterson, Scott B.

    Plug-in hybrid electric vehicles (PHEVs) may become a substantial part of the transportation fleet in a decade or two. This dissertation investigates battery degradation, and how introducing PHEVs may influence the electricity grid, emissions, and petroleum use in the US. It examines the effects of combined driving and vehicle-to-grid (V2G) usage on lifetime performance of commercial Li-ion cells. The testing shows promising capacity fade performance: more than 95% of the original cell capacity remains after thousands of driving days. Statistical analyses indicate that rapid vehicle motive cycling degraded the cells more than slower, V2G galvanostatic cycling. These data are used to examine the potential economic implications of using vehicle batteries to store grid electricity generated at off-peak hours for off-vehicle use during peak hours. The maximum annual profit with perfect market information and no battery degradation cost ranged from ˜US140 to 250 in the three cities. If measured battery degradation is applied the maximum annual profit decreases to ˜10-120. The dissertation predicts the increase in electricity load and emissions due to vehicle battery charging in PJM and NYISO with the current generators, with a 50/tonne CO2 price, and with existing coal generators retrofitted with 80% CO2 capture. It also models emissions using natural gas or wind+gas. We examined PHEV fleet percentages between 0.4 and 50%. Compared to 2020 CAFE standards, net CO2 emissions in New York are reduced by switching from gasoline to electricity; coal-heavy PJM shows smaller benefits unless coal units are fitted with CCS or replaced with lower CO2 generation. NOX is reduced in both RTOs, but there is upward pressure on SO2 emissions or allowance prices under a cap. Finally the dissertation compares increasing the all-electric range (AER) of PHEVs to installing charging infrastructure. Fuel use was modeled with National Household Travel Survey and Greenhouse Gasses, Regulated Emissions, and Energy Use in Transportation model. It was found that increasing AER of plug-in hybrids was a more cost effective solution to reducing gasoline consumption than installing charging infrastructure. Comparison of results to current subsidy structure shows various options to improve future PHEV or other vehicle subsidy programs.

  16. How Schools Can Plug the Energy Drain

    ERIC Educational Resources Information Center

    Nation's Schools, 1973

    1973-01-01

    Schools could conserve energy by following recommendations by Educational Facilities Laboratories: (1) review operations and maintenance personnel qualifications to handle mechanical-electrical equipment, (2) analyze energy consumption to identify waste sources in schools, (3) incorporate energy conservation into all architectural programs for…

  17. Tenderness Tester

    NASA Technical Reports Server (NTRS)

    1977-01-01

    Space telemetry has been transferred to food processing in the Armour;Tenderorneter, an instrument that predicts the tenderness of meat. The space component of the instrument is a sensitive, highly reliable strain gage originally produced for NASA's Surveyor lunar lander and other space programs by BLH Electronics, Waltham, Mass. Several years ago Armour & Co. began to develop a method of testing a hanging carcass to predict how tender the meat would be after cooking; no such method then existed. After considerable experimentation, Armour came up with a manifold-mounted group of-needle-like probes, which when stuck into a carcass, could measure the degree to which the meat resisted penetration. This provided a basis for predicting tenderness, but the development required one more . step; a device that could translate meat resistance into an electrical readout. Armour found it in the BLH strain gage. The resulting Tenderometer, now a standard and important part of Armour's meat processing operation, includes a large, 10-pronged fork which is plunged into a carcass and a cable-connected, handheld electronic device that translates the sensings of the prongs into a tenderness reading on a dial. The instrument is used by Armour to select and guarantee a premium line of beef known as TesTender, whose annual sales run into tens of millions of pounds.

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gonder, J.; Brooker, A.; Burton, E.

    This presentation discusses current research at NREL on advanced wireless power transfer vehicle and infrastructure analysis. The potential benefits of E-roadway include more electrified driving miles from battery electric vehicles, plug-in hybrid electric vehicles, or even properly equipped hybrid electric vehicles (i.e., more electrified miles could be obtained from a given battery size, or electrified driving miles could be maintained while using smaller and less expensive batteries, thereby increasing cost competitiveness and potential market penetration). The system optimization aspect is key given the potential impact of this technology on the vehicles, the power grid and the road infrastructure.

  19. A Fully Directional Universal Power Electronic Interface for EV, HEV, and PHEV Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Onar, Omer C

    2012-01-01

    This study focuses on a universal power electronic interface that can be utilized in any type of the electric vehicles, hybrid electric vehicles, and plug-in hybrid electric vehicles (PHEVs). Basically, the proposed converter interfaces the energy storage device of the vehicle with the motor drive and the external charger, in case of PHEVs. The proposed converter is capable of operating in all directions in buck or boost modes with a noninverted output voltage (positive output voltage with respect to the input) and bidirectional power flow.

  20. AVTA Federal Fleet PEV Readiness Data Logging and Characterization Study for Department of Health and Human Services – ASPR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schey, Steve; Francfort, Jim

    2015-06-01

    This report focuses on the Department of Health and Human Services, Assistant Secretary for Preparedness and Response fleet to identify daily operational characteristics of select vehicles and report findings on vehicle and mission characterizations to support the successful introduction of PEVs into the agency’s fleet. Individual observations of these selected vehicles provide the basis for recommendations related to electric vehicle adoption and whether a battery electric vehicle or plug-in hybrid electric vehicle (collectively referred to as PEVs) can fulfill the mission requirements.

  1. Fully optical backplane system using novel optical plug and slot

    NASA Astrophysics Data System (ADS)

    Cho, In-Kui; Ahn, Seung-Ho; Lee, Woo-Jin; Han, Sang-Pil; Kim, Jin-Tae; Choi, Chun-Ki; Shin, Kyung-Up; Yoon, Keun Byoung; Jeong, Myung-Yung; Park, Hyo Hoon

    2005-10-01

    A fully optical PCB with transmitter/receiver system boards and optical bakcplane was prepared, which is board-to-board interconnection by an optical slot. We report a 10 Gb/s PRBS NRZ data transmission between transmitter system board and optical backplane embedded multimode polymeric waveguide arrays. The basic concept of the optical PCB is as follows; 1) Metal optical bench is integrated with optoelectronic devices, driver and receiver circuits, polymeric waveguide and access line PCB module. 2) Multimode polymeric waveguide inside an optical backplane, which is embedded into PCB, 3) Optical slot and plug for high-density (channel pitch : 500 um) board-to-board interconnection. The polymeric waveguide technology can be used for transmission of data between transmitter/receiver processing boards and backplane boards. The main components are low-loss tapered polymeric waveguides and a novel optical plug and slot for board-to-board interconnections, respectively. The transmitter/receiver processing boards are designed as plug types, and can be easily plugged-in and -out at an optical backplane board. The optical backplane boards are prepared by employing the lamination processes for conventional electrical PCBs. A practical optical backplane system was implemented with two processing boards and an optical backplane. As connection components between the transmitter/receiver processing boards and backplane board, optical slots made of a 90°-bending structure-embedded optical plug was used. A 10 Gb/s data link was successfully demonstrated. The bit error rate (BER) was determined and is 5.6×10 -9(@10Gb/s) and the BER of 8 Gb/s is < 10 -12.

  2. Idaho National Laboratory’s Analysis of ARRA-Funded Plug-in Electric Vehicle and Charging Infrastructure Projects: Final Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Francfort, Jim; Bennett, Brion; Carlson, Richard

    2015-09-01

    Battelle Energy Alliance, LLC, managing and operating contractor for the U.S. Department of Energy’s (DOE) Idaho National Laboratory (INL), is the lead laboratory for U.S. Department of Energy’s Advanced Vehicle Testing Activity (AVTA). INL’s conduct of the AVTA resulted in a significant base of knowledge and experience in the area of testing light-duty vehicles that reduced transportation-related petroleum consumption. Due to this experience, INL was tasked by DOE to develop agreements with companies that were the recipients of The American Recovery and Reinvestment Act of 2009 (ARRA) grants, that would allow INL to collect raw data from light-duty vehicles andmore » charging infrastructure. INL developed non-disclosure agreements (NDAs) with several companies and their partners that resulted in INL being able to receive raw data via server-to-server connections from the partner companies. This raw data allowed INL to independently conduct data quality checks, perform analysis, and report publicly to DOE, partners, and stakeholders, how drivers used both new vehicle technologies and the deployed charging infrastructure. The ultimate goal was not the deployment of vehicles and charging infrastructure, cut rather to create real-world laboratories of vehicles, charging infrastructure and drivers that would aid in the design of future electric drive transportation systems. The five projects that INL collected data from and their partners are: • ChargePoint America - Plug-in Electric Vehicle Charging Infrastructure Demonstration • Chrysler Ram PHEV Pickup - Vehicle Demonstration • General Motors Chevrolet Volt - Vehicle Demonstration • The EV Project - Plug-in Electric Vehicle Charging Infrastructure Demonstration • EPRI / Via Motors PHEVs – Vehicle Demonstration The document serves to benchmark the performance science involved the execution, analysis and reporting for the five above projects that provided lessons learned based on driver’s use of the vehicles and recharging decisions made. Data is reported for the use of more than 25,000 vehicles and charging units.« less

  3. 77 FR 43660 - Proposed Information Collection; Comment Request

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-25

    ... new qualified plug-in electric drive motor vehicles. This notice provides procedures for a vehicle... collection. Affected Public: Business or other for-profit organizations. Estimated Number of Respondents: 1... Review: Extension of a currently approved collection. Affected Public: Business or other for-profit...

  4. VOC EMISSIONS FROM AN AIR FRESHENER IN THE INDOOR ENVIRONMENT

    EPA Science Inventory

    The paper describes results of tests, conducted in the U.S. Environmental Protection Agency (EPA) large chamber facility, that investigated emissions of volatile organic compounds (VOCS) from one electrical plug-in type air freshener with pine-scented refills. VOCs were measured ...

  5. Alternative Fuels Data Center

    Science.gov Websites

    Plug-In Electric Vehicle (PEV) Discounts - Mass Energy Mass Energy's Drive Green with Mass Energy discount program is available to all consumers, including those that are not in Mass Energy's service Drive Green with Mass Energy

  6. 77 FR 39690 - Proposed Agency Information Collection

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-05

    ... DEPARTMENT OF ENERGY Office of Energy Efficiency and Renewable Energy Proposed Agency Information... Energy has submitted to the OMB for clearance, a proposal for collection of information pursuant to the... plug-in electric vehicles. Information collected would allow DOE to provide respondents with an...

  7. High-Performance Medium- & Heavy-Duty Vehicles | Transportation Research |

    Science.gov Websites

    , as is a range of charging technology options. A study compared a wireless-power-transfer-enabled plug , and Doug DeVoto of NREL's Power Electronics and Electric Machines research group were part of the

  8. SOURCE CHARACTERIZATION OF AIR FRESHENERS

    EPA Science Inventory

    The paper discusses research in which five air fresheners of two styles were analyzed for their constituent volatile organic compounds. Both styles were refills to be inserted into heated electric plug-in units; one refill released the fragrance from a gel pack insert and the oth...

  9. Analysis of the Effect of Zero-Emission Vehicle Policies: State-Level Incentives and the California Zero-Emission Vehicle Regulations

    EIA Publications

    2017-01-01

    The U.S. Energy Information Administration (EIA) contracted with Leidos to analyze the effect of California zero-emission vehicle regulations (ZEVR) and state-level incentives on zero-emission and plug-in hybrid vehicle sales. Leidos worked to review the effect of state-level incentives by: *Conducting a review on the available incentives on zero-emission vehicles and related transitional vehicle types such has plug-in hybrid electric vehicles *Quantifying the effective monetary value of these different incentives *Evaluating the combined values of these incentives in each state on an example sale of a Nissan Leaf and Chevrolet Volt

  10. Selecting a Control Strategy for Plug and Process Loads

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lobato, C.; Sheppy, M.; Brackney, L.

    2012-09-01

    Plug and Process Loads (PPLs) are building loads that are not related to general lighting, heating, ventilation, cooling, and water heating, and typically do not provide comfort to the building occupants. PPLs in commercial buildings account for almost 5% of U.S. primary energy consumption. On an individual building level, they account for approximately 25% of the total electrical load in a minimally code-compliant commercial building, and can exceed 50% in an ultra-high efficiency building such as the National Renewable Energy Laboratory's (NREL) Research Support Facility (RSF) (Lobato et al. 2010). Minimizing these loads is a primary challenge in the designmore » and operation of an energy-efficient building. A complex array of technologies that measure and manage PPLs has emerged in the marketplace. Some fall short of manufacturer performance claims, however. NREL has been actively engaged in developing an evaluation and selection process for PPLs control, and is using this process to evaluate a range of technologies for active PPLs management that will cap RSF plug loads. Using a control strategy to match plug load use to users' required job functions is a huge untapped potential for energy savings.« less

  11. Nasal masks or binasal prongs for delivering continuous positive airway pressure in preterm neonates-a randomised trial.

    PubMed

    Chandrasekaran, Aparna; Thukral, Anu; Jeeva Sankar, M; Agarwal, Ramesh; Paul, Vinod K; Deorari, Ashok K

    2017-03-01

    The objective of this study was to compare the efficacy and safety of continuous positive airway pressure (CPAP) delivered using nasal masks with binasal prongs. We randomly allocated 72 neonates between 26 and 32 weeks gestation to receive bubble CPAP by either nasal mask (n = 37) or short binasal prongs (n = 35). Primary outcome was mean FiO 2 requirement at 6, 12 and 24 h of CPAP initiation and the area under curve (AUC) of FiO 2 against time during the first 24 h (FiO 2 AUC 0-24 ). Secondary outcomes were the incidence of CPAP failure and nasal trauma. FiO 2 requirement at 6, 12 and 24 h (mean (SD); 25 (5.8) vs. 27.9 (8); 23.8 (4.5) vs. 25.4 (6.8) and 22.6 (6.8) vs. 22.7 (3.3)) as well as FiO 2 AUC 0-24 (584.0 (117.8) vs. 610.6 (123.6)) were similar between the groups. There was no difference in the incidence of CPAP failure (14 vs. 20%; relative risk 0.67; 95% confidence interval 0.24-1.93). Incidence of severe nasal trauma was lower with the use of nasal masks (0 vs. 31%; p < .001). Nasal masks appear to be as efficacious as binasal prongs in providing CPAP. Masks are associated with lower risk of severe nasal trauma. CTRI2012/08/002868 What is Known? • Binasal prongs are better than single nasal and nasopharyngeal prongs for delivering continuous positive airway pressure (CPAP) in preventing need for re-intubation. • It is unclear if they are superior to newer generation nasal masks in preterm neonates requiring CPAP. What is New? • Oxygen requirement during the first 24 h of CPAP delivery is comparable with use of nasal masks and binasal prongs. • Use of nasal masks is, however, associated with significantly lower risk of severe grades of nasal injury.

