Sample records for propagating crack tip

  1. Fatigue crack tip deformation and fatigue crack propagation

    NASA Technical Reports Server (NTRS)

    Kang, T. S.; Liu, H. W.

    1972-01-01

    The effects of stress ratio, prestress cycling and plate thickness on the fatigue crack propagation rate are studied on 2024-T351 aluminum alloy. Fatigue crack propagation rate increases with the plate thickness and the stress ratio. Prestress cycling below the static yield strength has no noticeable effect on the fatigue crack propagation rate. However, prestress cycling above the static yield strength causes the material to strain harden and increases the fatigue crack propagation rate. Crack tip deformation is used to study the fatigue crack propagation. The crack tip strains and the crack opening displacements were measured from moire fringe patterns. The moire fringe patterns were obtained by a double exposure technique, using a very high density master grille (13,400 lines per inch).

  2. [Mechanism of the dentino-enamel junction on the resist-crack propagation of human teeth by the finite element method].

    PubMed

    Jingjing, Zheng; Tiezhou, Hou; Hong, Tao; Xueyan, Guo; Cui, Wu

    2014-10-01

    This study aims to identify the crack tip stress intensity factor of the propagation process, crack propagation path, and the changes in the shape of the crack tip by the finite element method. The finite element model of dentino-enamel junction was established with ANSYS software, and the length of the initial crack in the single edge was set to 0.1 mm. The lower end of the sample was fixed. The tensile load of 1 MPa with frequency of 5 Hz was applied to the upper end. The stress intensity factor, deflection angle, and changes in the shape of the crack tip in the crack propagation were calculated by ANSYS. The stress intensity factor suddenly and continuously decreased in dentino-enamel junction as the crack extended. A large skewed angle appeared, and the stress on crack tip was reduced. The dentino-enamel junction on human teeth may resist crack propagation through stress reduction.

  3. Effects of External Hydrogen on Hydrogen Transportation and Distribution Around the Fatigue Crack Tip in Type 304 Stainless Steel

    NASA Astrophysics Data System (ADS)

    Chen, Xingyang; Zhou, Chengshuang; Cai, Xiao; Zheng, Jinyang; Zhang, Lin

    2017-10-01

    The effects of external hydrogen on hydrogen transportation and distribution around the fatigue crack tip in type 304 stainless steel were investigated by using hydrogen microprint technique (HMT) and thermal desorption spectrometry. HMT results show that some silver particles induced by hydrogen release are located near the fatigue crack and more silver particles are concentrated around the crack tip, which indicates that hydrogen accumulates in the vicinity of the crack tip during the crack growth in hydrogen gas environment. Along with the crack propagation, strain-induced α' martensite forms around the crack tip and promotes hydrogen invasion into the matrix, which will cause the crack initiation and propagation at the austenite/ α' martensite interface. In addition, the hydrogen content in the vicinity of the crack tip is higher than that at the crack edge far away from the crack tip, which is related to the stress state and strain-induced α' martensite.

  4. Investigation on Characteristic Variation of the FBG Spectrum with Crack Propagation in Aluminum Plate Structures

    PubMed Central

    Jin, Bo; Zhang, Weifang; Zhang, Meng; Ren, Feifei; Dai, Wei; Wang, Yanrong

    2017-01-01

    In order to monitor the crack tip propagation of aluminum alloy, this study investigates the variation of the spectrum characteristics of a fiber Bragg grating (FBG), combined with an analysis of the spectrum simulation. The results identify the location of the subordinate peak as significantly associated with the strain distribution along the grating, corresponding to the different plastic zones ahead of the crack tip with various crack lengths. FBG sensors could observe monotonic and cyclic plastic zones ahead of the crack tip, with the quadratic strain distribution along the grating at the crack tip-FBG distance of 1.2 and 0.7 mm, respectively. FBG sensors could examine the process zones ahead of the crack tip with the cubic strain distribution along the grating at the crack tip-FBG distance of 0.5 mm. The spectrum oscillation occurs as the crack approaches the FBG where the highly heterogeneous strain is distributed. Another idea is to use a finite element method (FEM), together with a T-matrix method, to analyze the reflection intensity spectra of FBG sensors for various crack sizes. The described crack propagation detection system may apply in structural health monitoring. PMID:28772949

  5. Investigation on Characteristic Variation of the FBG Spectrum with Crack Propagation in Aluminum Plate Structures.

    PubMed

    Jin, Bo; Zhang, Weifang; Zhang, Meng; Ren, Feifei; Dai, Wei; Wang, Yanrong

    2017-05-27

    In order to monitor the crack tip propagation of aluminum alloy, this study investigates the variation of the spectrum characteristics of a fiber Bragg grating (FBG), combined with an analysis of the spectrum simulation. The results identify the location of the subordinate peak as significantly associated with the strain distribution along the grating, corresponding to the different plastic zones ahead of the crack tip with various crack lengths. FBG sensors could observe monotonic and cyclic plastic zones ahead of the crack tip, with the quadratic strain distribution along the grating at the crack tip-FBG distance of 1.2 and 0.7 mm, respectively. FBG sensors could examine the process zones ahead of the crack tip with the cubic strain distribution along the grating at the crack tip-FBG distance of 0.5 mm. The spectrum oscillation occurs as the crack approaches the FBG where the highly heterogeneous strain is distributed. Another idea is to use a finite element method (FEM), together with a T -matrix method, to analyze the reflection intensity spectra of FBG sensors for various crack sizes. The described crack propagation detection system may apply in structural health monitoring.

  6. Mapping the cyclic plastic zone to elucidate the mechanisms of crack tip deformation in bulk metallic glasses

    NASA Astrophysics Data System (ADS)

    Scudino, S.; Shahid, R. N.; Escher, B.; Stoica, M.; Li, B. S.; Kruzic, J. J.

    2017-02-01

    Developing damage-tolerant bulk metallic glasses (BMGs) requires knowledge of the physical mechanisms governing crack propagation. While fractography suggests that fatigue crack propagation occurs in an incremental manner, conclusive evidence of alternating crack tip blunting and resharpening is lacking. By mapping the strain fields in both the monotonic and cyclic plastic zones, it is shown that the characteristic compressive stresses required to resharpen the crack tip are developed in a BMG upon unloading. This result confirms the mechanism of fatigue crack propagation in BMGs. Broader implications of these findings are that the effect of shear banding is rather diffuse and plastic deformation ahead of a stress concentration, such as a crack tip, appears to extend well beyond the extent of visible shear bands on the sample surface.

  7. Dynamic calibration and analysis of crack tip propagation in energetic materials using real-time radiography

    NASA Astrophysics Data System (ADS)

    Butt, Ali

    Crack propagation in a solid rocket motor environment is difficult to measure directly. This experimental and analytical study evaluated the viability of real-time radiography for detecting bore regression and propellant crack propagation speed. The scope included the quantitative interpretation of crack tip velocity from simulated radiographic images of a burning, center-perforated grain and actual real-time radiographs taken on a rapid-prototyped model that dynamically produced the surface movements modeled in the simulation. The simplified motor simulation portrayed a bore crack that propagated radially at a speed that was 10 times the burning rate of the bore. Comparing the experimental image interpretation with the calibrated surface inputs, measurement accuracies were quantified. The average measurements of the bore radius were within 3% of the calibrated values with a maximum error of 7%. The crack tip speed could be characterized with image processing algorithms, but not with the dynamic calibration data. The laboratory data revealed that noise in the transmitted X-Ray intensity makes sensing the crack tip propagation using changes in the centerline transmitted intensity level impractical using the algorithms employed.

  8. A Continuum-Atomistic Analysis of Transgranular Crack Propagation in Aluminum

    NASA Technical Reports Server (NTRS)

    Yamakov, V.; Saether, E.; Glaessgen, E.

    2009-01-01

    A concurrent multiscale modeling methodology that embeds a molecular dynamics (MD) region within a finite element (FEM) domain is used to study plastic processes at a crack tip in a single crystal of aluminum. The case of mode I loading is studied. A transition from deformation twinning to full dislocation emission from the crack tip is found when the crack plane is rotated around the [111] crystallographic axis. When the crack plane normal coincides with the [112] twinning direction, the crack propagates through a twinning mechanism. When the crack plane normal coincides with the [011] slip direction, the crack propagates through the emission of full dislocations. In intermediate orientations, a transition from full dislocation emission to twinning is found to occur with an increase in the stress intensity at the crack tip. This finding confirms the suggestion that the very high strain rates, inherently present in MD simulations, which produce higher stress intensities at the crack tip, over-predict the tendency for deformation twinning compared to experiments. The present study, therefore, aims to develop a more realistic and accurate predictive modeling of fracture processes.

  9. Role of sulphur atoms on stress relaxation and crack propagation in monolayer MoS2

    NASA Astrophysics Data System (ADS)

    Wang, Baoming; Islam, Zahabul; Zhang, Kehao; Wang, Ke; Robinson, Joshua; Haque, Aman

    2017-09-01

    We present in-situ transmission electron microscopy of crack propagation in a freestanding monolayer MoS2 and molecular dynamic analysis of the underlying mechanisms. Chemical vapor deposited monolayer MoS2 was transferred from sapphire substrate using interfacial etching for defect and contamination minimization. Atomic resolution imaging shows crack tip atoms sustaining 14.5% strain before bond breaking, while the stress field decays at unprecedented rate of 2.15 GPa Å-1. Crack propagation is seen mostly in the zig-zag direction in both model and experiment, suggesting that the mechanics of fracture is not brittle. Our computational model captures the mechanics of the experimental observations on crack propagation in MoS2. While molybdenum atoms carry most of the mechanical load, we show that the sliding motion of weakly bonded sulphur atoms mediate crack tip stress relaxation, which helps the tip sustain very high, localized stress levels.

  10. Growth rate models for short surface cracks in AI 2219-T851

    NASA Astrophysics Data System (ADS)

    Morris, W. L.; James, M. R.; Buck, O.

    1981-01-01

    Rates of fatigue propagation of short Mode I surface cracks in Al 2219-T851 are measured as a function of crack length and of the location of the surface crack tips relative to the grain boundaries. The measured rates are then compared to values predicted from crack growth models. The crack growth rate is modeled with an underlying assumption that slip responsible for early propagation does not extend in significant amounts beyond the next grain boundary in the direction of crack propagation. Two models that contain this assumption are combined: 1) cessation of propagation into a new grain until a mature plastic zone is developed; 2) retardation of propagation by crack closure stress, with closure stress calculated from the location of a crack tip relative to the grain boundary. The transition from short to long crack growth behavior is also discussed.

  11. Numerical investigation on the prefabricated crack propagation of FV520B stainless steel

    NASA Astrophysics Data System (ADS)

    Pan, Juyi; Qin, Ming; Chen, Songying

    FV520B is a common stainless steel for manufacturing centrifugal compressor impeller and shaft. The internal metal flaw destroys the continuity of the material matrix, resulting in the crack propagation fracture of the component, which seriously reduces the service life of the equipment. In this paper, Abaqus software was used to simulate the prefabricated crack propagation of FV520B specimen with unilateral gap. The results of static crack propagation simulation results show that the maximum value of stress-strain located at the tip of the crack and symmetrical distributed like a butterfly along the prefabricated crack direction, the maximum stress is 1990 MPa and the maximum strain is 9.489 × 10-3. The Mises stress and stress intensity factor KI increases with the increase of the expansion step, the critical value of crack initiation is reached at the 6th extension step. The dynamic crack propagation simulation shows that the crack propagation path is perpendicular to the load loading direction. Similarly, the maximum Mises stress located at the crack tip and is symmetrically distributed along the crack propagation direction. The critical stress range of the crack propagation is 23.3-43.4 MPa. The maximum value of stress-strain curve located at the 8th extension step, that is, the crack initiation point, the maximum stress is 55.22 MPa, and the maximum strain is 2.26 × 10-4. On the crack tip, the stress changed as 32.24-40.16 MPa, the strain is at 1.292 × 10-4-1.897 × 10-4.

  12. Dynamic steady-state analysis of crack propagation in rubber-like solids using an extended finite element method

    NASA Astrophysics Data System (ADS)

    Kroon, Martin

    2012-01-01

    In the present study, a computational framework for studying high-speed crack growth in rubber-like solids under conditions of plane stress and steady-state is proposed. Effects of inertia, viscoelasticity and finite strains are included. The main purpose of the study is to examine the contribution of viscoelastic dissipation to the total work of fracture required to propagate a crack in a rubber-like solid. The computational framework builds upon a previous work by the present author (Kroon in Int J Fract 169:49-60, 2011). The model was fully able to predict experimental results in terms of the local surface energy at the crack tip and the total energy release rate at different crack speeds. The predicted distributions of stress and dissipation around the propagating crack tip are presented. The predicted crack tip profiles also agree qualitatively with experimental findings.

  13. Experimental study of thermodynamics propagation fatigue crack in metals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vshivkov, A., E-mail: vshivkov.a@icmm.ru; Iziumova, A., E-mail: fedorova@icmm.ru; Plekhov, O., E-mail: poa@icmm.ru

    This work is devoted to the development of an experimental method for studying the energy balance during cyclic deformation and fracture. The studies were conducted on 304 stainless steel AISE samples. The investigation of the fatigue crack propagation was carried out on flat samples with stress concentrators. The stress concentrator was three central holes. The heat flux sensor was developed based on the Seebeck effect. This sensor was used for measuring the heat dissipation power in the examined samples during the fatigue tests. The measurements showed that the rate of fatigue crack growth depends on the heat flux at themore » crack tip and there are two propagation mode of fatigue crack with different link between the propagation mode and heat flux from crack tip.« less

  14. Real-time direct and diffraction X-ray imaging of irregular silicon wafer breakage.

    PubMed

    Rack, Alexander; Scheel, Mario; Danilewsky, Andreas N

    2016-03-01

    Fracture and breakage of single crystals, particularly of silicon wafers, are multi-scale problems: the crack tip starts propagating on an atomic scale with the breaking of chemical bonds, forms crack fronts through the crystal on the micrometre scale and ends macroscopically in catastrophic wafer shattering. Total wafer breakage is a severe problem for the semiconductor industry, not only during handling but also during temperature treatments, leading to million-dollar costs per annum in a device production line. Knowledge of the relevant dynamics governing perfect cleavage along the {111} or {110} faces, and of the deflection into higher indexed {hkl} faces of higher energy, is scarce due to the high velocity of the process. Imaging techniques are commonly limited to depicting only the state of a wafer before the crack and in the final state. This paper presents, for the first time, in situ high-speed crack propagation under thermal stress, imaged simultaneously in direct transmission and diffraction X-ray imaging. It shows how the propagating crack tip and the related strain field can be tracked in the phase-contrast and diffracted images, respectively. Movies with a time resolution of microseconds per frame reveal that the strain and crack tip do not propagate continuously or at a constant speed. Jumps in the crack tip position indicate pinning of the crack tip for about 1-2 ms followed by jumps faster than 2-6 m s(-1), leading to a macroscopically observed average velocity of 0.028-0.055 m s(-1). The presented results also give a proof of concept that the described X-ray technique is compatible with studying ultra-fast cracks up to the speed of sound.

  15. Crack curving in a ductile pressurized fuselage

    NASA Astrophysics Data System (ADS)

    Lam, Paul W.

    Moire interferometry was used to study crack tip displacement fields of a biaxially loaded cruciform type 0.8mm thick 2024-T3 aluminum specimen with various tearstrap reinforcement configurations: Unreinforced, Bonded, Bonded+Riveted, and Machined Pad-up. A program was developed using the commercially available code Matlab to derive strain, stress, and integral parameters from the experimental displacements. An FEM model of the crack tip area, with experimental displacements as boundary conditions, was used to validate FEM calculations of crack tip parameters. The results indicate that T*-integral parameter reaches a value of approximately 120 MPa-m0.5 during stable crack propagation which agrees with previously published values for straight cracks in the same material. The approximate computation method employed in this study uses a partial contour around the crack tip that neglects the contribution from the portion behind the crack tip where there is significant unloading. Strain distributions around the crack tip were obtained from experimental displacements and indicate that Maximum Principal Strain or Equivalent Strain can predict the direction of crack propagation, and is generally comparable with predictions using the Erdogan-Sih and Kosai-Ramulu-Kobayashi criteria. The biaxial tests to failure showed that the Machined Pad-up specimen carried the highest load, with the Bonded specimen next, at 78% of the Machined Pad-up value. The Bonded+Riveted specimen carried a lower load than the Bonded, at 67% of the Machined Pad-up value, which was the same as that carried by the Unreinforced specimen. The tearstraps of the bonded specimens remained intact after the specimen failed while the integrally machined reinforcement broke with the specimen. FEM studies were also made of skin flapping in typical Narrow and Wide-body fuselage sections, both containing the same crack path from a full-scale fatigue test of a Narrow-body fuselage. Results indicate that the magnitude of CTOA and CTOD depends on the structural geometry, and including plasticity increases the crack tip displacements. An estimate of the strain in the skin flaps at the crack tip may indicate the tendency for flapping. Out-of-plane effects become significant as the crack propagates and curves.

  16. Evaluation of crack-tip stress fields on microstructural-scale fracture in Al-Al2O3 interpenetrating network composites

    Treesearch

    Robert J. Moon; Mark Hoffman; Jurgen Rödel; Shigemi Tochino; Giuseppe Pezzotti

    2009-01-01

    The influence of local microstructure on the fracture process at the crack tip in a ceramic–metal composite was assessed by comparing the measured stress at a microstructural level and analogous finite element modelling (FEM). Fluorescence microprobe spectroscopy was used to investigate the influence of near-crack-tip stress fields on the resulting crack propagation at...

  17. Evolution of Residual-Strain Distribution through an Overload-Induced Retardation Period during Fatigue Crack Growth

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, S. Y.; Sun, Yinan; An, Ke

    2010-01-01

    Neutron diffraction was employed to investigate the crack-growth retardation phenomenon after a single tensile overload by mapping both one-dimensional and two-dimensional residual-strain distributions around the crack tip in a series of compact-tension specimens representing various crack-growth stages through an overload-induced retardation period. The results clearly show a large compressive residual-strain field near the crack tip immediately after the overload. As the fatigue crack propagates through the overload-induced plastic zone, the compressive residual strains are gradually relaxed, and a new compressive residual-strain field is developed around the propagating crack tip, illustrating that the subsequent fatigue-induced plastic zone grows out of themore » large plastic zone caused by the overloading. The relationship between the overload-induced plastic zone and subsequent fatigue-induced plastic zone, and its influence on the residual-strain distributions in the perturbed plastic zone are discussed.« less

  18. Dynamic crack propagation in a 2D elastic body: The out-of-plane case

    NASA Astrophysics Data System (ADS)

    Nicaise, Serge; Sandig, Anna-Margarete

    2007-05-01

    Already in 1920 Griffith has formulated an energy balance criterion for quasistatic crack propagation in brittle elastic materials. Nowadays, a generalized energy balance law is used in mechanics [F. Erdogan, Crack propagation theories, in: H. Liebowitz (Ed.), Fracture, vol. 2, Academic Press, New York, 1968, pp. 498-586; L.B. Freund, Dynamic Fracture Mechanics, Cambridge Univ. Press, Cambridge, 1990; D. Gross, Bruchmechanik, Springer-Verlag, Berlin, 1996] in order to predict how a running crack will grow. We discuss this situation in a rigorous mathematical way for the out-of-plane state. This model is described by two coupled equations in the reference configuration: a two-dimensional scalar wave equation for the displacement fields in a cracked bounded domain and an ordinary differential equation for the crack position derived from the energy balance law. We handle both equations separately, assuming at first that the crack position is known. Then the weak and strong solvability of the wave equation will be studied and the crack tip singularities will be derived under the assumption that the crack is straight and moves tangentially. Using the energy balance law and the crack tip behavior of the displacement fields we finally arrive at an ordinary differential equation for the motion of the crack tip.

  19. The noncontinuum crack tip deformation behavior of surface microcracks

    NASA Astrophysics Data System (ADS)

    Morris, W. L.

    1980-07-01

    The crack tip opening displacement (CTOD) of small surface fatigue cracks (lengths of the grain size) in Al 2219-T851 depends upon the location of a crack relative to the grain boundaries. Both CTOD and crack tip closure stress are greatest when the crack tip is a large distance from the next grain boundary in the direction of crack propagation. Contrary to behavioral trends predicted by continuum fracture mechanics, crack length has no detectable effect on the contribution of plastic deformation to CTOD. It is apparent from these observations that the region of significant plastic deformation is confined by the grain boundaries, resulting in a plastic zone size that is insensitive to crack length and to external load.

  20. Crack tip field and fatigue crack growth in general yielding and low cycle fatigue

    NASA Technical Reports Server (NTRS)

    Minzhong, Z.; Liu, H. W.

    1984-01-01

    Fatigue life consists of crack nucleation and crack propagation periods. Fatigue crack nucleation period is shorter relative to the propagation period at higher stresses. Crack nucleation period of low cycle fatigue might even be shortened by material and fabrication defects and by environmental attack. In these cases, fatigue life is largely crack propagation period. The characteristic crack tip field was studied by the finite element method, and the crack tip field is related to the far field parameters: the deformation work density, and the product of applied stress and applied strain. The cyclic carck growth rates in specimens in general yielding as measured by Solomon are analyzed in terms of J-integral. A generalized crack behavior in terms of delta is developed. The relations between J and the far field parameters and the relation for the general cyclic crack growth behavior are used to analyze fatigue lives of specimens under general-yielding cyclic-load. Fatigue life is related to the applied stress and strain ranges, the deformation work density, crack nucleus size, fracture toughness, fatigue crack growth threshold, Young's modulus, and the cyclic yield stress and strain. The fatigue lives of two aluminum alloys correlate well with the deformation work density as depicted by the derived theory. The general relation is reduced to Coffin-Manson low cycle fatigue law in the high strain region.

  1. Gear crack propagation investigations

    NASA Technical Reports Server (NTRS)

    Lewicki, David G.; Ballarini, Roberto

    1996-01-01

    Analytical and experimental studies were performed to investigate the effect of gear rim thickness on crack propagation life. The FRANC (FRacture ANalysis Code) computer program was used to simulate crack propagation. The FRANC program used principles of linear elastic fracture mechanics, finite element modeling, and a unique re-meshing scheme to determine crack tip stress distributions, estimate stress intensity factors, and model crack propagation. Various fatigue crack growth models were used to estimate crack propagation life based on the calculated stress intensity factors. Experimental tests were performed in a gear fatigue rig to validate predicted crack propagation results. Test gears were installed with special crack propagation gages in the tooth fillet region to measure bending fatigue crack growth. Good correlation between predicted and measured crack growth was achieved when the fatigue crack closure concept was introduced into the analysis. As the gear rim thickness decreased, the compressive cyclic stress in the gear tooth fillet region increased. This retarded crack growth and increased the number of crack propagation cycles to failure.

  2. Penny-shaped crack propagation in spallation of Zr-BMGs

    NASA Astrophysics Data System (ADS)

    Ling, Z.; Huang, X.; Dai, L. H.

    2015-09-01

    Typical penny-shaped microcracks at their propagating in spallation of Zr-based bulk metallic glass (Zr-BMG) samples were captured by a specially designed plate impact technique. Based on the morphology and stress environment of the microcrack, a damaged zone or propagation zone around the crack tips, similar to the cohesive zone in classical fracture theories, is applied. Especially the scale of such a damaged zone represents a scale of the crack propagation. Its fast propagation would quickly bring a longer crack or cause cracks coalesce to form another longer one. The estimated propagation scales of microcracks are reasonable compared with what occurred in the Zr-BMG samples.

  3. Molecular-dynamics Simulation-based Cohesive Zone Representation of Intergranular Fracture Processes in Aluminum

    NASA Technical Reports Server (NTRS)

    Yamakov, Vesselin I.; Saether, Erik; Phillips, Dawn R.; Glaessgen, Edward H.

    2006-01-01

    A traction-displacement relationship that may be embedded into a cohesive zone model for microscale problems of intergranular fracture is extracted from atomistic molecular-dynamics simulations. A molecular-dynamics model for crack propagation under steady-state conditions is developed to analyze intergranular fracture along a flat 99 [1 1 0] symmetric tilt grain boundary in aluminum. Under hydrostatic tensile load, the simulation reveals asymmetric crack propagation in the two opposite directions along the grain boundary. In one direction, the crack propagates in a brittle manner by cleavage with very little or no dislocation emission, and in the other direction, the propagation is ductile through the mechanism of deformation twinning. This behavior is consistent with the Rice criterion for cleavage vs. dislocation blunting transition at the crack tip. The preference for twinning to dislocation slip is in agreement with the predictions of the Tadmor and Hai criterion. A comparison with finite element calculations shows that while the stress field around the brittle crack tip follows the expected elastic solution for the given boundary conditions of the model, the stress field around the twinning crack tip has a strong plastic contribution. Through the definition of a Cohesive-Zone-Volume-Element an atomistic analog to a continuum cohesive zone model element - the results from the molecular-dynamics simulation are recast to obtain an average continuum traction-displacement relationship to represent cohesive zone interaction along a characteristic length of the grain boundary interface for the cases of ductile and brittle decohesion. Keywords: Crack-tip plasticity; Cohesive zone model; Grain boundary decohesion; Intergranular fracture; Molecular-dynamics simulation

  4. Damage, crack growth and fracture characteristics of nuclear grade graphite using the Double Torsion technique

    NASA Astrophysics Data System (ADS)

    Becker, T. H.; Marrow, T. J.; Tait, R. B.

    2011-07-01

    The crack initiation and propagation characteristics of two medium grained polygranular graphites, nuclear block graphite (NBG10) and Gilsocarbon (GCMB grade) graphite, have been studied using the Double Torsion (DT) technique. The DT technique allows stable crack propagation and easy crack tip observation of such brittle materials. The linear elastic fracture mechanics (LEFM) methodology of the DT technique was adapted for elastic-plastic fracture mechanics (EPFM) in conjunction with a methodology for directly calculating the J-integral from in-plane displacement fields (JMAN) to account for the non-linearity of graphite deformation. The full field surface displacement measurement techniques of electronic speckle pattern interferometry (ESPI) and digital image correlation (DIC) were used to observe and measure crack initiation and propagation. Significant micro-cracking in the fracture process zone (FPZ) was observed as well as crack bridging in the wake of the crack tip. The R-curve behaviour was measured to determine the critical J-integral for crack propagation in both materials. Micro-cracks tended to nucleate at pores, causing deflection of the crack path. Rising R-curve behaviour was observed, which is attributed to the formation of the FPZ, while crack bridging and distributed micro-cracks are responsible for the increase in fracture resistance. Each contributes around 50% of the irreversible energy dissipation in both graphites.

  5. Effect of micromorphology at the fatigue crack tip on the crack growth in electron beam welded Ti-6Al-4V joint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tao, Junhui; Hu, Shubing, E-mail: 187352581@qq.com

    In this paper, we describe experiments on welded joints of Ti-6Al-4V alloy specimens exhibiting fatigue characteristics in the base metal (BM), hot affected zone (HAZ) and fuse zone (FZ). The effect of micromorphology on crack propagation at the tip of the fatigue crack in joints formed by electron beam welding was investigated using an optical microscope, transmission electron microscope and other methodologies. The results demonstrated that the fatigue crack originated in and propagated along α/β boundaries in the BM. In the HAZ, the fatigue crack occurred at the boundary between martensite laths, and propagated through most irregular-equiaxed α phases andmore » a few martensite laths. In the FZ, the fatigue crack originated at the boundaries between the fine crushing phases among martensite laths, and propagated along a majority of α/β boundaries and several narrow martensite laths. The electron beam welded joint of Ti-6Al-4V alloy showed instances of zigzag fatigue cracks that increased in degree from lowest in the HAZ, moderate in the FZ to greatest in the BM. Conversely, fatigue crack growth rate (FCGR) was greatest in the HAZ, less in the FZ and slowest in the BM. - Highlights: •Ti-6Al-4V welded joint exhibits different fatigue characteristics. •The fatigue crack propagates along α/β boundaries in the BM. •The fatigue crack propagates through α phases and martensite laths in the HAZ. •The fatigue crack propagates along α/β boundaries and martensite laths in the FZ. •Fatigue crack growth rate is fastest in the HAZ, less in the FZ, slowest in the BM.« less

  6. Corrosion fatigue crack propagation in metals

    NASA Technical Reports Server (NTRS)

    Gangloff, Richard P.

    1990-01-01

    This review assesses fracture mechanics data and mechanistic models for corrosion fatigue crack propagation in structural alloys exposed to ambient temperature gases and electrolytes. Extensive stress intensity-crack growth rate data exist for ferrous, aluminum and nickel based alloys in a variety of environments. Interactive variables (viz., stress intensity range, mean stress, alloy composition and microstructure, loading frequency, temperature, gas pressure and electrode potential) strongly affect crack growth kinetics and complicate fatigue control. Mechanistic models to predict crack growth rates were formulated by coupling crack tip mechanics with occluded crack chemistry, and from both the hydrogen embrittlement and anodic dissolution/film rupture perspectives. Research is required to better define: (1) environmental effects near threshold and on crack closure; (2) damage tolerant life prediction codes and the validity of similitude; (3) the behavior of microcrack; (4) probes and improved models of crack tip damage; and (5) the cracking performance of advanced alloys and composites.

  7. Visualization and Quantitative Analysis of Crack-Tip Plastic Zone in Pure Nickel

    NASA Astrophysics Data System (ADS)

    Kelton, Randall; Sola, Jalal Fathi; Meletis, Efstathios I.; Huang, Haiying

    2018-05-01

    Changes in surface morphology have long been thought to be associated with crack propagation in metallic materials. We have studied areal surface texture changes around crack tips in an attempt to understand the correlations between surface texture changes and crack growth behavior. Detailed profiling of the fatigue sample surface was carried out at short fatigue intervals. An image processing algorithm was developed to calculate the surface texture changes. Quantitative analysis of the crack-tip plastic zone, crack-arrested sites near triple points, and large surface texture changes associated with crack release from arrested locations was carried out. The results indicate that surface texture imaging enables visualization of the development of plastic deformation around a crack tip. Quantitative analysis of the surface texture changes reveals the effects of local microstructures on the crack growth behavior.

  8. Study of the Effects of Metallurgical Factors on the Growth of Fatigue Microcracks.

    DTIC Science & Technology

    1987-11-25

    polycrystalline) yield stress. 8. The resulting model, predicated on the notion of orientation-dependent microplastic grains, predicts quantitatively the entire...Figure 5. Predicted crack growth curves for small cracks propagating from a microplastic grain into elastic-plastic, contiguous grains; Ao is defined as...or the crack tip opening *displacement, 6. Figure 5. Predicted crack growth curves for small cracks propagating from a microplastic grain into

  9. On the variation in crack-opening stresses at different locations in a three-dimensional body

    NASA Technical Reports Server (NTRS)

    Chermahini, R. G.; Blom, Anders F.

    1990-01-01

    Crack propagation and closure behavior of thin, and thick middle crack tension specimens under constant amplitude loading were investigated using a three dimensional elastic plastic finite element analysis of fatigue crack propagation and closure. In the thin specimens the crack front closed first on the exterior (free) surface and closed last in the interior during the unloading portion of cyclic loading; a load reduced displacement technique was used to determine crack opening stresses at specified locations in the plate from the displacements calculated after the seven cycle. All the locations were on the plate external surface and were located near the crack tip, behind the crack tip, at the centerline of the crack. With this technique, the opening stresses at the specified points were found to be 0.52, 0.42, and 0.39 times the maximum applied stress.

  10. On the role of weak interface in crack blunting process in nanoscale layered composites

    NASA Astrophysics Data System (ADS)

    Li, Yi; Zhou, Qing; Zhang, Shuang; Huang, Ping; Xu, Kewei; Wang, Fei; Lu, Tianjian

    2018-03-01

    Heterointerface in a nanoscale metallic layered composite could improve its crack resistance. However, the influence of metallic interface structures on crack propagation has not been well understood at atomic scale. By using the method of molecular dynamics (MD) simulation, the crack propagation behavior in Cu-Nb bilayer is compared with that in Cu-Ni bilayer. We find that the weak Cu-Nb interface plays an important role in hindering crack propagation in two ways: (i) dislocation nucleation at the interface releases stress concentration for the crack to propagate; (ii) the easily sheared weak incoherent interface blunts the crack tip. The results are helpful for understanding the interface structure dependent crack resistance of nanoscale bicrystal interfaces.

  11. On Generating Fatigue Crack Growth Thresholds

    NASA Technical Reports Server (NTRS)

    Forth, Scott C.; Newman, James, Jr.; Forman, Royce G.

    2003-01-01

    The fatigue crack growth threshold, defining crack growth as either very slow or nonexistent, has been traditionally determined with standardized load reduction methodologies. These experimental procedures can induce load history effects that result in crack closure. This history can affect the crack driving force, i.e. during the unloading process the crack will close first at some point along the wake or blunt at the crack tip, reducing the effective load at the crack tip. One way to reduce the effects of load history is to propagate a crack under constant amplitude loading. As a crack propagates under constant amplitude loading, the stress intensity factor range, Delta K, will increase, as will the crack growth rate. da/dN. A fatigue crack growth threshold test procedure is experimentally validated that does not produce load history effects and can be conducted at a specified stress ratio, R. The authors have chosen to study a ductile aluminum alloy where the plastic deformations generated during testing may be of the magnitude to impact the crack opening.

  12. Comparison of Visual and Acoustic Emission Observations in a Four Point Bending Experiment on Barre Granite

    NASA Astrophysics Data System (ADS)

    Li, Bing Qiuyi; Einstein, Herbert H.

    2017-09-01

    We present an experimental study in which a pre-notched specimen of Barre Granite was subjected to four point bending under crack mouth opening displacement control. The experimental observations consisted of load-displacement measurements, acoustic emissions, and photography on a macroscopic ( cm) as well as microscopic ( μm) scale. These observations were compared and analysed to better understand process zone development and crack propagation. Load-displacement data showed that the load reaches its maximum at crack initiation, and the machine input work is constant while the crack propagates. AE moment magnitudes between Mw = -6 to -10 were observed, and focal mechanisms consisted of both shear and tensile components. During process zone development, AE formed a large cloud of events located near the notch tip and then tended to occur away from the notch tip as the crack propagated. Image analysis at the microscopic scale showed that microcracks formed and coalesced during process zone development; specifically, the microcracks initiated in tension and then propagated as a series of en-echelon cracks. In general, the synthesis of the three observations showed that a wider bulb of activity at lower energy tended to occur during process zone development, while crack propagation tended to be more spatially concentrated and contained higher energy.

  13. In situ SEM observation of microscale strain fields around a crack tip in polycrystalline molybdenum

    NASA Astrophysics Data System (ADS)

    Li, J. J.; Li, W. C.; Jin, Y. J.; Wang, L. F.; Zhao, C. W.; Xing, Y. M.; Lang, F. C.; Yan, L.; Yang, S. T.

    2016-06-01

    In situ scanning electron microscopy was employed to investigate the crack initiation and propagation in polycrystalline molybdenum under uniaxial tensile load at room temperature. The microscale grid pattern was fabricated using the sputtering deposition technology on the specimen surface covered with a fine square mesh copper grid. The microscale strain fields around the crack tip were measured by geometric phase analysis technique and compared with the theoretical solutions based on the linear elastic fracture mechanics theory. The results showed that as the displacement increases, the crack propagated mainly perpendicular to the tensile direction during the fracture process of molybdenum. The normal strain ɛ xx and shear strain ɛ xy are relatively small, and the normal strain ɛ yy holds a dominant position in the deformation fields and plays a key role in the whole fracture process of molybdenum. With the increase in displacement, the ɛ yy increases rapidly and the two lobes grow significantly but maintain the same shape and orientation. The experimental ɛ yy is in agreement with the theoretical solution. Along the x-axis in front of the crack tip, there is minor discrepancy between the experimental ɛ yy and theoretical ɛ yy within 25 μm from the crack tip, but the agreement between them is very good far from the crack tip (>25 μm).

  14. Environmental fatigue of an Al-Li-Cu alloy. Part 3: Modeling of crack tip hydrogen damage

    NASA Technical Reports Server (NTRS)

    Piascik, Robert S.; Gangloff, Richard P.

    1992-01-01

    Environmental fatigue crack propagation rates and microscopic damage modes in Al-Li-Cu alloy 2090 (Parts 1 and 2) are described by a crack tip process zone model based on hydrogen embrittlement. Da/dN sub ENV equates to discontinuous crack advance over a distance, delta a, determined by dislocation transport of dissolved hydrogen at plastic strains above a critical value; and to the number of load cycles, delta N, required to hydrogenate process zone trap sites that fracture according to a local hydrogen concentration-tensile stress criterion. Transgranular (100) cracking occurs for process zones smaller than the subgrain size, and due to lattice decohesion or hydride formation. Intersubgranular cracking dominates when the process zone encompasses one or more subgrains so that dislocation transport provides hydrogen to strong boundary trapping sites. Multi-sloped log da/dN-log delta K behavior is produced by process zone plastic strain-hydrogen-microstructure interactions, and is determined by the DK dependent rates and proportions of each parallel cracking mode. Absolute values of the exponents and the preexponential coefficients are not predictable; however, fractographic measurements theta sub i coupled with fatigue crack propagation data for alloy 2090 established that the process zone model correctly describes fatigue crack propagation kinetics. Crack surface films hinder hydrogen uptake and reduce da/dN and alter the proportions of each fatigue crack propagation mode.

  15. Dislocation mechanism based model for stage II fatigue crack propagation rate

    NASA Technical Reports Server (NTRS)

    Mazumdar, P. K.

    1986-01-01

    Repeated plastic deformation, which of course depends on dislocation mechanism, at or near the crack tip leads to the fatigue crack propagation. By involving the theory of thermally activated flow and the cumulative plastic strain criterion, an effort is made here to model the stage II fatigue crack propagation rate in terms of the dislocation mechanism. The model, therefore, provides capability to ascertain: (1) the dislocation mechanism (and hence the near crack tip microstructures) assisting the crack growth, (2) the relative resistance of dislocation mechanisms to the crack growth, and (3) the fracture surface characteristics and its interpretation in terms of the dislocation mechanism. The local microstructure predicted for the room temperature crack growth in copper by this model is in good agreement with the experimental results taken from the literature. With regard to the relative stability of such dislocation mechanisms as the cross-slip and the dislocation intersection, the model suggests an enhancement of crack growth rate with an ease of cross-slip which in general promotes dislocation cell formation and is common in material which has high stacking fault energy (produces wavy slips). Cross-slip apparently enhances crack growth rate by promoting slip irreversibility and fracture surface brittleness to a greater degree.

  16. The role of local strains from prior cold work on stress corrosion cracking of α-brass in Mattsson's solution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ulaganathan, Jaganathan, E-mail: jagan.ulaganathan@mail.utoronto.ca; Newman, Roger C., E-mail: roger.newman@utoronto.ca

    2014-06-01

    The dynamic strain rate ahead of a crack tip formed during stress corrosion cracking (SCC) under a static load is assumed to arise from the crack propagation. The strain surrounding the crack tip would be redistributed as the crack grows, thereby having the effect of dynamic strain. Recently, several studies have shown cold work to cause accelerated crack growth rates during SCC, and the slip-dissolution mechanism has been widely applied to account for this via a supposedly increased crack-tip strain rate in cold worked material. While these interpretations consider cold work as a homogeneous effect, dislocations are generated inhomogeneously withinmore » the microstructure during cold work. The presence of grain boundaries results in dislocation pile-ups that cause local strain concentrations. The local strains generated from cold working α-brass by tensile elongation were characterized using electron backscatter diffraction (EBSD). The role of these local strains in SCC was studied by measuring the strain distributions from the same regions of the sample before cold work, after cold work, and after SCC. Though, the cracks did not always initiate or propagate along boundaries with pre-existing local strains from the applied cold work, the local strains surrounding the cracked boundaries had contributions from both the crack propagation and the prior cold work. - Highlights: • Plastic strain localization has a complex relationship with SCC susceptibility. • Surface relief created by cold work creates its own granular strain localization. • Cold work promotes crack growth but several other factors are involved.« less

  17. Propellant Crack Tip Ignition and Propagation under Rapid Pressurization

    DTIC Science & Technology

    1982-10-01

    that the ignition-delay time decreases and the heat flux to the propellant surface increases as the pressurization rate is increased. The decrease in...leading to ignition. The model predicts the experimental obseriation that the ignition delay time decreases as the pressurization rate is increased...pressurization rate on both crack propagation velocity and time variation of crack shape was studied. Experimental results indicated that the crack velocity

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, S. Y.; Choo, Hahn; Liaw, Peter K

    The combined effects of overload-induced enlarged compressive residual stresses and crack tip blunting with secondary cracks are suggested to be responsible for the observed changes in the crack opening load and resultant post-overload transient crack growth behavior [Lee SY, Liaw PK, Choo H, Rogge RB, Acta Mater 2010;59:485-94]. In this article, in situ neutron diffraction experiments were performed to quantify the influence of the combined effects by investigating the internal-stress evolution at various locations away from the crack tip. In the overload-retardation period, stress concentration occurs in the crack blunting region (an overload point) until a maximum crack arrest loadmore » is reached. The stress concentration is then transferred from the blunting region to the propagating crack tip (following the overload), requiring a higher applied load, as the closed crack is gradually opened. The transfer phenomena of the stress concentration associated with a crack opening process account for the nonlinearity of strain response in the vicinity of the crack tip. The delaying action of stress concentration at the crack tip is understood in conjunction with the concept of a critical stress (i.e. the stress required to open the closed crack behind the crack tip). A linear relationship between {Delta}{var_epsilon}{sub eff} and {Delta}K{sub eff} provides experimental support for the hypothesis that {Delta}K{sub eff} can be considered as the fatigue crack tip driving force.« less

  19. Microstructural examination of fatigue crack tip in high strength steel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fukuoka, C.; Yoshizawa, H.; Nakagawa, Y.G.

    1993-10-01

    Fatigue tests were performed to examine how microstructural conditioning influences crack initiation and propagation in SA508 class 3 low-carbon steel. A 3-mm-long crack was introduced in compact tension (CT) fatigue test specimens under four different loads in order to obtain crack tip plastic zones at different stress intensity factor ranges, [Delta]K = 18, 36, 54, and 72 MPa[radical]m. The microstructure of the plastic zones around the crack tip were examined by transmission electron microscopy (TEM) and selected area electron diffraction (SAD). Micro-orientation of the dislocation cells in the plastic zones of all of the CT samples increased to 4 degmore » from the level of an as-received sample. Four-point bending fatigue tests were performed for plate shape samples with a large cyclic strain range. The SAD value of the bending samples was also 4 deg in the damaged area where cracks already initiated at an early stage of the fatigue process. These test results indicate that the microstructural conditioning is a prerequisite for the fatigue crack initiation and propagation in SA508. These observations may lead to better understanding of how fatigue initiation processes transit to cracks.« less

  20. Elevated Temperature Crack Propagation

    NASA Technical Reports Server (NTRS)

    Orange, Thomas W.

    1994-01-01

    This paper is a summary of two NASA contracts on high temperature fatigue crack propagation in metals. The first evaluated the ability of fairly simple nonlinear fracture parameters to correlate crack propagation. Hastelloy-X specimens were tested under isothermal and thermomechanical cycling at temperatures up to 980 degrees C (1800 degrees F). The most successful correlating parameter was the crack tip opening displacement derived from the J-integral. The second evaluated the ability of several path-independent integrals to correlate crack propagation behavior. Inconel 718 specimens were tested under isothermal, thermomechanical, temperature gradient, and creep conditions at temperatures up to 650 degrees C (1200 degrees F). The integrals formulated by Blackburn and by Kishimoto correlated the data reasonably well under all test conditions.

  1. Redistribution of Welding Residual Stresses of Crack Tip Opening Displacement Specimen by Local Compression.

    PubMed

    Kim, Young-Gon; Song, Kuk-Hyun; Lee, Dong-Hoon; Joo, Sung-Min

    2018-03-01

    The demand of crack tip opening displacement (CTOD) test which evaluates fracture toughness of a cracked material is very important to ensure the stability of structure under severe service environment. The validity of the CTOD test result is judged using several criterions of the specification standards. One of them is the artificially generated fatigue pre-crack length inside the specimen. For acceptable CTOD test results, fatigue pre-crack must have a reasonable sharp crack front. The propagation of fatigue crack started from the tip of the machined notch, which might have propagated irregularly due to residual stress field. To overcome this problem, test codes suggest local compression method, reversed bending method and stepwise high-R ratio method to reduce the disparity of residual stress distribution inside the specimen. In this paper, the relation between the degree of local compression and distribution of welding residual stress has been analyzed by finite element analyses in order to determine the amount of effective local compression of the test piece. Analysis results show that initial welding residual stress is dramatically varied three-dimensionally while cutting, notch machining and local compressing due to the change of internal restraint force. From the simulation result, the authors find that there is an optimum amount of local compression to modify regularly for generating fatigue pre-crack propagation. In the case of 0.5% compressions of the model width is the most effective for uniforming residual stress distribution.

  2. Modeling of crack growth under mixed-mode loading by a molecular dynamics method and a linear fracture mechanics approach

    NASA Astrophysics Data System (ADS)

    Stepanova, L. V.

    2017-12-01

    Atomistic simulations of the central crack growth process in an infinite plane medium under mixed-mode loading using Large-Scale Atomic/Molecular Massively Parallel Simulator (LAMMPS), a classical molecular dynamics code, are performed. The inter-atomic potential used in this investigation is the Embedded Atom Method (EAM) potential. Plane specimens with an initial central crack are subjected to mixed-mode loadings. The simulation cell contains 400,000 atoms. The crack propagation direction angles under different values of the mixity parameter in a wide range of values from pure tensile loading to pure shear loading in a wide range of temperatures (from 0.1 K to 800 K) are obtained and analyzed. It is shown that the crack propagation direction angles obtained by molecular dynamics coincide with the crack propagation direction angles given by the multi-parameter fracture criteria based on the strain energy density and the multi-parameter description of the crack-tip fields. The multi-parameter fracture criteria are based on the multi-parameter stress field description taking into account the higher order terms of the Williams series expansion of the crack tip fields.

  3. Thermo-mechanically coupled fracture analysis of shape memory alloys using the extended finite element method

    NASA Astrophysics Data System (ADS)

    Hatefi Ardakani, S.; Ahmadian, H.; Mohammadi, S.

    2015-04-01

    In this paper, the extended finite element method is used for fracture analysis of shape memory alloys for both cases of super elastic and shape memory effects. Heat generation during the forward and reverse phase transformations can lead to temperature variation in the material because of strong thermo-mechanical coupling, which significantly influences the SMA mechanical behavior. First, the stationary crack mode is studied and the effects of loading rate on material behavior in the crack tip are examined. Then, the crack propagation analysis is performed in the presence of an initial crack by adopting a weighted averaging criterion, where the direction of crack propagation is determined by weighted averaging of effective stresses at all the integration points in the vicinity of the crack tip. Finally, several numerical examples are analyzed and the obtained results are compared with the available reference results.

  4. The Effect of Freezing on the Dynamics of Dike Propagation

    NASA Astrophysics Data System (ADS)

    Tait, S.; Taisne, B.

    2007-12-01

    When magma-filled cracks propagate close to the Earth's surface, host rock temperature is well below the magma solidus. Solidification and substantial increase in magma viscosity can occur, are most pronounced near the propagating tip and can slow or arrest the progress of the dike. Quantitative analysis is required to predict whether a given dike will reach the surface to erupt and the duration of the precursor sequence. This challenging physical problem mixes elasticity, fracture mechanics, heat transfer and fluid flow with strong rheologic gradients due to cooling. We describe the propagation behaviour of such a hydraulic fracture using a laboratory experimental system of a crack fed by a constant flux of paraffin wax from a source reservoir propagating through gelatin below the solidus of the wax. The most novel behaviour is an intermittent regime in which cracks periodically stop advancing due to solidification, then swell at constant length while enhancing the elastic deformation in the surrounding solid before propagation resumes. We present a physical model of this system, based on different balances between driving and resistive forces: the former are elastic stress and liquid buoyancy, the latter are fracture resistance at the tip and viscous resistance. The fracture is represented as a head, behind the propagating tip, connected to the source by a narrow tail. Freezing of liquid close to the tip is assumed to enhance fracture resistance according to a cooling law, and propagation is assumed to occur only when the stress exerted by the liquid is enough to overcome fracture resistance. Our theoretical model reproduces intermittent propagation with precise behaviour depending on the controlling stress balances, and provides a tool to analyse natural systems.

  5. Thermomechanical coupling and dynamic strain ageing in ductile fracture

    NASA Astrophysics Data System (ADS)

    Delafosse, David

    1995-01-01

    This work is concerned with plastic deformation at the tip of a ductile tearing crack during propagation. Two kinds of effects are investigated: the thermomechanical coupling at the tip of a mobile ductile crack, and the influence of Dynamic Strain Aging (DSA) on ductile fracture. Three alloys are studied: a nickel based superalloy (N18), a soft carbon steel, and an Al-Li light alloy (2091). The experimental study of the thermo mechanical coupling effects by means of infrared thermography stresses the importance of plastic dissipation in the energy balance of ductile fracture. Numerical simulations involving plastic deformation as the only dissipation mechanism account for the main part of the measured heating. The effects of DSA on ductile tearing are investigated in the 2091 Al-Li alloy. Based on the strain rate/temperature dependence predicted by the standard model of DSA, an experimental procedure is set up for this purpose. Three main effects are evidenced. A maximum in tearing resistance is shown to be associated with the minimum of strain rate sensitivity. Through a simple model, this peak in tearing resistance is attributed to an increase in plastic dissipation as the strain rate sensitivity is decreased. Heterogenous plastic deformation is observed in the crack tip plastic zone. Comparison with uniaxial testing allows us to identify the observed strain heterogeneities as Portevin-Le Chatelier instabilities in the crack tip plastic zone. We perform a simplified numerical analysis of the effect of strain localization on crack tip screening. Finally, small crack propagation instabilities appear at temperatures slightly above that of the tearing resistance peak. These are interpreted as resulting from a positive feed-back between the local heating at the tip of a moving crack and the decrease in tearing resistance with increasing temperature.

  6. The Evolution of Stress Intensity Factors and the Propagation of Cracks in Elastic Media

    NASA Astrophysics Data System (ADS)

    Friedman, Avner; Hu, Bei; Velazquez, Juan J. L.

    When a crack Γs propagates in an elastic medium the stress intensity factors evolve with the tip x(s) of Γs. In this paper we derive formulae which describe the evolution of these stress intensity factors for a homogeneous isotropic elastic medium under plane strain conditions. Denoting by ψ=ψ(x,s) the stress potential (ψ is biharmonic and has zero traction along the crack Γs) and by κ(s) the curvature of the crack at the tip x(s), we prove that the stress intensity factors A1(s), A2(s), as functions of s, satisfy: where , are stress intensity factors of the tangential derivative of in the polar coordinate system at x(s) with θ=0 in the direction of the crack at x(s). The case of antiplane shearing is also briefly considered; in this case ψ is harmonic.

  7. The Microstructural Evolution of Fatigue Cracks in FCC Metals

    NASA Astrophysics Data System (ADS)

    Gross, David William

    The microstructural evolution during fatigue crack propagation was investigated in a variety of planar and wavy slip FCC metals. The planar materials included Haynes 230, Nitronic 40, and 316 stainless steel, and the wavy materials included pure nickel and pure copper. Three different sets of experiments were performed to fully characterize the microstructural evolution. The first, performed on Haynes 230, mapped the strain field ahead a crack tip using digital image correlation and electron backscatter diffraction techniques. Focused ion beam (FIB) lift-out techniques were then utilized to extract transmission electron microscopy (TEM) samples at specific distances from the crack tip. TEM investigations compared the measured strain to the microstructure. Overall, the strain measured via DIC and EBSD was only weakly correlated to the density of planar slip bands in the microstructure. The second set of experiments concerned the dislocation structure around crack tips. This set of experiments was performed on all the materials. The microstructure at arrested fatigue cracks on the free surface was compared to the microstructure found beneath striations on the fracture surfaces by utilizing FIB micromachining to create site-specific TEM samples. The evolved microstructure depended on the slip type. Strong agreement was found between the crack tip microstructure at the free surface and the fracture surface. In the planar materials, the microstructure in the plastic zone consisted of bands of dislocations or deformation twins, before transitioning to a refined sub-grain microstructure near the crack flank. The sub-grain structure extended 300-500 nm away from the crack flank in all the planar slip materials studied. In contrast, the bulk structure in the wavy slip material consisted of dislocation cells and did not transition to a different microstructure as the crack tip was approached. The strain in wavy slip was highest near the crack tip, as the misorientations between the dislocation cells increased and the cell size decreased as the crack flank was approached. The final set of experiments involved reloading the arrested crack tips in monotonic tension. This was performed on both the Haynes 230 and 316 stainless steel. This technique exposed the fracture surface and location of the arrested crack tip away from the free surface, allowing for a sample to be extracted via FIB micromachining and TEM evaluation of the microstructure. This permitted the crack tip microstructure to be investigated without exposing the microstructure to crack closure or free surface effects. These experiments confirmed what was inferred from the earlier experiments, namely that the banded structure was a product of the crack tip plastic zone and the refined structure was a product of the strain associated with crack advance. Overall the microstructural complexity presented in this work was much higher than would be predicted by current models of fatigue crack propagation. It is recommended that future models attempt to simulate interactions between the dislocations emitted during fatigue crack growth and the pre-existing microstructure to more accurately simulate the processes occurring at the crack tip during crack growth.

  8. Experimental Characterization and Simulation of Slip Transfer at Grain Boundaries and Microstructurally-Sensitive Crack Propagation

    NASA Technical Reports Server (NTRS)

    Gupta, Vipul; Hochhalter, Jacob; Yamakov, Vesselin; Scott, Willard; Spear, Ashley; Smith, Stephen; Glaessgen, Edward

    2013-01-01

    A systematic study of crack tip interaction with grain boundaries is critical for improvement of multiscale modeling of microstructurally-sensitive fatigue crack propagation and for the computationally-assisted design of more durable materials. In this study, single, bi- and large-grain multi-crystal specimens of an aluminum-copper alloy are fabricated, characterized using electron backscattered diffraction (EBSD), and deformed under tensile loading and nano-indentation. 2D image correlation (IC) in an environmental scanning electron microscope (ESEM) is used to measure displacements near crack tips, grain boundaries and within grain interiors. The role of grain boundaries on slip transfer is examined using nano-indentation in combination with high-resolution EBSD. The use of detailed IC and EBSD-based experiments are discussed as they relate to crystal-plasticity finite element (CPFE) model calibration and validation.

  9. Dynamic ductile fracture of a central crack

    NASA Technical Reports Server (NTRS)

    Tsai, Y. M.

    1976-01-01

    A central crack, symmetrically growing at a constant speed in a two dimensional ductile material subject to uniform tension at infinity, is investigated using the integral transform methods. The crack is assumed to be the Dugdale crack, and the finite stress condition at the crack tip is satisfied during the propagation of the crack. Exact expressions of solution are obtained for the finite stress condition at the crack tip, the crack shape, the crack opening displacement, and the energy release rate. All those expressions are written as the product of explicit dimensional quantities and a nondimensional dynamic correction function. The expressions reduce to the associated static results when the crack speed tends to zero, and the nondimensional dynamic correction functions were calculated for various values of the parameter involved.

  10. Time dependent fracture and cohesive zones

    NASA Technical Reports Server (NTRS)

    Knauss, W. G.

    1993-01-01

    This presentation is concerned with the fracture response of materials which develop cohesive or bridging zones at crack tips. Of special interest are concerns regarding crack stability as a function of the law which governs the interrelation between the displacement(s) or strain across these zones and the corresponding holding tractions. It is found that for some materials unstable crack growth can occur, even before the crack tip has experienced a critical COD or strain across the crack, while for others a critical COD will guarantee the onset of fracture. Also shown are results for a rate dependent nonlinear material model for the region inside of a craze for exploring time dependent crack propagation of rate sensitive materials.

  11. Microstructural examination of

    NASA Astrophysics Data System (ADS)

    Fukuoka, C.; Yoshizawa, H.; Nakagawa, Y. G.; Lapides, M. E.

    1993-10-01

    Fatigue tests were performed to examine how microstructural conditioning influences crack initiation and propagation in SA508 class 3 low-carbon steel. A 3-mm-long crack was introduced in compact tension (CT) fatigue test specimens under four different loads in order to obtain crack tip plastic zones at different stress intensity factor ranges, ΔK = 18, 36, 54, and 72 MPa√m. The microstructure of the plastic zones around the crack tip were examined by trans- mission electron microscopy (TEM) and selected area electron diffraction (SAD). Micro- orientation of the dislocation cells in the plastic zones of all of the CT samples increased to 4 deg from the level of an as-received sample. Four-point bending fatigue tests were performed for plate shape samples with a large cyclic strain range. The SAD value of the bending samples was also 4 deg in the damaged area where cracks already initiated at an early stage of the fatigue process. These test results indicate that the microstructural conditioning is a prerequisite for the fatigue crack initiation and propagation in SA508. These observations may lead to better under- standing of how fatigue initiation processes transit to cracks.

  12. Mapping and load response of overload strain fields: Synchrotron X-ray measurements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shukla, V; Jisrawi, N M; Sadangi, R K

    High energy synchrotron X-ray diffraction measurements have been performed to provide quantitative microscopic guidance for modeling of fatigue crack growth. Specifically we report local strain mapping, along with in situ loading strain response, results on 4140 steel fatigue specimens exhibiting the crack growth retardation 'overload effect'. Detailed, 2D, {epsilon}{gamma}{gamma}-strain field mapping shows that a single overload (OL) cycle creates a compressive strain field extending millimeters above and below the crack plane. The OL strain field structures are shown to persist after the crack tip has grown well beyond the OL position. The specimen exhibiting the maximal crack growth rate retardationmore » following overload exhibits a tensile residual strain region at the crack tip. Strain field results, on in situ tensile loaded specimens, show a striking critical threshold load, F{sub c}, phenomenon in their strain response. At loads below F{sub c} the strain response is dominated by a rapid suppression of the compressive OL feature with modest response at the crack tip. At loads above F{sub c} the strain response at the OL position terminates and the response at the crack tip becomes large. This threshold load response behavior is shown to exhibit lower F{sub c} values, and dramatically enhanced rates of strain change with load as the crack tip propagates farther beyond the OL position. The OL strain feature behind the crack tip also is shown to be suppressed by removing the opposing crack faces via an electron discharge cut passing through the crack tip. Finally unique 2D strain field mapping (imaging) results, through the depth of the specimen, of the fatigue crack front and the OL feature in the wake are also presented.« less

  13. Basaltic Dike Propagation at Yucca Mountain, Nevada, USA

    NASA Astrophysics Data System (ADS)

    Gaffney, E. S.; Damjanac, B.; Warpinski, N. R.

    2004-12-01

    We describe simulations of the propagation of basaltic dikes using a 2-dimensional, incompressible hydrofracture code including the effects of the free surface with specific application to potential interactions of rising magma with a nuclear waste repository at Yucca Mountain, Nevada. As the leading edge of the dike approaches the free surface, confinement at the crack tip is reduced and the tip accelerates relative to the magma front. In the absence of either excess confining stress or excess gas pressure in the tip cavity, this leads to an increase of crack-tip velocity by more than an order of magnitude. By casting the results in nondimensional form, they can be applied to a wide variety of intrusive situations. When applied to an alkali basalt intrusion at the proposed high-level nuclear waste repository at Yucca Mountain, the results provide for a description of the subsurface phenomena. For magma rising at 1 m/s and dikes wider than about 0.5 m, the tip of the fissure would already have breached the surface by the time magma arrived at the nominal 300-m repository depth. An approximation of the effect of magma expansion on dike propagation is used to show that removing the restriction of an incompressible magma would result in even greater crack-tip acceleration as the dike approached the surface. A second analysis with a distinct element code indicates that a dike could penetrate the repository even during the first 2000 years after closure during which time heating from radioactive decay of waste would raise the minimum horizontal compressive stress above the vertical stress for about 80 m above and below the repository horizon. Rather than sill formation, the analysis indicates that increased pressure and dike width below the repository cause the crack tip to penetrate the horizon, but much more slowly than under in situ stress conditions. The analysis did not address the effects of either anisotropic joints or heat loss on this result.

  14. [Monitoring of Crack Propagation in Repaired Structures Based on Characteristics of FBG Sensors Reflecting Spectra].

    PubMed

    Yuan, Shen-fang; Jin, Xin; Qiu, Lei; Huang, Hong-mei

    2015-03-01

    In order to improve the security of aircraft repaired structures, a method of crack propagation monitoring in repaired structures is put forward basing on characteristics of Fiber Bragg Grating (FBG) reflecting spectra in this article. With the cyclic loading effecting on repaired structure, cracks propagate, while non-uniform strain field appears nearby the tip of crack which leads to the FBG sensors' reflecting spectra deformations. The crack propagating can be monitored by extracting the characteristics of FBG sensors' reflecting spectral deformations. A finite element model (FEM) of the specimen is established. Meanwhile, the distributions of strains which are under the action of cracks of different angles and lengths are obtained. The characteristics, such as main peak wavelength shift, area of reflecting spectra, second and third peak value and so on, are extracted from the FBGs' reflecting spectral which are calculated by transfer matrix algorithm. An artificial neural network is built to act as the model between the characteristics of the reflecting spectral and the propagation of crack. As a result, the crack propagation of repaired structures is monitored accurately and the error of crack length is less than 0.5 mm, the error of crack angle is less than 5 degree. The accurately monitoring problem of crack propagation of repaired structures is solved by taking use of this method. It has important significance in aircrafts safety improvement and maintenance cost reducing.

  15. Crack propagation and the material removal mechanism of glass-ceramics by the scratch test.

    PubMed

    Qiu, Zhongjun; Liu, Congcong; Wang, Haorong; Yang, Xue; Fang, Fengzhou; Tang, Junjie

    2016-12-01

    To eliminate the negative effects of surface flaws and subsurface damage of glass-ceramics on clinical effectiveness, crack propagation and the material removal mechanism of glass-ceramics were studied by single and double scratch experiments conducted using an ultra-precision machine. A self-manufactured pyramid shaped single-grit tool with a small tip radius was used as the scratch tool. The surface and subsurface crack propagations and interactions, surface morphology and material removal mechanism were investigated. The experimental results showed that the propagation of lateral cracks to the surface and the interaction between the lateral cracks and radial cracks are the two main types of material peeling, and the increase of the scratch depth increases the propagation angle of the radial cracks and the interaction between the cracks. In the case of a double scratch, the propagation of lateral cracks and radial cracks between paired scratches results in material peeling. The interaction between adjacent scratches depends on the scratch depth and separation distance. There is a critical separation distance where the normalized material removal volume reaches its peak. These findings can help reduce surface flaws and subsurface damage induced by the grinding process and improve the clinical effectiveness of glass-ceramics used as biological substitute and repair materials. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Understanding fast macroscale fracture from microcrack post mortem patterns

    PubMed Central

    Guerra, Claudia; Scheibert, Julien; Bonamy, Daniel; Dalmas, Davy

    2012-01-01

    Dynamic crack propagation drives catastrophic solid failures. In many amorphous brittle materials, sufficiently fast crack growth involves small-scale, high-frequency microcracking damage localized near the crack tip. The ultrafast dynamics of microcrack nucleation, growth, and coalescence is inaccessible experimentally and fast crack propagation was therefore studied only as a macroscale average. Here, we overcome this limitation in polymethylmethacrylate, the archetype of brittle amorphous materials: We reconstruct the complete spatiotemporal microcracking dynamics, with micrometer/nanosecond resolution, through post mortem analysis of the fracture surfaces. We find that all individual microcracks propagate at the same low, load-independent velocity. Collectively, the main effect of microcracks is not to slow down fracture by increasing the energy required for crack propagation, as commonly believed, but on the contrary to boost the macroscale velocity through an acceleration factor selected on geometric grounds. Our results emphasize the key role of damage-related internal variables in the selection of macroscale fracture dynamics. PMID:22203962

  17. Path (un)predictability of two interacting cracks in polycarbonate sheets using Digital Image Correlation.

    PubMed

    Koivisto, J; Dalbe, M-J; Alava, M J; Santucci, S

    2016-08-31

    Crack propagation is tracked here with Digital Image Correlation analysis in the test case of two cracks propagating in opposite directions in polycarbonate, a material with high ductility and a large Fracture Process Zone (FPZ). Depending on the initial distances between the two crack tips, one may observe different complex crack paths with in particular a regime where the two cracks repel each other prior to being attracted. We show by strain field analysis how this can be understood according to the principle of local symmetry: the propagation is to the direction where the local shear - mode KII in fracture mechanics language - is zero. Thus the interactions exhibited by the cracks arise from symmetry, from the initial geometry, and from the material properties which induce the FPZ. This complexity makes any long-range prediction of the path(s) impossible.

  18. Experimental and Numerical Analysis of Fracture in 41Cr4 Steel - Issues of the Stationary Cracks

    NASA Astrophysics Data System (ADS)

    Graba, M.

    2018-02-01

    This paper analyzes the process of fracture in 41Cr4 steel on the basis of experimental and numerical data obtained for non-propagating cracks. The author's previous and latest experimental results were used to determine the apparent crack initiation moment and fracture toughness for the material under plane strain conditions. Numerical simulations were carried out to assess changes in the J-integral, the crack tip opening displacement, the size of the plastic region and the distribution of stresses around the crack tip. A complex numerical analysis based on the true stress-strain curve was performed to determine the behavior of 41Cr4 steel under increasing external loads.

  19. Overload effect and fatigue crack propagation in amorphous metallic alloys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chaki, T.K.; Li, J.C.M.

    1984-07-01

    Fatigue crack propagation in amorphous metals has an overload effect which usually increases with the number of overload cycles. The variation of overload effect with delta K is explained by the size of the plastic zone which depends on delta K. A comparison of the spacing between striations and da/dN shows that the crack jumps a step about every hundred cycles. The featureless region is probably due to shear fracture along a shear band during overload. Both crack tip blunting and branching occur during the application of overload. Work hardening is not a necessary factor for the overloading effect.

  20. Mechanical properties and crack growth behavior of polycrystalline copper using molecular dynamics simulation

    NASA Astrophysics Data System (ADS)

    Qiu, Ren-Zheng; Li, Chi-Chen; Fang, Te-Hua

    2017-08-01

    This study investigated the mechanical properties and crack propagation behavior of polycrystalline copper using a molecular dynamics simulation. The effects of temperature, grain size, and crack length were evaluated in terms of atomic trajectories, slip vectors, common neighbor analysis, the material’s stress-strain diagram and Young’s modulus. The simulation results show that the grain boundary of the material is more easily damaged at high temperatures and that grain boundaries will combine at the crack tip. From the stress-strain diagram, it was observed that the maximum stress increased as the temperature decreased. In contrast, the maximum stress was reduced by increasing the temperature. With regard to the effect of the grain size, when the grain size was too small, the structure of the sample deformed due to the effect of atomic interactions, which caused the grain boundary structure to be disordered in general. However, when the grain size was larger, dislocations appeared and began to move from the tip of the crack, which led to a new dislocation phenomenon. With regards to the effect of the crack length, the tip of the crack did not affect the sample’s material when the crack length was less than 5 nm. However, when the crack length was above 7.5 nm, the grain boundary was damaged, and twinning structures and dislocations appeared on both sides of the crack tip. This is because the tip of the crack was blunt at first before sharpening due to the dislocation effect.

  1. Velocity mode transition of dynamic crack propagation in hyperviscoelastic materials: A continuum model study

    PubMed Central

    Kubo, Atsushi; Umeno, Yoshitaka

    2017-01-01

    Experiments of crack propagation in rubbers have shown that a discontinuous jump of crack propagation velocity can occur as energy release rate increases, which is known as the “mode transition” phenomenon. Although it is believed that the mode transition is strongly related to the mechanical properties, the nature of the mode transition had not been revealed. In this study, dynamic crack propagation on an elastomer was investigated using the finite element method (FEM) with a hyperviscoelastic material model. A series of pure shear test was carried out numerically with FEM simulations and crack velocities were measured under various values of tensile strain. As a result, our FEM simulations successfully reproduced the mode transition. The success of realising the mode transition phenomenon by a simple FEM model, which was achieved for the first time ever, helped to explain that the phenomenon occurs owing to a characteristic non-monotonic temporal development of principal stress near the crack tip. PMID:28186205

  2. Velocity mode transition of dynamic crack propagation in hyperviscoelastic materials: A continuum model study

    NASA Astrophysics Data System (ADS)

    Kubo, Atsushi; Umeno, Yoshitaka

    2017-02-01

    Experiments of crack propagation in rubbers have shown that a discontinuous jump of crack propagation velocity can occur as energy release rate increases, which is known as the “mode transition” phenomenon. Although it is believed that the mode transition is strongly related to the mechanical properties, the nature of the mode transition had not been revealed. In this study, dynamic crack propagation on an elastomer was investigated using the finite element method (FEM) with a hyperviscoelastic material model. A series of pure shear test was carried out numerically with FEM simulations and crack velocities were measured under various values of tensile strain. As a result, our FEM simulations successfully reproduced the mode transition. The success of realising the mode transition phenomenon by a simple FEM model, which was achieved for the first time ever, helped to explain that the phenomenon occurs owing to a characteristic non-monotonic temporal development of principal stress near the crack tip.

  3. Velocity mode transition of dynamic crack propagation in hyperviscoelastic materials: A continuum model study.

    PubMed

    Kubo, Atsushi; Umeno, Yoshitaka

    2017-02-10

    Experiments of crack propagation in rubbers have shown that a discontinuous jump of crack propagation velocity can occur as energy release rate increases, which is known as the "mode transition" phenomenon. Although it is believed that the mode transition is strongly related to the mechanical properties, the nature of the mode transition had not been revealed. In this study, dynamic crack propagation on an elastomer was investigated using the finite element method (FEM) with a hyperviscoelastic material model. A series of pure shear test was carried out numerically with FEM simulations and crack velocities were measured under various values of tensile strain. As a result, our FEM simulations successfully reproduced the mode transition. The success of realising the mode transition phenomenon by a simple FEM model, which was achieved for the first time ever, helped to explain that the phenomenon occurs owing to a characteristic non-monotonic temporal development of principal stress near the crack tip.

  4. High-Resolution Characterizations of Grain Boundary Damage and Stress Corrosion Cracks in Cold-Rolled Alloy 690

    NASA Astrophysics Data System (ADS)

    Bruemmer, S. M.; Olszta, M. J.; Toloczko, M. B.; Thomas, L. E.

    Unidirectional cold rolling has been shown to promote intergranular stress corrosion cracking (IGSCC) in alloy 690 tested in PWR primary water. High-resolution scanning (SEM) and transmission electron microscopy (TEM) have been employed to investigate the microstructural reasons for this enhanced susceptibility in two stages, first examining grain boundary damage produced by cold rolling and second by characterization of stress corrosion crack tips. The degree of permanent grain boundary damage from cold rolling was found to depend directly on the initial IG precipitate distribution. Cold rolling to high levels of reduction was discovered to produce small IG voids and cracked carbides in alloys with a high density of grain boundary carbides. For the same degree of cold rolling, alloys with few IG carbides exhibited much less permanent damage. Although this difference in grain boundary damage appears to correlate with measured SCC growth rates, crack tip examinations reveal no interaction between the preexisting voids and cracked carbides with the propagation. In many cases, these features appeared to blunt propagation of IGSCC cracks. High-resolution characterizations are described for cold-rolled alloy 690 CRDM tubing and plate materials to gain insights into IGSCC mechanisms.

  5. Microstructural characterization of hydrogen induced cracking in TRIP-assisted steel by EBSD

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Laureys, A., E-mail: Aurelie.Laureys@UGent.be; Depover, T.; Petrov, R.

    2016-02-15

    The present work evaluates hydrogen induced cracking by performing an elaborate EBSD (Electron BackScatter Diffraction) study in a steel with transformation induced plasticity (TRIP-assisted steel). This type of steel exhibits a multiphase microstructure which undergoes a deformation induced phase transformation. Additionally, each microstructural constituent displays a different behavior in the presence of hydrogen. The aim of this study is to obtain a better understanding on the mechanisms governing hydrogen induced crack initiation and propagation in the hydrogen saturated multiphase structure. Tensile tests on notched samples combined with in-situ electrochemical hydrogen charging were conducted. The tests were interrupted at stresses justmore » after reaching the tensile strength, i.e. before macroscopic failure of the material. This allowed to study hydrogen induced crack initiation and propagation by SEM (Scanning Electron Microscopy) and EBSD. A correlation was found between the presence of martensite, which is known to be very susceptible to hydrogen embrittlement, and the initiation of hydrogen induced cracks. Initiation seems to occur mostly by martensite decohesion. High strain regions surrounding the hydrogen induced crack tips indicate that further crack propagation may have occurred by the HELP (hydrogen-enhanced localized plasticity) mechanism. Small hydrogen induced cracks located nearby the notch are typically S-shaped and crack propagation was dominantly transgranularly. The second stage of crack propagation consists of stepwise cracking by coalescence of small hydrogen induced cracks. - Highlights: • Hydrogen induced cracking in TRIP-assisted steel is evaluated by EBSD. • Tensile tests were conducted on notched hydrogen saturated samples. • Crack initiation occurs by a H-Enhanced Interface DEcohesion (HEIDE) mechanism. • Crack propagation involves growth and coalescence of small cracks. • Propagation is governed by the characteristics of phases on the crack path.« less

  6. X-ray scattering to probe cracks in rubbers

    NASA Astrophysics Data System (ADS)

    Creton, Costantino; Demassieux, Quentin; Berghezan, Daniel

    Natural rubber is a well-known very tough elastomer and its toughness is generally attributed to its aptitude to crystallize under strain. Yet the mechanism linking the extent of strain induced crystallization to the toughness gamma is still unclear. We mapped by scanning microbeam X-ray diffraction (20 microns resolution), the strain induced crystallization near the crack tip of highly crosslinked and carbon-black filled natural rubbers. Experiments were carried out on static cracks loaded at different values of energy release rates G and for different filler and crosslinker concentrations. We specifically investigated the effect of the crosslinking density, the effect of thermal (oxygen-free) aging and the effect of temperature (between 23 and 100 °C). Several novel findings are reported : a significant amount of crystallization was still present at the crack tip at 100°C, thermal aging (in the absence of oxygen) greatly reduces the amount of crystallization at the crack tip without much effect on the room temperature resistance to fatigue crack propagation of the material, and an increase in crosslinking density reduces the extent of crystallinity at the crack tip for the same applied G. We acknowledge the financial support of Michelin.

  7. Generating Fatigue Crack Growth Thresholds with Constant Amplitude Loads

    NASA Technical Reports Server (NTRS)

    Forth, Scott C.; Newman, James C., J.; Forman, Royce G.

    2002-01-01

    The fatigue crack growth threshold, defining crack growth as either very slow or nonexistent, has been traditionally determined with standardized load reduction methodologies. Some experimental procedures tend to induce load history effects that result in remote crack closure from plasticity. This history can affect the crack driving force, i.e. during the unloading process the crack will close first at some point along the wake, reducing the effective load at the crack tip. One way to reduce the effects of load history is to propagate a crack under constant amplitude loading. As a crack propagates under constant amplitude loading, the stress intensity factor, K, will increase, as will the crack growth rate, da/dN. A fatigue crack growth threshold test procedure is developed and experimentally validated that does not produce load history effects and can be conducted at a specified stress ratio, R.

  8. Interpretation of Fracture Toughness and R-Curve Behavior by Direct Observation of Microfracture Process in Ti-Based Dendrite-Containing Amorphous Alloys

    NASA Astrophysics Data System (ADS)

    Jeon, Changwoo; Kim, Choongnyun Paul; Kim, Hyoung Seop; Lee, Sunghak

    2015-04-01

    Fracture properties of Ti-based amorphous alloys containing ductile β dendrites were explained by directly observing microfracture processes. Three Ti-based amorphous alloys were fabricated by adding Ti, Zr, V, Ni, Al, and Be into a Ti-6Al-4V alloy by a vacuum arc melting method. The effective sizes of dendrites varied from 63 to 104 μm, while their volume fractions were almost constant within the range from 74 to 76 pct. The observation of the microfracture of the alloy containing coarse dendrites revealed that a microcrack initiated at the amorphous matrix of the notch tip and propagated along the amorphous matrix. In the alloy containing fine dendrites, the crack propagation was frequently blocked by dendrites, and many deformation bands were formed near or in front of the propagating crack, thereby resulting in a zig-zag fracture path. Crack initiation toughness was almost the same at 35 to 36 MPa√m within error ranges in the three alloys because it was heavily affected by the stress applied to the specimen at the time of crack initiation at the crack tip as well as strength levels of the alloys. According to the R-curve behavior, however, the best overall fracture properties in the alloy containing fine dendrites were explained by mechanisms of blocking of the crack growth and crack blunting and deformation band formation at dendrites.

  9. Nanoindentation cannot accurately predict the tensile strength of graphene or other 2D materials

    NASA Astrophysics Data System (ADS)

    Han, Jihoon; Pugno, Nicola M.; Ryu, Seunghwa

    2015-09-01

    Due to the difficulty of performing uniaxial tensile testing, the strengths of graphene and its grain boundaries have been measured in experiments by nanoindentation testing. From a series of molecular dynamics simulations, we find that the strength measured in uniaxial simulation and the strength estimated from the nanoindentation fracture force can differ significantly. Fracture in tensile loading occurs simultaneously with the onset of crack nucleation near 5-7 defects, while the graphene sheets often sustain the indentation loads after the crack initiation because the sharply concentrated stress near the tip does not give rise to enough driving force for further crack propagation. Due to the concentrated stress, strength estimation is sensitive to the indenter tip position along the grain boundaries. Also, it approaches the strength of pristine graphene if the tip is located slightly away from the grain boundary line. Our findings reveal the limitations of nanoindentation testing in quantifying the strength of graphene, and show that the loading-mode-specific failure mechanism must be taken into account in designing reliable devices from graphene and other technologically important 2D materials.Due to the difficulty of performing uniaxial tensile testing, the strengths of graphene and its grain boundaries have been measured in experiments by nanoindentation testing. From a series of molecular dynamics simulations, we find that the strength measured in uniaxial simulation and the strength estimated from the nanoindentation fracture force can differ significantly. Fracture in tensile loading occurs simultaneously with the onset of crack nucleation near 5-7 defects, while the graphene sheets often sustain the indentation loads after the crack initiation because the sharply concentrated stress near the tip does not give rise to enough driving force for further crack propagation. Due to the concentrated stress, strength estimation is sensitive to the indenter tip position along the grain boundaries. Also, it approaches the strength of pristine graphene if the tip is located slightly away from the grain boundary line. Our findings reveal the limitations of nanoindentation testing in quantifying the strength of graphene, and show that the loading-mode-specific failure mechanism must be taken into account in designing reliable devices from graphene and other technologically important 2D materials. Electronic ESI (ESI) available: Modelling of polycrystalline graphene, verification of loading speed, biaxial tensile simulations, comparison of stress distribution, size effects of indenter radius, force-deflection curves, and stability analysis of crack propagation. See DOI: 10.1039/c5nr04134a

  10. Investigation of the effects of manufacturing variations and materials on fatigue crack detection methods in gear teeth

    NASA Technical Reports Server (NTRS)

    Wheitner, Jeffrey A.; Houser, Donald R.

    1994-01-01

    The fatigue life of a gear tooth can be thought of as the sum of the number of cycles required to initiate a crack, N(sub i), plus the number of cycles required to propagate the crack to such a length that fracture occurs, N(sub p). The factors that govern crack initiation are thought to be related to localized stress or strain at a point, while propagation of a fatigue crack is a function of the crack tip parameters such as crack shape, stress state, and stress intensity factor. During a test there is no clear transition between initiation and propagation. The mechanisms of initiation and propagation are quite different and modeling them separately produces a higher degree of accuracy, but then the question that continually arises is 'what is a crack?' The total life prediction in a fracture mechanics model presently hinges on the assumption of an initial crack length, and this length can significantly affect the total life prediction. The size of the initial crack is generally taken to be in the range of 0.01 in. to 0.2 in. Several researchers have used various techniques to determine the beginning of the crack propagation stage. Barhorst showed the relationship between dynamic stiffness changes and crack propagation. Acoustic emissions, which are stress waves produced by the sudden movement of stressed materials, have also been successfully used to monitor the growth of cracks in tensile and fatigue specimens. The purpose of this research is to determine whether acoustic emissions can be used to define the beginning of crack propagation in a gear using a single-tooth bending fatigue test.

  11. Crack Growth Prediction Methodology for Multi-Site Damage: Layered Analysis and Growth During Plasticity

    NASA Technical Reports Server (NTRS)

    James, Mark Anthony

    1999-01-01

    A finite element program has been developed to perform quasi-static, elastic-plastic crack growth simulations. The model provides a general framework for mixed-mode I/II elastic-plastic fracture analysis using small strain assumptions and plane stress, plane strain, and axisymmetric finite elements. Cracks are modeled explicitly in the mesh. As the cracks propagate, automatic remeshing algorithms delete the mesh local to the crack tip, extend the crack, and build a new mesh around the new tip. State variable mapping algorithms transfer stresses and displacements from the old mesh to the new mesh. The von Mises material model is implemented in the context of a non-linear Newton solution scheme. The fracture criterion is the critical crack tip opening displacement, and crack direction is predicted by the maximum tensile stress criterion at the crack tip. The implementation can accommodate multiple curving and interacting cracks. An additional fracture algorithm based on nodal release can be used to simulate fracture along a horizontal plane of symmetry. A core of plane strain elements can be used with the nodal release algorithm to simulate the triaxial state of stress near the crack tip. Verification and validation studies compare analysis results with experimental data and published three-dimensional analysis results. Fracture predictions using nodal release for compact tension, middle-crack tension, and multi-site damage test specimens produced accurate results for residual strength and link-up loads. Curving crack predictions using remeshing/mapping were compared with experimental data for an Arcan mixed-mode specimen. Loading angles from 0 degrees to 90 degrees were analyzed. The maximum tensile stress criterion was able to predict the crack direction and path for all loading angles in which the material failed in tension. Residual strength was also accurately predicted for these cases.

  12. Visual simulation of fatigue crack growth

    NASA Astrophysics Data System (ADS)

    Wang, Shuanzhu; Margolin, Harold; Lin, Fengbao

    1998-07-01

    An attempt has been made to visually simulate fatigue crack propagation from a precrack. An integrated program was developed for this purpose. The crack-tip shape was determined at four load positions in the first load cycle. The final shape was a blunt front with an “ear” profile at the precrack tip. A more general model, schematically illustrating the mechanism of fatigue crack growth and striation formation in a ductile material, was proposed based on this simulation. According to the present model, fatigue crack growth is an intermittent process; cyclic plastic shear strain is the driving force applied to both state I and II crack growth. No fracture mode transition occurs between the two stages in the present study. The crack growth direction alternates, moving up and down successively, producing fatigue striations. A brief examination has been made of the crack growth path in a ductile two-phase material.

  13. Effects of Microstructure on Tensile, Charpy Impact, and Crack Tip Opening Displacement Properties of Two API X80 Pipeline Steels

    NASA Astrophysics Data System (ADS)

    Shin, Sang Yong

    2013-06-01

    The effects of microstructure on tensile, Charpy impact, and crack tip opening displacement (CTOD) properties of two API X80 pipeline steels were investigated in this study. Two API X80 pipeline steels consisting of acicular ferrite and granular bainite, and a small amount of hard phases such as martensite and secondary phases have elongated grains along the rolling direction, so that they show different mechanical properties as the specimens' directions change. The 90 deg specimens have high tensile strength due to the low stress concentration on the fine hard phases and the high loads for the deformation of the elongated grains. In contrast, the 30 deg specimens have less elongated grains and larger hard phases such as martensite, with the size of about 3 μm, than the 90 deg specimens. Hence, the 30 deg specimens have low tensile strength because of the high stress concentration on the large hard phases and the low loads to deform grains. In the 90 deg specimen, brittle crack propagation surfaces are even since cracks propagate in a straight line along the elongated grain structure. In the 30 deg specimen, however, brittle crack propagation surfaces are uneven, and secondary cracks are observed, because of the zigzag brittle crack propagation path. In the CTOD properties, the 90 deg specimens have maximum forces of higher magnitude than the 30 deg specimens, because of the elongated grain structure. However, CTODs of the 90 deg specimens are lower than those of the 30 deg specimens because of the low plastic deformation areas by the elongated grains in the 90 deg specimens.

  14. Numerical Analysis of Crack Tip Plasticity and History Effects under Mixed Mode Conditions

    NASA Astrophysics Data System (ADS)

    Lopez-Crespo, Pablo; Pommier, Sylvie

    The plastic behaviour in the crack tip region has a strong influence on the fatigue life of engineering components. In general, residual stresses developed as a consequence of the plasticity being constrained around the crack tip have a significant role on both the direction of crack propagation and the propagation rate. Finite element methods (FEM) are commonly employed in order to model plasticity. However, if millions of cycles need to be modelled to predict the fatigue behaviour of a component, the method becomes computationally too expensive. By employing a multiscale approach, very precise analyses computed by FEM can be brought to a global scale. The data generated using the FEM enables us to identify a global cyclic elastic-plastic model for the crack tip region. Once this model is identified, it can be employed directly, with no need of additional FEM computations, resulting in fast computations. This is done by partitioning local displacement fields computed by FEM into intensity factors (global data) and spatial fields. A Karhunen-Loeve algorithm developed for image processing was employed for this purpose. In addition, the partitioning is done such as to distinguish into elastic and plastic components. Each of them is further divided into opening mode and shear mode parts. The plastic flow direction was determined with the above approach on a centre cracked panel subjected to a wide range of mixed-mode loading conditions. It was found to agree well with the maximum tangential stress criterion developed by Erdogan and Sih, provided that the loading direction is corrected for residual stresses. In this approach, residual stresses are measured at the global scale through internal intensity factors.

  15. Stress corrosion-controlled rates of mode I fracture propagation in calcareous bedrock

    NASA Astrophysics Data System (ADS)

    Voigtlaender, Anne; Leith, Kerry; Krautblatter, Michael

    2014-05-01

    Surface bedrock on natural rock slopes is subject to constant and cyclic environmental stresses (wind, water, wave, ice, seismic or gravitational). Studies indicate that these stresses range up to several hundred kPa, generally too low to cause macroscopic changes in intact rock, although clear evidence of fracture generation, crack propagation and weathering of bedrock illustrates the effect of environmental stresses at the Earth's surface. We suggest that material degradation and its extent, is likely to be controlled by the rate of stress corrosion cracking (SCC). Stress corrosion is a fluid-material reaction, where fluids preferentially react with strained atomic bonds at the tip of developing fractures. Stress corrosion in ferrous and siliceous materials is often accepted as the fracture propagation and degradation rate-controlling process where materials are subject to stresses and fluids. Although evidence for chemical weathering in propagating bedrock fractures is clear in natural environments, the physical system and quantification of stress corrosion in natural rocks is yet to be addressed. Here, we present preliminary data on the relationship between stresses at levels commonly present on natural rock slopes, and material damage resulting from stress corrosion under constant or cyclic tensile loading. We undertake single notch three-point bending tests (SNBT) on fresh calcareous bedrock specimens (1100x100x100mm) over a two-month period. Two beams containing an artificial notch are stressed to 75% of their ultimate strength, and a constant supply of weak acid is applied at the notch tip to enhance chemical reactions. A third, unloaded, beam is also exposed to weak acid in order to elucidate the contribution of stress corrosion cracking to the material degradation. Stresses at the tip of propagating cracks affect the kinetics of the chemical reaction in the specimen exposed to both loading and corrosion, leading to an increase in degradation, and greater stress relaxation. These changes in material properties are monitored using strain gauges, acoustic emission sensors, changes in P-wave velocity, and records of time to failure where appropriate. Our preliminary studies indicate changes in material properties are concentrated in the region of predicted tensile stress intensification. Reactions seem to favourably occur at the stressed bonds around the crack tip. The rate of chemical dissolution and further propagation of the fracture at the notch tip appears to be enhanced by the level of stress applied to the specimen. This provides the foundation for a suite of repeated experiments in which we plan to test corrosion-controlled rates of degradation across a range of loading conditions. The improved understanding into micro-mechanical controls, will contribute to the assessment of rock fall production rates and erosion processes in natural environments as well as natural building stones.

  16. Environment enhanced fatigue crack propagation in metals: Inputs to fracture mechanics life prediction models

    NASA Technical Reports Server (NTRS)

    Gangloff, Richard P.; Kim, Sang-Shik

    1993-01-01

    This report is a critical review of both environment-enhanced fatigue crack propagation data and the predictive capabilities of crack growth rate models. This information provides the necessary foundation for incorporating environmental effects in NASA FLAGRO and will better enable predictions of aerospace component fatigue lives. The review presents extensive literature data on 'stress corrosion cracking and corrosion fatigue.' The linear elastic fracture mechanics approach, based on stress intensity range (Delta(K)) similitude with microscopic crack propagation threshold and growth rates, provides a basis for these data. Results are presented showing enhanced growth rates for gases (viz., H2 and H2O) and electrolytes (e.g. NaCl and H2O) in aerospace alloys including: C-Mn and heat treated alloy steels, aluminum alloys, nickel-based superalloys, and titanium alloys. Environment causes purely time-dependent accelerated fatigue crack growth above the monotonic load cracking threshold (KIEAC) and promotes cycle-time dependent cracking below (KIEAC). These phenomenon are discussed in terms of hydrogen embrittlement, dissolution, and film rupture crack tip damage mechanisms.

  17. Fractography of a bis-GMA resin.

    PubMed

    Davis, D M; Waters, N E

    1989-07-01

    The fracture behavior of a bis-GMA resin was studied by means of the double-torsion test. The fracture parameter measured was the stress-intensity factor. Fracture occurred in either a stick-slip (unstable) or continuous (stable) manner, depending upon the test conditions. When stick-slip propagation occurred, the fracture surfaces showed characteristic crack-arrest lines. The fracture surfaces were examined by use of a reflected-light optical microscope. The stress-intensity factor for crack initiation was found to be related to the size of the crack-arrest line which, in turn, could be related to the Dugdale model for plastic zone size. The evidence supported the concept that the behavior of the crack during propagation was controlled by the amount of plastic deformation occurring at the crack tip.

  18. Mathematical modeling of the crack growth in linear elastic isotropic materials by conventional fracture mechanics approaches and by molecular dynamics method: crack propagation direction angle under mixed mode loading

    NASA Astrophysics Data System (ADS)

    Stepanova, Larisa; Bronnikov, Sergej

    2018-03-01

    The crack growth directional angles in the isotropic linear elastic plane with the central crack under mixed-mode loading conditions for the full range of the mixity parameter are found. Two fracture criteria of traditional linear fracture mechanics (maximum tangential stress and minimum strain energy density criteria) are used. Atomistic simulations of the central crack growth process in an infinite plane medium under mixed-mode loading using Large-scale Molecular Massively Parallel Simulator (LAMMPS), a classical molecular dynamics code, are performed. The inter-atomic potential used in this investigation is Embedded Atom Method (EAM) potential. The plane specimens with initial central crack were subjected to Mixed-Mode loadings. The simulation cell contains 400000 atoms. The crack propagation direction angles under different values of the mixity parameter in a wide range of values from pure tensile loading to pure shear loading in a wide diapason of temperatures (from 0.1 К to 800 К) are obtained and analyzed. It is shown that the crack propagation direction angles obtained by molecular dynamics method coincide with the crack propagation direction angles given by the multi-parameter fracture criteria based on the strain energy density and the multi-parameter description of the crack-tip fields.

  19. Analysis of crack propagation in roller bearings using the boundary integral equation method - A mixed-mode loading problem

    NASA Technical Reports Server (NTRS)

    Ghosn, L. J.

    1988-01-01

    Crack propagation in a rotating inner raceway of a high-speed roller bearing is analyzed using the boundary integral method. The model consists of an edge plate under plane strain condition upon which varying Hertzian stress fields are superimposed. A multidomain boundary integral equation using quadratic elements was written to determine the stress intensity factors KI and KII at the crack tip for various roller positions. The multidomain formulation allows the two faces of the crack to be modeled in two different subregions, making it possible to analyze crack closure when the roller is positioned on or close to the crack line. KI and KII stress intensity factors along any direction were computed. These calculations permit determination of crack growth direction along which the average KI times the alternating KI is maximum.

  20. An Investigation of the Sub-Microsecond Features of Dynamic Crack Propagation in PMMA and the Rdx-Based Explosive PBX 9205

    NASA Astrophysics Data System (ADS)

    Washabaugh, P. D.; Hill, L. G.

    2007-12-01

    A dynamic crack propagating in a brittle material releases enough thermal energy to produce visible light. The dynamic fracture of even macroscopically amorphous materials becomes unsteady as the crack propagation velocity approaches the material wave-speeds. The heat generated at a crack-tip, especially as it jumps, may be a mechanism to initiate a self-sustaining reaction in an energetic material. Experiments were conducted in specimens to simulate an infinite plate for ˜10 μs. The initial specimens were 152 mm square by 6 mm thick acrylic sheets, and were fabricated to study non-steady near-wave-speed crack propagation. A variant of this specimen embedded a 25 mm×3 mm PBX 9205 pellet to explore the influence of dynamic Mode-I cracks in these materials. The crack was initiated by up to 0.24 g of Detasheet placed along a precursor 50 mm long notch, with a shield to contain the reaction products and prevent propagation along the fractured surfaces. The crack was studied by means of a streak camera and a Fourier-filter of the light reflecting off the newly minted surfaces. The sub-microsecond behavior of holes initiating, preceding and coalescing with the main crack were observed in the PMMA samples. The embedding and mechanical loading of explosives by this technique did not initiate a self-sustaining reaction in preliminary testing.

  1. An initial investigation of the sub-microsecond features of dynamic crack propagation in PMMA and the RDX-based explosive PBX 9205

    NASA Astrophysics Data System (ADS)

    Washabaugh, Peter; Hill, Larry

    2007-06-01

    A dynamic crack propagating in a brittle material releases enough thermal energy to produce visible light. The dynamic fracture of even macroscopically amorphous materials becomes unsteady as the crack propagation velocity approaches the material wave-speeds. The heat generated at a crack-tip, especially as it jumps, may be a mechanism to initiate a self-sustaining reaction in an energetic material. Experiments were conducted in specimens to simulate an infinite plate for 20 μs. The initial specimens were 152 mm square by 6 mm thick acrylic sheets, and were fabricated to study non-steady near-wave-speed crack propagation. A variant of this specimen embedded a 25 mm x 3 mm PBX 9205 pellet to explore the influence of dynamic Mode-I cracks in these materials. The crack was initiated by up to 0.2 g of Detasheet placed along a precursor 50 mm long notch, with a shield to contain the reaction products and prevent propagation along the fractured surfaces. The crack was studied by means of a streak camera and a Fourier-filter of the light reflecting off the newly minted surfaces. The sub-microsecond behavior of holes initiating, preceding and coalescing with the main crack were observed in the PMMA samples. The embedding and mechanical loading of explosives by this technique did not initiate a self-sustaining reaction in preliminary testing.

  2. Dynamic growth of mixed-mode shear cracks

    USGS Publications Warehouse

    Andrews, D.J.

    1994-01-01

    A pure mode II (in-plane) shear crack cannot propagate spontaneously at a speed between the Rayleigh and S-wave speeds, but a three-dimensional (3D) or two-dimensional (2D) mixed-mode shear crack can propagate in this range, being driven by the mode III (antiplane) component. Two different analytic solutions have been proposed for the mode II component in this case. The first is the solution valid for crack speed less than the Rayleigh speed. When applied above the Rayleigh speed, it predicts a negative stress intensity factor, which implies that energy is generated at the crack tip. Burridge proposed a second solution, which is continuous at the crack tip, but has a singularity in slip velocity at the Rayleigh wave. Spontaneous propagation of a mixed-mode rupture has been calculated with a slip-weakening friction law, in which the slip velocity vector is colinear with the total traction vector. Spontaneous trans-Rayleigh rupture speed has been found. The solution depends on the absolute stress level. The solution for the in-plane component appears to be a superposition of smeared-out versions of the two analytic solutions. The proportion of the first solution increases with increasing absolute stress. The amplitude of the negative in-plane traction pulse is less than the absolute final sliding traction, so that total in-plane traction does not reverse. The azimuth of the slip velocity vector varies rapidly between the onset of slip and the arrival of the Rayleigh wave. The variation is larger at smaller absolute stress.

  3. Phase-contrast x-ray imaging of microstructure and fatigue-crack propagation in single-crystal nickel-base superalloys

    NASA Astrophysics Data System (ADS)

    Husseini, Naji Sami

    Single-crystal nickel-base superalloys are ubiquitous in demanding turbine-blade applications, and they owe their remarkable resilience to their dendritic, hierarchical microstructure and complex composition. During normal operations, they endure rapid low-stress vibrations that may initiate fatigue cracks. This failure mode in the very high-cycle regime is poorly understood, in part due to inadequate testing and diagnostic equipment. Phase-contrast imaging with coherent synchrotron x rays, however, is an emergent technique ideally suited for dynamic processes such as crack initiation and propagation. A specially designed portable ultrasonic-fatigue apparatus, coupled with x-ray radiography, allows real-time, in situ imaging while simulating service conditions. Three contrast mechanisms - absorption, diffraction, and phase contrast - span the immense breadth of microstructural features in superalloys. Absorption contrast is sensitive to composition and crack displacements, and diffraction contrast illuminates dislocation aggregates and crystallographic misorientations. Phase contrast enhances electron-density gradients and is particularly useful for fatigue-crack studies, sensitive to internal crack tips and openings less than one micrometer. Superalloy samples were imaged without external stresses to study microstructure and mosaicity. Maps of rhenium and tungsten concentrations revealed strong segregation to the center of dendrites, as manifested by absorption contrast. Though nominally single crystals, dendrites were misoriented from the bulk by a few degrees, as revealed by diffraction contrast. For dynamic studies of cyclic fatigue, superalloys were mounted in the portable ultrasonic-fatigue apparatus, subjected to a mean tensile stress of ˜50-150 MPa, and cycled in tension to initiate and propagate fatigue cracks. Radiographs were recorded every thousand cycles over the multimillion-cycle lifetime to measure micron-scale crack growth. Crack openings were very small, as determined by absorption and phase contrast, and suggested multiple fracture modes for propagation along {111} planes at room temperature, which was verified by finite element analysis. With increasing temperature, cracks became Mode I (perpendicular to the loading axis) in character and more sensitive to the microstructure. Advancing plastic zones ahead of crack tips altered the crystallographic quality, from which diffraction contrast anticipated initiation and propagation. These studies demonstrate the extreme sensitivity of x-ray radiography for detailed studies of superalloys and crack growth processes.

  4. Micromechanisms of Monotonic and Cyclic Subcritical Crack Growth in Advanced High Melting Point Low-Ductility Intermetallics

    DTIC Science & Technology

    1991-05-01

    next generation of hk,- s-performance jet engines will require markedly stiffer materials, operating at higher stress levels anw. :apable of...the crack tip, and fatigue-crack propagation is observed at stress -intensity levels as low as 6 MPa&m, far below those required to initiate cracking...The next generation of high-performance jet engines will require markedly stiffer materials, operating at higher stress levels and capable of

  5. Mode I Failure of Armor Ceramics: Experiments and Modeling

    NASA Astrophysics Data System (ADS)

    Meredith, Christopher; Leavy, Brian

    2017-06-01

    The pre-notched edge on impact (EOI) experiment is a technique for benchmarking the damage and fracture of ceramics subjected to projectile impact. A cylindrical projectile impacts the edge of a thin rectangular plate with a pre-notch on the opposite edge. Tension is generated at the notch tip resulting in the initiation and propagation of a mode I crack back toward the impact edge. The crack can be quantitatively measured using an optical method called Digital Gradient Sensing, which measures the crack-tip deformation by simultaneously quantifying two orthogonal surface slopes via measuring small deflections of light rays from a specularly reflective surface around the crack. The deflections in ceramics are small so the high speed camera needs to have a very high pixel count. This work reports on the results from pre-crack EOI experiments of SiC and B4 C plates. The experimental data are quantitatively compared to impact simulations using an advanced continuum damage model. The Kayenta ceramic model in Alegra will be used to compare fracture propagation speeds, bifurcations and inhomogeneous initiation of failure will be compared. This will provide insight into the driving mechanisms required for the macroscale failure modeling of ceramics.

  6. Fan-head shear rupture mechanism as a source of off-fault tensile cracking

    NASA Astrophysics Data System (ADS)

    Tarasov, Boris

    2016-04-01

    This presentation discusses the role of a recently identified fan-head shear rupture mechanism [1] in the creation of off-fault tensile cracks observed in earthquake laboratory experiments conducted on brittle photoelastic specimens [2,3]. According to the fan-mechanism the shear rupture propagation is associated with consecutive creation of small slabs in the fracture tip which, due to rotation caused by shear displacement of the fracture interfaces, form a fan-structure representing the fracture head. The fan-head combines such unique features as: extremely low shear resistance (below the frictional strength) and self-sustaining tensile stress intensification along one side of the interface. The variation of tensile stress within the fan-head zone is like this: it increases with distance from the fracture tip up to a maximum value and then decreases. For the initial formation of the fan-head high local stresses corresponding to the fracture strength should be applied in a small area, however after completions of the fan-head it can propagate dynamically through the material at low shear stresses (even below the frictional strength). The fan-mechanism allows explaining all unique features associated with the off-fault cracking process observed in photoelastic experiments [2,3]. In these experiments spontaneous shear ruptures were nucleated in a bonded, precut, inclined and pre-stressed interface by producing a local pressure pulse in a small area. Isochromatic fringe patterns around a shear rupture propagating along bonded interface indicate the following features of the off-fault tensile crack development: tensile cracks nucleate and grow periodically along one side of the interface at a roughly constant angle (about 80 degrees) relative to the shear rupture interface; the tensile crack nucleation takes place some distance behind the rupture tip; with distance from the point of nucleation tensile cracks grow up to a certain length within the rupture head zone; behind this zone static microcracks are left in the wake of the propagating rupture. Unfortunately, the modern technology used in these experiments is not able to identify the shear rupture mechanism itself operated within the narrow rupture interface. However, a special analysis of side effects accompanying the shear rupture propagation (including the off-fault tensile cracking) allows supposing that the failure process was governed by the fan-mechanism. 1. Tarasov, B.G. 2014. Hitherto unknown shear rupture mechanism as a source of instability in intact hard rocks at highly confined compression. Tectonophysics, 621, 69-84. 2. Griffith, W.A., Rosakis, A., Pollard, D.D. and Ko, C.W., 2009. Dynamic rupture experiments elucidate tensile crack development during propagating earthquake ruptures, Geology, pp 795-798. 3. Ngo, D., Huang, Y., Rosakis, A., Griffith, W.A., Pollard D. 2012. Off-fault tensile cracks: A link between geological fault observations, lab experiments, and dynamic rupture models. Journal of Geophysical Research, vol. 117, B01307, doi: 10.1029/2011JB008577 (2012).

  7. The generalized fracture criteria based on the multi-parameter representation of the crack tip stress field

    NASA Astrophysics Data System (ADS)

    Stepanova, L. V.

    2017-12-01

    The paper is devoted to the multi-parameter asymptotic description of the stress field near the crack tip of a finite crack in an infinite isotropic elastic plane medium subject to 1) tensile stress; 2) in-plane shear; 3) mixed mode loading for a wide range of mode-mixity situations (Mode I and Mode II). The multi-parameter series expansion of stress tensor components containing higher-order terms is obtained. All the coefficients of the multiparameter series expansion of the stress field are given. The main focus is on the discussion of the influence of considering the higher-order terms of the Williams expansion. The analysis of the higher-order terms in the stress field is performed. It is shown that the larger the distance from the crack tip, the more terms it is necessary to keep in the asymptotic series expansion. Therefore, it can be concluded that several more higher-order terms of the Williams expansion should be used for the stress field description when the distance from the crack tip is not small enough. The crack propagation direction angle is calculated. Two fracture criteria, the maximum tangential stress criterion and the strain energy density criterion, are used. The multi-parameter form of the two commonly used fracture criteria is introduced and tested. Thirty and more terms of the Williams series expansion for the near-crack-tip stress field enable the angle to be calculated more precisely.

  8. Analytical Modeling of Pressure Wall Hole Size and Maximum Tip-to-Tip Crack Length for Perforating Normal and Oblique Orbital Debris Impacts

    NASA Technical Reports Server (NTRS)

    Schonberg, William P.; Mohamed, Essam

    1997-01-01

    This report presents the results of a study whose objective was to develop first-principles-based models of hole size and maximum tip-to-tip crack length for a spacecraft module pressure wall that has been perforated in an orbital debris particle impact. The hole size and crack length models are developed by sequentially characterizing the phenomena comprising the orbital debris impact event, including the initial impact, the creation and motion of a debris cloud within the dual-wall system, the impact of the debris cloud on the pressure wall, the deformation of the pressure wall due to debris cloud impact loading prior to crack formation, pressure wall crack initiation, propagation, and arrest, and finally pressure wall deformation following crack initiation and growth. The model development has been accomplished through the application of elementary shock physics and thermodynamic theory, as well as the principles of mass, momentum, and energy conservation. The predictions of the model developed herein are compared against the predictions of empirically-based equations for hole diameters and maximum tip-to-tip crack length for three International Space Station wall configurations. The ISS wall systems considered are the baseline U.S. Lab Cylinder, the enhanced U.S. Lab Cylinder, and the U.S. Lab Endcone. The empirical predictor equations were derived from experimentally obtained hole diameters and crack length data. The original model predictions did not compare favorably with the experimental data, especially for cases in which pressure wall petalling did not occur. Several modifications were made to the original model to bring its predictions closer in line with the experimental results. Following the adjustment of several empirical constants, the predictions of the modified analytical model were in much closer agreement with the experimental results.

  9. Brittle fracture in viscoelastic materials as a pattern-formation process

    NASA Astrophysics Data System (ADS)

    Fleck, M.; Pilipenko, D.; Spatschek, R.; Brener, E. A.

    2011-04-01

    A continuum model of crack propagation in brittle viscoelastic materials is presented and discussed. Thereby, the phenomenon of fracture is understood as an elastically induced nonequilibrium interfacial pattern formation process. In this spirit, a full description of a propagating crack provides the determination of the entire time dependent shape of the crack surface, which is assumed to be extended over a finite and self-consistently selected length scale. The mechanism of crack propagation, that is, the motion of the crack surface, is then determined through linear nonequilibrium transport equations. Here we consider two different mechanisms, a first-order phase transformation and surface diffusion. We give scaling arguments showing that steady-state solutions with a self-consistently selected propagation velocity and crack shape can exist provided that elastodynamic or viscoelastic effects are taken into account, whereas static elasticity alone is not sufficient. In this respect, inertial effects as well as viscous damping are identified to be sufficient crack tip selection mechanisms. Exploring the arising description of brittle fracture numerically, we study steady-state crack propagation in the viscoelastic and inertia limit as well as in an intermediate regime, where both effects are important. The arising free boundary problems are solved by phase field methods and a sharp interface approach using a multipole expansion technique. Different types of loading, mode I, mode III fracture, as well as mixtures of them, are discussed.

  10. An energy-consistent fracture model for ferroelectrics

    NASA Astrophysics Data System (ADS)

    Miao, Hongchen; Li, Faxin

    2017-02-01

    The fracture behavior of ferroelectrics has been intensively studied in recent decades, though currently a widely accepted fracture mechanism is still lacking. In this work, enlightened by previous experimental observations that crack propagation in ferroelectrics is always accompanied by domain switching, we propose a micromechanical model in which both crack propagation and domain switching are controlled by energy-based criteria. Both electric energy and mechanical energy can induce domain switching, while only mechanical energy can drive crack propagation. Furthermore, constrained domain switching is considered in this model, leading to the gradient domain switching zone near the crack tip. Analysis results show that stress-induced ferroelastic switching always has a toughening effect as the mechanical energy release rate serves as the driving force for both fracture and domain switching. In comparison, the electric-field-induced switching may have either a toughening or detoughening effect. The proposed model can qualitatively agree with the existing experimental results.

  11. Predicting the 3D fatigue crack growth rate of small cracks using multimodal data via Bayesian networks: In-situ experiments and crystal plasticity simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rovinelli, Andrea; Sangid, Michael D.; Proudhon, Henry

    Small crack propagation accounts for most of the fatigue life of engineering structures subject to high cycle fatigue loading conditions. Determining the fatigue crack growth rate of small cracks propagating into polycrystalline engineering alloys is critical to improving fatigue life predictions, thus lowering cost and increasing safety. In this work, cycle-by-cycle data of a small crack propagating in a beta metastable titanium alloy is available via phase and diffraction contrast tomography. Crystal plasticity simulations are used to supplement experimental data regarding the micromechanical fields ahead of the crack tip. Experimental and numerical results are combined into a multimodal dataset andmore » sampled utilizing a non-local data mining procedure. Furthermore, to capture the propensity of body-centered cubic metals to deform according to the pencil-glide model, a non-local driving force is postulated. The proposed driving force serves as the basis to construct a data-driven probabilistic crack propagation framework using Bayesian networks as building blocks. The spatial correlation between the postulated driving force and experimental observations is obtained by analyzing the results of the proposed framework. Results show that the above correlation increases proportionally to the distance from the crack front until the edge of the plastic zone. Moreover, the predictions of the propagation framework show good agreement with experimental observations. Finally, we studied the interaction of a small crack with grain boundaries (GBs) utilizing various slip transmission criteria, revealing the tendency of a crack to cross a GB by propagating along the slip directions minimizing the residual Burgers vector within the GB.« less

  12. Predicting the 3D fatigue crack growth rate of small cracks using multimodal data via Bayesian networks: In-situ experiments and crystal plasticity simulations

    NASA Astrophysics Data System (ADS)

    Rovinelli, Andrea; Sangid, Michael D.; Proudhon, Henry; Guilhem, Yoann; Lebensohn, Ricardo A.; Ludwig, Wolfgang

    2018-06-01

    Small crack propagation accounts for most of the fatigue life of engineering structures subject to high cycle fatigue loading conditions. Determining the fatigue crack growth rate of small cracks propagating into polycrystalline engineering alloys is critical to improving fatigue life predictions, thus lowering cost and increasing safety. In this work, cycle-by-cycle data of a small crack propagating in a beta metastable titanium alloy is available via phase and diffraction contrast tomography. Crystal plasticity simulations are used to supplement experimental data regarding the micromechanical fields ahead of the crack tip. Experimental and numerical results are combined into a multimodal dataset and sampled utilizing a non-local data mining procedure. Furthermore, to capture the propensity of body-centered cubic metals to deform according to the pencil-glide model, a non-local driving force is postulated. The proposed driving force serves as the basis to construct a data-driven probabilistic crack propagation framework using Bayesian networks as building blocks. The spatial correlation between the postulated driving force and experimental observations is obtained by analyzing the results of the proposed framework. Results show that the above correlation increases proportionally to the distance from the crack front until the edge of the plastic zone. Moreover, the predictions of the propagation framework show good agreement with experimental observations. Finally, we studied the interaction of a small crack with grain boundaries (GBs) utilizing various slip transmission criteria, revealing the tendency of a crack to cross a GB by propagating along the slip directions minimizing the residual Burgers vector within the GB.

  13. Predicting the 3D fatigue crack growth rate of small cracks using multimodal data via Bayesian networks: In-situ experiments and crystal plasticity simulations

    DOE PAGES

    Rovinelli, Andrea; Sangid, Michael D.; Proudhon, Henry; ...

    2018-03-11

    Small crack propagation accounts for most of the fatigue life of engineering structures subject to high cycle fatigue loading conditions. Determining the fatigue crack growth rate of small cracks propagating into polycrystalline engineering alloys is critical to improving fatigue life predictions, thus lowering cost and increasing safety. In this work, cycle-by-cycle data of a small crack propagating in a beta metastable titanium alloy is available via phase and diffraction contrast tomography. Crystal plasticity simulations are used to supplement experimental data regarding the micromechanical fields ahead of the crack tip. Experimental and numerical results are combined into a multimodal dataset andmore » sampled utilizing a non-local data mining procedure. Furthermore, to capture the propensity of body-centered cubic metals to deform according to the pencil-glide model, a non-local driving force is postulated. The proposed driving force serves as the basis to construct a data-driven probabilistic crack propagation framework using Bayesian networks as building blocks. The spatial correlation between the postulated driving force and experimental observations is obtained by analyzing the results of the proposed framework. Results show that the above correlation increases proportionally to the distance from the crack front until the edge of the plastic zone. Moreover, the predictions of the propagation framework show good agreement with experimental observations. Finally, we studied the interaction of a small crack with grain boundaries (GBs) utilizing various slip transmission criteria, revealing the tendency of a crack to cross a GB by propagating along the slip directions minimizing the residual Burgers vector within the GB.« less

  14. Stress corrosion cracking of titanium alloys

    NASA Technical Reports Server (NTRS)

    May, R. C.; Beck, F. H.; Fontana, M. G.

    1971-01-01

    Experiments were conducted to study (1) the basic electrochemical behavior of titanium in acid chloride solutions and (2) the response of the metal to dynamic straining in the same evironment. The aim of this group of experiments was to simulate, as nearly as possible, the actual conditions which exist at the tip of a crack. One of the foremost theories proposed to explain the propagation of stress corrosion cracks is a hydrogen embrittlement theory involving the precipitation of embrittling titanium hydrides inside the metal near the crack tip. An initial survey of the basic electrochemical literature indicated that surface hydrides play a critical role in the electrochemistry of titanium in acid solutions. A comprehensive analysis of the effect of surface films, particularly hydrides, on the electrochemical behavior of titanium in these solution is presented.

  15. Mantle viscosity beneath the Galapagos 95.5 deg W propagating rift

    NASA Technical Reports Server (NTRS)

    Schubert, G.; Hey, R. N.

    1986-01-01

    Detailed geophysical surveys in the vicinity of the Galapagos 95.5 deg W propagating rift tip establish the opening history of the rift and its velocity of propagation. These data together with a theory for mantle upwelling into slowly widening lithospheric cracks constrain the viscosity of the asthenosphere beneath the propagating rift to be less than about 10 to the 17th to 10 to the 18th Pa s.

  16. Fatigue and Creep Crack Propagation behaviour of Alloy 617 in the Annealed and Aged Conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Julian K. Benz; Richard N. Wright

    2013-10-01

    The crack propagation behaviour of Alloy 617 was studied under various conditions. Elevated temperature fatigue and creep-fatigue crack growth experiments were conducted at 650 and 800 degrees C under constant stress intensity (triangle K) conditions and triangular or trapezoidal waveforms at various frequencies on as-received, aged, and carburized material. Environmental conditions included both laboratory air and characteristic VHTR impure helium. As-received Alloy 617 displayed an increase in the crack growth rate (da/dN) as the frequency was decreased in air which indicated a time-dependent contribution component in fatigue crack propagation. Material aged at 650°C did not display any influence on themore » fatigue crack growth rates nor the increasing trend of crack growth rate with decreasing frequency even though significant microstructural evolution, including y’ (Ni3Al) after short times, occurred during aging. In contrast, carburized Alloy 617 showed an increase in crack growth rates at all frequencies tested compared to the material in the standard annealed condition. Crack growth studies under quasi-constant K (i.e. creep) conditions were also completed at 650 degrees C and a stress intensity of K = 40 MPa9 (square root)m. The results indicate that crack growth is primarily intergranular and increased creep crack growth rates exist in the impure helium environment when compared to the results in laboratory air. Furthermore, the propagation rates (da/dt) continually increased for the duration of the creep crack growth either due to material aging or evolution of a crack tip creep zone. Finally, fatigue crack propagation tests at 800 degrees C on annealed Alloy 617 indicated that crack propagation rates were higher in air than impure helium at the largest frequencies and lowest stress intensities. The rates in helium, however, eventually surpass the rates in air as the frequency is reduced and the stress intensity is decreased which was not observed at 650 degrees C.« less

  17. Environmentally induced crack propagation in Inconel alloys 600 and 690 under hydrogen supersaturated steam

    NASA Astrophysics Data System (ADS)

    Ali, Mehboob Muzzammil

    Intergranular stress corrosion cracking (IGSCC) of Inconel alloys 600 and 690 was investigated by exposing them to 300--400°C in deaerated hydrogen supersaturated steam. Crack growth rates were measured in-situ for the above alloys using modified wedge-opening-loaded (M-WOL) linear elastic fracture specimens under constant displacement conditions. The applied stress intensity factors (K) used varied from 29--90 MPam1/2. An activation energy of 120 kJ/mol was found for crack growth rates as a function of temperature. This activation energy is close to the one corresponding to grain boundary self diffusion of nickel. In addition, it was found that the apparent crack growth rates (da/dt) exhibited a linear dependence with KI, given by (da/dt) = A.KIn, where n = 1 in our case. Microstructurally, crack propagation in both the alloys was predominantly along the grain boundaries. It is suggested that high fugacity hydrogen was generated at the tip of the crack, as a result of the reaction of H2O with Cr2O3 on the fracture surface leading to IGSCC. It was found that the rates of crack propagation in both alloys 600 and 690 are very similar. Moreover, under the applied KIs, both alloys 600 and 690 show a similar tendency to crack intergranularly in a direction perpendicular to the applied stress. Crack branching was also exhibited by both the alloys 600 as well as 690. The difference in the crack growth rates of alloys 600 and 690 was found to be only about 2%, which indicates that the crack growth rates in these alloys is independent of the alloy chromium content and that, possibly very similar crack growth mechanisms are active in both the alloys 600 and 690 under similar conditions of KI and temperature. HREM images at the crack tip of alloy 690 exhibit two distinct regions---a crystalline region, and an adjacent amorphous region, which is likely to be either a hydroxide or an amorphous oxide layer. This layer is expected to result from passivation reactions as the crack surface is exposed to the corrosive environment.

  18. Rock fracture processes in chemically reactive environments

    NASA Astrophysics Data System (ADS)

    Eichhubl, P.

    2015-12-01

    Rock fracture is traditionally viewed as a brittle process involving damage nucleation and growth in a zone ahead of a larger fracture, resulting in fracture propagation once a threshold loading stress is exceeded. It is now increasingly recognized that coupled chemical-mechanical processes influence fracture growth in wide range of subsurface conditions that include igneous, metamorphic, and geothermal systems, and diagenetically reactive sedimentary systems with possible applications to hydrocarbon extraction and CO2 sequestration. Fracture processes aided or driven by chemical change can affect the onset of fracture, fracture shape and branching characteristics, and fracture network geometry, thus influencing mechanical strength and flow properties of rock systems. We are investigating two fundamental modes of chemical-mechanical interactions associated with fracture growth: 1. Fracture propagation may be aided by chemical dissolution or hydration reactions at the fracture tip allowing fracture propagation under subcritical stress loading conditions. We are evaluating effects of environmental conditions on critical (fracture toughness KIc) and subcritical (subcritical index) fracture properties using double torsion fracture mechanics tests on shale and sandstone. Depending on rock composition, the presence of reactive aqueous fluids can increase or decrease KIc and/or subcritical index. 2. Fracture may be concurrent with distributed dissolution-precipitation reactions in the hostrock beyond the immediate vicinity of the fracture tip. Reconstructing the fracture opening history recorded in crack-seal fracture cement of deeply buried sandstone we find that fracture length growth and fracture opening can be decoupled, with a phase of initial length growth followed by a phase of dominant fracture opening. This suggests that mechanical crack-tip failure processes, possibly aided by chemical crack-tip weakening, and distributed solution-precipitation creep in the hostrock can independently affect fracture opening displacement and thus fracture aperture profiles and aperture distribution.

  19. Improving the Fatigue Crack Propagation Resistance and Damage Tolerance of 2524-T3 Alloy with Amorphous Electroless Ni-P Coating

    NASA Astrophysics Data System (ADS)

    Chen, Lai; Zeng, Diping; Liu, Zhiyi; Bai, Song; Li, Junlin

    2018-02-01

    The surface microhardness, as well as the fatigue crack propagation (FCP) resistance of 2524-T3 alloy, is improved by producing a 20-μm-thick amorphous electroless Ni-12% P coating on its surface. Compared to the substrate, this deposited EN coating possesses higher strength properties and exhibits a greater ability of accommodating the plastic deformation at the fatigue crack tip, thereby remarkably improving the FCP resistance in near-threshold and early Paris regimes. Regardless of the similar FCP rates in Paris regime (Δ K ≥ 16.2 MPa m0.5), the coated sample exhibits extended Paris regime and enhanced damage tolerance.

  20. The initiation, propagation, and effect of matrix microcracks in cross-ply and related laminates

    NASA Technical Reports Server (NTRS)

    Nairn, John A.; Hu, Shoufeng; Liu, Siulie; Bark, Jong

    1991-01-01

    Recently, a variational mechanics approach was used to determine the thermoelastic stress state in cracked laminates. Described here is a generalization of the variational mechanics techniques to handle other cross-ply laminates, related laminates, and to account for delaminations emanating from microcrack tips. Microcracking experiments on Hercules 3501-6/AS4 carbon fiber/epoxy laminates show a staggered cracking pattern. These results can be explained by the variational mechanics analysis. The analysis of delaminations emanating from microcrack tips has resulted in predictions about the structural and material variables controlling competition between microcracking and delamination failure modes.

  1. Strength and Microstructure of Ceramics.

    DTIC Science & Technology

    1987-11-01

    triangular slab. 12-mm edge length and 2-mm thickness. to produce crack 7 mm long. Starter notch length portantly. the strength plateau at small flaw sizes...however. a tapered the starter notch tip. "Pop-in" behavior of this kind is not uncom- geometry was used. width increasing in the direction of ultimate...mon in notched specimens, of course: in such cases the initial crack propagation. The main crack was started at a sawcut notch fracture response can be

  2. A non-viscous-featured fractograph in metallic glasses

    NASA Astrophysics Data System (ADS)

    Yang, G. N.; Shao, Y.; Yao, K. F.

    2016-02-01

    A fractograph of non-viscous feature but pure shear-offsets was found in three-point bending samples of a ductile Pd-Cu-Si metallic glass. A sustainable shear band multiplication with large plasticity during notch propagation was observed. Such non-viscous-featured fractograph was formed by a crack propagation manner of continual multiple shear bands formation in front of the crack-tip, instead of the conventional rapid fracture along shear bands. With a 2D model of crack propagation by multiple shear bands, we showed that such fracture process was achieved by a faster stress relaxation than shear-softening effect in the sample. This study confirmed that the viscous fracture along shear bands could be not a necessary process in ductile metallic glasses fracture, and could provide new ways to understand the plasticity in the shear-softened metallic glasses.

  3. Three Dimensional Numerical Simulation and Characterization of Crack Growth in the Weld Region of a Friction Stir Welded Structure

    NASA Technical Reports Server (NTRS)

    Seshadri, Banavara R.; Smith, Stephen W.; Newman, John A.

    2013-01-01

    Friction stir welding (FSW) fabrication technology is being adopted in aerospace applications. The use of this technology can reduce production cost, lead-times, reduce structural weight and need for fasteners and lap joints, which are typically the primary locations of crack initiation and multi-site fatigue damage in aerospace structures. FSW is a solid state welding process that is well-suited for joining aluminum alloy components; however, the process introduces residual stresses (both tensile and compressive) in joined components. The propagation of fatigue cracks in a residual stress field and the resulting redistribution of the residual stress field and its effect on crack closure have to be estimated. To insure the safe insertion of complex integral structures, an accurate understanding of the fatigue crack growth behavior and the complex crack path process must be understood. A life prediction methodology for fatigue crack growth through the weld under the influence of residual stresses in aluminum alloy structures fabricated using FSW will be detailed. The effects and significance of the magnitude of residual stress at a crack tip on the estimated crack tip driving force are highlighted. The location of the crack tip relative to the FSW and the effect of microstructure on fatigue crack growth are considered. A damage tolerant life prediction methodology accounting for microstructural variation in the weld zone and residual stress field will lead to the design of lighter and more reliable aerospace structures

  4. Flexural edge waves generated by steady-state propagation of a loaded rectilinear crack in an elastically supported thin plate

    NASA Astrophysics Data System (ADS)

    Nobili, Andrea; Radi, Enrico; Lanzoni, Luca

    2017-08-01

    The problem of a rectilinear crack propagating at constant speed in an elastically supported thin plate and acted upon by an equally moving load is considered. The full-field solution is obtained and the spotlight is set on flexural edge wave generation. Below the critical speed for the appearance of travelling waves, a threshold speed is met which marks the transformation of decaying edge waves into edge waves propagating along the crack and dying away from it. Yet, besides these, and for any propagation speed, a pair of localized edge waves, which rapidly decay behind the crack tip, is also shown to exist. These waves are characterized by a novel dispersion relation and fade off from the crack line in an oscillatory manner, whence they play an important role in the far field behaviour. Dynamic stress intensity factors are obtained and, for speed close to the critical speed, they show a resonant behaviour which expresses the most efficient way to channel external work into the crack. Indeed, this behaviour is justified through energy considerations regarding the work of the applied load and the energy release rate. Results might be useful in a wide array of applications, ranging from fracturing and machining to acoustic emission and defect detection.

  5. Flexural edge waves generated by steady-state propagation of a loaded rectilinear crack in an elastically supported thin plate.

    PubMed

    Nobili, Andrea; Radi, Enrico; Lanzoni, Luca

    2017-08-01

    The problem of a rectilinear crack propagating at constant speed in an elastically supported thin plate and acted upon by an equally moving load is considered. The full-field solution is obtained and the spotlight is set on flexural edge wave generation. Below the critical speed for the appearance of travelling waves, a threshold speed is met which marks the transformation of decaying edge waves into edge waves propagating along the crack and dying away from it. Yet, besides these, and for any propagation speed, a pair of localized edge waves, which rapidly decay behind the crack tip, is also shown to exist. These waves are characterized by a novel dispersion relation and fade off from the crack line in an oscillatory manner, whence they play an important role in the far field behaviour. Dynamic stress intensity factors are obtained and, for speed close to the critical speed, they show a resonant behaviour which expresses the most efficient way to channel external work into the crack. Indeed, this behaviour is justified through energy considerations regarding the work of the applied load and the energy release rate. Results might be useful in a wide array of applications, ranging from fracturing and machining to acoustic emission and defect detection.

  6. Fatigue crack propagation behaviour of unidirectionally solidified gamma/gamma-prime-delta eutectic alloys. [Ni-Nb-Al alloys

    NASA Technical Reports Server (NTRS)

    Bretz, P. E.; Hertzberg, R. W.

    1979-01-01

    Fatigue crack propagation studies were carried out on unidirectionally solidified gamma/gamma-prime-delta (Ni-Nb-Al) alloys over an aluminum content range of 1.5-2.5% by weight. The variation of Al content of as-grown alloys did not significantly affect the crack growth behavior of these eutectic composites. The results indicate that the addition of Al to the eutectic dramatically improved the FCP behavior. The gamma/gamma-prime-delta alloy exhibited crack growth rates for a given stress intensity range that are an order of magnitude lower than those for the gamma-delta alloy. It is suggested that this difference in FCP behavior can be explained on the basis of stacking fault energy considerations. Extensive delaminations at the crack tip were also revealed, which contributed to the superior fatigue response. Delamination was predominantly intergranular in nature.

  7. Subcritical growth of natural hydraulic fractures

    NASA Astrophysics Data System (ADS)

    Garagash, D.

    2014-12-01

    Joints are the most common example of brittle tensile failure in the crust. Their genesis at depth is linked to the natural hydraulic fracturing, which requires pore fluid pressure in excess of the minimum in situ stress [Pollard and Aidyn, JSG1988]. Depending on the geological setting, high pore pressure can result form burial compaction of interbedded strata, diagenesis, or tectonics. Common to these loading scenarios is slow build-up of pore pressure over a geological timescale, until conditions for initiation of crack growth are met on favorably oriented/sized flaws. The flaws can vary in size from grain-size cracks in igneous rocks to a fossil-size flaws in clastic rock, and once activated, are inferred to propagate mostly subcritically [Segall JGR 1984; Olson JGR 1993]. Despite many observational studies of natural hydraulic fractures, the modeling attempts appear to be few [Renshaw and Harvey JGR 1994]. Here, we use boundary integral formulation for the pore fluid inflow from the permeable rock into a propagating joint [Berchenko et al. IJRMMS 1997] coupled with the criteria for subcritical propagation assisted by the environmental effects of pore fluid at the crack tip to solve for the evolution of a penny-shape joint, which, in interbedded rock, may eventually evolve to short-blade geometry (propagation confined to a bed). Initial growth is exceedingly slow, paced by the stress corrosion reaction kinetics at the crack tip. During this stage the crack is fully-drained (i.e. the fluid pressure in the crack is equilibrated with the ambient pore pressure). This "slow" stage is followed by a rapid acceleration, driven by the increase of the mechanical stress intensity factor with the crack length, towards the terminal joint velocity. We provide an analytical expression for the latter as a function of the rock diffusivity, net pressure loading at the initiation (or flaw lengthscale), and parameters describing resistance to fracture growth. Due to a much slower rate of the crack volume expansion of short-blade joints compared to that of penny-shape joints, the former would propagate much faster than the latter under otherwise identical conditions. Finally, we speculate about possible relation of the predicted patterns of joint development with morphology of joint fracture surfaces observed in sedimentary rock.

  8. Intergranular fracture in UO{sub 2}: derivation of traction-separation law from atomistic simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Yongfeng; Millett, P.C.; Tonks, M.R.

    2013-07-01

    In this study, the intergranular fracture behavior of UO{sub 2} was studied by molecular dynamics simulations using the Basak potential. In addition, the constitutive traction-separation law was derived from atomistic data using the cohesive-zone model. In the simulations a bicrystal model with the (100) symmetric tilt Σ5 grain boundaries was utilized. Uniaxial tension along the grain boundary normal was applied to simulate Mode-I fracture. The fracture was observed to propagate along the grain boundary by micro-pore nucleation and coalescence, giving an overall intergranular fracture behavior. Phase transformations from the Fluorite to the Rutile and Scrutinyite phases were identified at themore » propagating crack tips. These new phases are metastable and they transformed back to the Fluorite phase at the wake of crack tips as the local stress concentration was relieved by complete cracking. Such transient behavior observed at atomistic scale was found to substantially increase the energy release rate for fracture. Insertion of Xe gas into the initial notch showed minor effect on the overall fracture behavior. (authors)« less

  9. Structural Phase Transformation in Strained Monolayer MoWSe2 Alloy.

    PubMed

    Apte, Amey; Kochat, Vidya; Rajak, Pankaj; Krishnamoorthy, Aravind; Manimunda, Praveena; Hachtel, Jordan A; Idrobo, Juan Carlos; Syed Amanulla, Syed Asif; Vashishta, Priya; Nakano, Aiichiro; Kalia, Rajiv K; Tiwary, Chandra Sekhar; Ajayan, Pulickel M

    2018-04-24

    Two-dimensional (2D) materials exhibit different mechanical properties from their bulk counterparts owing to their monolayer atomic thickness. Here, we have examined the mechanical behavior of 2D molybdenum tungsten diselenide (MoWSe 2 ) precipitation alloy grown using chemical vapor deposition and composed of numerous nanoscopic MoSe 2 and WSe 2 regions. Applying a bending strain blue-shifted the MoSe 2 and WSe 2 A 1g Raman modes with the stress concentrated near the precipitate interfaces predominantly affecting the WSe 2 modes. In situ local Raman measurements suggested that the crack propagated primarily thorough MoSe 2 -rich regions in the monolayer alloy. Molecular dynamics (MD) simulations were performed to study crack propagation in an MoSe 2 monolayer containing nanoscopic WSe 2 regions akin to the experiment. Raman spectra calculated from MD trajectories of crack propagation confirmed the emergence of intermediate peaks in the strained monolayer alloy, mirroring experimental results. The simulations revealed that the stress buildup around the crack tip caused an irreversible structural transformation from the 2H to 1T phase both in the MoSe 2 matrix and WSe 2 patches. This was corroborated by high-angle annular dark-field images. Crack branching and subsequent healing of a crack branch were also observed in WSe 2 , indicating the increased toughness and crack propagation resistance of the alloyed 2D MoWSe 2 over the unalloyed counterparts.

  10. Monitoring of surface-fatigue crack propagation in a welded steel angle structure using guided waves and principal component analysis

    NASA Astrophysics Data System (ADS)

    Lu, Mingyu; Qu, Yongwei; Lu, Ye; Ye, Lin; Zhou, Limin; Su, Zhongqing

    2012-04-01

    An experimental study is reported in this paper demonstrating monitoring of surface-fatigue crack propagation in a welded steel angle structure using Lamb waves generated by an active piezoceramic transducer (PZT) network which was freely surface-mounted for each PZT transducer to serve as either actuator or sensor. The fatigue crack was initiated and propagated in welding zone of a steel angle structure by three-point bending fatigue tests. Instead of directly comparing changes between a series of specific signal segments such as S0 and A0 wave modes scattered from fatigue crack tips, a variety of signal statistical parameters representing five different structural status obtained from marginal spectrum in Hilbert-huang transform (HHT), indicating energy progressive distribution along time period in the frequency domain including all wave modes of one wave signal were employed to classify and distinguish different structural conditions due to fatigue crack initiation and propagation with the combination of using principal component analysis (PCA). Results show that PCA based on marginal spectrum is effective and sensitive for monitoring the growth of fatigue crack although the received signals are extremely complicated due to wave scattered from weld, multi-boundaries, notch and fatigue crack. More importantly, this method indicates good potential for identification of integrity status of complicated structures which cause uncertain wave patterns and ambiguous sensor network arrangement.

  11. Subcritical crack propagation due to chemical rock weakening: macroscale chemo-plasticity and chemo-elasticity modeling

    NASA Astrophysics Data System (ADS)

    Hueckel, T.; Hu, M.

    2015-12-01

    Crack propagation in a subcritically stressed rock subject to chemically aggressive environment is analyzed and numerically simulated. Chemically induced weakening is often encountered in hydraulic fracturing of low-permeability oil/gas reservoirs and heat reservoirs, during storage of CO2 and nuclear waste corroding canisters, and other circumstances when rock matrix acidizing is involved. Upon acidizing, mineral mass dissolution is substantially enhanced weakening the rock and causing crack propagation and eventually permeability changes in the medium. The crack process zone is modeled mathematically via a chemo-plastic coupling and chemo-elastic coupling model. In plasticity a two-way coupling is postulated between mineral dissolution and a yield limit of rock matrix. The rate of dissolution is described by a rate law, but the mineral mass removal per unit volume is also a function of a variable internal specific surface area, which is in turn affected by the micro-cracking (treated as a plastic strain). The behavior of the rock matrix is modeled as rigid-plastic adding a chemical softening capacity to Cam-Clay model. Adopting the Extended Johnson's approximation of processes around the crack tip, the evolution of the stress field and deformation as a function of the chemically enhanced rock damage is modeled in a simplified way. In addition, chemical reactive transport is made dependent on plastic strain representing micro-cracking. Depending on mechanical and chemical boundary conditions, the area of enhanced chemical softening is near or somewhat away from the crack tip.In elasticity, chemo-mechanical effect is postulated via a chemical volumetric shrinkage strain proportional to mass removal variable, conceived analogously to thermal expansion. Two versions are considered: of constant coefficient of shrinkage and a variable one, coupled to deviatoric strain. Airy Potential approach used for linear elasticity is extended considering an extra term, which is uncoupled or coupled to strain. The later case requires iterations with solution of reactive transport equation. A decrease of stress intensity factor with time of reaction is well reproduced.

  12. An Application of a New Electromagnetic Sensor to Real-Time Monitoring of Fatigue Crack Growth in Thin Metal Plates

    NASA Technical Reports Server (NTRS)

    Namkung, M.; Fulton, J. P.; Wincheski, B.; Clendenin, C. G.

    1993-01-01

    A major part of fracture mechanics is concerned with studying the initiation and propagation of fatigue cracks. This typically requires constant monitoring of crack growth during fatigue cycles which necessitates automation of the whole process. If the rate of crack growth can be determined the experimenter can vary externally controlled parameters such as load level, load cycle frequency and so on. Hence, knowledge of the precise location of the crack tip at any given time is very valuable. One technique currently available for measuring fatigue crack length is the DC potential drop method. The method, however, may be inaccurate if the direction of crack growth deviates considerably from what was assumed initially or the curvature of the crack becomes significant. Another approach is to digitize an optical image of the test specimen surface and then apply a pattern recognition technique to locate the crack tip, but this method is still under development. The present work is an initial study on applying eddy current-type probes to monitoring fatigue crack growth. The performance of two types of electromagnetic probes, a conventional eddy current probe and a newly developed self-nulling probe, was evaluated for the detection characteristics at and near the tips of fatigue cracks. The scan results show that the latter probe provides a very well defined local maximum in its output in the crack tip region suggesting the definite possibility of precisely locating the tip, while the former provides a somewhat ambiguous distribution of the sensor output in the same region. The paper is organized as follows: We start by reviewing the design and performance characteristics of the self-nulling probe and then describe the scan results which demonstrate the basic properties of the self-nulling probe. Next, we provide a brief description of the software developed for tracing a simulated crack and give a brief discussion of the main results of the test. The final section summarizes the major accomplishments of the present work and the elements of the future R&D needs.

  13. Fracture Anisotropy and Toughness in the Mancos Shale: Implications for crack-growth geometry

    NASA Astrophysics Data System (ADS)

    Chandler, M. R.; Meredith, P. G.; Brantut, N.; Crawford, B. R.

    2013-12-01

    The hydraulic fracturing of gas-shales has drawn attention to the fundamental fracture properties of shales. Fracture propagation is dependent on a combination of the in-situ stress field, the fracturing fluid and pressure, and the mechanical properties of the shale. However, shales are strongly anisotropic, and there is a general paucity of available experimental data on the anisotropic mechanical properties of shales in the scientific literature. The mode-I stress intensity factor, KI, quantifies the concentration of stress at crack tips. The Fracture Toughness of a linear elastic material is then defined as the critical value of this stress intensity factor; KIc, beyond which rapid catastrophic crack growth occurs. However, shales display significant non-linearity, which produces hysteresis during experimental cyclic loading. This allows for the calculation of a ductility coefficient using the residual displacement after successive loading cycles. From this coefficient, a ductility corrected Fracture Toughness value, KIcc can be determined. In the Mancos Shale this ductility correction can be as large as 60%, giving a Divider orientation KIcc value of 0.8 MPa.m0.5. Tensile strength and mode-I Fracture Toughness have been experimentally determined for the Mancos Shale using the Brazil Disk and Short-Rod methodologies respectively. The three principal fracture orientations; Arrester, Divider and Short-Transverse were all analysed. A significant anisotropy is observed in the tensile strength, with the Arrester value being 1.5 times higher than the Short-Transverse value. Even larger anisotropy is observed in the Fracture Toughness, with KIcc in the Divider and Arrester orientations being around 1.8 times that in the Short-Transverse orientation. For both tensile strength and fracture toughness, the Short-Transverse orientation, where the fracture propagates in the bedding plane in a direction parallel to the bedding, is found to have significantly lower values than the other two orientations. This anisotropy and variability in fracture properties is seen to cause deviation of the fracture direction during experiments on Arrester and Short-Transverse oriented samples, and can be expected to influence the geometry of propagating fractures. A comparison between the anisotropic tensile strength of the material and the crack-tip stress field in a transversely isotropic material has been used to develop a crack-tip deflection criterion in terms of the elasticity theory of cracks. This criterion suggests that a small perturbation in the incident angle of a mode-I crack propagating perpendicular to the bedding is likely to lead to a substantial deflection towards bedding-parallel (Short-Transverse) propagation. Further experimental work is currently underway on anisotropic Fracture Toughness measurements at elevated pressures and temperatures, simulating conditions in Shale Gas reservoirs at depths up to around 4km.

  14. Consequences of Fluid Lag in Three-Dimensional Hydraulic Fractures

    NASA Astrophysics Data System (ADS)

    Advani (Deceased), S. H.; Lee, T. S.; Dean, R. H.; Pak, C. K.; Avasthi, J. M.

    1997-04-01

    Research investigations on three-dimensional (3-D) rectangular hydraulic fracture configurations with varying degrees of fluid lag are reported. This paper demonstrates that a 3-D fracture model coupled with fluid lag (a small region of reduced pressure) at the fracture tip can predict very large excess pressure measurements for hydraulic fracture processes. Predictions of fracture propagation based on critical stress intensity factors are extremely sensitive to the pressure profile at the tip of a propagating fracture. This strong sensitivity to the pressure profile at the tip of a hydraulic fracture is more strongly pronounced in 3-D models versus 2-D models because 3-D fractures are clamped at the top and bottom, and pressures in the 3-D fractures that are far removed from the fracture tip have little effect on the stress intensity factor at the fracture tip. This rationale for the excess pressure mechanism is in marked contrast to the crack tip process damage zone assumptions and attendant high rock fracture toughness value hypotheses advanced in the literature. A comparison with field data is presented to illustrate the proposed fracture fluid pressure sensitivity phenomenon. This paper does not attempt to calculate the length of the fluid lag region in a propagating fracture but instead attempts to show that the pressure profile at the tip of the propagating fracture plays a major role in fracture propagation, and this role is magnified in 3-D models. Int. J. Numer. Anal. Meth. Geomech., vol. 21, 229-240 (1997).

  15. Mode I and mixed I/III crack initiation and propagation behavior of V-4Cr-4Ti alloy at 25{degrees}C

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, H.X.; Kurtz, R.J.; Jones, R.H.

    1997-04-01

    The mode I and mixed-mode I/III fracture behavior of the production-scale heat (No. 832665) of V-4Cr-4Ti has been investigated at 25{degrees}C using compact tension (CT) specimens for a mode I crack and modified CT specimens for a mixed-mode I/III crack. The mode III to mode I load ratio was 0.47. Test specimens were vacuum annealed at 1000{degrees}C for 1 h after final machining. Both mode I and mixed-mode I/III specimens were fatigue cracked prior to J-integral testing. It was noticed that the mixed-mode I/III crack angle decreased from an initial 25 degrees to approximately 23 degrees due to crack planemore » rotation during fatigue cracking. No crack plane rotation occurred in the mode I specimen. The crack initiation and propagation behavior was evaluated by generating J-R curves. Due to the high ductility of this alloy and the limited specimen thickness (6.35 mm), plane strain requirements were not met so valid critical J-integral values were not obtained. However, it was found that the crack initiation and propagation behavior was significantly different between the mode I and the mixed-mode I/III specimens. In the mode I specimen crack initiation did not occur, only extensive crack tip blunting due to plastic deformation. During J-integral testing the mixed-mode crack rotated to an increased crack angle (in contrast to fatigue precracking) by crack blunting. When the crack initiated, the crack angle was about 30 degrees. After crack initiation the crack plane remained at 30 degrees until the test was completed. Mixed-mode crack initiation was difficult, but propagation was easy. The fracture surface of the mixed-mode specimen was characterized by microvoid coalescence.« less

  16. The interaction of fatigue cracks with a residual stress field using thermoelastic stress analysis and synchrotron X-ray diffraction experiments

    PubMed Central

    Amjad, Khurram; Asquith, David; Sebastian, Christopher M.; Wang, Wei-Chung

    2017-01-01

    This article presents an experimental study on the fatigue behaviour of cracks emanating from cold-expanded holes utilizing thermoelastic stress analysis (TSA) and synchrotron X-ray diffraction (SXRD) techniques with the aim of resolving the long-standing ambiguity in the literature regarding potential relaxation, or modification, of beneficial compressive residual stresses as a result of fatigue crack propagation. The crack growth rates are found to be substantially lower as the crack tip moved through the residual stress zone induced by cold expansion. The TSA results demonstrated that the crack tip plastic zones were reduced in size by the presence of the residual compressive stresses induced by cold expansion. The crack tip plastic zones were found to be insignificant in size in comparison to the residual stress zone resulting from cold expansion, which implied that they were unlikely to have had a notable impact on the surrounding residual stresses induced by cold expansion. The residual stress distributions measured along the direction of crack growth, using SXRD, showed no signs of any significant stress relaxation or redistribution, which validates the conclusions drawn from the TSA data. Fractographic analysis qualitatively confirmed the influence on crack initiation of the residual stresses induced by the cold expansion. It was found that the application of single compressive overload caused a relaxation, or reduction in the residual stresses, which has wider implications for improving the fatigue life. PMID:29291095

  17. How cracks are hot and cool: a burning issue for paper.

    PubMed

    Toussaint, Renaud; Lengliné, Olivier; Santucci, Stéphane; Vincent-Dospital, Tom; Naert-Guillot, Muriel; Måløy, Knut Jørgen

    2016-07-07

    Material failure is accompanied by important heat exchange, with extremely high temperature - thousands of degrees - reached at crack tips. Such a temperature may subsequently alter the mechanical properties of stressed solids, and finally facilitate their rupture. Thermal runaway weakening processes could indeed explain stick-slip motions and even be responsible for deep earthquakes. Therefore, to better understand catastrophic rupture events, it appears crucial to establish an accurate energy budget of fracture propagation from a clear measure of various energy dissipation sources. In this work, combining analytical calculations and numerical simulations, we directly relate the temperature field around a moving crack tip to the part α of mechanical energy converted into heat. By monitoring the slow crack growth in paper sheets using an infrared camera, we measure a significant fraction α = 12% ± 4%. Besides, we show that (self-generated) heat accumulation could weaken our samples by microfiber combustion, and lead to a fast crack/dynamic failure/regime.