  12. Household use of insecticide consumer products in a dengue endemic area in México

    PubMed Central

    Loroño-Pino, María Alba; Chan-Dzul, Yamili N.; Zapata-Gil, Rocio; Carrillo-Solís, Claudia; Uitz-Mena, Ana; García-Rejón, Julián E.; Keefe, Thomas J.; Beaty, Barry J.; Eisen, Lars

    2014-01-01

    Objectives To evaluate household use of insecticide consumer products to kill mosquitoes and other insect pests, as well as the expenditures for using these products, in a dengue endemic area in México. Methods A questionnaire was administered to 441 households in Mérida City or other communities in Yucatán State to assess household use of insecticide consumer products. Results Most (86.6%) households took action to kill insect pests with consumer products. Among those households, the most commonly used product types were insecticide aerosol spray cans (73.6%), electric plug-in insecticide emitters (37.4%), and mosquito coils (28.3%). Mosquitoes were targeted by 89.7% of households using insecticide aerosol spray cans and >99% of households using electric plug-in insecticide emitters or mosquito coils. During the part of the year when a given product type was used, the frequency of use was daily or every 2 days in most of the households for insecticide aerosol spray cans (61.4%), electric plug-in insecticide emitters (76.2%), and mosquito coils (82.1%). For all products used to kill insect pests, the median annual estimated expenditure per household that took action was 408 Mexican pesos ($MXN), which corresponded to ∼31 $U.S. These numbers are suggestive of an annual market in excess of 75 million $MXN (>5.7 million $U.S.) for Mérida City alone. Conclusion Mosquitoes threaten human health and are major nuisances in homes in the study area in México. Households were found to have taken vigorous action to kill mosquitoes and other insect pests and spent substantial amounts of money on insecticide consumer products. PMID:25040259

  13. Plug-in electric vehicle market penetration and incentives: a global review

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, Yan; Wang, Michael; Hao, Han

    Plug-in electric vehicles (PEVs) have been commercially available in the global market for about 3 years. Many countries have policies designed to stimulate consumer acceptance and accelerate market adoption. In the United States (U.S.), the biggest PEV market, sales have more than tripled since 2011. During the same period, PEV sales have increased, albeit slowly, in most western European countries. Notably, some European countries, such as Norway, showed strong increases mainly owing to generous incentives to PEV consumers. Japan is the second-largest PEV market in terms of number of vehicles sold. The Nissan battery electric vehicle (BEV) Leaf is themore » top-selling PEV model, with more than 100,000 units sold globally since its launch in 2010. In contrast, after 3 years of policy stimulation, PEV market share in China is still lower than 0.1 % of total car sales, and most of these vehicles were purchased by either central or local governments. However, PEV bus production in China has increased dramatically over last 3 years. These market trends, together with strong government policies, show that national and regional PEV-related incentives in selected countries can play an important role in jump-starting the PEV market.« less

  14. Design and simulation of a fast-charging station for plug-in hybrid electric vehicle (PHEV) batteries

    NASA Astrophysics Data System (ADS)

    de Leon, Nathalie Pulmones

    2011-12-01

    With the increasing interest in green technologies in transportation, plug-in hybrid electric vehicles (PHEV) have proven to be the best short-term solution to minimize greenhouse gas emissions. Despite such interest, conventional vehicle drivers are still reluctant in using such a new technology, mainly because of the long duration (4-8 hours) required to charge PHEV batteries with the currently existing Level I and II chargers. For this reason, Level III fast-charging stations capable of reducing the charging duration to 10-15 minutes are being considered. The present thesis focuses on the design of a fast-charging station that uses, in addition to the electrical grid, two stationary energy storage devices: a flywheel energy storage and a supercapacitor. The power electronic converters used for the interface of the energy sources with the charging station are designed. The design also focuses on the energy management that will minimize the PHEV battery charging duration as well as the duration required to recharge the energy storage devices. For this reason, an algorithm that minimizes durations along with its mathematical formulation is proposed, and its application in fast charging environment will be illustrated by means of two scenarios.

  15. Maximizing Societal Benefits Associated With Alternative Fuel Subsidies: The Case of Plug-in Hybrid Electric Vehicles

    NASA Astrophysics Data System (ADS)

    Nazir, Samir M.

    Government seeks to improve the welfare of its citizenry and intervenes in marketplaces to maximize benefits when externalities are not captured. By analyzing how welfare changes from area to area across the country in response to the same intervention informs where government should act. This thesis analyzes the case of plug-in hybrid electric vehicles (PHEVs). PHEVs have many societal benefits, including improving national security, economic, environmental, and health advantages. The magnitude and distribution of these benefits depends on where PHEVs are deployed. This thesis develops and applies a methodology to determine if the benefits from PHEV deployment vary across the country and for ranking regions where positive PHEV consequences are likely to be maximized. The metrics in this method are proxies of key variables which predict the level of benefits in a county from the deployment of a PHEV there; they include population, health benefits from reduced ozone concentration, vehicle miles traveled per capita, existence of non-federal policies, and CO 2 intensity of electricity. By shedding light on how benefits from PHEV deployment vary across counties, this thesis seeks to better inform where to enact government interventions to maximize the benefits of this technology.

  16. Magnitude and Variability of Controllable Charge Capacity Provided by Grid Connected Plug-in Electric Vehicles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Scoffield, Don R; Smart, John; Salisbury, Shawn

    2015-03-01

    As market penetration of plug-in electric vehicles (PEV) increases over time, the number of PEVs charging on the electric grid will also increase. As the number of PEVs increases, their ability to collectively impact the grid increases. The idea of a large body of PEVs connected to the grid presents an intriguing possibility. If utilities can control PEV charging, it is possible that PEVs could act as a distributed resource to provide grid services. The technology required to control charging is available for modern PEVs. However, a system for wide-spread implementation of controllable charging, including robust communication between vehicles andmore » utilities, is not currently present. Therefore, the value of controllable charging must be assessed and weighed against the cost of building and operating such as system. In order to grasp the value of PEV charge control to the utility, the following must be understood: 1. The amount of controllable energy and power capacity available to the utility 2. The variability of the controllable capacity from day to day and as the number of PEVs in the market increases.« less

  17. Impact of electric vehicles on the IEEE 34 node distribution infrastructure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jiang, Zeming; Shalalfel, Laith; Beshir, Mohammed J.

    With the growing penetration of the electric vehicles to our daily life owing to their economic and environmental benefits, there will be both opportunities and challenges to the utilities when adopting plug-in electric vehicles (PEV) to the distribution network. In this study, a thorough analysis based on real-world project is conducted to evaluate the impacts of electric vehicles infrastructure on the grid relating to system load flow, load factor, and voltage stability. IEEE 34 node test feeder was selected and tested along with different case scenarios utilizing the electrical distribution design (EDD) software to find out the potential impacts tomore » the grid.« less

  18. Impact of electric vehicles on the IEEE 34 node distribution infrastructure

    DOE PAGES

    Jiang, Zeming; Shalalfel, Laith; Beshir, Mohammed J.

    2014-10-01

    With the growing penetration of the electric vehicles to our daily life owing to their economic and environmental benefits, there will be both opportunities and challenges to the utilities when adopting plug-in electric vehicles (PEV) to the distribution network. In this study, a thorough analysis based on real-world project is conducted to evaluate the impacts of electric vehicles infrastructure on the grid relating to system load flow, load factor, and voltage stability. IEEE 34 node test feeder was selected and tested along with different case scenarios utilizing the electrical distribution design (EDD) software to find out the potential impacts tomore » the grid.« less

  19. Smith Newton Vehicle Performance Evaluation – Gen 2 – Cumulative; Energy Efficiency & Renewable Energy (EERE)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    2014-10-01

    The Fleet Test and Evaluation Team at the U.S. Department of Energy's National Renewable Energy Laboratory is evaluating and documenting the performance of electric and plug-in hybrid electric drive systems in medium-duty trucks across the nation. U.S. companies participating in this evaluation project received funding from the American Recovery and Reinvestment Act to cover part of the cost of purchasing these vehicles. Through this project, Smith Electric Vehicles is building and deploying 500 all-electric medium-duty trucks that will be deployed by a variety of companies in diverse climates across the country.

  20. Smith Newton Vehicle Performance Evaluation – 4th Quarter 2013; NREL (National Renewable Energy Laboratory)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    2014-01-01

    The Fleet Test and Evaluation Team at the U.S. Department of Energy's National Renewable Energy Laboratory is evaluating and documenting the performance of electric and plug-in hybrid electric drive systems in medium-duty trucks across the nation. U.S. companies participating in this evaluation project received funding from the American Recovery and Reinvestment Act to cover part of the cost of purchasing these vehicles. Through this project, Smith Electric Vehicles is building and deploying 500 all-electric medium-duty trucks that will be deployed by a variety of companies in diverse climates across the country.

  1. Reducing noise and vibration of hydraulic hybrid and plug-in hybrid electric vehicles : final report.

    DOT National Transportation Integrated Search

    2012-02-01

    The University of Toledo University Transportation Center (UT-UTC) has identified : hybrid vehicles as one of the three areas of the research. The activities in this research : are directed towards the noise, vibration, and harshness (NVH) solutions ...

  2. 40 CFR 600.308-12 - Fuel economy label format requirements-plug-in hybrid electric vehicles.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... significant cause of global warming and smog.” For a, b, c, d, and e, insert the appropriate values... charge the battery as specified in § 600.311. Change the specified voltage if appropriate as specified in...

  3. 40 CFR 600.308-12 - Fuel economy label format requirements-plug-in hybrid electric vehicles.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... significant cause of global warming and smog.” For a, b, c, d, and e, insert the appropriate values... charge the battery as specified in § 600.311. Change the specified voltage if appropriate as specified in...

  4. 40 CFR 600.308-12 - Fuel economy label format requirements-plug-in hybrid electric vehicles.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... significant cause of global warming and smog.” For a, b, c, d, and e, insert the appropriate values... charge the battery as specified in § 600.311. Change the specified voltage if appropriate as specified in...

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fachechi, Alessio; Mainetti, Luca; Palano, Laura

    The continuously rising demand for electricity has prompted governments and industries to research more effective energy management systems. The Internet of Things paradigm is a valuable add-on for controlling and managing the energy appliances such as Plug-in Electrical Vehicles (PEV) charging stations. In this paper, we present a Demand Response implementation for PEV charging stations able to use Wireless Sensor Network technologies based on the Constrained Application Protocol (CoAP). We developed a self-service kiosk system by which the user can autonomously swipe his/her credit card and choose the charging station to enable. When a user plugs his/her vehicle to themore » station, s/he subscribes his availability to share a portion of its energy. When the grid requests a contribution from the PEVs, the kiosk sends a CoAP message to the available stations and the energy flow is inverted (Vehicle-to-Grid). At the end of the charging process, the user's credit card gets charged with a discounted bill.« less

  6. Environmental and energy implications of plug-in hybrid-electric vehicles.

    PubMed

    Stephan, Craig H; Sullivan, John

    2008-02-15

    We analyze the effect of charging a significant number of plug-in hybrid vehicles (PHEVs) in the United States using presently available night-time spare electric capacity in the shortterm and new base-load capacity in the long term. Nationwide, there is currently ample spare night-time utility capacityto charge even a large fleet of PHEVs. Using the mix of generating plants expected to be used for PHEV charging, we find that, while driving on battery power, PHEVs compared to their conventional hybrid counterparts reduce CO2 emissions by 25% in the short term and as much as 50% in the long term. The shortterm fractional increase in demand for margin fuels such as natural gas is found to be roughly twice the fractional penetration of PHEVs into the nationwide light-duty vehicle fleet. We also compare, on an energy basis, the CO2 savings of replacing coal plants versus replacing conventional vehicles with PHEVs. The result is found to depend critically on the fuel economy of the vehicles displaced by the PHEVs.

  7. Modeling plug-in electric vehicle charging demand with BEAM: the framework for behavior energy autonomy mobility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sheppard, Colin; Waraich, Rashid; Campbell, Andrew

    This report summarizes the BEAM modeling framework (Behavior, Energy, Mobility, and Autonomy) and its application to simulating plug-in electric vehicle (PEV) mobility, energy consumption, and spatiotemporal charging demand. BEAM is an agent-based model of PEV mobility and charging behavior designed as an extension to MATSim (the Multi-Agent Transportation Simulation model). We apply BEAM to the San Francisco Bay Area and conduct a preliminary calibration and validation of its prediction of charging load based on observed charging infrastructure utilization for the region in 2016. We then explore the impact of a variety of common modeling assumptions in the literature regarding chargingmore » infrastructure availability and driver behavior. We find that accurately reproducing observed charging patterns requires an explicit representation of spatially disaggregated charging infrastructure as well as a more nuanced model of the decision to charge that balances tradeoffs people make with regards to time, cost, convenience, and range anxiety.« less

  8. A case of an electrical burn in the oral cavity of an adult.

    PubMed

    Shimoyama, T; Kaneko, T; Nasu, D; Suzuki, T; Horie, N

    1999-09-01

    Electrical burns in the oral cavity account for 2.2% of all electrical burns and only 0.12% of all burns; thus, the incidence of electrical burns in the oral cavity is relatively low. As this type of injury occurs in the oral cavity when an individual sucks or chews on a live electrical wire, extension cord, plug, or outlet, most cases occur in toddlers or preschool children, and adult cases are extremely rare. Here we describe a case of an electrical burn in a 56-year-old man who accidentally bit the electric wire of a cleaner while carrying out repairs. Conservative treatment, without surgery, was performed. Two years after the injury, a slight scar and a small tongue deformity remain, but no functional disturbance has been observed.

  9. Air quality impacts of plug-in hybrid electric vehicles in Texas: evaluating three battery charging scenarios

    NASA Astrophysics Data System (ADS)

    Thompson, Tammy M.; King, Carey W.; Allen, David T.; Webber, Michael E.

    2011-04-01

    The air quality impacts of replacing approximately 20% of the gasoline-powered light duty vehicle miles traveled (VMT) with electric VMT by the year 2018 were examined for four major cities in Texas: Dallas/Ft Worth, Houston, Austin, and San Antonio. Plug-in hybrid electric vehicle (PHEV) charging was assumed to occur on the electric grid controlled by the Electricity Reliability Council of Texas (ERCOT), and three charging scenarios were examined: nighttime charging, charging to maximize battery life, and charging to maximize driver convenience. A subset of electricity generating units (EGUs) in Texas that were found to contribute the majority of the electricity generation needed to charge PHEVs at the times of day associated with each scenario was modeled using a regional photochemical model (CAMx). The net impacts of the PHEVs on the emissions of precursors to the formation of ozone included an increase in NOx emissions from EGUs during times of day when the vehicle is charging, and a decrease in NOx from mobile emissions. The changes in maximum daily 8 h ozone concentrations and average exposure potential at twelve air quality monitors in Texas were predicted on the basis of these changes in NOx emissions. For all scenarios, at all monitors, the impact of changes in vehicular emissions, rather than EGU emissions, dominated the ozone impact. In general, PHEVs lead to an increase in ozone during nighttime hours (due to decreased scavenging from both vehicles and EGU stacks) and a decrease in ozone during daytime hours. A few monitors showed a larger increase in ozone for the convenience charging scenario versus the other two scenarios. Additionally, cumulative ozone exposure results indicate that nighttime charging is most likely to reduce a measure of ozone exposure potential versus the other two scenarios.

  10. Utilities Power Change: Engaging Commercial Customers in Workplace Charging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lommele, S.; Dafoe, W.

    Using electricity to power vehicles can help advance energy security and reduce emissions, and also presents a new market opportunity for utilities looking to diversify and offer an added benefit to commercial customers. By providing plug-in electric vehicle (PEV) charging stations for their employees, commercial customers can help attract and retain a cutting-edge workforce. These employers also signal a commitment to sustainability and demonstrate progressive leadership and a willingness to adopt advanced technology.

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chertkov, Michael; Turitsyn, Konstantin; Sulc, Petr

    The anticipated increase in the number of plug-in electric vehicles (EV) will put additional strain on electrical distribution circuits. Many control schemes have been proposed to control EV charging. Here, we develop control algorithms based on randomized EV charging start times and simple one-way broadcast communication allowing for a time delay between communication events. Using arguments from queuing theory and statistical analysis, we seek to maximize the utilization of excess distribution circuit capacity while keeping the probability of a circuit overload negligible.