  18. Effects of microstructure banding on hydrogen assisted fatigue crack growth in X65 pipeline steels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ronevich, Joseph A.; Somerday, Brian P.; San Marchi, Chris W.

    Banded ferrite-pearlite X65 pipeline steel was tested in high pressure hydrogen gas to evaluate the effects of oriented pearlite on hydrogen assisted fatigue crack growth. Test specimens were oriented in the steel pipe such that cracks propagated either parallel or perpendicular to the banded pearlite. The ferrite-pearlite microstructure exhibited orientation dependent behavior in which fatigue crack growth rates were significantly lower for cracks oriented perpendicular to the banded pearlite compared to cracks oriented parallel to the bands. Thus the reduction of hydrogen assisted fatigue crack growth across the banded pearlite is attributed to a combination of crack-tip branching and impededmore » hydrogen diffusion across the banded pearlite.« less

  19. Effects of microstructure banding on hydrogen assisted fatigue crack growth in X65 pipeline steels

    DOE PAGES

    Ronevich, Joseph A.; Somerday, Brian P.; San Marchi, Chris W.

    2015-09-10

    Banded ferrite-pearlite X65 pipeline steel was tested in high pressure hydrogen gas to evaluate the effects of oriented pearlite on hydrogen assisted fatigue crack growth. Test specimens were oriented in the steel pipe such that cracks propagated either parallel or perpendicular to the banded pearlite. The ferrite-pearlite microstructure exhibited orientation dependent behavior in which fatigue crack growth rates were significantly lower for cracks oriented perpendicular to the banded pearlite compared to cracks oriented parallel to the bands. Thus the reduction of hydrogen assisted fatigue crack growth across the banded pearlite is attributed to a combination of crack-tip branching and impededmore » hydrogen diffusion across the banded pearlite.« less

  20. Elevated temperature crack growth

    NASA Technical Reports Server (NTRS)

    Malik, S. N.; Vanstone, R. H.; Kim, K. S.; Laflen, J. H.

    1986-01-01

    It is necessary to relate the processes that control crack growth in the immediate vicinity of the crack tip to parameters that can be calculated from remote quantities, such as forces, stresses, or displacements. The most likely parameters appear to be certain path-independent (PI) integrals, several of which have already been proposed for application to high temperature inelastic problems. The ability of currently available PI-integrals to correlate fatigue crack propagation under conditions that simulate the engine combustor liner environment was determined. The utility of advanced fracture mechanics measurements will also be evaluated and determined during the course of the program.

  1. Characterization of Cracking and Crack Growth Properties of the C5A Aircraft Tie-Box Forging

    NASA Technical Reports Server (NTRS)

    Piascik, Robert S.; Smith, Stephen W.; Newman, John A.; Willard, Scott A.

    2003-01-01

    Detailed destructive examinations were conducted to characterize the integrity and material properties of two aluminum alloy (7075-T6) horizontal stabilizer tie box forgings removed.from US. Air Force C5A and C5B transport aircraft. The C5B tie box forging was,found to contain no evidence of cracking. Thirteen cracks were found in the CSA,forging. All but one of the cracks observed in the C5A component were located along the top cap region (one crack was located in the bottom cap region). The cracks in the C5A component initiated at fastener holes and propagated along a highly tunneled intergranular crack path. The tunneled crack growth configuration is a likelv result of surface compressive stress produced during peening of the .forging suijace. The tie box forging ,fatigue crack growth, fracture and stress corrosion cracking (SCC) properties were characterized. Reported herein are the results of laboratory air ,fatigue crack growth tests and 95% relative humidity SCC tests conducted using specimens machined from the C5A ,forging. SCC test results revealed that the C5A ,forging material was susceptible to intergranular environmental assisted cracking: the C5A forging material exhibited a SCC crack-tip stress-intensity factor threshold of less than 6 MPadn. Fracture toughness tests revealed that the C5A forging material exhibited a fracture toughness that was 25% less than the C5B forging. The C5A forging exhibited rapid laboratory air fatigue crack growth rates having a threshold crack-tip stress-intensity factor range of less than 0.8 MPa sup m. Detailed fractographic examinations revealed that the ,fatigue crack intergranular growth crack path was similar to the cracking observed in the C5A tie box forging. Because both fatigue crack propagation and SCC exhibit similar intergranular crack path behavior, the damage mechanism resulting in multi-site cracking of tie box forgings cannot be determined unless local cyclic stresses can be quantified.

  2. Instability in dynamic fracture

    NASA Astrophysics Data System (ADS)

    Fineberg, J.; Marder, M.

    1999-05-01

    The fracture of brittle amorphous materials is an especially challenging problem, because the way a large object shatters is intimately tied to details of cohesion at microscopic scales. This subject has been plagued by conceptual puzzles, and to make matters worse, experiments seemed to contradict the most firmly established theories. In this review, we will show that the theory and experiments fit within a coherent picture where dynamic instabilities of a crack tip play a crucial role. To accomplish this task, we first summarize the central results of linear elastic dynamic fracture mechanics, an elegant and powerful description of crack motion from the continuum perspective. We point out that this theory is unable to make predictions without additional input, information that must come either from experiment, or from other types of theories. We then proceed to discuss some of the most important experimental observations, and the methods that were used to obtain the them. Once the flux of energy to a crack tip passes a critical value, the crack becomes unstable, and it propagates in increasingly complicated ways. As a result, the crack cannot travel as quickly as theory had supposed, fracture surfaces become rough, it begins to branch and radiate sound, and the energy cost for crack motion increases considerably. All these phenomena are perfectly consistent with the continuum theory, but are not described by it. Therefore, we close the review with an account of theoretical and numerical work that attempts to explain the instabilities. Currently, the experimental understanding of crack tip instabilities in brittle amorphous materials is fairly detailed. We also have a detailed theoretical understanding of crack tip instabilities in crystals, reproducing qualitatively many features of the experiments, while numerical work is beginning to make the missing connections between experiment and theory.

  3. Fracture analysis for a penny-shaped crack problem of a superconducting cylinder in a parallel magnetic field

    NASA Astrophysics Data System (ADS)

    Gao, S. W.; Feng, W. J.; Fang, X. Q.; Zhang, G. L.

    2014-11-01

    In this work, the penny-shaped crack problem is investigated for an infinite long superconducting cylinder under electromagnetic forces. The distributions of magnetic flux density in the superconducting cylinder are obtained analytically for both the zero-field cooling (ZFC) and the field cooling (FC) activation processes, where the magnetically impermeable crack surface condition and the Bean model outside the crack region are adopted. Based on the finite element method (FEM), the stress intensity factor (SIF) and energy release rate (ERR) at the crack tips in the process of field descent are further numerically calculated. Numerical results obtained show that according to the maximal energy release rate criterion, the FC process is generally easier to enhance crack initiation and propagation than the ZFC activation process. On the other hand, for the FC activation process, the larger the maximal applied magnetic field, more likely the crack propagates. Additionally, crack size has important and slightly different effects on the crack extension forces for the ZFC and FC cases. Thus, all of the activation processes, the applied field and the diameter of the penny-shaped crack have significant effects on the intensity analysis and design of superconducting materials.

  4. Study of fatigue crack propagation in Ti-1Al-1Mn based on the calculation of cold work evolution

    NASA Astrophysics Data System (ADS)

    Plekhov, O. A.; Kostina, A. A.

    2017-05-01

    The work proposes a numerical method for lifetime assessment for metallic materials based on consideration of energy balance at crack tip. This method is based on the evaluation of the stored energy value per loading cycle. To calculate the stored and dissipated parts of deformation energy an elasto-plastic phenomenological model of energy balance in metals under the deformation and failure processes was proposed. The key point of the model is strain-type internal variable describing the stored energy process. This parameter is introduced based of the statistical description of defect evolution in metals as a second-order tensor and has a meaning of an additional strain due to the initiation and growth of the defects. The fatigue crack rate was calculated in a framework of a stationary crack approach (several loading cycles for every crack length was considered to estimate the energy balance at crack tip). The application of the proposed algorithm is illustrated by the calculation of the lifetime of the Ti-1Al-1Mn compact tension specimen under cyclic loading.

  5. Fatigue 󈨛. Papers presented at the International Conference on Fatigue and Fatigue Threshold (3rd) Held in Charlottesville, Virginia on June 28-July 3, 1987. Volume 3.

    DTIC Science & Technology

    1987-10-15

    cracks and loss of fiber-matrix bond, leadin, to nonuniform loading (tensile overload) of composite structure. Figures 13 through 15 show the micro...propagation within the matrix, and alon- the interface, leading to a nonuniform load transfer from matrix to fibers, and causing tensile overload failure...long cracks, were attributed to high cyclic strains at crack tips within grains of maximum crystallographic orientation. Ma and Laire (4) studying the

  6. Environmental fatigue of an Al-Li-Cu alloy. Part 1: Intrinsic crack propagation kinetics in hydrogenous environments

    NASA Technical Reports Server (NTRS)

    Piascik, Robert S.; Gangloff, Richard P.

    1991-01-01

    Deleterious environmental effects on steady-state, intrinsic fatigue crack propagation (FCP) rates (da/dN) in peak aged Al-Li-Cu alloy 2090 are established by electrical potential monitoring of short cracks with programmed constant delta K and K(sub max) loading. The da/dN are equally unaffected by vacuum, purified helium, and oxygen but are accelerated in order of decreasing effectiveness by aqueous 1 percent NaCl with anodic polarization, pure water vapor, moist air, and NaCl with cathodic polarization. While da/dN depends on delta K(sup 4.0) for the inert gases, water vapor and chloride induced multiple power-laws, and a transition growth rate 'plateau'. Environmental effects are strongest at low delta K. Crack tip damage is ascribed to hydrogen embrittlement because of the following: (1) accelerated da/dN due to part-per-million levels of H2O without condensation; (2) impeded molecular flow model predictions of the measured water vapor pressure dependence of da/dN as affected by mean crack opening; (3) the lack of an effect of film-forming O2; (4) the likelihood for crack tip hydrogen production in NaCl, and (5) the environmental and delta K-process zone volume dependencies of the microscopic cracking modes. For NaCl, growth rates decrease with decreasing loading frequency, with the addition of passivating Li2CO3, and upon cathodic polarization. These variables increase crack surface film stability to reduce hydrogen entry efficiency. The hydrogen environmental FCP resistance of 2090 is similar to other 2000 series alloys and is better than 7075.

  7. Extreme Toughening of Soft Materials with Liquid Metal.

    PubMed

    Kazem, Navid; Bartlett, Michael D; Majidi, Carmel

    2018-05-01

    Soft and tough materials are critical for engineering applications in medical devices, stretchable and wearable electronics, and soft robotics. Toughness in synthetic materials is mostly accomplished by increasing energy dissipation near the crack tip with various energy dissipation techniques. However, bio-materials exhibit extreme toughness by combining multi-scale energy dissipation with the ability to deflect and blunt an advancing crack tip. Here, we demonstrate a synthetic materials architecture that also exhibits multi-modal toughening, whereby embedding a suspension of micron sized and highly deformable liquid metal (LM) droplets inside a soft elastomer, the fracture energy dramatically increases by up to 50x (from 250 ± 50 J m -2 to 11,900 ± 2600 J m -2 ) over an unfilled polymer. For some LM-embedded elastomer (LMEE) compositions, the toughness is measured to be 33,500 ± 4300 J m -2 , which far exceeds the highest value previously reported for a soft elastic material. This extreme toughening is achieved by (i) increasing energy dissipation, (ii) adaptive crack movement, and (iii) effective elimination of the crack tip. Such properties arise from the deformability of the LM inclusions during loading, providing a new mechanism to not only prevent crack initiation, but also resist the propagation of existing tears for ultra tough, soft materials. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Simulation and experiment for depth sizing of cracks in anchor bolts by ultrasonic phased array technology

    NASA Astrophysics Data System (ADS)

    Lin, Shan

    2018-04-01

    There have been lots of reports about the occurrence of cracks in bolts in aging nuclear and thermal power plants. Sizing of such cracks is crucial for assessing the integrity of bolts. Currently, hammering and visual tests are used to detect cracks in bolts. However, they are not applicable for sizing cracks. Although the tip diffraction method is well known as a crack sizing technique, reflection echoes from threads make it difficult to apply this technique to bolts. This paper addresses a method for depth sizing of cracks in bolts by means of ultrasonic phased array technology. Numerical results of wave propagation in bolts by the finite element method (FEM) shows that a peak associated within the vicinity of a crack tip can be observed in the curve of echo intensity versus refraction angle for deep cracks. The refraction angle with respect to this peak decreases as crack depth increases. Such numerical results are verified by experiments on bolt specimens that have electrical discharge machining notches or fatigue cracks with different depths. In the experiment, a 10-MHz linear array probe is used. Depth of cracks in bolts using the refraction angle associated with the peak is determined and compared to actual depths. The comparison shows that accurately determining a crack depth from the inspection results is possible.

  9. In-situ deformation studies of an aluminum metal-matrix composite in a scanning electron microscope

    NASA Technical Reports Server (NTRS)

    Manoharan, M.; Lewandowski, J. J.

    1989-01-01

    Tensile specimens made of a metal-matrix composite (cast and extruded aluminum alloy-based matrix reinforced with Al2O3 particulate) were tested in situ in a scanning electron microscope equipped with a deformation stage, to directly monitor the crack propagation phenomenon. The in situ SEM observations revealed the presence of microcracks both ahead of and near the crack-tip region. The microcracks were primarily associated with cracks in the alumina particles. The results suggest that a region of intense deformation exists ahead of the crack and corresponds to the region of microcracking. As the crack progresses, a region of plastically deformed material and associated microcracks remains in the wake of the crack.

  10. Fatigue crack growth under general-yielding cyclic-loading

    NASA Technical Reports Server (NTRS)

    Minzhong, Z.; Liu, H. W.

    1986-01-01

    In low cycle fatigue, cracks are initiated and propagated under general yielding cyclic loading. For general yielding cyclic loading, Dowling and Begley have shown that fatigue crack growth rate correlates well with the measured delta J. The correlation of da/dN with delta J was also studied by a number of other investigators. However, none of thse studies have correlated da/dN with delta J calculated specifically for the test specimens. Solomon measured fatigue crack growth in specimens in general yielding cyclic loading. The crack tips fields for Solomon's specimens are calculated using the finite element method and the J values of Solomon's tests are evaluated. The measured crack growth rate in Solomon's specimens correlates very well with the calculated delta J.

  11. Oxidation products of INCONEL alloys 600 and 690 in pressurized water reactor environments and their role in intergranular stress corrosion cracking

    NASA Astrophysics Data System (ADS)

    Ferguson, J. B.; Lopez, Hugo F.

    2006-08-01

    In this work, thermodynamic arguments for the stability of Ni and Cr compounds developed under pressurized water reactor environments ( P_{H_2 O} and P_{H_2 } ) were experimentally tested. A mechanism is proposed to explain crack initiation and propagation alloy 600 along the grain boundaries, where Cr2O3 has formed from the leaching of Cr from the matrix, leaving behind a porous Ni-rich region. The mechanism is based on the thermodynamic potential for the transformation of a protective NiO surface layer into an amorphous nonprotective Ni(OH)2 gel. This gel would also form along the grain boundaries and when hydrogenated steam reaches the porous Ni-rich regions. Crack initiation is then favored by tensile stressing of the grain boundary regions, which can easily rupture the gelatinous film. The leaching of matrix Cr to form nonprotective CrOOH gel at the crack tip followed by the exposure of fresh porous Ni to the environment could explain crack propagation in INCONEL alloy 600. The proposed crack initiation mechanism is not expected to occur in alloy 690 where a protective Cr2O3 film covers the entire metal surface. However, crack propagation along the grain boundaries in alloy 600 and precracked alloy 690 is expected to be active as hydroxide-forming reactions weaken the boundaries.

  12. The effect of an East Pacific Rise offset on the formation of secondary cracks ahead of the Cocos-Nazca Rift at the Galapagos Triple Junction

    NASA Astrophysics Data System (ADS)

    Smith, D. K.; Montesi, L. G.; Schouten, H.; Zhu, W.

    2011-12-01

    A succession of short-lived, E-W trending cracks at the Galapagos Triple Junction north and south of the Cocos-Nazca (C-N) Rift, has been explained by a simple crack interaction model. The locations of where the cracks initiate are controlled by tensile stresses generated at the East Pacific Rise (EPR) by two interacting cracks: One representing the north-south trending EPR, and the other the large, westward propagating C-N Rift, whose tip is separated from the EPR by a distance D. The model predicts symmetric cracking at the EPR north and south of the C-N Rift tip. Symmetry in the distribution of cracks north and south of the C-N Rift is observed and especially remarkable between 2.5 and 1.5 Ma when the rapid jumping of cracks toward the C-N Rift appears synchronous. The rapid jumping can be explained by decreasing D, which means that the tip of the C-N Rift was moving closer to the EPR. Symmetry of cracking breaks down at 1.5 Ma, however, with the establishment of the Dietz Deep Rift, the southern boundary of the Galapagos microplate. Symmetry of cracking also breaks down on older crust to the east between about 100 35'W and 100 45'W (about 2.6 Ma) where a rapid jumping of cracks toward the C-N Rift is observed in the south cracking region. There is no evidence of similar rapid jumping in the north cracking region. It could be simply that the response to changing the value of D is not always as predicted. It could also be that the shape of the EPR has not always been symmetric about the C-N Rift, as assumed in the model. Currently, an overlapping spreading center with a 15 km east-west offset between the limbs of the EPR has formed at 1 50'N. We assess the importance of the geometry of the EPR on the crack interaction model. The model has been modified to include a ridge offset similar to what is observed today. We find that the region of stress enhancement at the EPR (where cracks initiate) is subdued south of the C-N Rift tip because of the EPR offset. It is possible, therefore, that the asymmetry in cracking observed since about 1.5 Ma may be explained in part by the presence of a ridge offset south of the C-N Rift tip.

  13. Modeling Near-Crack-Tip Plasticity from Nano- to Micro-Scales

    NASA Technical Reports Server (NTRS)

    Glaessgen, Edward H.; Saether, Erik; Hochhalter, Jake D.; Yamakov, Vesselin I.

    2010-01-01

    Several efforts that are aimed at understanding the plastic deformation mechanisms related to crack propagation at the nano-, meso- and micro-length scales including atomistic simulation, discrete dislocation plasticity, strain gradient plasticity and crystal plasticity are discussed. The paper focuses on discussion of newly developed methodologies and their application to understanding damage processes in aluminum and its alloys. Examination of plastic mechanisms as a function of increasing length scale illustrates increasingly complex phenomena governing plasticity

  14. How cracks are hot and cool: a burning issue for this paper

    NASA Astrophysics Data System (ADS)

    Toussaint, Renaud; Santucci, Stéphane; Lengliné, Olivier; Maloy, Knut Jorgen; Vincent-Dospital, Tom; Naert-Giuillot, Muriel

    2017-04-01

    Material failure is accompanied by important heat exchange, with extremely high temperature - thousands of degrees - reached at crack tips. Such temperature may subsequently alter the mechanical properties of stressed solids, and finally facilitate their rupture. Thermal runaway weakening processes could indeed explain stick-slip motions and even be responsible for deep earthquakes. Therefore, to better understand and eventually prevent catastrophic rupture events, it appears crucial to establish an accurate energy budget of fracture propagation from a clear measure of the various energy dissipation sources. In this work, combining analytical calculations and numerical simulations, we directly relate the temperature field around a moving crack tip to the part α of mechanical energy converted into heat. Monitoring the slow crack growth in paper sheets with an infrared camera, we measure a significant fraction α = 12±4%. Besides, we show that (self-generated) heat accumulation could weaken our samples with microfibers combustion, and lead to a fast crack/dynamic failure/ regime. Reference: Toussaint, R., Lengline, O., Santucci, S., Vincent-Dospital, T., Naert-Guillot, M. and Maloy, K.J., How cracks are hot and cool: a burning issue for paper (2016), Soft Matter (12), 5563-5571, DOI: 10.1039/C6SM00615A

  15. Crack propagation and coalescence due to dual non-penetrating surface flaws and their effect on the strength of rock-like material

    NASA Astrophysics Data System (ADS)

    Xu, Jun; Zheng, Zheyuan; Xiao, Xiaochun; Li, Zhaoxia

    2018-06-01

    Non-penetrating surface flaws play a key role in the fracture process of rock-like material, and could cause localized collapse and even failure of the materials. Until now, the mechanism and the effect of surface crack propagation have remained unclear. In this paper, compression tests on gypsum (a soft rock material) are conducted to investigate crack propagation and coalescence due to non-penetrating surface flaws and their effect on the material strength. Specimens are tested under dual pre-existing surface flaws with various combinations of depth and spacing. The results show that when the pre-existing flaws are non-penetrating, the d/t ratio (flaw depth ratio, d is the pre-existing flaw cutting depth and t is the specimen thickness) and the spacing (the distance between the two flaw internal tips) have a strong influence on surface crack patterns and specimen strength. Few cracks emanate from the pre-existing flaws when the flaw depth ratio is equal to 1/3, and more cracks occur with the increase of the flaw depth ratio. When the pre-existing flaw penetrates completely through the specimen, the spacing has a small effect on the specimen strength. A larger flaw depth ratio could advance the occurrence of the peak load (PL) and result in a smaller specimen residual strength. The failure process of the specimen is divided into several stages featured by a stepped decline of the load value after PL, which is closely related to the initiation and propagation of secondary cracks. In addition, the spalling (failure of a portion of the surface caused by coalescence of cracks) can be regarded as indicating the failure of the specimen, and two possible types of spalling formation are briefly discussed.

  16. On the response of dynamic cracks to increasing overload

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gumbsch, P.

    1996-12-01

    One of the most interesting questions in the dynamics of brittle fracture is how a running brittle crack responds to an overload, i.e., to a mechanical energy release rate larger than that due to the increase in surface energy of the two cleavage surfaces. To address this question, dynamically running cracks in different crystal lattices are modelled atomistically under the condition of constant energy release rate. Stable crack propagation as well as the onset of crack tip instabilities are studied. It will be shown that small overloads lead to stable crack propagation with steady state velocities which quickly reach themore » terminal velocity of about 0.4 of the Rayleigh wave speed upon increasing the overload. Further increasing the overload does not change the steady state velocity but significantly changes the energy dissipation process towards shock wave emission at the breaking of every single atomic bond. Eventually the perfectly brittle crack becomes unstable, which then leads to dislocation generation and to the production of cleavage steps. The onset of the instability as well as the terminal velocity are related to the non-linearity of the interatomic interaction.« less

  17. Micro-indentation fracture behavior of human enamel.

    PubMed

    Padmanabhan, Sanosh Kunjalukkal; Balakrishnan, Avinash; Chu, Min-Cheol; Kim, Taik Nam; Cho, Seong Jai

    2010-01-01

    The purpose of this study was to determine the crack resistance behavior (K(R)) of human enamel in relation to its microstructure. Human molar teeth were precision cut, polished and tested using Vickers micro-indentation at different loads ranging from 0.98 to 9.8 N. Five indentation load levels were considered, 20 indentation cracks for each load level were introduced on the surface of the test specimen (10 indentations per tooth) and their variability was evaluated using Weibull statistics and an empirical model. Scanning electron microscopy (SEM) and atomic force microscopy (AFM) were used to analyze the crack morphology and propagation mechanisms involved. The results showed that enamel exhibited increasing cracking resistance (K(R)) with increasing load. It was found that the crack propagation mainly depended on the location and the microstructure it encountered. SEM showed the formation of crack bridges and crack deflection near the indentation crack tip. The crack mode was of Palmqvist type even at larger loads of 9.8 N. This was mainly attributed to the large process zone created by the interwoven lamellar rod like microstructure exhibited by the enamel surface. This study shows that there are still considerable prospects for improving dental ceramics and for mimicking the enamel structure developed by nature.

  18. Modeling time-dependent corrosion fatigue crack propagation in 7000 series aluminum alloys

    NASA Technical Reports Server (NTRS)

    Mason, Mark E.; Gangloff, Richard P.

    1994-01-01

    Stress corrosion cracking and corrosion fatigue experiments were conducted with the susceptible S-L orientation of AA7075-T651, immersed in acidified and inhibited NaCl solution, to provide a basis for incorporating environmental effects into fatigue crack propagation life prediction codes such as NASA FLAGRO. This environment enhances da/dN by five to ten-fold compared to fatigue in moist air. Time-based crack growth rates from quasi-static load experiments are an order of magnitude too small for accurate linear superposition prediction of da/dN for loading frequencies above 0.001 Hz. Alternate methods of establishing da/dt, based on rising-load or ripple-load-enhanced crack tip strain rate, do not increase da/dt and do not improve linear superposition. Corrosion fatigue is characterized by two regimes of frequency dependence; da/dN is proportional to f(exp -1) below 0.001 Hz and to F(exp 0) to F(exp -0.1) for higher frequencies. Da/dN increases mildly both with increasing hold-time at K(sub max) and with increasing rise-time for a range of loading waveforms. The mild time-dependence is due to cycle-time-dependent corrosion fatigue growth. This behavior is identical for S-L nd L-T crack orientations. The frequency response of environmental fatigue in several 7000 series alloys is variable and depends on undefined compositional or microstructural variables. Speculative explanations are based on the effect of Mg on occluded crack chemistry and embritting hydrogen uptake, or on variable hydrogen diffusion in the crack tip process zone. Cracking in the 7075/NaCl system is adequately described for life prediction by linear superposition for prolonged load-cycle periods, and by a time-dependent upper bound relationship between da/dN and delta K for moderate loading times.

  19. Application of Self Nulling Eddy Current Probe Technique to the Detection of Fatigue Crack Initiation and Control of Test Procedures

    NASA Technical Reports Server (NTRS)

    Namkung, M.; Nath, S.; Wincheski, B.; Fulton, J. P.

    1994-01-01

    A major part of fracture mechanics is concerned with studying the initiation and propagation of fatigue cracks. This typically requires constant monitoring of crack growth during fatigue cycles and the knowledge of the precise location of the crack tip at any given time. One technique currently available for measuring fatigue crack length is the Potential Drop method. The method, however, may be inaccurate if the direction of crack growth deviates considerably from what was assumed initially or the curvature of the crack becomes significant. Another popular approach is to optically view the crack using a high magnification microscope, but this entails a person constantly monitoring it. The present proposed technique uses an automated scheme, in order to eliminate the need for a person to constantly monitor the experiment. Another technique under development elsewhere is to digitize an optical image of the test specimen surface and then apply a pattern recognition algorithm to locate the crack tip. A previous publication showed that the self nulling eddy current probe successfully tracked a simulated crack in an aluminum sample. This was the impetus to develop an online real time crack monitoring system. An automated system has been developed which includes a two axis scanner mounted on the tensile testing machine, the probe and its instrumentation and a personal computer (PC) to communicate and control all the parameters. The system software controls the testing parameters as well as monitoring the fatigue crack as it propagates. This paper will discuss the experimental setup in detail and demonstrate its capabilities. A three dimensional finite element model is utilized to model the magnetic field distribution due to the probe and how the probe voltage changes as it scans the crack. Experimental data of the probe for different samples under zero load, static load and high cycle fatigue load will be discussed. The final section summarizes the major accomplishments of the present work, the elements of the future R&D needs and the advantages and disadvantages of using this system in the laboratory and field.

  20. Local-global analysis of crack growth in continuously reinfoced ceramic matrix composites

    NASA Technical Reports Server (NTRS)

    Ballarini, Roberto; Ahmed, Shamim

    1989-01-01

    This paper describes the development of a mathematical model for predicting the strength and micromechanical failure characteristics of continuously reinforced ceramic matrix composites. The local-global analysis models the vicinity of a propagating crack tip as a local heterogeneous region (LHR) consisting of spring-like representation of the matrix, fibers and interfaces. Parametric studies are conducted to investigate the effects of LHR size, component properties, and interface conditions on the strength and sequence of the failure processes in the unidirectional composite system.

  1. Research on fatigue cracking growth parameters in asphaltic mixtures using computed tomography

    NASA Astrophysics Data System (ADS)

    Braz, D.; Lopes, R. T.; Motta, L. M. G.

    2004-01-01

    Distress of asphalt concrete pavement due to repeated bending from traffic loads has been a well-recognized problem in Brazil. If it is assumed that fatigue cracking growth is governed by the conditions at the crack tip, and that the crack tip conditions can be characterized by the stress intensity factor, then fatigue cracking growth as a function of stress intensity range Δ K can be determined. Computed tomography technique is used to detect crack evolution in asphaltic mixtures which were submitted to fatigue tests. Fatigue tests under conditions of controlled stress were carried out using diametral compression equipment and repeat loading. The aim of this work is imaging several specimens at different stages of the fatigue tests. In preliminary studies it was noted that the trajectory of a crack was influenced by the existence of voids in the originally unloaded specimens. Cracks would first be observed in the central region of a specimen, propagating in the direction of the extremities. Analyzing the graphics, that represent the fatigue cracking growth (d c/d N) as a function of stress intensity factor (Δ K), it is noticed that the curve has practically shown the same behavior for all specimens at the same level of the static tension rupture stress. The experimental values obtained for the constants A and n (of the Paris-Erdogan Law) present good agreement with the results obtained by Liang and Zhou.

  2. A study of spectrum fatigue crack propagation in two aluminum alloys. 1: Spectrum simplification

    NASA Technical Reports Server (NTRS)

    Telesman, J.; Antolovich, S. D.

    1985-01-01

    The fatigue crack propagation behavior of two commercial Al alloys was studied using spectrum loading conditions characteristics of those encountered at critical locations in high performance fighter aircraft. A tension dominated (TD) and tension compression (TC) spectrum were employed for each alloy. Using a mechanics-based analysis, it was suggested that negative loads could be eliminated for the TC spectrum for low to intermediate maximum stress intensities. The suggestion was verified by subsequent testing. Using fractographic evidence, it was suggested that a further similification in the spectra could be accomplished by eliminating low and intermediate peak load points resulting in near or below threshold maximum peak stress intensity values. It is concluded that load interactions become more important at higher stress intensities and more plasticity at the crack tip. These results suggest that a combined mechanics/fractographic mechanisms approach can be used to simplify other complex spectra.

  3. Tensile cracking of a brittle conformal coating on a rough substrate

    DOE PAGES

    Reedy, Jr., E. D.

    2016-04-07

    This note examines the effect of interfacial roughness on the initiation and growth of channel cracks in a brittle film. A conformal film with cusp-like surface flaws that replicate the substrate roughness is investigated. This type of surface flaw is relatively severe in the sense that stress diverges as the cusp-tip is approached (i.e., there is a power-law stress singularity). For the geometry and range of film properties considered, the analysis suggests that smoothing the substrate could substantially increase the film’s resistance to the formation of the through-the-thickness cracks that precede channel cracking. Furthermore, smoothing the substrate’s surface has amore » relatively modest effect on the film stress needed to propagate a channel crack.« less

  4. Time-Dependent Fatigue Crack Propagation Behavior of Two Solid-Solution-Strengthened Ni-Based Superalloys—INCONEL 617 and HAYNES 230

    NASA Astrophysics Data System (ADS)

    Ma, Longzhou; Roy, Shawoon K.; Hasan, Muhammad H.; Pal, Joydeep; Chatterjee, Sudin

    2012-02-01

    The fatigue crack propagation (FCP) as well as the sustained loading crack growth (SLCG) behavior of two solid-solution-strengthened Ni-based superalloys, INCONEL 617 (Special Metals Corporation Family of Companies) and HAYNES 230 (Haynes International, Inc., Kokomo, IN), were studied at increased temperatures in laboratory air under a constant stress-intensity-factor ( K) condition. The crack propagation tests were conducted using a baseline cyclic triangular waveform with a frequency of 1/3 Hz. Various hold times were imposed at the maximum load of a fatigue cycle to study the hold time effect. The results show that a linear elastic fracture mechanics (LEFM) parameter, stress intensity factor ( K), is sufficient to describe the FCP and SLCG behavior at the testing temperatures ranging from 873 K to 1073 K (600 °C to 800 °C). As observed in the precipitation-strengthened superalloys, both INCONEL 617 and HAYNES 230 exhibited the time-dependent FCP, steady SLCG behavior, and existence of a damage zone ahead of crack tip. A thermodynamic equation was adapted to correlate the SLCG rates to determine thermal activation energy. The fracture modes associated with crack propagation behavior were discussed, and the mechanism of time-dependent FCP as well as SLCG was identified. Compared with INCONEL 617, the lower crack propagation rates of HAYNES 230 under the time-dependent condition were ascribed to the different fracture mode and the presence of numerous W-rich M6C-type and Cr-rich M23C6-type carbides. Toward the end, a phenomenological model was employed to correlate the FCP rates at cycle/time-dependent FCP domain. All the results suggest that an environmental factor, the stress assisted grain boundary oxygen embrittlement (SAGBOE) mechanism, is mainly responsible for the accelerated time-dependent FCP rates of INCONEL 617 and HAYNES 230.

  5. The effect of cathodic polarization on the corrosion fatigue behavior of a precipitation hardened aluminum alloy

    NASA Astrophysics Data System (ADS)

    Smith, E. F.; Duquette, D. J.

    1986-02-01

    Fatigue experiments were conducted on polycrystalline and monocrystalline samples of a high purity Al, 5.5 wt pct Zn, 2.5 wt pct Mg, 1.5 wt pct Cu alloy in the peak-hardened heat treatment condition. These experiments were conducted in dry laboratory air and in 0.5 N NaCl solutions at the corrosion potential and at applied potentials cathodic to the corrosion potential. It has been shown that saline solutions severely reduce the fatigue resistance of the alloy, resulting in considerable amounts of intergranular crack initiation and propagation under freely corroding conditions for polycrystalline samples. Applied cathodic potentials resulted in still larger decreases in fatigue resistance and, for poly crystals, increases in the degree of transgranular crack initiation and propagation. Increasing amounts of intergranular cracking were observed when applied cyclic stresses were reduced (longer test times). The characteristics of cracking, combined with results obtained on tensile tests of deformed and hydrogen charged samples, suggest that environmental cracking of these alloys is associated with a form of hydrogen embrittlement of the process zones of growing cracks. Further, it is suggested that stress corrosion cracking and corrosion fatigue of these alloys occurs by essentially the same mechanism, but that the often observed transgranular cracking under cyclic loading conditions occurs due to enhanced hydrogen transport and/or concentrations associated with mobile dislocations at growing crack tips.

  6. Experimental and Numerical Studies on Development of Fracture Process Zone (FPZ) in Rocks under Cyclic and Static Loadings

    NASA Astrophysics Data System (ADS)

    Ghamgosar, M.; Erarslan, N.

    2016-03-01

    The development of fracture process zones (FPZ) in the Cracked Chevron Notched Brazilian Disc (CCNBD) monsonite and Brisbane tuff specimens was investigated to evaluate the mechanical behaviour of brittle rocks under static and various cyclic loadings. An FPZ is a region that involves different types of damage around the pre-existing and/or stress-induced crack tips in engineering materials. This highly damaged area includes micro- and meso-cracks, which emerge prior to the main fracture growth or extension and ultimately coalescence to macrofractures, leading to the failure. The experiments and numerical simulations were designed for this study to investigate the following features of FPZ in rocks: (1) ligament connections and (2) microcracking and its coalescence in FPZ. A Computed Tomography (CT) scan technique was also used to investigate the FPZ behaviour in selected rock specimens. The CT scan results showed that the fracturing velocity is entirely dependent on the appropriate amount of fracture energy absorbed in rock specimens due to the change of frequency and amplitudes of the dynamic loading. Extended Finite Element Method (XFEM) was used to compute the displacements, tensile stress distribution and plastic energy dissipation around the propagating crack tip in FPZ. One of the most important observations, the shape of FPZ and its extension around the crack tip, was made using numerical and experimental results, which supported the CT scan results. When the static rupture and the cyclic rupture were compared, the main differences are twofold: (1) the number of fragments produced is much greater under cyclic loading than under static loading, and (2) intergranular cracks are formed due to particle breakage under cyclic loading compared with smooth and bright cracks along cleavage planes under static loading.

  7. Micromechanisms of fatigue crack growth in polycarbonate polyurethane: Time dependent and hydration effects.

    PubMed

    Ford, Audrey C; Gramling, Hannah; Li, Samuel C; Sov, Jessica V; Srinivasan, Amrita; Pruitt, Lisa A

    2018-03-01

    Polycarbonate polyurethane has cartilage-like, hygroscopic, and elastomeric properties that make it an attractive material for orthopedic joint replacement application. However, little data exists on the cyclic loading and fracture behavior of polycarbonate polyurethane. This study investigates the mechanisms of fatigue crack growth in polycarbonate polyurethane with respect to time dependent effects and conditioning. We studied two commercially available polycarbonate polyurethanes, Bionate® 75D and 80A. Tension testing was performed on specimens at variable time points after being removed from hydration and variable strain rates. Fatigue crack propagation characterized three aspects of loading. Study 1 investigated the impact of continuous loading (24h/day) versus intermittent loading (8-10h/day) allowing for relaxation overnight. Study 2 evaluated the effect of frequency and study 3 examined the impact of hydration on the fatigue crack propagation in polycarbonate polyurethane. Samples loaded intermittently failed instantaneously and prematurely upon reloading while samples loaded continuously sustained longer stable cracks. Crack growth for samples tested at 2 and 5Hz was largely planar with little crack deflection. However, samples tested at 10Hz showed high degrees of crack tip deflection and multiple crack fronts. Crack growth in hydrated samples proceeded with much greater ductile crack mouth opening displacement than dry samples. An understanding of the failure mechanisms of this polymer is important to assess the long-term structural integrity of this material for use in load-bearing orthopedic implant applications. Copyright © 2018 Elsevier Ltd. All rights reserved.

  8. Fracture toughness of the nickel-alumina laminates by digital image-correlation technique

    NASA Astrophysics Data System (ADS)

    Mekky, Waleed

    The purpose of this work is to implement the digital image correlation technique (DIC) in composite laminate fracture testing. The latter involves measuring the crack opening displacement (COD) during stable crack propagation and characterizing the strain development in a constrained nickel layer under applied loading. The major challenge to measure the COD of alternated metal/ceramic layers is the elastic-mismatch effect. This leads to oscillating COD measurement. Smoothing the result with built-in modules of commercial software leads to a loss of data accuracy. A least-squares fitting routine for the data output gave acceptable COD profiles. The behavior of a single Ni ligament sandwiched between two Al2O3 layers was determined for two Ni thicknesses (0.125 and 0.25mm). Modeling of the behavior via a modified Bridgman approach for rectangular cross section samples, proved limited as different mechanisms are operating. Nevertheless, the behavior is however captured to a point, but the model underestimates the results vis a vis experimental ones. The fracture-resistance curves for Nickel/Alumina laminates were developed experimentally and modeled via LEFM using the weight function approach and utilizing single-ligament-, and COD-, data. The crack-tip toughness was found to increase with Ni layer thickness due to crack-tip-shielding. The crack-initiation-toughness was estimated from the stress field and the crack-opening-displacement of the main crack.

  9. Effect of CT Specimen Thickness on the Mechanical Characteristics at the Crack Tip of Stress Corrosion Cracking in Ni-based Alloys

    NASA Astrophysics Data System (ADS)

    Yinghao, Cui; He, Xue; Lingyan, Zhao

    2017-12-01

    It’s important to obtain accurate stress corrosion crack(SCC) growth rate for quantitative life prediction of components in nuclear power plants. However, the engineering practice shows that the crack tip constraint effect has a great influence on the mechanical properties and crack growth rate of SCC at crack tip. To study the influence of the specimen thickness on the crack tip mechanical properties of SCC, the stress, strain and C integral at creep crack tip are analyzed under different specimens thickness. Results show that the cracked specimen is less likely to crack due to effect of crack tip constraint. When the thickness ratio B/W is larger than 0.1, the crack tip constraint is almost ineffective. Value of C integral is the largest when B/W is 0.25. Then specimen thickness has little effect on the value of C integral. The effect of specimen thickness on the value of C integral is less significant at higher thickness ratio.

  10. Toughness-Dominated Regime of Hydraulic Fracturing in Cohesionless Materials

    NASA Astrophysics Data System (ADS)

    Germanovich, L. N.; Hurt, R. S.; Ayoub, J.; Norman, W. D.

    2011-12-01

    This work examines the mechanisms of hydraulic fracturing in cohesionless particulate materials with geotechnical, geological, and petroleum applications. For this purpose, experimental techniques have been developed, and used to quantify the initiation and propagation of hydraulic fractures in saturated particulate materials. The fracturing liquid is injected into particulate materials, which are practically cohesionless. The liquid flow is localized in thin self-propagating crack-like conduits. By analogy we call them 'cracks' or 'hydraulic fractures.' When a fracture propagates in a solid, new surfaces are created by breaking material bonds. Consequently, the material is in tension at the fracture tip. Because the particulate material is already 'fractured,' no new surface is created and no fracturing process per se is involved. Therefore, the conventional fracture mechanics principles cannot be directly applied. Based on the laboratory observations, performed on three particulate materials (Georgia Red Clay, silica flour, and fine sand, and their mixtures), this work offers physical concepts to explain the observed phenomena. The goal is to determine the controlling parameters of fracture behavior and to quantify their effects. An important conclusion of our work is that all parts of the cohesionless particulate material (including the tip zone of hydraulic fracture) are likely to be in compression. The compressive stress state is an important characteristic of hydraulic fracturing in particulate materials with low, or no, cohesion (such as were used in our experiments). At present, two kinematic mechanisms of fracture propagation, consistent with the compressive stress regime, can be offered. The first mechanism is based on shear bands propagating ahead of the tip of an open fracture. The second is based on the tensile strain ahead of the fracture tip and reduction of the effective stresses to zero within the leak-off zone. Scaling indicates that in our experiments, there is a high pressure gradient in the leak-off zone in the direction normal to the fracture. Fluid pressure does not decrease considerably along the fracture, however, due to the relatively wide fracture aperture. This suggests that hydraulically induced fractures in unconsolidated materials may be considered to be within the toughness-dominated regime of hydraulic fracturing. Our results indicate that the primary influence on peak or initiation pressure comes from the remote stresses. However, fracture morphology changes significantly with other chosen parameters (stress, flow rate, rheology and permeability). Additionally, an important characteristic feature of fractures in our experiments is the frequent bluntness of the fracture tip, which suggests that plastic deformation at the fracture tip is important. Modeling shows that large openings at the fracture tip correspond to relatively large 'effective' fracture (surface) energy, which can be orders of magnitude greater than for typical (solid) rocks.

  11. Compliance and stress intensity coefficients for short bar specimens with chevron notches

    NASA Technical Reports Server (NTRS)

    Munz, D.; Bubsey, R. T.; Srawley, J. E.

    1980-01-01

    For the determination of fracture toughness especially with brittle materials, a short bar specimen with rectangular cross section and chevron notch can be used. As the crack propagates from the tip of the triangular notch, the load increases to a maximum then decreases. To obtain the relation between the fracture toughness and maximum load, calculations of Srawley and Gross for specimens with a straight-through crack were applied to the specimens with chevron notches. For the specimens with a straight-through crack, an analytical expression was obtained. This expression was used for the calculation of the fracture toughness versus maximum load relation under the assumption that the change of the compliance with crack length for the specimen with a chevron notch is the same as for a specimen with a straight-through crack.

  12. Structures associated with strike-slip faults that bound landslide elements

    USGS Publications Warehouse

    Fleming, R.W.; Johnson, A.M.

    1989-01-01

    Large landslides are bounded on their flanks and on elements within the landslides by structures analogous to strike-slip faults. We observed the formation of thwse strike-slip faults and associated structures at two large landslides in central Utah during 1983-1985. The strike-slip faults in landslides are nearly vertical but locally may dip a few degrees toward or away from the moving ground. Fault surfaces are slickensided, and striations are subparallel to the ground surface. Displacement along strike-slip faults commonly produces scarps; scarps occur where local relief of the failure surface or ground surface is displaced and becomes adjacent to higher or lower ground, or where the landslide is thickening or thinning as a result of internal deformation. Several types of structures are formed at the ground surface as a strike-slip fault, which is fully developed at some depth below the ground surface, propagates upward in response to displacement. The simplest structure is a tension crack oriented at 45?? clockwise or counterclockwise from the trend of an underlying right- or left-lateral strike-slip fault, respectively. The tension cracks are typically arranged en echelon with the row of cracks parallel to the trace of the underlying strike-slip fault. Another common structure that forms above a developing strike-slip fault is a fault segment. Fault segments are discontinuous strike-slip faults that contain the same sense of slip but are turned clockwise or counterclockwise from a few to perhaps 20?? from the underlying strike-slip fault. The fault segments are slickensided and striated a few centimeters below the ground surface; continued displacement of the landslide causes the fault segments to open and a short tension crack propagates out of one or both ends of the fault segments. These structures, open fault segments containing a short tension crack, are termed compound cracks; and the short tension crack that propagates from the tip of the fault segment is typically oriented 45?? to the trend of the underlying fault. Fault segments are also typically arranged en echelon above the upward-propagating strike-slip fault. Continued displacement of the landslide causes the ground to buckle between the tension crack portions of the compound cracks. Still more displacement produces a thrust fault on one or both limbs of the buckle fold. These compressional structures form at right angles to the short tension cracks at the tips of the fault segments. Thus, the compressional structures are bounded on their ends by one face of a tension crack and detached from underlying material by thrusting or buckling. The tension cracks, fault segments, compound cracks, folds, and thrusts are ephemeral; they are created and destroyed with continuing displacement of the landslide. Ultimately, the structures are replaced by a throughgoing strike-slip fault. At one landslide, we observed the creation and destruction of the ephemeral structures as the landslide enlarged. Displacement of a few centimeters to about a decimeter was sufficient to produce scattered tension cracks and fault segments. Sets of compound cracks with associated folds and thrusts were produced by displacements of up to 1 m, and 1 to 2 m of displacement was required to produce a throughgoing strike-slip fault. The type of first-formed structure above an upward-propagating strike-slip fault is apparently controlled by the rheology of the material. Brittle material such as dry topsoil or the compact surface of a gravel road produces echelon tension cracks and sets of tension cracks and compressional structures, wherein the cracks and compressional structures are normal to each other and 45?? to the strike-slip fault at depth. First-formed structures in more ductile material such as moist cohesive soil are fault segments. In very ductile material such as soft clay and very wet soil in swampy areas, the first-formed structure is a throughgoing strike-slip fault. There are othe

  13. Fracture mechanics by three-dimensional crack-tip synchrotron X-ray microscopy

    PubMed Central

    Withers, P. J.

    2015-01-01

    To better understand the relationship between the nucleation and growth of defects and the local stresses and phase changes that cause them, we need both imaging and stress mapping. Here, we explore how this can be achieved by bringing together synchrotron X-ray diffraction and tomographic imaging. Conventionally, these are undertaken on separate synchrotron beamlines; however, instruments capable of both imaging and diffraction are beginning to emerge, such as ID15 at the European Synchrotron Radiation Facility and JEEP at the Diamond Light Source. This review explores the concept of three-dimensional crack-tip X-ray microscopy, bringing them together to probe the crack-tip behaviour under realistic environmental and loading conditions and to extract quantitative fracture mechanics information about the local crack-tip environment. X-ray diffraction provides information about the crack-tip stress field, phase transformations, plastic zone and crack-face tractions and forces. Time-lapse CT, besides providing information about the three-dimensional nature of the crack and its local growth rate, can also provide information as to the activation of extrinsic toughening mechanisms such as crack deflection, crack-tip zone shielding, crack bridging and crack closure. It is shown how crack-tip microscopy allows a quantitative measure of the crack-tip driving force via the stress intensity factor or the crack-tip opening displacement. Finally, further opportunities for synchrotron X-ray microscopy are explored. PMID:25624521

  14. Intrinsic fatigue crack propagation in aluminum-lithium alloys - The effect of gaseous environments

    NASA Technical Reports Server (NTRS)

    Piascik, Robert S.; Gangloff, Richard P.

    1989-01-01

    Gaseous environmental effects on intrinsic fatigue crack growth are significant for the Al-Li-Cu alloy 2090, peak aged. For both moderate Delta K-low R and low Delta K-high R regimes, crack growth rates decrease according to the environment order: purified water vapor, moist air, helium and oxygen. Gaseous environmental effects are pronounced near threshold and are not closure dominated. Here, embrittlement by low levels of H2O (ppm) supports hydrogen embrittlement and suggests that molecular transport controlled cracking, established for high Delta K-low R, is modified near threshold. Localized crack tip reaction sites or high R crack opening shape may enable the strong, environmental effect at low levels of Delta K. Similar crack growth in He and O2 eliminates the contribution of surface films to fatigue damage in alloy 2090. While 2090 and 7075 exhibit similar environmental trends, the Al-Li-Cu alloy is more resistant to intrinsic corrosion fatigue crack growth.

  15. Instability-related delamination growth in thermoset and thermoplastic composites

    NASA Technical Reports Server (NTRS)

    Gillespie, John W., Jr.; Carlsson, Leif A.; Rothschilds, Robert J.

    1988-01-01

    Mixed-mode crack propagation in compressively loaded thermoset and thermoplastic composite columns with an imbedded through-width delamination is investigated. Beam theory is used to analyze the geometrically nonlinear load-deformation relationship of the delaminated subregion. The elastic restraint model (ERM), combined with existing FSM modeling of the crack-tip region, yields expressions for the Mode I and Mode II components of the strain energy release rate G(I) and G(II) to predict the critical load at the onset of delamination growth. Experimental data were generated for geometries yielding a wide range of G(I)/G(II) ratios at the onset of crack growth. A linear mixed-mode crack growth criterion in conjunctuion with the ERM provides good agreement between predicted and measured critical loads for both materials studied.

  16. Oxidation products of Inconel alloys 600 and 690 in hydrogenated steam environments and their role in stress corrosion cracking

    NASA Astrophysics Data System (ADS)

    Ferguson, J. Bryce

    Inconel Alloys 600 and 690 are used extensively in components of Nuclear Pressurized Water Reactors (PWR) in the primary water loop which consists of H2 supersaturated steam. Alloy 600 has been found to crack intergranularly when exposed to primary water conditions. Alloy 690 was designed as a replacement and is generally regarded as immune to cracking. There is no consensus as to the mechanism which is responsible for cracking or the lack thereof in these alloys. In this work thermodynamic arguments for the stability of Ni and Cr compounds developed under pressurized water reactor environments ( PH2O and PH2 ) were experimentally tested. A mechanism is proposed to explain crack initiation and propagation alloy 600 along the grain boundaries where Cr2O3 has formed from the leaching of Cr from the matrix leaving behind a porous Ni-rich region. The mechanism is based on the thermodynamic potential for the transformation of a protective NiO surface layer into an amorphous non-protective Ni(OH)2 gel. This gel would also form along the grain boundaries and when hydrogenated steam reaches the porous Ni-rich regions. Crack initiation is then favored by tensile stressing of the grain boundary regions which can easily rupture the gelatinous film. The leaching of matrix Cr to form non-protective CrOOH gel at the crack tip followed by the exposure of fresh porous Ni to the environment also explains crack propagation in inconel alloy 600. The proposed crack initiation mechanism is not expected to occur in alloy 690 where a protective Cr2O 3 film covers the entire metal surface. However, crack propagation along the grain boundaries in alloy 600 and pre-cracked alloy 690 is expected to be active as hydroxide-forming reactions weaken the material at the grain boundaries.

  17. Mechanical Properties of Photovoltaic Silicon in Relation to Wafer Breakage

    NASA Astrophysics Data System (ADS)

    Kulshreshtha, Prashant Kumar

    This thesis focuses on the fundamental understanding of stress-modified crack-propagation in photovoltaic (PV) silicon in relation to the critical issue of PV silicon "wafer breakage". The interactions between a propagating crack and impurities/defects/residual stresses have been evaluated for consequential fracture path in a thin PV Si wafer. To investigate the mechanism of brittle fracture in silicon, the phase transformations induced by elastic energy released at a propagating crack-tip have been evaluated by locally stressing the diamond cubic Si lattice using a rigid Berkovich nanoindenter tip (radius ≈50 nm). Unique pressure induced phase transformations and hardness variations have been then related to the distribution of precipitates (O, Cu, Fe etc.), and the local stresses in the wafer. This research demonstrates for the first time the "ductile-like fracture" in almost circular crack path that significantly deviates from its energetically favorable crystallographic [110](111) system. These large diameter (≈ 200 mm) Si wafers were sliced to less than 180 microm thickness from a Czochralski (CZ) ingot that was grown at faster than normal growth rates. The vacancy (vSi) driven precipitation of oxygen at enhanced thermal gradients in the wafer core develops large localized stresses (upto 100 MPa) which we evaluated using Raman spectral analysis. Additional micro-FTIR mapping and microscopic etch pit measurements in the wafer core have related the observed crack path deviations to the presence of concentric ring-like distributions of oxygen precipitates (OPs). To replicate these "real-world" breakage scenarios and provide better insight on crack-propagation, several new and innovative tools/devices/methods have been developed in this study. An accurate quantitative profiling of local stress, phase changes and load-carrying ability of Si lattice has been performed in the vicinity of the controlled micro-cracks created using micro-indentations to represent the surface/edge micro-cracks (i.e. sources of crack initiation). The low load (<10mN) nanoindentations using Hysitron Triboindenter RTM have been applied to estimate the zone of crack-propagation related plastic deformation and amorphization around the radial or the lateral cracks. The gradual reduction in hardness due to local stress field and phase change around the crack has been established using electron back scattered diffraction (EBSD), atomic force microscopy (AFM) and Raman spectroscopy, respectively, at nano- and micro-scale. The load (P) vs. displacement (h) curves depict characteristic phase transformation events (eg. elbow or pop-out) depending on the sign of residual stress in the silicon lattice. The formation of Si-XII/III phases (elastic phases) in large volumes during indentation of compressed Si lattice have been discussed as an option to eliminate the edge micro-cracks formed during wafer sawing by ductile flow. The stress gradient at an interface, which can be a grain-boundary (GB), twin or a interface between silicon and precipitate, has been evaluated for crack path modification. An direct-silicon-bonded (DSB) based ideal [110]/[100] interface has been examined to study the effect of crystallographic orientation variation across a planar silicon 2D boundary. Using constant source diffusion/annealing process, Fe and Cu impurities have been incorporated in model [110]/[100]GB to provide equivalence to a real decorated multi-crystalline grain boundary. We found that Fe precipitates harden the undecorated GB structure, whereas Cu precipitates introduce dislocation-induced plasticity to soften it. Aluminum Schottky diodes have been evaporated on the DSB samples to sensitively detect the instantaneous current response from the phase-transformed Si under nanoindenter tip. The impact of metallic impurity and their precipitates on characteristic phase transformations (i.e. pop-in or pop-out) demonstrate that scattered distribution of large Cu-precipitates (upto 50 nm) compresses Si-lattice to facilitate Si-XII/III formations, i.e. high pressure ductile phases. Sweeping voltage measurements at a given load determine that Si lattice has to be stressed beyond 1 mN to complete the Si-I (semiconducting) to Si-II (ohmic) phase changes. Above 1 mN load DSB sample has a varistor-like behavior due to higher grain-boundary resistance from interfacial states. The precipitate defect structure stimulated stresses at the bulk Si lattice or grain boundary modify the rate of elastic energy release at the crack-tip and associated phase change and hardness values in response to external loading. The systematic approach in this thesis elucidates that the interfacial surface area between Si-lattice and precipitate plays pivotal role in defining extent of stresses in the silicon, i.e. smaller precipitates in higher densities are severe than few larger volume precipitates. The finding of high-pressure ductile phase formation during loading of compressed silicon structure has been suggested to PV industry as a prospective candidate for reducing the wafer breakage and allowing larger handling stresses.

  18. Cohesive Laws for Analyzing Through-Crack Propagation in Cross Ply Laminates

    NASA Technical Reports Server (NTRS)

    Bergan, Andrew C.; Davila, Carlos G.

    2015-01-01

    The laminate cohesive approach (LCA) is a methodology for the experimental characterization of cohesive through-the-thickness damage propagation in fiber-reinforced polymer matrix composites. LCA has several advantages over other existing approaches for cohesive law characterization, including: visual measurements of crack length are not required, structural effects are accounted for, and LCA can be applied when the specimen is too small to achieve steady-state fracture. In this work, the applicability of this method is investigated for two material systems: IM7/8552, a conventional prepreg, and AS4/VRM34, a non-crimp fabric cured using an out-of-autoclave process. The compact tension specimen configuration is used to propagate stable Mode I damage. Trilinear cohesive laws are characterized using the fracture toughness and the notch tip opening displacement. Test results are compared for the IM7/8552 specimens with notches machined by waterjet and by wire slurry saw. It is shown that the test results are nearly identical for both notch tip preparations methods, indicating that significant specimen preparation time and cost savings can be realized by using the waterjet to notch the specimen instead of the wire slurry saw. The accuracy of the cohesive laws characterized herein are assessed by reproducing the structural response of the test specimens using computational methods. The applicability of the characterization procedure for inferring lamina fracture toughness is also discussed.

  19. Neutron and X-ray Microbeam Diffraction Studies around a Fatigue-Crack Tip after Overload

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Sooyeol; Barabash, Rozaliya; Chung, Jin-Seok

    2008-01-01

    An in-situ neutron diffraction technique was used to investigate the lattice-strain distributions and plastic deformation around a crack tip after overload. The lattice-strain profiles around a crack tip were measured as a function of the applied load during the tensile loading cycles after overload. Dislocation densities calculated from the diffraction peak broadening were presented as a function of the distance from the crack tip. Furthermore, the crystallographic orientation variations were examined near a crack tip using polychromatic X-ray microdiffraction combined with differential aperture microscopy. Crystallographic tilts are considerably observed beneath the surface around a crack tip, and these are consistentmore » with the high dislocation densities near the crack tip measured by neutron peak broadening.« less

  20. Investigation of wing crack formation with a combined phase-field and experimental approach

    NASA Astrophysics Data System (ADS)

    Lee, Sanghyun; Reber, Jacqueline E.; Hayman, Nicholas W.; Wheeler, Mary F.

    2016-08-01

    Fractures that propagate off of weak slip planes are known as wing cracks and often play important roles in both tectonic deformation and fluid flow across reservoir seals. Previous numerical models have produced the basic kinematics of wing crack openings but generally have not been able to capture fracture geometries seen in nature. Here we present both a phase-field modeling approach and a physical experiment using gelatin for a wing crack formation. By treating the fracture surfaces as diffusive zones instead of as discontinuities, the phase-field model does not require consideration of unpredictable rock properties or stress inhomogeneities around crack tips. It is shown by benchmarking the models with physical experiments that the numerical assumptions in the phase-field approach do not affect the final model predictions of wing crack nucleation and growth. With this study, we demonstrate that it is feasible to implement the formation of wing cracks in large scale phase-field reservoir models.

  1. A discrete element model for damage and fracture of geomaterials under fatigue loading

    NASA Astrophysics Data System (ADS)

    Gao, Xiaofeng; Koval, Georg; Chazallon, Cyrille

    2017-06-01

    Failure processes in geomaterials (concrete, asphalt concrete, masonry, etc.) under fatigue loading (repeated moving loads, cycles of temperature, etc.) are responsible for most of the dysfunctions in pavements, brick structures, etc. In the beginning of the lifetime of a structure, the material presents only inner defects (micro cracks, voids, etc.). Due to the effect of the cyclic loading, these small defects tend to grow in size and quantity which damage the material, reducing its stiffness. With a relatively high number of cycles, these growing micro cracks become large cracks, which characterizes the fracture behavior. From a theoretical point of view, both mechanisms are treated differently. Fracture is usually described locally, with the propagation of cracks defined by the energy release rate at the crack tip; damage is usually associated to non-local approaches. In the present work, damage and fracture mechanics are combined in a local discrete element approach.

  2. Distributed deformation ahead of the Cocos-Nazca Rift at the Galapagos triple junction

    NASA Astrophysics Data System (ADS)

    Smith, Deborah K.; Schouten, Hans; Zhu, Wen-lu; Montési, Laurent G. J.; Cann, Johnson R.

    2011-11-01

    The Galapagos triple junction is not a simple ridge-ridge-ridge (RRR) triple junction. The Cocos-Nazca Rift (C-N Rift) tip does not meet the East Pacific Rise (EPR). Instead, two secondary rifts form the link: Incipient Rift at 2°40‧N and Dietz Deep volcanic ridge, the southern boundary of the Galapagos microplate (GMP), at 1°10‧N. Recently collected bathymetry data are used to investigate the regional tectonics prior to the establishment of the GMP (∼1.5 Ma). South of C-N Rift a band of northeast-trending cracks cuts EPR-generated abyssal hills. It is a mirror image of a band of cracks previously identified north of C-N Rift on the same age crust. In both areas, the western ends of the cracks terminate against intact abyssal hills suggesting that each crack initiated at the EPR spreading center and cut eastward into pre-existing topography. Each crack formed a short-lived triple junction until it was abandoned and a new crack and triple junction initiated nearby. Between 2.5 and 1.5 Ma, the pattern of cracking is remarkably symmetric about C-N Rift providing support for a crack interaction model in which crack initiation at the EPR axis is controlled by stresses associated with the tip of the westward-propagating C-N Rift. The model also shows that offsets of the EPR axis may explain times when cracking is not symmetric. South of C-N Rift, cracks are observed on seafloor as old as 10.5 Ma suggesting that this triple junction has not been a simple RRR triple junction during that time.

  3. Damage Mechanisms and Controlled Crack Propagation in a Hot Pressed Silicon Nitride Ceramic. Ph.D. Thesis - Northwestern Univ., 1993

    NASA Technical Reports Server (NTRS)

    Calomino, Anthony Martin

    1994-01-01

    The subcritical growth of cracks from pre-existing flaws in ceramics can severely affect the structural reliability of a material. The ability to directly observe subcritical crack growth and rigorously analyze its influence on fracture behavior is important for an accurate assessment of material performance. A Mode I fracture specimen and loading method has been developed which permits the observation of stable, subcritical crack extension in monolithic and toughened ceramics. The test specimen and procedure has demonstrated its ability to generate and stably propagate sharp, through-thickness cracks in brittle high modulus materials. Crack growth for an aluminum oxide ceramic was observed to be continuously stable throughout testing. Conversely, the fracture behavior of a silicon nitride ceramic exhibited crack growth as a series of subcritical extensions which are interrupted by dynamic propagation. Dynamic initiation and arrest fracture resistance measurements for the silicon nitride averaged 67 and 48 J/sq m, respectively. The dynamic initiation event was observed to be sudden and explosive. Increments of subcritical crack growth contributed to a 40 percent increase in fracture resistance before dynamic initiation. Subcritical crack growth visibly marked the fracture surface with an increase in surface roughness. Increments of subcritical crack growth loosen ceramic material near the fracture surface and the fracture debris is easily removed by a replication technique. Fracture debris is viewed as evidence that both crack bridging and subsurface microcracking may be some of the mechanisms contributing to the increase in fracture resistance. A Statistical Fracture Mechanics model specifically developed to address subcritical crack growth and fracture reliability is used together with a damaged zone of material at the crack tip to model experimental results. A Monte Carlo simulation of the actual experiments was used to establish a set of modeling input parameters. It was demonstrated that a single critical parameter does not characterize the conditions required for dynamic initiation. Experimental measurements for critical crack lengths, and the energy release rates exhibit significant scatter. The resulting output of the model produces good agreement with both the average values and scatter of experimental measurements.

  4. Flaw characterization through nonlinear ultrasonics and wavelet cross-correlation algorithms

    NASA Astrophysics Data System (ADS)

    Bunget, Gheorghe; Yee, Andrew; Stewart, Dylan; Rogers, James; Henley, Stanley; Bugg, Chris; Cline, John; Webster, Matthew; Farinholt, Kevin; Friedersdorf, Fritz

    2018-04-01

    Ultrasonic measurements have become increasingly important non-destructive techniques to characterize flaws found within various in-service industrial components. The prediction of remaining useful life based on fracture analysis depends on the accurate estimation of flaw size and orientation. However, amplitude-based ultrasonic measurements are not able to estimate the plastic zones that exist ahead of crack tips. Estimating the size of the plastic zone is an advantage since some flaws may propagate faster than others. This paper presents a wavelet cross-correlation (WCC) algorithm that was applied to nonlinear analysis of ultrasonically guided waves (GW). By using this algorithm, harmonics present in the waveforms were extracted and nonlinearity parameters were used to indicate both the tip of the cracks and size of the plastic zone. B-scans performed with the quadratic nonlinearities were sensitive to micro-damage specific to plastic zones.

  5. Analysis of stress corrosion cracking in alloy 718 following commercial reactor exposure

    DOE PAGES

    Leonard, Keith J.; Gussev, Maxim N.; Stevens, Jacqueline N.; ...

    2015-08-24

    Alloy 718 is generally considered a highly corrosion-resistant material but can still be susceptible to stress corrosion cracking (SCC). The combination of factors leading to SCC susceptibility in the alloy is not always clear enough. In this paper, alloy 718 leaf spring (LS) materials that suffered stress corrosion damage during two 24-month cycles in pressurized water reactor service, operated to >45 MWd/mtU burn-up, was investigated. Compared to archival samples fabricated through the same processing conditions, little microstructural and property changes occurred in the material with in-service irradiation, contrary to high dose rate laboratory-based experiments reported in literature. Though the lackmore » of delta phase formation along grain boundaries would suggest a more SCC resistant microstructure, grain boundary cracking in the material was extensive. Crack propagation routes were explored through focused ion beam milling of specimens near the crack tip for transmission electron microscopy as well as in polished plan view and cross-sectional samples for electron backscatter diffraction analysis. It has been shown in this study that cracks propagated mainly along random high-angle grain boundaries, with the material around cracks displaying a high local density of dislocations. The slip lines were produced through the local deformation of the leaf spring material above their yield strength. Also, the cause for local SCC appears to be related to oxidation of both slip lines and grain boundaries, which under the high in-service stresses resulted in crack development in the material.« less

  6. Intergranular fracture in UO2: derivation of traction-separation law from atomistic simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yongfeng Zhang; Paul C Millett; Michael R Tonks

    2013-10-01

    In this study, the intergranular fracture behavior of UO2 was studied by molecular dynamics simulations using the Basak potential. In addition, the constitutive traction-separation law was derived from atomistic data using the cohesive-zone model. In the simulations a bicrystal model with the (100) symmetric tilt E5 grain boundaries was utilized. Uniaxial tension along the grain boundary normal was applied to simulate Mode-I fracture. The fracture was observed to propagate along the grain boundary by micro-pore nucleation and coalescence, giving an overall intergranular fracture behavior. Phase transformations from the Fluorite to the Rutile and Scrutinyite phases were identified at the propagatingmore » crack tips. These new phases are metastable and they transformed back to the Fluorite phase at the wake of crack tips as the local stress concentration was relieved by complete cracking. Such transient behavior observed at atomistic scale was found to substantially increase the energy release rate for fracture. Insertion of Xe gas into the initial notch showed minor effect on the overall fracture behavior.« less

  7. Nanoscale origins of the damage tolerance of the high-entropy alloy CrMnFeCoNi

    DOE PAGES

    Zhang, ZiJiao; Mao, M. M.; Wang, Jiangwei; ...

    2015-12-09

    Damage tolerance can be an elusive characteristic of structural materials requiring both high strength and ductility, properties that are often mutually exclusive. High-entropy alloys are of interest in this regard. Specifically, the single-phase CrMnFeCoNi alloy displays tensile strength levels of ~1 GPa, excellent ductility (~60–70%) and exceptional fracture toughness (KJIc>200M Pa√m). Here through the use of in situ straining in an aberration-corrected transmission electron microscope, we report on the salient atomistic to micro-scale mechanisms underlying the origin of these properties. We identify a synergy of multiple deformation mechanisms, rarely achieved in metallic alloys, which generates high strength, work hardening andmore » ductility, including the easy motion of Shockley partials, their interactions to form stacking-fault parallelepipeds, and arrest at planar slip bands of undissociated dislocations. In conclusion, we further show that crack propagation is impeded by twinned, nanoscale bridges that form between the near-tip crack faces and delay fracture by shielding the crack tip.« less

  8. Nanoscale origins of the damage tolerance of the high-entropy alloy CrMnFeCoNi

    PubMed Central

    Zhang, ZiJiao; Mao, M. M.; Wang, Jiangwei; Gludovatz, Bernd; Zhang, Ze; Mao, Scott X.; George, Easo P.; Yu, Qian; Ritchie, Robert O.

    2015-01-01

    Damage tolerance can be an elusive characteristic of structural materials requiring both high strength and ductility, properties that are often mutually exclusive. High-entropy alloys are of interest in this regard. Specifically, the single-phase CrMnFeCoNi alloy displays tensile strength levels of ∼1 GPa, excellent ductility (∼60–70%) and exceptional fracture toughness (KJIc>200 MPa√m). Here through the use of in situ straining in an aberration-corrected transmission electron microscope, we report on the salient atomistic to micro-scale mechanisms underlying the origin of these properties. We identify a synergy of multiple deformation mechanisms, rarely achieved in metallic alloys, which generates high strength, work hardening and ductility, including the easy motion of Shockley partials, their interactions to form stacking-fault parallelepipeds, and arrest at planar slip bands of undissociated dislocations. We further show that crack propagation is impeded by twinned, nanoscale bridges that form between the near-tip crack faces and delay fracture by shielding the crack tip. PMID:26647978

  9. Environmental controls on micro fracture processes in shelf ice

    NASA Astrophysics Data System (ADS)

    Sammonds, Peter

    2013-04-01

    The recent retreat and collapse of the ice shelves on the Antarctic Peninsula has been associated with regional atmospheric warming, oceanic warming, increased summer melt and shelf flexure. Although the cause of collapse is a matter of active discussion, the process is that of fracture of a creep-brittle material, close to its melting point. The environmental controls on how fracturing initiates, at a micro-scale, strongly determine the macroscopic disintegration of ice shelves. In particular the shelf temperature profile controls the plasticity of the ice shelf; the densification of shelf ice due to melting and re-freezing affects the crack tip stress intensity; the accretion of marine ice at the bottom of the shelf imposes a thermal/mechanical discontinuity; saline environments control crack tip stress corrosion; cyclic loading promotes sub-critical crack propagation. These strong environmental controls on shelf ice fracture means that assessing shelf stability is a non-deterministic problem. How these factors may be parameterized in ice shelf models, through the use of fracture mechanisms maps, is discussed. The findings are discussed in relation to the stability of Larsen C.