  12. Analysis of Plug-In hybrid Electric Vehicles' utility factors using GPS-based longitudinal travel data

    NASA Astrophysics Data System (ADS)

    Aviquzzaman, Md

    The benefit of using a Plug-in Hybrid Electric Vehicle (PHEV) comes from its ability of substituting gasoline with electricity in operation. Defined as the share of distance traveled in the electric mode, the utility factor (UF) depends mostly on the battery capacity but also on many other factors, such as travel pattern and recharging pattern. Conventionally, the UFs are calculated from the daily vehicle miles traveled (DVMT) of vehicles by assuming motorists leaving home in the morning with full battery and return home in the evening. Such assumption, however, ignores the impact of the heterogeneity in both travel and charging behavior. The main objective of the thesis is to compare the UF by using multiday GPS-based travel data in regards to the charging decision. This thesis employs the global positioning system (GPS) based longitudinal travel data (covering 3-18 months) collected from 403 vehicles in the Seattle metropolitan area to investigate the impacts of such travel and charging behavior on UFs by analyzing the DVMT and home and work related tours. The UFs based on the DVMT are found close to those based on home-to-home tours. On the other hand, it is seen that the workplace charge opportunities largely improve UFs if the battery capacity is no more than 50 miles. It is also found that the gasoline price does not have significant impact on the UFs.

  13. 77 FR 59706 - Submission for OMB Review; Comment Request

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-09-28

    ... guidance, pending the issuance of regulations, relating to the new qualified plug-in electric drive motor...: Desk Officer for Treasury, New Executive Office Building, Room 10235, Washington, DC 20503, or email at... of qualified employer plans. Affected Public: Private Sector: Business or other for-profits...

  14. Reducing noise and vibration of hydraulic hybrid and plug-in hybrid electric vehicles : phase II final report.

    DOT National Transportation Integrated Search

    2010-03-01

    The University of Toledo University Transportation Center (UT-UTC) has identified hybrid vehicles as one of the three areas of the research. The activities proposed in this research proposal are directed towards the noise, vibration, and harshness (N...

  15. Web Card - Clean Cities Plug-In Electric Vehicle Handbook for Public Charging Station Hosts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    A 2" x 3-1/4" web card which has a quick response code for accessing the PEV Handbook for Public Charging Station Hosts via a smart phone. The cards are intended to be handed out instead of the handbook.

  16. Reducing noise and vibration of hydraulic hybrid and plug-in hybrid electric vehicles : phase III final report.

    DOT National Transportation Integrated Search

    2011-08-01

    The University of Toledo University Transportation Center (UT-UTC) has identified hybrid vehicles as one of the three areas of the research. The activities proposed in this research proposal are directed towards the noise, vibration, and harshness (N...

  17. Argonne wins four R&D 100 Awards | Argonne National Laboratory

    Science.gov Websites

    . High-Energy Concentration-Gradient Cathode Material for Plug-in Hybrids and All-Electric Vehicles converting discovery science into innovative, high-impact products, processes and systems." Globus scientific facilities (such as supercomputing centers and high energy physics experiments), cloud storage

  18. AVTA Federal Fleet PEV Readiness Data Logging and Characterization Study for Department of Veterans Affairs. James J. Peters VA Medical Center, Bronx, NY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schey, Stephen; Francfort, Jim

    This report focuses on the Department of Veterans Affairs, James J. Peters VA Medical Center (VA - Bronx) fleet to identify daily operational characteristics of select vehicles and report findings on vehicle and mission characterizations to support the successful introduction of PEVs into the agencies’ fleets. Individual observations of these selected vehicles provide the basis for recommendations related to electric vehicle adoption and whether a battery electric vehicle or plug-in hybrid electric vehicle (collectively referred to as PEVs) can fulfill the mission requirements.

  19. High slot utilization systems for electric machines

    DOEpatents

    Hsu, John S

    2009-06-23

    Two new High Slot Utilization (HSU) Systems for electric machines enable the use of form wound coils that have the highest fill factor and the best use of magnetic materials. The epoxy/resin/curing treatment ensures the mechanical strength of the assembly of teeth, core, and coils. In addition, the first HSU system allows the coil layers to be moved inside the slots for the assembly purpose. The second system uses the slided-in teeth instead of the plugged-in teeth. The power density of the electric machine that uses either system can reach its highest limit.

  20. Navistar eStar Vehicle Performance Evaluation – 4th Quarter 2013; Energy Efficiency & Renewable Energy (EERE), Vehicle Technologies Office (VTO)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    2014-01-01

    The Fleet Test and Evaluation Team at the U.S. Department of Energy's National Renewable Energy Laboratory is evaluating and documenting the performance of electric and plug-in hybrid electric drive systems in medium duty trucks across the nation. U.S. companies participating in this evaluation project received funding from the American Recovery and Reinvestment Act to cover part of the cost of purchasing these vehicles. Through this project, Navistar will build and deploy all-electric medium-duty trucks. The trucks will be deployed in diverse climates across the country.

  1. Navistar eStar Vehicle Performance Evaluation - 4th Quarter 2012; Energy Efficiency & Renewable Energy (EERE), Vehicle Technologies Office (VTO)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    2013-05-01

    The Fleet Test and Evaluation Team at the U.S. Department of Energy's National Renewable Energy Laboratory is evaluating and documenting the performance of electric and plug-in hybrid electric drive systems in medium-duty trucks across the nation. U.S. companies participating in this evaluation project received funding from the American Recovery and Reinvestment Act to cover part of the cost of purchasing these vehicles. Through this project, Navistar will build and deploy all-electric medium-duty trucks. The trucks will be deployed in diverse climates across the country.

  2. Retail Buildings: Assessing and Reducing Plug and Process Loads in Retail Buildings (Fact Sheet)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    2013-04-01

    Plug and process loads (PPLs) in commercial buildings account for almost 5% of U.S. primary energy consumption. Minimizing these loads is a primary challenge in the design and operation of an energy-efficient building. PPLs are not related to general lighting, heating, ventilation, cooling, and water heating, and typically do not provide comfort to the occupants. They use an increasingly large fraction of the building energy use pie because the number and variety of electrical devices have increased along with building system efficiency. Reducing PPLs is difficult because energy efficiency opportunities and the equipment needed to address PPL energy use inmore » retail spaces are poorly understood.« less

  3. Space shuttle orbit maneuvering engine reusable thrust chamber. Task 13: Subscale helium ingestion and two dimensional heating test report

    NASA Technical Reports Server (NTRS)

    Tobin, R. D.

    1974-01-01

    Descriptions are given of the test hardware, facility, procedures, and results of electrically heated tube, channel and panel tests conducted to determine effects of helium ingestion, two dimensional conduction, and plugged coolant channels on operating limits of convectively cooled chambers typical of space shuttle orbit maneuvering engine designs. Helium ingestion in froth form, was studied in tubular and rectangular single channel test sections. Plugged channel simulation was investigated in a three channel panel. Burn-out limits (transition of film boiling) were studied in both single channel and panel test sections to determine 2-D conduction effects as compared to tubular test results.

  4. Wireless Power Transfer

    ScienceCinema

    None

    2018-01-16

    Wireless Power Transfer is an innovative approach using magnetic resonance coupling of air core transformers designed for today's growing plug-in electric vehicle market. This technology can provide a convenient, safe and flexible means to charge electric vehicles under stationary and dynamic conditions. Plug-in Electric Vehicles (PEV) are burdened by the need for cable and plug charger, galvanic isolation of the on-board electronics, bulk and cost of this charger and the large energy storage system (ESS) packs needed. With a system where you have to physically plug in there are a number of occasions where the owner could very well forget to charge the vehicle. For stationary applications (like charging of a PHEV at home), ORNL's innovative wireless power transfer technology adds a convenience factor compared to actually plugging in which will mean that the vehicle will have a full charge every morning. Electric vehicle charging must be safe, compact and efficient in order to be convenient for customers. By reconfiguring the transformer and altering the resonance frequency, energy is transferred to the battery with lower energy losses and with fewer demands on the primary circuit by the rest of the transformer system. The ORNL discovery shows that sufficient power for the battery can be transferred from the primary to secondary circuits without significant energy losses if the operating frequency is set at 50% to 95% of the resonance frequency of the circuit. The electrical power is then transmitted to the chargeable battery, which is electrically coupled to the secondary circuit through the air core transformer. Some advantages include: Reduced energy losses during transfer of energy to the battery; A charge potential that is relatively unaffected by up to 25% misalignment of vehicle; and Other receiving components draw less power from the primary circuit. These advantages allow wireless power technology applications to expand at the workplace and beyond as the demand for EV rises. For vehicles that operate over a fixed route such as busses and shuttle vehicles, Wireless Power Transfer (WPT) means that a smaller battery pack can be used. In the traditional system, the battery pack is designed to accommodate the needs of the entire route or shift. With WPT the battery can be downsized because it can be charged when the vehicle stops on its route (a rental car shuttle bus, for example, can charge when it waits in the terminal and again when it waits at the rental car place. Thus the battery only needs enough charge to get to the next stop. This decrease in battery size means significant cost savings to electrify the vehicle. This technology enables efficient "opportunity charging stations" for predefined routes and planned stops reducing down time. Charging can occur in minutes. This improvement also eliminates the harmful emissions that occur in garages while buses are at idle during charging. In larger cities, dynamic charging offers an even greater impact utilizing existing infrastructure. As vehicles travel along busy freeways and interstate systems, wireless charging can occur while the vehicle is in motion. With this technology a vehicle essentially has unlimited electric range while using a relatively small battery pack. In-motion charging stations use vehicle sensors to alert the driver. Traveling at normal speeds, sensors establish in-motion charging. WPT transmit pads sequentially energize to the negotiated power level based on vehicle speed and its requested charging energy. Lower power when vehicle speed is slow and much higher power for faster moving vehicles. Vehicle to Infrastructure communications (V2I) coordinates WPT charging level according to on-board battery pack state-of-charge. V2I activates the roadway transmit pads placing them in standby mode and negotiates charging fee based on prevailing grid rate and vehicle energy demand. Dynamic charging would allow electricity to supply a very large fraction of the energy for the transportation sector and reduce greatly petroleum consumption. Previously worrisome traffic delays now provide longer periods of charge while passing over in-motion chargers. Inclement weather such as rain and snow do not affect the charging capability. At ORNL, we are working to develop the robust nature of wireless power technology to provide a convenient, safe and flexible means to charge electric vehicles under stationary and dynamic conditions.

  5. Wireless Power Transfer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    2013-07-22

    Wireless Power Transfer is an innovative approach using magnetic resonance coupling of air core transformers designed for today's growing plug-in electric vehicle market. This technology can provide a convenient, safe and flexible means to charge electric vehicles under stationary and dynamic conditions. Plug-in Electric Vehicles (PEV) are burdened by the need for cable and plug charger, galvanic isolation of the on-board electronics, bulk and cost of this charger and the large energy storage system (ESS) packs needed. With a system where you have to physically plug in there are a number of occasions where the owner could very well forgetmore » to charge the vehicle. For stationary applications (like charging of a PHEV at home), ORNL's innovative wireless power transfer technology adds a convenience factor compared to actually plugging in which will mean that the vehicle will have a full charge every morning. Electric vehicle charging must be safe, compact and efficient in order to be convenient for customers. By reconfiguring the transformer and altering the resonance frequency, energy is transferred to the battery with lower energy losses and with fewer demands on the primary circuit by the rest of the transformer system. The ORNL discovery shows that sufficient power for the battery can be transferred from the primary to secondary circuits without significant energy losses if the operating frequency is set at 50% to 95% of the resonance frequency of the circuit. The electrical power is then transmitted to the chargeable battery, which is electrically coupled to the secondary circuit through the air core transformer. Some advantages include: Reduced energy losses during transfer of energy to the battery; A charge potential that is relatively unaffected by up to 25% misalignment of vehicle; and Other receiving components draw less power from the primary circuit. These advantages allow wireless power technology applications to expand at the workplace and beyond as the demand for EV rises. For vehicles that operate over a fixed route such as busses and shuttle vehicles, Wireless Power Transfer (WPT) means that a smaller battery pack can be used. In the traditional system, the battery pack is designed to accommodate the needs of the entire route or shift. With WPT the battery can be downsized because it can be charged when the vehicle stops on its route (a rental car shuttle bus, for example, can charge when it waits in the terminal and again when it waits at the rental car place. Thus the battery only needs enough charge to get to the next stop. This decrease in battery size means significant cost savings to electrify the vehicle. This technology enables efficient "opportunity charging stations" for predefined routes and planned stops reducing down time. Charging can occur in minutes. This improvement also eliminates the harmful emissions that occur in garages while buses are at idle during charging. In larger cities, dynamic charging offers an even greater impact utilizing existing infrastructure. As vehicles travel along busy freeways and interstate systems, wireless charging can occur while the vehicle is in motion. With this technology a vehicle essentially has unlimited electric range while using a relatively small battery pack. In-motion charging stations use vehicle sensors to alert the driver. Traveling at normal speeds, sensors establish in-motion charging. WPT transmit pads sequentially energize to the negotiated power level based on vehicle speed and its requested charging energy. Lower power when vehicle speed is slow and much higher power for faster moving vehicles. Vehicle to Infrastructure communications (V2I) coordinates WPT charging level according to on-board battery pack state-of-charge. V2I activates the roadway transmit pads placing them in standby mode and negotiates charging fee based on prevailing grid rate and vehicle energy demand. Dynamic charging would allow electricity to supply a very large fraction of the energy for the transportation sector and reduce greatly petroleum consumption. Previously worrisome traffic delays now provide longer periods of charge while passing over in-motion chargers. Inclement weather such as rain and snow do not affect the charging capability. At ORNL, we are working to develop the robust nature of wireless power technology to provide a convenient, safe and flexible means to charge electric vehicles under stationary and dynamic conditions.« less

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harper, Jason; Dobrzynski, Daniel S.

    A smart charging system for charging a plug-in electric vehicle (PEV) includes an electric vehicle supply equipment (EVSE) configured to supply electrical power to the PEV through a smart charging module coupled to the EVSE. The smart charging module comprises an electronic circuitry which includes a processor. The electronic circuitry includes electronic components structured to receive electrical power from the EVSE, and supply the electrical power to the PEV. The electronic circuitry is configured to measure a charging parameter of the PEV. The electronic circuitry is further structured to emulate a pulse width modulated signal generated by the EVSE. Themore » smart charging module can also include a first coupler structured to be removably couple to the EVSE and a second coupler structured to be removably coupled to the PEV.« less

  7. How Do The EV Project Participants Feel About Charging Their EV Away From Home?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Francfort, James E.

    2015-02-01

    The EV Project is an infrastructure study that enrolled over 8,000 residential participants. These participants purchased or leased a Nissan Leaf battery electric vehicle or Chevrolet Volt extended-range electric vehicle and were among the first to explore this new electric drive technology. Collectively, battery electric vehicles, extended-range electric vehicles, and plug-in hybrid electric vehicles are called PEVs. The EV Project participants were very cooperative and enthusiastic about their participation in the project and very supportive in providing feedback and information. The information and attitudes of these participants concerning their experience with their PEVs were solicited using a survey in Junemore » 2013. At that time, some had up to 3 years of experience with their PEVs.« less

  8. FULL-SCALE CHAMBER INVESTIGATION AND SIMULATION OF AIR FRESHENER EMISSIONS IN THE PRESENCE OF OZONE

    EPA Science Inventory

    The paper discusses results of tests, conducted in the EPA large chamber facility, determining emissions and chemical degradation of volatile organic compounds (VOCs) from one electrical plug-in type pine-scented air freshener in the presence of ozone supplied by a device markete...

  9. 46 CFR 169.675 - Generators and motors.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... with a nameplate of corrosion-resistant material marked with the following information as applicable... having only electrically driven fire and bilge pumps must have two generators. One of these generators... at the lowest part of the frame for attaching a drain pipe or drain plug. (f) Except as provided in...