  10. Behavior of Fatigue Crack Tip Opening in Air and Corrosive Atmosphere

    NASA Astrophysics Data System (ADS)

    Hayashi, Morihito; Toeda, Kazunori

    In the study, a formula for predicting fatigue crack tip opening displacement is deduced firstly. And then, due to comparing actual crack growth rate with the deduced formula, the crack tip configuration factor is defined to figure out the crack tip opening configuration that is useful to clarify the behavior of fatigue crack tip formation apparently. Applying the concept, the crack growth of 7/3 brass and 6/4 brass is predicted from the formula, by replacing material properties such as plastic flow resistance, Young modulus, the Poisson ratio, and fatigue toughness, and fatigue test conditions such as the stress intensity factor range, the load ratio, and cycle frequency. Furthermore, the theoretically expected results are verified with the fatigue tests which were carried out on CT specimens under different load conditions of load ratio, cycle frequency, and cyclic peak load, in different environments of air or corrosive ammonia atmosphere, for various brasses. And by comparing and discussing the calculated crack growth rate with attained experimental results, the apparent configuration factor at the crack tip is determined. And through the attained factor which changes along with crack growth, the behaviors of fatigue crack tip formation under different test conditions have been found out.

  11. A stiffness derivative finite element technique for determination of crack tip stress intensity factors

    NASA Technical Reports Server (NTRS)

    Parks, D. M.

    1974-01-01

    A finite element technique for determination of elastic crack tip stress intensity factors is presented. The method, based on the energy release rate, requires no special crack tip elements. Further, the solution for only a single crack length is required, and the crack is 'advanced' by moving nodal points rather than by removing nodal tractions at the crack tip and performing a second analysis. The promising straightforward extension of the method to general three-dimensional crack configurations is presented and contrasted with the practical impossibility of conventional energy methods.

  12. Environmental fatigue of an Al-Li-Cu alloy. Part 2: Microscopic hydrogen cracking processes

    NASA Technical Reports Server (NTRS)

    Piascik, Robert S.; Gangloff, Richard P.

    1992-01-01

    Based on a fractographic analysis of fatigue crack propagation (FCP) in Al-Li-Cu alloy 2090 stressed in a variety of inert and embrittling environments, microscopic crack paths are identified and correlated with intrinsic da/dN-delta K kinetics. FCP rates in 2090 are accelerated by hydrogen producing environments (pure water vapor, moist air, and aqueous NaCl), as defined in Part 1. For these cases, subgrain boundary fatigue cracking (SGC) dominates for delta K values where the crack tip process zone, a significant fraction of the cyclic plastic zone, is sufficiently large to envelop 5 micron subgrains in the unrecrystallized microstructure. SGC may be due to strong hydrogen trapping at T1 precipitates concentrated at sub-boundaries. At low delta K, the plastic zone diameter is smaller than the subgrain size and FCP progresses along (100) planes due to either local lattice decohesion or aluminum-lithium hydride cracking. For inert environments (vacuum, helium, and oxygen), or at high delta K where the hydrogen effect on da/dN is small, FCP is along (111) slip planes; this mode does not transition with increasing delta K and plastic zone size. The SGC and (100) crystallographic cracking modes, and the governing influence of the crack tip process zone volume (delta K), support hydrogen embrittlement rather than a surface film rupture and anodic dissolution mechanism for environmental FCP. Multi-sloped log da/dN-log delta K behavior is produced by changes in process zone hydrogen-microstructure interactions, and not by purely micromechanical-microstructure interactions, in contradiction to microstructural distance-based fatigue models.

  13. Near-Field Acoustical Imaging using Lateral Bending Mode of Atomic Force Microscope Cantilevers

    NASA Astrophysics Data System (ADS)

    Caron, A.; Rabe, U.; Rödel, J.; Arnold, W.

    Scanning probe microscopy techniques enable one to investigate surface properties such as contact stiffness and friction between the probe tip and a sample with nm resolution. So far the bending and the torsional eigenmodes of an atomic force microscope cantilever have been used to image variations of elasticity and shear elasticity, respectively. Such images are near-field images with the resolution given by the contact radius typically between 10 nm and 50 nm. We show that the flexural modes of a cantilever oscillating in the width direction and parallel to the sample surface can also be used for imaging. Additional to the dominant in-plane component of the oscillation, the lateral modes exhibit a vertical component as well, provided there is an asymmetry in the cross-section of the cantilever or in its suspension. The out-of-plane deflection renders the lateral modes detectable by the optical position sensors used in atomic force microscopes. We studied cracks which were generated by Vickers indents, in submicro- and nanocrystalline ZrO2. Images of the lateral contact stiffness were obtained by vibrating the cantilever close to a contact-resonance frequency. A change in contact stiffness causes a shift of the resonant frequency and hence a change of the cantilever vibration amplitude. The lateral contact-stiffness images close to the crack faces display a contrast that we attribute to altered elastic properties indicating a process zone. This could be caused by a stress-induced phase transformation during crack propagation. Using the contact mode of an atomic force microscope, we measured the crack-opening displacement as a function of distance from the crack tip, and we determined the crack-tip toughness Ktip. Furthermore, K1c was inferred from the length of radial cracks of Vickers indents that were measured using classical scanning acoustic microscopy

  14. Comparison of hydrogen gas embrittlement of austenitic and ferritic stainless steels

    NASA Astrophysics Data System (ADS)

    Perng, T. P.; Altstetter, C. J.

    1987-01-01

    Hydrogen-induced slow crack growth (SCG) was compared in austenitic and ferritic stainless steels at 0 to 125 °Cand 11 to 216 kPa of hydrogen gas. No SCG was observed for AISI 310, while AISI 301 was more susceptible to hydrogen embrittlement and had higher cracking velocity than AL 29-4-2 under the same test conditions. The kinetics of crack propagation was modeled in terms of the hydrogen transport in these alloys. This is a function of temperature, microstructure, and stress state in the embrittlement region. The relatively high cracking velocity of AISI 301 was shown to be controlled by the fast transport of hydrogen through the stress-induced α' martensite at the crack tip and low escape rate of hydrogen through the γ phase in the surrounding region. Faster accumulation rates of hydrogen in the embrittlement region were expected for AISI 301, which led to higher cracking velocities. The mechanism of hydrogen-induced SCG was discussed based upon the concept of hydrogen-enhanced plasticity.

  15. An Artificial Neural Network-Based Algorithm for Evaluation of Fatigue Crack Propagation Considering Nonlinear Damage Accumulation

    PubMed Central

    Zhang, Wei; Bao, Zhangmin; Jiang, Shan; He, Jingjing

    2016-01-01

    In the aerospace and aviation sectors, the damage tolerance concept has been applied widely so that the modeling analysis of fatigue crack growth has become more and more significant. Since the process of crack propagation is highly nonlinear and determined by many factors, such as applied stress, plastic zone in the crack tip, length of the crack, etc., it is difficult to build up a general and flexible explicit function to accurately quantify this complicated relationship. Fortunately, the artificial neural network (ANN) is considered a powerful tool for establishing the nonlinear multivariate projection which shows potential in handling the fatigue crack problem. In this paper, a novel fatigue crack calculation algorithm based on a radial basis function (RBF)-ANN is proposed to study this relationship from the experimental data. In addition, a parameter called the equivalent stress intensity factor is also employed as training data to account for loading interaction effects. The testing data is then placed under constant amplitude loading with different stress ratios or overloads used for model validation. Moreover, the Forman and Wheeler equations are also adopted to compare with our proposed algorithm. The current investigation shows that the ANN-based approach can deliver a better agreement with the experimental data than the other two models, which supports that the RBF-ANN has nontrivial advantages in handling the fatigue crack growth problem. Furthermore, it implies that the proposed algorithm is possibly a sophisticated and promising method to compute fatigue crack growth in terms of loading interaction effects. PMID:28773606

  16. An Artificial Neural Network-Based Algorithm for Evaluation of Fatigue Crack Propagation Considering Nonlinear Damage Accumulation.

    PubMed

    Zhang, Wei; Bao, Zhangmin; Jiang, Shan; He, Jingjing

    2016-06-17

    In the aerospace and aviation sectors, the damage tolerance concept has been applied widely so that the modeling analysis of fatigue crack growth has become more and more significant. Since the process of crack propagation is highly nonlinear and determined by many factors, such as applied stress, plastic zone in the crack tip, length of the crack, etc. , it is difficult to build up a general and flexible explicit function to accurately quantify this complicated relationship. Fortunately, the artificial neural network (ANN) is considered a powerful tool for establishing the nonlinear multivariate projection which shows potential in handling the fatigue crack problem. In this paper, a novel fatigue crack calculation algorithm based on a radial basis function (RBF)-ANN is proposed to study this relationship from the experimental data. In addition, a parameter called the equivalent stress intensity factor is also employed as training data to account for loading interaction effects. The testing data is then placed under constant amplitude loading with different stress ratios or overloads used for model validation. Moreover, the Forman and Wheeler equations are also adopted to compare with our proposed algorithm. The current investigation shows that the ANN-based approach can deliver a better agreement with the experimental data than the other two models, which supports that the RBF-ANN has nontrivial advantages in handling the fatigue crack growth problem. Furthermore, it implies that the proposed algorithm is possibly a sophisticated and promising method to compute fatigue crack growth in terms of loading interaction effects.

  17. The dentin-enamel junction and the fracture of human teeth.

    PubMed

    Imbeni, V; Kruzic, J J; Marshall, G W; Marshall, S J; Ritchie, R O

    2005-03-01

    The dentin-enamel junction (DEJ), which is the interfacial region between the dentin and outer enamel coating in teeth, is known for its unique biomechanical properties that provide a crack-arrest barrier for flaws formed in the brittle enamel1. In this work, we re-examine how cracks propagate in the proximity of the DEJ, and specifically quantify, using interfacial fracture mechanics, the fracture toughness of the DEJ region. Careful observation of crack penetration through the interface and the new estimate of the DEJ toughness ( approximately 5 to 10 times higher than enamel but approximately 75% lower than dentin) shed new light on the mechanism of crack arrest. We conclude that the critical role of this region, in preventing cracks formed in enamel from traversing the interface and causing catastrophic tooth fractures, is not associated with the crack-arrest capabilities of the interface itself; rather, cracks tend to penetrate the (optical) DEJ and arrest when they enter the tougher mantle dentin adjacent to the interface due to the development of crack-tip shielding from uncracked-ligament bridging.

  18. The dentin-enamel junction and the fracture of human teeth

    NASA Astrophysics Data System (ADS)

    Imbeni, V.; Kruzic, J. J.; Marshall, G. W.; Marshall, S. J.; Ritchie, R. O.

    2005-03-01

    The dentin-enamel junction (DEJ), which is the interfacial region between the dentin and outer enamel coating in teeth, is known for its unique biomechanical properties that provide a crack-arrest barrier for flaws formed in the brittle enamel1. In this work, we re-examine how cracks propagate in the proximity of the DEJ, and specifically quantify, using interfacial fracture mechanics, the fracture toughness of the DEJ region. Careful observation of crack penetration through the interface and the new estimate of the DEJ toughness (~5 to 10 times higher than enamel but ~75% lower than dentin) shed new light on the mechanism of crack arrest. We conclude that the critical role of this region, in preventing cracks formed in enamel from traversing the interface and causing catastrophic tooth fractures, is not associated with the crack-arrest capabilities of the interface itself; rather, cracks tend to penetrate the (optical) DEJ and arrest when they enter the tougher mantle dentin adjacent to the interface due to the development of crack-tip shielding from uncracked-ligament bridging.

  19. Hydrogen-Induced Delayed Cracking in TRIP-Aided Lean-Alloyed Ferritic-Austenitic Stainless Steels.

    PubMed

    Papula, Suvi; Sarikka, Teemu; Anttila, Severi; Talonen, Juho; Virkkunen, Iikka; Hänninen, Hannu

    2017-06-03

    Susceptibility of three lean-alloyed ferritic-austenitic stainless steels to hydrogen-induced delayed cracking was examined, concentrating on internal hydrogen contained in the materials after production operations. The aim was to study the role of strain-induced austenite to martensite transformation in the delayed cracking susceptibility. According to the conducted deep drawing tests and constant load tensile testing, the studied materials seem not to be particularly susceptible to delayed cracking. Delayed cracks were only occasionally initiated in two of the materials at high local stress levels. However, if a delayed crack initiated in a highly stressed location, strain-induced martensite transformation decreased the crack arrest tendency of the austenite phase in a duplex microstructure. According to electron microscopy examination and electron backscattering diffraction analysis, the fracture mode was predominantly cleavage, and cracks propagated along the body-centered cubic (BCC) phases ferrite and α'-martensite. The BCC crystal structure enables fast diffusion of hydrogen to the crack tip area. No delayed cracking was observed in the stainless steel that had high austenite stability. Thus, it can be concluded that the presence of α'-martensite increases the hydrogen-induced cracking susceptibility.

  20. Hydrogen-Induced Delayed Cracking in TRIP-Aided Lean-Alloyed Ferritic-Austenitic Stainless Steels

    PubMed Central

    Papula, Suvi; Sarikka, Teemu; Anttila, Severi; Talonen, Juho; Virkkunen, Iikka; Hänninen, Hannu

    2017-01-01

    Susceptibility of three lean-alloyed ferritic-austenitic stainless steels to hydrogen-induced delayed cracking was examined, concentrating on internal hydrogen contained in the materials after production operations. The aim was to study the role of strain-induced austenite to martensite transformation in the delayed cracking susceptibility. According to the conducted deep drawing tests and constant load tensile testing, the studied materials seem not to be particularly susceptible to delayed cracking. Delayed cracks were only occasionally initiated in two of the materials at high local stress levels. However, if a delayed crack initiated in a highly stressed location, strain-induced martensite transformation decreased the crack arrest tendency of the austenite phase in a duplex microstructure. According to electron microscopy examination and electron backscattering diffraction analysis, the fracture mode was predominantly cleavage, and cracks propagated along the body-centered cubic (BCC) phases ferrite and α’-martensite. The BCC crystal structure enables fast diffusion of hydrogen to the crack tip area. No delayed cracking was observed in the stainless steel that had high austenite stability. Thus, it can be concluded that the presence of α’-martensite increases the hydrogen-induced cracking susceptibility. PMID:28772975

  1. Effects of NaCl, pH, and Potential on the Static Creep Behavior of AA1100

    NASA Astrophysics Data System (ADS)

    Wan, Quanhe; Quesnel, David J.

    2013-03-01

    The creep rates of AA1100 are measured during exposure to a variety of aggressive environments. NaCl solutions of various concentrations have no influence on the steady-state creep behavior, producing creep rates comparable to those measured in lab air at room temperature. However, after an initial incubation period of steady strain rate, a dramatic increase of strain rate is observed on exposure to HCl solutions and NaOH solutions, as well as during cathodic polarization of specimens in NaCl solutions. Creep strain produces a continuous deformation and elongation of the sample surface that is comparable to slow strain rates at crack tips thought to control the kinetics of crack growth during stress corrosion cracking (SCC). In this experiment, we separate the strain and surface deformation from the complex geometry of the crack tip to better understand the processes at work. Based on this concept, two possible explanations for the environmental influences on creep strain rates are discussed relating to the anodic dissolution of the free surface and hydrogen influences on deformation mechanisms. Consistencies of pH dependence between corrosion creep and SCC at low pH prove a creep-involved SCC mechanism, while the discrepancies between corrosion creep behavior and previous SCC results at high pH indicate a rate-limit step change in the crack propagation of the SCC process.

  2. Sub-10-micrometer toughening and crack tip toughness of dental enamel.

    PubMed

    Ang, Siang Fung; Schulz, Anja; Pacher Fernandes, Rodrigo; Schneider, Gerold A

    2011-04-01

    In previous studies, enamel showed indications to occlude small cracks in-vivo and exhibited R-curve behaviors for bigger cracks ex-vivo. This study quantifies the crack tip's toughness (K(I0),K(III0)), the crack's closure stress and the cohesive zone size at the crack tip of enamel and investigates the toughening mechanisms near the crack tip down to the length scale of a single enamel crystallite. The crack-opening-displacement (COD) profile of cracks induced by Vickers indents on mature bovine enamel was studied using atomic force microscopy (AFM). The mode I crack tip toughness K(I0) of cracks along enamel rod boundaries and across enamel rods exhibit a similar range of values: K(I0,Ir)=0.5-1.6MPa m(0.5) (based on Irwin's 'near-field' solution) and K(I0,cz)=0.8-1.5MPa m(0.5) (based on the cohesive zone solution of the Dugdale-Muskhelishvili (DM) crack model). The mode III crack tip toughness K(III0,Ir) was computed as 0.02-0.15MPa m(0.5). The crack-closure stress at the crack tip was computed as 163-770 MPa with a cohesive zone length and width 1.6-10.1μm and 24-44 nm utilizing the cohesive zone solution. Toughening elements were observed under AFM and SEM: crack bridging due to protein ligament and hydroxyapatite fibres (micro- and nanometer scale) as well as microcracks were identified. Crown Copyright © 2010. Published by Elsevier Ltd. All rights reserved.

  3. Internal hydrogen-induced subcritical crack growth in austenitic stainless steels

    NASA Astrophysics Data System (ADS)

    Huang, J. H.; Altstetter, C. J.

    1991-11-01

    The effects of small amounts of dissolved hydrogen on crack propagation were determined for two austenitic stainless steel alloys, AISI 301 and 310S. In order to have a uniform distribution of hydrogen in the alloys, they were cathodically charged at high temperature in a molten salt electrolyte. Sustained load tests were performed on fatigue precracked specimens in air at 0 ‡C, 25 ‡C, and 50 ‡C with hydrogen contents up to 41 wt ppm. The electrical potential drop method with optical calibration was used to continuously monitor the crack position. Log crack velocity vs stress intensity curves had definite thresholds for subcritical crack growth (SCG), but stage II was not always clearly delineated. In the unstable austenitic steel, AISI 301, the threshold stress intensity decreased with increasing hydrogen content or increasing temperature, but beyond about 10 wt ppm, it became insensitive to hydrogen concentration. At higher concentrations, stage II became less distinct. In the stable stainless steel, subcritical crack growth was observed only for a specimen containing 41 wt ppm hydrogen. Fractographic features were correlated with stress intensity, hydrogen content, and temperature. The fracture mode changed with temperature and hydrogen content. For unstable austenitic steel, low temperature and high hydrogen content favored intergranular fracture while microvoid coalescence dominated at a low hydrogen content. The interpretation of these phenomena is based on the tendency for stress-induced phase transformation, the different hydrogen diffusivity and solubility in ferrite and austenite, and outgassing from the crack tip. After comparing the embrittlement due to internal hydrogen with that in external hydrogen, it is concluded that the critical hydrogen distribution for the onset of subcritical crack growth is reached at a location that is very near the crack tip.

  4. Measurement and analysis of critical crack tip processes during fatigue crack growth

    NASA Technical Reports Server (NTRS)

    Davidson, D. L.; Hudak, S. J.; Dexter, R. J.

    1985-01-01

    The mechanics of fatigue crack growth under constant-amplitudes and variable-amplitude loading were examined. Critical loading histories involving relatively simple overload and overload/underload cycles were studied to provide a basic understanding of the underlying physical processes controlling crack growth. The material used for this study was 7091-T7E69, a powder metallurgy aluminum alloy. Local crack-tip parameters were measured at various times before, during, and after the overloads, these include crack-tip opening loads and displacements, and crack-tip strain fields. The latter were useed, in combination with the materials cyclic and monotonic stress-strain properties, to compute crack-tip residual stresses. The experimental results are also compared with analytical predictions obtained using the FAST-2 computer code. The sensitivity of the analytical model to constant-amplitude fatigue crack growth rate properties and to through-thickness constrain are studied.

  5. Role of hydrogen on the incipient crack tip deformation behavior in α-Fe: An atomistic perspective

    NASA Astrophysics Data System (ADS)

    Adlakha, I.; Solanki, K. N.

    2018-01-01

    A crack tip in α-Fe presents a preferential trap site for hydrogen, and sufficient concentration of hydrogen can change the incipient crack tip deformation response, causing a transition from a ductile to a brittle failure mechanism for inherently ductile alloys. In this work, the effect of hydrogen segregation around the crack tip on deformation in α-Fe was examined using atomistic simulations and the continuum based Rice-Thompson criterion for various modes of fracture (I, II, and III). The presence of a hydrogen rich region ahead of the crack tip was found to cause a decrease in the critical stress intensity factor required for incipient deformation for various crack orientations and modes of fracture examined here. Furthermore, the triaxial stress state ahead of the crack tip was found to play a crucial role in determining the effect of hydrogen on the deformation behavior. Overall, the segregation of hydrogen atoms around the crack tip enhanced both dislocation emission and cleavage behavior suggesting that hydrogen has a dual role during the deformation in α-Fe.

  6. Crack tip fracture toughness of base glasses for dental restoration glass-ceramics using crack opening displacements.

    PubMed

    Deubener, J; Höland, M; Höland, W; Janakiraman, N; Rheinberger, V M

    2011-10-01

    The critical stress intensity factor, also known as the crack tip toughness K(tip), was determined for three base glasses, which are used in the manufacture of glass-ceramics. The glasses included the base glass for a lithium disilicate glass-ceramic, the base glass for a fluoroapatite glass-ceramic and the base glass for a leucite glass-ceramic. These glass-ceramic are extensively used in the form of biomaterials in restorative dental medicine. The crack tip toughness was established by using crack opening displacement profiles under experimental conditions. The crack was produced by Vickers indentation. The crack tip toughness parameters determined for the three glass-ceramics differed quite significantly. The crack tip parameters of the lithium disilicate base glass and the leucite base glass were higher than that of the fluoroapatite base glass. This last material showed glass-in-glass phase separation. The discussion of the results clearly shows that the droplet glass phase is softer than the glass matrix. Therefore, the authors conclude that a direct relationship exists between the chemical nature of the glasses and the crack tip parameter. Copyright © 2011 Elsevier Ltd. All rights reserved.

  7. A viscoplastic study of crack-tip deformation and crack growth in a nickel-based superalloy at elevated temperature

    NASA Astrophysics Data System (ADS)

    Zhao, L. G.; Tong, J.

    Viscoplastic crack-tip deformation behaviour in a nickel-based superalloy at elevated temperature has been studied for both stationary and growing cracks in a compact tension (CT) specimen using the finite element method. The material behaviour was described by a unified viscoplastic constitutive model with non-linear kinematic and isotropic hardening rules, and implemented in the finite element software ABAQUS via a user-defined material subroutine (UMAT). Finite element analyses for stationary cracks showed distinctive strain ratchetting behaviour near the crack tip at selected load ratios, leading to progressive accumulation of tensile strain normal to the crack-growth plane. Results also showed that low frequencies and superimposed hold periods at peak loads significantly enhanced strain accumulation at crack tip. Finite element simulation of crack growth was carried out under a constant Δ K-controlled loading condition, again ratchetting was observed ahead of the crack tip, similar to that for stationary cracks. A crack-growth criterion based on strain accumulation is proposed where a crack is assumed to grow when the accumulated strain ahead of the crack tip reaches a critical value over a characteristic distance. The criterion has been utilized in the prediction of crack-growth rates in a CT specimen at selected loading ranges, frequencies and dwell periods, and the predictions were compared with the experimental results.

  8. Mechanical improvement of metal reinforcement rings for a finite ring-shaped superconducting bulk

    NASA Astrophysics Data System (ADS)

    Huang, Chen-Guang; Zhou, You-He

    2018-03-01

    As a key technique, reinforcement of type-II superconducting bulks with metal rings can efficiently improve their mechanical properties to enhance the maximum trapped field. In this paper, we study the magnetostrictive and fracture behaviors of a finite superconducting ring bulk reinforced by three typical reinforcing structures composed of metal rings during the magnetizing process by means of the minimization of magnetic energy and the finite element method. After a field-dependent critical current density is adopted, the magnetostriction, pinning-induced stress, and crack tip stress intensity factor are calculated considering the demagnetization effects. The results show that the mechanical properties of the ring bulk are strongly dependent on the reinforcing structure and the material and geometrical parameters of the metal rings. Introducing the metal ring can significantly reduce the hoop stress, and the reduction effect by internal reinforcement is much improved relative to external reinforcement. By comparison, bilateral reinforcement seems to be the best candidate structure. Only when the metal rings have particular Young's modulus and radial thickness will they contribute to improve the mechanical properties the most. In addition, if an edge crack is pre-existing in the ring bulk, the presence of metal rings can effectively avoid crack propagation since it reduces the crack tip stress intensity factor by nearly one order of magnitude.

  9. The use of Electronic Speckle Pattern Interferometry (ESPI) in the crack propagation analysis of epoxy resins

    NASA Astrophysics Data System (ADS)

    Herbert, D. P.; Al-Hassani, A. H. M.; Richardson, M. O. W.

    The ESPI (electronic speckle pattern interferometry) technique at high magnification levels is demonstrated to be of considerable value in interpreting the fracture behaviour of epoxy resins. The fracture toughness of powder coating system at different thicknesses has been measured using a TDCB (tapered double cantilever beam) technique and the deformation zone at the tip of the moving crack monitored. Initial indications are that a mechanistic changeover occurs at a critical bond (coating) thickness and that this is synonymous with the occurence of a fracture toughness maximum, which in turn is associated with a deformation zone of specific diameter.

  10. Modeling and Characterization of Near-Crack-Tip Plasticity from Micro- to Nano-Scales

    NASA Technical Reports Server (NTRS)

    Glaessgen, Edward H.; Saether, Erik; Hochhalter, Jacob; Smith, Stephen W.; Ransom, Jonathan B.; Yamakov, Vesselin; Gupta, Vipul

    2010-01-01

    Methodologies for understanding the plastic deformation mechanisms related to crack propagation at the nano-, meso- and micro-length scales are being developed. These efforts include the development and application of several computational methods including atomistic simulation, discrete dislocation plasticity, strain gradient plasticity and crystal plasticity; and experimental methods including electron backscattered diffraction and video image correlation. Additionally, methodologies for multi-scale modeling and characterization that can be used to bridge the relevant length scales from nanometers to millimeters are being developed. The paper focuses on the discussion of newly developed methodologies in these areas and their application to understanding damage processes in aluminum and its alloys.

  11. Modeling and Characterization of Near-Crack-Tip Plasticity from Micro- to Nano-Scales

    NASA Technical Reports Server (NTRS)

    Glaessgen, Edward H.; Saether, Erik; Hochhalter, Jacob; Smith, Stephen W.; Ransom, Jonathan B.; Yamakov, Vesselin; Gupta, Vipul

    2011-01-01

    Methodologies for understanding the plastic deformation mechanisms related 10 crack propagation at the nano, meso- and micro-length scales are being developed. These efforts include the development and application of several computational methods including atomistic simulation, discrete dislocation plasticity, strain gradient plasticity and crystal plasticity; and experimental methods including electron backscattered diffraction and video image correlation. Additionally, methodologies for multi-scale modeling and characterization that can be used to bridge the relevant length scales from nanometers to millimeters are being developed. The paper focuses on the discussion of newly developed methodologies in these areas and their application to understanding damage processes in aluminum and its alloys.

  12. Traction–separation relationships for hydrogen induced grain boundary embrittlement in nickel via molecular dynamics simulations

    DOE PAGES

    Barrows, Wesley; Dingreville, Rémi; Spearot, Douglas

    2015-10-19

    A statistical approach combined with molecular dynamics simulations is used to study the influence of hydrogen on intergranular decohesion. This methodology is applied to a Ni Σ3(112)[11¯0] symmetric tilt grain boundary. Hydrogenated grain boundaries with different H concentrations are constructed using an energy minimization technique with initial H atom positions guided by Monte Carlo simulation results. Decohesion behavior is assessed through extraction of a traction–separation relationship during steady-state crack propagation in a statistically meaningful approach, building upon prior work employing atomistic cohesive zone volume elements (CZVEs). A sensitivity analysis is performed on the numerical approach used to extract the traction–separationmore » relationships, clarifying the role of CZVE size, threshold parameters necessary to differentiate elastic and decohesion responses, and the numerical averaging technique. Results show that increasing H coverage at the Ni Σ3(112)[11¯0] grain boundary asymmetrically influences the crack tip velocity during propagation, leads to a general decrease in the work of separation required for crack propagation, and provides a reduction in the peak stress in the extracted traction–separation relationship. Furthermore the present framework offers a meaningful vehicle to pass atomistically derived interfacial behavior to higher length scale formulations for intergranular fracture.« less

  13. Transient cracks and triple junctions induced by Cocos-Nazca propagating rift

    NASA Astrophysics Data System (ADS)

    Schouten, H.; Smith, D. K.; Zhu, W.; Montesi, L. G.; Mitchell, G. A.; Cann, J. R.

    2009-12-01

    The Galapagos triple junction is a ridge-ridge-ridge triple junction where the Cocos, Nazca, and Pacific plates meet around the Galapagos microplate (GMP). On the Cocos plate, north of the large gore that marks the propagating Cocos-Nazca (C-N) Rift, a 250-km-long and 50-km-wide band of NW-SE-trending cracks crosscuts the N-S-trending abyssal hills of the East Pacific Rise (EPR). These appear as a succession of minor rifts, accommodating some NE-SW extension of EPR-generated seafloor. The rifts successively intersected the EPR in triple junctions at distances of 50-100 km north of the tip of the C-N Rift. We proposed a simple crack interaction model to explain the location of the transient rifts and their junction with the EPR. The model predicts that crack locations are controlled by the stress perturbation along the EPR, induced by the dominant C-N Rift, and scaled by the distance of its tip to the EPR (Schouten et al., 2008). The model also predicts that tensile stresses are symmetric about the C-N Rift and thus, similar cracks should have occurred south of the C-N Rift prior to formation of the GMP about 1 Ma. There were no data at the time to test this prediction. In early 2009 (AT 15-41), we mapped an area on the Nazca plate south of the C-N rift out to 4 Ma. The new bathymetric data confirm the existence of a distinctive pattern of cracks south of the southern C-N gore that mirrors the pattern on the Cocos plate until about 1 Ma, and lends support to the crack interaction model. The envelope of the symmetric cracking pattern indicates that the distance between the C-N Rift tip and the EPR varied between 40 and 65 km during this time (1-4 Ma). The breakdown of the symmetry at 1 Ma accurately dates the onset of a southern plate boundary of the GMP, now Dietz Deep Rift. At present, the southern rift boundary of the GMP joins the EPR with a steep-sided, 80 km long ridge. This ridge releases the stress perturbation otherwise induced along the EPR by elastic interaction with the C-N Rift and prevents the formation of minor rifts of the type in the North of the C-N Rift. However, the seafloor displays traces of rifts formed as the Dietz Deep Rift was approaching the EPR. In fact, the present day ridge appears to have originated as one of these minor rifts, probably stabilized by enhanced magma supply from a nearby volcano at the southwestern end of Dietz Deep.

  14. Linking Grain Boundary Microstructure to Stress Corrosion Cracking of Cold Rolled Alloy 690 in PWR Primary Water

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bruemmer, Stephen M.; Olszta, Matthew J.; Toloczko, Mychailo B.

    2012-10-01

    Grain boundary microstructures and microchemistries are examined in cold-rolled alloy 690 tubing and plate materials and comparisons are made to intergranular stress corrosion cracking (IGSCC) behavior in PWR primary water. Chromium carbide precipitation is found to be a key aspect for materials in both the mill annealed and thermally treated conditions. Cold rolling to high levels of reduction was discovered to produce small IG voids and cracked carbides in alloys with a high density of grain boundary carbides. The degree of permanent grain boundary damage from cold rolling was found to depend directly on the initial IG carbide distribution. Formore » the same degree of cold rolling, alloys with few IG precipitates exhibited much less permanent damage. Although this difference in grain boundary damage appears to correlate with measured SCC growth rates, crack tip examinations reveal that cracked carbides appeared to blunt propagation of IGSCC cracks in many cases. Preliminary results suggest that the localized grain boundary strains and stresses produced during cold rolling promote IGSCC susceptibility and not the cracked carbides and voids.« less

  15. Determination of dynamic fracture toughness using a new experimental technique

    NASA Astrophysics Data System (ADS)

    Cady, Carl M.; Liu, Cheng; Lovato, Manuel L.

    2015-09-01

    In other studies dynamic fracture toughness has been measured using Charpy impact and modified Hopkinson Bar techniques. In this paper results will be shown for the measurement of fracture toughness using a new test geometry. The crack propagation velocities range from ˜0.15 mm/s to 2.5 m/s. Digital image correlation (DIC) will be the technique used to measure both the strain and the crack growth rates. The boundary of the crack is determined using the correlation coefficient generated during image analysis and with interframe timing the crack growth rate and crack opening can be determined. A comparison of static and dynamic loading experiments will be made for brittle polymeric materials. The analysis technique presented by Sammis et al. [1] is a semi-empirical solution, however, additional Linear Elastic Fracture Mechanics analysis of the strain fields generated as part of the DIC analysis allow for the more commonly used method resembling the crack tip opening displacement (CTOD) experiment. It should be noted that this technique was developed because limited amounts of material were available and crack growth rates were to fast for a standard CTOD method.

  16. An experimental study on fatigue performance of cryogenic metallic materials for IMO type B tank

    NASA Astrophysics Data System (ADS)

    Lee, Jin-Sung; You, Won-Hyo; Yoo, Chang-Hyuk; Kim, Kyung-Su; Kim, Yooil

    2013-12-01

    Three materials SUS304, 9% Ni steel and Al 5083-O alloy, which are considered possible candidate for International Maritime Organization (IMO) type B Cargo Containment System, were studied. Monotonic tensile, fatigue, fatigue crack growth rate and Crack Tip Opening Displacement tests were carried out at room, intermediate low (-100 °C) and cryogenic (-163 °C) temperatures. The initial yield and tensile strengths of all materials tended to increase with decreasing temperature, whereas the change in elastic modulus was not as remarkable. The largest and smallest improvement ratio of the initial yield strengths due to a temperature reduction were observed in the SUS304 and Al 5083- O alloy, respectively. The fatigue strengths of the three materials increased with decreasing temperature. The largest increase in fatigue strength was observed in the Al 5083-O alloy, whereas the 9% Ni steel sample showed the smallest increase. In the fatigue crack growth rate test, SUS304 and Al 5083-O alloy showed a decrease in the crack propagation rate, due to decrease in temperature, but no visible improvement in da/dN was observed in the case of 9% Ni steel. In the Crack Tip Opening Displacement (CTOD) test, CTOD values were converted to critical crack length for the comparison with different thickness specimens. The critical crack length tended to decrease in the case of SUS304 and increase for the Al 5083-O alloy with decreasing temperature. In case of 9% Ni steel, change of critical crack length was not observed due to temperature decrease. In addition, the changing material properties according to the temperature of the LNG tank were analyzed according to the international code for the construction and equipment of ships carrying liquefied gases in bulk (IGC code) and the rules of classifications.

  17. Dynamic fields near a crack tip growing in an elastic-perfectly-plastic solid

    NASA Technical Reports Server (NTRS)

    Nemat-Nasser, S.; Gao, Y. C.

    1983-01-01

    A full asymptotic solution is presented for the fields in the neighborhood of the tip of a steadily advancing crack in an incompressible elastic-perfectly-plastic solid. There are four findings for mode I crack growth in the plane strain condition. The first is that the entire crack tip in steady crack growth is surrounded by a plastic region and that no elastic unloading is predicted by the complete dynamic asymptotic solution. The second is that, in contrast to the quasi-static solution, the dynamic solution yields strain fields with a logarithmic singularity everywhere near the crack tip. The third is that whereas the stress field varies throughout the entire crack tip neighborhood, it does not exhibit behavior that can be approximated by a constant field followed by an essentially centered-fan field and then by another constant field, especially for small crack growth speeds. The fourth finding is that there are two shock fronts emanating from the crack tip across which certain stress and strain components undergo jump discontinuities. After reviewing the mode III steady-state crack growth, it is concluded that ductile fracture criteria for nonstationary cracks must be based on solutions that include the inertia effects and that for this purpose quasi-static solutions may be inadequate.

  18. Development of chloride-induced corrosion in pre-cracked RC beams under sustained loading: Effect of load-induced cracks, concrete cover, and exposure conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yu, Linwen; Université de Sherbrooke, Quebec; François, Raoul, E-mail: raoul.francois@insa-toulouse.fr

    2015-01-15

    This paper deals with corrosion initiation and propagation in pre-cracked reinforced concrete beams under sustained loading during exposure to a chloride environment. Specimen beams that were cast in 2010 were compared to specimens cast in 1984. The only differences between the two sets of beams were the casting direction in relation to tensile reinforcement and the exposure conditions in the salt-fog chamber. The cracking maps, corrosion maps, chloride profiles, and cross-sectional loss of one group of two beams cast in 2010 were studied and their calculated corrosion rates were compared to that of beams cast in 1984 in order tomore » investigate the factors influencing the natural corrosion process. Experimental results show that, after rapid initiation of corrosion at the crack tip, the corrosion process practically halted and the time elapsing before corrosion resumed depended on the exposure conditions and cover depth.« less

  19. Modeling of slow crack propagation in heterogeneous rocks

    NASA Astrophysics Data System (ADS)

    Lengliné, Olivier; Stormo, Arne; Hansen, Alex; Schmittbuhl, Jean

    2015-04-01

    Crack propagation in heterogeneous media is a rich problem which involves the interplay of various physical processes. The problem has been intensively investigated theoretically, numerically, and experimentally, but a unifying model capturing all the experimental features has not been entirely achieved despite its broad range of implications in Earth sciences problems. The slow propagation of a crack front where long range elastic interactions are dominant, is of crucial importance to fill the gap between experiments and models. Several theoretical and numerical works have been devoted to quasi-static models. Such models give rise to an intermittent local activity characterized by a depinning transition and can be viewed as a critical phenomenon. However these models fail to reproduce all experimental conditions, notably the front morphology does not display any cross-over length with two different roughness exponents above and below the cross-over as observed experimentally. Here, we compare experimental observations of a slow interfacial crack propagation along an heterogeneous interface to numerical simulations from a cantilever fiber bundle model. The model consists of a planar set of brittle fibers between an elastic half-space and a rigid square root shaped plate which loads the system in a cantilever configuration. The latter is shown to provide an improved opening and stress field in the process zone around the crack tip. The model shares a similar scale invariant roughening of the crack front both at small and large scales and a similar power law distribution of the local velocity of the crack front to experiments. Implications for induced seismicity at the brittle-creep transition are discussed. We show that a creep route for induced seismicity is possible when heterogeneities exist along the fault. Indeed, seismic event occurrences in time and space are in strong relation with the development of the aseismic motion recorded during the experiment and the model. We also infer the statistical properties of the organization of the seismicity that shows strong space-time clustering. We conclude that aseismic processes might drive seismicity in the brittle-creep regime.

  20. Molecular dynamics simulations of intergranular fracture in UO2 with nine empirical interatomic potentials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yongfeng Zhang; Paul C Millett; Michael R Tonks

    The intergranular fracture behavior of UO2 was studied using molecular dynamics simulations with a bicrystal model. The anisotropic fracture behavior due to the different grain boundary characters was investigated with the View the MathML source symmetrical tilt S5 and the View the MathML source symmetrical tilt S3 ({1 1 1} twin) grain boundaries. Nine interatomic potentials, seven rigid-ion plus two core–shell ones, were utilized to elucidate possible potential dependence. Initiating from a notch, crack propagation along grain boundaries was observed for most potentials. The S3 boundary was found to be more prone to fracture than the S5 one, indicated bymore » a lower energy release rate associated with the former. However, some potential dependence was identified on the existence of transient plastic deformation at crack tips, and the results were discussed regarding the relevant material properties including the excess energies of metastable phases and the critical energy release rate for intergranular fracture. In general, local plasticity at crack tips was observed in fracture simulations with potentials that predict low excess energies for metastable phases and high critical energy release rates for intergranular fracture.« less

  1. Fracture-induced mechanophore activation and solvent healing in poly(methyl methacrylate)

    NASA Astrophysics Data System (ADS)

    Celestine, Asha-Dee N.

    Damage detection is a highly desirable functionality in engineering materials. The potential of using mechanophores, stress-sensitive molecules, as material stress sensors has been established through tensile, compressive and shear tests. Spiropyran (SP) has been the chosen mechanophore and this molecule undergoes a ring opening reaction (activation) upon the application of mechanical stress. This activation is accompanied by a change in color and fluorescence as the colorless SP is converted to the highly colored merocyanine (MC) form. One requirement for SP activation in bulk polymers is large scale plastic deformation. In order to induce this plastic deformation during fracture testing of SP-linked brittle polymers such as poly(methyl methacrylate) (PMMA), rubber nanoparticles can be incorporated into the matrix material. These nanoparticles facilitate the increased shear yielding necessary for SP activation during mechanical testing. Cross-linked SP-PMMA, containing 7.3 wt% rubber nanoparticles is synthesized via a free radical polymerization. Specimens of this material are fabricated for Single Edge Notch Tension (SENT) testing. The rubber toughened SP-PMMA specimens are first prestretched to approximately 35% axial strain to align the spiropyran molecules in the direction of applied force and thus increase the likelihood of fracture-induced activation. After prestretching the specimens are pre-notched and irradiated with 532 nm wavelength light to revert the colored merocyanine to the colorless spiropyran form. Specimens are then fracture tested to failure using the SENT test. The evolution of mechanophore activation is monitored via in situ fluorescence imaging and inspection of the specimens after testing. Activation of the SP is observed ahead of the crack tip and along the propagated crack. Also, the degree of activation is found to increase with crack growth and the size of the activation zone is linearly correlated to the size of the plastic zone ahead of the crack tip. Control specimens in which the mechanophore is absent or tethered in positions in which no mechanochemical activation is expected are also tested and exhibit no change in color or fluorescence intensity with crack propagation. The relationship between fracture-induced mechanophore activation in rubber toughened SP-PMMA and the strain and stress ahead of the propagating crack is also studied. SP activation is again detected and quantified by in situ fluorescence imaging. Digital Image Correlation (DIC) is used to measure the strain ahead of the crack tip. The corresponding stress is generated through the use of the Hutchinson-Rice-Rosengren (HRR) singularity field equations. Mechanophore activation ahead of the crack tip is shown to follow a power law distribution that is closely aligned with strain. The potential of SP as a damage sensor is explored further by incorporating the spiropyran into the core of rubber nanoparticles. SP-linked rubber nanoparticles are synthesized using a seeded emulsion polymerization process and incorporated into cross-linked PMMA at a concentration of 5 wt%. Cylindrical specimens are torsion tested and the activation of the SP within the nanoparticles is monitored via full field fluorescence imaging. SP activation within the core is shown to increase with shear strain. Autonomous damage repair in PMMA is also investigated. The first demonstration of fully autonomous self-healing in PMMA is achieved through the use of solvent microcapsules. Solvent microcapsules with a PMMA-anisole liquid core are prepared and embedded within a linear PMMA matrix. Specimens of the microcapsule-loaded material are then fabricated for Double Cleavage Drilled Compression (DCDC) fracture testing. The DCDC specimens, containing increasing concentrations of solvent microcapsules, are tested and then allowed to heal for a fixed period of time before a second DCDC test. The healing efficiency of each material system is evaluated based on the recovery of fracture toughness and is shown to be dependent on healing time and microcapsule concentration. (Abstract shortened by UMI.).

  2. Fracture toughness of materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burns, S.J.

    Crack tip dislocation emission in bulk specimens have been measured in single crystal specimens and the measurements are well below the accepted theoretical values for dislocation emission. The image forces on a dislocation due to the presence of a semi-infinite crack are used to calculate the potential energy of the dislocation around the crack. Expressions for the radial and tangential forces and for slip and climb forces have been found. Crack tip deformation in Mode I and Mode II fractures on both {l brace}100{r brace} and {l brace}110{r brace} planes have been observed in crystals of LiF. The deformation ismore » shown to nearly completely shield {l brace}110{r brace} plane cracks and prevent their propagation while deformation is less effective in shielding {l brace}100{r brace} plane cracks. The fracture toughness of MgO-partially-stabilized ZrO{sub 2} exhibiting transformation toughening been measured. The equations of linear elastic fracture mechanics have been self-consistantly formulated to include the residual displacement from the transformation wake. MgO single crystals were fatigued in plastic strain control at elevated temperatures. At high temperatures, dense bundles of dislocations were observed in transmission electron microscopy aligned perpendicular to the Burgers' vector directions. The thermodynamics of a superconducting second order phase transformation has been related to jumps in physical properties. A simple energy balance, without assuming an equation of state, is used to relate the rate of change of state variables to measurable physical properties. There are no preconceived assumptions about the superconducting mechanism.« less

  3. Fatigue and fracture assessment of cracks in steel elements using acoustic emission

    NASA Astrophysics Data System (ADS)

    Nemati, Navid; Metrovich, Brian; Nanni, Antonio

    2011-04-01

    Single edge notches provide a very well defined load and fatigue crack size and shape environment for estimation of the stress intensity factor K, which is not found in welded elements. ASTM SE(T) specimens do not appear to provide ideal boundary conditions for proper recording of acoustic wave propagation and crack growth behavior observed in steel bridges, but do provide standard fatigue crack growth rate data. A modified versions of the SE(T) specimen has been examined to provide small scale specimens with improved acoustic emission(AE) characteristics while still maintaining accuracy of fatigue crack growth rate (da/dN) versus stress intensity factor (ΔK). The specimens intend to represent a steel beam flange subjected to pure tension, with a surface crack growing transverse to a uniform stress field. Fatigue test is conducted at low R ratio. Analytical and numerical studies of stress intensity factor are developed for single edge notch test specimens consistent with the experimental program. ABAQUS finite element software is utilized for stress analysis of crack tips. Analytical, experimental and numerical analysis were compared to assess the abilities of AE to capture a growing crack.

  4. The effect of crack blunting on the competition between dislocation nucleation and cleavage

    NASA Astrophysics Data System (ADS)

    Fischer, Lisa L.; Beltz, Glenn E.

    2001-03-01

    To better understand the ductile versus brittle fracture behavior of crystalline materials, attention should be directed towards physically realistic crack geometries. Currently, continuum models of ductile versus brittle behavior are typically based on the analysis of a pre-existing sharp crack in order to use analytical solutions for the stress fields around the crack tip. This paper examines the effects of crack blunting on the competition between dislocation nucleation and atomic decohesion using continuum methods. We accomplish this by assuming that the crack geometry is elliptical, which has the primary advantage that the stress fields are available in closed form. These stress field solutions are then used to calculate the thresholds for dislocation nucleation and atomic decohesion. A Peierls-type framework is used to obtain the thresholds for dislocation nucleation, in which the region of the slip plane ahead of the crack develops a distribution of slip discontinuity prior to nucleation. This slip distribution increases as the applied load is increased until an instability is reached and the governing integral equation can no longer be solved. These calculations are carried out for various crack tip geometries to ascertain the effects of crack tip blunting. The thresholds for atomic decohesion are calculated using a cohesive zone model, in which the region of the crack front develops a distribution of opening displacement prior to atomic decohesion. Again, loading of the elliptical crack tip eventually results in an instability, which marks the onset of crack advance. These calculations are carried out for various crack tip geometries. The results of these separate calculations are presented as the critical energy release rates versus the crack tip radius of curvature for a given crack length. The two threshold curves are compared simultaneously to determine which failure mode is energetically more likely at various crack tip curvatures. From these comparisons, four possible types of material fracture behavior are identified: intrinsically brittle, quasi-brittle, intrinsically ductile, and quasi-ductile. Finally, real material examples are discussed.

  5. Dynamics of Nanoscale Grain-Boundary Decohesion in Aluminum by Molecular-Dynamics Simulation

    NASA Technical Reports Server (NTRS)

    Yamakov, V.; Saether, E.; Phillips, D. R.; Glaessegen, E. H.

    2007-01-01

    The dynamics and energetics of intergranular crack growth along a flat grain boundary in aluminum is studied by a molecular-dynamics simulation model for crack propagation under steady-state conditions. Using the ability of the molecular-dynamics simulation to identify atoms involved in different atomistic mechanisms, it was possible to identify the energy contribution of different processes taking place during crack growth. The energy contributions were divided as: elastic energy, defined as the potential energy of the atoms in fcc crystallographic state; and plastically stored energy, the energy of stacking faults and twin boundaries; grain-boundary and surface energy. In addition, monitoring the amount of heat exchange with the molecular-dynamics thermostat gives the energy dissipated as heat in the system. The energetic analysis indicates that the majority of energy in a fast growing crack is dissipated as heat. This dissipation increases linearly at low speed, and faster than linear at speeds approaching 1/3 the Rayleigh wave speed when the crack tip becomes dynamically unstable producing periodic dislocation bursts until the crack is blunted.

  6. Investigation of Mechanical Properties and Fracture Simulation of Solution-Treated AA 5754

    NASA Astrophysics Data System (ADS)

    Kumar, Pankaj; Singh, Akhilendra

    2017-10-01

    In this work, mechanical properties and fracture toughness of as-received and solution-treated aluminum alloy 5754 (AA 5754) are experimentally evaluated. Solution heat treatment of the alloy is performed at 530 °C for 2 h, and then, quenching is done in water. Yield strength, ultimate tensile strength, impact toughness, hardness, fatigue life, brittle fracture toughness (K_{Ic} ) and ductile fracture toughness (J_{Ic} ) are evaluated for as-received and solution-treated alloy. Extended finite element method has been used for the simulation of tensile and fracture behavior of material. Heaviside function and asymptotic crack tip enrichment functions are used for modelling of the crack in the geometry. Ramberg-Osgood material model coupled with fracture energy is used to simulate the crack propagation. Fracture surfaces obtained from various mechanical tests are characterized by scanning electron microscopy.

  7. Creep, Fatigue and Environmental Interactions and Their Effect on Crack Growth in Superalloys

    NASA Technical Reports Server (NTRS)

    Telesman, J.; Gabb, T. P.; Ghosn, L. J.; Smith, T.

    2017-01-01

    Complex interactions of creep/fatigue/environment control dwell fatigue crack growth (DFCG) in superalloys. Crack tip stress relaxation during dwells significantly changes the crack driving force and influence DFCG. Linear Elastic Fracture Mechanics, Kmax, parameter unsuitable for correlating DFCG behavior due to extensive visco-plastic deformation. Magnitude of remaining crack tip axial stresses controls DFCG resistance due to the brittle-intergranular nature of the crack growth process. Proposed a new empirical parameter, Ksrf, which incorporates visco-plastic evolution of the magnitude of remaining crack tip stresses. Previous work performed at 704C, extend the work to 760C.

  8. Effects of crack tip plastic zone on corrosion fatigue cracking of alloy 690(TT) in pressurized water reactor environments

    NASA Astrophysics Data System (ADS)

    Xiao, J.; Qiu, S. Y.; Chen, Y.; Fu, Z. H.; Lin, Z. X.; Xu, Q.

    2015-01-01

    Alloy 690(TT) is widely used for steam generator tubes in pressurized water reactor (PWR), where it is susceptible to corrosion fatigue. In this study, the corrosion fatigue behavior of Alloy 690(TT) in simulated PWR environments was investigated. The microstructure of the plastic zone near the crack tip was investigated and labyrinth structures were observed. The relationship between the crack tip plastic zone and fatigue crack growth rates and the environment factor Fen was illuminated.

  9. Implicit level set algorithms for modelling hydraulic fracture propagation.

    PubMed

    Peirce, A

    2016-10-13

    Hydraulic fractures are tensile cracks that propagate in pre-stressed solid media due to the injection of a viscous fluid. Developing numerical schemes to model the propagation of these fractures is particularly challenging due to the degenerate, hypersingular nature of the coupled integro-partial differential equations. These equations typically involve a singular free boundary whose velocity can only be determined by evaluating a distinguished limit. This review paper describes a class of numerical schemes that have been developed to use the multiscale asymptotic behaviour typically encountered near the fracture boundary as multiple physical processes compete to determine the evolution of the fracture. The fundamental concepts of locating the free boundary using the tip asymptotics and imposing the tip asymptotic behaviour in a weak form are illustrated in two quite different formulations of the governing equations. These formulations are the displacement discontinuity boundary integral method and the extended finite-element method. Practical issues are also discussed, including new models for proppant transport able to capture 'tip screen-out'; efficient numerical schemes to solve the coupled nonlinear equations; and fast methods to solve resulting linear systems. Numerical examples are provided to illustrate the performance of the numerical schemes. We conclude the paper with open questions for further research. This article is part of the themed issue 'Energy and the subsurface'. © 2016 The Author(s).

  10. Implicit level set algorithms for modelling hydraulic fracture propagation

    PubMed Central

    2016-01-01

    Hydraulic fractures are tensile cracks that propagate in pre-stressed solid media due to the injection of a viscous fluid. Developing numerical schemes to model the propagation of these fractures is particularly challenging due to the degenerate, hypersingular nature of the coupled integro-partial differential equations. These equations typically involve a singular free boundary whose velocity can only be determined by evaluating a distinguished limit. This review paper describes a class of numerical schemes that have been developed to use the multiscale asymptotic behaviour typically encountered near the fracture boundary as multiple physical processes compete to determine the evolution of the fracture. The fundamental concepts of locating the free boundary using the tip asymptotics and imposing the tip asymptotic behaviour in a weak form are illustrated in two quite different formulations of the governing equations. These formulations are the displacement discontinuity boundary integral method and the extended finite-element method. Practical issues are also discussed, including new models for proppant transport able to capture ‘tip screen-out’; efficient numerical schemes to solve the coupled nonlinear equations; and fast methods to solve resulting linear systems. Numerical examples are provided to illustrate the performance of the numerical schemes. We conclude the paper with open questions for further research.  This article is part of the themed issue ‘Energy and the subsurface’. PMID:27597787

  11. Progressive failure of sheeted rock slopes: the 2009–2010 Rhombus Wall rock falls in Yosemite Valley, California, USA

    USGS Publications Warehouse

    Stock, Greg M.; Martel, Stephen J.; Collins, Brian D.; Harp, Edwin L.

    2012-01-01

    Progressive rock-fall failures in natural rock slopes are common in many environments, but often elude detailed quantitative documentation and analysis. Here we present high-resolution photography, video, and laser scanning data that document spatial and temporal patterns of a 15-month-long sequence of at least 14 rock falls from the Rhombus Wall, a sheeted granitic cliff in Yosemite Valley, California. The rock-fall sequence began on 26 August 2009 with a small failure at the tip of an overhanging rock slab. Several hours later, a series of five rock falls totaling 736 m3progressed upward along a sheeting joint behind the overhanging slab. Over the next 3 weeks, audible cracking occurred on the Rhombus Wall, suggesting crack propagation, while visual monitoring revealed opening of a sheeting joint adjacent to the previous failure surface. On 14 September 2009 a 110 m3 slab detached along this sheeting joint. Additional rock falls between 30 August and 20 November 2010, totaling 187 m3, radiated outward from the initial failure area along cliff (sub)parallel sheeting joints. We suggest that these progressive failures might have been related to stress redistributions accompanying propagation of sheeting joints behind the cliff face. Mechanical analyses indicate that tensile stresses should occur perpendicular to the cliff face and open sheeting joints, and that sheeting joints should propagate parallel to a cliff face from areas of stress concentrations. The analyses also account for how sheeting joints can propagate to lengths many times greater than their depths behind cliff faces. We posit that as a region of failure spreads across a cliff face, stress concentrations along its margin will spread with it, promoting further crack propagation and rock falls.

  12. A numerical study of crack tip constraint in ductile single crystals

    NASA Astrophysics Data System (ADS)

    Patil, Swapnil D.; Narasimhan, R.; Mishra, R. K.

    In this work, the effect of crack tip constraint on near-tip stress and deformation fields in a ductile FCC single crystal is studied under mode I, plane strain conditions. To this end, modified boundary layer simulations within crystal plasticity framework are performed, neglecting elastic anisotropy. The first and second terms of the isotropic elastic crack tip field, which are governed by the stress intensity factor K and T-stress, are prescribed as remote boundary conditions and solutions pertaining to different levels of T-stress are generated. It is found that the near-tip deformation field, especially, the development of kink or slip shear bands, is sensitive to the constraint level. The stress distribution and the size and shape of the plastic zone near the crack tip are also strongly influenced by the level of T-stress, with progressive loss of crack tip constraint occurring as T-stress becomes more negative. A family of near-tip fields is obtained which are characterized by two terms (such as K and T or J and a constraint parameter Q) as in isotropic plastic solids.

  13. Strain fields induced by kink band propagation in Cu-Nb nanolaminate composites

    DOE PAGES

    Nizolek, T. J.; Begley, M. R.; McCabe, R. J.; ...

    2017-07-01

    Kink band formation is a common deformation mode for anisotropic materials and has been observed in polymer matrix fiber composites, single crystals, geological formations, and recently in metallic nanolaminates. While numerous studies have been devoted to kink band formation, the majority do not consider the often rapid and unstable process of kink band propagation. In this paper, we take advantage of stable kink band formation in Cu-Nb nanolaminates to quantitatively map the local strain fields surrounding a propagating kink band during uniaxial compression. Kink bands are observed to initiate at specimen edges, propagate across the sample during a rising globalmore » stress, and induce extended strain fields in the non-kinked material surrounding the propagating kink band. Finally, it is proposed that these stress/strain fields significantly contribute to the total energy dissipated during kinking and, analogous to crack tip stress/strain fields, influence the direction of kink propagation and therefore the kink band inclination angle.« less

  14. A dynamic model of a cantilever beam with a closed, embedded horizontal crack including local flexibilities at crack tips

    NASA Astrophysics Data System (ADS)

    Liu, J.; Zhu, W. D.; Charalambides, P. G.; Shao, Y. M.; Xu, Y. F.; Fang, X. M.

    2016-11-01

    As one of major failure modes of mechanical structures subjected to periodic loads, embedded cracks due to fatigue can cause catastrophic failure of machineries. Understanding the dynamic characteristics of a structure with an embedded crack is helpful for early crack detection and diagnosis. In this work, a new three-segment beam model with local flexibilities at crack tips is developed to investigate the vibration of a cantilever beam with a closed, fully embedded horizontal crack, which is assumed to be not located at its clamped or free end or distributed near its top or bottom side. The three-segment beam model is assumed to be a linear elastic system, and it does not account for the nonlinear crack closure effect; the top and bottom segments always stay in contact at their interface during the beam vibration. It can model the effects of local deformations in the vicinity of the crack tips, which cannot be captured by previous methods in the literature. The middle segment of the beam containing the crack is modeled by a mechanically consistent, reduced bending moment. Each beam segment is assumed to be an Euler-Bernoulli beam, and the compliances at the crack tips are analytically determined using a J-integral approach and verified using commercial finite element software. Using compatibility conditions at the crack tips and the transfer matrix method, the nature frequencies and mode shapes of the cracked cantilever beam are obtained. The three-segment beam model is used to investigate the effects of local flexibilities at crack tips on the first three natural frequencies and mode shapes of the cracked cantilever beam. A stationary wavelet transform (SWT) method is used to process the mode shapes of the cracked cantilever beam; jumps in single-level SWT decomposition detail coefficients can be used to identify the length and location of an embedded horizontal crack.

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Merkle, J.G.

    In order to study effects of constraint on fracture toughness, it is important to select the right location within the crack-tip field for investigation. In 1950 Hill postulated that close to a circular notch tip the principal stress directions would be radial and circumferential, so that the plastic slip lines (maximum shear stress trajectories) would be logarithmic spirals. The resulting equation for stress normal to the notch symmetry plane, neglecting strain hardening, was identical to that for the circumferential stress near the bore of an ideally plastic thick-walled hollow cylinder under external radial tension, because the relevant geometries are identical.more » In 1969, Rice and Johnson developed a near crack-tip, plane strain, large-strain rigid-plastic analysis considering strain hardening and assuming an infinitely sharp initial crack tip. Shortly afterwards, Merkle, following Hill's suggestion, proposed an approximate analysis of the stresses and strains ahead of a blunted crack tip on the plane of symmetry, based on a circular blunted crack tip. The analysis amounted to a hollow cylinder analogy, including the effects of strain hardening. The original hollow cylinder analogy was based on small strain theory, and the calculated strain distributions did not agree well with the Rice and Johnson results very near the blunted crack tip. Therefore, the hollow cylinder analogy equations have been rederived, based on large strain theory, and the agreement with the Rice and Johnson results and other more recent numerical results is good. Calculations illustrate the effects of transverse strain on the principal stresses very close to a blunting crack tip and show that, theoretically, a singularity still exists at the tip of a blunting crack. 10 refs., 9 figs.« less

  16. Fracture toughness and fracture behavior of CLAM steel in the temperature range of 450 °C-550 °C

    NASA Astrophysics Data System (ADS)

    Zhao, Yanyun; Liang, Mengtian; Zhang, Zhenyu; Jiang, Man; Liu, Shaojun

    2018-04-01

    In order to analyze the fracture toughness and fracture behavior (J-R curves) of China Low Activation Martensitic (CLAM) steel under the design service temperature of Test Blanket Module of the International Thermonuclear Experimental Reactor, the quasi-static fracture experiment of CLAM steel was carried out under the temperature range of 450 °C-550 °C. The results indicated that the fracture behavior of CLAM steel was greatly influenced by test temperature. The fracture toughness increased slightly as the temperature increased from 450 °C to 500 °C. In the meanwhile, the fracture toughness at 550 °C could not be obtained due to the plastic deformation near the crack tip zone. The microstructure analysis based on the fracture topography and the interaction between dislocations and lath boundaries showed two different sub-crack propagation modes: growth along 45° of the main crack direction at 450 °C and growth perpendicular to the main crack at 500 °C.

  17. Fatigue life prediction modeling for turbine hot section materials

    NASA Technical Reports Server (NTRS)

    Halford, G. R.; Meyer, T. G.; Nelson, R. S.; Nissley, D. M.; Swanson, G. A.

    1989-01-01

    A major objective of the fatigue and fracture efforts under the NASA Hot Section Technology (HOST) program was to significantly improve the analytic life prediction tools used by the aeronautical gas turbine engine industry. This was achieved in the areas of high-temperature thermal and mechanical fatigue of bare and coated high-temperature superalloys. The cyclic crack initiation and propagation resistance of nominally isotropic polycrystalline and highly anisotropic single crystal alloys were addressed. Life prediction modeling efforts were devoted to creep-fatigue interaction, oxidation, coatings interactions, multiaxiality of stress-strain states, mean stress effects, cumulative damage, and thermomechanical fatigue. The fatigue crack initiation life models developed to date include the Cyclic Damage Accumulation (CDA) and the Total Strain Version of Strainrange Partitioning (TS-SRP) for nominally isotropic materials, and the Tensile Hysteretic Energy Model for anisotropic superalloys. A fatigue model is being developed based upon the concepts of Path-Independent Integrals (PII) for describing cyclic crack growth under complex nonlinear response at the crack tip due to thermomechanical loading conditions. A micromechanistic oxidation crack extension model was derived. The models are described and discussed.

  18. Direct observation of the residual plastic deformation caused by a single tensile overload

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bichler, C.; Pippan, R.

    1999-07-01

    The fatigue crack growth behavior following single tensile overloads at high stress intensity ranges in a cold-rolled austenitic steel has been studied experimentally. After tensile overloads, fatigue cracks initially accelerate, followed by significant retardation, before the growth rates return to their baseline level. The initial acceleration was attributed to an immediate reduction in near-tip closure. Scanning electron micrography and stereophotogrammetric reconstruction of the fracture surface were applied to study the residual plastic deformation caused by a single tensile overload in the mid-thickness of the specimen. The measured residual opening displacement of the crack as a function of the overload ismore » presented and compared with simple estimations. Also, free specimen surface observations of the residual plastic deformation and crack growth rate were performed. In the midsection of the specimens the striation spacing-length, i.e., the microscopic growth rates, were measured before and after the applied overload. It will be shown that the measured plasticity-induced wedges from the single overload and the observed propagation behavior support the significance of the concept of crack closure.« less

  19. Fatigue life prediction modeling for turbine hot section materials

    NASA Technical Reports Server (NTRS)

    Halford, G. R.; Meyer, T. G.; Nelson, R. S.; Nissley, D. M.; Swanson, G. A.

    1988-01-01

    A major objective of the fatigue and fracture efforts under the Hot Section Technology (HOST) program was to significantly improve the analytic life prediction tools used by the aeronautical gas turbine engine industry. This was achieved in the areas of high-temperature thermal and mechanical fatigue of bare and coated high-temperature superalloys. The cyclic crack initiation and propagation resistance of nominally isotropic polycrystalline and highly anisotropic single crystal alloys were addressed. Life prediction modeling efforts were devoted to creep-fatigue interaction, oxidation, coatings interactions, multiaxiality of stress-strain states, mean stress effects, cumulative damage, and thermomechanical fatigue. The fatigue crack initiation life models developed to date include the Cyclic Damage Accumulation (CDA) and the Total Strain Version of Strainrange Partitioning (TS-SRP) for nominally isotropic materials, and the Tensile Hysteretic Energy Model for anisotropic superalloys. A fatigue model is being developed based upon the concepts of Path-Independent Integrals (PII) for describing cyclic crack growth under complex nonlinear response at the crack tip due to thermomechanical loading conditions. A micromechanistic oxidation crack extension model was derived. The models are described and discussed.

  20. Corrosion and Potentiostatic Polarization of an Al-Cu-Li Alloy under Tensile Stress

    NASA Astrophysics Data System (ADS)

    Li, Jin-feng; Zheng, Zi-qiao

    The stress corrosion cracking (SCC) of an Al-3.8Cu-1.5Li-0.5Zn-0.5Mg-0.3Mn alloy in 3.5% NaCl solution was studied through using slow strain rate tension(SSRT). The potentiodynamic polarization and anodic potentiostastic polarization of the stressed and stress free alloy with T6 temper were investigated. The tensile stress decreased the break down potential. The alloy was sensitive to intergranular SCC (IGSCC), due to the continuous distribution of anodic phase of T2(Al6CuLi3) along the grain boundary. During the potentiostastic polarization, the current-time curve of the stressed alloy displayed a repeated transient feature that the current increased suddenly followed by a slower recovery, and corrosion crack appeared along the grain boundary. While the stress free alloy did not show this current feature and corrosion crack along the grain boundary. The repeated current transient was associated with the crack tip propagation and crack wall passivation. This feature may be used to analyze the SCC process.

  1. Creep-fatigue interaction at high temperature; Proceedings of the Symposium, 112th ASME Winter Annual Meeting, Atlanta, GA, Dec. 1-6, 1991

    NASA Astrophysics Data System (ADS)

    Haritos, George K.; Ochoa, O. O.

    Various papers on creep-fatigue interaction at high temperature are presented. Individual topics addressed include: analysis of elevated temperature fatigue crack growth mechanisms in Alloy 718, physically based microcrack propagation laws for creep-fatigue-environment interaction, in situ SEM observation of short fatigue crack growth in Waspaloy at 700 C under cyclic and dwell conditions, evolution of creep-fatigue life prediction models, TMF design considerations in turbine airfoils of advanced turbine engines. Also discussed are: high temperature fatigue life prediction computer code based on the total strain version of strainrange partitioning, atomic theory of thermodynamics of internal variables, geometrically nonlinear analysis of interlaminar stresses in unsymmetrically laminated plates subjected to uniform thermal loading, experimental investigation of creep crack tip deformation using moire interferometry. (For individual items see A93-31336 to A93-31344)

  2. Liquid metal embrittlement of T91 and 316L steels by heavy liquid metals: A fracture mechanics assessment

    NASA Astrophysics Data System (ADS)

    Auger, T.; Hamouche, Z.; Medina-Almazàn, L.; Gorse, D.

    2008-06-01

    LME of the martensitic T91 and the austenitic 316L steels have been investigated in the CCT geometry in the plane-stress condition. Using such a geometry, premature cracking induced by a liquid metal (PbBi and Hg) can be studied using a fracture mechanics approach based on CTOD, J-Δ a and fracture assessment diagram. One is able to measure a reduction of the crack tip blunting and a reduction of the energy required for crack propagation induced by the liquid metal. In spite of some limitations, this qualitative evaluation shows that liquid metals do not induce strong embrittlement on steels in plane-stress condition. Rather, the effect of the liquid metal seems to promote a fracture mode by plastic collapse linked with strain localization. It indicates that the materials, in spite of a potential embrittlement, should still be acceptable in terms of safety criteria.

  3. Improved method for determining the stress relaxation at the crack tip

    NASA Astrophysics Data System (ADS)

    Grinevich, A. V.; Erasov, V. S.; Avtaev, V. V.

    2017-10-01

    A technique is suggested to determine the stress relaxation at the crack tip during tests of a specimen of a new type at a constant crack opening fixed by a stay bolt. The shape and geometry of the specimen make it possible to set the load and to determine the crack closure force after long-term exposure using the force transducer of a tensile-testing machine. The stress relaxation at the crack tip is determined in a V95pchT2 alloy specimen at elevated temperatures.

  4. Nonlinear crack analysis with finite elements

    NASA Technical Reports Server (NTRS)

    Armen, H., Jr.; Saleme, E.; Pifko, A.; Levine, H. S.

    1973-01-01

    The application of finite element techniques to the analytic representation of the nonlinear behavior of arbitrary two-dimensional bodies containing cracks is discussed. Specific methods are proposed using which it should be possible to obtain information concerning: the description of the maximum, minimum, and residual near-tip stress and strain fields; the effects of crack closure on the near-tip behavior of stress and strain fields during cyclic loading into the plastic range; the stress-strain and displacement field behavior associated with a nonstationary crack; and the effects of large rotation near the crack tip.

  5. Double torsion fracture mechanics testing of shales under chemically reactive conditions

    NASA Astrophysics Data System (ADS)

    Chen, X.; Callahan, O. A.; Holder, J. T.; Olson, J. E.; Eichhubl, P.

    2015-12-01

    Fracture properties of shales is vital for applications such as shale and tight gas development, and seal performance of carbon storage reservoirs. We analyze the fracture behavior from samples of Marcellus, Woodford, and Mancos shales using double-torsion (DT) load relaxation fracture tests. The DT test allows the determination of mode-I fracture toughness (KIC), subcritical crack growth index (SCI), and the stress-intensity factor vs crack velocity (K-V) curves. Samples are tested at ambient air and aqueous conditions with variable ionic concentrations of NaCl and CaCl2, and temperatures up to 70 to determine the effects of chemical/environmental conditions on fracture. Under ambient air condition, KIC determined from DT tests is 1.51±0.32, 0.85±0.25, 1.08±0.17 MPam1/2 for Marcellus, Woodford, and Mancos shales, respectively. Tests under water showed considerable change of KIC compared to ambient condition, with 10.6% increase for Marcellus, 36.5% decrease for Woodford, and 6.7% decrease for Mancos shales. SCI under ambient air condition is between 56 and 80 for the shales tested. The presence of water results in a significant reduction of the SCI from 70% to 85% compared to air condition. Tests under chemically reactive solutions are currently being performed with temperature control. K-V curves under ambient air conditions are linear with stable SCI throughout the load-relaxation period. However, tests conducted under water result in an initial cracking period with SCI values comparable to ambient air tests, which then gradually transition into stable but significantly lower SCI values of 10-20. The non-linear K-V curves reveal that crack propagation in shales is initially limited by the transport of chemical agents due to their low permeability. Only after the initial cracking do interactions at the crack tip lead to cracking controlled by faster stress corrosion reactions. The decrease of SCI in water indicates higher crack propagation velocity due to faster stress corrosion rate in water than in ambient air. The experimental results are applicable for the prediction of fracture initiation based on KIC, modeling fracture pattern based on SCI, and the estimation of dynamic fracture propagation such as crack growth velocity and crack re-initiation.