  10. 78 FR 13758 - Submission for OMB Review; Comment Request

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-28

    ... the Internal Revenue Code, a credit for certain new specified plug-in electric drive vehicles. This...: Desk Officer for Treasury, New Executive Office Building, Room 10235, Washington, DC 20503, or email at... Public: Private Sector: Businesses and other for-profits. Estimated Total Burden Hours: 5,040. OMB Number...

  11. Childhood Injuries: Keeping the #1 Killer at Bay.

    ERIC Educational Resources Information Center

    Cutright, Melitta J.

    1991-01-01

    Suggestions to help parents keep their children safe from injury include learn first aid; child-proof the home; use carseats and safety belts; lock up medications, toxic materials, sharp instruments, and guns; block off stairways; install smoke alarms; insist on bike helmets; and put safety plugs in electric sockets. (SM)

  12. Battery Second Use for Plug-In Electric Vehicles Analysis | Transportation

    Science.gov Websites

    batteries, and how much will it cost? NREL's investigation found that regional repurposing facilities . As technician labor is the primary cost element of such an operation, repurposing facilities are /kilowatt-hour (kWh)-nameplate. NREL's repurposing cost calculator is available freely for download

  13. Evolution of the household vehicle fleet : anticipating fleet composition, plug-in hybrid electric vehicle (PHEV) adoption and greenhouse gas (GHG) emissions in Austin, Texas.

    DOT National Transportation Integrated Search

    2009-12-01

    Automobile ownership plays an important role in determining vehicle use, emissions, fuel : consumption, congestion and traffic safety. This work provides new data on ownership decisions : and owner preferences under various scenarios, coupled with ca...

  14. Outdoor Testing Areas | Energy Systems Integration Facility | NREL

    Science.gov Websites

    of engineers running tests on plug-in hybrid electric vehicles at the Medium-Voltage Outdoor Test large microgrids hub, located in the outdoor low-voltage test yard, includes underground trench access pits for full enclosure of rotating machinery under test. Key Infrastructure Secured underground pits

  15. Alternative Fuels Data Center: Workplace Charging for Plug-In Electric

    Science.gov Websites

    stations for their employees. University Campuses - Learn how higher education institutions are promoting PEV adoption by faculty, staff, and students. Healthcare Facilities - Learn how hospitals and other healthcare organizations are improving local air quality by promoting employee PEV adoption. Utilities Power

  16. 75 FR 48361 - Notice of Lodging of Consent Decree Under the Clean Air Act

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-10

    .... Massachusetts Bay Transportation Authority (``MBTA'') and Massachusetts Bay Commuter Railroad Company, L.L.C... Massachusetts Bay Transportation Authority (``MBTA'') and the Massachusetts Bay Commuter Railroad Company, L.L.C... and MBCR will: (1) Install sufficient electric plug-in stations throughout the MBTA's commuter rail...

  17. Alternative Fuels Data Center: Massachusetts Transportation Data for

    Science.gov Websites

    Cod National Seashore Initiative for Resiliency in Energy through Vehicles (iREV) Maryland Hybrid Truck Goods Movement Initiative No One Silver Bullet, But a Lot of Silver Beebees Northeast Electric Vehicle Initiative Plug In America Removing Barriers, Implementing Policies and Advancing Alternative

  18. Reducing noise and vibration of hydraulic hybrid and plug-in hybrid electric vehicles : phase II, final report, March 2010.

    DOT National Transportation Integrated Search

    2010-03-01

    The University of Toledo University Transportation Center (UT-UTC) has identified hybrid vehicles as one of the three areas of the research. The activities proposed in this research proposal are directed towards the noise, vibration, and harshness (N...

  19. Reducing noise and vibration of hydraulic hybrid and plug-in hybrid electric vehicles : phase I final report, March 2009.

    DOT National Transportation Integrated Search

    2009-03-01

    The University of Toledo University Transportation Center (UT-UTC) has identified hybrid vehicles as one of the three areas of the research. The activities proposed in this research proposal are directed towards the noise, vibration, and harshness (N...

  20. Reliable Wiring Harness

    NASA Technical Reports Server (NTRS)

    Gaspar, Kenneth C.

    1987-01-01

    New harness for electrical wiring includes plugs that do not loosen from vibration. Ground braids prevented from detaching from connectors and constrained so braids do not open into swollen "birdcage" sections. Spring of stainless steel encircles ground braid. Self-locking connector contains ratchet not only preventing connector from opening, but tightens when vibrated.

  1. Optimal Policies for the Management of a Plug-In Hybrid Electric Vehicle Swap Station

    DTIC Science & Technology

    2015-03-26

    occurring for many other vehicle manufacturers. Honda, BMW, Chevrolet, Ford, Nissan, Cadillac, Fiat, Mercedes, Mitsubishi, SMART, Volkswagon, Kia, and Toyota ...rules depend on the current state of the system and not the entire history of states, Markovian decision rules [16] are considered. Furthermore, the

  2. Integrated Testing, Simulation and Analysis of Electric Drive Options for Medium-Duty Parcel Delivery Vehicles: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ramroth, L. A.; Gonder, J.; Brooker, A.

    2012-09-01

    The National Renewable Energy Laboratory verified diesel-conventional and diesel-hybrid parcel delivery vehicle models to evaluate petroleum reduction and cost implications of plug-in hybrid gasoline and diesel variants. These variants are run on a field-data-derived design matrix to analyze the effects of drive cycle, distance, battery replacements, battery capacity, and motor power on fuel consumption and lifetime cost. Two cost scenarios using fuel prices corresponding to forecasted highs for 2011 and 2030 and battery costs per kilowatt-hour representing current and long-term targets compare plug-in hybrid lifetime costs with diesel conventional lifetime costs. Under a future cost scenario of $100/kWh battery energymore » and $5/gal fuel, plug-in hybrids are cost effective. Assuming a current cost of $700/kWh and $3/gal fuel, they rarely recoup the additional motor and battery cost. The results highlight the importance of understanding the application's drive cycle, daily driving distance, and kinetic intensity. For instances in the current-cost scenario where the additional plug-in hybrid cost is regained in fuel savings, the combination of kinetic intensity and daily distance travelled does not coincide with the usage patterns observed in the field data. If the usage patterns were adjusted, the hybrids could become cost effective.« less

  3. Semi-flexible gas-insulated transmission line using electric field stress shields

    DOEpatents

    Cookson, Alan H.; Dale, Steinar J.; Bolin, Philip C.

    1982-12-28

    A gas-insulated transmission line includes an outer sheath, an inner conductor, an insulating gas electrically insulating the inner conductor from the outer sheath, and insulating supports insulatably supporting the inner conductor within the outer sheath. The inner conductor is provided with flexibility by use of main conductor sections which are joined together through a conductor hub section and flexible flexing elements. Stress shields are provided to control the electric field at the locations of the conductor hub sections where the insulating supports are contacting the inner conductor. The flexing elements and the stress shields may also be utilized in connection with a plug and socket arrangement for providing electrical connection between main conductor sections.

  4. Aligning PEV Charging Times with Electricity Supply and Demand

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hodge, Cabell

    Plug-in electric vehicles (PEVs) are a growing source of electricity consumption that could either exacerbate supply shortages or smooth electricity demand curves. Extensive research has explored how vehicle-grid integration (VGI) can be optimized by controlling PEV charging timing or providing vehicle-to-grid (V2G) services, such as storing energy in vehicle batteries and returning it to the grid at peak times. While much of this research has modeled charging, implementation in the real world requires a cost-effective solution that accounts for consumer behavior. To function across different contexts, several types of charging administrators and methods of control are necessary to minimize costsmore » in the VGI context.« less

  5. Optimization to reduce fuel consumption in charge depleting mode

    DOEpatents

    Roos, Bryan Nathaniel; Martini, Ryan D.

    2014-08-26

    A powertrain includes an internal combustion engine, a motor utilizing electrical energy from an energy storage device, and a plug-in connection. A Method for controlling the powertrain includes monitoring a fuel cut mode, ceasing a fuel flow to the engine based upon the fuel cut mode, and through a period of operation including acceleration of the powertrain, providing an entirety of propelling torque to the powertrain with the electrical energy from the energy storage device based upon the fuel cut mode.

  6. Enabling Fast Charging: A Technology Gap Assessment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None, None

    Decreasing energy consumption across the U.S. transportation sector, especially in commercial light-duty vehicles, is essential for the United States to gain energy independence. Recently, powertrain electrification with plug-in electric vehicles (PEVs) have gained traction as an alternative due to their inherent efficiency advantages compared to the traditional internal combustion engine vehicle (ICEV). Even though there are many different classes of PEVs, the intent of this study is to focus on non-hybrid powertrains, or battery electric vehicles (BEVs).

  7. Transportation Electrification

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schwendeman, Lawrence; Crouch, Alan

    This project has accomplished the following objectives: to address the critical need for technician training in new and emerging propulsion technologies by developing new courses, including information and training on electric vehicles, plug-in hybrid electric vehicles, and fuel cell vehicles; to integrate the new certificate with the existing Associate of Applied Science Degree and Certificate automotive degrees; to disseminate these leading edge courses throughout the Commonwealth of Virginia and neighboring Mid-Atlantic States; and to provide training opportunities for displaced workers and underrepresented populations seeking careers in the automotive industry.

  8. 77 FR 33642 - Regional Haze: Revisions to Provisions Governing Alternatives to Source-Specific Best Available...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-07

    ... of the Two-Pronged Test 2. Identification of Affected Class I Areas 3. Control Scenarios Examined 4... two-pronged test to the Transport Rule control scenario and the source-specific BART control scenario... approaches to identify the Class I areas ``affected'' by the Transport Rule as an alternative control program...

  9. Cost-effective electric vehicle charging infrastructure siting for Delhi

    DOE PAGES

    Sheppard, Colin J. R.; Gopal, Anand R.; Harris, Andrew; ...

    2016-06-10

    Plug-in electric vehicles (PEVs) represent a substantial opportunity for governments to reduce emissions of both air pollutants and greenhouse gases. The Government of India has set a goal of deploying 6-7 million hybrid and PEVs on Indian roads by the year 2020. The uptake of PEVs will depend on, among other factors like high cost, how effectively range anxiety is mitigated through the deployment of adequate electric vehicle charging stations (EVCS) throughout a region. The Indian Government therefore views EVCS deployment as a central part of their electric mobility mission. The plug-in electric vehicle infrastructure (PEVI) model - an agent-basedmore » simulation modeling platform - was used to explore the cost-effective siting of EVCS throughout the National Capital Territory (NCT) of Delhi, India. At 1% penetration in the passenger car fleet, or ~10 000 battery electric vehicles (BEVs), charging services can be provided to drivers for an investment of $4.4 M (or $ 440/BEV) by siting 2764 chargers throughout the NCT of Delhi with an emphasis on the more densely populated and frequented regions of the city. The majority of chargers sited by this analysis were low power, Level 1 chargers, which have the added benefit of being simpler to deploy than higher power alternatives. The amount of public infrastructure needed depends on the access that drivers have to EVCS at home, with 83% more charging capacity required to provide the same level of service to a population of drivers without home chargers compared to a scenario with home chargers. Results also depend on the battery capacity of the BEVs adopted, with approximately 60% more charging capacity needed to achieve the same level of service when vehicles are assumed to have 57 km versus 96 km of range.« less

  10. Cost-effective electric vehicle charging infrastructure siting for Delhi

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sheppard, Colin J. R.; Gopal, Anand R.; Harris, Andrew

    Plug-in electric vehicles (PEVs) represent a substantial opportunity for governments to reduce emissions of both air pollutants and greenhouse gases. The Government of India has set a goal of deploying 6-7 million hybrid and PEVs on Indian roads by the year 2020. The uptake of PEVs will depend on, among other factors like high cost, how effectively range anxiety is mitigated through the deployment of adequate electric vehicle charging stations (EVCS) throughout a region. The Indian Government therefore views EVCS deployment as a central part of their electric mobility mission. The plug-in electric vehicle infrastructure (PEVI) model - an agent-basedmore » simulation modeling platform - was used to explore the cost-effective siting of EVCS throughout the National Capital Territory (NCT) of Delhi, India. At 1% penetration in the passenger car fleet, or ~10 000 battery electric vehicles (BEVs), charging services can be provided to drivers for an investment of $4.4 M (or $ 440/BEV) by siting 2764 chargers throughout the NCT of Delhi with an emphasis on the more densely populated and frequented regions of the city. The majority of chargers sited by this analysis were low power, Level 1 chargers, which have the added benefit of being simpler to deploy than higher power alternatives. The amount of public infrastructure needed depends on the access that drivers have to EVCS at home, with 83% more charging capacity required to provide the same level of service to a population of drivers without home chargers compared to a scenario with home chargers. Results also depend on the battery capacity of the BEVs adopted, with approximately 60% more charging capacity needed to achieve the same level of service when vehicles are assumed to have 57 km versus 96 km of range.« less

  11. Cost-effective electric vehicle charging infrastructure siting for Delhi

    NASA Astrophysics Data System (ADS)

    Sheppard, Colin J. R.; Gopal, Anand R.; Harris, Andrew; Jacobson, Arne

    2016-06-01

    Plug-in electric vehicles (PEVs) represent a substantial opportunity for governments to reduce emissions of both air pollutants and greenhouse gases. The Government of India has set a goal of deploying 6-7 million hybrid and PEVs on Indian roads by the year 2020. The uptake of PEVs will depend on, among other factors like high cost, how effectively range anxiety is mitigated through the deployment of adequate electric vehicle charging stations (EVCS) throughout a region. The Indian Government therefore views EVCS deployment as a central part of their electric mobility mission. The plug-in electric vehicle infrastructure (PEVI) model—an agent-based simulation modeling platform—was used to explore the cost-effective siting of EVCS throughout the National Capital Territory (NCT) of Delhi, India. At 1% penetration in the passenger car fleet, or ˜10 000 battery electric vehicles (BEVs), charging services can be provided to drivers for an investment of 4.4 M (or 440/BEV) by siting 2764 chargers throughout the NCT of Delhi with an emphasis on the more densely populated and frequented regions of the city. The majority of chargers sited by this analysis were low power, Level 1 chargers, which have the added benefit of being simpler to deploy than higher power alternatives. The amount of public infrastructure needed depends on the access that drivers have to EVCS at home, with 83% more charging capacity required to provide the same level of service to a population of drivers without home chargers compared to a scenario with home chargers. Results also depend on the battery capacity of the BEVs adopted, with approximately 60% more charging capacity needed to achieve the same level of service when vehicles are assumed to have 57 km versus 96 km of range.