  6. Effect of Layering on Cracking Initiation and Propagation under Uniaxial Compression

    NASA Astrophysics Data System (ADS)

    Modiriasari, A.; Jiang, L.; Yoon, H.; Bobet, A.; Pyrak-Nolte, L. J.

    2017-12-01

    Rock anisotropy can arise from textural and structural causes both of which contribute to anisotropic strength and moduli. Rock variability makes it difficult to determine which properties dominate failure. Here, laboratory experiments were performed on 3D printed samples to examine the effect of layering on crack formation. Samples with two pre-existing coplanar flaws were fabricated using an additive 3D printing process (Projet CJP 360). Layers of gypsum (0.2 mm thick) were printed in either a horizontal (H) or a vertical (V) orientation to create prismatic samples (152.4 mm x 76.2 mm x 25.1 mm) with two 12.7 mm long coplanar flaws (19.05 mm apart) oriented at 450 with the load. Cracks were induced under uniaxial loading conditions. Digital image correlation (DIC) and acoustic emission (AE) (18 AE sensors with a frequency range of 100-450 kHz) were used to monitor crack evolution. DIC imaging of the V specimen during uniaxial compression showed that smooth cracks were initiated and propagated from the tips of the flaws parallel to the layering. Unlike the strongly bonded samples, no cracks were formed between the pre-existing flaws. The failure mechanism between the flaws was controlled by the weak bonding between the layers, and not by the coalescence of the new cracks. However, for the H specimen, failure was caused by crack coalescence between the two flaws. The new cracks exhibited a step-like roughness that was influenced by the layering in the sample. AE events were only detected when a synchronized mode was used. 3D printed samples can be effectively used to study the effect of anisotropic layering on crack initiation and propagation in a repeatable and controlled manner. Acknowledgements: Sandia National Laboratories is a multi-mission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC., a wholly owned subsidiary of Honeywell International, Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525. This material is also based upon work supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Geosciences Research Program under Award Number (DE-FG02-09ER16022) and by the National Science Foundation, Geomechanics and Geotechnical Systems Program (award No. CMMI-1162082).

  7. Linear least squares approach for evaluating crack tip fracture parameters using isochromatic and isoclinic data from digital photoelasticity

    NASA Astrophysics Data System (ADS)

    Patil, Prataprao; Vyasarayani, C. P.; Ramji, M.

    2017-06-01

    In this work, digital photoelasticity technique is used to estimate the crack tip fracture parameters for different crack configurations. Conventionally, only isochromatic data surrounding the crack tip is used for SIF estimation, but with the advent of digital photoelasticity, pixel-wise availability of both isoclinic and isochromatic data could be exploited for SIF estimation in a novel way. A linear least square approach is proposed to estimate the mixed-mode crack tip fracture parameters by solving the multi-parameter stress field equation. The stress intensity factor (SIF) is extracted from those estimated fracture parameters. The isochromatic and isoclinic data around the crack tip is estimated using the ten-step phase shifting technique. To get the unwrapped data, the adaptive quality guided phase unwrapping algorithm (AQGPU) has been used. The mixed mode fracture parameters, especially SIF are estimated for specimen configurations like single edge notch (SEN), center crack and straight crack ahead of inclusion using the proposed algorithm. The experimental SIF values estimated using the proposed method are compared with analytical/finite element analysis (FEA) results, and are found to be in good agreement.

  8. The fracture energy and some mechanical properties of a polyurethane elastomer.

    NASA Technical Reports Server (NTRS)

    Mueller, H. K.; Knauss, W. G.

    1971-01-01

    The energy required to form a unit of new surface in the fracture of a polyurethane elastomer is determined. The rate sensitivity of the material has been reduced by swelling it in toluene. This paper primarily describes the experimental work of measuring the lower limit of the fracture energy. With this value and the creep compliance as a basis, the rate dependence of fracture energy for the unswollen material has been determined. It is thus shown that the dependence of the fracture energy on the rate of crack propagation can be explained by energy dissipation around the tip of the crack. Good agreement between the theoretically and experimentally determined relationships for the rate-sensitive fracture energy is demonstrated.

  9. Modeling the Interactions Between Multiple Crack Closure Mechanisms at Threshold

    NASA Technical Reports Server (NTRS)

    Newman, John A.; Riddell, William T.; Piascik, Robert S.

    2003-01-01

    A fatigue crack closure model is developed that includes interactions between the three closure mechanisms most likely to occur at threshold; plasticity, roughness, and oxide. This model, herein referred to as the CROP model (for Closure, Roughness, Oxide, and Plasticity), also includes the effects of out-of plane cracking and multi-axial loading. These features make the CROP closure model uniquely suited for, but not limited to, threshold applications. Rough cracks are idealized here as two-dimensional sawtooths, whose geometry induces mixed-mode crack- tip stresses. Continuum mechanics and crack-tip dislocation concepts are combined to relate crack face displacements to crack-tip loads. Geometric criteria are used to determine closure loads from crack-face displacements. Finite element results, used to verify model predictions, provide critical information about the locations where crack closure occurs.

  10. Crack arrest within teeth at the dentinoenamel junction caused by elastic modulus mismatch.

    PubMed

    Bechtle, Sabine; Fett, Theo; Rizzi, Gabriele; Habelitz, Stefan; Klocke, Arndt; Schneider, Gerold A

    2010-05-01

    Enamel and dentin compose the crowns of human teeth. They are joined at the dentinoenamel junction (DEJ) which is a very strong and well-bonded interface unlikely to fail within healthy teeth despite the formation of multiple cracks within enamel during a lifetime of exposure to masticatory forces. These cracks commonly are arrested when reaching the DEJ. The phenomenon of crack arrest at the DEJ is described in many publications but there is little consensus on the underlying cause and mechanism. Explanations range from the DEJ having a larger toughness than both enamel and dentin up to the assumption that not the DEJ itself causes crack arrest but the so-called mantle dentin, a thin material layer close to the DEJ that is somewhat softer than the bulk dentin. In this study we conducted 3-point bending experiments with bending bars consisting of the DEJ and surrounding enamel and dentin to investigate crack propagation and arrest within the DEJ region. Calculated stress intensities around crack tips were found to be highly influenced by the elastic modulus mismatch between enamel and dentin and hence, the phenomenon of crack arrest at the DEJ could be explained accordingly via this elastic modulus mismatch. Copyright 2010 Elsevier Ltd. All rights reserved.

  11. Separating the Influence of Environment from Stress Relaxation Effects on Dwell Fatigue Crack Growth

    NASA Technical Reports Server (NTRS)

    Telesman, Jack; Gabb, Tim; Ghosn, Louis J.

    2016-01-01

    Seven different microstructural variations of LSHR were produced by controlling the cooling rate and the subsequent aging and thermal exposure heat treatments. Through cyclic fatigue crack growth testing performed both in air and vacuum, it was established that four out of the seven LSHR heat treatments evaluated, possessed similar intrinsic environmental resistance to cyclic crack growth. For these four heat treatments, it was further shown that the large differences in dwell crack growth behavior which still persisted, were related to their measured stress relaxation behavior. The apparent differences in their dwell crack growth resistance were attributed to the inability of the standard linear elastic fracture mechanics (LEFM) stress intensity parameter to account for visco-plastic behavior. Crack tip stress relaxation controls the magnitude of the remaining local tensile stresses which are directly related to the measured dwell crack growth rates. It was hypothesized that the environmentally weakened grain boundary crack tip regions fail during the dwells when their strength is exceeded by the remaining local crack tip tensile stresses. It was shown that the classical creep crack growth mechanisms such as grain boundary sliding did not contribute to crack growth, but the local visco-plastic behavior still plays a very significant role by determining the crack tip tensile stress field which controls the dwell crack growth behavior. To account for the influence of the visco-plastic behavior on the crack tip stress field, an empirical modification to the LEFM stress intensity parameter, Kmax, was developed by incorporating into the formulation the remaining stress level concept as measured by simple stress relaxation tests. The newly proposed parameter, Ksrf, did an excellent job in correlating the dwell crack growth rates for the four heat treatments which were shown to have similar intrinsic environmental cyclic fatigue crack growth resistance.

  12. Fatigue crack layer propagation in silicon-iron

    NASA Technical Reports Server (NTRS)

    Birol, Y.; Welsch, G.; Chudnovsky, A.

    1986-01-01

    Fatigue crack propagation in metal is almost always accompanied by plastic deformation unless conditions strongly favor brittle fracture. The analysis of the plastic zone is crucial to the understanding of crack propagation behavior as it governs the crack growth kinetics. This research was undertaken to study the fatigue crack propagation in a silicon iron alloy. Kinetic and plasticity aspects of fatigue crack propagation in the alloy were obtained, including the characterization of damage evolution.

  13. The Effect of O2, H2O, and N2 on the Fatigue Crack Growth Behavior of an Alpha + Beta Titanium Alloy at 24 C and 177 C

    NASA Technical Reports Server (NTRS)

    Smith, Stephen W.; Piascik, Robert S.

    2001-01-01

    To study the effects of atmospheric species on the fatigue crack growth behavior of an a+B titanium alloy (Ti 6-2-2-2-2) at room temperature and 177 C, fatigue tests were performed in laboratory air, ultrahigh vacuum, and high purity water vapor, oxygen, nitrogen and helium at various partial pressures. Accelerated fatigue crack growth rates in laboratory air compared to ultrahigh vacuum are linked to the damaging effects of both water vapor and oxygen. Observations of the fatigue crack growth behavior in ultrahigh purity environments, along with surface film analysis using X-ray photoelectron spectroscopy (XPS), suggest that multiple crack-tip processes govern the damaging effects of air. Three possible mechanisms are proposed: 1) at low pressure (less than 10(exp -1) Pa), accelerated da/dN is likely due to monolayer adsorption on crack-tip surfaces presumably resulting in decreased bond strengths at the fatigue crack tip, 2) for pressures greater than 10(exp -1) Pa, accelerated da/dN in oxygen may result from oxidation at the crack tip limiting reversible slip, and 3) in water vapor, absorption of atomic hydrogen at the reactive crack tip resulting in process zone embrittlement.

  14. Crack propagation in teeth: a comparison of perimortem and postmortem behavior of dental materials and cracks.

    PubMed

    Hughes, Cris E; White, Crystal A

    2009-03-01

    This study presents a new method for understanding postmortem heat-induced crack propagation patterns in teeth. The results demonstrate that patterns of postmortem heat-induced crack propagation differ from perimortem and antemortem trauma-induced crack propagation patterns. Dental material of the postmortem tooth undergoes dehydration leading to a shrinking and more brittle dentin material and a weaker dentin-enamel junction. Dentin intertubule tensile stresses are amplified by the presence of the pulp cavity, and initiates crack propagation from the internal dentin, through the dentin-enamel junction and lastly the enamel. In contrast, in vivo perimortem and antemortem trauma-induced crack propagation initiates cracking from the external surface of the enamel toward the dentin-enamel junction where the majority of the energy of the crack is dissipated, eliminating the crack's progress into the dentin. These unique patterns of crack propagation can be used to differentiate postmortem taphonomy-induced damage from antemortem and perimortem trauma in teeth.

  15. A preliminary study of crack initiation and growth at stress concentration sites

    NASA Technical Reports Server (NTRS)

    Dawicke, D. S.; Gallagher, J. P.; Hartman, G. A.; Rajendran, A. M.

    1982-01-01

    Crack initiation and propagation models for notches are examined. The Dowling crack initiation model and the E1 Haddad et al. crack propagation model were chosen for additional study. Existing data was used to make a preliminary evaluation of the crack propagation model. The results indicate that for the crack sizes in the test, the elastic parameter K gave good correlation for the crack growth rate data. Additional testing, directed specifically toward the problem of small cracks initiating and propagating from notches is necessary to make a full evaluation of these initiation and propagation models.

  16. Accelerated Stress Corrosion Crack Initiation of Alloys 600 and 690 in Hydrogenated Supercritical Water

    NASA Astrophysics Data System (ADS)

    Moss, Tyler; Was, Gary S.

    2017-04-01

    The objective of this study is to determine whether stress corrosion crack initiation of Alloys 600 and 690 occurs by the same mechanism in subcritical and supercritical water. Tensile bars of Alloys 690 and 600 were strained in constant extension rate tensile experiments in hydrogenated subcritical and supercritical water from 593 K to 723 K (320 °C to 450 °C), and the crack initiation behavior was characterized by high-resolution electron microscopy. Intergranular cracking was observed across the entire temperature range, and the morphology, structure, composition, and temperature dependence of initiated cracks in Alloy 690 were consistent between hydrogenated subcritical and supercritical water. Crack initiation of Alloy 600 followed an Arrhenius relationship and did not exhibit a discontinuity or change in slope after crossing the critical temperature. The measured activation energy was 121 ± 13 kJ/mol. Stress corrosion crack initiation in Alloy 690 was fit with a single activation energy of 92 ± 12 kJ/mol across the entire temperature range. Cracks were observed to propagate along grain boundaries adjacent to chromium-depleted metal, with Cr2O3 observed ahead of crack tips. All measures of the SCC behavior indicate that the mechanism for stress corrosion crack initiation of Alloy 600 and Alloy 690 is consistent between hydrogenated subcritical and supercritical water.

  17. Microstructural characterization of Charpy-impact-tested nanostructured bainite

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tsai, Y.T.; Chang, H.T.; Huang, B.M.

    2015-09-15

    In this work, a possible cause of the extraordinary low impact toughness of nanostructured bainite has been investigated. The microstructure of nanostructured bainite consisted chiefly of carbide-free bainitic ferrite with retained austenite films. X-ray diffractometry (XRD) measurement indicated that no retained austenite existed in the fractured surface of the Charpy-impact-tested specimens. Fractographs showed that cracks propagated mainly along bainitic ferrite platelet boundaries. The change in microstructure after impact loading was verified by transmission electron microscopy (TEM) observations, confirming that retained austenite was completely transformed to strain-induced martensite during the Charpy impact test. However, the zone affected by strained-induced martensite wasmore » found to be extremely shallow, only to a depth of several micrometers from the fracture surface. It is appropriately concluded that upon impact, as the crack forms and propagates, strain-induced martensitic transformation immediately occurs ahead of the advancing crack tip. The successive martensitic transformation profoundly facilitates the crack propagation, resulting in the extremely low impact toughness of nanostructured bainite. Retained austenite, in contrast to its well-known beneficial role, has a deteriorating effect on toughness during the course of Charpy impact. - Highlights: • The microstructure of nanostructured bainite consisted of nano-sized bainitic ferrite subunits with retained austenite films. • Special sample preparations for SEM, XRD and TEM were made, and the strain-affected structures have been explored. • Retained austenite films were found to transform into martensite after impact loading, as evidenced by XRD and TEM results. • The zone of strain-induced martensite was found to extend to only several micrometers from the fracture surface. • The poor Charpy impact toughness is associated with the fracture of martensite at a high strain rate during impact loading.« less

  18. Subsurface Stress Fields in FCC Single Crystal Anisotropic Contacts

    NASA Technical Reports Server (NTRS)

    Arakere, Nagaraj K.; Knudsen, Erik; Swanson, Gregory R.; Duke, Gregory; Ham-Battista, Gilda

    2004-01-01

    Single crystal superalloy turbine blades used in high pressure turbomachinery are subject to conditions of high temperature, triaxial steady and alternating stresses, fretting stresses in the blade attachment and damper contact locations, and exposure to high-pressure hydrogen. The blades are also subjected to extreme variations in temperature during start-up and shutdown transients. The most prevalent high cycle fatigue (HCF) failure modes observed in these blades during operation include crystallographic crack initiation/propagation on octahedral planes, and non-crystallographic initiation with crystallographic growth. Numerous cases of crack initiation and crack propagation at the blade leading edge tip, blade attachment regions, and damper contact locations have been documented. Understanding crack initiation/propagation under mixed-mode loading conditions is critical for establishing a systematic procedure for evaluating HCF life of single crystal turbine blades. This paper presents analytical and numerical techniques for evaluating two and three dimensional subsurface stress fields in anisotropic contacts. The subsurface stress results are required for evaluating contact fatigue life at damper contacts and dovetail attachment regions in single crystal nickel-base superalloy turbine blades. An analytical procedure is presented for evaluating the subsurface stresses in the elastic half-space, based on the adaptation of a stress function method outlined by Lekhnitskii. Numerical results are presented for cylindrical and spherical anisotropic contacts, using finite element analysis (FEA). Effects of crystal orientation on stress response and fatigue life are examined. Obtaining accurate subsurface stress results for anisotropic single crystal contact problems require extremely refined three-dimensional (3-D) finite element grids, especially in the edge of contact region. Obtaining resolved shear stresses (RSS) on the principal slip planes also involves considerable post-processing work. For these reasons it is very advantageous to develop analytical solution schemes for subsurface stresses, whenever possible.

  19. Determining cyclic corrosion cracking resistance for titanium alloys with allowance for electrochemical conditions at the fatigue corrosion crack tip

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Panasyuk, V.V.; Ratich, L.V.; Petranyuk, I.Ya.

    1994-08-01

    Published data are examined on how various factors affect fatigue crack growth rates. Basic diagrams have been constructed for the cyclic cracking resistance in Ti-6Al-4V and Ti-6Al-2Sn alloys in air, distilled water, and 3.5% NaCl for use in working-life calculations. Appropriate heat treatment can produce two microstructures in a titanium alloy, one of which has the largest cyclic cracking resistance, while in the second, the cracks grow at the lowest rate. The cyclic corrosion cracking resistance for a titanium alloy should be determined in relation to the state of stress and strain and to the electrochemical conditions at the corrosionmore » fatigue crack tip, while the variations in fatigue crack growth rate for a given stress intensity factor in a corrosive medium are due to differing electrochemical conditions at the crack tip during the testing on different specimens. Basic diagrams can be derived for titanium alloys by using a physically sound methodology developed previously for steels, which is based on invariant diagrams for cyclic cracking resistance in air and in the corresponding medium, which can be constructed in relation to extremal working and electrochemical conditions at corrosion-fatigue crack tips.« less

  20. Growth Kinematics of Opening-Mode Fractures

    NASA Astrophysics Data System (ADS)

    Eichhubl, P.; Alzayer, Y.; Laubach, S.; Fall, A.

    2014-12-01

    Fracture aperture is a primary control on flow in fractured reservoirs of low matrix permeability including unconventional oil and gas reservoirs and most geothermal systems. Guided by principles of linear elastic fracture mechanics, fracture aperture is generally assumed to be a linear function of fracture length and elastic material properties. Natural opening-mode fractures with significant preserved aperture are observed in core and outcrop indicative of fracture opening strain accommodated by permanent solution-precipitation creep. Fracture opening may thus be decoupled from length growth if the material effectively weakens after initial elastic fracture growth by either non-elastic deformation processes or changes in elastic properties. To investigate the kinematics of fracture length and aperture growth, we reconstructed the opening history of three opening-mode fractures that are bridged by crack-seal quartz cement in Travis Peak Sandstone of the SFOT-1 well, East Texas. Similar crack-seal cement bridges had been interpreted to form by repeated incremental fracture opening and subsequent precipitation of quartz cement. We imaged crack-seal cement textures for bridges sampled at varying distance from the tips using scanning electron microscope cathodoluminescence, and determined the number and thickness of crack-seal cement increments as a function of position along the fracture length and height. Observed trends in increment number and thickness are consistent with an initial stage of fast fracture propagation relative to aperture growth, followed by a stage of slow propagation and pronounced aperture growth. Consistent with fluid inclusion observations indicative of fracture opening and propagation occurring over 30-40 m.y., we interpret the second phase of pronounced aperture growth to result from fracture opening strain accommodated by solution-precipitation creep and concurrent slow, possibly subcritical, fracture propagation. Similar deformation mechanisms are envisioned to govern fracture growth over shorter timescales in reactive chemical subsurface environments including CO2 reservoirs, organic-rich shales, and geothermal systems.

  1. Biologically inspired autonomous structural materials with controlled toughening and healing

    NASA Astrophysics Data System (ADS)

    Garcia, Michael E.; Sodano, Henry A.

    2010-04-01

    The field of structural health monitoring (SHM) has made significant contributions in the field of prognosis and damage detection in the past decade. The advantageous use of this technology has not been integrated into operational structures to prevent damage from propagating or to heal injured regions under real time loading conditions. Rather, current systems relay this information to a central processor or human operator, who then determines a course of action such as altering the mission or scheduling repair maintenance. Biological systems exhibit advanced sensory and healing traits that can be applied to the design of material systems. For instance, bone is the major structural component in vertebrates; however, unlike modern structural materials, bone has many properties that make it effective for arresting the propagation of cracks and subsequent healing of the fractured area. The foremost goal for the development of future adaptive structures is to mimic biological systems, similar to bone, such that the material system can detect damage and deploy defensive traits to impede damage from propagating, thus preventing catastrophic failure while in operation. After sensing and stalling the propagation of damage, the structure must then be repaired autonomously using self healing mechanisms motivated by biological systems. Here a novel autonomous system is developed using shape memory polymers (SMPs), that employs an optical fiber network as both a damage detection sensor and a network to deliver stimulus to the damage site initiating adaptation and healing. In the presence of damage the fiber optic fractures allowing a high power laser diode to deposit a controlled level of thermal energy at the fractured sight locally reducing the modulus and blunting the crack tip, which significantly slows the crack growth rate. By applying a pre-induced strain field and utilizing the shape memory recovery effect, thermal energy can be deployed to close the crack and return the system to its original operating state. The entire system will effectively detect, self toughen, and subsequently heal damage as biological materials such as bone does.

  2. Variation of the energy release rate as a crack approaches and passes through an elastic inclusion

    NASA Astrophysics Data System (ADS)

    Li, Rongshun; Chudnovsky, A.

    1993-02-01

    The variation of the energy release rate (ERP) at the tip of a crack penetrating an elastic inclusion is analyzed using an approach involving modeling the random array of microcracks or other defects by an elastic inclusion with effective elastic properties. Computations are carried out using a finite element procedure. The eight-noded isoparametric serendipity element with the shift of the midpoint to the quarter-point is used to simulate the singularity at the crack tip, and the crack growth is accommodated by implementing a mesh regeneration technique. The ERP values were calculated for various crack tip positions which simulate the process of the crack approaching and penetrating the inclusion.

  3. Variation of the energy release rate as a crack approaches and passes through an elastic inclusion

    NASA Technical Reports Server (NTRS)

    Li, Rongshun; Chudnovsky, A.

    1993-01-01

    The variation of the energy release rate (ERP) at the tip of a crack penetrating an elastic inclusion is analyzed using an approach involving modeling the random array of microcracks or other defects by an elastic inclusion with effective elastic properties. Computations are carried out using a finite element procedure. The eight-noded isoparametric serendipity element with the shift of the midpoint to the quarter-point is used to simulate the singularity at the crack tip, and the crack growth is accommodated by implementing a mesh regeneration technique. The ERP values were calculated for various crack tip positions which simulate the process of the crack approaching and penetrating the inclusion.

  4. Mechanics of tidally driven fractures in Europa's ice shell and implications for seismic and radar profiling

    NASA Astrophysics Data System (ADS)

    Lee, S.; Pappalardo, R. T.; Makris, N. C.

    2005-12-01

    Among Europa's surface features, cycloidal cracks are probably the most important for proving the existence of a subsurface liquid ocean. This is because (1) there is strong evidence that they are caused by tidally induced stress [1], and (2) this stress likely only approaches the ice failure strength if an ocean is present. There are a number of outstanding issues, however, in quantitatively explaining cycloidal cracks. First, current estimates of the pure diurnal tidal stress necessary to cause cycloidal cracks even in the presence of an ocean [1,2] is well below the typical stress known to cause tensile failure in natural terrestrial ice [3]. Second, models of ridge formation suggest that cycloidal cracks penetrate through the entire brittle-ice layer [1,4], but current models limit the depth of tidally induced surface cracks to be less than 100 m even in the presence of an ocean [1,5]. Third, the 3-km/h crack propagation speed determined by [1] is three orders of magnitude lower than the roughly 2-km/s speed at which cracks are known to propagate in ice. Our goal is to quantitatively address these issues in a unified manner. To do this, a fracture mechanics model is developed for the initiation and propagation of a crack through an ice layer of finite thickness in the presence of gravitational overburden and porosity. It is shown that Europa's ice shell may be highly porous and salt-rich. This implies that the strength of Europa's outer ice shell may be sufficiently low to make the crack initiation strengths arrived at by current kinematic models [1,2] highly plausible, even though they are much lower than those typically measured for terrestrial ice. A model is developed for the stress intensity factor at a crack tip in an ice shell with finite thickness, gravitational overburden, and depth-dependent porosity. This leads to the conclusion that cycloids are generated as a sequence of discrete and near instantaneous fracture events, each of which penetrates through the entire brittle layer with horizontal length on the order of the brittle layer thickness. This mechanism yields an apparent propagation speed that is consistent with the 3 km/h crack propagation speed necessary to generate cycloids in current kinematic models [1,2]. An implication of this model is that the level of seismic activity should be higher by orders of magnitude in the presence of an ocean. High correlation is then expected between the level of seismic activity and the tidal period in the presence but not in the absence of an ocean. The cracks associated with cycloids that fully penetrate the brittle layer should be at least 106 times more energetic than the shallow, roughly 100-m deep, surface cracks. We show that this greatly improves the signal-to-noise ratio for the type of seismic profiling discussed in [6] if fully penetrating cracks are used as sources of opportunity. Although Europa's ice is likely highly porous, the size of vacuous pores is likely on the order of a millimeter. Since the pore size is at least three orders of magnitude smaller than the ice-penetrating radar wavelength, our calculations show that porosity-induced scattering should not be significant. [1] Hoppa et al. 1999, Science 285. [2] Crawford et al. 2005, LPSC XXXVI #2042. [3] Weeks and Cox 1984, Ocean Sci. Eng. 9. [4] Pappalardo et al. 1999, J. Geophys. Res. 97. [5] Crawford and Stevenson 1988, Icarus 73. [6] Lee et al. 2003, Icarus 165.

  5. Effect of anisotropy and texture on the low cycle fatigue behavior of Inconel 718 processed via electron beam melting

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kirka, Michael M.; Greeley, Duncan A.; Hawkins, Charles S.

    Here in this study, the impact of texture (columnar/equiax grain structure) and influence of material orientation on the low cycle fatigue (LCF) behavior of hot isostatic pressed (HIP) and heat-treated Inconel 718 fabricated through electron beam melting (EBM) is investigated. Material was tested both parallel and perpendicular (transverse) to the build direction. In all instances, the EBM HIP and heat-treated Inconel 718 performed similarly or exceeded the LCF life of wrought Inconel 718 plate and bar stock under fully reversed strain-controlled loading at 650 °C. Amongst the textures, the columnar grains oriented parallel to the build direction exhibited the highestmore » life on average compared to the transverse columnar and equiax EBM material. Further, in relation to the reference wrought material the parallel columnar grain material exhibited a greater life. While a negligible life difference was observed in the equiax grained material between the two orientations, a consistently lower accumulated inelastic strain was measured for the material loaded parallel to the build direction than the transverse orientation. Failure of the parallel columnar material occurred in a transgranular manner with cracks emanating from the surface whereas the transverse columnar material failed in a intergranular manner, with crack growth occurring through repeated rupture of oxide at the crack-tip. Finally, in the case of the equiax material, an influence of material orientation was not observed on the failure mechanism with crack propagation occurring through a combination of debonded/cracked carbides and void formation along twin boundaries resulting in a mixture of intergranular and transgranular crack propagation.« less

  6. Effect of anisotropy and texture on the low cycle fatigue behavior of Inconel 718 processed via electron beam melting

    DOE PAGES

    Kirka, Michael M.; Greeley, Duncan A.; Hawkins, Charles S.; ...

    2017-09-11

    Here in this study, the impact of texture (columnar/equiax grain structure) and influence of material orientation on the low cycle fatigue (LCF) behavior of hot isostatic pressed (HIP) and heat-treated Inconel 718 fabricated through electron beam melting (EBM) is investigated. Material was tested both parallel and perpendicular (transverse) to the build direction. In all instances, the EBM HIP and heat-treated Inconel 718 performed similarly or exceeded the LCF life of wrought Inconel 718 plate and bar stock under fully reversed strain-controlled loading at 650 °C. Amongst the textures, the columnar grains oriented parallel to the build direction exhibited the highestmore » life on average compared to the transverse columnar and equiax EBM material. Further, in relation to the reference wrought material the parallel columnar grain material exhibited a greater life. While a negligible life difference was observed in the equiax grained material between the two orientations, a consistently lower accumulated inelastic strain was measured for the material loaded parallel to the build direction than the transverse orientation. Failure of the parallel columnar material occurred in a transgranular manner with cracks emanating from the surface whereas the transverse columnar material failed in a intergranular manner, with crack growth occurring through repeated rupture of oxide at the crack-tip. Finally, in the case of the equiax material, an influence of material orientation was not observed on the failure mechanism with crack propagation occurring through a combination of debonded/cracked carbides and void formation along twin boundaries resulting in a mixture of intergranular and transgranular crack propagation.« less

  7. Dynamic delamination crack propagation in a graphite/epoxy laminate

    NASA Technical Reports Server (NTRS)

    Grady, J. E.; Sun, C. T.

    1991-01-01

    Dynamic delamination crack propagation in a (90/0) 5s Graphite/Epoxy laminate with an embedded interfacial crack was investigated experimentally using high speed photography. The dynamic motion was produced by impacting the beamlike laminate specimen with a silicon rubber ball. The threshold impact velocities required to initiate dynamic crack propagation in laminates with varying initial crack positions were determined. The crack propagation speeds were estimated from the photographs. Results show that the through the thickness position of the embedded crack can significantly affect the dominant mechanism and the threshold impact velocity for the onset of crack movement. If the initial delamination is placed near the top of bottom surface of the laminate, local buckling of the delaminated plies may cause instability of the crack. If the initial delamination lies on the midplane, local buckling does not occur and the initiation of crack propagation appears to be dominated by Mode II fracture. The crack propagation and arrest observed was seen to be affected by wave motion within the delamination region.

  8. Separating the Influence of Environment from Stress Relaxation Effects on Dwell Fatigue Crack Growth in a Nickel-Base Disk Alloy

    NASA Technical Reports Server (NTRS)

    Telesman, J.; Gabb, T. P.; Ghosn, L. J.

    2016-01-01

    Both environmental embrittlement and crack tip visco-plastic stress relaxation play a significant role in determining the dwell fatigue crack growth (DFCG) resistance of nickel-based disk superalloys. In the current study performed on the Low Solvus High Refractory (LSHR) disk alloy, the influence of these two mechanisms were separated so that the effects of each could be quantified and modeled. Seven different microstructural variations of LSHR were produced by controlling the cooling rate and the subsequent aging and thermal exposure heat treatments. Through cyclic fatigue crack growth testing performed both in air and vacuum, it was established that four out of the seven LSHR heat treatments evaluated, possessed similar intrinsic environmental resistance to cyclic crack growth. For these four heat treatments, it was further shown that the large differences in dwell crack growth behavior which still persisted, were related to their measured stress relaxation behavior. The apparent differences in their dwell crack growth resistance were attributed to the inability of the standard linear elastic fracture mechanics (LEFM) stress intensity parameter to account for visco-plastic behavior. Crack tip stress relaxation controls the magnitude of the remaining local tensile stresses which are directly related to the measured dwell crack growth rates. It was hypothesized that the environmentally weakened grain boundary crack tip regions fail during the dwells when their strength is exceeded by the remaining local crack tip tensile stresses. It was shown that the classical creep crack growth mechanisms such as grain boundary sliding did not contribute to crack growth, but the local visco-plastic behavior still plays a very significant role by determining the crack tip tensile stress field which controls the dwell crack growth behavior. To account for the influence of the visco-plastic behavior on the crack tip stress field, an empirical modification to the LEFM stress intensity parameter, Kmax, was developed by incorporating into the formulation the remaining stress level concept as measured by simple stress relaxation tests. The newly proposed parameter, Ksrf, did an excellent job in correlating the dwell crack growth rates for the four heat treatments which were shown to have similar intrinsic environmental cyclic fatigue crack growth resistance.

  9. Electrochemical model of local corrosion at the tip of a loaded crack

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Andreikiv, O.E.; Tym`yak, N.I.

    1994-07-01

    A model of electrochemical processes near a crack tip in a stressed metal subjected to corrosion with hydrogen depolarization is suggested. It is shown that, in order to describe the kinetics of hydrogenation of the prefracture area, it is necessary to take into account the type of passivation layer on the newly formed metal surface near the crack tip and the mechanism of its formation.

  10. Numerical simulation of micro-crack occurring in pipe made of stainless steel

    NASA Astrophysics Data System (ADS)

    Wotzka, Daria

    2017-10-01

    Research works carried out regard to studies aiming at determination of the effect of cumulative duty operation on the development of micro-cracks in pipelines for transport of chemical substances. This paper presents results of computer simulations of a pipeline made of stainless steel. The model was investigated using the COMSOL Multiphysics environment. The object under study was divided into sub areas and then discretized according to the FEM method. The physico-chemical parameters of individual areas were defined based on measurement data. The main aim of research works was the modeling of acoustic emission wave, which is emitted in the vicinity of the tip of micro-crack as a result of its development. In order to solve the task, heterogeneity in the structure of the material, referred to damage/micro-crack, causing local stresses was assumed. The local stresses give rise to elastic waves, which propagate in the material in all directions. When the emission waves reach the boundaries of the pipe they are then transferred into acoustic waves and propagate in the surround air, until their natural attenuation. The numerical model takes into account the effect of high pressure (3.6 MPa) and negative temperature (-100°C) of the gas, transported inside the pipe. The influence of changes of these values in the range of ± 20% on the obtained results was investigated. The main contribution of the works is the multiphysical simulation model of transportation pipe made of steel, coupling structural mechanics, thermal conductivity and acoustic waves.

  11. High cycle fatigue in the transmission electron microscope

    DOE PAGES

    Bufford, Daniel C.; Stauffer, Douglas; Mook, William M.; ...

    2016-06-28

    One of the most common causes of structural failure in metals is fatigue induced by cyclic loading. Historically, microstructure-level analysis of fatigue cracks has primarily been performed post mortem. However, such investigations do not directly reveal the internal structural processes at work near micro- and nanoscale fatigue cracks and thus do not provide direct evidence of active microstructural mechanisms. In this paper, the tension–tension fatigue behavior of nanocrystalline Cu was monitored in real time at the nanoscale by utilizing a new capability for quantitative cyclic mechanical loading performed in situ in a transmission electron microscope (TEM). Controllable loads were appliedmore » at frequencies from one to several hundred hertz, enabling accumulations of 10 6 cycles within 1 h. The nanometer-scale spatial resolution of the TEM allows quantitative fatigue crack growth studies at very slow crack growth rates, measured here at ~10 –12 m·cycle –1. This represents an incipient threshold regime that is well below the tensile yield stress and near the minimum conditions for fatigue crack growth. Evidence of localized deformation and grain growth within 150 nm of the crack tip was observed by both standard imaging and precession electron diffraction orientation mapping. Finally, these observations begin to reveal with unprecedented detail the local microstructural processes that govern damage accumulation, crack nucleation, and crack propagation during fatigue loading in nanocrystalline Cu.« less

  12. High cycle fatigue in the transmission electron microscope

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bufford, Daniel C.; Stauffer, Douglas; Mook, William M.

    One of the most common causes of structural failure in metals is fatigue induced by cyclic loading. Historically, microstructure-level analysis of fatigue cracks has primarily been performed post mortem. However, such investigations do not directly reveal the internal structural processes at work near micro- and nanoscale fatigue cracks and thus do not provide direct evidence of active microstructural mechanisms. In this paper, the tension–tension fatigue behavior of nanocrystalline Cu was monitored in real time at the nanoscale by utilizing a new capability for quantitative cyclic mechanical loading performed in situ in a transmission electron microscope (TEM). Controllable loads were appliedmore » at frequencies from one to several hundred hertz, enabling accumulations of 10 6 cycles within 1 h. The nanometer-scale spatial resolution of the TEM allows quantitative fatigue crack growth studies at very slow crack growth rates, measured here at ~10 –12 m·cycle –1. This represents an incipient threshold regime that is well below the tensile yield stress and near the minimum conditions for fatigue crack growth. Evidence of localized deformation and grain growth within 150 nm of the crack tip was observed by both standard imaging and precession electron diffraction orientation mapping. Finally, these observations begin to reveal with unprecedented detail the local microstructural processes that govern damage accumulation, crack nucleation, and crack propagation during fatigue loading in nanocrystalline Cu.« less

  13. Fracture behavior of large-scale thin-sheet aluminum alloy

    NASA Technical Reports Server (NTRS)

    Dewit, Roland; Fields, Richard J.; Mordfin, Leonard; Low, Samuel R.; Harne, Donald

    1994-01-01

    A series of fracture tests on large-scale, pre-cracked, aluminum alloy panels is being carried out to examine and to characterize the process by which cracks propagate and link up in this material. Extended grips and test fixtures were specially designed to enable the panel specimens to be loaded in tension, in a 1780-kN-capacity universal testing machine. Twelve panel specimens, each consisting of a single sheet of bare 2024-T3 aluminum alloy, 3988 mm high, 2286 mm wide, and 1.016 mm thick are being fabricated with simulated through-cracks oriented horizontally at mid-height. Using existing information, a test matrix has been set up that explores regions of failure that are controlled by fracture mechanics, with additional tests near the boundary between plastic collapse and fracture. In addition, a variety of multiple site damage (MSD) configurations have been included to distinguish between various proposed linkage mechanisms. All tests but one use anti-buckling guides. At this writing seven specimens have been tested. Three were fabricated with a single central crack, three others had multiple cracks on each side of the central crack, and one had a single crack but no anti-buckling guides. Each fracture event was recorded on film, video, computer, magnetic tape, and occasionally optical microscopy. The visual showed the crack tip with a load meter in the field of view, using motion picture film for one tip and SVHS video tape for the other. The computer recorded the output of the testing machine load cell, the stroke, and twelve strain gages at 1.5 second intervals. A wideband FM magnetic tape recorder was used to record data from the same sources. The data were analyzed by two different procedures: (1) the plastic zone model based on the residual strength diagram; and (2) the R-curve. The first three tests were used to determine the basic material properties, and these results were then used in the analysis of the two subsequent tests with MSD cracks. There is good agreement between measured values and results obtained from the model.

  14. Novel Repair Technique for Life-Extension of Hydraulic Turbine Components in Hydroelectric Power Stations

    NASA Astrophysics Data System (ADS)

    Hiramatsu, Yoichi; Ishii, Jun; Funato, Kazuhiro

    A significant number of hydraulic turbines operated in Japan were installed in the first half of the 20th century. Today, aging degradation and flaws are observed in these turbine equipments. So far, Japanese engineers have applied NDI technology of Ultrasonic Testing (UT) to detect the flaws, and after empirical evaluation of the remaining life they decided an adequate moment to replace the equipments. Since the replacement requires a large-scale field site works and high-cost, one of the solutions for life-extension of the equipments is introduction of repair services. We have been working in order to enhance the accuracy of results during the detection of flaws and flaws dimensioning, in particular focusing on the techniques of Tip-echo, TOFD and Phased-Array UT, accompanied by the conventional UT. These NDI methods made possible to recognize the entire image of surface and embedded flaws with complicated geometry. Then, we have developed an evaluation system of these flaws based on the theory of crack propagation, of the logic of crack growth driven by the stress-intensity factor of the crack tip front. The sophisticated evaluation system is constituted by a hand-made software and database of stress-intensity factor. Based on these elemental technologies, we propose a technique of repair welding to provide a life-extension of hydraulic turbine components.

  15. Modeling the Temperature Rise at the Tip of a Fast Crack

    DTIC Science & Technology

    1989-08-01

    plastic deformation in the plastic zone, the strain rate and the temperature dependence of the flow stress have been incorporated in the determination ...of dislocation generation in the plastic zone. The stress field 1 associated with a moving elastic crack tip is used to determine the increment of...yield stress and the crack tip stress field for a given mode of the applied stress. The fracture toughness of several materials, determined

  16. New theory for crack-tip twinning in fcc metals

    NASA Astrophysics Data System (ADS)

    Andric, Predrag; Curtin, W. A.

    2018-04-01

    Dislocation emission from a crack tip is a necessary mechanism for crack tip blunting and toughening. In fcc metals under Mode I loading, a first partial dislocation is emitted, followed either by a trailing partial dislocation ("ductile" behaviour) or a twinning partial dislocation ("quasi-brittle"). The twinning tendency is usually estimated using the Tadmor and Hai extension of the Rice theory. Extensive molecular statics simulations reveal that the predictions of the critical stress intensity factor for crack tip twinning are always systematically lower (20-35%) than observed. Analyses of the energy change during nucleation reveal that twin partial emission is not accompanied by creation of a surface step while emission of the trailing partial creates a step. The absence of the step during twinning motivates a modified model for twinning nucleation that accounts for the fact that nucleation does not occur directly at the crack tip. Predictions of the modified theory are in excellent agreement with all simulations that show twinning. Emission of the trailing partial dislocation, including the step creation, is predicted using a model recently introduced to accurately predict the first partial emission and shows why twinning is preferred. A second mode of twinning is found wherein the crack first advances by cleavage and then emits the twinning partial at the new crack tip; this mode dominates for emission beyond the first twinning partial. These new theories resolve all the discrepancies between the Tadmor twinning analysis and simulations, and have various implications for fracture behaviour and transitions.

  17. Experimental study on fatigue crack propagation rate of RC beam strengthened with carbon fiber laminate

    NASA Astrophysics Data System (ADS)

    Huang, Peiyan; Liu, Guangwan; Guo, Xinyan; Huang, Man

    2008-11-01

    The experimental research on fatigue crack propagation rate of reinforced concrete (RC) beams strengthened with carbon fiber laminate (CFL) is carried out by MTS system in this paper. The experimental results show that, the main crack propagation on strengthened beam can be summarized into three phases: 1) fast propagation phase; 2) steady propagation and rest phase; 3) unsteady propagation phase. The phase 2-i.e. steady propagation and rest stage makes up about 95% of fatigue life of the strengthened beam. The propagation rate of the main crack, da/dN, in phase 2 can be described by Paris formula, and the constant C and m can be confirmed by the fatigue crack propagation experiments of the RC beams strengthened with CFL under three-point bending loads.

  18. Quantity Effect of Radial Cracks on the Cracking Propagation Behavior and the Crack Morphology

    PubMed Central

    Chen, Jingjing; Xu, Jun; Liu, Bohan; Yao, Xuefeng; Li, Yibing

    2014-01-01

    In this letter, the quantity effect of radial cracks on the cracking propagation behavior as well as the circular crack generation on the impacted glass plate within the sandwiched glass sheets are experimentally investigated via high-speed photography system. Results show that the radial crack velocity on the backing glass layer decreases with the crack number under the same impact conditions during large quantities of repeated experiments. Thus, the “energy conversion factor” is suggested to elucidate the physical relation between the cracking number and the crack propagation speed. Besides, the number of radial crack also takes the determinative effect in the crack morphology of the impacted glass plate. This study may shed lights on understanding the cracking and propagation mechanism in laminated glass structures and provide useful tool to explore the impact information on the cracking debris. PMID:25048684

  19. A demonstration of mitigation of environmentally-assisted cracking by the application of a tensile overload

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    James, L.A.

    1997-02-01

    Environmentally-assisted cracking (EAC) of low-alloy steels in high-temperature aqueous environments typical of those employed in light-water reactor (LWR) systems has been a subject of considerable interest since the pioneering work of Kondo et al demonstrated significantly higher fatigue crack propagation (FCP) rates in water than would be expected in an air environment under similar conditions. Here, environmentally-assisted cracking (EAC) of low-alloy steels in elevated temperature aqueous environments is readily observed in many laboratory experiments conducted in autoclaves, yet the observation of EAC in actual components operating in the same environments is quite rare. Mass transport of sulfides from the crackmore » enclave by diffusion and convection occurring in operating components provides one plausible explanation to this apparent paradox. Another contribution to EAC mitigation may also arise from the non-constant stress amplitudes typical for many operating components. This paper provides a demonstration of how a single tensile overload to 40% above a steady-state maximum fatigue stress can retard subsequent crack growth at the steady-state level for a sufficient period of time that diffusion mass transport can reduce the crack-tip sulfide concentration to a level below that necessary to sustain EAC.« less

  20. Deformation fields near a steady fatigue crack with anisotropic plasticity

    DOE PAGES

    Gao, Yanfei

    2015-11-30

    In this work, from finite element simulations based on an irreversible, hysteretic cohesive interface model, a steady fatigue crack can be realized if the crack extension exceeds about twice the plastic zone size, and both the crack increment per loading cycle and the crack bridging zone size are smaller than the plastic zone size. The corresponding deformation fields develop a plastic wake behind the crack tip and a compressive residual stress field ahead of the crack tip. In addition, the Hill’s plasticity model is used to study the role of plastic anisotropy on the retardation of fatigue crack growth andmore » the elastic strain fields. It is found that for Mode-I cyclic loading, an enhanced yield stress in directions that are inclined from the crack plane will lead to slower crack growth rate, but this retardation is insignificant for typical degrees of plastic anisotropy. Furthermore, these results provide key inputs for future comparisons to neutron and synchrotron diffraction measurements that provide full-field lattice strain mapping near fracture and fatigue crack tips, especially in textured materials such as wrought or rolled Mg alloys.« less

  1. Deformation fields near a steady fatigue crack with anisotropic plasticity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gao, Yanfei

    In this work, from finite element simulations based on an irreversible, hysteretic cohesive interface model, a steady fatigue crack can be realized if the crack extension exceeds about twice the plastic zone size, and both the crack increment per loading cycle and the crack bridging zone size are smaller than the plastic zone size. The corresponding deformation fields develop a plastic wake behind the crack tip and a compressive residual stress field ahead of the crack tip. In addition, the Hill’s plasticity model is used to study the role of plastic anisotropy on the retardation of fatigue crack growth andmore » the elastic strain fields. It is found that for Mode-I cyclic loading, an enhanced yield stress in directions that are inclined from the crack plane will lead to slower crack growth rate, but this retardation is insignificant for typical degrees of plastic anisotropy. Furthermore, these results provide key inputs for future comparisons to neutron and synchrotron diffraction measurements that provide full-field lattice strain mapping near fracture and fatigue crack tips, especially in textured materials such as wrought or rolled Mg alloys.« less

  2. Crack Turning Mechanics of Composite Wing Skin Panels

    NASA Technical Reports Server (NTRS)

    Yuan, F. G.; Reeder, James R. (Technical Monitor)

    2001-01-01

    The safety of future composite wing skin integral stiffener panels requires a full understanding of failure mechanisms of these damage tolerance critical structures under both in-plane and bending loads. Of primary interest is to derive mathematical models using fracture mechanics in anisotropic cracked plate structures, to assess the crack turning mechanisms, and thereby to enhance the residual strength in the integral stiffener composite structures. The use of fracture mechanics to assess the failure behavior in a cracked structure requires the identification of critical fracture parameters which govern the severity of stress and deformation field ahead of the flaw, and which can be evaluated using information obtained from the flaw tip. In the three-year grant, the crack-tip fields under plane deformation, crack-tip fields for anisotropic plates and anisotropic shells have been obtained. In addition, methods for determining the stress intensity factors, energy release rate, and the T-stresses have been proposed and verified. The research accomplishments can be summarized as follows: (1) Under plane deformation in anisotropic solids, the asymptotic crack-tip fields have been obtained using Stroh formalism; (2) The T-stress and the coefficient of the second term for sigma(sub y), g(sub 32), have been obtained using path-independent integral, the J-integral and Betti's reciprocal theorem together with auxiliary fields; (3) With experimental data performed by NASA, analyses indicated that the mode-I critical stress intensity factor K(sub Q) provides a satisfactory characterization of fracture initiation for a given laminate thickness, provided the failure is fiber-dominated and crack extends in a self-similar manner; (4) The high constraint specimens, especially for CT specimens, due to large T-stress and large magnitude of negative g(sub 32) term may be expected to inhibit the crack extension in the same plane and promote crack turning; (5) Crack turning out of crack plane in generally anisotropic solids under plane deformation has been studied; (6) The role of T-stress and the higher-order term of sigma(sub y) on the crack turning and stability of the kinked crack has been quantified; (7) Asymptotic crack-tip fields including the effect of transverse shear deformation (Reissner plate theory) in an anisotropic plate under bending, twisting moments, and transverse shear loads has been presented; (8) The expression of the path-independent J-integral in terms of the generalized stress and strain has been derived; (9) Asymptotic crack-tip fields including the effect of transverse shear deformation (Reissner shallow shell theory) in a general anisotropic shell has been developed; (10) The Stroh formalism was used to characterize the crack tip fields in shells up to the second term and the energy release rate was expressed in a very compact form.

  3. 3D ductile crack propagation within a polycrystalline microstructure using XFEM

    NASA Astrophysics Data System (ADS)

    Beese, Steffen; Loehnert, Stefan; Wriggers, Peter

    2018-02-01

    In this contribution we present a gradient enhanced damage based method to simulate discrete crack propagation in 3D polycrystalline microstructures. Discrete cracks are represented using the eXtended finite element method. The crack propagation criterion and the crack propagation direction for each point along the crack front line is based on the gradient enhanced damage variable. This approach requires the solution of a coupled problem for the balance of momentum and the additional global equation for the gradient enhanced damage field. To capture the discontinuity of the displacements as well as the gradient enhanced damage along the discrete crack, both fields are enriched using the XFEM in combination with level sets. Knowing the crack front velocity, level set methods are used to compute the updated crack geometry after each crack propagation step. The applied material model is a crystal plasticity model often used for polycrystalline microstructures of metals in combination with the gradient enhanced damage model. Due to the inelastic material behaviour after each discrete crack propagation step a projection of the internal variables from the old to the new crack configuration is required. Since for arbitrary crack geometries ill-conditioning of the equation system may occur due to (near) linear dependencies between standard and enriched degrees of freedom, an XFEM stabilisation technique based on a singular value decomposition of the element stiffness matrix is proposed. The performance of the presented methodology to capture crack propagation in polycrystalline microstructures is demonstrated with a number of numerical examples.

  4. Strength gradient enhances fatigue resistance of steels

    NASA Astrophysics Data System (ADS)

    Ma, Zhiwei; Liu, Jiabin; Wang, Gang; Wang, Hongtao; Wei, Yujie; Gao, Huajian

    2016-02-01

    Steels are heavily used in infrastructure and the transportation industry, and enhancing their fatigue resistance is a major challenge in materials engineering. In this study, by introducing a gradient microstructure into 304 austenitic steel, which is one of the most widely used types of stainless steel, we show that a strength gradient substantially enhances the fatigue life of the material. Pre-notched samples with negative strength gradients in front of the notch’s tip endure many more fatigue cycles than do samples with positive strength gradients during the crack initiation stage, and samples with either type of gradient perform better than do gradient-free samples with the same average yield strength. However, as a crack grows, samples with positive strength gradients exhibit better resistance to fatigue crack propagation than do samples with negative gradients or no gradient. This study demonstrates a simple and promising strategy for using gradient structures to enhance the fatigue resistance of materials and complements related studies of strength and ductility.

  5. Strength gradient enhances fatigue resistance of steels

    PubMed Central

    Ma, Zhiwei; Liu, Jiabin; Wang, Gang; Wang, Hongtao; Wei, Yujie; Gao, Huajian

    2016-01-01

    Steels are heavily used in infrastructure and the transportation industry, and enhancing their fatigue resistance is a major challenge in materials engineering. In this study, by introducing a gradient microstructure into 304 austenitic steel, which is one of the most widely used types of stainless steel, we show that a strength gradient substantially enhances the fatigue life of the material. Pre-notched samples with negative strength gradients in front of the notch’s tip endure many more fatigue cycles than do samples with positive strength gradients during the crack initiation stage, and samples with either type of gradient perform better than do gradient-free samples with the same average yield strength. However, as a crack grows, samples with positive strength gradients exhibit better resistance to fatigue crack propagation than do samples with negative gradients or no gradient. This study demonstrates a simple and promising strategy for using gradient structures to enhance the fatigue resistance of materials and complements related studies of strength and ductility. PMID:26907708

  6. Texture and Tempered Condition Combined Effects on Fatigue Behavior in an Al-Cu-Li Alloy

    NASA Astrophysics Data System (ADS)

    Wang, An; Liu, Zhiyi; Liu, Meng; Wu, Wenting; Bai, Song; Yang, Rongxian

    2017-05-01

    Texture and tempered condition combined effects on fatigue behavior in an Al-Cu-Li alloy have been investigated using tensile testing, cyclic loading testing, scanning electron microscope (SEM), transmission electron microscopy (TEM) and texture analysis. Results showed that in near-threshold region, T4-tempered samples possessed the lowest fatigue crack propagation (FCP) rate. In Paris regime, T4-tempered sample had similar FCP rate with T6-tempered sample. T83-tempered sample exhibited the greatest FCP rate among the three tempered conditions. 3% pre-stretching in T83-tempered sample resulted in a reducing intensity of Goss texture and facilitated T1 precipitation. SEM results showed that less crack deflection was observed in T83-tempered sample, as compared to other two tempered samples. It was the combined effects of a lower intensity of Goss texture and T1 precipitates retarding the reversible dislocation slipping in the plastic zone ahead the crack tip.

  7. Crack-tips enriched platinum-copper superlattice nanoflakes as highly efficient anode electrocatalysts for direct methanol fuel cells.

    PubMed

    Zheng, Lijun; Yang, Dachi; Chang, Rong; Wang, Chengwen; Zhang, Gaixia; Sun, Shuhui

    2017-07-06

    We have developed "crack-tips" and "superlattice" enriched Pt-Cu nanoflakes (NFs), benefiting from the synergetic effects of "crack-tips" and "superlattice crystals"; the Pt-Cu NFs exhibit 4 times higher mass activity, 6 times higher specific activity and 6 times higher stability than those of the commercial Pt/C catalyst, respectively. Meanwhile, the Pt-Cu NFs show more enhanced CO tolerance than the commercial Pt/C catalyst.

  8. Analysis of crack propagation as an energy absorption mechanism in metal matrix composites

    NASA Technical Reports Server (NTRS)

    Adams, D. F.; Murphy, D. P.

    1981-01-01

    The crack initiation and crack propagation capability was extended to the previously developed generalized plane strain, finite element micromechanics analysis. Also, an axisymmetric analysis was developed, which contains all of the general features of the plane analysis, including elastoplastic material behavior, temperature-dependent material properties, and crack propagation. These analyses were used to generate various example problems demonstrating the inelastic response of, and crack initiation and propagation in, a boron/aluminum composite.

  9. Measurement of Kirchhoff's stress intensity factors in bending plates

    NASA Astrophysics Data System (ADS)

    Bäcker, D.; Kuna, M.; Häusler, C.

    2014-03-01

    A measurement method of the stress intensity factors defined by KIRCHHOFF's theory for a crack in a bending plate is shown. For this purpose, a thin piezoelectric polyvinylidene fluoride film (PVDF) is attached to the surface of the cracked plate. The measured electrical voltages are coupled with the load type and the crack tip position relative to the sensor film. Stress intensity factors and the crack tip position can be determined by solving the non-linear inverse problem based on the measured signals. To guarantee solvability of the problem, more measuring electrodes on the film have to be taken in to account. To the developed sensor concept the KIRCHHOFF's plate theory has been applied. In order to connect the electrical signals and the stress intensity factors the stresses near the crack tip have to be written in eigenfunctions (see WILLIAMS [1]). The presented method was verified by means of the example of a straight crack of the length 2a in an infinite isotropic plate under all- side bending. It was found that the positioning of the electrodes is delimited by two radii. On one hand, the measurement points should not be too close to the crack tip. In this area, the Kirchhoff's plate theory cannot be used effectively. On the other hand, the measuring electrodes should be placed at a smaller distance to each other and not too far from the crack tip regarding the convergence radius of the WILLIAMS series expansion. Test calculations on a straight crack in an infinite isotropic plate showed the general applicability of the measurement method.

  10. Self-Healing Nanotextured Vascular-like Materials: Mode I Crack Propagation.

    PubMed

    Lee, Min Wook; Sett, Soumyadip; An, Seongpil; Yoon, Sam S; Yarin, Alexander L

    2017-08-16

    Here, we investigate crack propagation initiated from an initial notch in a self-healing material. The crack propagation in the core-shell nanofiber mats formed by coelectrospinning and the composites reinforced by them is in focus. All samples are observed from the crack initiation until complete failure. Due to the short-time experiments done on purpose, the resin and cure released from the cores of the core-shell nanofibers could not achieve a complete curing and stop crack growth, especially given the fact that no heating was used. The aim is to elucidate their effect on the rate of crack propagation. The crack propagation speed in polyacrylonitrile (PAN)-resin-cure nanofiber mats (with PAN being the polymer in the shell) was remarkably lower than that in the corresponding monolithic PAN nanofiber mat, down to 10%. The nanofiber mats were also encased in polydimethylsiloxane (PDMS) matrix to form composites. The crack shape and propagation in the composite samples were studied experimentally and analyzed theoretically, and the theoretical results revealed agreement with the experimental data.

  11. A fracture criterion for widespread cracking in thin-sheet aluminum alloys

    NASA Technical Reports Server (NTRS)

    Newman, J. C., Jr.; Dawicke, D. S.; Sutton, M. A.; Bigelow, C. A.

    1993-01-01

    An elastic-plastic finite-element analysis was used with a critical crack-tip-opening angle (CTOA) fracture criterion to model stable crack growth in thin-sheet 2024-T3 aluminum alloy panels with single and multiple-site damage (MSD) cracks. Comparisons were made between critical angles determined from the analyses and those measured with photographic methods. Calculated load against crack extension and load against crack-tip displacement on single crack specimens agreed well with test data even for large-scale plastic deformations. The analyses were also able to predict the stable tearing behavior of large lead cracks in the presence of stably tearing MSD cracks. Small MSD cracks significantly reduced the residual strength for large lead cracks.

  12. Plastic zone size and crack tip opening displacement of a Dugdale crack interacting with a coated circular inclusion

    NASA Astrophysics Data System (ADS)

    Hoh, H. J.; Xiao, Z. M.; Luo, J.

    2010-09-01

    An analytical investigation on the plastic zone size of a crack near a coated circular inclusion under three different loading conditions of uniaxial tension, uniform tension and pure shear was carried out. Both the crack and coated circular inclusion are embedded in an infinite matrix, with the crack oriented along the radial direction of the inclusion. In the solution procedure, the crack is simulated as a continuous distribution of edge dislocations. With the Dugdale model of small-scale yielding [J. Mech. Phys. Solids 8 (1960) p. 100], two thin strips of yielded plastic zones are introduced at both crack tips. Using the solution for a coated circular inclusion interacting with a single dislocation as the Green's function, the physical problem is formulated into a set of singular integral equations. Using the method of Erdogan and Gupta [Q. J. Appl. Math. 29 (1972) p. 525] and iterative numerical procedures, the singular integral equations are solved numerically for the plastic zone sizes and crack tip opening displacement.

  13. Effect of Speed (Centrifugal Load) on Gear Crack Propagation Direction

    NASA Technical Reports Server (NTRS)

    Lewicki, David G.

    2001-01-01

    The effect of rotational speed (centrifugal force) on gear crack propagation direction was explored. Gears were analyzed using finite element analysis and linear elastic fracture mechanics. The analysis was validated with crack propagation experiments performed in a spur gear fatigue rig. The effects of speed, rim thickness, and initial crack location on gear crack propagation direction were investigated. Crack paths from the finite element method correlated well with those deduced from gear experiments. For the test gear with a backup ratio (rim thickness divided by tooth height) of nib = 0.5, cracks initiating in the tooth fillet propagated to rim fractures when run at a speed of 10,000 rpm and became tooth fractures for speeds slower than 10,000 rpm for both the experiments and anal sis. From additional analysis, speed had little effect on crack propagation direction except when initial crack locations were near the tooth/rim fracture transition point for a given backup ratio. When at that point, higher speeds tended to promote rim fracture while lower speeds (or neglecting centrifugal force) produced tooth fractures.

  14. Digital Image Analysis System for Monitoring Crack Growth at Elevated Temperature

    DTIC Science & Technology

    1988-05-01

    The objective of the research work reported here was to develop a new concept, based on Digital Image Analysis , for monitoring the crack-tip position...a 512 x 512 pixel frame. c) Digital Image Analysis software developed to locate and digitize the position of the crack-tip, on the observed image

  15. Capillary fracture of soft gels.

    PubMed

    Bostwick, Joshua B; Daniels, Karen E

    2013-10-01

    A liquid droplet resting on a soft gel substrate can deform that substrate to the point of material failure, whereby fractures develop on the gel surface that propagate outwards from the contact line in a starburst pattern. In this paper, we characterize (i) the initiation process, in which the number of arms in the starburst is controlled by the ratio of the surface tension contrast to the gel's elastic modulus, and (ii) the propagation dynamics showing that once fractures are initiated they propagate with a universal power law L[proportional]t(3/4). We develop a model for crack initiation by treating the gel as a linear elastic solid and computing the deformations within the substrate from the liquid-solid wetting forces. The elastic solution shows that both the location and the magnitude of the wetting forces are critical in providing a quantitative prediction for the number of fractures and, hence, an interpretation of the initiation of capillary fractures. This solution also reveals that the depth of the gel is an important factor in the fracture process, as it can help mitigate large surface tractions; this finding is confirmed with experiments. We then develop a model for crack propagation by considering the transport of an inviscid fluid into the fracture tip of an incompressible material and find that a simple energy-conservation argument can explain the observed material-independent power law. We compare predictions for both linear elastic and neo-Hookean solids, finding that the latter better explains the observed exponent.

  16. Initiation and propagation toughness of delamination crack under an impact load

    NASA Astrophysics Data System (ADS)

    Kumar, Prashant; Kishore, N. N.

    1998-10-01

    A combined experimental and finite element method is developed to determine the interlaminar dynamic fracture toughness. An interlaminar crack is propagated at very high speed in a double cantilever beam (DCB) specimen made of two steel strips with a precrack. A special fixture is designed to apply impact load to one cantilever and determine the deflection of the cantilever-end, initiation time and crack propagation history. The experimental results are used as input data in a FE code to calculate J-integral by the gradual release of nodal forces to model the propagation of the interlaminar crack. The initiation fracture toughness and propagation fracture toughness are evaluated for interlaminar crack propagating between 850 and 1785 ms. The initiation and propagation toughness were found to vary between 90-200 Jm 2 and 2-13 Jm 2 respectively. The technique is extended to study initiation and propagation toughness of interlaminar crack in unidirectional FRP laminates. 1998 Elsevier Science Ltd.

  17. Fracture Mechanics Analyses for Interface Crack Problems - A Review

    NASA Technical Reports Server (NTRS)

    Krueger, Ronald; Shivakumar, Kunigal; Raju, Ivatury S.

    2013-01-01

    Recent developments in fracture mechanics analyses of the interfacial crack problem are reviewed. The intent of the review is to renew the awareness of the oscillatory singularity at the crack tip of a bimaterial interface and the problems that occur when calculating mode mixity using numerical methods such as the finite element method in conjunction with the virtual crack closure technique. Established approaches to overcome the nonconvergence issue of the individual mode strain energy release rates are reviewed. In the recent literature many attempts to overcome the nonconvergence issue have been developed. Among the many approaches found only a few methods hold the promise of providing practical solutions. These are the resin interlayer method, the method that chooses the crack tip element size greater than the oscillation zone, the crack tip element method that is based on plate theory and the crack surface displacement extrapolation method. Each of the methods is validated on a very limited set of simple interface crack problems. However, their utility for a wide range of interfacial crack problems is yet to be established.

  18. Surface Studies of Ultra Strength Drilling Steel after Corrosion Fatigue in Simulated Sour Environment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    M. Ziomek-Moroz; J.A. Hawk; R. Thodla

    2012-05-06

    The Unites States predicted 60% growth in energy demand by 2030 makes oil and natural gas primary target fuels for energy generation. The fact that the peak of oil production from shallow wells (< 5000 m) is about to be reached, thereby pushing the oil and natural gas industry into deeper wells. However, drilling to depths greater than 5000 m requires increasing the strength-to weight ratio of the drill pipe materials. Grade UD-165 is one of the ultra- high yield strength carbon steels developed for ultra deep drilling (UDD) activities. Drilling UDD wells exposes the drill pipes to Cl{sup -},more » HCO{sub 3}{sup -}/CO{sub 3}{sup 2-}, and H{sub 2}S-containig corrosive environments (i.e., sour environments) at higher pressures and temperatures compared to those found in conventional wells. Because of the lack of synergism within the service environment, operational stresses can result in catastrophic brittle failures characteristic for environmentally assisted cracking (EAC). Approximately 75% of all drill string failures are caused by fatigue or corrosion fatigue. Since there is no literature data on the corrosion fatigue performance of UD-165 in sour environments, research was initiated to better clarify the fatigue crack growth (FCGR) behavior of this alloy in UDD environments. The FCGR behavior of ultra-strength carbon steel, grade UD-165, was investigated by monitoring crack growth rate in deaerated 5%NaCl solution buffered with NaHCO{sub 3}/Na{sub 2}CO{sub 3} and in contact with H{sub 2}S. The partial pressure of H{sub 2}S (p{sub H2S}) was 0.83 kPa and pH of the solution was adjusted by NaOH to 12. The fatigue experiments were performed at 20 and 85 C in an autoclave with surface investigations augmented by scanning electron microscopy (SEM) and energy dispersive x-ray (EDX) spectroscopy. In this study, research focused on surface analyses supported by the fatigue crack growth rate measurements. Fig. 1 shows an SEM micrograph of the crack that propagated from the notch in the solution at 20 C. Accumulation of the corrosion products is visible along the crack. The EDX chemical analysis near the crack tip found iron, sulfur and oxygen in the passive layer. The surface of the sample after the fatigue test in the sour environment at 85{sup o}, Fig. 2, C looks different from that fatigued surface at 20 C. The crack propagates across the passive film that covers the surface fairly uniformly. Some spallation of the passive film is observed near the notch. The EDX chemical analysis of the passive film near the crack tip identified mainly iron, carbon and oxygen. It appears that temperature plays a very important role in formation of the passive film. This may be associated with different solubility of H{sub 2}S in the solution, which will be further studied.« less

  19. Crack problems involving nonhomogeneous interfacial regions in bonded materials

    NASA Technical Reports Server (NTRS)

    Erdogan, F.

    1990-01-01

    Consideration is given to two classes of fracture-related solid mechanics problems in which the model leads to some physically anomalous results. The first is the interface crack problem associated with the debonding process in which the corresponding elasticity solution predicts severe oscillations of stresses and the crack surface displacements vary near the crack tip. The second deals with crack intersecting the interface. The nature of the solutions around the crack tips arising from these problems is reviewed. The rationale for introducing a new interfacial zone model is discussed, its analytical consequences within the context of the two crack-problem classes are described, and some examples are presented.

  20. Influence of Crack-Tip Configurations on the Fracture Response of 0.04-Inch Thick 2024-T3 Aluminum Alloy Sheet

    NASA Technical Reports Server (NTRS)

    Johnston, William M.; Newman, James C. (Technical Monitor)

    2002-01-01

    A series of fracture tests were conducted on Middle-crack tension M(T) and compact tension C(T) specimens to determine the effects of specimen type, specimen width, notch tip sharpness and buckling on the fracture behavior of cracked thin sheet (0.04 inch thick) 2024-T3 aluminum alloy material. A series of M(T) specimens were tested with three notch tip configurations: (1) a fatigue pre-cracked notch, (2) a 0.010-inch-diameter wire electrical discharge machined (EDM) notch, and (3) a EDM notch sharpened with a razor blade. The test procedures are discussed and the experimental results for failure stress, load vs. crack extension and the material stress-strain response are reported.

  1. Near-tip dual-length scale mechanics of mode-I cracking in laminate brittle matrix composites

    NASA Technical Reports Server (NTRS)

    Ballarini, R.; Islam, S.; Charalambides, P. G.

    1992-01-01

    This paper presents the preliminary results of an on-going study of the near-tip mechanics of mode-I cracking in brittle matrix composite laminates. A finite element model is developed within the context of two competing characteristic lengths present in the composite: the microstructural length (the thickness of the layers) and a macro-length (crack-length, uncracked ligament size, etc.). For various values of the parameters which describe the ratio of these lengths and the constituent properties, the stresses ahead of a crack perpendicular to the laminates are compared with those predicted by assuming the composite is homogeneous orthotropic. The results can be used to determine the conditions for which homogenization can provide a sufficiently accurate description of the stresses in the vicinity of the crack-tip.

  2. Effect of load ratio on fatigue crack propagation behavior of solid-solution-strengthened Ni-based superalloys at elevated temperature

    NASA Astrophysics Data System (ADS)

    Ma, Longzhou; Roy, Shawoon K.

    2013-04-01

    The fatigue crack propagation (FCP) behavior of two solid-solution-strengthened Ni-based superalloys, INCONEL 617 and HAYNES 230, were studied simultaneously in laboratory air using a constant stress intensity factor (K)-controlled mode with different load ratios (R-ratio) at 700 °C. The FCP tests were performed in both cycle and time-dependent FCP domains to examine the effect of R-ratio on the FCP rate, da/dn. For cycle-dependent FCP test, a 1-s sinusoidal fatigue was applied for a compact tension (CT) specimen of INCONEL 617 and HAYNES 230 to measure their FCP rates. For time-dependent FCP test, a 3-s sinusoidal fatigue with a hold time of 300 s at maximum load was applied. Both cycle/time-dependent FCP behaviors were characterized and analyzed. The results showed that increasing R-ratio would introduce the fatigue incubation and decrease the FCP rates at cycle-dependent FCP tests. On the contrary, fatigue incubation was not observed at time-dependent FCP tests for both INCONEL 617 and HAYNES 230 at each tested R-ratio, suggesting that association of maximum load (Kmax) with crack tip open displacement (CTOD) and environmental factor governed the FCP process. Also, for time-dependent FCP, HAYNES 230 showed lower FCP rates than INCONEL 617 regardless of R-ratio. However, for cycle-dependent FCP, HAYNES 230 showed the lower FCP rates only at high R-ratios. Fracture surface of specimens were examined using SEM to investigate the cracking mechanism under cycle/time-dependent FCP condition with various R-ratios.

  3. Liquid metal embrittlement. [crack propagation in metals with liquid metal in crack space

    NASA Technical Reports Server (NTRS)

    Tiller, W. A.

    1973-01-01

    Crack propagation is discussed for metals with liquid metal in the crack space. The change in electrochemical potential of an electron in a metal due to changes in stress level along the crack surface was investigated along with the change in local chemistry, and interfacial energy due to atomic redistribution in the liquid. Coupled elastic-elastrostatic equations, stress effects on electron energy states, and crack propagation via surface roughening are discussed.

  4. Investigation of translaminar fracture in fibrereinforced composite laminates---applicability of linear elastic fracture mechanics and cohesive-zone model

    NASA Astrophysics Data System (ADS)

    Hou, Fang

    With the extensive application of fiber-reinforced composite laminates in industry, research on the fracture mechanisms of this type of materials have drawn more and more attentions. A variety of fracture theories and models have been developed. Among them, the linear elastic fracture mechanics (LEFM) and cohesive-zone model (CZM) are two widely-accepted fracture models, which have already shown applicability in the fracture analysis of fiber-reinforced composite laminates. However, there remain challenges which prevent further applications of the two fracture models, such as the experimental measurement of fracture resistance. This dissertation primarily focused on the study of the applicability of LEFM and CZM for the fracture analysis of translaminar fracture in fibre-reinforced composite laminates. The research for each fracture model consisted of two sections: the analytical characterization of crack-tip fields and the experimental measurement of fracture resistance parameters. In the study of LEFM, an experimental investigation based on full-field crack-tip displacement measurements was carried out as a way to characterize the subcritical and steady-state crack advances in translaminar fracture of fiber-reinforced composite laminates. Here, the fiber-reinforced composite laminates were approximated as anisotropic solids. The experimental investigation relied on the LEFM theory with a modification with respect to the material anisotropy. Firstly, the full-field crack-tip displacement fields were measured by Digital Image Correlation (DIC). Then two methods, separately based on the stress intensity approach and the energy approach, were developed to measure the crack-tip field parameters from crack-tip displacement fields. The studied crack-tip field parameters included the stress intensity factor, energy release rate and effective crack length. Moreover, the crack-growth resistance curves (R-curves) were constructed with the measured crack-tip field parameters. In addition, an error analysis was carried out with an emphasis on the influence of out-of-plane rotation of specimen. In the study of CZM, two analytical inverse methods, namely the field projection method (FPM) and the separable nonlinear least-squares method, were developed for the extraction of cohesive fracture properties from crack-tip full-field displacements. Firstly, analytical characterizations of the elastic fields around a crack-tip cohesive zone and the cohesive variables within the cohesive zone were derived in terms of an eigenfunction expansion. Then both of the inverse methods were developed based on the analytical characterization. With the analytical inverse methods, the cohesive-zone law (CZL), cohesive-zone size and position can be inversely computed from the cohesive-crack-tip displacement fields. In the study, comprehensive numerical tests were carried out to investigate the applicability and robustness of two inverse methods. From the numerical tests, it was found that the field projection method was very sensitive to noise and thus had limited applicability in practice. On the other hand, the separable nonlinear least-squares method was found to be more noise-resistant and less ill-conditioned. Subsequently, the applicability of separable nonlinear least-squares method was validated with the same translaminar fracture experiment for the study of LEFM. Eventually, it was found that the experimental measurements of R-curves and CZL showed a great agreement, in both of the fracture energy and the predicted load carrying capability. It thus demonstrated the validity of present research for the translaminar fracture of fiber-reinforced composite laminates.

  5. Concrete Cracking Prediction Including the Filling Proportion of Strand Corrosion Products.

    PubMed

    Wang, Lei; Dai, Lizhao; Zhang, Xuhui; Zhang, Jianren

    2016-12-23

    The filling of strand corrosion products during concrete crack propagation is investigated experimentally in the present paper. The effects of stirrups on the filling of corrosion products and concrete cracking are clarified. A prediction model of crack width is developed incorporating the filling proportion of corrosion products and the twisting shape of the strand. Experimental data on cracking angle, crack width, and corrosion loss obtained from accelerated corrosion tests of concrete beams are presented. The proposed model is verified by experimental data. Results show that the filling extent of corrosion products varies with crack propagation. The rust filling extent increases with the propagating crack until a critical width. Beyond the critical width, the rust-filling extent remains stable. Using stirrups can decrease the critical crack width. Stirrups can restrict crack propagation and reduce the rust filling. The tangent of the cracking angle increases with increasing corrosion loss. The prediction of corrosion-induced crack is sensitive to the rust-filling extent.

  6. Concrete Cracking Prediction Including the Filling Proportion of Strand Corrosion Products

    PubMed Central

    Wang, Lei; Dai, Lizhao; Zhang, Xuhui; Zhang, Jianren

    2016-01-01

    The filling of strand corrosion products during concrete crack propagation is investigated experimentally in the present paper. The effects of stirrups on the filling of corrosion products and concrete cracking are clarified. A prediction model of crack width is developed incorporating the filling proportion of corrosion products and the twisting shape of the strand. Experimental data on cracking angle, crack width, and corrosion loss obtained from accelerated corrosion tests of concrete beams are presented. The proposed model is verified by experimental data. Results show that the filling extent of corrosion products varies with crack propagation. The rust filling extent increases with the propagating crack until a critical width. Beyond the critical width, the rust-filling extent remains stable. Using stirrups can decrease the critical crack width. Stirrups can restrict crack propagation and reduce the rust filling. The tangent of the cracking angle increases with increasing corrosion loss. The prediction of corrosion-induced crack is sensitive to the rust-filling extent. PMID:28772367

  7. Fatigue behavior and encrustation characteristics of nanocrystalline metals

    NASA Astrophysics Data System (ADS)

    Lai, Li-Chung

    The nanocrstalline (NC) metals have been reported to have high mechanical performance owing to it's small grain interior and a large volume fraction of grain boundary (GB) atoms. Small grain leads to the forbidden dislocation activities in grain interior while GB activities become dominant due to a higher volume fraction of GB atoms. Regarding the fatigue response to nanocrstalline metals, it has been reported that decreasing grain led to both significantly improvement on the fatigue-endurance limit and deleterious effect on the resistance to subcritical fatigue crack propagation. The increases endurance limit has been attributed to the greater resistance to fatigue crack initiation at near-surface regions. On the other hand, the less resistance to fatigue crack growth were resulted from less tortuous fatigue crack profiles supported by the deflection/closure theory. However, it has never been studied the influence of proceeding and pre-existing defects on the fatigue performance considering the difference response of NC structure from than coarse grain (CG) structure. In the present work, the influence of electrical discharge machining (EDM) and surface defects on the fatigue behavior of both conventional cold-rolled CG and electro-deposited (ED) NC Ni were investigated. The experimental results revealed considerable influence by EDM on the fatigue strength of NC Ni, while it has little or no affect on that for CG Ni. Specifically, EDM led to a 50 to 75% reduction in fatigue strength for NC Ni despite a relatively small depth of EDM affected material (˜ 1% of width). Rationale for this effect can be attributed to grain growth, microcracks, and a higher sulfur content at the GBs in the EDM affected zone. In addition, the pre-existing surface defects that appear to be due to impurity segregation near the electro-deposition substrate significantly reduced the fatigue resistance of ED NC Ni. In order to understand the fatigued behavior in NC Ni, crack tip grain structures were investigated using transmission electron microscope (TEM). Crack tip grain growth was observed at early state of crack propagation with low stress intensity factor (K ˜ 6 MPa m 1/2). As K increased, the size of grain growth zone increased exponentially in width and crack propagation behavior transmitted from interganular to transgranular. It appears that this transmission is associated with grain growth. The coalesced grains due to grain rotation/GB diffusion created larger paths for more extended dislocation movement. Dislocation activities become less forbidden and the dislocation-slip mechanism can be dominant leading to a more plastically transgranular fracture. In addition to fatigue study of ED NC Ni, encrustation on ED NC Ti was investigated. The use of materials for medical applications in the urinary tract is hampered by the formation of calcium-based crystalline deposits, generally referred to as encrustation, that act as precursors to urinary stones. Anecdotal evidence suggests that titanium can possess encrustation-resistant properties in vivo and may be useful in urologic applications. To test the utility of coating surfaces with nanostructured titanium, several forms of materials were submersed in artificial urine with saturating concentrations of calcium for a period of 14 days. The specimens were then analyzed using scanning electron microscopy (SEM) and energy dispersion spectroscopy (EDS) to determine the extent of encrustation on the surface of the various samples. Our observations indicate that nanostructured titanium offers superior resistance to encrustation when compared to polyurethane, polyvinyl chloride or conventional coarser grained titanium. Further studies investigating the use of nanostructured titanium in urologic applications are warranted.

  8. Crack propagation at stresses below the fatigue limit.

    NASA Technical Reports Server (NTRS)

    Holden, F. C.; Hyler, W. S.; Marschall, C. W.

    1967-01-01

    Crack propagation for stainless steel and Ti alloy at stresses below fatigue limit, noting of alternating stress cycles crack propagation for stainless steel and Ti alloy at stresses below fatigue limit, noting role of alternating stress cycles

  9. Use of Carbon Nano-Fiber Foams as Strain Gauges to Detect Crack Propagation

    DTIC Science & Technology

    2015-06-01

    FIBER FOAMS AS STRAIN GAUGES TO DETECT CRACK PROPAGATION by Ervin N. Mercado June 2015 Thesis Advisor: Claudia C. Luhrs Co-Advisor...AND DATES COVERED Master’s Thesis 4. TITLE AND SUBTITLE USE OF CARBON NANO-FIBER FOAMS AS STRAIN GAUGES TO DETECT CRACK PROPAGATION 5. FUNDING...using carbon nanofiber foams as strain gauge material to detect crack propagation in aluminum structures. We produced the tridimensional carbon

  10. Simulation of fatigue crack growth under large scale yielding conditions

    NASA Astrophysics Data System (ADS)

    Schweizer, Christoph; Seifert, Thomas; Riedel, Hermann

    2010-07-01

    A simple mechanism based model for fatigue crack growth assumes a linear correlation between the cyclic crack-tip opening displacement (ΔCTOD) and the crack growth increment (da/dN). The objective of this work is to compare analytical estimates of ΔCTOD with results of numerical calculations under large scale yielding conditions and to verify the physical basis of the model by comparing the predicted and the measured evolution of the crack length in a 10%-chromium-steel. The material is described by a rate independent cyclic plasticity model with power-law hardening and Masing behavior. During the tension-going part of the cycle, nodes at the crack-tip are released such that the crack growth increment corresponds approximately to the crack-tip opening. The finite element analysis performed in ABAQUS is continued for so many cycles until a stabilized value of ΔCTOD is reached. The analytical model contains an interpolation formula for the J-integral, which is generalized to account for cyclic loading and crack closure. Both simulated and estimated ΔCTOD are reasonably consistent. The predicted crack length evolution is found to be in good agreement with the behavior of microcracks observed in a 10%-chromium steel.

  11. Finite element solutions for crack-tip behavior in small-scale yielding

    NASA Technical Reports Server (NTRS)

    Tracey, D. M.

    1976-01-01

    The subject considered is the stress and deformation fields in a cracked elastic-plastic power law hardening material under plane strain tensile loading. An incremental plasticity finite element formulation is developed for accurate analysis of the complete field problem including the extensively deformed near tip region, the elastic-plastic region, and the remote elastic region. The formulation has general applicability and was used to solve the small scale yielding problem for a set of material hardening exponents. Distributions of stress, strain, and crack opening displacement at the crack tip and through the elastic-plastic zone are presented as a function of the elastic stress intensity factor and material properties.

  12. Crack Tip Dislocation Nucleation in FCC Solids

    NASA Astrophysics Data System (ADS)

    Knap, J.; Sieradzki, K.

    1999-02-01

    We present results of molecular dynamic simulations aimed at examining crack tip dislocation emission in fcc solids. The results are analyzed in terms of recent continuum formulations of this problem. In mode II, Au, Pd, and Pt displayed a new unanticipated mechanism of crack tip dislocation emission involving the creation of a pair of Shockley partials on a slip plane one plane below the crack plane. In mode I, for all the materials examined, Rice's continuum formulation [J. Mech. Phys. Solids 40, 239 (1992)] underestimated the stress intensity for dislocation emission by almost a factor of 2. Surface stress corrections to the emission criterion brought the agreement between continuum predictions and simulations to within 20%.

  13. Time-resolved measurement of photon emission during fast crack propagation in three-point bending fracture of silica glass and soda lime glass

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shiota, Tadashi, E-mail: tshiota@ceram.titech.ac.jp; Sato, Yoshitaka; Yasuda, Kouichi

    2014-03-10

    Simultaneous time-resolved measurements of photon emission (PE) and fast crack propagation upon bending fracture were conducted in silica glass and soda lime glass. Observation of fracture surfaces revealed that macroscopic crack propagation behavior was similar between the silica glass and soda lime glass when fracture loads for these specimens were comparable and cracks propagated without branching. However, a large difference in the PE characteristics was found between the two glasses. In silica glass, PE (645–655 nm) was observed during the entire crack propagation process, whereas intense PE (430–490 nm and 500–600 nm) was observed during the initial stages of propagation. In contrast, onlymore » weak PE was detected in soda lime glass. These results show that there is a large difference in the atomic processes involved in fast crack propagation between these glasses, and that PE can be used to study brittle fracture on the atomic scale.« less

  14. Crack-tip-opening angle measurements and crack tunneling under stable tearing in thin sheet 2024-T3 aluminum alloy

    NASA Technical Reports Server (NTRS)

    Dawicke, D. S.; Sutton, M. A.

    1993-01-01

    The stable tearing behavior of thin sheets 2024-T3 aluminum alloy was studied for middle crack tension specimens having initial cracks that were: flat cracks (low fatigue stress) and 45 degrees through-thickness slant cracks (high fatigue stress). The critical crack-tip-opening angle (CTOA) values during stable tearing were measured by two independent methods, optical microscopy and digital image correlation. Results from the two methods agreed well. The CTOA measurements and observations of the fracture surfaces showed that the initial stable tearing behavior of low and high fatigue stress tests is significantly different. The cracks in the low fatigue stress tests underwent a transition from flat-to-slant crack growth, during which the CTOA values were high and significant crack tunneling occurred. After crack growth equal to about the thickness, CTOA reached a constant value of 6 deg and after crack growth equal to about twice the thickness, crack tunneling stabilized. The initial high CTOA values, in the low fatigue crack tests, coincided with large three-dimensional crack front shape changes due to a variation in the through-thickness crack tip constraint. The cracks in the high fatigue stress tests reach the same constant CTOA value after crack growth equal to about the thickness, but produced only a slightly higher CTOA value during initial crack growth. For crack growth on the 45 degree slant, the crack front and local field variables are still highly three-dimensional. However, the constant CTOA values and stable crack front shape may allow the process to be approximated with two-dimensional models.

  15. Graphene and its elemental analogue: A molecular dynamics view of fracture phenomenon

    NASA Astrophysics Data System (ADS)

    Rakib, Tawfiqur; Mojumder, Satyajit; Das, Sourav; Saha, Sourav; Motalab, Mohammad

    2017-06-01

    Graphene and some graphene like two dimensional materials; hexagonal boron nitride (hBN) and silicene have unique mechanical properties which severely limit the suitability of conventional theories used for common brittle and ductile materials to predict the fracture response of these materials. This study revealed the fracture response of graphene, hBN and silicene nanosheets under different tiny crack lengths by molecular dynamics (MD) simulations using LAMMPS. The useful strength of these two dimensional materials are determined by their fracture toughness. Our study shows a comparative analysis of mechanical properties among the elemental analogues of graphene and suggested that hBN can be a good substitute for graphene in terms of mechanical properties. We have also found that the pre-cracked sheets fail in brittle manner and their failure is governed by the strength of the atomic bonds at the crack tip. The MD prediction of fracture toughness shows significant difference with the fracture toughness determined by Griffth's theory of brittle failure which restricts the applicability of Griffith's criterion for these materials in case of nano-cracks. Moreover, the strengths measured in armchair and zigzag directions of nanosheets of these materials implied that the bonds in armchair direction have the stronger capability to resist crack propagation compared to zigzag direction.

  16. Crack problems for bonded nonhomogeneous materials under antiplane shear loading

    NASA Technical Reports Server (NTRS)

    Erdogan, F.

    1984-01-01

    The singular nature of the crack tip stress field in a nonhomogeneous medium with a shear modulus with a discontinuous derivative was investigated. The simplest possible loading and geometry, the antiplane shear loading of two bonded half spaces in which the crack is perpendicular to the interface is considered. It is shown that the square root singularity of the crack tip stress field is unaffected by the discontinuity in the derivative of the shear modulus. The problem is solved for a finite crack and results for the stress intensity factors are presented.

  17. Cyclic fatigue and fracture in pyrolytic carbon-coated graphite mechanical heart-valve prostheses: role of small cracks in life prediction.

    PubMed

    Dauskardt, R H; Ritchie, R O; Takemoto, J K; Brendzel, A M

    1994-07-01

    A fracture-mechanics based study has performed to characterize the fracture toughness and rates of cyclic fatigue-crack growth of incipient flaws in prosthetic heart-valve components made of pyrolytic carbon-coated graphite. Such data are required to predict the safe structural lifetime of mechanical heart-valve prostheses using damage-tolerant analysis. Unlike previous studies where fatigue-crack propagation data were obtained using through-thickness, long cracks (approximately 2-20 mm long), growing in conventional (e.g., compact-tension) samples, experiments were performed on physically small cracks (approximately 100-600 microns long), initiated on the surface of the pyrolytic-carbon coating to simulate reality. Small-crack toughness results were found to agree closely with those measured conventionally with long cracks. However, similar to well-known observations in metal fatigue, it was found that based on the usual computations of the applied (far-field) driving force in terms of the maximum stress intensity, Kmax, small fatigue cracks grew at rates that exceeded those of long cracks at the same applied stress intensity, and displayed a negative dependency on Kmax; moreover, they grew at applied stress intensities less than the fatigue threshold value, below which long cracks are presumed dormant. To resolve this apparent discrepancy, it is shown that long and small crack results can be normalized, provided growth rates are characterized in terms of the total (near-tip) stress intensity (incorporating, for example, the effect of residual stress); with this achieved, in principle, either form of data can be used for life prediction of implant devices. Inspection of the long and small crack results reveals extensive scatter inherent in both forms of growth-rate data for the pyrolytic-carbon material.

  18. New theory for Mode I crack-tip dislocation emission

    NASA Astrophysics Data System (ADS)

    Andric, Predrag; Curtin, W. A.

    2017-09-01

    A material is intrinsically ductile under Mode I loading when the critical stress intensity KIe for dislocation emission is lower than the critical stress intensity KIc for cleavage. KIe is usually evaluated using the approximate Rice theory, which predicts a dependence on the elastic constants and the unstable stacking fault energy γusf for slip along the plane of dislocation emission. Here, atomistic simulations across a wide range of fcc metals show that KIe is systematically larger (10-30%) than predicted. However, the critical (crack tip) shear displacement is up to 40% smaller than predicted. The discrepancy arises because Mode I emission is accompanied by the formation of a surface step that is not considered in the Rice theory. A new theory for Mode I emission is presented based on the ideas that (i) the stress resisting step formation at the crack tip creates "lattice trapping" against dislocation emission such that (ii) emission is due to a mechanical instability at the crack tip. The new theory is formulated using a Peierls-type model, naturally includes the energy to form the step, and reduces to the Rice theory (no trapping) when the step energy is small. The new theory predicts a higher KIe at a smaller critical shear displacement, rationalizing deviations of simulations from the Rice theory. Specific predictions of KIe for the simulated materials, usually requiring use of the measured critical crack tip shear displacement due to complex material non-linearity, show very good agreement with simulations. An analytic model involving only γusf, the surface energy γs, and anisotropic elastic constants is shown to be quite accurate, serves as a replacement for the analytical Rice theory, and is used to understand differences between Rice theory and simulation in recent literature. The new theory highlights the role of surface steps created by dislocation emission in Mode I, which has implications not only for intrinsic ductility but also for crack tip twinning and fracture due to chemical interactions at the crack tip.

  19. Analysis of delamination in cross-ply laminates initiating from impact induced matrix cracking

    NASA Technical Reports Server (NTRS)

    Salpekar, S. A.

    1993-01-01

    Two-dimensional finite element analyses of (02/90(8)/02) glass/epoxy and graphite/epoxy composite laminates were performed to investigate some of the characteristics of damage development due to an impact load. A cross section through the thickness of the laminate with fixed ends, and carrying a transverse load in the center, was analyzed. Inclined matrix cracks, such as those produced by a low-velocity impact, were modeled in the 90 deg ply group. The introduction of the matrix cracks caused large interlaminar tensile and shear stresses in the vicinity of both crack tips in the 0/90 and 90/0 interfaces, indicating that matrix cracking may give rise to delamination. The ratio of Mode I to total strain energy release rate, G(I)/G(total), at the beginning of delamination, calculated at the two (top and bottom) matrix crack tips was 60 and 28 percent, respectively, in the glass/epoxy laminate. The corresponding ratio was 97 and 77 percent in the graphite/epoxy laminate. Thus, a significant Mode I component of strain energy release rate may be present at the delamination initiation due to an impact load. The value of strain energy release rate at either crack tip increased due to an increase in the delamination length at the other crack tip and may give rise to an unstable delamination growth under constant load.

  20. Static and free-vibration analyses of cracks in thin-shell structures based on an isogeometric-meshfree coupling approach

    NASA Astrophysics Data System (ADS)

    Nguyen-Thanh, Nhon; Li, Weidong; Zhou, Kun

    2018-03-01

    This paper develops a coupling approach which integrates the meshfree method and isogeometric analysis (IGA) for static and free-vibration analyses of cracks in thin-shell structures. In this approach, the domain surrounding the cracks is represented by the meshfree method while the rest domain is meshed by IGA. The present approach is capable of preserving geometry exactness and high continuity of IGA. The local refinement is achieved by adding the nodes along the background cells in the meshfree domain. Moreover, the equivalent domain integral technique for three-dimensional problems is derived from the additional Kirchhoff-Love theory to compute the J-integral for the thin-shell model. The proposed approach is able to address the problems involving through-the-thickness cracks without using additional rotational degrees of freedom, which facilitates the enrichment strategy for crack tips. The crack tip enrichment effects and the stress distribution and displacements around the crack tips are investigated. Free vibrations of cracks in thin shells are also analyzed. Numerical examples are presented to demonstrate the accuracy and computational efficiency of the coupling approach.

  1. Crack Growth Behavior in the Threshold Region for High Cycle Fatigue Loading

    NASA Technical Reports Server (NTRS)

    Forman, Royce G.; Figert, J.; Beek, J.; Ventura, J.; Martinez, J.; Samonski, F.

    2011-01-01

    This presentation describes results obtained from a research project conducted at the NASA Johnson Space Center (JSC) that was jointly supported by the FAA Technical Center and JSC. The JSC effort was part of a multi-task FAA program involving several U.S. laboratories and initiated for the purpose of developing enhanced analysis tools to assess damage tolerance of rotorcraft and aircraft propeller systems. The research results to be covered in this presentation include a new understanding of the behavior of fatigue crack growth in the threshold region. This behavior is important for structural life analysis of aircraft propeller systems and certain rotorcraft structural components (e.g., the mast). These components are often designed to not allow fatigue crack propagation to exceed an experimentally determined fatigue crack growth threshold value. During the FAA review meetings for the program, disagreements occurred between the researchers regarding the observed fanning (spread between the da/dN curves of constant R) in the threshold region at low stress ratios, R. Some participants believed that the fanning was a result of the ASTM load shedding test method for threshold testing, and thus did not represent the true characteristics of the material. If the fanning portion of the threshold value is deleted or not included in a life analysis, a significant penalty in the calculated life and design of the component would occur. The crack growth threshold behavior was previously studied and reported by several research investigators in the time period: 1970-1980. Those investigators used electron microscopes to view the crack morphology of the fatigue fracture surfaces. Their results showed that just before reaching threshold, the crack morphology often changed from a striated to a faceted or cleavage-like morphology. This change was reported to have been caused by particular dislocation properties of the material. Based on the results of these early investigations, a program was initiated at JSC to repeat these examinations on a number of aircraft structural alloys that were currently being tested for obtaining fatigue crack growth properties. These new scanning electron microscope (SEM) examinations of the fatigue fracture faces confirmed the change in crack morphology in the threshold crack tip region. In addition, SEM examinations were further performed in the threshold crack-tip region before breaking the specimens open (not done in the earlier published studies). In these examinations, extensive crack forking and even 90-degree crack bifurcations were found to have occurred in the final threshold crack-tip region. The forking and bifurcations caused numerous closure points to occur that prevented full crack closure in the threshold region, and thus were the cause of the fanning at low-R values. Therefore, we have shown that the fanning behavior was caused by intrinsic dislocation properties of the different alloy materials and were not the result of a plastic wake that remains from the load-shedding test phase. Also, to accommodate the use of da/dN data which includes fanning at low R-values, an updated fanning factor term has been developed and will be implemented into the NASGRO fatigue crack growth software. The term can be set to zero if it is desired that the fanning behavior is not be modeled for particular cases, such as when fanning is not a result of the intrinsic properties of a material.

  2. Assessing the fracture strength of geological and related materials via an atomistically based J-integral

    NASA Astrophysics Data System (ADS)

    Jones, R. E.; Criscenti, L. J.; Rimsza, J.

    2016-12-01

    Predicting fracture initiation and propagation in low-permeability geomaterials is a critical yet un- solved problem crucial to assessing shale caprocks at carbon dioxide sequestration sites, and controlling fracturing for gas and oil extraction. Experiments indicate that chemical reactions at fluid-geomaterial interfaces play a major role in subcritical crack growth by weakening the material and altering crack nu- cleation and growth rates. Engineering the subsurface fracture environment, however, has been hindered by a lack of understanding of the mechanisms relating chemical environment to mechanical outcome, and a lack of capability directly linking atomistic insight to macroscale observables. We have developed a fundamental atomic-level understanding of the chemical-mechanical mecha- nisms that control subcritical cracks through coarse-graining data from reactive molecular simulations. Previous studies of fracture at the atomic level have typically been limited to producing stress-strain curves, quantifying either the system-level stress or energy at which fracture propagation occurs. As such, these curves are neither characteristic of nor insightful regarding fracture features local to the crack tip. In contrast, configurational forces, such as the J-integral, are specific to the crack in that they measure the energy available to move the crack and truly quantify fracture resistance. By development and use of field estimators consistent with the continuum conservation properties we are able to connect the data produced by atomistic simulation to the continuum-level theory of fracture mechanics and thus inform engineering decisions. In order to trust this connection we have performed theoretical consistency tests and validation with experimental data. Although we have targeted geomaterials, this capability can have direct impact on other unsolved technological problems such as predicting the corrosion and embrittlement of metals and ceramics. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corpo- ration, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  3. Fatigue crack growth with single overload - Measurement and modeling

    NASA Technical Reports Server (NTRS)

    Davidson, D. L.; Hudak, S. J., Jr.; Dexter, R. J.

    1987-01-01

    This paper compares experiments with an analytical model of fatigue crack growth under variable amplitude. The stereoimaging technique was used to measure displacements near the tips of fatigue cracks undergoing simple variations in load amplitude-single overloads and overload/underload combinations. Measured displacements were used to compute strains, and stresses were determined from the strains. Local values of crack driving force (Delta-K effective) were determined using both locally measured opening loads and crack tip opening displacements. Experimental results were compared with simulations made for the same load variation conditions using Newman's FAST-2 model. Residual stresses caused by overloads, crack opening loads, and growth retardation periods were compared.

  4. Crack Propagation Calculations for Optical Fibers under Static Bending and Tensile Loads Using Continuum Damage Mechanics

    PubMed Central

    Chen, Yunxia; Cui, Yuxuan; Gong, Wenjun

    2017-01-01

    Static fatigue behavior is the main failure mode of optical fibers applied in sensors. In this paper, a computational framework based on continuum damage mechanics (CDM) is presented to calculate the crack propagation process and failure time of optical fibers subjected to static bending and tensile loads. For this purpose, the static fatigue crack propagation in the glass core of the optical fiber is studied. Combining a finite element method (FEM), we use the continuum damage mechanics for the glass core to calculate the crack propagation path and corresponding failure time. In addition, three factors including bending radius, tensile force and optical fiber diameter are investigated to find their impacts on the crack propagation process and failure time of the optical fiber under concerned situations. Finally, experiments are conducted and the results verify the correctness of the simulation calculation. It is believed that the proposed method could give a straightforward description of the crack propagation path in the inner glass core. Additionally, the predicted crack propagation time of the optical fiber with different factors can provide effective suggestions for improving the long-term usage of optical fibers. PMID:29140284

  5. [The effect of notch's angle and depth on crack propagation of zirconia ceramics].

    PubMed

    Chen, Qingya; Chen, Xinmin

    2012-10-01

    This paper is aimed to study the effect of notch's angle and depth on crack propagation of zirconia ceramics. We fabricated cuboid-shaped zirconia ceramics samples with the standard sizes of 4. 4 mm x 2. 2 mm x 18 mm for the experiments, divided the samples into 6 groups, and prepared notches on these samples with different angles and depth. We placed the samples with loads until they were broke, and observe the fracture curve of each sample. We then drew coordinates and described the points of the fracture curve under a microscope, and made curve fitting by the software-Origin. When the notch angle beta = 90 degrees, the crack propagation is pure type I; when beta = 60 degrees, the crack propagation is mainly type I; and when beta = 30 degrees, the crack propagation is a compound of type I and type III. With the increasing of the notch depth, the effect of notch angles on crack propagation increases. In addition, Notch angle is a very important fracture mechanics parameter for crack propagation of zirconia ceramics. With the increasing of notch depth, the impact of notch angle increases.

  6. Crack Propagation Calculations for Optical Fibers under Static Bending and Tensile Loads Using Continuum Damage Mechanics.

    PubMed

    Chen, Yunxia; Cui, Yuxuan; Gong, Wenjun

    2017-11-15

    Static fatigue behavior is the main failure mode of optical fibers applied in sensors. In this paper, a computational framework based on continuum damage mechanics (CDM) is presented to calculate the crack propagation process and failure time of optical fibers subjected to static bending and tensile loads. For this purpose, the static fatigue crack propagation in the glass core of the optical fiber is studied. Combining a finite element method (FEM), we use the continuum damage mechanics for the glass core to calculate the crack propagation path and corresponding failure time. In addition, three factors including bending radius, tensile force and optical fiber diameter are investigated to find their impacts on the crack propagation process and failure time of the optical fiber under concerned situations. Finally, experiments are conducted and the results verify the correctness of the simulation calculation. It is believed that the proposed method could give a straightforward description of the crack propagation path in the inner glass core. Additionally, the predicted crack propagation time of the optical fiber with different factors can provide effective suggestions for improving the long-term usage of optical fibers.

  7. Influence of High Cycle Thermal Loads on Thermal Fatigue Behavior of Thick Thermal Barrier Coatings

    NASA Technical Reports Server (NTRS)

    Zhu, Dongming; Miller, Robert A.

    1997-01-01

    Thick thermal barrier coating systems in a diesel engine experience severe thermal Low Cycle Fatigue (LCF) and High Cycle Fatigue (HCF) during engine operation. In the present study, the mechanisms of fatigue crack initiation and propagation, as well as of coating failure, under thermal loads which simulate engine conditions, are investigated using a high power CO2 laser. In general, surface vertical cracks initiate early and grow continuously under LCF and HCF cyclic stresses. It is found that in the absence of interfacial oxidation, the failure associated with LCF is closely related to coating sintering and creep at high temperatures, which induce tensile stresses in the coating after cooling. Experiments show that the HCF cycles are very damaging to the coating systems. The combined LCF and HCF tests produced more severe coating surface cracking, microspallation and accelerated crack growth, as compared to the pure LCF test. It is suggested that the HCF component cannot only accelerate the surface crack initiation, but also interact with the LCF by contributing to the crack growth at high temperatures. The increased LCF stress intensity at the crack tip due to the HCF component enhances the subsequent LCF crack growth. Conversely, since a faster HCF crack growth rate will be expected with lower effective compressive stresses in the coating, the LCF cycles also facilitate the HCF crack growth at high temperatures by stress relaxation process. A surface wedging model has been proposed to account for the HCF crack growth in the coating system. This mechanism predicts that HCF damage effect increases with increasing temperature swing, the thermal expansion coefficient and the elastic modulus of the ceramic coating, as well as the HCF interacting depth. A good agreement has been found between the analysis and experimental evidence.

  8. Crack propagation of brittle rock under high geostress

    NASA Astrophysics Data System (ADS)

    Liu, Ning; Chu, Weijiang; Chen, Pingzhi

    2018-03-01

    Based on fracture mechanics and numerical methods, the characteristics and failure criterions of wall rock cracks including initiation, propagation, and coalescence are analyzed systematically under different conditions. In order to consider the interaction among cracks, adopt the sliding model of multi-cracks to simulate the splitting failure of rock in axial compress. The reinforcement of bolts and shotcrete supporting to rock mass can control the cracks propagation well. Adopt both theory analysis and simulation method to study the mechanism of controlling the propagation. The best fixed angle of bolts is calculated. Then use ansys to simulate the crack arrest function of bolt to crack. Analyze the influence of different factors on stress intensity factor. The method offer more scientific and rational criterion to evaluate the splitting failure of underground engineering under high geostress.

  9. Experimental and numerical investigation of crack initiation and propagation in silicon nitride ceramic under rolling and cyclic contact

    NASA Astrophysics Data System (ADS)

    Raga, Rahul; Khader, Iyas; Zdeněk, Chlup; Kailer, Andreas

    2017-05-01

    The focus of the work was to investigate crack initiation and propagation mechanisms in silicon nitride undergoing non-conforming hybrid contact under various tribological conditions. In order to understand the prevailing modes of damage in silicon nitride, two distinct model experiments were proposed, namely, rolling contact and cyclic contact experiments. The rolling contact experiment was designed in order to mimic the contact conditions appearing in hybrid bearings at contact pressures ranging from 3 to 6 GPa. On the other hand, cyclic contact experiments with stresses ranging from 4 to 15 GPa under different media were carried out to study damage under localised stresses. In addition, the experimentally observed cracks were implemented in a finite element model to study the stress redistribution and correlate the generated stresses with the corresponding mechanisms. Crack propagation under rolling contact was attributed to two different mechanisms, namely, fatigue induced fracture and lubricant driven crack propagation. The numerical simulations shed light on the tensile stress driven surface and subsurface crack propagation mechanisms. On the other hand, the cyclic contact experiments showed delayed crack formation for lubricated cyclic contact. Ceramographic cross-sectional analysis showed crack patterns similar to Hertzian crack propagation under cyclic contact load.

  10. Effect of strain wave shape on low-cycle fatigue crack propagation of SUS 304 stainless steel at elevated temperatures

    NASA Astrophysics Data System (ADS)

    Okazaki, Masakazu; Hattori, Ichiro; Shiraiwa, Fujio; Koizumi, Takashi

    1983-08-01

    Effect of strain wave shape on strain-controlled low-cycle fatigue crack propagation of SUS 304 stainless steel was investigated at 600 and 700 °C. It was found that the rate of crack propagation in a cycle-dependent region was successfully correlated with the range of cyclic J-integral, Δ Jf, regardless of the strain wave shape, frequency, and test temperature. It was also shown that the rate of crack propagation gradually increased from cycle-dependent curve to time-dependent one with decreasing frequency and slow-fast strain wave shape, and that one of the factors governing the rate of crack propagation in such a region was the ratio of the range of creep J-integral to that of total J-integral, Δ J c/Δ JT. Based on the results thus obtained, an interaction damage rule proposed semi-empirically was interpreted, with regard to crack propagation. Furthermore, fatigue crack initiation mechanism in slow-fast strain wave shape was studied, and it was shown that grain boundary sliding took an important role in it.

  11. Bladed disc crack diagnostics using blade passage signals

    NASA Astrophysics Data System (ADS)

    Hanachi, Houman; Liu, Jie; Banerjee, Avisekh; Koul, Ashok; Liang, Ming; Alavi, Elham

    2012-12-01

    One of the major potential faults in a turbo fan engine is the crack initiation and propagation in bladed discs under cyclic loads that could result in the breakdown of the engines if not detected at an early stage. Reliable fault detection techniques are therefore in demand to reduce maintenance cost and prevent catastrophic failures. Although a number of approaches have been reported in the literature, it remains very challenging to develop a reliable technique to accurately estimate the health condition of a rotating bladed disc. Correspondingly, this paper presents a novel technique for bladed disc crack detection through two sequential signal processing stages: (1) signal preprocessing that aims to eliminate the noises in the blade passage signals; (2) signal postprocessing that intends to identify the crack location. In the first stage, physics-based modeling and interpretation are established to help characterize the noises. The crack initiation can be determined based on the calculated health monitoring index derived from the sinusoidal effects. In the second stage, the crack is located through advanced detrended fluctuation analysis of the preprocessed data. The proposed technique is validated using a set of spin rig test data (i.e. tip clearance and time of arrival) that was acquired during a test conducted on a bladed military engine fan disc. The test results have demonstrated that the developed technique is an effective approach for identifying and locating the incipient crack that occurs at the root of a bladed disc.

  12. Detection of Steel Fatigue Cracks with Strain Sensing Sheets Based on Large Area Electronics

    PubMed Central

    Yao, Yao; Glisic, Branko

    2015-01-01

    Reliable early-stage damage detection requires continuous monitoring over large areas of structure, and with sensors of high spatial resolution. Technologies based on Large Area Electronics (LAE) can enable direct sensing and can be scaled to the level required for Structural Health Monitoring (SHM) of civil structures and infrastructure. Sensing sheets based on LAE contain dense arrangements of thin-film strain sensors, associated electronics and various control circuits deposited and integrated on a flexible polyimide substrate that can cover large areas of structures. This paper presents the development stage of a prototype strain sensing sheet based on LAE for crack detection and localization. Two types of sensing-sheet arrangements with size 6 × 6 inch (152 × 152 mm) were designed and manufactured, one with a very dense arrangement of sensors and the other with a less dense arrangement of sensors. The sensing sheets were bonded to steel plates, which had a notch on the boundary, so the fatigue cracks could be generated under cyclic loading. The sensors within the sensing sheet that were close to the notch tip successfully detected the initialization of fatigue crack and localized the damage on the plate. The sensors that were away from the crack successfully detected the propagation of fatigue cracks based on the time history of the measured strain. The results of the tests have validated the general principles of the proposed sensing sheets for crack detection and identified advantages and challenges of the two tested designs. PMID:25853407

  13. Effect of the size of the apical enlargement with rotary instruments, single-cone filling, post space preparation with drills, fiber post removal, and root canal filling removal on apical crack initiation and propagation.

    PubMed

    Çapar, İsmail Davut; Uysal, Banu; Ok, Evren; Arslan, Hakan

    2015-02-01

    The purpose of this study was to investigate the incidence of apical crack initiation and propagation in root dentin after several endodontic procedures. Sixty intact mandibular premolars were sectioned perpendicular to the long axis at 1 mm from the apex, and the apical surface was polished. Thirty teeth were left unprepared and served as a control, and the remaining 30 teeth were instrumented with ProTaper Universal instruments (Dentsply Maillefer, Ballaigues, Switzerland) up to size F5. The root canals were filled with the single-cone technique. Gutta-percha was removed with drills of the Rebilda post system (VOCO, Cuxhaven, Germany). Glass fiber-reinforced composite fiber posts were cemented using a dual-cure resin cement. The fiber posts were removed with a drill of the post system. Retreatment was completed after the removal of the gutta-percha. Crack initiation and propagation in the apical surfaces of the samples were examined with a stereomicroscope after each procedure. The absence/presence of cracks was recorded. Logistic regression was performed to analyze statistically the incidence of crack initiation and propagation with each procedure. The initiation of the first crack and crack propagation was associated with F2 and F4 instruments, respectively. The logistic regression analysis revealed that instrumentation and F2 instrument significantly affected apical crack initiation (P < .001). Post space preparation had a significant effect on crack propagation (P = .0004). The other procedures had no significant effects on crack initiation and propagation (P > .05). Rotary nickel-titanium instrumentation had a significant effect on apical crack initiation, and post space preparation with drills had a significant impact on crack propagation. Copyright © 2015 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  14. Analysis and Support Initiative for Structural Technology (ASIST) Delivery Order 0016: USAF Damage Tolerant Design Handbook: Guidelines For the Analysis and Design of Damage Tolerant Aircraft Structures

    DTIC Science & Technology

    2002-11-01

    hand crack tip (point B) and with angular displacement from the x-axis. As the stress element is moved closer to the crack tip, the stresses are...on the methods of obtaining the required relationships are presented by Broek [1974]. The necessary relationships for Vσ, VF, Vp and Vst ...4.5.18. Geometrical and Displacement Parameters Relative to the Crack Tip 4.5.21 Vσ + VF + Vp = Vst (4.5.15) substituting the expressions 4.5.6

  15. Calculation of stress intensity factors in an isotropic multicracked plate: Part 2: Symbolic/numeric implementation

    NASA Technical Reports Server (NTRS)

    Arnold, S. M.; Binienda, W. K.; Tan, H. Q.; Xu, M. H.

    1992-01-01

    Analytical derivations of stress intensity factors (SIF's) of a multicracked plate can be complex and tedious. Recent advances, however, in intelligent application of symbolic computation can overcome these difficulties and provide the means to rigorously and efficiently analyze this class of problems. Here, the symbolic algorithm required to implement the methodology described in Part 1 is presented. The special problem-oriented symbolic functions to derive the fundamental kernels are described, and the associated automatically generated FORTRAN subroutines are given. As a result, a symbolic/FORTRAN package named SYMFRAC, capable of providing accurate SIF's at each crack tip, was developed and validated. Simple illustrative examples using SYMFRAC show the potential of the present approach for predicting the macrocrack propagation path due to existing microcracks in the vicinity of a macrocrack tip, when the influence of the microcrack's location, orientation, size, and interaction are taken into account.

  16. Fractographic Analysis of a Dental Zirconia Framework: a Case Study on Design Issues

    PubMed Central

    Lohbauer, Ulrich; Amberger, Gudrun; Quinn, George D.; Scherrer, Susanne S.

    2011-01-01

    Fractographic analysis of clinically failed dental ceramics can provide insights as to the failure origin and related mechanisms. One anterior 6-unit all-ceramic zirconia fixed partial denture (FPD) (Cercon®) has been clinically recovered and examined using qualitative fractography. The purpose was to identify the fracture origin and to state the reasons for failure. The recovered parts of the zirconia FPD were microscopically examined to identify classic fractographic patterns such as arrest lines, hackle, twist hackle and wake hackle. The direction of crack propagation was mapped and interpreted back to the origin of failure at the interface of the occlusalpalatal tip of the core and the veneering ceramic. An inappropriate core drop design favoring localized stress concentration combined with a pore cluster in the veneering ceramic at the core tip interface were the reasons for this premature through-the-core thickness failure. PMID:20826369

  17. Crack problems for bonded nonhomogeneous materials under antiplane shear loading

    NASA Technical Reports Server (NTRS)

    Erdogan, F.

    1985-01-01

    The singular nature of the crack tip stress field in a nonhomogeneous medium having a shear modulus with a discontinuous derivative was investigated. The problem is considered for the simplest possible loading and geometry, namely the antiplane shear loading of two bonded half spaces in which the crack is perpendicular to the interface. It is shown that the square-root singularity of the crack tip stress field is unaffected by the discontinuity in the derivative of the shear modulus. The problem is solved for a finite crack and extensive results are given for the stress intensity factors.

  18. The crack problem for bonded nonhomogeneous materials under antiplane shear loading

    NASA Technical Reports Server (NTRS)

    Erdogan, F.

    1985-01-01

    The singular nature of the crack tip stress field in a nonhomogeneous medium having a shear modulus with a discontinuous derivative was investigated. The problem is considered for the simplest possible loading and geometry, namely the antiplane shear loading of two bonded half spaces in which the crack is perpendicular to the interface. It is shown that the square-root singularity of the crack tip stress field is unaffected by the discontinuity in the derivative of the shear modulus. The problem is solved for a finite crack and extensive results are given for the stress intensity factors.

  19. Research on a Lamb Wave and Particle Filter-Based On-Line Crack Propagation Prognosis Method.

    PubMed

    Chen, Jian; Yuan, Shenfang; Qiu, Lei; Cai, Jian; Yang, Weibo

    2016-03-03

    Prognostics and health management techniques have drawn widespread attention due to their ability to facilitate maintenance activities based on need. On-line prognosis of fatigue crack propagation can offer information for optimizing operation and maintenance strategies in real-time. This paper proposes a Lamb wave-particle filter (LW-PF)-based method for on-line prognosis of fatigue crack propagation which takes advantages of the possibility of on-line monitoring to evaluate the actual crack length and uses a particle filter to deal with the crack evolution and monitoring uncertainties. The piezoelectric transducers (PZTs)-based active Lamb wave method is adopted for on-line crack monitoring. The state space model relating to crack propagation is established by the data-driven and finite element methods. Fatigue experiments performed on hole-edge crack specimens have validated the advantages of the proposed method.

  20. Statistical investigation of fatigue crack initiation and growth around chamfered rivet holes in Alclad 2024 T3 as affected by corrosion

    NASA Technical Reports Server (NTRS)

    Fadragas, M. I.; Fine, M. E.; Moran, B.

    1994-01-01

    In panel specimens with rivet holes cracks initiate in the blunted knife edge of the chamfered rivet hole and propagate inward as well as along the hole. The fatigue lifetime to dominant crack information was defined as the number of cycles, N500 micrometer, to formation of a 500 micrometer long crack. Statistical data on N500 micrometer and on crack propagation after N500 micrometer were obtained for a large number of uncorroded specimens and specimens corroded in an ASTM B 117 salt spray. Considerable variation in N500 micrometer and crack propagation behavior was observed from specimen to specimen of the same nominal geometry with chamfered rivet holes increased the probability for both early formation and later formation of a propagating 500 micrometer fatigue crack. The growth of fatigue cracks after 500 micrometer size was little affected by prior salt spray.

  1. NASA/FLAGRO - FATIGUE CRACK GROWTH COMPUTER PROGRAM

    NASA Technical Reports Server (NTRS)

    Forman, R. G.

    1994-01-01

    Structural flaws and cracks may grow under fatigue inducing loads and, upon reaching a critical size, cause structural failure to occur. The growth of these flaws and cracks may occur at load levels well below the ultimate load bearing capability of the structure. The Fatigue Crack Growth Computer Program, NASA/FLAGRO, was developed as an aid in predicting the growth of pre-existing flaws and cracks in structural components of space systems. The earlier version of the program, FLAGRO4, was the primary analysis tool used by Rockwell International and the Shuttle subcontractors for fracture control analysis on the Space Shuttle. NASA/FLAGRO is an enhanced version of the program and incorporates state-of-the-art improvements in both fracture mechanics and computer technology. NASA/FLAGRO provides the fracture mechanics analyst with a computerized method of evaluating the "safe crack growth life" capabilities of structural components. NASA/FLAGRO could also be used to evaluate the damage tolerance aspects of a given structural design. The propagation of an existing crack is governed by the stress field in the vicinity of the crack tip. The stress intensity factor is defined in terms of the relationship between the stress field magnitude and the crack size. The propagation of the crack becomes catastrophic when the local stress intensity factor reaches the fracture toughness of the material. NASA/FLAGRO predicts crack growth using a two-dimensional model which predicts growth independently in two directions based on the calculation of stress intensity factors. The analyst can choose to use either a crack growth rate equation or a nonlinear interpolation routine based on tabular data. The growth rate equation is a modified Forman equation which can be converted to a Paris or Walker equation by substituting different values into the exponent. This equation provides accuracy and versatility and can be fit to data using standard least squares methods. Stress-intensity factor numerical values can be computed for making comparisons or checks of solutions. NASA/FLAGRO can check for failure of a part-through crack in the mode of a through crack when net ligament yielding occurs. NASA/FLAGRO has a number of special subroutines and files which provide enhanced capabilities and easy entry of data. These include crack case solutions, cyclic load spectrums, nondestructive examination initial flaw sizes, table interpolation, and material properties. The materials properties files are divided into two types, a user defined file and a fixed file. Data is entered and stored in the user defined file during program execution, while the fixed file contains already coded-in property value data for many different materials. Prompted input from CRT terminals consists of initial crack definition (which can be defined automatically), rate solution type, flaw type and geometry, material properties (if they are not in the built-in tables of material data), load spectrum data (if not included in the loads spectrum file), and design limit stress levels. NASA/FLAGRO output includes an echo of the input with any error or warning messages, the final crack size, whether or not critical crack size has been reached for the specified stress level, and a life history profile of the crack propagation. NASA/FLAGRO is modularly designed to facilitate revisions and operation on minicomputers. The program was implemented on a DEC VAX 11/780 with the VMS operating system. NASA/FLAGRO is written in FORTRAN77 and has a memory requirement of 1.4 MB. The program was developed in 1986.

  2. Healing of Fatigue Crack in 1045 Steel by Using Eddy Current Treatment

    PubMed Central

    Yang, Chuan; Xu, Wenchen; Guo, Bin; Shan, Debin; Zhang, Jian

    2016-01-01

    In order to investigate the methods to heal fatigue cracks in metals, tubular specimens of 1045 steel with axial and radial fatigue cracks were treated under the eddy current. The optical microscope was employed to examine the change of fatigue cracks of specimens before and after the eddy current treatment. The results show that the fatigue cracks along the axial direction of the specimen could be healed effectively in the fatigue crack initiation zone and the crack tip zone under the eddy current treatment, and the healing could occur within a very short time. The voltage breakdown and the transient thermal compressive stress caused by the detouring of eddy current around the fatigue crack were the main factors contributing to the healing in the fatigue crack initiation zone and the crack tip zone, respectively. Eddy current treatment may be a novel and effective method for crack healing. PMID:28773761

  3. Healing of Fatigue Crack in 1045 Steel by Using Eddy Current Treatment.

    PubMed

    Yang, Chuan; Xu, Wenchen; Guo, Bin; Shan, Debin; Zhang, Jian

    2016-07-29

    In order to investigate the methods to heal fatigue cracks in metals, tubular specimens of 1045 steel with axial and radial fatigue cracks were treated under the eddy current. The optical microscope was employed to examine the change of fatigue cracks of specimens before and after the eddy current treatment. The results show that the fatigue cracks along the axial direction of the specimen could be healed effectively in the fatigue crack initiation zone and the crack tip zone under the eddy current treatment, and the healing could occur within a very short time. The voltage breakdown and the transient thermal compressive stress caused by the detouring of eddy current around the fatigue crack were the main factors contributing to the healing in the fatigue crack initiation zone and the crack tip zone, respectively. Eddy current treatment may be a novel and effective method for crack healing.

  4. Lifetime prediction for the subsurface crack propagation using three-dimensional dynamic FEA model

    NASA Astrophysics Data System (ADS)

    Yin, Yuan; Chen, Yun-Xia; Liu, Le

    2017-03-01

    The subsurface crack propagation is one of the major interests for gear system research. The subsurface crack propagation lifetime is the number of cycles remaining for a spall to appear, which can be obtained through either stress intensity factor or accumulated plastic strain analysis. In this paper, the heavy loads are applied to the gear system. When choosing stress intensity factor, the high compressive stress suppresses Mode I stress intensities and severely reduces Mode II stress intensities in the heavily loaded lubricated contacts. Such that, the accumulated plastic strain is selected to calculate the subsurface crack propagation lifetime from the three-dimensional FEA model through ANSYS Workbench transient analysis. The three-dimensional gear FEA dynamic model with the subsurface crack is built through dividing the gears into several small elements. The calculation of the total cycles of the elements is proposed based on the time-varying accumulated plastic strain, which then will be used to calculate the subsurface crack propagation lifetime. During this process, the demonstration from a subsurface crack to a spall can be uncovered. In addition, different sizes of the elements around the subsurface crack are compared in this paper. The influences of the frictional coefficient and external torque on the crack propagation lifetime are also discussed. The results show that the lifetime of crack propagation decreases significantly when the external load T increasing from 100 N m to 150 N m. Given from the distributions of the accumulated plastic strain, the lifetime shares no significant difference when the frictional coefficient f ranging in 0.04-0.06.

  5. Crack layer theory

    NASA Technical Reports Server (NTRS)

    Chudnovsky, A.

    1984-01-01

    A damage parameter is introduced in addition to conventional parameters of continuum mechanics and consider a crack surrounded by an array of microdefects within the continuum mechanics framework. A system consisting of the main crack and surrounding damage is called crack layer (CL). Crack layer propagation is an irreversible process. The general framework of the thermodynamics of irreversible processes are employed to identify the driving forces (causes) and to derive the constitutive equation of CL propagation, that is, the relationship between the rates of the crack growth and damage dissemination from one side and the conjugated thermodynamic forces from another. The proposed law of CL propagation is in good agreement with the experimental data on fatigue CL propagation in various materials. The theory also elaborates material toughness characterization.

  6. Crack layer theory

    NASA Technical Reports Server (NTRS)

    Chudnovsky, A.

    1987-01-01

    A damage parameter is introduced in addition to conventional parameters of continuum mechanics and consider a crack surrounded by an array of microdefects within the continuum mechanics framework. A system consisting of the main crack and surrounding damage is called crack layer (CL). Crack layer propagation is an irreversible process. The general framework of the thermodynamics of irreversible processes are employed to identify the driving forces (causes) and to derive the constitutive equation of CL propagation, that is, the relationship between the rates of the crack growth and damage dissemination from one side and the conjugated thermodynamic forces from another. The proposed law of CL propagation is in good agreement with the experimental data on fatigue CL propagation in various materials. The theory also elaborates material toughness characterization.

  7. Periodic cracks and temperature-dependent stress in Mo/Si multilayers on Si substrates

    NASA Astrophysics Data System (ADS)

    Kravchenko, Grygoriy; Tran, Hai T.; Volinsky, Alex A.

    2018-07-01

    This work examines formation of the peculiar periodic crack patterns observed in the thermally loaded Mo/Si multilayers. Using the substrate curvature measurements, the macroscopic film stress evolution during thermal cycling was investigated. Then high-speed microscopic observation of crack propagation in the annealed Mo/Si multilayers was presented providing experimental evidence of the mechanism underlying formation of the periodic crack patterns. The origin of the peculiar periodic crack patterns was determined. They were observed to form by the slow crack propagation under quasi-static conditions as a result of the interaction between the channelling crack propagation and the advance of the delamination front.

  8. A note on the cracked plates reinforced by a line stiffener

    NASA Technical Reports Server (NTRS)

    Yahsi, O. S.; Erdogan, F.

    1983-01-01

    The problem of a cracked plate reinforced by a line stiffener is reconsidered. The original solution of this problem was given in the literature. Also, a variation of the problem with debonding between the plate and the stiffener near the cracked region was reported in the literature. However, the special case of the problem in which the crack tip terminates at the stiffener does not appear to have been studied. In practice, the solution may be necessary in order to assess the crack arrest effectiveness of the stiffener. The problem of a stiffened plate with a crack is reformulated, the asymptotic stress state near the crack tip terminating at the stiffener is examined, and numerical results are given for various stiffness constants.

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Luo, P.F.; Wang, J.S.; Chao, Y.J.

    The stereo vision is used to study the fracture behavior in the compact tension (CT) specimen made from 304L stainless steel. During crack tip blunting, initiation, and growth in the CT specimen, both in-plane and out-of-plane displacement fields near the crack tip are measured by the stereo vision. Based on the plane stress assumption and the deformation theory of plasticity, the J integral is evaluated along several rectangular paths surrounding the crack tip by using the measured in-plane displacement field. Prior to crack growth, the J integral is path independent. For crack extension up to {Delta}a {approx} 3 mm, themore » near field J integral values are 6% to 10% lower than far field J integral values. For the crack extension of {Delta}a {approx} 4 mm, the J integral lost path independence. The far field J integral values are in good agreement with results obtained from Merkle-Corten`s formula. Both J-{Delta}a and CTOA-{Delta}a are obtained by computing the J integral value and crack tip opening angle (CTOA) at each {Delta}a. Results indicate that CTOA reached a nearly constant value at a crack extension of {Delta}a = 3 mm with a leveled resistance curve thereafter. Also, the J integral value is determined by the maximum transverse diameter of the shadow spots, which are generated by using the out-of-plane displacement field. Results indicate that for crack extension up to 0.25 mm, the J integral values evaluated by using the out-of- plane displacement are close to those obtained by using in-plane displacements and Merkle-Corten`s formula.« less

  10. Displacement-length scaling of brittle faults in ductile shear.

    PubMed

    Grasemann, Bernhard; Exner, Ulrike; Tschegg, Cornelius

    2011-11-01

    Within a low-grade ductile shear zone, we investigated exceptionally well exposed brittle faults, which accumulated antithetic slip and rotated into the shearing direction. The foliation planes of the mylonitic host rock intersect the faults approximately at their centre and exhibit ductile reverse drag. Three types of brittle faults can be distinguished: (i) Faults developing on pre-existing K-feldspar/mica veins that are oblique to the shear direction. These faults have triclinic flanking structures. (ii) Wing cracks opening as mode I fractures at the tips of the triclinic flanking structures, perpendicular to the shear direction. These cracks are reactivated as faults with antithetic shear, extend from the parent K-feldspar/mica veins and form a complex linked flanking structure system. (iii) Joints forming perpendicular to the shearing direction are deformed to form monoclinic flanking structures. Triclinic and monoclinic flanking structures record elliptical displacement-distance profiles with steep displacement gradients at the fault tips by ductile flow in the host rocks, resulting in reverse drag of the foliation planes. These structures record one of the greatest maximum displacement/length ratios reported from natural fault structures. These exceptionally high ratios can be explained by localized antithetic displacement along brittle slip surfaces, which did not propagate during their rotation during surrounding ductile flow.

  11. Displacement–length scaling of brittle faults in ductile shear

    PubMed Central

    Grasemann, Bernhard; Exner, Ulrike; Tschegg, Cornelius

    2011-01-01

    Within a low-grade ductile shear zone, we investigated exceptionally well exposed brittle faults, which accumulated antithetic slip and rotated into the shearing direction. The foliation planes of the mylonitic host rock intersect the faults approximately at their centre and exhibit ductile reverse drag. Three types of brittle faults can be distinguished: (i) Faults developing on pre-existing K-feldspar/mica veins that are oblique to the shear direction. These faults have triclinic flanking structures. (ii) Wing cracks opening as mode I fractures at the tips of the triclinic flanking structures, perpendicular to the shear direction. These cracks are reactivated as faults with antithetic shear, extend from the parent K-feldspar/mica veins and form a complex linked flanking structure system. (iii) Joints forming perpendicular to the shearing direction are deformed to form monoclinic flanking structures. Triclinic and monoclinic flanking structures record elliptical displacement–distance profiles with steep displacement gradients at the fault tips by ductile flow in the host rocks, resulting in reverse drag of the foliation planes. These structures record one of the greatest maximum displacement/length ratios reported from natural fault structures. These exceptionally high ratios can be explained by localized antithetic displacement along brittle slip surfaces, which did not propagate during their rotation during surrounding ductile flow. PMID:26806996

  12. In situ measurements of hydraulic fracture behavior, PTE-3. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Warpinski, N.R.

    Measurements of width and pressure in a propagating hydraulic fracture have been made in tests conducted at DOE`s Nevada Test Site. This was accomplished by creating an "instrumented fracture" at a tunnel complex (at a depth of 1400 ft) where realistic in situ conditions prevail, particularly with respect to stress and geologic features such as natural fractures and material anisotropy. Analyses of these data show that the pressure drop along the fracture length is much larger than predicted by viscous theory currently in use in models today. This is apparently due to the tortuosity of the fracture path, multiple fracturemore » strands, roughness, and sharp turns (corners) in the flow path due to natural fractures and rock property variations. It suggests that fracture design models need to be updated to include a more realistic friction factor so that fracture lengths are not overestimated. The width and pressure profiles near the crack tip have been investigated in some detail, including the length of the unwetted region and the tapering of the crack tip. The overall fracture behavior has been compared with published fracture models. Mineback of the fracture provided evidence of the geometry of the fracture and details of surface features. 35 refs., 89 figs., 30 tabs.« less

  13. Enhanced fatigue endurance of metallic glasses through a staircase-like fracture mechanism.

    PubMed

    Gludovatz, Bernd; Demetriou, Marios D; Floyd, Michael; Hohenwarter, Anton; Johnson, William L; Ritchie, Robert O

    2013-11-12

    Bulk-metallic glasses (BMGs) are now candidate materials for structural applications due to their exceptional strength and toughness. However, their fatigue resistance can be poor and inconsistent, severely limiting their potential as reliable structural materials. As fatigue limits are invariably governed by the local arrest of microscopically small cracks at microstructural features, the lack of microstructure in monolithic glasses, often coupled with other factors, such as the ease of crack formation in shear bands or a high susceptibility to corrosion, can lead to low fatigue limits (some ~1/20 of their tensile strengths) and highly variable fatigue lives. BMG-matrix composites can provide a solution here as their duplex microstructures can arrest shear bands at a second phase to prevent cracks from exceeding critical size; under these conditions, fatigue limits become comparable with those of crystalline alloys. Here, we report on a Pd-based glass that similarly has high fatigue resistance but without a second phase. This monolithic glass displays high intrinsic toughness from extensive shear-band proliferation with cavitation and cracking effectively obstructed. We find that this property can further promote fatigue resistance through extrinsic crack-tip shielding, a mechanism well known in crystalline metals but not previously reported in BMGs, whereby cyclically loaded cracks propagate in a highly "zig-zag" manner, creating a rough "staircase-like" profile. The resulting crack-surface contact (roughness-induced crack closure) elevates fatigue properties to those comparable to crystalline alloys, and the accompanying plasticity helps to reduce flaw sensitivity in the glass, thereby promoting structural reliability.

  14. Enhanced fatigue endurance of metallic glasses through a staircase-like fracture mechanism

    PubMed Central

    Gludovatz, Bernd; Demetriou, Marios D.; Floyd, Michael; Hohenwarter, Anton; Johnson, William L.; Ritchie, Robert O.

    2013-01-01

    Bulk-metallic glasses (BMGs) are now candidate materials for structural applications due to their exceptional strength and toughness. However, their fatigue resistance can be poor and inconsistent, severely limiting their potential as reliable structural materials. As fatigue limits are invariably governed by the local arrest of microscopically small cracks at microstructural features, the lack of microstructure in monolithic glasses, often coupled with other factors, such as the ease of crack formation in shear bands or a high susceptibility to corrosion, can lead to low fatigue limits (some ∼1/20 of their tensile strengths) and highly variable fatigue lives. BMG-matrix composites can provide a solution here as their duplex microstructures can arrest shear bands at a second phase to prevent cracks from exceeding critical size; under these conditions, fatigue limits become comparable with those of crystalline alloys. Here, we report on a Pd-based glass that similarly has high fatigue resistance but without a second phase. This monolithic glass displays high intrinsic toughness from extensive shear-band proliferation with cavitation and cracking effectively obstructed. We find that this property can further promote fatigue resistance through extrinsic crack-tip shielding, a mechanism well known in crystalline metals but not previously reported in BMGs, whereby cyclically loaded cracks propagate in a highly “zig-zag” manner, creating a rough “staircase-like” profile. The resulting crack-surface contact (roughness-induced crack closure) elevates fatigue properties to those comparable to crystalline alloys, and the accompanying plasticity helps to reduce flaw sensitivity in the glass, thereby promoting structural reliability. PMID:24167284

  15. The role of cyclic plastic zone size on fatigue crack growth behavior in high strength steels

    NASA Astrophysics Data System (ADS)

    Korda, Akhmad A.; Miyashita, Y.; Mutoh, Y.

    2015-09-01

    The role of cyclic plastic zone in front of the crack tip was studied in high strength steels. Estimated plastic zone size would be compared with actual observation. Strain controlled fatigue tests of the steels were carried out to obtain cyclic stress-strain curves for plastic zone estimation. Observations of plastic zone were carried out using in situ SEM fatigue crack growth tests under a constant-ΔK. Hard microstructures in structural steels showed to inhibit the extent of plastic deformation around the crack tip. The rate of crack growth can be correlated with the size of plastic zone. The smaller the plastic zone size, the slower the fatigue crack growth.

  16. The relation of microdamage to fracture and material property degradation in human cortical bone tissue

    NASA Astrophysics Data System (ADS)

    Akkus, Ozan

    This dissertation investigates the relation of microdamage to fracture and material property degradation of human cortical bone tissue. Fracture resistance and fatigue crack growth of microcracks were examined experimentally and material property degradation was examined through theoretical modeling. To investigate the contribution of microdamage to static fracture resistance, fracture toughness tests were conducted in the transverse and longitudinal directions to the osteonal orientation of normal bone tissue. Damage accumulation was monitored by acoustic emission during testing and was spatially observed by histological observation following testing. The results suggested that the propagation of the main crack involved weakening of the tissue by diffuse damage at the fracture plane and by formation of linear microcracks away from the fracture plane for the transverse specimens. For the longitudinal specimens, growth of the main crack occurred in the form of separations at lamellar interfaces. Acoustic emission results supported the histological observations. To investigate the contribution of ultrastructure to static fracture resistance, fracture toughness tests were conducted after altering the collagen phase of the bone tissue by gamma radiation. A significant decrease in the fracture toughness, Work-to-Fracture and the amount damage was observed due to irradiation in both crack growth directions. For cortical bone irradiated at 27.5kGy, fracture toughness is reduced due to the inhibition of damage formation at and near the crack tip. Microcrack fatigue crack growth and arrest were investigated through observations of surface cracks during cyclic loading. At the applied cyclic stresses, the microcracks propagated and arrested in less than 10,000 cycles. In addition, the microcracks were observed not to grow beyond a length of 150mum and a DeltaK of 0.5MNm-3/2, supporting a microstructural barrier concept. Finally, the contribution of linear microcracks to material property degradation was examined by developing a theoretical micromechanical damage model. The model was compared to experimentally induced damage in bone tissue. The percent contribution of linear microcracks to the total degradation was predicted to be less than 5%, indicating that diffuse damage or an unidentified form of damage is primarily responsible for material property degradation in human cortical bone tissue.

  17. Influence of surrounding environment on subcritical crack growth in marble

    NASA Astrophysics Data System (ADS)

    Nara, Yoshitaka; Kashiwaya, Koki; Nishida, Yuki; , Toshinori, Ii

    2017-06-01

    Understanding subcritical crack growth in rock is essential for determining appropriate measures to ensure the long-term integrity of rock masses surrounding structures and for construction from rock material. In this study, subcritical crack growth in marble was investigated experimentally, focusing on the influence of the surrounding environment on the relationship between the crack velocity and stress intensity factor. The crack velocity increased with increasing temperature and/or relative humidity. In all cases, the crack velocity increased with increasing stress intensity factor. However, for Carrara marble (CM) in air, we observed a region in which the crack velocity still increased with temperature, but the increase in the crack velocity with increasing stress intensity factor was not significant. This is similar to Region II of subcritical crack growth observed in glass in air. Region II in glass is controlled by mass transport to the crack tip. In the case of rock, the transport of water to the crack tip is important. In general, Region II is not observed for subcritical crack growth in rock materials, because rocks contain water. Because the porosity of CM is very low, the amount of water contained in the marble is also very small. Therefore, our results imply that we observed Region II in CM. Because the crack velocity increased in both water and air with increasing temperature and humidity, we concluded that dry conditions at low temperature are desirable for the long-term integrity of a carbonate rock mass. Additionally, mass transport to the crack tip is an important process for subcritical crack growth in rock with low porosity.

  18. Peak Stress Intensity Factor Governs Crack Propagation Velocity In Crosslinked UHMWPE

    PubMed Central

    Sirimamilla, P. Abhiram; Furmanski, Jevan; Rimnac, Clare

    2013-01-01

    Ultra high molecular weight polyethylene (UHMWPE) has been successfully used as a bearing material in total joint replacement components. However, these bearing materials can fail as a result of in vivo static and cyclic loads. Crack propagation behavior in this material has been considered using the Paris relationship which relates fatigue crack growth rate, da/dN (mm/cycle) versus the stress intensity factor range, ΔK (Kmax-Kmin, MPa√m). However, recent work suggests that the crack propagation velocity of conventional UHMWPE is driven by the peak stress intensity (Kmax), not ΔK. The hypothesis of this study is that the crack propagation velocity of highly crosslinked and remelted UHMWPE is also driven by the peak stress intensity, Kmax, during cyclic loading, rather than by ΔK. To test this hypothesis, two highly crosslinked (65 kGy and 100 kGy) and remelted UHMWPE materials were examined. Frequency, waveform and R-ratio were varied between test conditions to determine the governing factor for fatigue crack propagation. It was found that the crack propagation velocity in crosslinked UHMWPE is also driven by Kmax and not ΔK, and is dependent on loading waveform and frequency in a predictable quasi-static manner. The current study supports that crack growth in crosslinked UHMWPE materials, even under cyclic loading conditions, can be described by a relationship between the velocity of crack growth, da/dt and the peak stress intensity, Kmax. The findings suggest that stable crack propagation can occur as a result of static loading only and this should be taken into consideration in design of UHMWPE total joint replacement components. PMID:23165898

  19. Crack deflection: Implications for the growth of long and short fatigue cracks

    NASA Astrophysics Data System (ADS)

    Suresh, S.

    1983-11-01

    The influences of crack deflection on the growth rates of nominally Mode I fatigue cracks are examined. Previous theoretical analyses of stress intensity solutions for kinked elastic cracks are reviewed. Simple elastic deflection models are developed to estimate the growth rates of nonlinear fatigue cracks subjected to various degrees of deflection, by incorporating changes in the effective driving force and in the apparent propagation rates. Experimental data are presented for intermediate-quenched and step-quenched conditions of Fe/2Si/0.1C ferrite-martensite dual phase steel, where variations in crack morphology alone influence considerably the fatigue crack propagation rates and threshold stress intensity range values. Such results are found to be in good quantitative agreement with the deflection model predictions of propagation rates for nonlinear cracks. Experimental information on crack deflection, induced by variable amplitude loading, is also provided for 2020-T651 aluminum alloy. It is demonstrated with the aid of elastic analyses and experiments that crack deflection models offer a physically-appealing rationale for the apparently slower growth rates of long fatigue cracks subjected to constant and variable amplitude loading and for the apparent deceleration and/or arrest of short cracks. The changes in the propagation rates of deflected fatigue cracks are discussed in terms of the local mode of crack advance, microstructure, effective driving force, growth mechanisms, mean stress, slip characteristics, and crack closure.

  20. Micro-mechanical analysis of damage growth and fracture in discontinuous fiber reinforced metal matrix composites

    NASA Technical Reports Server (NTRS)

    Goree, James G.; Richardson, David E.

    1990-01-01

    The near-crack-tip stresses in any planar coupon of arbitrary geometry subjected to mode 1 loading may be equated to those in an infinite center-cracked panel subjected to the appropriate equivalent remote biaxial stresses (ERBS). Since this process can be done for all such mode 1 coupons, attention may be focused on the behavior of the equivalent infinite cracked panel. To calculate the ERBS, the constant term in the series expansion of the crack-tip stress must be retained. It is proposed that the ERBS may be used quantitatively to explain different fracture phenomena such as crack branching.

  1. Crack Front Segmentation and Facet Coarsening in Mixed-Mode Fracture

    NASA Astrophysics Data System (ADS)

    Chen, Chih-Hung; Cambonie, Tristan; Lazarus, Veronique; Nicoli, Matteo; Pons, Antonio J.; Karma, Alain

    2015-12-01

    A planar crack generically segments into an array of "daughter cracks" shaped as tilted facets when loaded with both a tensile stress normal to the crack plane (mode I) and a shear stress parallel to the crack front (mode III). We investigate facet propagation and coarsening using in situ microscopy observations of fracture surfaces at different stages of quasistatic mixed-mode crack propagation and phase-field simulations. The results demonstrate that the bifurcation from propagating a planar to segmented crack front is strongly subcritical, reconciling previous theoretical predictions of linear stability analysis with experimental observations. They further show that facet coarsening is a self-similar process driven by a spatial period-doubling instability of facet arrays.

  2. Consideration of Moving Tooth Load in Gear Crack Propagation Predictions

    NASA Technical Reports Server (NTRS)

    Lewicki, David G.; Handschuh, Robert F.; Spievak, Lisa E.; Wawrzynek, Paul A.; Ingraffea, Anthony R.

    2001-01-01

    Robust gear designs consider not only crack initiation, but crack propagation trajectories for a fail-safe design. In actual gear operation, the magnitude as well as the position of the force changes as the gear rotates through the mesh. A study to determine the effect of moving gear tooth load on crack propagation predictions was performed. Two-dimensional analysis of an involute spur gear and three-dimensional analysis of a spiral-bevel pinion gear using the finite element method and boundary element method were studied and compared to experiments. A modified theory for predicting gear crack propagation paths based on the criteria of Erdogan and Sih was investigated. Crack simulation based on calculated stress intensity factors and mixed mode crack angle prediction techniques using a simple static analysis in which the tooth load was located at the highest point of single tooth contact was validated. For three-dimensional analysis, however, the analysis was valid only as long as the crack did not approach the contact region on the tooth.