  12. Regional Charging Infrastructure for Plug-In Electric Vehicles: A Case Study of Massachusetts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wood, Eric; Raghavan, Sesha; Rames, Clement

    Given the complex issues associated with plug-in electric vehicle (PEV) charging and options in deploying charging infrastructure, there is interest in exploring scenarios of future charging infrastructure deployment to provide insight and guidance to national and regional stakeholders. The complexity and cost of PEV charging infrastructure pose challenges to decision makers, including individuals, communities, and companies considering infrastructure installations. The value of PEVs to consumers and fleet operators can be increased with well-planned and cost-effective deployment of charging infrastructure. This will increase the number of miles driven electrically and accelerate PEV market penetration, increasing the shared value of charging networksmore » to an expanding consumer base. Given these complexities and challenges, the objective of the present study is to provide additional insight into the role of charging infrastructure in accelerating PEV market growth. To that end, existing studies on PEV infrastructure are summarized in a literature review. Next, an analysis of current markets is conducted with a focus on correlations between PEV adoption and public charging availability. A forward-looking case study is then conducted focused on supporting 300,000 PEVs by 2025 in Massachusetts. The report concludes with a discussion of potential methodology for estimating economic impacts of PEV infrastructure growth.« less

  13. Clean Cities 2015 Annual Metrics Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, Caley; Singer, Mark

    2016-12-01

    The U.S. Department of Energy's (DOE's) Clean Cities program advances the nation's economic, environmental, and energy security by supporting local actions to cut petroleum use and greenhouse gas (GHG) emissions in transportation. A national network of nearly 100 Clean Cities coalitions, whose territory covers 80% of the U.S. population, brings together stakeholders in the public and private sectors to deploy alternative and renewable fuels, idle-reduction (IR) measures, fuel economy improvements, and new transportation technologies as they emerge. Each year, DOE asks Clean Cities coordinators to submit annual reports of their activities and accomplishments for the previous calendar year. Progress reportsmore » and information are submitted online as a function of the Alternative Fuels Data Center (AFDC) at the National Renewable Energy Laboratory (NREL). Coordinators report a range of information that characterize the membership, funding, projects, and activities of their coalitions. They also document activities in their region related to the development of refueling/charging infrastructure, sales of alternative fuels; deployment of alternative fuel vehicles (AFVs), plug-in electric vehicles (PEVs), hybrid electric vehicles (HEVs), and plug-in hybrid electric vehicles (PHEVs); idle reduction initiatives; fuel economy improvement activities; and programs to reduce vehicle miles traveled (VMT). NREL analyzes the data and translates them into petroleum-use and GHG emission reduction impacts, which are summarized in this report.« less

  14. Promoting the Market for Plug-in Hybrid and Battery Electric Vehicles: Role of Recharge Availability

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin, Zhenhong; Greene, David L

    Much recent attention has been drawn to providing adequate recharge availability as a means to promote the battery electric vehicle (BEV) and plug-in hybrid electric vehicle (PHEV) market. The possible role of improved recharge availability in developing the BEV-PHEV market and the priorities that different charging options should receive from the government require better understanding. This study reviews the charging issue and conceptualizes it into three interactions between the charge network and the travel network. With travel data from 3,755 drivers in the National Household Travel Survey, this paper estimates the distribution among U.S. consumers of (a) PHEV fuel-saving benefitsmore » by different recharge availability improvements, (b) range anxiety by different BEV ranges, and (c) willingness to pay for workplace and public charging in addition to home recharging. With the Oak Ridge National Laboratory MA3T model, the impact of three recharge improvements is quantified by the resulting increase in BEV-PHEV sales. Compared with workplace and public recharging improvements, home recharging improvement appears to have a greater impact on BEV-PHEV sales. The impact of improved recharging availability is shown to be amplified by a faster reduction in battery cost.« less

  15. Retail Infrastructure Costs Comparison for Hydrogen and Electricity for Light-Duty Vehicles: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Melaina, M.; Sun, Y.; Bush, B.

    2014-08-01

    Both hydrogen and plug-in electric vehicles offer significant social benefits to enhance energy security and reduce criteria and greenhouse gas emissions from the transportation sector. However, the rollout of electric vehicle supply equipment (EVSE) and hydrogen retail stations (HRS) requires substantial investments with high risks due to many uncertainties. We compare retail infrastructure costs on a common basis - cost per mile, assuming fueling service to 10% of all light-duty vehicles in a typical 1.5 million person city in 2025. Our analysis considers three HRS sizes, four distinct types of EVSE and two distinct EVSE scenarios. EVSE station costs, includingmore » equipment and installation, are assumed to be 15% less than today's costs. We find that levelized retail capital costs per mile are essentially indistinguishable given the uncertainty and variability around input assumptions. Total fuel costs per mile for battery electric vehicle (BEV) and plug-in hybrid vehicle (PHEV) are, respectively, 21% lower and 13% lower than that for hydrogen fuel cell electric vehicle (FCEV) under the home-dominant scenario. Including fuel economies and vehicle costs makes FCEVs and BEVs comparable in terms of costs per mile, and PHEVs are about 10% less than FCEVs and BEVs. To account for geographic variability in energy prices and hydrogen delivery costs, we use the Scenario Evaluation, Regionalization and Analysis (SERA) model and confirm the aforementioned estimate of cost per mile, nationally averaged, but see a 15% variability in regional costs of FCEVs and a 5% variability in regional costs for BEVs.« less

  16. Comparative evaluation of transmembrane ion transport due to monopolar and bipolar nanosecond, high-intensity electroporation pulses based on full three-dimensional analyses

    NASA Astrophysics Data System (ADS)

    Hu, Q.; Joshi, R. P.

    2017-07-01

    Electric pulse driven membrane poration finds applications in the fields of biomedical engineering and drug/gene delivery. Here we focus on nanosecond, high-intensity electroporation and probe the role of pulse shape (e.g., monopolar-vs-bipolar), multiple electrode scenarios, and serial-versus-simultaneous pulsing, based on a three-dimensional time-dependent continuum model in a systematic fashion. Our results indicate that monopolar pulsing always leads to higher and stronger cellular uptake. This prediction is in agreement with experimental reports and observations. It is also demonstrated that multi-pronged electrode configurations influence and increase the degree of cellular uptake.

  17. Plug-in Electric Vehicle Policy Effectiveness: Literature Review

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, Yan; Levin, Todd; Plotkin, Steven E.

    2016-05-01

    The U.S. federal government first introduced incentives for plug-in electric vehicles (PEVs) through the American Clean Energy and Security Act of 2009, which provided a tax credit of up to $7,500 for a new PEV purchase. Soon after, in December 2010, two mass-market PEVs were introduced, the plug-in hybrid electric vehicle (PHEV) Chevrolet Volt and the battery electric vehicle (BEV) Nissan LEAF. Since that time, numerous additional types of PEV incentives have been provided by federal and regional (state or city) government agencies and utility companies. These incentives cover vehicle purchases as well as the purchase and installation of electricmore » vehicle supply equipment (EVSE) through purchase rebates, tax credits, or discounted purchase taxes or registration fees. Additional incentives, such as free high-occupancy vehicle (HOV) lane access and parking benefits, may also be offered to PEV owners. Details about these incentives, such as the extent to which each type is offered by region, can be obtained from the U.S. Department of Energy (DOE) Alternative Fuel Data Center (http://www.afdc.energy.gov/). In addition to these incentives, other policies, such as zero-emission vehicle (ZEV) mandates,1 have also been implemented, and community-scale federal incentives, such as the DOE PEV Readiness Grants, have been awarded throughout the country to improve PEV market penetration. This report reviews 18 studies that analyze the impacts of past or current incentives and policies that were designed to support PEV adoption in the U.S. These studies were selected for review after a comprehensive survey of the literature and discussion with a number of experts in the field. The report summarizes the lessons learned and best practices from the experiences of these incentive programs to date, as well as the challenges they face and barriers that inhibit further market adoption of PEVs. Studies that make projections based on future policy scenarios and those that focus solely on international markets are not included in this report. Studies that only provide an overview of the current market without discussing how incentives influence the market are also not included.« less

  18. "Watts per person" paradigm to design net zero energy buildings: Examining technology interventions and integrating occupant feedback to reduce plug loads in a commercial building

    NASA Astrophysics Data System (ADS)

    Yagi Kim, Mika

    As building envelopes have improved due to more restrictive energy codes, internal loads have increased largely due to the proliferation of computers, electronics, appliances, imaging and audio visual equipment that continues to grow in commercial buildings. As the dependency on the internet for information and data transfer increases, the electricity demand will pose a challenge to design and operate Net Zero Energy Buildings (NZEBs). Plug Loads (PLs) as a proportion of the building load has become the largest non-regulated building energy load and represents the third highest electricity end-use in California's commercial office buildings, accounting for 23% of the total building electricity consumption (Ecova 2011,2). In the Annual Energy Outlook 2008 (AEO2008), prepared by the Energy Information Administration (EIA) that presents long-term projections of energy supply and demand through 2030 states that office equipment and personal computers are the "fastest growing electrical end uses" in the commercial sector. This thesis entitled "Watts Per Person" Paradigm to Design Net Zero Energy Buildings, measures the implementation of advanced controls and behavioral interventions to study the reduction of PL energy use in the commercial sector. By integrating real world data extracted from an energy efficient commercial building of its energy use, the results produce a new methodology on estimating PL energy use by calculating based on "Watts Per Person" and analyzes computational simulation methods to design NZEBs.

  19. Alternative Fuels Data Center: Plug-In Electric Vehicle Readiness Scorecard

    Science.gov Websites

    track progress toward PEV readiness. Get started evaluating your community. Create Account Log in to your account. Email Password Forgot your password? LOG IN Public reporting burden for this collection of information is estimated to average (20.5 hours) per response, including the time for reviewing

  20. --No Title--

    Science.gov Websites

    the desired vehicle technology. PHEV-x means a plug-in hybrid electric vehicle with x miles of all hybrids, or more efficient conventional vehicles. To explore the effect of adding vehicles to your fleet , change the current number of vehicles to zero and enter a number of new vehicles. Petroleum and

  1. Alternative Fuels Data Center: Plug-In Electric Vehicle Deployment Policy

    Science.gov Websites

    addendum to a pre-existing zoning ordinance to specify permissible use of EVSE in single- and multi-family -ready requirements may include EVSE installation, pre-wiring, or space reservation. California building charging infrastructure. Examples include the scope of EVSE pre-wiring or installation from a

  2. Federal energy and fleet management : plug-in vehicles offer potential benefits, but high costs and limited information could hinder integration into the FederalFleet.

    DOT National Transportation Integrated Search

    2009-06-01

    The U.S. transportation sector relies almost exclusively on oil; as a result, it causes about a third of the nations greenhouse gas emissions. Advanced technology vehicles powered by alternative fuels, such as electricity and ethanol, are one way ...

  3. Alternative Fuels Data Center: Signage for Plug-In Electric Vehicle

    Science.gov Websites

    with the standards helps all drivers understand and recognize charging station signage. Pavement . Notably, most jurisdictions deem pavement markings unenforceable on their own. For general information about pavement markings, see Chapter 3B of the MUTCD. More Information In March 2013, the State of

  4. Alternative Fuels Data Center

    Science.gov Websites

    Plug-In Electric Vehicle (PEV) Charging Rate and Infrastructure Rebate - Lansing BWL The Lansing Board of Water & Light (BWL) offers a pilot PEV time-of-use charging rate to single- or multi-family installation of EVSE for customers that have enrolled in the PEV charging rate. The program is limited to the

  5. Alternative Fuels Data Center

    Science.gov Websites

    Plug-In Electric Vehicle (PEV) Credit and Charging Rate Reduction Pilot - Rocky Mountain Power Rocky Mountain Power offers residential customers with PEVs $200 to enroll in a time-of-use (TOU) rate pilot. Participants may choose between two rate plans. The TOU rate will apply to all household energy

  6. Plug-in hybrid electric vehicle value proposition study. Phase 1, task 2, select value proposition/business model for further study

    DOT National Transportation Integrated Search

    2008-04-01

    The objective of Task 2 is to identify the combination of value propositions that is : believed to be achievable by 2030 and collectively hold promise for a sustainable : PHEV market by 2030. This deliverable outlines what the project team (with inpu...

  7. 46 CFR 153.975 - Preparation for cargo transfer.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... system to have a fire protection system. (b) Any electrical bonding of the tankship to the transfer... plugged. (m) Smoking is limited to safe places. (n) Fire fighting and safety equipment is ready. (o) He is... or continue cargo transfer unless the following conditions are met: (a) No fires or open flames are...

  8. Plug-In Electric Vehicle Fast Charge Station Operational Analysis with Integrated Renewables: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Simpson, M.; Markel, T.

    2012-08-01

    The growing, though still nascent, plug-in electric vehicle (PEV) market currently operates primarily via level 1 and level 2 charging in the United States. Fast chargers are still a rarity, but offer a confidence boost to oppose 'range anxiety' in consumers making the transition from conventional vehicles to PEVs. Because relatively no real-world usage of fast chargers at scale exists yet, the National Renewable Energy Laboratory developed a simulation to help assess fast charging needs based on real-world travel data. This study documents the data, methods, and results of the simulation run for multiple scenarios, varying fleet sizes, and themore » number of charger ports. The grid impact of this usage is further quantified to assess the opportunity for integration of renewables; specifically, a high frequency of fast charging is found to be in demand during the late afternoons and evenings coinciding with grid peak periods. Proper integration of a solar array and stationary battery thus helps ease the load and reduces the need for new generator construction to meet the demand of a future PEV market.« less

  9. Life cycle environmental assessment of lithium-ion and nickel metal hydride batteries for plug-in hybrid and battery electric vehicles.

    PubMed

    Majeau-Bettez, Guillaume; Hawkins, Troy R; Strømman, Anders Hammer

    2011-05-15

    This study presents the life cycle assessment (LCA) of three batteries for plug-in hybrid and full performance battery electric vehicles. A transparent life cycle inventory (LCI) was compiled in a component-wise manner for nickel metal hydride (NiMH), nickel cobalt manganese lithium-ion (NCM), and iron phosphate lithium-ion (LFP) batteries. The battery systems were investigated with a functional unit based on energy storage, and environmental impacts were analyzed using midpoint indicators. On a per-storage basis, the NiMH technology was found to have the highest environmental impact, followed by NCM and then LFP, for all categories considered except ozone depletion potential. We found higher life cycle global warming emissions than have been previously reported. Detailed contribution and structural path analyses allowed for the identification of the different processes and value-chains most directly responsible for these emissions. This article contributes a public and detailed inventory, which can be easily be adapted to any powertrain, along with readily usable environmental performance assessments.

  10. RF-driven ion source with a back-streaming electron dump

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kwan, Joe; Ji, Qing

    A novel ion source is described having an improved lifetime. The ion source, in one embodiment, is a proton source, including an external RF antenna mounted to an RF window. To prevent backstreaming electrons formed in the beam column from striking the RF window, a back streaming electron dump is provided, which in one embodiment is formed of a cylindrical tube, open at one end to the ion source chamber and capped at its other end by a metal plug. The plug, maintained at the same electrical potential as the source, captures these backstreaming electrons, and thus prevents localized heatingmore » of the window, which due to said heating, might otherwise cause window damage.« less

  11. Grid regulation services for energy storage devices based on grid frequency

    DOEpatents

    Pratt, Richard M; Hammerstrom, Donald J; Kintner-Meyer, Michael C.W.; Tuffner, Francis K

    2013-07-02

    Disclosed herein are representative embodiments of methods, apparatus, and systems for charging and discharging an energy storage device connected to an electrical power distribution system. In one exemplary embodiment, a controller monitors electrical characteristics of an electrical power distribution system and provides an output to a bi-directional charger causing the charger to charge or discharge an energy storage device (e.g., a battery in a plug-in hybrid electric vehicle (PHEV)). The controller can help stabilize the electrical power distribution system by increasing the charging rate when there is excess power in the electrical power distribution system (e.g., when the frequency of an AC power grid exceeds an average value), or by discharging power from the energy storage device to stabilize the grid when there is a shortage of power in the electrical power distribution system (e.g., when the frequency of an AC power grid is below an average value).

  12. Grid regulation services for energy storage devices based on grid frequency

    DOEpatents

    Pratt, Richard M.; Hammerstrom, Donald J.; Kintner-Meyer, Michael C. W.; Tuffner, Francis K.