  3. Crack propagation in aluminum sheets reinforced with boron-epoxy

    NASA Technical Reports Server (NTRS)

    Roderick, G. L.

    1979-01-01

    An analysis was developed to predict both the crack growth and debond growth in a reinforced system. The analysis was based on the use of complex variable Green's functions for cracked, isotropic sheets and uncracked, orthotropic sheets to calculate inplane and interlaminar stresses, stress intensities, and strain-energy-release rates. An iterative solution was developed that used the stress intensities and strain-energy-release rates to predict crack and debond growths, respectively, on a cycle-by-cycle basis. A parametric study was made of the effects of boron-epoxy composite reinforcement on crack propagation in aluminum sheets. Results show that the size of the debond area has a significant effect on the crack propagation in the aluminum. For small debond areas, the crack propagation rate is reduced significantly, but these small debonds have a strong tendency to enlarge. Debond growth is most likely to occur in reinforced systems that have a cracked metal sheet reinforced with a relatively thin composite sheet.

  4. A note on the cracked plates reinforced by a line stiffener

    NASA Technical Reports Server (NTRS)

    Yahsi, O. S.; Erdogan, F.

    1983-01-01

    The problem of a cracked plate reinforced by a line stiffener is reconsidered. The original solution of this problem was given in the literature. Also, a variation of the problem with debonding between the plate and the stiffener near the cracked region was reported in the literature. However, the special case of the problem in which the crack tip terminates at the stiffener does not appear to have been studied. In practice, the solution may be necessary in order to assess the crack arrest effectiveness of the stiffener. The problem of a stiffened plate with a crack is reformulated, the asymptotic stress state near the crack tip terminating at the stiffener is examined, and numerical results are given for various stiffness constants. Previously announced in STAR as N83-21388

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alam, M.E.; Pal, S.; Maloy, Stuart Andrew

    The FCRD NFA-1 is a high strength, irradiation tolerant nanostructured ferritic alloy (NFA) produced by ball milling argon atomized Fe-14Cr-3W-0.35Ti-0.25Y (wt.%) and FeO powders, followed by hot extrusion at 850 °C, and subsequent annealing and cross-rolling at 1000 °C. The microstructure of the resulting ≈10 mm thick NFA-1 plate is dominated by ultrafine sub-micron pancake shaped grains, and a large population of microcracks lying on planes parallel to the plate faces. Pre-cracked fracture toughness tests in four different orientations (L-T, T-L, L-S and T-S) show stable crack growth by ductile tearing, with peak load K Jc from ≈ 88 tomore » 154 MPa√m at ambient temperature. Stable crack tearing persists down to ≈ -175 °C and is accompanied by extensive delamination due to the propagation of the microcracks. Depending on the specimen orientation, this unusual toughening mechanism is either due to a reduction of crack tip stresses in thin ligaments formed by the delaminations (L-T and T-L), or 90° deflection of cracks initially running normal to the delaminations (L-S and T-S), thereby suppressing cleavage in both cases. Lastly, understanding the fracture processes in NFA-1 is also important to its irradiation tolerance in nuclear service as well as its fabricability in making defect-free components such as thin-walled tubing.« less

  6. Cracks in Complex Bodies: Covariance of Tip Balances

    NASA Astrophysics Data System (ADS)

    Mariano, Paolo Maria

    2008-04-01

    In complex bodies, actions due to substructural changes alter (in some cases drastically) the force driving the tip of macroscopic cracks in quasi-static and dynamic growth, and must be represented directly. Here it is proven that tip balances of standard and substructural interactions are covariant. In fact, the former balance follows from the Lagrangian density’s requirement of invariance with respect to the action of the group of diffeomorphisms of the ambient space to itself, the latter balance accrues from an analogous invariance with respect to the action of a Lie group over the manifold of substructural shapes. The evolution equation of the crack tip can be obtained by exploiting invariance with respect to relabeling the material elements in the reference place. The analysis is developed by first focusing on general complex bodies that admit metastable states with substructural dissipation of viscous-like type inside each material element. Then we account for gradient dissipative effects that induce nonconservative stresses; the covariance of tip balances in simple bodies follows as a corollary. When body actions and boundary data of Dirichlet type are absent, the standard variational description of quasi-static crack growth is simply extended to the case of complex materials.

  7. The Role of Crack Formation in Chevron-Notched Four-Point Bend Specimens

    NASA Technical Reports Server (NTRS)

    Calomino, Anthony M.; Ghosn, Louis J.

    1994-01-01

    The failure sequence following crack formation in a chevron-notched four-point bend 1 specimen is examined in a parametric study using the Bluhm slice synthesis model. Premature failure resulting from crack formation forces which exceed those required to propagate a crack beyond alpha (min) is examined together with the critical crack length and critical crack front length. An energy based approach is used to establish factors which forecast the tendency of such premature failure due to crack formation for any selected chevron-notched geometry. A comparative study reveals that, for constant values of alpha (1) and alpha (0), the dimensionless beam compliance and stress intensity factor are essentially independent of specimen width and thickness. The chevron tip position, alpha (0) has its primary effect on the force required to initiate a sharp crack. Small values for alpha (0) maximize the stable region length, however, the premature failure tendency is also high for smaller alpha (0) values. Improvements in premature failure resistance can be realized for larger values of alpha (0) with only a minor reduction in the stable region length. The stable region length is also maximized for larger chevron based positions, alpha (1) but the chance for premature failure is also raised. Smaller base positions improve the premature failure resistance with only minor decreases in the stable region length. Chevron geometries having a good balance of premature failure resistance, stable region length, and crack front length are 0.20 less than or equal to alpha (0) is less than or equal to 0.30 and 0.70 is less than or equal to alpha (1) is less than or equal to 0.80.

  8. The deformation of the front of a 3D interface crack propagating quasistatically in a medium with random fracture properties

    NASA Astrophysics Data System (ADS)

    Pindra, Nadjime; Lazarus, Véronique; Leblond, Jean-Baptiste

    One studies the evolution in time of the deformation of the front of a semi-infinite 3D interface crack propagating quasistatically in an infinite heterogeneous elastic body. The fracture properties are assumed to be lower on the interface than in the materials so that crack propagation is channelled along the interface, and to vary randomly within the crack plane. The work is based on earlier formulae which provide the first-order change of the stress intensity factors along the front of a semi-infinite interface crack arising from some small but otherwise arbitrary in-plane perturbation of this front. The main object of study is the long-time behavior of various statistical measures of the deformation of the crack front. Special attention is paid to the influences of the mismatch of elastic properties, the type of propagation law (fatigue or brittle fracture) and the stable or unstable character of 2D crack propagation (depending on the loading) upon the development of this deformation.

  9. Investigation of Low-Cycle Bending Fatigue of AISI 9310 Steel Spur Gears

    NASA Technical Reports Server (NTRS)

    Handschuh, Robert F.; Krantz, Timothy L.; Lerch, Bradley A.; Burke, Christopher S.

    2007-01-01

    An investigation of the low-cycle bending fatigue of spur gears made from AISI 9310 gear steel was completed. Tests were conducted using the single-tooth bending method to achieve crack initiation and propagation. Tests were conducted on spur gears in a fatigue test machine using a dedicated gear test fixture. Test loads were applied at the highest point of single tooth contact. Gear bending stresses for a given testing load were calculated using a linear-elastic finite element model. Test data were accumulated from 1/4 cycle to several thousand cycles depending on the test stress level. The relationship of stress and cycles for crack initiation was found to be semi-logarithmic. The relationship of stress and cycles for crack propagation was found to be linear. For the range of loads investigated, the crack propagation phase is related to the level of load being applied. Very high loads have comparable crack initiation and propagation times whereas lower loads can have a much smaller number of cycles for crack propagation cycles as compared to crack initiation.

  10. Investigation of Low-Cycle Bending Fatigue of AISI 9310 Steel Spur Gears

    NASA Technical Reports Server (NTRS)

    Handschuh, Robert F.; Krantz, Timothy L.; Lerch, Bradley A.; Burke, Christopher S.

    2007-01-01

    An investigation of the low-cycle bending fatigue of spur gears made from AISI 9310 gear steel was completed. Tests were conducted using the single-tooth bending method to achieve crack initiation and propagation. Tests were conducted on spur gears in a fatigue test machine using a dedicated gear test fixture. Test loads were applied at the highest point of single tooth contact. Gear bending stresses for a given testing load were calculated using a linear-elastic finite element model. Test data were accumulated from 1/4 cycle to several thousand cycles depending on the test stress level. The relationship of stress and cycles for crack initiation was found to be semilogarithmic. The relationship of stress and cycles for crack propagation was found to be linear. For the range of loads investigated, the crack propagation phase is related to the level of load being applied. Very high loads have comparable crack initiation and propagation times whereas lower loads can have a much smaller number of cycles for crack propagation cycles as compared to crack initiation.

  11. Numerical calculation and experimental research on crack arrest by detour effect and joule heating of high pulsed current in remanufacturing

    NASA Astrophysics Data System (ADS)

    Yu, Jing; Zhang, Hongchao; Deng, Dewei; Hao, Shengzhi; Iqbal, Asif

    2014-07-01

    The remanufacturing blanks with cracks were considered as irreparable. With utilization of detour effect and Joule heating of pulsed current, a technique to arrest the crack in martensitic stainless steel FV520B is developed. According to finite element theory, the finite element(FE) model of the cracked rectangular specimen is established firstly. Then, based on electro-thermo-structure coupled theory, the distributions of current density, temperature field, and stress field are calculated for the instant of energizing. Furthermore, the simulation results are verified by some corresponding experiments performed on high pulsed current discharge device of type HCPD-I. Morphology and microstructure around the crack tip before and after electro pulsing treatment are observed by optical microscope(OM) and scanning electron microscope(SEM), and then the diameters of fusion zone and heat affected zone(HAZ) are measured in order to contrast with numerical calculation results. Element distribution, nano-indentation hardness and residual stress in the vicinity of the crack tip are surveyed by energy dispersive spectrometer(EDS), scanning probe microscopy(SPM) and X-ray stress gauge, respectively. The results show that the obvious partition and refined grain around the crack tip can be observed due to the violent temperature change. The contents of carbon and oxygen in fusion zone and HAZ are higher than those in matrix, and however the hardness around the crack tip decreases. Large residual compressive stress is induced in the vicinity of the crack tip and it has the same order of magnitude for measured results and numerical calculation results that is 100 MPa. The relational curves between discharge energies and diameters of the fusion zone and HAZ are obtained by experiments. The difference of diameter of fusion zone between measured and calculated results is less than 18.3%. Numerical calculation is very useful to define the experimental parameters. An effective method to prevent further extension of the crack is presented and can provide a reference for the compressor rotor blade remanufacturing.

  12. Combined Mode I and Mode II Fracture of Plasma-Sprayed Thermal Barrier Coatings at Ambient and Elevated Temperatures

    NASA Technical Reports Server (NTRS)

    Choi, Sung R.; Zhu, Dongming; Miller, Robert A.

    2003-01-01

    The mode I, mode II, and combined mode I-mode II fracture behavior of ZrO2 - 8wt%Y2O3 thermal barrier coatings was determined in asymmetric flexure loading at both ambient and elevated temperatures. Precracks were introduced in test specimens using the single-edge-v-notched beam (SEVNB) method incorporated with final diamond polishing to achieve sharp crack tips. A fracture envelope of KI versus KII was determined for the coating material at ambient and elevated temperatures. Propagation angles of fracture as a function of KI/KII were also determined. The mixed-mode fracture behaviors of the coating material were compared with those of monolithic advanced ceramics determined previously. The mixed-mode fracture behavior of the plasma- sprayed thermal barrier coating material was predicted in terms of fracture envelope and propagation angle using mixed-mode fracture theories.

  13. Combined Mode I and Mode II Fracture of Plasma-Sprayed Thermal Barrier Coatings at Ambient and Elevated Temperatures

    NASA Technical Reports Server (NTRS)

    Choi, Sung R.; Zhu, Dongming; Miller, Robert A.

    2003-01-01

    The mode I, mode II, and combined mode I-mode II fracture behavior of ZrO2- 8wt%Y2O3 thermal barrier coatings was determined in asymmetric flexure loading at both ambient and elevated temperatures. Precracks were introduced in test specimens using the single-edge-v-notched beam (SEVNB) method incorporated with final diamond polishing to achieve sharp crack tips. A fracture envelope of KI versus KII was determined for the coating material at ambient and elevated temperatures. Propagation angles of fracture as a function of K(sub I)/K(sub II) were also determined. The mixed-mode fracture behaviors of the coating material were compared with those of monolithic advanced ceramics determined previously. The mixed-mode fracture behavior of the plasma-sprayed thermal barrier coating material was predicted in terms of fracture envelope and propagation angle using mixed-mode fracture theories.

  14. Fractographic Observations on the Mechanism of Fatigue Crack Growth in Aluminium Alloys

    NASA Astrophysics Data System (ADS)

    Alderliesten, R. C.; Schijve, J.; Krkoska, M.

    Special load histories are adopted to obtain information about the behavior of the moving crack tip during the increasing and decreasing part of a load cycle. It is associated with the crack opening and closure of the crack tip. Secondly, modern SEM techniques are applied for observations on the morphology of the fractures surfaces of a fatigue crack. Information about the cross section profiles of striations are obtained. Corresponding locations of the upper and the lower fracture surface are also explored in view of the crack extension mechanism. Most experiments are carried out on sheet specimens of aluminum alloys 2024-T3, but 7050-T7451 specimens are also tested in view of a different ductility of the two alloys.

  15. Corrosion fatigue studies on a bulk glassy Zr-based alloy under three-point bending

    NASA Astrophysics Data System (ADS)

    Grell, Daniel; Wilkin, Yannic; Gostin, Petre F.; Gebert, Annett; Kerscher, Eberhard

    2016-12-01

    Corrosion fatigue (CF) tests were carried out on bulk glassy Zr52.5Cu17.9Al10Ni14.6Ti5 (Vitreloy 105) samples under load-controlled three-point bending conditions with a load ratio of R = 0.1 in 0.01 M Na2SO4 + 0.01 M NaCl electrolyte. During cyclic testing, the bar-shaped specimens were polarized in situ at constant potentials and the current was monitored. Three different anodic potentials within the interval between the pitting potential EP and the repassivation potential ER, and three different load amplitudes were applied. In some cases, in situ microscopic observations revealed the formation of black corrosion products in the vicinity of the crack tip during anodic polarization. Fractographic analysis revealed a clear distinction between two modes of crack growth characterized by smooth dissolution induced regions on the one hand and slim fast fracture areas on the other hand. Both alternating features contributed to a broad striated corrosion fatigue fracture surface. Moreover, further fatigue tests were carried out under free corrosion conditions yielding additional information on crack initiation and crack propagation period by means of the open circuit potential (OCP) changes. Thereby, a slight increase in OCP was detected after rupture of the passive layer due to bare metal exposed to the electrolyte. The electrochemical response increased continuously according to stable crack propagation until fracture occurred. Finally, the fracture surfaces of the corrosion fatigue samples were investigated by energy dispersive X-ray with the objective of analyzing the elemental distribution after anodic dissolution. Interestingly, anodic polarization at a near repassivation potential of -50 mV vs. SCE (Saturated Calomel Electrode, E = 0.241 V vs. SHE, Standard Hydrogen Electrode) led to favorable effects on the fatigue lifetime. In conclusion, all results are conflated to a corrosion fatigue model for bulk glassy Vitreloy 105 under anodic polarization in chloride-containing electrolyte and compared to the previously proposed stress corrosion mechanisms under similar conditions.

  16. The evolution of slip pulses within bimaterial interfaces with rupture velocity

    NASA Astrophysics Data System (ADS)

    Shlomai, H.; Fineberg, J.

    2017-12-01

    The most general frictional motion in nature involves bimaterial interfaces, when contacting bodies possess different elastic properties. Frictional motion occurs when the contacts composing the interface separating these bodies detach via propagating rupture fronts. Coupling between slip and normal stress variations is unique to bimaterial interfaces. Here we use high speed simultaneous measurements of slip velocities, real contact area and stresses to explicitly reveal this bimaterial coupling and its role in determining different classes of rupture modes and their structures. Our experiments study the rupture of a spatially extended interface formed by brittle plastics whose shear wave speeds differ by 30%. Any slip within a bimaterial interface will break the stress symmetry across the interface. One important result of this is that local values of normal stress variations at the interface couple to interface slip, `bimaterial coupling'. The sign of the coupling depends on the front propagation direction. When we consider ruptures propagating in the direction of motion of the more compliant material, the `positive' direction, slip reduces the normal stress. We focus on this direction. We show that, in this direction, interface ruptures develop from crack-like behavior at low rupture velocities, whose structure corresponds to theoretical predictions: As the ruptures accelerate towards their asymptotic speed, the structures of the strain and stress fields near the rupture tip deviate significantly from this crack-like form, and systematically sharpen to a pulse-like rupture mode called slip-pulses. We conclude with a description of slip-pulse properties.

  17. Determination of Stress Intensity Factor Distributions for "Interface" Cracks in Incompressible, Dissimilar Materials

    NASA Technical Reports Server (NTRS)

    Smith, C. W.

    1997-01-01

    The present study was undertaken in order to develop test methods and procedures for measuring the variation of the stress intensity factor through the thickness in bimaterial specimens containing cracks within and parallel to the bond line using the frozen stress photoelastic method. Since stress freezing materials are incompressible above critical temperature, and since thick plates are to be employed which tend to produce a state of plane strain near the crack tip, the interface near tip fracture equations reduce to the classic form for homogeneous materials. Moreover, zero thickness interfaces do not exist when materials are bonded together. It was decided early on that it would be important to insure a uniform straight and accurate crack tip region through the thickness of the body to reduce scatter in the SIF distribution through the thickness. It was also observed that rubberlike materials which were desired to be modeled exhibited significant tip blunting prior to crack extension and that some blunting of the tip would provide a more realistic model. It should be noted that, in normal stress freezing photoelastic work, it is considered good practice to avoid utilizing data near bond lines in photoelastic models due to the bond line stresses which inevitably develop when two parts are bonded together. Thus, the present study involves certain exploratory aspects in deviating from standard practice in stress freezing work. With the above ideas in mind, several different test methods were investigated and are described in the following sections and appendices. The geometry selected for the program was a thick, edge cracked specimen containing a bond line.

  18. Effect of service exposure on fatigue crack propagation of Inconel 718 turbine disc material at elevated temperatures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jeong, Dae-Ho; Choi, Myung-Je; Goto, Masahiro

    In this study, the fatigue crack propagation behavior of Inconel 718 turbine disc with different service times from 0 to 4229 h was investigated at 738 and 823 K. No notable change in microstructural features, other than the increase in grain size, was observed with increasing service time. With increasing service time from 0 to 4229 h, the fatigue crack propagation rates tended to increase, while the ΔK{sub th} value decreased, in low ΔK regime and lower Paris' regime at both testing temperatures. The fractographic observation using a scanning electron microscope suggested that the elevated temperature fatigue crack propagation mechanismmore » of Inconel 718 changed from crystallographic cleavage mechanism to striation mechanism in the low ΔK regime, depending on the grain size. The fatigue crack propagation mechanism is proposed for the crack propagating through small and large grains in the low ΔK regime, and the fatigue crack propagation behavior of Inconel 718 with different service times at elevated temperatures is discussed. - Highlights: • The specimens were prepared from the Inconel 718 turbine disc used for 0 to 4229 h. • FCP rates were measured at 738 and 823 K. • The ΔK{sub th} values decreased with increasing service time. • The FCP behavior showed a strong correlation with the grain size of used turbine disc.« less

  19. Corrosion Effects on the Fatigue Crack Propagation of Giga-Grade Steel and its Heat Affected Zone in pH Buffer Solutions for Automotive Application

    NASA Astrophysics Data System (ADS)

    Lee, H. S.

    2018-03-01

    Corrosion fatigue crack propagation test was conducted of giga-grade steel and its heat affected zone in pH buffer solutions, and the results were compared with model predictions. Pure corrosion effect on fatigue crack propagation, particularly, in corrosive environment was evaluated by means of the modified Forman equation. As shown in results, the average corrosion rate determined from the ratio of pure corrosion induced crack length to entire crack length under a cycle load were 0.11 and 0.37 for base metal and heat affected zone, respectively, with load ratio of 0.5, frequency of 0.5 and pH 10.0 environment. These results demonstrate new interpretation methodology for corrosion fatigue crack propagation enabling the pure corrosion effects on the behavior to be determined.

  20. Cracking process of Fe-26Cr-1Mo during low cycle corrosion fatigue

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, J.Q.; Li, J.; Wang, Z.F.

    1994-12-01

    The corrosion fatigue (CF) life has been divided classically into the initiation'' and propagation'' periods. Usually, the crack initiation process dominates the component lifetime under the low cycle CF condition because the crack propagates rapidly one initiated. Despite much work done on the research of the CF crack initiation mechanisms, however, a full understanding of crack initiation is still lacking. There are some limitations in explaining the CF crack initiation in an aqueous solution using the above four mechanisms individually. And, it is difficult to conduct experiments in which one mechanism along can be examined. Although CF is complicated, itmore » is possible to reproduce a specific experiment condition which will have the dominant factor affecting the CF crack initiation. Once the cracks initiate on the smooth metal surface, their coalescence, micropropagation and macropropagation will take place successively. The initiated cracks propagate first in the range of several grains, and the behavior of the microcrack propagation is different from that of macrocrack propagation. For Fe-26Cr-1Mo ferritic stainless steel, the fundamental research work of straining electrode has been done by many investigators, but the observation of the material surface at different deformation processes has not been reported. In the present study, the detailed observation of the cracking process of the material has been carried out in low cycle CF.« less

  1. Stress corrosion cracking of duplex stainless steels in caustic solutions

    NASA Astrophysics Data System (ADS)

    Bhattacharya, Ananya

    Duplex stainless steels (DSS) with roughly equal amount of austenite and ferrite phases are being used in industries such as petrochemical, nuclear, pulp and paper mills, de-salination plants, marine environments, and others. However, many DSS grades have been reported to undergo corrosion and stress corrosion cracking in some aggressive environments such as chlorides and sulfide-containing caustic solutions. Although stress corrosion cracking of duplex stainless steels in chloride solution has been investigated and well documented in the literature but the SCC mechanisms for DSS in caustic solutions were not known. Microstructural changes during fabrication processes affect the overall SCC susceptibility of these steels in caustic solutions. Other environmental factors, like pH of the solution, temperature, and resulting electrochemical potential also influence the SCC susceptibility of duplex stainless steels. In this study, the role of material and environmental parameters on corrosion and stress corrosion cracking of duplex stainless steels in caustic solutions were investigated. Changes in the DSS microstructure by different annealing and aging treatments were characterized in terms of changes in the ratio of austenite and ferrite phases, phase morphology and intermetallic precipitation using optical micrography, SEM, EDS, XRD, nano-indentation and microhardness methods. These samples were then tested for general and localized corrosion susceptibility and SCC to understand the underlying mechanisms of crack initiation and propagation in DSS in the above-mentioned environments. Results showed that the austenite phase in the DSS is more susceptible to crack initiation and propagation in caustic solutions, which is different from that in the low pH chloride environment where the ferrite phase is the more susceptible phase. This study also showed that microstructural changes in duplex stainless steels due to different heat treatments could affect their SCC susceptibility. Annealed and water quenched specimens were found to be immune to SCC in caustic environment. Aging treatment at 800°C gave rise to sigma and chi precipitates in the DSS. However, these sigma and chi precipitates, known to initiate cracking in DSS in chloride environment did not cause any cracking of DSS in caustic solutions. Aging of DSS at 475°C had resulted in '475°C embrittlement' and caused cracks to initiate in the ferrite phase. This was in contrast to the cracks initiating in the austenite phase in the as-received DSS. Alloy composition and microstructure of DSS as well as solution composition (dissolved ionic species) was also found to affect the electrochemical behavior and passivation of DSS which in turn plays a major role in stress corrosion crack initiation and propagation. Corrosion rates and SCC susceptibility of DSS was found to increase with addition of sulfide to caustic solutions. Corrosion films on DSS, characterized using XRD and X-ray photoelectron spectroscopy, indicated that the metal sulfide compounds were formed along with oxides at the metal surface in the presence of sulfide containing caustic environments. These metal sulfide containing passive films are unstable and hence breaks down under mechanical straining, leading to SCC initiations. The overall results from this study helped in understanding the mechanism of SCC in caustic solutions. Favorable slip systems in the austenite phase of DSS favors slip-induced local film damage thereby initiating a stress corrosion crack. Repeated film repassivation and breaking, followed by crack tip dissolution results in crack propagation in the austenite phase of DSS alloys. Result from this study will have a significant impact in terms of identifying the alloy compositions, fabrication processes, microstructures, and environmental conditions that may be avoided to mitigate corrosion and stress corrosion cracking of DSS in caustic solutions.

  2. Effect of debond growth on stress-intensity factors in a cracked orthotropic sheet stiffened by a semi-infinite orthotropic sheet

    NASA Technical Reports Server (NTRS)

    Bigelow, C. A.

    1986-01-01

    Stress-intensity factors are determined for a cracked infinite sheet adhesively bonded to a stringer, and debonding of the adhesive layer is predicted. The stringer is modeled as a semi-infinite sheet. Adhesive nonlinearity is also included. Both the sheet and stringer are treated as homogeneous, orthotropic materials. A set of integral equations is formulated and solved to obtain the adhesive shear stresses and crack-tip stress-intensity factors. Adhesive debonding is predicted using a rupture criterion based on the combined adhesive stresses. When the crack is not under the stringer, the debond extends along the edge of the stringer. When the crack tip is beneath the stringer, the debond grows to the end of the crack, then along the edge of the stringer. Stress levels required for debond initiation decrease as the crack tip is moved beneath the stringer. With a nonlinear adhesive, the debond initiates at higher applied stress levels than in linear adhesive cases. Compared with the linear adhesive solution, modeling a nonlinear adhesive causes the stress-intensity factor to increase when the bond is assumed to remain intact but causes the stress-intensity factor to decrease when debonding is included.

  3. A linear least squares approach for evaluation of crack tip stress field parameters using DIC

    NASA Astrophysics Data System (ADS)

    Harilal, R.; Vyasarayani, C. P.; Ramji, M.

    2015-12-01

    In the present work, an experimental study is carried out to estimate the mixed-mode stress intensity factors (SIF) for different cracked specimen configurations using digital image correlation (DIC) technique. For the estimation of mixed-mode SIF's using DIC, a new algorithm is proposed for the extraction of crack tip location and coefficients in the multi-parameter displacement field equations. From those estimated coefficients, SIF could be extracted. The required displacement data surrounding the crack tip has been obtained using 2D-DIC technique. An open source 2D DIC software Ncorr is used for the displacement field extraction. The presented methodology has been used to extract mixed-mode SIF's for specimen configurations like single edge notch (SEN) specimen and centre slant crack (CSC) specimens made out of Al 2014-T6 alloy. The experimental results have been compared with the analytical values and they are found to be in good agreement, thereby confirming the accuracy of the algorithm being proposed.

  4. Analysis of mixed-mode crack propagation using the boundary integral method

    NASA Technical Reports Server (NTRS)

    Mendelson, A.; Ghosn, L. J.

    1986-01-01

    Crack propagation in a rotating inner raceway of a high speed roller bearing is analyzed using the boundary integral equation method. The method consists of an edge crack in a plate under tension, upon which varying Hertzian stress fields are superimposed. A computer program for the boundary integral equation method was written using quadratic elements to determine the stress and displacement fields for discrete roller positions. Mode I and Mode II stress intensity factors and crack extension forces G sub 00 (energy release rate due to tensile opening mode) and G sub r0 (energy release rate due to shear displacement mode) were computed. These calculations permit determination of that crack growth angle for which the change in the crack extension forces is maximum. The crack driving force was found to be the alternating mixed-mode loading that occurs with each passage of the most heavily loaded roller. The crack is predicted to propagate in a step-like fashion alternating between radial and inclined segments, and this pattern was observed experimentally. The maximum changes DeltaG sub 00 and DeltaG sub r0 of the crack extension forces are found to be good measures of the crack propagation rate and direction.

  5. A Finite Element Study on Crack Tip Deformation.

    DTIC Science & Technology

    1976-08-01

    REPOPINUMDER • TNOR(.) CONTRACT OR GRANT NUMSER(.) ______ ~~~ ~~~ /I. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMEN T. PROJECT . TASKJ AREA ...that the bulk of the strain measurements agree well with the results of the plane stress calculations except in the small area close to the crack tip...that the bulk of the strain measurements agree veil with the results of the plane stress calcula- tions except in the small area cloae to the crack

  6. Cleaving the Halqeh-ye-nur diamonds: a dynamic fracture analysis.

    PubMed

    Atkinson, Colin; Martineau, Philip M; Khan, Rizwan U A; Field, John E; Fisher, David; Davies, Nick M; Samartseva, Julia V; Putterman, Seth J; Hird, Jonathan R

    2015-03-28

    The degree of surface roughness and clarity with which a surface in a brittle material can be formed via fracture is known to be related to the speed of the propagating crack. Cracks traversing a brittle material at low speed produce very smooth surfaces, while those propagating faster create less reflective and rough surfaces (Buehler MJ, Gao H. 2006 Nature 439, 307-310 (doi:10.1038/nature04408)). The elastic wave speeds (c(l)≈18 000 m s(-1), c(s)≈11 750 m s(-1)) in diamond are fast (Willmott GR, Field JE. 2006 Phil. Mag. 86, 4305-4318 (doi:10.1080/14786430500482336)) and present a particular problem in creating smooth surfaces during the cleaving of diamond-a routine operation in the fashioning of diamonds for gemstone purposes--as the waves are reflected from the boundaries of the material and can add a tensile component to the propagating crack tip causing the well-known cleavage steps observed on diamond surfaces (Field JE. 1971 Contemp. Phys. 12, 1-31 (doi:10.1080/00107517108205103); Field JE. 1979 Properties of diamond, 1st edn, Academic Press; Wilks EM. 1958 Phil. Mag. 3, 1074-1080 (doi:10.1080/14786435808237036)). Here we report an analysis of two diamonds, having large dimensions and high aspect ratio, which from a gemological analysis are shown to have been cleaved from the same 200 carat specimen. A methodology for their manufacture is calculated by an analysis of a model problem. This takes into account the effect of multiple reflections from the sample boundaries. It is suggested that the lapidary had an intuitive guide to how to apply the cleavage force in order to control the crack speed. In particular, it is shown that it is likely that this technique caused the fracture to propagate at a lower speed. The sacrifice of a large diamond with the intention of creating thin plates, rather than a faceted gemstone, demonstrates how symbolism and beliefs associated with gemstones have changed over the centuries (Harlow GE. 1998 The nature of diamonds, Cambridge University Press). The scientific insights gained by studying these gemstones suggest a method of producing macroscale atomically flat and stress-free surfaces on other brittle materials.

  7. Cleaving the Halqeh-ye-nur diamonds: a dynamic fracture analysis

    PubMed Central

    Atkinson, Colin; Martineau, Philip M.; Khan, Rizwan U. A.; Field, John E.; Fisher, David; Davies, Nick M.; Samartseva, Julia V.; Putterman, Seth J.; Hird, Jonathan R.

    2015-01-01

    The degree of surface roughness and clarity with which a surface in a brittle material can be formed via fracture is known to be related to the speed of the propagating crack. Cracks traversing a brittle material at low speed produce very smooth surfaces, while those propagating faster create less reflective and rough surfaces (Buehler MJ, Gao H. 2006 Nature 439, 307–310 (doi:10.1038/nature04408)). The elastic wave speeds (cl≈18 000 m s−1, cs≈11 750 m s−1) in diamond are fast (Willmott GR, Field JE. 2006 Phil. Mag. 86, 4305–4318 (doi:10.1080/14786430500482336)) and present a particular problem in creating smooth surfaces during the cleaving of diamond—a routine operation in the fashioning of diamonds for gemstone purposes—as the waves are reflected from the boundaries of the material and can add a tensile component to the propagating crack tip causing the well-known cleavage steps observed on diamond surfaces (Field JE. 1971 Contemp. Phys. 12, 1–31 (doi:10.1080/00107517108205103); Field JE. 1979 Properties of diamond, 1st edn, Academic Press; Wilks EM. 1958 Phil. Mag. 3, 1074–1080 (doi:10.1080/14786435808237036)). Here we report an analysis of two diamonds, having large dimensions and high aspect ratio, which from a gemological analysis are shown to have been cleaved from the same 200 carat specimen. A methodology for their manufacture is calculated by an analysis of a model problem. This takes into account the effect of multiple reflections from the sample boundaries. It is suggested that the lapidary had an intuitive guide to how to apply the cleavage force in order to control the crack speed. In particular, it is shown that it is likely that this technique caused the fracture to propagate at a lower speed. The sacrifice of a large diamond with the intention of creating thin plates, rather than a faceted gemstone, demonstrates how symbolism and beliefs associated with gemstones have changed over the centuries (Harlow GE. 1998 The nature of diamonds, Cambridge University Press). The scientific insights gained by studying these gemstones suggest a method of producing macroscale atomically flat and stress-free surfaces on other brittle materials. PMID:25713458

  8. Modelling Laccoliths: Fluid-Driven Fracturing in the Lab

    NASA Astrophysics Data System (ADS)

    Ball, T. V.; Neufeld, J. A.

    2017-12-01

    Current modelling of the formation of laccoliths neglects the necessity to fracture rock layers for propagation to occur [1]. In magmatic intrusions at depth the idea of fracture toughness is used to characterise fracturing, however an analogue for near surface intrusions has yet to be explored [2]. We propose an analytical model for laccolith emplacement that accounts for the energy required to fracture at the tip of an intrusion. For realistic physical parameters we find that a lag region exists between the fluid magma front and the crack tip where large negative pressures in the tip cause volatiles to exsolve from the magma. Crucially, the dynamics of this tip region controls the spreading due to the competition between viscous forces and fracture energy. We conduct a series of complementary experiments to investigate fluid-driven fracturing of adhered layers and confirm the existence of two regimes: viscosity dominant spreading, controlled by the pressure in the lag region, and fracture energy dominant spreading, controlled by the energy required to fracture layers. Our experiments provide the first observations, and evolution, of a vapour tip. These experiments and our simplified model provide insight into the key physical processes in near surface magmatic intrusions with applications to fluid-driven fracturing more generally. Michaut J. Geophys. Res. 116(B5), B05205. Bunger & Cruden J. Geophys. Res. 116(B2), B02203.

  9. Mixed-mode crack tip loading and crack deflection in 1D quasicrystals

    NASA Astrophysics Data System (ADS)

    Wang, Zhibin; Scheel, Johannes; Ricoeur, Andreas

    2016-12-01

    Quasicrystals (QC) are a new class of materials besides crystals and amorphous solids and have aroused much attention of researchers since they were discovered. This paper presents a generalized fracture theory including the J-integral and crack closure integrals, relations between J1, J2 and the stress intensity factors as well as the implementation of the near-tip stress and displacement solutions of 1D QC. Different crack deflection criteria, i.e. the J-integral and maximum circumferential stress criteria, are investigated for mixed-mode loading conditions accounting for phonon-phason coupling. One focus is on the influence of phason stress intensity factors on crack deflection angles.

  10. On stress field near a stationary crack tip

    NASA Technical Reports Server (NTRS)

    Nemat-Nasser, S.; Obata, M.

    1984-01-01

    It is well known that the stress and elastic-plastic deformation fields near a crack tip have important roles in the corresponding fracture process. For elastic-perfectly-plastic solids, different solutions are given in the literature. In this work several of these solutions are examined and compared for Mode I (tension), Mode II (shear), and mixed Modes I and II loading conditions in plane strain. By consideration of the dynamic solution, it is shown that the assumption that the material is yielding all around a crack tip may not be reasonable in all cases. By admitting the existence of some elastic sectors, continuous stress fields are obtained even for mixed Modes I and II.

  11. Full field study of strain distribution near the crack tip in the fracture of solid propellants via large strain digital image correlation and optical microscopy

    NASA Astrophysics Data System (ADS)

    Gonzalez, Javier

    A full field method for visualizing deformation around the crack tip in a fracture process with large strains is developed. A digital image correlation program (DIC) is used to incrementally compute strains and displacements between two consecutive images of a deformation process. Values of strain and displacements for consecutive deformations are added, this way solving convergence problems in the DIC algorithm when large deformations are investigated. The method developed is used to investigate the strain distribution within 1 mm of the crack tip in a particulate composite solid (propellant) using microscopic visualization of the deformation process.

  12. Resolved shear stress intensity coefficient and fatigue crack growth in large crystals

    NASA Technical Reports Server (NTRS)

    Chen, Q.; Liu, H. W.

    1988-01-01

    Fatigue crack growth tests were carried out on large-grain Al 7029 aluminum alloy and the finite element method was used to calculate the stress field near the tip of a zigzag crack. The resolved shear stresses on all 12 slip systems were computed, and the resolved shear stress intensity coefficient (RSSIC) was defined. The RSSIC was used to analyze the irregular crack path and was correlated with the rate of single-slip-plane shear crack growth. Fatigue crack growth was found to be caused primarily by shear decohesion at a crack tip. When the RSSIC on a single-slip system was much larger than all the others, the crack followed a single-slip plane. When the RSSICs on two conjugate slip systems were comparable, a crack grew in a zigzag manner on these planes and the macrocrack-plane bisected the two active slip planes. The maximum RSSIC on the most active slip system is proposed as a parameter to correlate with the shear fatigue crack growth rate in large crystals.

  13. Time-dependent corrosion fatique crack propagation in 7000 series aluminum alloys. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Mason, Mark E.

    1995-01-01

    The goal of this research is to characterize environmentally assisted subcritical crack growth for the susceptible short-longitudinal orientation of aluminum alloy 7075-T651, immersed in acidified and inhibited NaCl solution. This work is necessary in order to provide a basis for incorporating environmental effects into fatigue crack propagation life prediction codes such as NASA-FLAGRO (NASGRO). This effort concentrates on determining relevant inputs to a superposition model in order to more accurately model environmental fatigue crack propagation.

  14. Corrosion-Fatigue Crack Growth in Plates: A Model Based on the Paris Law

    PubMed Central

    Toribio, Jesús; Matos, Juan-Carlos; González, Beatriz

    2017-01-01

    In this paper, a Paris law-based model is presented whereby crack propagation occurs under cyclic loading in air (fatigue) and in an aggressive environment (corrosion-fatigue) for the case of corner cracks (with a wide range of aspect ratios in the matter of the initial cracks) in finite-thickness plates of 316L austenitic stainless steel subjected to tension, bending, or combined (tension + bending) loading. Results show that the cracks tend during their growth towards a preferential propagation path, exhibiting aspect ratios slightly lower than unity only for the case of very shallow cracks, and diminishing as the crack grows (increasing the relative crack depth)—more intensely in the case of bending than in the case of tension (the mixed loading tension/bending representing an intermediate case). In addition, the crack aspect ratios during fatigue propagation evolution are lower in fatigue (in air) than in corrosion-fatigue (in aggressive environment). PMID:28772798

  15. Recent developments in analysis of crack propagation and fracture of practical materials. [stress analysis in aircraft structures

    NASA Technical Reports Server (NTRS)

    Hardrath, H. F.; Newman, J. C., Jr.; Elber, W.; Poe, C. C., Jr.

    1978-01-01

    The limitations of linear elastic fracture mechanics in aircraft design and in the study of fatigue crack propagation in aircraft structures are discussed. NASA-Langley research to extend the capabilities of fracture mechanics to predict the maximum load that can be carried by a cracked part and to deal with aircraft design problems are reported. Achievements include: (1) improved stress intensity solutions for laboratory specimens; (2) fracture criterion for practical materials; (3) crack propagation predictions that account for mean stress and high maximum stress effects; (4) crack propagation predictions for variable amplitude loading; and (5) the prediction of crack growth and residual stress in built-up structural assemblies. These capabilities are incorporated into a first generation computerized analysis that allows for damage tolerance and tradeoffs with other disciplines to produce efficient designs that meet current airworthiness requirements.

  16. Comparative Study of Vibration Condition Indicators for Detecting Cracks in Spur Gears

    NASA Technical Reports Server (NTRS)

    Nanadic, Nenad; Ardis, Paul; Hood, Adrian; Thurston, Michael; Ghoshal, Anindya; Lewicki, David

    2013-01-01

    This paper reports the results of an empirical study on the tooth breakage failure mode in spur gears. Of four dominant gear failure modes (breakage, wear, pitting, and scoring), tooth breakage is the most precipitous and often leads to catastrophic failures. The cracks were initiated using a fatigue tester and a custom-designed single-tooth bending fixture to simulate over-load conditions, instead of traditional notching using wire electrical discharge machining (EDM). The cracks were then propagated on a dynamometer. The ground truth of damage level during crack propagation was monitored with crack-propagation sensors. Ten crack propagations have been performed to compare the existing condition indicators (CIs) with respect to their: ability to detect a crack, ability to assess the damage, and sensitivity to sensor placement. Of more than thirty computed CIs, this paper compares five commonly used: raw RMS, FM0, NA4, raw kurtosis, and NP4. The performance of combined CIs was also investigated, using linear, logistic, and boosted regression trees based feature fusion.

  17. Fatigue crack propagation in aluminum-lithium alloys

    NASA Technical Reports Server (NTRS)

    Rao, K. T. V.; Ritchie, R. O.; Piascik, R. S.; Gangloff, R. P.

    1989-01-01

    The principal mechanisms which govern the fatigue crack propagation resistance of aluminum-lithium alloys are investigated, with emphasis on their behavior in controlled gaseous and aqueous environments. Extensive data describe the growth kinetics of fatigue cracks in ingot metallurgy Al-Li alloys 2090, 2091, 8090, and 8091 and in powder metallurgy alloys exposed to moist air. Results are compared with data for traditional aluminum alloys 2024, 2124, 2618, 7075, and 7150. Crack growth is found to be dominated by shielding from tortuous crack paths and resultant asperity wedging. Beneficial shielding is minimized for small cracks, for high stress ratios, and for certain loading spectra. While water vapor and aqueous chloride environments enhance crack propagation, Al-Li-Cu alloys behave similarly to 2000-series aluminum alloys. Cracking in water vapor is controlled by hydrogen embrittlement, with surface films having little influence on cyclic plasticity.

  18. Effect of Chamber Pressurization Rate on Combustion and Propagation of Solid Propellant Cracks

    NASA Astrophysics Data System (ADS)

    Yuan, Wei-Lan; Wei, Shen; Yuan, Shu-Shen

    2002-01-01

    area of the propellant grain satisfies the designed value. But cracks in propellant grain can be generated during manufacture, storage, handing and so on. The cracks can provide additional surface area for combustion. The additional combustion may significantly deviate the performance of the rocket motor from the designed conditions, even lead to explosive catastrophe. Therefore a thorough study on the combustion, propagation and fracture of solid propellant cracks must be conducted. This paper takes an isolated propellant crack as the object and studies the effect of chamber pressurization rate on the combustion, propagation and fracture of the crack by experiment and theoretical calculation. deformable, the burning inside a solid propellant crack is a coupling of solid mechanics and combustion dynamics. In this paper, a theoretical model describing the combustion, propagation and fracture of the crack was formulated and solved numerically. The interaction of structural deformation and combustion process was included in the theoretical model. The conservation equations for compressible fluid flow, the equation of state for perfect gas, the heat conducting equation for the solid-phase, constitutive equation for propellant, J-integral fracture criterion and so on are used in the model. The convective burning inside the crack and the propagation and fracture of the crack were numerically studied by solving the set of nonlinear, inhomogeneous gas-phase governing equations and solid-phase equations. On the other hand, the combustion experiments for propellant specimens with a precut crack were conducted by RTR system. Predicted results are in good agreement with experimental data, which validates the reasonableness of the theoretical model. Both theoretical and experimental results indicate that the chamber pressurization rate has strong effects on the convective burning in the crack, crack fracture initiation and fracture pattern.

  19. Micro-mechanics of hydro-mechanical coupled processes during hydraulic fracturing in sandstone

    NASA Astrophysics Data System (ADS)

    Caulk, R.; Tomac, I.

    2017-12-01

    This contribution presents micro-mechanical study of hydraulic fracture initiation and propagation in sandstone. The Discrete Element Method (DEM) Yade software is used as a tool to model fully coupled hydro-mechanical behavior of the saturated sandstone under pressures typical for deep geo-reservoirs. Heterogeneity of sandstone strength tensile and shear parameters are introduced using statistical representation of cathodoluminiscence (CL) sandstone rock images. Weibull distribution of statistical parameter values was determined as a best match of the CL scans of sandstone grains and cement between grains. Results of hydraulic fracturing stimulation from the well bore indicate significant difference between models with the bond strengths informed from CL scans and uniform homogeneous representation of sandstone parameters. Micro-mechanical insight reveals formed hydraulic fracture typical for mode I or tensile cracking in both cases. However, the shear micro-cracks are abundant in the CL informed model while they are absent in the standard model with uniform strength distribution. Most of the mode II cracks, or shear micro-cracks, are not part of the main hydraulic fracture and occur in the near-tip and near-fracture areas. The position and occurrence of the shear micro-cracks is characterized as secondary effect which dissipates the hydraulic fracturing energy. Additionally, the shear micro-crack locations qualitatively resemble acoustic emission cloud of shear cracks frequently observed in hydraulic fracturing, and sometimes interpreted as re-activation of existing fractures. Clearly, our model does not contain pre-existing cracks and has continuous nature prior to fracturing. This observation is novel and interesting and is quantified in the paper. The shear particle contact forces field reveals significant relaxation compared to the model with uniform strength distribution.

  20. Incidence of apical crack formation and propagation during removal of root canal filling materials with different engine driven nickel-titanium instruments.

    PubMed

    Özyürek, Taha; Tek, Vildan; Yılmaz, Koray; Uslu, Gülşah

    2017-11-01

    To determine the incidence of crack formation and propagation in apical root dentin after retreatment procedures performed using ProTaper Universal Retreatment (PTR), Mtwo-R, ProTaper Next (PTN), and Twisted File Adaptive (TFA) systems. The study consisted of 120 extracted mandibular premolars. One millimeter from the apex of each tooth was ground perpendicular to the long axis of the tooth, and the apical surface was polished. Twenty teeth served as the negative control group. One hundred teeth were prepared, obturated, and then divided into 5 retreatment groups. The retreatment procedures were performed using the following files: PTR, Mtwo-R, PTN, TFA, and hand files. After filling material removal, apical enlargement was done using apical size 0.50 mm ProTaper Universal (PTU), Mtwo, PTN, TFA, and hand files. Digital images of the apical root surfaces were recorded before preparation, after preparation, after obturation, after filling removal, and after apical enlargement using a stereomicroscope. The images were then inspected for the presence of new apical cracks and crack propagation. Data were analyzed with χ 2 tests using SPSS 21.0 software. New cracks and crack propagation occurred in all the experimental groups during the retreatment process. Nickel-titanium rotary file systems caused significantly more apical crack formation and propagation than the hand files. The PTU system caused significantly more apical cracks than the other groups after the apical enlargement stage. This study showed that retreatment procedures and apical enlargement after the use of retreatment files can cause crack formation and propagation in apical dentin.

  1. Crack propagation life of detail fractures in rails

    DOT National Transportation Integrated Search

    1988-10-01

    The results of a comprehensive study of the crack propagation behavior of detail fractures in railroad rails are presented. The study includes full-scale crack growth experiments in a test track under simulated heavy freight train service, similar fi...

  2. Visualizing In Situ Microstructure Dependent Crack Tip Stress Distribution in IN-617 Using Nano-mechanical Raman Spectroscopy

    NASA Astrophysics Data System (ADS)

    Zhang, Yang; Mohanty, Debapriya P.; Tomar, Vikas

    2016-11-01

    Inconel 617 (IN-617) is a solid solution alloy, which is widely used in applications that require high-temperature component operation due to its high-temperature stability and strength as well as strong resistance to oxidation and carburization. The current work focuses on in situ measurements of stress distribution under 3-point bending at elevated temperature in IN-617. A nanomechanical Raman spectroscopy measurement platform was designed and built based on a combination of a customized open Raman spectroscopy (NMRS) system incorporating a motorized scanning and imaging system with a nanomechanical loading platform. Based on the scanning of the crack tip notch area using the NMRS notch tip, stress distribution under applied load with micron-scale resolution for analyzed microstructures is predicted. A finite element method-based formulation to predict crack tip stresses is presented and validated using the presented experimental data.

  3. Fatigue pre-cracking and fracture toughness in polycrystalline tungsten and molybdenum

    NASA Astrophysics Data System (ADS)

    Taguchi, Katsuya; Nakadate, Kazuhito; Matsuo, Satoru; Tokunaga, Kazutoshi; Kurishita, Hiroaki

    2018-01-01

    Fatigue pre-cracking performance and fracture toughness in polycrystalline tungsten (W) and molybdenum (Mo) have been investigated in relation to grain boundary (GB) configuration with respect to the crack advance direction. Sub-sized, single edge notched bend (SENB) specimens with three different orientations, R-L (ASTM notation) for a forged Mo rod and L-S and T-S for a rolled W plate, were pre-cracked in two steps: fully uniaxial compression fatigue loading to provoke crack initiation and its stable growth from the notch root, and subsequent 3-point bend (3PB) fatigue loading to extend the crack. The latter step intends to minimize the influence of the residual tensile stresses generated during compression fatigue by moving the crack tip away from the plastic zone. It is shown that fatigue pre-cracking performance, especially pre-crack extension behavior, is significantly affected by the specimen orientation. The R-L orientation, giving the easiest cracking path, permitted crack extension completely beyond the plastic zone, while the L-S and T-S orientations with the thickness cracking direction of the rolled plate sustained the crack lengths around or possibly within the plastic zone size due to difficulty in crack advance through an aligned grain structure. Room temperature fracture toughness tests revealed that the 3PB fatigued specimens exhibited appreciably higher fracture toughness by about 30% for R-L, 40% for L-S and 60% for T-S than the specimens of each orientation pre-cracked by compression fatigue only. This indicates that 3PB fatigue provides the crack tip front out of the residual tensile stress zone by crack extension or leads to reduction in the residual stresses at the crack tip front. Strong dependence of fracture toughness on GB configuration was evident. The obtained fracture toughness values are compared with those in the literature and its strong GB configuration dependence is discussed in connection with the appearance of pop-in.

  4. Main factors causing intergranular and quasi-cleavage fractures at hydrogen-induced cracking in tempered martensitic steels

    NASA Astrophysics Data System (ADS)

    Kurokawa, Ami; Doshida, Tomoki; Hagihara, Yukito; Suzuki, Hiroshi; Takai, Kenichi

    2018-05-01

    Though intergranular (IG) and quasi-cleavage (QC) fractures have been widely recognized as typical fracture modes of the hydrogen-induced cracking in high-strength steels, the main factor has been unclarified yet. In the present study, the hydrogen content dependence on the main factor causing hydrogen-induced cracking has been examined through the fracture mode transition from QC to IG at the crack initiation site in the tempered martensitic steels. Two kinds of tempered martensitic steels were prepared to change the cohesive force due to the different precipitation states of Fe3C on the prior γ grain boundaries. A high amount of Si (H-Si) steel has a small amount of Fe3C on the prior austenite grain boundaries. Whereas, a low amount of Si (L-Si) steel has a large amount of Fe3C sheets on the grain boundaries. The fracture modes and initiations were observed using FE-SEM (Field Emission-Scanning Electron Microscope). The crack initiation sites of the H-Si steel were QC fracture at the notch tip under various hydrogen contents. While the crack initiation of the L-Si steel change from QC fracture at the notch tip to QC and IG fractures from approximately 10 µm ahead of the notch tip as increasing in hydrogen content. For L-Si steels, two possibilities are considered that the QC or IG fracture occurred firstly, or the QC and IG fractures occurred simultaneously. Furthermore, the principal stress and equivalent plastic strain distributions near the notch tip were calculated with FEM (Finite Element Method) analysis. The plastic strain was the maximum at the notch tip and the principle stress was the maximum at approximately 10 µm from the notch tip. The position of the initiation of QC and IG fracture observed using FE-SEM corresponds to the position of maximum strain and stress obtained with FEM, respectively. These findings indicate that the main factors causing hydrogen-induced cracking are different between QC and IG fractures.

  5. Micromechanisms of intergranular brittle ftacture in intermetallic compounds

    NASA Astrophysics Data System (ADS)

    Vitek, V.

    1991-06-01

    Grain boundaries in intermetallic compounds such as Ni3A1 are inherently brittle. The reason is usually sought in grain boundary cohesion but in metals even brittle fracture is accompanied by some local plasticity and thus not only cohesion but also dislocation mobility in the boundary region need to be studied. We first discuss here the role of an irreversible shear deformation at the crack tip during microcrack propagation assuming that these two processes are concomitant. It is shown that a pre-existing crack cannot propagate in a brittle manner once the dislocation emission occurs. However, if a microcrack nucleates during loading it can propagate concurrently with the development of the irreversible shear deformation at the crack tip. The latter is then the major energy dissipating process. In the second part of this paper we present results of atomistic studies of grain boundaries in Ni3A1 and CU3Au which suggest that substantial structural differences exist between strongly and weakly ordered L12 alloys. We discuss then the consequence of these differences for intergranular brittleness in the framework of the above model for microcrack propagation. On this basis we propose an explanation for the intrinsic intergranular brittleness in some L12 alloys and relate it directly to the strength of ordering. Les joints de grains dans les composés intermétalliques de type Ni3AI sont de nature fragile. L'origine de cette fragilité est habituellement dans la cohésion des joints de grains. Dans les métaux, cependant, même la rupture fragile est accompagnée d'une certaine déformation plastique locale, de telle sorte que non seulement la cohésion mais aussi la mobilité des dislocations près des joints doit être étudiée. Nous discutons d'abord le rôle d'une déformation en cisaillement irréversible en tête de fissure pendant la propagation de cette fissure, en supposant que les deux processus sont concomitants. Nous montrons qu'une fissure préexistante ne peut pas se propager de manière fragile, une fois que l'émission de dislocations se produit. Cependant, si une microfissure apparaît pendant le changement, elle peut se développer en concurrence avec le développement d'un cisaillement irréversible en tête de fissure. Ce demier est alors le principal mécanisme dissipatif d'énergie. Dans la deuxième partie de cet article, nous présentons des résultats d'études atomiques de joints de grain dans Ni3AI et CU3Au, suggérant qu'il existe des différences de structure substancielles entre les alliages L12 fortement et faiblement ordonnés. Nous discutons ensuite la conséquence de ces différences pour la fragilité intergranulaire, à l'aide du modèle ci-dessus pour la propagation des microfissures. Sur cette base, nous proposons une explication pour la fragilité intergranulaire intrinsèque de quelques alliages L12, et nous la relions directement au degré d'ordre.

  6. Moving template analysis of crack growth. 1: Procedure development

    NASA Astrophysics Data System (ADS)

    Padovan, Joe; Guo, Y. H.

    1994-06-01

    Based on a moving template procedure, this two part series will develop a method to follow the crack tip physics in a self-adaptive manner which provides a uniformly accurate prediction of crack growth. For multiple crack environments, this is achieved by attaching a moving template to each crack tip. The templates are each individually oriented to follow the associated growth orientation and rate. In this part, the essentials of the procedure are derived for application to fatigue crack environments. Overall the scheme derived possesses several hierarchical levels, i.e. the global model, the interpolatively tied moving template, and a multilevel element death option to simulate the crack wake. To speed up computation, the hierarchical polytree scheme is used to reorganize the global stiffness inversion process. In addition to developing the various features of the scheme, the accuracy of predictions for various crack lengths is also benchmarked. Part 2 extends the scheme to multiple crack problems. Extensive benchmarking is also presented to verify the scheme.

  7. Comparative Study on Prediction Effects of Short Fatigue Crack Propagation Rate by Two Different Calculation Methods

    NASA Astrophysics Data System (ADS)

    Yang, Bing; Liao, Zhen; Qin, Yahang; Wu, Yayun; Liang, Sai; Xiao, Shoune; Yang, Guangwu; Zhu, Tao

    2017-05-01

    To describe the complicated nonlinear process of the fatigue short crack evolution behavior, especially the change of the crack propagation rate, two different calculation methods are applied. The dominant effective short fatigue crack propagation rates are calculated based on the replica fatigue short crack test with nine smooth funnel-shaped specimens and the observation of the replica films according to the effective short fatigue cracks principle. Due to the fast decay and the nonlinear approximation ability of wavelet analysis, the self-learning ability of neural network, and the macroscopic searching and global optimization of genetic algorithm, the genetic wavelet neural network can reflect the implicit complex nonlinear relationship when considering multi-influencing factors synthetically. The effective short fatigue cracks and the dominant effective short fatigue crack are simulated and compared by the Genetic Wavelet Neural Network. The simulation results show that Genetic Wavelet Neural Network is a rational and available method for studying the evolution behavior of fatigue short crack propagation rate. Meanwhile, a traditional data fitting method for a short crack growth model is also utilized for fitting the test data. It is reasonable and applicable for predicting the growth rate. Finally, the reason for the difference between the prediction effects by these two methods is interpreted.

  8. Characterization of Fatigue Damage for Bonded Composite Skin/Stringer Configurations

    NASA Technical Reports Server (NTRS)

    Paris, Isabelle; Cvitkovich, Michael; Krueger, Ronald

    2008-01-01

    The fatigue damage was characterized in specimens which consisted of a tapered composite flange bonded onto a composite skin. Quasi-static tension tests were performed first to determine the failure load. Subsequently, tension fatigue tests were performed at 40%, 50%, 60% and 70% of the failure load to evaluate the debonding mechanisms. For four specimens, the cycling loading was stopped at intervals. Photographs of the polished specimen edges were taken under a light microscope to document the damage. At two diagonally opposite corners of the flange, a delamination appeared to initiate at the flange tip from a matrix crack in the top 45deg skin ply and propagated at the top 45deg/-45deg skin ply interface. At the other two diagonally opposite corners, a delamination running in the bondline initiated from a matrix crack in the adhesive pocket. In addition, two specimens were cut longitudinally into several sections. Micrographs revealed a more complex pattern inside the specimen where the two delamination patterns observed at the edges are present simultaneously across most of the width of the specimen. The observations suggest that a more sophisticated nondestructive evaluation technique is required to capture the complex damage pattern of matrix cracking and multi-level delaminations.

  9. Sill and Laccolith growth by Inflation and Propagation--just not necessarily at the same time

    NASA Astrophysics Data System (ADS)

    Currier, R. M.; Marsh, B. D.

    2013-12-01

    Sill and laccolith growth is achieved by two key mechanisms, inflation (vertical growth) and propagation (radial growth). Of the myriad of models proposed for magmatic intrusion, all are variations on the same theme--some combination of inflation and propagation. Because of the inherent observational limitations in studying actual high-level crustal magma emplacement, there remains a poor consensus on any preferred model. To gain insight we have performed a series of simple experiments using layered gelatin as a viscoelastic crustal analog, and molten wax as magma analog. Wax is injected from the base of the gelatin mold, begins ascent as a dike, and is captured by the overlying, more rigid, layer of gelatin. The use of a solidifying magma analog separates these experiments from other gelatin-based studies. When water is used, a common choice for magma analog, the intrusion propagates in an extremely smooth manner. However, at the tip of any magma filled crack, where thickness is at a minimum, propagation and solidification are in fierce competition. The introduction of solidification reveals that emplacement actually occurs as a series of ensuing pulses--at times propagating and inflating concurrently, and at other times growth is achieved solely through propagation, or solely inflation. Unlike models without solidification, here no single combination of propagation and inflation accounts for growth, but rather, the different styles of emplacement reflect the relative competitiveness of propagation and solidification at that time and location. When propagation is fast relative to solidification, growth is smooth, and propagation and inflation occur simultaneously. When solidification dominates, propagation ceases, and growth by inflation becomes the chief emplacement mechanism. Nevertheless, regardless of the strong effect of solidification, building backpressure and the associated crack stresses can disrupt the chill zone at the sill edge, and bring on rapid propagation of magma in conjunction with overall sill deflation. Because the competitiveness of solidification increases with decreasing propagation velocity, and because propagation velocity of a growing magma body must necessarily decrease with time, these mechanisms are a fundamental feature of any magma body that grows for any extended period. Generally, larger flux rates correlate to larger radii and thinner sills. For classical laccolith formation, flux rate must be slow enough for solidification to curtail propagation at an early stage, effectively limiting radial growth and promoting further growth solely via inflation. The effects of this overall process occurs on multiple scales, and the history of the chilled margins can be clearly seen with a series of essentially ';chatter rinds' marking the staccato process of emplacement.

  10. A statistical model of brittle fracture by transgranular cleavage

    NASA Astrophysics Data System (ADS)

    Lin, Tsann; Evans, A. G.; Ritchie, R. O.

    A MODEL for brittle fracture by transgranular cleavage cracking is presented based on the application of weakest link statistics to the critical microstructural fracture mechanisms. The model permits prediction of the macroscopic fracture toughness, KI c, in single phase microstructures containing a known distribution of particles, and defines the critical distance from the crack tip at which the initial cracking event is most probable. The model is developed for unstable fracture ahead of a sharp crack considering both linear elastic and nonlinear elastic ("elastic/plastic") crack tip stress fields. Predictions are evaluated by comparison with experimental results on the low temperature flow and fracture behavior of a low carbon mild steel with a simple ferrite/grain boundary carbide microstructure.

  11. Elastic-plastic Crack Growth Along Ductile/Ductile Interfaces

    NASA Astrophysics Data System (ADS)

    Drugan, W. J.

    An analytical study is performed of the stress and deformation fields near the tip of a crack that grows quasi-statically along an interface between two generally dissimilar ductile materials. The materials are modeled as homogeneous, isotropic, incompressible, elastic-ideally plastic Prandtl-Reuss-Mises, and the analysis is carried out within a small-displacement-gradient formulation. The case of anti-plane shear deformations is considered first. We derive near-tip solutions for the full range of the ratio of the two materials' yield stresses, and show that a near-tip family of solutions exists for each set of material properties; the implication is that far-field loading and geometrical conditions determine which specific near-tip solution governs in a particular problem. As a by-product of this analysis, we derive a new solution family for anti-plane shear crack growth in homogeneous material, one limiting member of which is the familiar Chitaley and McClintock (1971) solution. We also analyze the case of plane strain crack growth under applied tensile loading. Here, we account for curvature of inter-sector boundaries, in an attempt to obtain a complete set of solutions. When the material properties are identical, the solution family of Drugan and Chen (1989) for homogeneous material crack growth, which has an undetermined parameter in the near-tip field, is recovered. As the ratio of the two materials' yield strengths, ĸ, deviates from unity, the near-tip solution structure is found to change, but the near-tip fields are shown to continue to possess a free parameter for a substantial range of ĸ. Below this range, a second solution structure develops for which the near-tip free parameter has a restricted range of freedom. Finally, a third near-tip solution structure develops for sufficiently low ĸ, for which there are no free parameters. The implications of these results appear to be that as the plastic yield strength mismatch of the two materials becomes larger, far-field loading and geometry have increasingly weaker effects on the leading-order near-tip fields, until finally a mismatch level is reached beyond which far-field conditions no longer affect the leading-order fields. However, conclusions are complicated by the fact that the analysis also implies the radius of validity of the leading-order fields to decrease continuously with increasing yield strength mismatch (beyond a certain level), so that below some ¯k value, it will become necessary to retain more than one term to describe the physical near-tip fields. Although not specifically explored here, our analysis also allows comparison of the effects of changing elastic and plastic properties of the two materials on crack growth propensity, so that perhaps this analysis could assist in the optimization of interfacial fracture properties.

  12. Theoretical aspects of fracture mechanics

    NASA Astrophysics Data System (ADS)

    Atkinson, C.; Craster, R. V.

    1995-03-01

    In this review we try to cover various topics in fracture mechanics in which mathematical analysis can be used both to aid numerical methods and cast light on key features of the stress field. The dominant singular near crack tip stress field can often be parametrized in terms of three parameters K(sub I), K(sub II) and K(sub III) designating three fracture modes each having an angular variation entirely specified for the stress tensor and displacement vector. These results and contact zone models for removing the interpenetration anomaly are described. Generalizations of the above results to viscoelastic media are described. For homogeneous media with constant Poisson's ratio the angular variation of singular crack tip stresses and displacements are shown to be the same for all time and the same inverse square root singularity as occurs in the elastic medium case is found (this being true for a time varying Poisson ratio too). Only the stress intensity factor varies through time dependence of loads and relaxation properties of the medium. For cracks against bimaterial interfaces both the stress singularity and angular form evolve with time as a function of the time dependent properties of the bimaterial. Similar behavior is identified for sharp notches in viscoelastic plates. The near crack tip behavior in material with non-linear stress strain laws is also identified and stress singularities classified in terms of the hardening exponent for power law hardening materials. Again for interface cracks the near crack tip behavior requires careful analysis and it is shown that more than one singular term may be present in the near crack tip stress field. A variety of theory and applications is presented for inhomogeneous elastic media, coupled thermoelasticity etc. Methods based on reciprocal theorems and dual functions which can also aid in getting awkward singular stress behavior from numerical solutions are also reviewed. Finally theoretical calculations of fiber reinforced and particulate composite toughening mechanisms are briefly reviewed.

  13. Modeling and Characterization of Damage Processes in Metallic Materials

    NASA Technical Reports Server (NTRS)

    Glaessgen, E. H.; Saether, E.; Smith, S. W.; Hochhalter, J. D.; Yamakov, V. I.; Gupta, V.

    2011-01-01

    This paper describes a broad effort that is aimed at understanding the fundamental mechanisms of crack growth and using that understanding as a basis for designing materials and enabling predictions of fracture in materials and structures that have small characteristic dimensions. This area of research, herein referred to as Damage Science, emphasizes the length scale regimes of the nanoscale and the microscale for which analysis and characterization tools are being developed to predict the formation, propagation, and interaction of fundamental damage mechanisms. Examination of nanoscale processes requires atomistic and discrete dislocation plasticity simulations, while microscale processes can be examined using strain gradient plasticity, crystal plasticity and microstructure modeling methods. Concurrent and sequential multiscale modeling methods are being developed to analytically bridge between these length scales. Experimental methods for characterization and quantification of near-crack tip damage are also being developed. This paper focuses on several new methodologies in these areas and their application to understanding damage processes in polycrystalline metals. On-going and potential applications are also discussed.

  14. Fracture Behavior of Zr-BASED Bulk Metallic Glass Under Impact Loading

    NASA Astrophysics Data System (ADS)

    Shin, Hyung-Seop; Kim, Ki-Hyun; Oh, Sang-Yeob

    The fracture behavior of a Zr-based bulk amorphous metal under impact loading using subsize V-shaped Charpy specimens was investigated. Influences of loading rate on the fracture behavior of amorphous Zr-Al-Ni-Cu alloy were examined. As a result, the maximum load and absorbed fracture energy under impact loading were lower than those under quasi-static loading. A large part of the absorbed fracture energy in the Zr-based BMG was consumed in the process for crack initiation and not for crack propagation. In addition, fractographic characteristics of BMGs, especially the initiation and development of shear bands at the notch tip were investigated. Fractured surfaces under impact loading are smoother than those under quasi-static loading. The absorbed fracture energy appeared differently depending on the appearance of the shear bands developed. It can be found that the fracture energy and fracture toughness of Zr-based BMG are closely related with the extent of shear bands developed during fracture.

  15. The role of damage-softened material behavior in the fracture of composites and adhesives

    NASA Technical Reports Server (NTRS)

    Ungsuwarungsri, T.; Knauss, W. G.

    1986-01-01

    Failure mechanisms of materials under very high strains experienced at and ahead of the crack tip such as formation, growth, and interaction of microvoids in ductile materials, microcracks in brittle solids or crazes in polymers and adhesives are represented by one-dimensional, nonlinear stress-strain relations possessing different ways by which the material loses capacity to carry load up to fracture or total separation. A double cantilever beam (DCB) type specimen is considered. The nonlinear material is confined to a thin strip between the two elastic beams loaded by a wedge. The problem is first modeled as a beam on a nonlinear foundation. The pertinent equation is solved numerically as a two-point boundary value problem for both the stationary and the quasi-stationay propagating crack. A finite element model is then used to model the problem in more detail in order to assess the adequacy of the beam model for the reduction of experimental data to determine in-situ properties of the thin interlayer.

  16. Study of the toughening mechanisms in bone and biomimetic hydroxyapatite materials using Raman microprobe spectroscopy.

    PubMed

    Pezzotti, Giuseppe; Sakakura, Seiji

    2003-05-01

    A Raman microprobe spectroscopy characterization of microscopic fracture mechanisms is presented for a natural hydroxyapatite material (cortical bovine femur) and two synthetic hydroxyapatite-based materials with biomimetic structures-a hydroxyapatite skeleton interpenetrated with a metallic (silver) or a polymeric (nylon-6) phase. In both the natural and synthetic materials, a conspicuous amount of toughening arose from a microscopic crack-bridging mechanism operated by elasto-plastic stretching of unbroken second-phase ligaments along the crack wake. This mechanism led to a rising R-curve behavior. An additional micromechanism, responsible for stress relaxation at the crack tip, was recognized in the natural bone material and was partly mimicked in the hydroxyapatite/silver composite. This crack-tip mechanism conspicuously enhanced the cortical bone material resistance to fracture initiation. A piezo-spectroscopic technique, based on a microprobe measurement of 980 cm(-1) Raman line of hydroxyapatite, enabled us to quantitatively assess in situ the microscopic stress fields developed during fracture both at the crack tip and along the crack wake. Using the Raman piezo-spectroscopy technique, toughening mechanisms were assessed quantitatively and rationally related to the macroscopic fracture characteristics of hydroxyapatite-based materials. Copyright 2003 Wiley Periodicals, Inc.

  17. Gravity-Driven Hydraulic Fractures

    NASA Astrophysics Data System (ADS)

    Germanovich, L. N.; Garagash, D.; Murdoch, L. C.; Robinowitz, M.

    2014-12-01

    This study is motived by a new method for disposing of nuclear waste by injecting it as a dense slurry into a hydraulic fracture that grows downward to great enough depth to permanently isolate the waste. Disposing of nuclear waste using gravity-driven hydraulic fractures is mechanically similar to the upward growth of dikes filled with low density magma. A fundamental question in both applications is how the injected fluid controls the propagation dynamics and fracture geometry (depth and breadth) in three dimensions. Analog experiments in gelatin [e.g., Heimpel and Olson, 1994; Taisne and Tait, 2009] show that fracture breadth (the short horizontal dimension) remains nearly stationary when the process in the fracture "head" (where breadth is controlled) is dominated by solid toughness, whereas viscous fluid dissipation is dominant in the fracture tail. We model propagation of the resulting gravity-driven (buoyant or sinking), finger-like fracture of stationary breadth with slowly varying opening along the crack length. The elastic response to fluid loading in a horizontal cross-section is local and can be treated similar to the classical Perkins-Kern-Nordgren (PKN) model of hydraulic fracturing. The propagation condition for a finger-like crack is based on balancing the global energy release rate due to a unit crack extension with the rock fracture toughness. It allows us to relate the net fluid pressure at the tip to the fracture breadth and rock toughness. Unlike the PKN fracture, where breadth is known a priori, the final breadth of a finger-like fracture is a result of processes in the fracture head. Because the head is much more open than the tail, viscous pressure drop in the head can be neglected leading to a 3D analog of Weertman's hydrostatic pulse. This requires relaxing the local elasticity assumption of the PKN model in the fracture head. As a result, we resolve the breadth, and then match the viscosity-dominated tail with the 3-D, toughness-dominated head to obtain a complete closed-form solution. We then analyze the gravity fracture propagation in conditions of either continuous injection or finite volume release for sets of parameters representative of dense waste injection technique and low viscosity magma diking.

  18. Cohesive model applied to fracture propagation in Indiana Limestone

    NASA Astrophysics Data System (ADS)

    Dewers, T. A.; Rinehart, A. J.; Bishop, J. E.