    2017-09-05

    Disclosed herein are representative embodiments of methods, apparatus, and systems for charging and discharging an energy storage device connected to an electrical power distribution system. In one exemplary embodiment, a controller monitors electrical characteristics of an electrical power distribution system and provides an output to a bi-directional charger causing the charger to charge or discharge an energy storage device (e.g., a battery in a plug-in hybrid electric vehicle (PHEV)). The controller can help stabilize the electrical power distribution system by increasing the charging rate when there is excess power in the electrical power distribution system (e.g., when the frequency of an AC power grid exceeds an average value), or by discharging power from the energy storage device to stabilize the grid when there is a shortage of power in the electrical power distribution system (e.g., when the frequency of an AC power grid is below an average value).

  13. Grid regulation services for energy storage devices based on grid frequency

    DOEpatents

    Pratt, Richard M; Hammerstrom, Donald J; Kintner-Meyer, Michael C.W.; Tuffner, Francis K

    2014-04-15

    Disclosed herein are representative embodiments of methods, apparatus, and systems for charging and discharging an energy storage device connected to an electrical power distribution system. In one exemplary embodiment, a controller monitors electrical characteristics of an electrical power distribution system and provides an output to a bi-directional charger causing the charger to charge or discharge an energy storage device (e.g., a battery in a plug-in hybrid electric vehicle (PHEV)). The controller can help stabilize the electrical power distribution system by increasing the charging rate when there is excess power in the electrical power distribution system (e.g., when the frequency of an AC power grid exceeds an average value), or by discharging power from the energy storage device to stabilize the grid when there is a shortage of power in the electrical power distribution system (e.g., when the frequency of an AC power grid is below an average value).

  14. Optimal Electric Vehicle Scheduling: A Co-Optimized System and Customer Perspective

    NASA Astrophysics Data System (ADS)

    Maigha

    Electric vehicles provide a two pronged solution to the problems faced by the electricity and transportation sectors. They provide a green, highly efficient alternative to the internal combustion engine vehicles, thus reducing our dependence on fossil fuels. Secondly, they bear the potential of supporting the grid as energy storage devices while incentivising the customers through their participation in energy markets. Despite these advantages, widespread adoption of electric vehicles faces socio-technical and economic bottleneck. This dissertation seeks to provide solutions that balance system and customer objectives under present technological capabilities. The research uses electric vehicles as controllable loads and resources. The idea is to provide the customers with required tools to make an informed decision while considering the system conditions. First, a genetic algorithm based optimal charging strategy to reduce the impact of aggregated electric vehicle load has been presented. A Monte Carlo based solution strategy studies change in the solution under different objective functions. This day-ahead scheduling is then extended to real-time coordination using a moving-horizon approach. Further, battery degradation costs have been explored with vehicle-to-grid implementations, thus accounting for customer net-revenue and vehicle utility for grid support. A Pareto front, thus obtained, provides the nexus between customer and system desired operating points. Finally, we propose a transactive business model for a smart airport parking facility. This model identifies various revenue streams and satisfaction indices that benefit the parking lot owner and the customer, thus adding value to the electric vehicle.

  15. Oak Ridge National Laboratory Wireless Charging of Electric Vehicles - CRADA Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Onar, Omer C.; Campbell, Steven L.; Seiber, Larry Eugene

    Wireless power transfer (WPT) is a paradigm shift in electric-vehicle (EV) charging that offers the consumer an autonomous, safe, and convenient option to conductive charging and its attendant need for cables. With WPT, charging process can be fully automated due to the vehicle and grid side radio communication systems, and is non-contacting; therefore issues with leakage currents, ground faults, and touch potentials do not exist. It also eliminates the need for touching the heavy, bulky, dirty cables and plugs. It eliminates the fear of forgetting to plug-in and running out of charge the following day and eliminates the tripping hazardsmore » in public parking lots and in highly populated areas such as shopping malls, recreational areas, parking buildings, etc. Furthermore, the high-frequency magnetic fields employed in power transfer across a large air gap are focused and shielded, so that fringe fields (i.e., magnetic leakage/stray fields) attenuate rapidly over a transition region to levels well below limits set by international standards for the public zone (which starts at the perimeter of the vehicle and includes the passenger cabin). Oak Ridge National Laboratory s approach to WPT charging places strong emphasis on radio communications in the power regulation feedback channel augmented with software control algorithms. The over-arching goal for WPT is minimization of vehicle on-board complexity by keeping the secondary side content confined to coil tuning, rectification, filtering, and interfacing to the regenerative energy-storage system (RESS). This report summarizes the CRADA work between the Oak Ridge National Laboratory and the Toyota Research Institute of North America, Toyota Motor Engineering and Manufacturing North America (TEMA) on the wireless charging of electric vehicles which was funded by Department of Energy under DE-FOA-000667. In this project, ORNL is the lead agency and Toyota TEMA is one of the major partners. Over the course of the project, ORNL and Toyota TEMA worked closely on the vehicle integration plans, compatibility, and the interoperability of the wireless charging technology developed by ORNL for the vehicles manufactured by Toyota. These vehicles include a Toyota Prius Plug-in Hybrid electric vehicle, a Scion iQ electric vehicle, and two Toyota RAV4 electric vehicles. The research include not only the hardware integration but also the controls and communication systems development to control and automate the charging process for these vehicles by utilizing a feedback channel from vehicle to the stationary unit for power regulation.« less

  16. Semi-flexible gas-insulated transmission line using electric field stress shields

    DOEpatents

    Cookson, A.H.; Dale, S.J.; Bolin, P.C.

    1982-12-28

    A gas-insulated transmission line includes an outer sheath, an inner conductor, an insulating gas electrically insulating the inner conductor from the outer sheath, and insulating supports insulatably supporting the inner conductor within the outer sheath. The inner conductor is provided with flexibility by use of main conductor sections which are joined together through a conductor hub section and flexible flexing elements. Stress shields are provided to control the electric field at the locations of the conductor hub sections where the insulating supports are contacting the inner conductor. The flexing elements and the stress shields may also be utilized in connection with a plug and socket arrangement for providing electrical connection between main conductor sections. 10 figs.

  17. Deaths from electricity.

    PubMed

    Brokenshire, B; Cairns, F J; Koelmeyer, T D; Smeeton, W M; Tie, A B

    1984-03-14

    This paper reviews the circumstances of 95 fatalities from electrical injuries. Eighty-nine were accidental, four were suicides and two occurred during autoerotic electrical stimulation. Forty-nine of the accidental fatalities occurred at work, Twenty-eight in the home and twelve in the course of outside recreational activities. In many accidents the circumstances were distressingly similar and included: (1) Contact with overhead distribution lines by a length of conductor such as a yacht mast or crane. (2) Faulty wiring or electrical repairs performed by unqualified people. (3) Badly deteriorated cords, plugs and occasionally appliances. (4) Failure to use isolating transformers when indicated. Deaths involving children are a particular cause of concern. Nine fatalites involved children under the age of five years who contacted inadequately protected wires.

  18. Healthcare decision-tools a growing Web trend: three-pronged public relations campaign heightens presence, recognition for online healthcare information provider.

    PubMed

    2006-01-01

    Schwartz Communications, LLC, executes a successful PR campaign to position Subimo, a provider of online healthcare decision tools, as a leader in the industry that touts names such as WebMD.com and HealthGrades.com. Through a three-pronged media relations strategy, Schwartz and Subimo together branded the company as an industry thought-leader.

  19. Maoism in India

    DTIC Science & Technology

    2010-03-24

    COIN response contributed to the movement’s growth. Conclusion: A multi-pronged COIN strategy that combines the use of force with concrete steps to...excesses provided the spark that tumed the agitation into a conflagration of a violent struggle. The resultant violence soon spread to other areas and...coordinate a comprehensive COIN approach against the Maoists. A multi-pronged COIN strategy that combines the use of force with concrete steps to

  20. Extent of areal inundation of riverine wetlands along Cypress Creek and the Peace, Alafia, North Prong Alafia, and South Prong Alafia Rivers, west-central Florida

    USGS Publications Warehouse

    Lewelling, B.R.

    2003-01-01

    Riverine and palustrine system wetlands are a major ecological component of river basins in west-central Florida. Healthy wetlands are dependent upon the frequency and duration of periodic flooding or inundation. This report assesses the extent, area, depth, frequency, and duration of periodic flooding and the effects of potential surface-water withdrawals on the wetlands along Cypress Creek and the Peace, Alafia, North Prong Alafia, and South Prong Alafia Rivers. Results of the study were derived from step-backwater analysis performed at each of the rivers using the U.S. Army Corps of Engineers Hydrologic Engineering Center-River Analysis System (HEC-RAS) one-dimensional model. The step-backwater analysis was performed using selected daily mean discharges at the 10th, 50th, 70th, 80th, 90th, 98th, 99.5th, and 99.9th percentiles to compute extent of areal inundation, area of inundation, and hydraulic depth to assess the net reduction of areal inundation if 10 percent of the total river flow were diverted for potential withdrawals. The extent of areal inundation is determined by cross-sectional topography and the degree to which the channel is incised. Areal inundation occurs along the broad, low relief of the Cypress Creek floodplain during all selected discharge percentiles. However, areal inundation of the Peace and Alafia Rivers floodplains, which generally have deeply incised channels, occurs at or above discharges at the 80th percentile. The greatest area of inundation along the three rivers generally occurs between the 90th and 98th percentile discharges. The decrease in inundated area resulting from a potential 10-percent withdrawal in discharge ranged as follows: Cypress Creek, 22 to 395 acres (1.7 to 8.4 percent); Peace River, 17 to 1,900 acres (2.1 to 13.6 percent); Alafia River, 1 to 90 acres (1 to 19.6 percent); North Prong Alafia River, 1 to 46 acres (0.7 to 23.4 percent); and South Prong Alafia River, 1 to 75 acres (1.5 to 13.4 percent).

  1. A reservoir nasal cannula improves protection given by oxygen during muscular exercise in COPD.

    PubMed

    Arlati, S; Rolo, J; Micallef, E; Sacerdoti, C; Brambilla, I

    1988-06-01

    We verified the utility of an oxygen economizer (Pendant Oxymizer) in assuring greater protection than nasal prongs against worsening of oxyhemoglobin resting desaturation (delta SaO2) induced by muscular exercise in 16 patients (ten with chronic obstructive pulmonary disease [COPD] and six with restrictive pulmonary disease). This worsening was quantified as desaturation surface accumulated within five minutes of exercise and was expressed in arbitrary units (au). Each patient carried out the same exercise three times, in a randomized fashion (breathing air or breathing supplemental oxygen [3 L/min] delivered by either nasal prongs or by oxygen economizer). In patients with obstructive disease, delta SaO2 was reduced from 38 +/- 12.0 au when they were breathing air to 18.1 +/- 11.7 au when breathing oxygen by nasal prongs (p less than 0.001) and to 10.1 +/- 9.5 au when breathing oxygen by economizer (p less than 0.001). In patients with restrictive disease, delta SaO2 was reduced from 35.6 +/- 9.9 au when breathing air to 14.9 +/- 10.2 au breathing oxygen by nasal prongs (p less than 0.01) and to 13.7 +/- 10.3 au breathing oxygen by economizer (p less than 0.01). The difference between breathing by economizer and nasal prongs was significant (paired t-test; p less than 0.01) only in patients with COPD. One explanation could lie in the different values of the respiratory rate, which was significantly greater in patients with restrictive disease (20.7 +/- 1.2 breaths per minute at rest and 25.8 +/- 1.5 with exercise) than in patients with obstructive disease (15.3 +/- 1.2 breaths per minute at rest and 20.8 +/- 1.4 with exercise).

  2. Slideshow: Sustainable Transportation - Continuum Magazine | NREL

    Science.gov Websites

    Dennis Schroeder, NREL A photo of a small, white Mitsubishi i-MiEV plugged into an electric charging . Photo by Dennis Schroeder, NREL A photo of a grey Toyota Highlander SUV parked in front of a single components to test possible configurations. Photo by Dennis Schroeder, NREL A close-up photo of a black and

  3. Alternative Fuels Data Center: Publications

    Science.gov Websites

    ;According to Table 3, CNG is $.33 less than gasoline on an energy-equivalent basis, while E85 is $0.18 more than gasoline on an energy-equivalent basis. Charging Electric Vehicles in Smart Cities: An EVI-Pro 350 Level 2 plugs at non-residential locations are required to support Columbus' primary PEV goal of

  4. Alternative Fuels Data Center: Clean Cities Helps Green the National Mall

    Science.gov Websites

    ; National Mall and Memorial Parks Superintendent Bob Vogel The millions of visitors who stroll the National Mall and Memorial Parks in Washington, D.C., each year may soon notice some new attractions alongside Memorial. The National Mall recently added the first two plug-in electric vehicles (PEVs) to its 150

  5. Alternative Fuels Data Center: Charging Plug-In Electric Vehicles at Home

    Science.gov Websites

    Infrastructure Development Charging at Home Multi-Unit Dwelling Charging Charging in Public Workplace Charging complex requires additional considerations and may be more similar to public charging than to charging at , requiring no additional cost or installation, provided that a power outlet on a dedicated branch circuit is

  6. Alternative Fuels Data Center: Utility Initiatives Foster Plug-In Electric

    Science.gov Websites

    free charger or a rebate toward qualified equipment purchases. Residential customers are sometimes Authority and others offer PEV purchase rebates. Utility programs offering free or reduced-cost EVSE are , also known as Pepco, to pilot discounted time-of-use rates and free EVSE. This has enabled utilities to

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Logan, B.G.

    A recently completed two-year study of a commercial tandem mirror reactor design (Mirror Advanced Reactor Study (MARS)) is briefly reviewed. The end plugs are designed for trapped particle stability, MHD ballooning, balanced geodesic curvature, and small radial electric fields in the central cell. New technologies such as lithium-lead blankets, 24T hybrid coils, gridless direct converters and plasma halo vacuum pumps are highlighted.

  8. Photoelectron linear accelerator for producing a low emittance polarized electron beam

    DOEpatents

    Yu, David U.; Clendenin, James E.; Kirby, Robert E.

    2004-06-01

    A photoelectron linear accelerator for producing a low emittance polarized electric beam. The accelerator includes a tube having an inner wall, the inner tube wall being coated by a getter material. A portable, or demountable, cathode plug is mounted within said tube, the surface of said cathode having a semiconductor material formed thereon.

  9. 49 CFR 536.10 - Treatment of dual-fuel and alternative fuel vehicles-consistency with 49 CFR part 538.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... enough dual fuel vehicles (except plug-in hybrid electric vehicles) to improve the calculated fuel... vehicles-consistency with 49 CFR part 538. 536.10 Section 536.10 Transportation Other Regulations Relating... vehicles—consistency with 49 CFR part 538. (a) Statutory alternative fuel and dual-fuel vehicle fuel...

  10. 49 CFR 536.10 - Treatment of dual-fuel and alternative fuel vehicles-consistency with 49 CFR part 538.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... enough dual fuel vehicles (except plug-in hybrid electric vehicles) to improve the calculated fuel... vehicles-consistency with 49 CFR part 538. 536.10 Section 536.10 Transportation Other Regulations Relating... vehicles—consistency with 49 CFR part 538. (a) Statutory alternative fuel and dual-fuel vehicle fuel...

  11. Alternative Fuels Data Center: Natural Gas Fuels School Buses and Refuse

    Science.gov Websites

    Efficiency March 8, 2014 Renzenberger Inc Saves Money With Propane Vans Feb. 1, 2014 Photo of a school bus Buses Help Kansas City Save Money Nov. 12, 2011 Metropolitan Utilities District Fuels Vehicles With Electric Shuttle Buses Offer Free Rides in Maryland June 18, 2010 Fisher Coachworks Develops Plug-In

  12. Alternative Fuels Data Center: Indiana Sanitation Department Plans to

    Science.gov Websites

    Money With Propane Vans Feb. 1, 2014 Photo of a school bus Michigan Transports Students in Hybrid Natural Gas School Buses Help Kansas City Save Money Nov. 12, 2011 Metropolitan Utilities District Fuels Electric Shuttle Buses Offer Free Rides in Maryland June 18, 2010 Fisher Coachworks Develops Plug-In

  13. Alternative Fuels Data Center: Biodiesel and Propane Fuel Buses for Dallas

    Science.gov Websites

    Leads in Alternative Fuel Use and Public Transit Efficiency March 8, 2014 Renzenberger Inc Saves Money Vehicles March 31, 2012 Natural Gas School Buses Help Kansas City Save Money Nov. 12, 2011 Metropolitan Electric Shuttle Buses Offer Free Rides in Maryland June 18, 2010 Fisher Coachworks Develops Plug-In

  14. Alternative Fuels Data Center: UC Davis Pioneers Research for Plug-In

    Science.gov Websites

    gas vehicle District of Columbia's Government Fleet Uses a Wide Variety of Alternative Fuels Dec. 5 . Maryland County Fleet Uses Wide Variety of Alternative Fuels Jan. 17, 2015 Photo of a school bus Diego Feb. 2, 2013 Photo of neighborhood electric vehicle Mammoth Cave National Park Uses Only

  15. Alternative Fuels Data Center: EV Battery Recycling

    Science.gov Websites

    Battery Recycling Find out how one entrepreneur is working on new uses for old plug-in electric vehicle vehicle District of Columbia's Government Fleet Uses a Wide Variety of Alternative Fuels Dec. 5, 2015 . Maryland County Fleet Uses Wide Variety of Alternative Fuels Jan. 17, 2015 Photo of a school bus

  16. Buildings News | Buildings | NREL

    Science.gov Websites

    contributions to NREL and the larger scientific community. March 30, 2018 Q&A with Sheila Hayter: Laying the Applications Center (IAC), leading a team of experts who support international, federal, state, and local Release: NREL Research Determines Integration of Plug-in Electric Vehicles Should Play a Big Role in

  17. Dynamic management of integrated residential energy systems

    NASA Astrophysics Data System (ADS)

    Muratori, Matteo

    This study combines principles of energy systems engineering and statistics to develop integrated models of residential energy use in the United States, to include residential recharging of electric vehicles. These models can be used by government, policymakers, and the utility industry to provide answers and guidance regarding the future of the U.S. energy system. Currently, electric power generation must match the total demand at each instant, following seasonal patterns and instantaneous fluctuations. Thus, one of the biggest drivers of costs and capacity requirement is the electricity demand that occurs during peak periods. These peak periods require utility companies to maintain operational capacity that often is underutilized, outdated, expensive, and inefficient. In light of this, flattening the demand curve has long been recognized as an effective way of cutting the cost of producing electricity and increasing overall efficiency. The problem is exacerbated by expected widespread adoption of non-dispatchable renewable power generation. The intermittent nature of renewable resources and their non-dispatchability substantially limit the ability of electric power generation of adapting to the fluctuating demand. Smart grid technologies and demand response programs are proposed as a technical solution to make the electric power demand more flexible and able to adapt to power generation. Residential demand response programs offer different incentives and benefits to consumers in response to their flexibility in the timing of their electricity consumption. Understanding interactions between new and existing energy technologies, and policy impacts therein, is key to driving sustainable energy use and economic growth. Comprehensive and accurate models of the next-generation power system allow for understanding the effects of new energy technologies on the power system infrastructure, and can be used to guide policy, technology, and economic decisions. This dissertation presents a bottom-up highly resolved model of a generic residential energy eco-system in the United States. The model is able to capture the entire energy footprint of an individual household, to include all appliances, space conditioning systems, in-home charging of plug-in electric vehicles, and any other energy needs, viewing residential and transportation energy needs as an integrated continuum. The residential energy eco-system model is based on a novel bottom-up approach that quantifies consumer energy use behavior. The incorporation of stochastic consumer behaviors allows capturing the electricity consumption of each residential specific end-use, providing an accurate estimation of the actual amount of available controllable resources, and for a better understanding of the potential of residential demand response programs. A dynamic energy management framework is then proposed to manage electricity consumption inside each residential energy eco-system. Objective of the dynamic energy management framework is to optimize the scheduling of all the controllable appliances and in-home charging of plug-in electric vehicles to minimize cost. Such an automated energy management framework is used to simulate residential demand response programs, and evaluate their impact on the electric power infrastructure. For instance, time-varying electricity pricing might lead to synchronization of the individual residential demands, creating pronounced rebound peaks in the aggregate demand that are higher and steeper than the original demand peaks that the time-varying electricity pricing structure intended to eliminate. The modeling tools developed in this study can serve as a virtual laboratory for investigating fundamental economic and policy-related questions regarding the interplay of individual consumers with energy use. The models developed allow for evaluating the impact of different energy policies, technology adoption, and electricity price structures on the total residential electricity demand. In particular, two case studies are reported in this dissertation to illustrate application of the tools developed. The first considers the impact of market penetration of plug-in electric vehicles on the electric power infrastructure. The second provides a quantitative comparison of the impact of different electricity price structures on residential demand response. Simulation results and an electricity price structure, called Multi-TOU, aimed at solving the rebound peak issue, are presented.

  18. Inherited proclivity: When should neurogenetics mitigate moral culpability for purposes of sentencing?

    PubMed Central

    Segal, J Bradley

    2016-01-01

    Certain genes and neurobiology (‘neurogenetics’) may predispose some people to violent behavior. Increasingly, defendants introduce neurogenetic evidence as a mitigating factor during criminal sentencing. Identifying the cause of a criminal act, biological or otherwise, does not necessarily preclude moral or legal liability. However, valid scientific evidence of an inherited proclivity sometimes should be considered when evaluating whether a defendant is less morally culpable for a crime and perhaps less deserving of punishment. This Note proposes a two-pronged test to understand whether and when neurogenetic evidence should be considered to potentially mitigate an individual's culpability for criminal behavior. The first prong normatively assesses whether a defendant meets a threshold of having meaningfully managed his risk of harming others based on what he knew, or should have known, about his own proclivities to violence. The second prong considers the admissibility of the evidence based on whether the specific neurogenetic proclivity claimed by the defendant is relevant and adequately supported by science so as to be reliable. This proposed two-pronged test, beginning with an ethical threshold and followed by a scientific hurdle, can help judges and juries establish when to accept arguments for neurogenetic mitigation at sentencing, and when to reject them. PMID:27774246

  19. Development of a fuel cell plug-in hybrid electric vehicle and vehicle simulator for energy management assessment

    NASA Astrophysics Data System (ADS)

    Meintz, Andrew Lee

    This dissertation offers a description of the development of a fuel cell plug-in hybrid electric vehicle focusing on the propulsion architecture selection, propulsion system control, and high-level energy management. Two energy management techniques have been developed and implemented for real-time control of the vehicle. The first method is a heuristic method that relies on a short-term moving average of the vehicle power requirements. The second method utilizes an affine function of the short-term and long-term moving average vehicle power requirements. The development process of these methods has required the creation of a vehicle simulator capable of estimating the effect of changes to the energy management control techniques on the overall vehicle energy efficiency. Furthermore, the simulator has allowed for the refinement of the energy management methods and for the stability of the method to be analyzed prior to on-road testing. This simulator has been verified through on-road testing of a constructed prototype vehicle under both highway and city driving schedules for each energy management method. The results of the finalized vehicle control strategies are compared with the simulator predictions and an assessment of the effectiveness of both strategies is discussed. The methods have been evaluated for energy consumption in the form of both hydrogen fuel and stored electricity from grid charging.

  20. Estimation of vehicle home parking availability in China and quantification of its potential impacts on plug-in electric vehicle ownership cost

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ou, Shiqi; Lin, Zhenhong; He, Xin

    China has become the world's largest plug-in electric vehicle (PEV) market. One major barrier to greater consumer acceptance of PEVs is the lack of home parking spaces for charging outlets. This paper developed a methodology to estimate the residential parking ratios (parking spaces vs household numbers) and project the residential community-weighted parking availabilities (home parking availabilities) in China, by area and by province, through data mining from several major real estate trading network platforms. The results show that the home parking availabilities from 2015 to 2050 vary by geographic areas and building life expectancy. A method was developed to quantifymore » the shadow values of home parking impacting on PEV ownership costs and combined with Monte Carlo simulation to address estimation uncertainty. Depending on the PEV type and all-electric range, the value of home parking space to a PEV owner, measured by the reduced vehicle ownership cost, ranges from $2399 USD to 10,802 USD. Finally, the total incremental shadow value, relative to the 2015 situation, of the home parking availability for PEV owners increases over time due to both improvement in home parking availability and increase in the PEV population, and is estimated to reach over 2.51 billion USD by 2025 (U.S. dollars in 2015 level).« less

  1. A robust H∞ control-based hierarchical mode transition control system for plug-in hybrid electric vehicle

    NASA Astrophysics Data System (ADS)

    Yang, Chao; Jiao, Xiaohong; Li, Liang; Zhang, Yuanbo; Chen, Zheng

    2018-01-01

    To realize a fast and smooth operating mode transition process from electric driving mode to engine-on driving mode, this paper presents a novel robust hierarchical mode transition control method for a plug-in hybrid electric bus (PHEB) with pre-transmission parallel hybrid powertrain. Firstly, the mode transition process is divided into five stages to clearly describe the powertrain dynamics. Based on the dynamics models of powertrain and clutch actuating mechanism, a hierarchical control structure including two robust H∞ controllers in both upper layer and lower layer is proposed. In upper layer, the demand clutch torque can be calculated by a robust H∞controller considering the clutch engaging time and the vehicle jerk. While in lower layer a robust tracking controller with L2-gain is designed to perform the accurate position tracking control, especially when the parameters uncertainties and external disturbance occur in the clutch actuating mechanism. Simulation and hardware-in-the-loop (HIL) test are carried out in a traditional driving condition of PHEB. Results show that the proposed hierarchical control approach can obtain the good control performance: mode transition time is greatly reduced with the acceptable jerk. Meanwhile, the designed control system shows the obvious robustness with the uncertain parameters and disturbance. Therefore, the proposed approach may offer a theoretical reference for the actual vehicle controller.

  2. Estimation of vehicle home parking availability in China and quantification of its potential impacts on plug-in electric vehicle ownership cost

    DOE PAGES

    Ou, Shiqi; Lin, Zhenhong; He, Xin; ...

    2018-05-03

    China has become the world's largest plug-in electric vehicle (PEV) market. One major barrier to greater consumer acceptance of PEVs is the lack of home parking spaces for charging outlets. This paper developed a methodology to estimate the residential parking ratios (parking spaces vs household numbers) and project the residential community-weighted parking availabilities (home parking availabilities) in China, by area and by province, through data mining from several major real estate trading network platforms. The results show that the home parking availabilities from 2015 to 2050 vary by geographic areas and building life expectancy. A method was developed to quantifymore » the shadow values of home parking impacting on PEV ownership costs and combined with Monte Carlo simulation to address estimation uncertainty. Depending on the PEV type and all-electric range, the value of home parking space to a PEV owner, measured by the reduced vehicle ownership cost, ranges from $2399 USD to 10,802 USD. Finally, the total incremental shadow value, relative to the 2015 situation, of the home parking availability for PEV owners increases over time due to both improvement in home parking availability and increase in the PEV population, and is estimated to reach over 2.51 billion USD by 2025 (U.S. dollars in 2015 level).« less

  3. A hydrophobic ionic liquid compartmentalized sampling/labeling and its separation techniques in polydimethylsiloxane microchip capillary electrophoresis.

    PubMed

    Quan, Hong Hua; Li, Ming; Huang, Yan; Hahn, Jong Hoon

    2017-01-01

    This paper demonstrates a novel compartmentalized sampling/labeling method and its separation techniques using a hydrophobic ionic liquid (IL)-1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)-imidate (BmimNTf 2 )-as the immiscible phase, which is capable of minimizing signal losses during microchip capillary electrophoresis (MCE). The MCE device consists of a silica tube connected to a straight polydimethylsiloxane (PDMS) separation channel. Poly(diallyldimethylammonium chloride) (PDDAC) was coated on the inner surface of channel to ease the introduction of IL plugs and enhance the IL wetting on the PDMS surface for sample releasing. Electroosmotic flow (EOF)-based sample compartmentalization was carried out through a sequenced injection into sampling tubes with the following order: leading IL plug/sample segment/terminal IL plug. The movement of the sample segment was easily controlled by applying an electrical voltage across both ends of the chip without a sample volume change. This approach effectively prevented analyte diffusion before injection into MCE channels. When the sample segment was manipulated to the PDDAC-modified PDMS channel, the sample plug then was released from isolation under EOF while IL plugs adsorbed onto channel surfaces owing to strong adhesion. A mixture of flavin adenine nucleotides (FAD) and flavin mononucleotides (FMN) was successfully separated on a 2.5 cm long separation channel, for which the theoretical numbers of plates were 15 000 and 17 000, respectively. The obtained peak intensity was increased 6.3-fold over the corresponding value from conventional electrokinetic injection with the same sampling time. Furthermore, based on the compartmented sample segment serving as an interim reactor, an on-chip fluorescence labeling is demonstrated. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. AVTA Federal Fleet PEV Readiness Data Logging and Characterization Study for the National Park Service: Fort Vancouver National Historic Site

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stephen Schey; Jim Francfort

    Battelle Energy Alliance, LLC, managing and operating contractor for the U.S. Department of Energy’s Idaho National Laboratory, is the lead laboratory for the U.S. Department of Energy’s Advanced Vehicle Testing. Battelle Energy Alliance, LLC contracted with Intertek Testing Services, North America (ITSNA) to collect data on federal fleet operations as part of the Advanced Vehicle Testing Activity’s Federal Fleet Vehicle Data Logging and Characterization study. The Advanced Vehicle Testing Activity study seeks to collect data to validate the use of advanced electric drive vehicle transportation. This report focuses on the Fort Vancouver National Historic Site (FVNHS) fleet to identify dailymore » operational characteristics of select vehicles and report findings on vehicle and mission characterizations to support the successful introduction of electric vehicles (EVs) into the agencies’ fleet. Individual observations of the selected vehicles provided the basis for recommendations related to EV adoption and whether a battery electric vehicle (BEV) or plug-in hybrid electric vehicle (PHEV) (collectively plug-in electric vehicles) could fulfill the mission requirements. FVNHS identified three vehicles in its fleet for consideration. While the FVNHS vehicles conduct many different missions, only two (i.e., support and pool missions) were selected by agency management to be part of this fleet evaluation. The logged vehicles included a pickup truck and a minivan. This report will show that BEVs and PHEVs are capable of performing the required missions and providing an alternative vehicle for both mission categories, because each has sufficient range for individual trips and time available each day for charging to accommodate multiple trips per day. These charging events could occur at the vehicle’s home base, high-use work areas, or in intermediate areas along routes that the vehicles frequently travel. Replacement of vehicles in the current fleet would result in significant reductions in emission of greenhouse gases and petroleum use, while also reducing fuel costs. The Vancouver, Washington area and neighboring Portland, Oregon are leaders in adoption of PEVs in the United States1. PEV charging stations, or more appropriately identified as electric vehicle supply equipment, located on the FVNHS facility would be a benefit for both FVNHS fleets and general public use. Fleet drivers and park visitors operating privately owned plug-in electric vehicles benefit by using the charging infrastructure. ITSNA recommends location analysis of the FVNHS site to identify the optimal station placement for electric vehicle supply equipment. ITSNA recognizes the support of Idaho National Laboratory and ICF International for their efforts to initiate communication with the National Parks Service and FVNHS for participation in this study. ITSNA is pleased to provide this report and is encouraged by the high interest and support from the National Park Service and FVNHS personnel« less

  5. Results from the Operational Testing of the General Electric Smart Grid Capable Electric Vehicle Supply Equipment (EVSE)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carlson, Richard Barney; Scoffield, Don; Bennett, Brion

    2013-12-01

    The Idaho National Laboratory conducted testing and analysis of the General Electric (GE) smart grid capable electric vehicle supply equipment (EVSE), which was a deliverable from GE for the U.S. Department of Energy FOA-554. The Idaho National Laboratory has extensive knowledge and experience in testing advanced conductive and wireless charging systems though INL’s support of the U.S. Department of Energy’s Advanced Vehicle Testing Activity. This document details the findings from the EVSE operational testing conducted at the Idaho National Laboratory on the GE smart grid capable EVSE. The testing conducted on the EVSE included energy efficiency testing, SAE J1772 functionalitymore » testing, abnormal conditions testing, and charging of a plug-in vehicle.« less

  6. Powerful, Efficient Electric Vehicle Chargers: Low-Cost, Highly-Integrated Silicon Carbide (SiC) Multichip Power Modules (MCPMs) for Plug-In Hybrid Electric

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    2010-09-14

    ADEPT Project: Currently, charging the battery of an electric vehicle (EV) is a time-consuming process because chargers can only draw about as much power from the grid as a hair dryer. APEI is developing an EV charger that can draw as much power as a clothes dryer, which would drastically speed up charging time. APEI's charger uses silicon carbide (SiC)-based power transistors. These transistors control the electrical energy flowing through the charger's circuits more effectively and efficiently than traditional transistors made of straight silicon. The SiC-based transistors also require less cooling, enabling APEI to create EV chargers that are 10more » times smaller than existing chargers.« less

  7. Highly Sensitive Hot-Wire Anemometry Based on Macro-Sized Double-Walled Carbon Nanotube Strands.

    PubMed

    Wang, Dingqu; Xiong, Wei; Zhou, Zhaoying; Zhu, Rong; Yang, Xing; Li, Weihua; Jiang, Yueyuan; Zhang, Yajun

    2017-08-01

    This paper presents a highly sensitive flow-rate sensor with carbon nanotubes (CNTs) as sensing elements. The sensor uses micro-size centimeters long double-walled CNT (DWCNT) strands as hot-wires to sense fluid velocity. In the theoretical analysis, the sensitivity of the sensor is demonstrated to be positively related to the ratio of its surface. We assemble the flow sensor by suspending the DWCNT strand directly on two tungsten prongs and dripping a small amount of silver glue onto each contact between the DWCNT and the prongs. The DWCNT exhibits a positive TCR of 1980 ppm/K. The self-heating effect on the DWCNT was observed while constant current was applied between the two prongs. This sensor can evidently respond to flow rate, and requires only several milliwatts to operate. We have, thus far, demonstrated that the CNT-based flow sensor has better sensitivity than the Pt-coated DWCNT sensor.

  8. Alternative Fuels Data Center: Oregon Leads the Charge for Plug-In Electric

    Science.gov Websites

    Governor's Alternative Fuel Vehicle Infrastructure Working Group. This group focused on PEVs for several spending of approximately $8 billion on gasoline and diesel, of which 90% of the non-tax dollars leave the equivalent size) with a maximum of two inspections. Step 4: Install Installing EVSE If the existing

  9. 49 CFR 575.401 - Vehicle labeling of fuel economy, greenhouse gas, and other pollutant emissions information.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... U.S.C. 1231-1233 (also known as the “Automobile Information Disclosure Act label”). (5) Other air... legible and prominent fashion. The label must be rectangular in shape with a minimum height of 4.5 inches...,” as shown in the appendix to this section. (C) Identify plug-in hybrid electric vehicles with the...

  10. NREL Helps Utilities Develop Next Generation Plug-in Hybrid Electric Trucks

    Science.gov Websites

    operation, and fine-tune the design of such vehicles before expanding their use in the PG&E or other Vehicle Performance Data Based on Real-World Operation "NREL has been working with PG&E to accessories function in real-world operation." To date, NREL has captured and is currently analyzing four

  11. 32. TYPICAL BRYANT ITEMS FROM THE 1930S; TOP ROW LEFT ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    32. TYPICAL BRYANT ITEMS FROM THE 1930S; TOP ROW LEFT TO RIGHT: PORCELAIN CASED SWITCH, ROTARY SWITCH, SHORTING PLUG TO BYPASS FUSE; SECOND ROW: BRASS INCANDESCENT LAMP SURFACE RECEPTACLE, INCANDESCENT LAMPHOLDER WITH ADAPTER FOR GLASS GLOBE; THIRD ROW: PORCELAIN BASE ROTARY SWITCH, APPLIANCE BREAKER WITH COVER REMOVED, APPLIANCE BREAKER - Bryant Electric Company, 1421 State Street, Bridgeport, Fairfield County, CT

  12. Research on Nitride Thin Films, Advanced Plasma Diagnostics, and Charged-Particle Processes

    DTIC Science & Technology

    2006-07-01

    Additionally, these components are being placed closer to the point of use--requiring that they operate in extreme temperature environments ...reasons for component failure. To operate in extreme temperature environments , electronic and electrical components must withstand higher ambient...hybrid and plug-in hybrid-powered automobiles, heart defibrillators , and industrial equipment will benefit from a new generation of capacitors. High

  13. Branchburg Solar Farm and Carport

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gregory, John

    2013-10-23

    To meet the goal of becoming a model of green, clean, and efficient consumer of energy, the Township of Branchburg will install of a 250kw solar farm to provide energy for the Township of Branchburg Municipal Building, a 50kw Solar carport to provide power to the Municipal Annex, purchase 3 plug in hybrid-electric vehicles, and install 3 dual-head charging stations.

  14. Computational analysis on plug-in hybrid electric motorcycle chassis

    NASA Astrophysics Data System (ADS)

    Teoh, S. J.; Bakar, R. A.; Gan, L. M.

    2013-12-01

    Plug-in hybrid electric motorcycle (PHEM) is an alternative to promote sustainability lower emissions. However, the PHEM overall system packaging is constrained by limited space in a motorcycle chassis. In this paper, a chassis applying the concept of a Chopper is analysed to apply in PHEM. The chassis 3dimensional (3D) modelling is built with CAD software. The PHEM power-train components and drive-train mechanisms are intergraded into the 3D modelling to ensure the chassis provides sufficient space. Besides that, a human dummy model is built into the 3D modelling to ensure the rider?s ergonomics and comfort. The chassis 3D model then undergoes stress-strain simulation. The simulation predicts the stress distribution, displacement and factor of safety (FOS). The data are used to identify the critical point, thus suggesting the chassis design is applicable or need to redesign/ modify to meet the require strength. Critical points mean highest stress which might cause the chassis to fail. This point occurs at the joints at triple tree and bracket rear absorber for a motorcycle chassis. As a conclusion, computational analysis predicts the stress distribution and guideline to develop a safe prototype chassis.

  15. Data-driven reinforcement learning–based real-time energy management system for plug-in hybrid electric vehicles

    DOE PAGES

    Qi, Xuewei; Wu, Guoyuan; Boriboonsomsin, Kanok; ...

    2016-01-01

    Plug-in hybrid electric vehicles (PHEVs) show great promise in reducing transportation-related fossil fuel consumption and greenhouse gas emissions. Designing an efficient energy management system (EMS) for PHEVs to achieve better fuel economy has been an active research topic for decades. Most of the advanced systems rely either on a priori knowledge of future driving conditions to achieve the optimal but not real-time solution (e.g., using a dynamic programming strategy) or on only current driving situations to achieve a real-time but nonoptimal solution (e.g., rule-based strategy). This paper proposes a reinforcement learning–based real-time EMS for PHEVs to address the trade-off betweenmore » real-time performance and optimal energy savings. The proposed model can optimize the power-split control in real time while learning the optimal decisions from historical driving cycles. Here, a case study on a real-world commute trip shows that about a 12% fuel saving can be achieved without considering charging opportunities; further, an 8% fuel saving can be achieved when charging opportunities are considered, compared with the standard binary mode control strategy.« less

  16. Integrated thermal and energy management of plug-in hybrid electric vehicles

    NASA Astrophysics Data System (ADS)

    Shams-Zahraei, Mojtaba; Kouzani, Abbas Z.; Kutter, Steffen; Bäker, Bernard

    2012-10-01

    In plug-in hybrid electric vehicles (PHEVs), the engine temperature declines due to reduced engine load and extended engine off period. It is proven that the engine efficiency and emissions depend on the engine temperature. Also, temperature influences the vehicle air-conditioner and the cabin heater loads. Particularly, while the engine is cold, the power demand of the cabin heater needs to be provided by the batteries instead of the waste heat of engine coolant. The existing energy management strategies (EMS) of PHEVs focus on the improvement of fuel efficiency based on hot engine characteristics neglecting the effect of temperature on the engine performance and the vehicle power demand. This paper presents a new EMS incorporating an engine thermal management method which derives the global optimal battery charge depletion trajectories. A dynamic programming-based algorithm is developed to enforce the charge depletion boundaries, while optimizing a fuel consumption cost function by controlling the engine power. The optimal control problem formulates the cost function based on two state variables: battery charge and engine internal temperature. Simulation results demonstrate that temperature and the cabin heater/air-conditioner power demand can significantly influence the optimal solution for the EMS, and accordingly fuel efficiency and emissions of PHEVs.

  17. Data-driven reinforcement learning–based real-time energy management system for plug-in hybrid electric vehicles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qi, Xuewei; Wu, Guoyuan; Boriboonsomsin, Kanok

    Plug-in hybrid electric vehicles (PHEVs) show great promise in reducing transportation-related fossil fuel consumption and greenhouse gas emissions. Designing an efficient energy management system (EMS) for PHEVs to achieve better fuel economy has been an active research topic for decades. Most of the advanced systems rely either on a priori knowledge of future driving conditions to achieve the optimal but not real-time solution (e.g., using a dynamic programming strategy) or on only current driving situations to achieve a real-time but nonoptimal solution (e.g., rule-based strategy). This paper proposes a reinforcement learning–based real-time EMS for PHEVs to address the trade-off betweenmore » real-time performance and optimal energy savings. The proposed model can optimize the power-split control in real time while learning the optimal decisions from historical driving cycles. Here, a case study on a real-world commute trip shows that about a 12% fuel saving can be achieved without considering charging opportunities; further, an 8% fuel saving can be achieved when charging opportunities are considered, compared with the standard binary mode control strategy.« less

  18. Route of steroid-activated macromolecules through nuclear pores imaged with atomic force microscopy.

    PubMed

    Oberleithner, H; Schäfer, C; Shahin, V; Albermann, L

    2003-02-01

    In eukaryotic cells, two concentric membranes, the nuclear envelope (NE), separate the nucleus from the cytoplasm. The NE is punctured by nuclear pore complexes (NPCs; molecular mass 120 MDa) that serve as regulated pathways for macromolecules entering and leaving the nuclear compartment. Transport across NPCs occurs through central channels. Such import and export of macromolecules through individual NPCs can be elicited in the Xenopus laevis oocyte by injecting the mineralocorticoid aldosterone and can be visualized with atomic force microscopy. The electrical NE resistance in intact cell nuclei can be measured in parallel. Resistance increases when macromolecules are engaged with the NPC. This article describe six observations made from these experiments and the conclusions that can be drawn from them. (i) A homogeneous population of macromolecules (approx. 100 kDa) attaches to the cytoplasmic face of the NPC 2 min after aldosterone injection. They are most likely to be aldosterone receptors. After a few minutes, they have disappeared. (ii) Large plugs (approx. molecular mass 1 MDa) appear in the central channels 20 min after hormone injection. They are most likely to be ribonucleoproteins exiting the nucleus. (iii) Electrical resistance measurements in isolated nuclei reveal transient electrical NE resistance peaks: an early (2 min) peak and a late (20 min) peak. Electrical peaks reflect macromolecule interaction with the NPC. (iv) Spironolactone blocks both the early and late peaks. This indicates that classic aldosterone receptors are involved in the pregenomic (early) and post-genomic (late) responses. (v) Actinomycin D and, independently, RNase A block the late electrical peak, confirming that plugs are genomic in nature. (vi) Intracellular calcium chelation blocks both early and late electrical peaks. Thus, the release of calcium from internal stores, which is known to be the first intracellular signal in response to aldosterone, is a prerequisite for the late genomic response.

  19. Grid integration and smart grid implementation of emerging technologies in electric power systems through approximate dynamic programming

    NASA Astrophysics Data System (ADS)

    Xiao, Jingjie

    A key hurdle for implementing real-time pricing of electricity is a lack of consumers' responses. Solutions to overcome the hurdle include the energy management system that automatically optimizes household appliance usage such as plug-in hybrid electric vehicle charging (and discharging with vehicle-to-grid) via a two-way communication with the grid. Real-time pricing, combined with household automation devices, has a potential to accommodate an increasing penetration of plug-in hybrid electric vehicles. In addition, the intelligent energy controller on the consumer-side can help increase the utilization rate of the intermittent renewable resource, as the demand can be managed to match the output profile of renewables, thus making the intermittent resource such as wind and solar more economically competitive in the long run. One of the main goals of this dissertation is to present how real-time retail pricing, aided by control automation devices, can be integrated into the wholesale electricity market under various uncertainties through approximate dynamic programming. What distinguishes this study from the existing work in the literature is that whole- sale electricity prices are endogenously determined as we solve a system operator's economic dispatch problem on an hourly basis over the entire optimization horizon. This modeling and algorithm framework will allow a feedback loop between electricity prices and electricity consumption to be fully captured. While we are interested in a near-optimal solution using approximate dynamic programming; deterministic linear programming benchmarks are use to demonstrate the quality of our solutions. The other goal of the dissertation is to use this framework to provide numerical evidence to the debate on whether real-time pricing is superior than the current flat rate structure in terms of both economic and environmental impacts. For this purpose, the modeling and algorithm framework is tested on a large-scale test case with hundreds of power plants based on data available for California, making our findings useful for policy makers, system operators and utility companies to gain a concrete understanding on the scale of the impact with real-time pricing.

  20. Assessment of rock wool as support material for on-site sanitation: hydrodynamic and mechanical characterization.

    PubMed

    Wanko, Adrien; Laurent, Julien; Bois, Paul; Mosé, Robert; Wagner-Kocher, Christiane; Bahlouli, Nadia; Tiffay, Serge; Braun, Bouke; Provo kluit, Pieter-Willem

    2016-01-01

    This study proposes mechanical and hydrodynamic characterization of rock wool used as support material in compact filter. A double-pronged approach, based on experimental simulation of various physical states of this material was done. First of all a scanning electron microscopy observation allows to highlight the fibrous network structure, the fibres sizing distribution and the atomic absorption spectrum. The material was essentially lacunar with 97 ± 2% of void space. Static compression tests on variably saturated rock wool samples provide the fact that the strain/stress behaviours depend on both the sample conditioning and the saturation level. Results showed that water exerts plastifying effect on mechanical behaviour of rock wool. The load-displacement curves and drainage evolution under different water saturation levels allowed exhibiting hydraulic retention capacities under stress. Finally, several tracer experiments on rock wool column considering continuous and batch feeding flow regime allowed: (i) to determine the flow model for each test case and the implications for water dynamic in rock wool medium, (ii) to assess the rock wool double porosity and discuss its advantages for wastewater treatment, (iii) to analyse the benefits effect for water treatment when the high level of rock wool hydric retention was associated with the plug-flow effect, and (iv) to discuss the practical contributions for compact filter conception and management.

Top