    2014-12-01

    We apply a cohesive fracture (CF) model to results of short-rod (SR), notched 3-point-bend (N3PB) tests, and Brazil tests in Indiana Limestone. Calibration and validation of the model are performed within a commercial finite element modeling platform. By using a linear traction-displacement softening response for a defined fracture-opening displacement (w1) following peak tensile stress (σcrit), the CF model numerically lumps different spatially distributed inelastic processes occurring at and around fracture tips into a thin zone within an elastic domain. Both the SR and the N3PB test specimen geometries use a notch partway through the sample to control the location of fracture propagation. We develop a mesh for both the SR and N3PB geometries with a narrow cohesive zone in the center of notches. From the Brazil tests, we find a tensile splitting stress (σsplit) of 5.9 MPa. We use a σsplit as the peak tensile stress (σcrit) for all simulations. The Young's modulus (E) and the critical crack opening distance (w1) of the CF model are calibrated against the SR data. The model successfully captures the elastic, yield, peak, and initial and late failure behavior and compares favorably against the N3PB tests. Differences in force-displacement and crack propagation are primarily caused by: more mixed-mode (shear and opening) crack propagation in N3PB than in SR tests, causing a higher peak; and transition from compression (high E) to tension (low E) in a larger volume of the N3PB sample than in the SR geometry. This material is based upon work supported as part of the Center for Frontiers of Subsurface Energy Security, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences under Award Number DE-SC0001114. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  19. Laboratory measurement of tip and global behavior for zero-toughness hydraulic fractures with circular and blade-shaped (PKN) geometry

    NASA Astrophysics Data System (ADS)

    Xing, Pengju; Yoshioka, Keita; Adachi, Jose; El-Fayoumi, Amr; Bunger, Andrew P.

    2017-07-01

    The tip behavior of hydraulic fractures is characterized by a rich nesting of asymptotic solutions, comprising a formidable challenge for the development of efficient and accurate numerical simulators. We present experimental validation of several theoretically-predicted asymptotic behaviors, namely for hydraulic fracture growth under conditions of negligible fracture toughness, with growth progressing from early-time radial geometry to large-time blade-like (PKN) geometry. Our experimental results demonstrate: 1) existence of a asymptotic solution of the form w ∼ s3/2 (LEFM) in the near tip region, where w is the crack opening and s is the distance from the crack tip, 2) transition to an asymptotic solution of the form w ∼ s2/3 away from the near-tip region, with the transition length scale also consistent with theory, 3) transition to an asymptotic solution of the form w ∼ s1/3 after the fracture attains blade-like (PKN) geometry, and 4) existence of a region near the tip of a blade-like (PKN) hydraulic fracture in which plane strain conditions persist, with the thickness of this region of the same order as the crack height.

  20. Resolved shear stress intensity coefficient and fatigue crack growth in large crystals

    NASA Technical Reports Server (NTRS)

    Chen, QI; Liu, Hao-Wen

    1988-01-01

    Fatigue crack growth in large grain Al alloy was studied. Fatigue crack growth is caused primarily by shear decohesion due to dislocation motion in the crack tip region. The crack paths in the large crystals are very irregular and zigzag. The crack planes are often inclined to the loading axis both in the inplane direction and the thickness direction. The stress intensity factors of such inclined cracks are approximated from the two dimensional finite element calculations. The plastic deformation in a large crystal is highly anisotropic, and dislocation motion in such crystals are driven by the resolved shear stress. The resolved shear stress intensity coefficient in a crack solid, RSSIC, is defined, and the coefficients for the slip systems at a crack tip are evaluated from the calculated stress intensity factors. The orientations of the crack planes are closely related to the slip planes with the high RSSIC values. If a single slip system has a much higher RSSIC than all the others, the crack will follow the slip plane, and the slip plane becomes the crack plane. If two or more slip systems have a high RSSIC, the crack plane is the result of the decohesion processes on these active slip planes.

  1. Fracture Mechanics of Thin, Cracked Plates Under Tension, Bending and Out-of-Plane Shear Loading

    NASA Technical Reports Server (NTRS)

    Zehnder, Alan T.; Hui, C. Y.; Potdar, Yogesh; Zucchini, Alberto

    1999-01-01

    Cracks in the skin of aircraft fuselages or other shell structures can be subjected to very complex stress states, resulting in mixed-mode fracture conditions. For example, a crack running along a stringer in a pressurized fuselage will be subject to the usual in-plane tension stresses (Mode-I) along with out-of-plane tearing stresses (Mode-III like). Crack growth and initiation in this case is correlated not only with the tensile or Mode-I stress intensity factor, K(sub I), but depends on a combination of parameters and on the history of crack growth. The stresses at the tip of a crack in a plate or shell are typically described in terms of either the small deflection Kirchhoff plate theory. However, real applications involve large deflections. We show, using the von-Karman theory, that the crack tip stress field derived on the basis of the small deflection theory is still valid for large deflections. We then give examples demonstrating the exact calculation of energy release rates and stress intensity factors for cracked plates loaded to large deflections. The crack tip fields calculated using the plate theories are an approximation to the actual three dimensional fields. Using three dimensional finite element analyses we have explored the relationship between the three dimensional elasticity theory and two dimensional plate theory results. The results show that for out-of-plane shear loading the three dimensional and Kirchhoff theory results coincide at distance greater than h/2 from the crack tip, where h/2 is the plate thickness. Inside this region, the distribution of stresses through the thickness can be very different from the plate theory predictions. We have also explored how the energy release rate varies as a function of crack length to plate thickness using the different theories. This is important in the implementation of fracture prediction methods using finite element analysis. Our experiments show that under certain conditions, during fatigue crack growth, the presence of out-of-plane shear loads induces a great deal of contact and friction on the crack surfaces, dramatically reducing crack growth rate. A series of experiments and a proposed computational approach for accounting for the friction is discussed.

  2. Fatigue crack propagation in self-assembling nanocomposites

    NASA Astrophysics Data System (ADS)

    Klingler, Andreas; Wetzel, Bernd

    2016-05-01

    Self-assembling block-copolymers allow the easy manufacturing of nanocomposites due to the thermodynamically driven in situ formation of nanosized phases in thermosetting resins during the curing process. Complex mechanical dispersion processes can be avoided. The current study investigates the effect of a block-copolymer on the fatigue crack propagation resistance of a cycloaliphatic amine cured epoxy resin. It was found that a small amount of MAM triblock-copolymer significantly increases the resistance to fatigue crack propagation of epoxy. Crack growth rate and the Paris law exponent for fatigue-crack growth were considerably reduced from m=15.5 of the neat epoxy to m=8.1 of the nanocomposite. To identify the related reinforcing and fracture mechanisms structural analyses of the fractured surfaces were performed by scanning electron microscope. Characteristic features were identified to be deformation, debonding and fracture of the nano-phases as well as crack pinning. However, the highest resistance against fatigue crack propagation was achieved in a bi-continuous microstructure that consisted of an epoxy-rich phase with embedded submicron sized MAM inclusions, and which was surrounded by a block-copolymer-rich phase that showed rupture and plastic deformation.

  3. On the mechanical properties of tooth enamel under spherical indentation.

    PubMed

    Chai, Herzl

    2014-11-01

    The mechanical properties of tooth enamel generally exhibit large variations, which reflect its structural and material complexity. Some key properties were evaluated under localized contact, simulating actual functioning conditions. Prominent cusps of extracted human molar teeth were polished down ~0.7 mm below the cusp tip and indented by tungsten carbide balls. The internal damage was assessed after unloading from longitudinal or transverse sections. The ultimate tensile stress (UTS) was determined using a novel bilayer specimen. The damage is characterized by penny-like radial cracks driven by hoop stresses and cylindrical cracks driven along protein-rich interrod materials by shear stresses. Shallow cone cracks typical of homogeneous materials which may cause rapid tooth wear under repeat contact are thus avoided. The mean stress vs. indentation strain curve is highly nonlinear, attributable to plastic shearing of protein between and within enamel rods. This curve is also affected by damage, especially radial cracks, the onset of which depends on ball radius. Several material properties were extracted from the tests, including shear strain at the onset of ring cracks γ(F) (=0.14), UTS (=119 MPa), toughness K(C) (=0.94 MPa m(1/2)), a crack propagation law and a constitutive response determined by trial and error with the aid of a finite-element analysis. These quantities, which are only slightly sensitive to anatomical location within the enamel region tested, facilitate a quantitative assessment of crown failure. Causes for variations in published UTS and K(C) values are discussed. Copyright © 2014 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  4. Incidence of apical crack initiation and propagation during the removal of root canal filling material with ProTaper and Mtwo rotary nickel-titanium retreatment instruments and hand files.

    PubMed

    Topçuoğlu, Hüseyin Sinan; Düzgün, Salih; Kesim, Bertan; Tuncay, Oznur

    2014-07-01

    The aim of this study was to determine the incidence of crack initiation and propagation in apical root dentin after retreatment procedures performed by using 2 rotary retreatment systems and hand files with additional instrumentation. Eighty extracted mandibular premolars with single canals were selected. One millimeter from the apex of each tooth was ground perpendicular to the long axis of the tooth, and the apical surface was polished. Twenty teeth served as the control group, and no preparation was performed. The remaining 60 teeth were prepared to size 35 with rotary files and filled with gutta-percha and AH Plus sealer. Specimens were then divided into 3 groups (n = 20), and retreatment procedures were performed with the following devices and techniques: ProTaper Universal retreatment files, Mtwo retreatment files, and hand files. After retreatment, the additional instrumentation was performed by using size 40 ProTaper, Mtwo, and hand files. Digital images of the apical root surface were recorded before preparation, after instrumentation, after filling, after retreatment, and after additional instrumentation. The images were then inspected for the presence of any new apical cracks and propagation. Data were analyzed with the logistic regression and Fisher exact tests. All experimental groups caused crack initiation and propagation after use of retreatment instruments. The ProTaper and Mtwo retreatment groups caused greater crack initiation and propagation than the hand instrument group (P < .05) after retreatment. Additional instrumentation with ProTaper and Mtwo instruments after the use of retreatment instruments caused crack initiation and propagation, whereas hand files caused neither crack initiation nor propagation (P < .05). This study showed that retreatment procedures and additional instrumentation after the use of retreatment files may cause crack initiation and propagation in apical dentin. Copyright © 2014 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  5. On Delamination Toughening of a 14YWT Nanostructured Ferritic Alloy

    DOE PAGES

    Alam, M.E.; Pal, S.; Maloy, Stuart Andrew; ...

    2017-06-22

    The FCRD NFA-1 is a high strength, irradiation tolerant nanostructured ferritic alloy (NFA) produced by ball milling argon atomized Fe-14Cr-3W-0.35Ti-0.25Y (wt.%) and FeO powders, followed by hot extrusion at 850 °C, and subsequent annealing and cross-rolling at 1000 °C. The microstructure of the resulting ≈10 mm thick NFA-1 plate is dominated by ultrafine sub-micron pancake shaped grains, and a large population of microcracks lying on planes parallel to the plate faces. Pre-cracked fracture toughness tests in four different orientations (L-T, T-L, L-S and T-S) show stable crack growth by ductile tearing, with peak load K Jc from ≈ 88 tomore » 154 MPa√m at ambient temperature. Stable crack tearing persists down to ≈ -175 °C and is accompanied by extensive delamination due to the propagation of the microcracks. Depending on the specimen orientation, this unusual toughening mechanism is either due to a reduction of crack tip stresses in thin ligaments formed by the delaminations (L-T and T-L), or 90° deflection of cracks initially running normal to the delaminations (L-S and T-S), thereby suppressing cleavage in both cases. Lastly, understanding the fracture processes in NFA-1 is also important to its irradiation tolerance in nuclear service as well as its fabricability in making defect-free components such as thin-walled tubing.« less

  6. Hydrogen-Assisted Crack Propagation in Austenitic Stainless Steel Fusion Welds

    NASA Astrophysics Data System (ADS)

    Somerday, B. P.; Dadfarnia, M.; Balch, D. K.; Nibur, K. A.; Cadden, C. H.; Sofronis, P.

    2009-10-01

    The objective of this study was to characterize hydrogen-assisted crack propagation in gas-tungsten arc (GTA) welds of the nitrogen-strengthened, austenitic stainless steel 21Cr-6Ni-9Mn (21-6-9), using fracture mechanics methods. The fracture initiation toughness and crack growth resistance curves were measured using fracture mechanics specimens that were thermally precharged with 230 wppm (1.3 at. pct) hydrogen. The fracture initiation toughness and slope of the crack growth resistance curve for the hydrogen-precharged weld were reduced by as much as 60 and 90 pct, respectively, relative to the noncharged weld. A physical model for hydrogen-assisted crack propagation in the welds was formulated from microscopy evidence and finite-element modeling. Hydrogen-assisted crack propagation proceeded by a sequence of microcrack formation at the weld ferrite, intense shear deformation in the ligaments separating microcracks, and then fracture of the ligaments. One salient role of hydrogen in the crack propagation process was promoting microcrack formation at austenite/ferrite interfaces and within the ferrite. In addition, hydrogen may have facilitated intense shear deformation in the ligaments separating microcracks. The intense shear deformation could be related to the development of a nonuniform distribution of hydrogen trapped at dislocations between microcracks, which in turn created a gradient in the local flow stress.

  7. Simulation of Crack Propagation in Engine Rotating Components under Variable Amplitude Loading

    NASA Technical Reports Server (NTRS)

    Bonacuse, P. J.; Ghosn, L. J.; Telesman, J.; Calomino, A. M.; Kantzos, P.

    1998-01-01

    The crack propagation life of tested specimens has been repeatedly shown to strongly depend on the loading history. Overloads and extended stress holds at temperature can either retard or accelerate the crack growth rate. Therefore, to accurately predict the crack propagation life of an actual component, it is essential to approximate the true loading history. In military rotorcraft engine applications, the loading profile (stress amplitudes, temperature, and number of excursions) can vary significantly depending on the type of mission flown. To accurately assess the durability of a fleet of engines, the crack propagation life distribution of a specific component should account for the variability in the missions performed (proportion of missions flown and sequence). In this report, analytical and experimental studies are described that calibrate/validate the crack propagation prediction capability ]or a disk alloy under variable amplitude loading. A crack closure based model was adopted to analytically predict the load interaction effects. Furthermore, a methodology has been developed to realistically simulate the actual mission mix loading on a fleet of engines over their lifetime. A sequence of missions is randomly selected and the number of repeats of each mission in the sequence is determined assuming a Poisson distributed random variable with a given mean occurrence rate. Multiple realizations of random mission histories are generated in this manner and are used to produce stress, temperature, and time points for fracture mechanics calculations. The result is a cumulative distribution of crack propagation lives for a given, life limiting, component location. This information can be used to determine a safe retirement life or inspection interval for the given location.

  8. Regulated fracture in tooth enamel: a nanotechnological strategy from nature.

    PubMed

    Ghadimi, Elnaz; Eimar, Hazem; Song, Jun; Marelli, Benedetto; Ciobanu, Ovidiu; Abdallah, Mohamed-Nur; Stähli, Christoph; Nazhat, Showan N; Vali, Hojatollah; Tamimi, Faleh

    2014-07-18

    Tooth enamel is a very brittle material; however it has the ability to sustain cracks without suffering catastrophic failure throughout the lifetime of mechanical function. We propose that the nanostructure of enamel can play a significant role in defining its unique mechanical properties. Accordingly we analyzed the nanostructure and chemical composition of a group of teeth, and correlated it with the crack resistance of the same teeth. Here we show how the dimensions of apatite nanocrystals in enamel can affect its resistance to crack propagation. We conclude that the aspect ratio of apatite nanocrystals in enamel determines its resistance to crack propagation. According to this finding, we proposed a new model based on the Hall-Petch theory that accurately predicts crack propagation in enamel. Our new biomechanical model of enamel is the first model that can successfully explain the observed variations in the behavior of crack propagation of tooth enamel among different humans. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Stress-intensity factors for a thick-walled cylinder containing an annular imbedded or external or internal surface crack

    NASA Technical Reports Server (NTRS)

    Erdol, R.; Erdogan, F.

    1976-01-01

    The elastostatic axisymmetric problem for a long thick-walled cylinder containing a ring-shaped internal or edge crack is considered. Using the standard transform technique the problem is formulated in terms of an integral equation which has a simple Cauchy kernel for the internal crack and a generalized Cauchy kernel for the edge crack as the dominant part. As examples the uniform axial load and the steady-state thermal stress problems have been solved and the related stress intensity factors have been calculated. Among other findings the results show that in the cylinder under uniform axial stress containing an internal crack the stress intensity factor at the inner tip is always greater than that at the outer tip for equal net ligament thicknesses and in the cylinder with an edge crack which is under a state of thermal stress the stress intensity factor is a decreasing function of the crack depth, tending to zero as the crack depth approaches the wall thickness.

  10. Pretest analysis of the NESC-1 spinning cylinder experiment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sattari-Far, I.

    This report presents defect assessment results from a final pre-test analysis of the NESC-1 spinning cylinder based on the NDE defect definitions and the determined loading conditions. The analysis covers fracture assessments of a subclad and surface breaking crack. Three-dimensional elastic-plastic finite element calculations, considering the crack-tip constraint, are employed in the assessments. Also performed are sensitivity studies to demonstrate how different affecting parameters, especially the cladding residual stresses, impact the crack driving force. It is found for both the surface and the subclad crack that the situations in the cladding and at the deepest point of the crack frontmore » are far from critical for cleavage fracture. The results of the analysis indicate that a limited amount of ductile crack growth can occur along the crack front in the HAZ and adjacent base material. Cleavage fracture events can be expected in the HAZ. The results also show substantial loss of crack-tip constraint in the HAZ compared with the SSY solutions.« less

  11. Analysis of fatigue, fatique-crack propagation, and fracture data. [design of metallic aerospace structural components

    NASA Technical Reports Server (NTRS)

    Jaske, C. E.; Feddersen, C. E.; Davies, K. B.; Rice, R. C.

    1973-01-01

    Analytical methods have been developed for consolidation of fatigue, fatigue-crack propagation, and fracture data for use in design of metallic aerospace structural components. To evaluate these methods, a comprehensive file of data on 2024 and 7075 aluminums, Ti-6A1-4V, and 300M and D6Ac steels was established. Data were obtained from both published literature and unpublished reports furnished by aerospace companies. Fatigue and fatigue-crack-propagation analyses were restricted to information obtained from constant-amplitude load or strain cycling of specimens in air at room temperature. Fracture toughness data were from tests of center-cracked tension panels, part-through crack specimens, and compact-tension specimens.

  12. Corrosion, stress corrosion cracking, and electrochemistry of the iron and nickel base alloys in caustic environments. Progress report, 1 March 1977--28 February 1978

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Staehle, R.W.; Agrawal, A.K.

    1978-01-01

    The straining electrode technique was used to evaluate the stress corrosion cracking (SCC) susceptibility of AISI 304 stainless steel in 20N NaOH solution, and of Inconel 600 Alloy and Incoloy 800 Alloy in boiling 17.5N NaOH solution. The crack propagation rate estimated from the straining experiments correlated well with the previous constant load experiments. It was found that the straining electrode technique is a useful method for estimating, through short term experiments, parameters like crack propagation rate, crack morphology, and repassivation rate, as a function of the electrode potential. The role of alloying elements on the crack propagation rate inmore » the above alloys are also discussed.« less

  13. Experimental simulation of frost wedging-induced crack propagation in alpine rockwall

    NASA Astrophysics Data System (ADS)

    Jia, Hailiang; Leith, Kerry; Krautblatter, Michael

    2016-04-01

    Frost wedging is widely presumed to be the principal mechanism responsible for shattering jointed low-porosity rocks in high alpine rockwalls. The interaction of ice and rock physics regulates the efficacy of frost wedging. In order to better understand temporal aspects of this interaction, we present results of a series of laboratory experiments monitoring crack widening as a result of ice formation in an artificial crack (4mm wide, 80mm deep) cut 20 mm from the end of a rectangular granite block. Our results indicate that i) freezing direction plays a key role in determining the magnitude of crack widening; in short-term (1 day) experiments, maximum crack widening during top-down freezing (associated with 'autumn' conditions) was around 0.11mm, while inside-out freezing (resulting from 'spring' conditions) produced only 0.02 mm of deformation; ii) neither ice, nor water pressure (direct tension and hydraulic fracturing respectively) caused measurable irreversible crack widening during short-term tests, as the calculated maximum stress intensity at the crack tip was less than the fracture toughness of our granite sample; iii) development of ice pressure is closely related to the mechanical properties of the fracture in which it forms, and as such, the interaction of ice and rock is intrinsically dynamic; iv) irreversible crack widening (about 0.03mm) was only observed following a long-term (53 day) experiment representing a simplified transition from autumn to winter conditions. We suggest this is the result of stress corrosion aided by strong opening during freezing, and to a lesser degree by ice segregation up to one week after the initial freezing period, and downward migration of liquid water during the remainder of the test. Our results suggest the fundamental assumption of frost wedging, that rapid freezing from open ends of cracks can seal water inside the crack and thus cause damage through excessive stresses induced by volumetric expansion seems questionable.

  14. The Interferometric Measurement of Near Crack Tip Displacements in a Nickel Base Superalloy at Ambient and Elevated Temperatures.

    DTIC Science & Technology

    1979-03-01

    0. E. Macha contributed greatly as co— researchers and their efforts are sincerely appreciated . The abl e laboratory assistance of Mr. Charl es Bel l...the author ’s colleagues at the AIr Force Materials Laboratory . P0~ values were determined along the crack line behind the crack tip by D. E. Macha ...m t . J. of Fracture Mech., 7 (1971), 487-490. 31. W. El ber, Engineering Fracture Mechanics , 2 (1970), 37-45. ¶ 32. 3. W. Jones , 0. E. Macha

  15. Investigation of Cracks Found in Helicopter Longerons

    NASA Technical Reports Server (NTRS)

    Newman, John A.; Baughman, James M.; Wallace, Terryl A.

    2009-01-01

    Four cracked longerons, containing a total of eight cracks, were provided for study. Cracked regions were cut from the longerons. Load was applied to open the cracks, enabling crack surface examination. Examination revealed that crack propagation was driven by fatigue loading in all eight cases. Fatigue crack initiation appears to have occurred on the top edge of the longerons near geometric changes that affect component bending stiffness. Additionally, metallurigical analysis has revealed a local depletion in alloying elements in the crack initiation regions that may be a contributing factor. Fatigue crack propagation appeared to be initially driven by opening-mode loading, but at a crack length of approximately 0.5 inches (12.7 mm), there is evidence of mixed-mode crack loading. For the longest cracks studied, shear-mode displacements destroyed crack-surface features of interest over significant portions of the crack surfaces.

  16. Investigation of Helicopter Longeron Cracks

    NASA Technical Reports Server (NTRS)

    Newman, John A.; Baughman, James; Wallace, Terryl A.

    2009-01-01

    Four cracked longerons, containing a total of eight cracks, were provided for study. Cracked regions were cut from the longerons. Load was applied to open the cracks, enabling crack surface examination. Examination revealed that crack propagation was driven by fatigue loading in all eight cases. Fatigue crack initiation appears to have occurred on the top edge of the longerons near geometric changes that affect component bending stiffness. Additionally, metallurgical analysis has revealed a local depletion in alloying elements in the crack initiation regions that may be a contributing factor. Fatigue crack propagation appeared to be initially driven by opening-mode loading, but at a crack length of approximately 0.5 inches (12.7 mm), there is evidence of mixed-mode crack loading. For the longest cracks studied, shear-mode displacements destroyed crack-surface features of interest over significant portions of the crack surfaces.

  17. Molecular dynamics simulation of propagating cracks

    NASA Technical Reports Server (NTRS)

    Mullins, M.

    1982-01-01

    Steady state crack propagation is investigated numerically using a model consisting of 236 free atoms in two (010) planes of bcc alpha iron. The continuum region is modeled using the finite element method with 175 nodes and 288 elements. The model shows clear (010) plane fracture to the edge of the discrete region at moderate loads. Analysis of the results obtained indicates that models of this type can provide realistic simulation of steady state crack propagation.

  18. On the Theory and Numerical Simulation of Cohesive Crack Propagation with Application to Fiber-Reinforced Composites

    NASA Technical Reports Server (NTRS)

    Rudraraju, Siva Shankar; Garikipati, Krishna; Waas, Anthony M.; Bednarcyk, Brett A.

    2013-01-01

    The phenomenon of crack propagation is among the predominant modes of failure in many natural and engineering structures, often leading to severe loss of structural integrity and catastrophic failure. Thus, the ability to understand and a priori simulate the evolution of this failure mode has been one of the cornerstones of applied mechanics and structural engineering and is broadly referred to as "fracture mechanics." The work reported herein focuses on extending this understanding, in the context of through-thickness crack propagation in cohesive materials, through the development of a continuum-level multiscale numerical framework, which represents cracks as displacement discontinuities across a surface of zero measure. This report presents the relevant theory, mathematical framework, numerical modeling, and experimental investigations of through-thickness crack propagation in fiber-reinforced composites using the Variational Multiscale Cohesive Method (VMCM) developed by the authors.

  19. Prediction of Fatigue Crack Growth in Gas Turbine Engine Blades Using Acoustic Emission

    PubMed Central

    Zhang, Zhiheng; Yang, Guoan; Hu, Kun

    2018-01-01

    Fatigue failure is the main type of failure that occurs in gas turbine engine blades and an online monitoring method for detecting fatigue cracks in blades is urgently needed. Therefore, in this present study, we propose the use of acoustic emission (AE) monitoring for the online identification of the blade status. Experiments on fatigue crack propagation based on the AE monitoring of gas turbine engine blades and TC11 titanium alloy plates were conducted. The relationship between the cumulative AE hits and the fatigue crack length was established, before a method of using the AE parameters to determine the crack propagation stage was proposed. A method for predicting the degree of crack propagation and residual fatigue life based on the AE energy was obtained. The results provide a new method for the online monitoring of cracks in the gas turbine engine blade. PMID:29693556

  20. Prediction of Fatigue Crack Growth in Gas Turbine Engine Blades Using Acoustic Emission.

    PubMed

    Zhang, Zhiheng; Yang, Guoan; Hu, Kun

    2018-04-25

    Fatigue failure is the main type of failure that occurs in gas turbine engine blades and an online monitoring method for detecting fatigue cracks in blades is urgently needed. Therefore, in this present study, we propose the use of acoustic emission (AE) monitoring for the online identification of the blade status. Experiments on fatigue crack propagation based on the AE monitoring of gas turbine engine blades and TC11 titanium alloy plates were conducted. The relationship between the cumulative AE hits and the fatigue crack length was established, before a method of using the AE parameters to determine the crack propagation stage was proposed. A method for predicting the degree of crack propagation and residual fatigue life based on the AE energy was obtained. The results provide a new method for the online monitoring of cracks in the gas turbine engine blade.

  1. Actual light deflections in regions of crack tips and their influence on measurements in photomechanics

    NASA Astrophysics Data System (ADS)

    Hecker, Friedrich W.; Pindera, Jerzy T.; Wen, Baicheng

    Crack-tip photomechanics procedures are based on certain simplifying assumptions that are seldom discussed. In a recent paper the theoretical bases of the shadow optical methods of caustics have been analysed and tested using the results obtained by three analytical-experimental procedures, namely classical strain gage techniques, isodynes, and strain-gradient index method. It has been concluded that the straing-radient index method appears to be a suitable tool for analysis of stress states near crack tips and notches and, in particular, for testing the predictive power of the pertinent singular solutions of the linear elastic fracture mechanics and the ranges of their applicability. In the present paper, a more detailed analysis of all results obtained in light deflection experiments allows to quantify the contribution of both involved effects and to determine the distortion of the faces of the investigated plates along their crack planes. The ability of the strain-gradient light bending method to analyse some features of the three-dimensional stress-state is reported. Finally, the presented experimental evidence allows to draw conclusions related to limits of applicability of certain photomechanical measurements near crack tips. An extensive summary of this paper is published in the Proceedings of the Second International Conference on Photomechanics and Speckle Metrology, Vol. 1554A, part of SPIE's 1991 International Symposium on Optical Applied Science and Engineering, 22-26 July 1991, San Diego, CA, USA. 1

  2. Axial crack propagation and arrest in pressurized fuselage

    NASA Technical Reports Server (NTRS)

    Kosai, M.; Shimamoto, A.; Yu, C.-T.; Walker, S. I.; Kobayashi, A. S.; Tan, P.

    1994-01-01

    The crack arrest capability of a tear strap in a pressurized precracked fuselage was studied through instrumented axial rupture tests of small scale models of an idealized fuselage. Upon pressurization, rapid crack propagation initiated at an axial through crack along the stringer and immediately kinked due to the mixed modes 1 and 2 state caused by the one-sided opening of the crack flap. The diagonally running crack further turned at the tear straps. Dynamic finite element analysis of the rupturing cylinder showed that the crack kinked and also ran straight in the presence of a mixed mode state according to a modified two-parameter crack kinking criterion.

  3. Crack networks in damaged glass

    NASA Astrophysics Data System (ADS)

    Mallet, Celine; Fortin, Jerome; Gueguen, Yves

    2013-04-01

    We investigate how cracks develop and propagate in synthetic glass samples. Cracks are introduced in glass by a thermal shock of 300oC. Crack network is documented from optical and electronic microscopy on these samples that have been submitted to a thermal shock only. Samples are cylinder of 80 mm length and 40 mm diameter. Sections were cut along the cylinder axis and perpendicular to it. Using SEM, crack lengths and apertures can be measured. Optical microscopy allows to get the crack distribution over the entire sample. The sample average crack length is 3 mm. The average aperture is 6 ± 3μm. There is however a clear difference between the sample core, where the crack network has approximatively a transverse isotrope symmetry and the outer ring, where cracks are smaller and more numerous. By measuring before and after the thermal treatment the radial P and S wave velocities in room conditions, we can determine the total crack density which is 0.24. Thermally cracked samples, as described above, were submitted to creep tests. Constant axial stress and lateral stress were applied. Several experiments were performed at different stress values. Samples are saturated for 48 hours (to get an homogeneous pore fluid distribution), the axial stress is increased up to 80% of the sample strength. Stress step tests were performed in order to get creep data. The evolution of strain (axial and radial strain) is measured using strain gages, gap sensors (for the global axial strain) and pore volume change (for the volumetric strain). Creep data are interpreted as evidence of sub-critical crack growth in the cracked glass samples. The above microstructural observations are used, together with a crack propagation model, to account for the creep behavior. Assuming that (i) the observed volumetric strain rate is due to crack propagation and (ii) crack aspect ratio is constant we calculate the creep rate. We obtain some value on the crack propagation during a 24 hours of constant stress test. At each of these test, crack propagate of 0.3 to 0.4 mm. From the initial average crack length of 3 mm, the crack reach the size of 5.8 mm at the end of a complete creep test (with 8 constant stress step of 24 hours).

  4. Fatigue disbonding analysis of wide composite panels by means of Lamb waves

    NASA Astrophysics Data System (ADS)

    Michalcová, Lenka; Rechcígel, Lukáš; Bělský, Petr; Kucharský, Pavel

    2018-03-01

    Guided wave-based monitoring of composite structures plays an important role in the area of structural health monitoring (SHM) of aerospace structures. Adhesively bonded joints have not yet fulfilled current airworthiness requirements; hence, assemblies of carbon fibre-reinforced parts still require mechanical fasteners, and a verified SHM method with reliable disbonding/delamination detection and propagation assessment is needed. This study investigated the disbonding/delamination propagation in adhesively bonded panels using Lamb waves during fatigue tests. Analyses focused on the proper frequency and mode selection, sensor placement and selection of parameter sensitive to the growth of disbonding areas. Piezoelectric transducers placed across the bonded area were used as actuators and sensors. Lamb wave propagation was investigated considering the actual shape of the crack front and the mode of the crack propagation. The actual cracked area was determined by ultrasonic A-scans. A correlation between the crack propagation rate and the A0 mode velocity was found.

  5. A thermodynamic analysis of propagating subcritical cracks with cohesive zones

    NASA Technical Reports Server (NTRS)

    Allen, David H.

    1993-01-01

    The results of the so-called energetic approach to fracture with particular attention to the issue of energy dissipation due to crack propagation are applied to the case of a crack with cohesive zone. The thermodynamic admissibility of subcritical crack growth (SCG) is discussed together with some hypotheses that lead to the derivation of SCG laws. A two-phase cohesive zone model for discontinuous crack growth is presented and its thermodynamics analyzed, followed by an example of its possible application.

  6. Abyssal Sequestration of Nuclear Waste in Earth's Crust

    NASA Astrophysics Data System (ADS)

    Germanovich, L. N.; Garagash, D.; Murdoch, L. C.; Robinowitz, M.

    2013-12-01

    This work outlines a new method for disposing of hazardous (e.g., nuclear) waste. The technique is called Abyssal Sequestration, and it involves placing the waste at extreme depths in Earth's crust where it could achieve the geologically-long period of isolation. Abyssal Sequestration involves storing the waste in hydraulic fractures driven by gravity, a process we term gravity fracturing. In short, we suggest creating a dense fluid (slurry) containing waste, introducing the fluid into a fracture, and extending the fracture downward until it becomes long enough to propagate independently. The fracture will continue to propagate downward to great depth, permanently isolating the waste. Storing solid wastes by mixing them with fluids and injecting them into hydraulic fractures is a well-known technology. The essence of our idea differs from conventional hydraulic fracturing techniques only slightly in that it uses fracturing fluid heavier than the surrounding rock. This difference is fundamental, however, because it allows hydraulic fractures to propagate downward and carry wastes by gravity instead of or in addition to being injected by pumping. An example of similar gravity-driven fractures with positive buoyancy is given by magmatic dikes that may serve as an analog of Abyssal Sequestration occurring in nature. Mechanics of fracture propagation in conditions of positive (diking) and negative (heavy waste slurry) buoyancy is similar and considered in this work for both cases. Analog experiments in gelatin show that fracture breadth (horizontal dimension) remains nearly stationary when fracturing process in the fracture 'head' (where breadth is 'created') is dominated by solid toughness, as opposed to the viscous fluid dissipation dominant in the fracture tail. We model propagation of the resulting 'buoyant' or 'sinking' finger-like fracture of stationary breadth with slowly varying opening along the crack length. The elastic response of the crack to fluid loading in a horizontal cross-section is local and can be treated similar to the classical Perkins-Kern-Nordgren (PKN) model of hydraulic fracturing. The propagation condition for a finger-like crack is based on balancing the global energy release rate due to unit crack extension and the rock fracture toughness. It allows to relate the net fluid pressure at the tip to the fracture breadth and rock toughness. Unlike the PKN fracture, which breadth is known a priori, the final breadth of a finger-like fracture is a result of the fracturing process in the fracture head. To resolve the breadth, we relax the local elasticity assumption in the fracture head by neglecting viscous pressure drop there. The resulting fracture head model is a 3D analog of the Weertman's hydrostatic pulse, and yields expressions for the terminal breadth, b = 0.34 (K / Delta rho g))^(2/3), and for the head volume, V = 10.4 K b^(5/2) / E'. We then combine the finger crack solution for the viscous tail with the 3-D pulse solution for the fracture head. The obtained closed-form solution is compared to numerical simulations. Based on this solution, we analyzed the gravity fracture propagation in conditions of either continuous injection or finite volume release for sets of parameters representative of the heavy waste injection technique and low viscosity magma diking.

  7. Biaxial fatigue crack propagation behavior of perfluorosulfonic-acid membranes

    NASA Astrophysics Data System (ADS)

    Lin, Qiang; Shi, Shouwen; Wang, Lei; Chen, Xu; Chen, Gang

    2018-04-01

    Perfluorosulfonic-acid membranes have long been used as the typical electrolyte for polymer-electrolyte fuel cells, which not only transport proton and water but also serve as barriers to prevent reactants mixing. However, too often the structural integrity of perfluorosulfonic-acid membranes is impaired by membrane thinning or cracks/pinholes formation induced by mechanical and chemical degradations. Despite the increasing number of studies that report crack formation, such as crack size and shape, the underlying mechanism and driving forces have not been well explored. In this paper, the fatigue crack propagation behaviors of Nafion membranes subjected to biaxial loading conditions have been investigated. In particular, the fatigue crack growth rates of flat cracks in responses to different loading conditions are compared, and the impact of transverse stress on fatigue crack growth rate is clarified. In addition, the crack paths for slant cracks under both uniaxial and biaxial loading conditions are discussed, which are similar in geometry to those found after accelerated stress testing of fuel cells. The directions of initial crack propagation are calculated theoretically and compared with experimental observations, which are in good agreement. The findings reported here lays the foundation for understanding of mechanical failure of membranes.

  8. Irwin's conjecture: Crack shape adaptability in transversely isotropic solids

    NASA Astrophysics Data System (ADS)

    Laubie, Hadrien; Ulm, Franz-Josef

    2014-08-01

    The planar crack propagation problem of a flat elliptical crack embedded in a brittle elastic anisotropic solid is investigated. We introduce the concept of crack shape adaptability: the ability of three-dimensional planar cracks to shape with the mechanical properties of a cracked body. A criterion based on the principle of maximum dissipation is suggested in order to determine the most stable elliptical shape. This criterion is applied to the specific case of vertical cracks in transversely isotropic solids. It is shown that contrary to the isotropic case, the circular shape (i.e. penny-shaped cracks) is not the most stable one. Upon propagation, the crack first grows non-self-similarly before it reaches a stable shape. This stable shape can be approximated by an ellipse of an aspect ratio that varies with the degree of elastic anisotropy. By way of example, we apply the so-derived crack shape adaptability criterion to shale materials. For this class of materials it is shown that once the stable shape is reached, the crack propagates at a higher rate in the horizontal direction than in the vertical direction. We also comment on the possible implications of these findings for hydraulic fracturing operations.

  9. Toughening elastomers with sacrificial bonds and watching them break

    NASA Astrophysics Data System (ADS)

    Creton, Costantino

    2014-03-01

    Most unfilled elastomers are relatively brittle, in particular when the average molecular weight between crosslinks is lower than the average molecular weight between entanglements. We created a new class of tough elastomers by introducing isotropically prestretched chains inside ordinary acrylic elastomers by successive swelling and polymerization steps. These new materials combine a high entanglement density with a densely crosslinked structure reaching elastic moduli of 4 MPa and fracture strength of 25 MPa. The highly prestretched chains are the minority in the material and can break in the bulk of the material before catastrophic failure occurs, increasing the toughness of the material by two orders of magnitude up to 5 kJ/m2. To investigate the details of the toughening mechanism we introduced specific sacrificial dioxetane bonds in the prestretched chains that emit light when they break. In uniaxial extension cyclic experiments, we checked that the light emission corresponded exactly and quantitatively to the energy dissipation in each cycle demonstrating that short chains break first and long chains later. We then watched crack propagation in notched samples and mapped spatially the location of bond breakage ahead of the crack tip before and during propagation. This new toughening mechanism for elastomers creates superentangled rubbers and is ideally suited to overcome the trade-off between toughness and stiffness of ordinary elastomers. We gratefully acknowledge funding from DSM Ahead

  10. Effect of Boundary Condition on the Shear Behaviour of Rock Joints in the Direct Shear Test

    NASA Astrophysics Data System (ADS)

    Bahaaddini, M.

    2017-05-01

    The common method for determination of the mechanical properties of the rock joints is the direct shear test. This paper aims to study the effect of boundary condition on the results of direct shear tests. Experimental studies undertaken in this research showed that the peak shear strength is mostly overestimated. This problem is more pronounced for steep asperities and under high normal stresses. Investigation of the failure mode of these samples showed that tensile cracks are generated at the boundary of sample close to the specimen holders and propagated inside the intact materials. In order to discover the reason of observed failure mechanism in experiments, the direct shear test was simulated using PFC2D. Results of numerical models showed that the gap zone size between the upper and lower specimen holders has a significant effect on the shear mechanism. For the high gap size, stresses concentrate at the vicinity of the tips of specimen holders and result in generation and propagation of tensile cracks inside the intact material. However, by reducing the gap size, stresses are concentrated on asperities, and damage of specimen at its boundary is not observed. Results of this paper show that understanding the shear mechanism of rock joints is an essential step prior to interpreting the results of direct shear tests.

  11. A method to generate conformal finite-element meshes from 3D measurements of microstructurally small fatigue-crack propagation [A method to generate conformal finite-element meshes from 3D measurements of microstructurally small fatigue-crack propagation: 3D Meshes of Microstructurally Small Crack Growth

    DOE PAGES

    Spear, Ashley D.; Hochhalter, Jacob D.; Cerrone, Albert R.; ...

    2016-04-27

    In an effort to reproduce computationally the observed evolution of microstructurally small fatigue cracks (MSFCs), a method is presented for generating conformal, finite-element (FE), volume meshes from 3D measurements of MSFC propagation. The resulting volume meshes contain traction-free surfaces that conform to incrementally measured 3D crack shapes. Grain morphologies measured using near-field high-energy X-ray diffraction microscopy are also represented within the FE volume meshes. Proof-of-concept simulations are performed to demonstrate the utility of the mesh-generation method. The proof-of-concept simulations employ a crystal-plasticity constitutive model and are performed using the conformal FE meshes corresponding to successive crack-growth increments. Although the simulationsmore » for each crack increment are currently independent of one another, they need not be, and transfer of material-state information among successive crack-increment meshes is discussed. The mesh-generation method was developed using post-mortem measurements, yet it is general enough that it can be applied to in-situ measurements of 3D MSFC propagation.« less

  12. A method to generate conformal finite-element meshes from 3D measurements of microstructurally small fatigue-crack propagation [A method to generate conformal finite-element meshes from 3D measurements of microstructurally small fatigue-crack propagation: 3D Meshes of Microstructurally Small Crack Growth

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Spear, Ashley D.; Hochhalter, Jacob D.; Cerrone, Albert R.

    In an effort to reproduce computationally the observed evolution of microstructurally small fatigue cracks (MSFCs), a method is presented for generating conformal, finite-element (FE), volume meshes from 3D measurements of MSFC propagation. The resulting volume meshes contain traction-free surfaces that conform to incrementally measured 3D crack shapes. Grain morphologies measured using near-field high-energy X-ray diffraction microscopy are also represented within the FE volume meshes. Proof-of-concept simulations are performed to demonstrate the utility of the mesh-generation method. The proof-of-concept simulations employ a crystal-plasticity constitutive model and are performed using the conformal FE meshes corresponding to successive crack-growth increments. Although the simulationsmore » for each crack increment are currently independent of one another, they need not be, and transfer of material-state information among successive crack-increment meshes is discussed. The mesh-generation method was developed using post-mortem measurements, yet it is general enough that it can be applied to in-situ measurements of 3D MSFC propagation.« less

  13. Theoretical prediction of nonlinear propagation effects on noise signatures generated by subsonic or supersonic propeller or rotor-blade tips

    NASA Technical Reports Server (NTRS)

    Barger, R. L.

    1980-01-01

    The nonlinear propagation equations for sound generated by a constant speed blade tip are presented. Propagation from a subsonic tip is treated as well as the various cases that can occur at supersonic speeds. Some computed examples indicate that the nonlinear theory correlates with experimental results better than linear theory for large amplitude waves. For swept tips that generate a wave with large amplitude leading expansion, the nonlinear theory predicts a cancellation effect that results in a significant reduction of both amplitude and impulse.

  14. Fatigue crack propagation in self-assembling nanocomposites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Klingler, Andreas; Wetzel, Bernd

    Self-assembling block-copolymers allow the easy manufacturing of nanocomposites due to the thermodynamically driven in situ formation of nanosized phases in thermosetting resins during the curing process. Complex mechanical dispersion processes can be avoided. The current study investigates the effect of a block-copolymer on the fatigue crack propagation resistance of a cycloaliphatic amine cured epoxy resin. It was found that a small amount of MAM triblock-copolymer significantly increases the resistance to fatigue crack propagation of epoxy. Crack growth rate and the Paris law exponent for fatigue-crack growth were considerably reduced from m=15.5 of the neat epoxy to m=8.1 of the nanocomposite.more » To identify the related reinforcing and fracture mechanisms structural analyses of the fractured surfaces were performed by scanning electron microscope. Characteristic features were identified to be deformation, debonding and fracture of the nano-phases as well as crack pinning. However, the highest resistance against fatigue crack propagation was achieved in a bi-continuous microstructure that consisted of an epoxy-rich phase with embedded submicron sized MAM inclusions, and which was surrounded by a block-copolymer-rich phase that showed rupture and plastic deformation.« less

  15. Effects of Changing Stress Amplitude on the Rate of Fatigue-Crack Propagation in Two Aluminum Alloys

    NASA Technical Reports Server (NTRS)

    Hudson, C. Michael; Hardrath, Herbert F.

    1961-01-01

    A series of fatigue tests with specimens subjected to constant amplitude and two-step axial loads were conducted on 12-inch-wide sheet specimens of 2024-T3 and 7075-T6 aluminum alloy to study the effects of a change in stress level on fatigue-crack propagation. Comparison of the results of the tests in which the specimens were tested at first a high and then a low stress level with those of the constant-stress- amplitude tests indicated that crack propagation was generally delayed after the transition to the lower stress level. In the tests in which the specimens were tested at first a low and then a high stress level, crack propagation continued at the expected rate after the change in stress levels.

  16. Comninou contact zones for a crack parallel to an interface

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Joseph, P.F.; Gadi, K.S.; Erdogen, F.

    One of the interesting features in studying the state of stress in elastic solids near singular points, is the so called complex singularity that gives rise to an apparent local oscillatory behavior in the stress and displacement fields. The region in which this occurs is very small, much smaller than any plastic zone would be, and therefore the oscillations can be ignored in practical applications. Nevertheless, it is a matter of interesting theoretical investigation. The Comninou model of a small contact zone near the crack tip appears to correct for this anomaly within the framework of the linear theory. Thismore » model seems to make sense out of a {open_quotes}solution{close_quotes} that violates the boundary conditions. Erdogan and Joseph, showed (to themselves anyway) that the Comninou model actually has a physical basis. They considered a crack parallel to an interface where the order of the singularity is always real. With great care in solving the singular integral equations, it was shown that as the crack approaches the interface, a pinching effect is observed at the crack tip. This pinching effect proves that in the limit as the crack approaches the interface, the correct way to handle the problem is to consider crack surface contact. In this way, the issue of {open_quotes}oscillations{close_quotes} is never encountered for the interface crack problem. In the present study, the value of h/a that corresponds to crack closure (zero value of the stress intensity factor) will be determined for a given material pair for tensile loading. An asymptotic numerical method for the solution of singular integral equations making use of is used to obtain this result. Results for the crack opening displacement near the tip of the crack and the behavior of the stress intensity factor for cracks very close to the interface are presented. Among other interesting issues to be discussed, this solution shows that the semi-infinite crack parallel to an interface is closed.« less

  17. Experimental and Finite Element Modeling of Near-Threshold Fatigue Crack Growth for the K-Decreasing Test Method

    NASA Technical Reports Server (NTRS)

    Smith, Stephen W.; Seshadri, Banavara R.; Newman, John A.

    2015-01-01

    The experimental methods to determine near-threshold fatigue crack growth rate data are prescribed in ASTM standard E647. To produce near-threshold data at a constant stress ratio (R), the applied stress-intensity factor (K) is decreased as the crack grows based on a specified K-gradient. Consequently, as the fatigue crack growth rate threshold is approached and the crack tip opening displacement decreases, remote crack wake contact may occur due to the plastically deformed crack wake surfaces and shield the growing crack tip resulting in a reduced crack tip driving force and non-representative crack growth rate data. If such data are used to life a component, the evaluation could yield highly non-conservative predictions. Although this anomalous behavior has been shown to be affected by K-gradient, starting K level, residual stresses, environmental assisted cracking, specimen geometry, and material type, the specifications within the standard to avoid this effect are limited to a maximum fatigue crack growth rate and a suggestion for the K-gradient value. This paper provides parallel experimental and computational simulations for the K-decreasing method for two materials (an aluminum alloy, AA 2024-T3 and a titanium alloy, Ti 6-2-2-2-2) to aid in establishing clear understanding of appropriate testing requirements. These simulations investigate the effect of K-gradient, the maximum value of stress-intensity factor applied, and material type. A material independent term is developed to guide in the selection of appropriate test conditions for most engineering alloys. With the use of such a term, near-threshold fatigue crack growth rate tests can be performed at accelerated rates, near-threshold data can be acquired in days instead of weeks without having to establish testing criteria through trial and error, and these data can be acquired for most engineering materials, even those that are produced in relatively small product forms.

  18. Estimation of Crack Initiation and Propagation Thresholds of Confined Brittle Coal Specimens Based on Energy Dissipation Theory

    NASA Astrophysics Data System (ADS)

    Ning, Jianguo; Wang, Jun; Jiang, Jinquan; Hu, Shanchao; Jiang, Lishuai; Liu, Xuesheng

    2018-01-01

    A new energy-dissipation method to identify crack initiation and propagation thresholds is introduced. Conventional and cyclic loading-unloading triaxial compression tests and acoustic emission experiments were performed for coal specimens from a 980-m deep mine with different confining pressures of 10, 15, 20, 25, 30, and 35 MPa. Stress-strain relations, acoustic emission patterns, and energy evolution characteristics obtained during the triaxial compression tests were analyzed. The majority of the input energy stored in the coal specimens took the form of elastic strain energy. After the elastic-deformation stage, part of the input energy was consumed by stable crack propagation. However, with an increase in stress levels, unstable crack propagation commenced, and the energy dissipation and coal damage were accelerated. The variation in the pre-peak energy-dissipation ratio was consistent with the coal damage. This new method demonstrates that the crack initiation threshold was proportional to the peak stress ( σ p) for ratios that ranged from 0.4351 to 0.4753 σ p, and the crack damage threshold ranged from 0.8087 to 0.8677 σ p.

  19. Fabrication and testing of prestressed composite rotor blade spar specimens

    NASA Technical Reports Server (NTRS)

    Gleich, D.

    1974-01-01

    Prestressed composite spar specimens were fabricated and evaluated by crack propagation and ballistic penetration tests. The crack propagation tests on flawed specimens showed that the prestressed composite spar construction significantly suppresses crack growth. Damage from three high velocity 30 caliber projectile hits was confined to three small holes in the ballistic test specimen. No fragmentation or crack propagation was observed indicating good ballistic damage resistance. Rotor attachment approaches and improved structural performance configurations were identified. Design theory was verified by tests. The prestressed composite spar configuration consisted of a compressively prestressed high strength ARDEFORM 301 stainless steel liner overwrapped with pretensioned S-994 fiberglass.

  20. Mechanical behaviour of metallic thin films on polymeric substrates and the effect of ion beam assistance on crack propagation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    George, M.; Coupeau, C.; Colin, J.

    2005-01-10

    The mechanisms of crack propagation in metallic films on polymeric substrates have been studied through in situ atomic force microscopy observations of thin films under tensile stresses and finite element stress calculations. Two series of films - ones deposited with ion beam assistance, the others without - have been investigated. The observations and stress calculations show that ion beam assistance can change drastically the propagation of cracks in coated materials: by improving the adhesion film/substrate, it slows down the delamination process, but in the same time enhances the cracks growth in the thickness of the material.

  1. The application of an atomistic J-integral to a ductile crack.

    PubMed

    Zimmerman, Jonathan A; Jones, Reese E

    2013-04-17

    In this work we apply a Lagrangian kernel-based estimator of continuum fields to atomic data to estimate the J-integral for the emission dislocations from a crack tip. Face-centered cubic (fcc) gold and body-centered cubic (bcc) iron modeled with embedded atom method (EAM) potentials are used as example systems. The results of a single crack with a K-loading compare well to an analytical solution from anisotropic linear elastic fracture mechanics. We also discovered that in the post-emission of dislocations from the crack tip there is a loop size-dependent contribution to the J-integral. For a system with a finite width crack loaded in simple tension, the finite size effects for the systems that were feasible to compute prevented precise agreement with theory. However, our results indicate that there is a trend towards convergence.

  2. Interface crack in a nonhomogeneous elastic medium

    NASA Technical Reports Server (NTRS)

    Delale, F.; Erdogan, F.

    1988-01-01

    The linear elasticity problem for an interface crack between two bonded half planes is reconsidered. It is assumed that one of the half planes is homogeneous and the second is nonhomogeneous in such a way that the elastic properties are continuous throughout the plane and have discontinuous derivatives along the interface. The problem is formulated in terms of a system of integral equations and the asymptotic behavior of the stress state near the crack tip is determined. The results lead to the conclusion that the singular behavior of stresses in the nonhomogeneous medium is identical to that in a homogeneous material provided the spacial distribution of material properties is continuous near and at the crack tip. The problem is solved for various values of the nonhomogeneity parameter and for four different sets of crack surface tractions, and the corresponding stress intensity factors are tabulated.

  3. A Relationship Between Constraint and the Critical Crack Tip Opening Angle

    NASA Technical Reports Server (NTRS)

    Johnston, William M.; James, Mark A.

    2009-01-01

    Of the various approaches used to model and predict fracture, the Crack Tip Opening Angle (CTOA) fracture criterion has been successfully used for a wide range of two-dimensional thin-sheet and thin plate applications. As thicker structure is considered, modeling the full three-dimensional fracture process will become essential. This paper investigates relationships between the local CTOA evaluated along a three-dimensional crack front and the corresponding local constraint. Previously reported tunneling crack front shapes were measured during fracture by pausing each test and fatigue cycling the specimens to mark the crack surface. Finite element analyses were run to model the tunneling shape during fracture, with the analysis loading conditions duplicating those tests. The results show an inverse relationship between the critical fracture value and constraint which is valid both before maximum load and after maximum load.

  4. Numerical investigation of shape domain effect to its elasticity and surface energy using adaptive finite element method

    NASA Astrophysics Data System (ADS)

    Alfat, Sayahdin; Kimura, Masato; Firihu, Muhammad Zamrun; Rahmat

    2018-05-01

    In engineering area, investigation of shape effect in elastic materials was very important. It can lead changing elasticity and surface energy, and also increase of crack propagation in the material. A two-dimensional mathematical model was developed to investigation of elasticity and surface energy in elastic material by Adaptive Finite Element Method. Besides that, behavior of crack propagation has observed for every those materials. The government equations were based on a phase field approach in crack propagation model that developed by Takaishi-Kimura. This research has varied four shape domains where physical properties of materials were same (Young's modulus E = 70 GPa and Poisson's ratio ν = 0.334). Investigation assumptions were; (1) homogeneous and isotropic material, (2) there was not initial cracking at t = 0, (3) initial displacement was zero [u1, u2] = 0) at initial condition (t = 0), and (4) length of time simulation t = 5 with interval Δt = 0.005. Mode I/II or mixed mode crack propagation has been used for the numerical investigation. Results of this studies were very good and accurate to show changing energy and behavior of crack propagation. In the future time, this research can be developed to complex phenomena and domain. Furthermore, shape optimization can be investigation by the model.

  5. The crack problem in a specially orthotropic shell with double curvature

    NASA Technical Reports Server (NTRS)

    Delale, F.; Erdogan, F.

    1983-01-01

    The crack problem of a shallow shell with two nonzero curvatures is considered. It is assumed that the crack lies in one of the principal planes of curvature and the shell is under Mode I loading condition. The material is assumed to be specially orthotropic. After giving the general formulation of the problem the asymptotic behavior of the stress state around the crack tip is examined. The analysis is based on Reissner's transverse shear theory. Thus, as in the bending of cracked plates, the asymptotic results are shown to be consistent with that obtained from the plane elasticity solution of crack problems. Rather extensive numerical results are obtained which show the effect of material orthotropy on the stress intensity factors in cylindrical and spherical shells and in shells with double curvature. Other results include the stress intensity factors in isotropic toroidal shells with positive or negative curvature ratio, the distribution of the membrane stress resultant outside the crack, and the influence of the material orthotropy on the angular distribution of the stresses around the crack tip. Previously announced in STAR as N83-16782

  6. The crack problem in a specially orthotropic shell with double curvature

    NASA Technical Reports Server (NTRS)

    Delale, F.; Erdogan, F.

    1982-01-01

    The crack problem of a shallow shell with two nonzero curvatures is considered. It is assumed that the crack lies in one of the principal planes of curvature and the shell is under Mode I loading condition. The material is assumed to be specially orthotropic. After giving the general formulation of the problem the asymptotic behavior of the stress state around the crack tip is examined. The analysis is based on Reissner's transverse shear theory. Thus, as in the bending of cracked plates, the asymptotic results are shown to be consistent with that obtained from the plane elasticity solution of crack problems. Rather extensive numerical results are obtained which show the effect of material orthotropy on the stress intensity factors in cylindrical and spherical shells and in shells with double curvature. Other results include the stress intensity factors in isotropic toroidal shells with positive or negative curvature ratio, the distribution of the membrane stress resultant outside the crack, and the influence of the material orthotropy on the angular distribution of the stresses around the crack tip.

  7. Development of an Improved Crack Propagation Model for Corrosion-Induced Cover Cracking in RC Structures

    NASA Astrophysics Data System (ADS)

    Hilyati, S.; Nizam, Z. M.; Zurisman, M. A. A.; Azhar, A. T. S.

    2017-06-01

    During the last two decades, reinforced concrete (RC) has been extensively used in most of the world as one of the common construction material due to its advantages and durability. However, RC structures exposed to marine environments are subjected to chloride attack. Chlorides from seawater penetrate into RC structures are not only causing severe corrosion problems but also affect the durability and serviceability of such structures. This paper investigates the influence of transverse reinforcement and spacing of reinforcing bars on concrete cover cracking of two-way RC slab specimens using accelerated corrosion tests. The experimental program involved the testing of four RC slab specimens and was generally designed to observe the crack width and the time of crack to propagate. An improved model for predicting the timing of crack propagation based on the experimental data was then developed.

  8. Micromechanical predictions of crack propagation and fracture energy in a single fiber boron/aluminum model composite

    NASA Technical Reports Server (NTRS)

    Adams, D. F.; Mahishi, J. M.

    1982-01-01

    The axisymmetric finite element model and associated computer program developed for the analysis of crack propagation in a composite consisting of a single broken fiber in an annular sheath of matrix material was extended to include a constant displacement boundary condition during an increment of crack propagation. The constant displacement condition permits the growth of a stable crack, as opposed to the catastropic failure in an earlier version. The finite element model was refined to respond more accurately to the high stresses and steep stress gradients near the broken fiber end. The accuracy and effectiveness of the conventional constant strain axisymmetric element for crack problems was established by solving the classical problem of a penny-shaped crack in a thick cylindrical rod under axial tension. The stress intensity factors predicted by the present finite element model are compared with existing continuum results.

  9. A study of fiber volume fraction effects in notched unidirectional SCS-6/Ti-15V-3Cr-3Al-3Sn composite. Ph.D. Thesis Final Report

    NASA Technical Reports Server (NTRS)

    Covey, Steven J.

    1993-01-01

    Notched unidirectional SCS-6/Ti-15-3 composite of three different fiber volume fractions (vf = 0.15, 0.37, and 0.41) was investigated for various room temperature microstructural and material properties including: fatigue crack initiation, fatigue crack growth, and fracture toughness. While the matrix hardness is similar for all fiber volume fractions, the fiber/matrix interfacial shear strength and matrix residual stress increases with fiber volume fraction. The composite fatigue crack initiation stress is shown to be matrix controlled and occurs when the net maximum matrix stress approaches the endurance limit stress of the matrix. A model is presented which includes residual stresses and presents the composite initiation stress as a function of fiber volume fraction. This model predicts a maximum composite initiation stress at vf approximately 0.15 which agrees with the experimental data. The applied composite stress levels were increased as necessary for continued crack growth. The applied Delta(K) values at crack arrest increase with fiber volume fraction by an amount better approximated using an energy based formulation rather than when scaled linear with modulus. After crack arrest, the crack growth rate exponents for vf37 and vf41 were much lower and toughness much higher, when compared to the unreinforced matrix, because of the bridged region which parades with the propagating fatigue crack. However, the vf15 material exhibited a higher crack growth rate exponent and lower toughness than the unreinforced matrix because once the bridged fibers nearest the crack mouth broke, the stress redistribution broke all bridged fibers, leaving an unbridged crack. Degraded, unbridged behavior is modeled using the residual stress state in the matrix ahead of the crack tip. Plastic zone sizes were directly measured using a metallographic technique and allow prediction of an effective matrix stress intensity which agrees with the fiber pressure model if residual stresses are considered. The sophisticated macro/micro finite element models of the 0.15 and 0.37 fiber volume fractions presented show good agreement with experimental data and the fiber pressure model when an estimated effective fiber/matrix debond length is used.

  10. Effect of a Diffusion Zone on Fatigue Crack Propagation in Layered FGMs

    NASA Astrophysics Data System (ADS)

    Hauber, Brett; Brockman, Robert; Paulino, Glaucio

    2008-02-01

    Research into functionally graded materials (FGMs) has led to advances in our ability to analyze cracks. However, two prominent aspects remain relatively unexplored: 1) development and validation of modeling methods for fatigue crack propagation in FGMs, and 2) experimental validation of stress intensity models in engineered materials such as two phase monolithic and graded materials. This work addresses some of these problems for a limited set of conditions, material systems (e.g., Ti/TiB), and material gradients. Numerical analyses are conducted for single edge notch bend (SENB) specimens. Stress intensity factors are computed using the specialized finite element code I-Franc (Illinois Fracture Analysis Code), which is tailored for both homogeneous and graded materials, as well as Franc2DL and ABAQUS. Crack extension is considered by means of specified crack increments, together with fatigue evaluations to predict crack propagation life. Results will be used to determine linear material gradient parameters that are significant for prediction of fatigue crack growth behavior.

  11. The release of trapped gases from amorphous solid water films. I. "Top-down" crystallization-induced crack propagation probed using the molecular volcano.

    PubMed

    May, R Alan; Smith, R Scott; Kay, Bruce D

    2013-03-14

    In this (Paper I) and the companion paper (Paper II; R. May, R. Smith, and B. Kay, J. Chem. Phys. 138, 104502 (2013)), we investigate the mechanisms for the release of trapped gases from underneath amorphous solid water (ASW) films. In prior work, we reported the episodic release of trapped gases in concert with the crystallization of ASW, a phenomenon that we termed the "molecular volcano." The observed abrupt desorption is due to the formation of cracks that span the film to form a connected pathway for release. In this paper, we utilize the "molecular volcano" desorption peak to characterize the formation of crystallization-induced cracks. We find that the crack length distribution is independent of the trapped gas (Ar, Kr, Xe, CH4, N2, O2, or CO). Selective placement of the inert gas layer is used to show that cracks form near the top of the film and propagate downward into the film. Isothermal experiments reveal that, after some induction time, cracks propagate linearly in time with an Arrhenius dependent velocity corresponding to an activation energy of 54 kJ∕mol. This value is consistent with the crystallization growth rates reported by others and establishes a direct connection between crystallization growth rate and the crack propagation rate. A two-step model in which nucleation and crystallization occurs in an induction zone near the top of the film followed by the propagation of a crystallization∕crack front into the film is in good agreement with the temperature programmed desorption results.

  12. The Release of Trapped Gases from Amorphous Solid Water Films: I. “Top-Down” Crystallization-Induced Crack Propagation Probed using the Molecular Volcano

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    May, Robert A.; Smith, R. Scott; Kay, Bruce D.

    In this (Paper I) and the companion paper (Paper II) we investigate the mechanisms for the release of trapped gases from underneath of amorphous solid water (ASW) films. In prior work, we reported the episodic release of trapped gases in concert with the crystallization ASW, a phenomenon that we termed the "molecular volcano". The observed abrupt desorption is due to the formation of cracks that span the film to form a connected pathway for release. In this paper we utilize the "molecular volcano" desorption peak to characterize the formation of crystallization-induced cracks. We find that the crack length and distributionmore » are independent of the trapped gas (Ar, Kr, Xe, CH4, N2, O2 or CO). Selective placement of the inert gas layer is used to show that cracks form near the top of the film and propagate downward into the film. Isothermal experiments reveal that, after some induction time, cracks propagate linearly in time with an Arrhenius dependent velocity corresponding to an activation energy of 54 kJ/mol. This value is consistent with the crystallization growth rate reported by others and establishes a direct connection between crystallization growth rate and the crack propagation rate. A two-step model in which nucleation and crystallization occurs in an induction zone near the top of the film followed by the propagation of a crystallization/crack front into the film is in good agreement with the temperature programmed desorption results.« less

  13. Oxidation of UC: An in situ high temperature environmental scanning electron microscopy study

    NASA Astrophysics Data System (ADS)

    Gasparrini, Claudia; Podor, Renaud; Horlait, Denis; Rushton, Michael J. D.; Fiquet, Olivier; Lee, William Edward

    2017-10-01

    In situ HT-ESEM oxidation of sintered UC fragments revealed the morphological changes occurring during the transformation between UC to UO2 and UO2 to U3O8 at 723-848 K and in an atmosphere of 10-100 Pa O2. Two main oxidation pathways were revealed. Oxidation at 723 K in atmospheres ≤25 Pa O2 showed the transformation from UC to UO2+x, as confirmed by post mortem HRTEM analysis. This oxidation pathway was comprised of three steps: (i) an induction period, where only surface UC particles oxidised, (ii) a sample area expansion accompanied by crack formation and propagation, (iii) a stabilisation of the total crack length inferring that crack propagation had stopped. Samples oxidised under 50 Pa O2 at 723 K and at 773-848 K for 10-100 Pa O2 showed an "explosive" oxidation pathway: (i) sample area expansion occurred as soon as oxygen was inserted into the chamber and crack propagation and crack length followed an exponential law; (ii) cracks propagated as a network and the oxide layer fragmented, (iii) an "explosion" occurred causing a popcorn-like transformation, typical for oxidation from UO2 to U3O8. HRTEM characterisation revealed U3O8 preferentially grow in the [001] direction. The explosive growth, triggered by ignition of UC, proceeded as a self-propagating high-temperature synthesis reaction, with a propagation speed of 150-500 ± 50 μm/s.

  14. Fracture mechanics criteria for turbine engine hot section components

    NASA Technical Reports Server (NTRS)

    Meyers, G. J.

    1982-01-01

    The application of several fracture mechanics data correlation parameters to predicting the crack propagation life of turbine engine hot section components was evaluated. An engine survey was conducted to determine the locations where conventional fracture mechanics approaches may not be adequate to characterize cracking behavior. Both linear and nonlinear fracture mechanics analyses of a cracked annular combustor liner configuration were performed. Isothermal and variable temperature crack propagation tests were performed on Hastelloy X combustor liner material. The crack growth data was reduced using the stress intensity factor, the strain intensity factor, the J integral, crack opening displacement, and Tomkins' model. The parameter which showed the most effectiveness in correlation high temperature and variable temperature Hastelloy X crack growth data was crack opening displacement.

  15. Creep deformation at crack tips in elastic-viscoplastic solids

    NASA Astrophysics Data System (ADS)

    Riedel, H.

    1981-02-01

    THE EVALUATION of crack growth tests under creep conditions must be based on the stress analysis of a cracked body taking into account elastic, plastic and creep deformation. In addition to the well-known analysis of a cracked body creeping in secondary (steady-state) creep, the stress field at the tip of a stationary crack is calculated for primary (strain-hardening) or tertiary (strain-softening) creep of the whole specimen. For the special hardening creep-law considered, a path-independent integral C∗h, can be defined which correlates the near-tip field to the applied load. It is also shown how, after sudden load application, creep strains develop in the initially elastic or, for a higher load level, plastic body. Characteristic times are derived to distinguish between short times when the creep-zones, in which creep strains are concentrated, are still small, and long times when the whole specimen creeps extensively in primary and finally in secondary and tertiary creep. Comparing the creep-zone sizes with the specimen dimensions or comparing the characteristic times with the test duration, one can decide which deformation mechanism prevails in the bulk of the specimen and which load parameter enters into the near-tip stress field and determines crack growth behavior. The governing load parameter is the stress intensity factor K 1 if the bulk of the specimen is predominantly elastic and it is the J-integral in a fully-plastic situation when large creep strains are still confined to a small zone. The C∗h-integral applies if the bulk of the specimen deforms in primary or tertiary creep, and C∗ is the relevant load parameter for predominantly secondary creep of the whole specimen.

  16. Development and characterization of fatigue resistant Aramid reinforced aluminium laminates (ARALL) for fatigue Critical aircraft components

    NASA Astrophysics Data System (ADS)

    Qaiser, M. H.; Umar, S.; Nauman, S.

    2014-06-01

    The structural weight of an aircraft has always been a controlling parameter that governs its fuel efficiency and transport capacity. In pursuit of achieving light-weight aircraft structures, high design stress levels have to be adopted and materials with high specific strength such as Aluminum etc. are to be deployed. However, an extensive spectrum of fatigue load exists at the aircraft wings and other aerodynamic components that may cause initiation and propagation of fatigue cracks and concludes in a catastrophic rupture. Fatigue is therefore the limiting design parameter in such cases and materials with high fatigue resistance are then required. A major improvement in the fatigue behavior was observed by laminating Kevlar fibers with Aluminum using epoxy. ARALL (Aramid Reinforced ALuminum Laminates) is a fatigue resistant hybrid composite that consists of layers of thin high strength aluminum alloy sheets surface bonded with aramid fibers. The intact aramid fibers tie up the fatigue cracks, thus reducing the stress intensity factor at the crack tip as a result of which the fatigue properties of can be enhanced with orders of magnitude as compared to monolithic high strength Aluminum alloy sheets. Significant amount of weight savings can be achieved in fatigue critical components in comparison with the traditional materials used in aircraft.

  17. Strain Measurements within Fibreboard. Part III: Analyzing the Process Zone at the Crack Tip of Medium Density Fiberboards (MDF) Double Cantilever I-Beam Specimens

    PubMed Central

    Rathke, Jörn; Müller, Ulrich; Konnerth, Johannes; Sinn, Gerhard

    2012-01-01

    This paper is the third part of a study dealing with the mechanical and fracture mechanical characterization of Medium Density Fiberboards (MDF). In the first part, an analysis of internal bond strength testing was performed and in the second part MDF was analyzed by means of the wedge splitting experiment; this part deals with the double cantilever I beam test, which is designed for measuring the fracture energy as well as stress intensity factor in Mode I. For a comparison of isotropic and orthotropic material behavior, finite element modeling was performed. In addition to the calculation of fracture energy the stress intensity factor was analyzed by means of finite elements simulation and calculation. In order to analyze strain deformations and the process zone, electronic speckle pattern interferometry measurements were performed. The results revealed an elongated process zone and lower results for KIC if compared to the wedge splitting experiment. The Gf numbers are higher compared to the wedge splitting results and can be explained by the thicker process zone formed during the crack propagation. The process zone width on its part is influenced by the stiff reinforcements and yields a similar crack surface as with the internal bond test.

  18. Fracture Toughness and Reliability in High-Temperature Structural Ceramics and Composites: Prospects and Challenges for the 21st Century

    NASA Technical Reports Server (NTRS)

    Dutta, Sunil

    1999-01-01

    The importance of high fracture toughness and reliability in Si3N4, and SiC-based structural ceramics and ceramic matrix composites is reviewed. The potential of these ceramics and ceramic matrix composites for high temperature applications in defense and aerospace applications such as gas turbine engines, radomes, and other energy conversion hardware have been well recognized. Numerous investigations were pursued to improve fracture toughness and reliability by incorporating various reinforcements such as particulate-, whisker-, and continuous fiber into Si3N4 and SiC matrices. All toughening mechanisms, e.g. crack deflection, crack branching, crack bridging, etc., essentially redistribute stresses at the crack tip and increase the energy needed to propagate a crack through the composite material, thereby resulting in improved fracture toughness and reliability. Because of flaw insensitivity, continuous fiber reinforced ceramic composite (CFCC) was found to have the highest potential for higher operating temperature and longer service conditions. However, the ceramic fibers should display sufficient high temperature strength and creep resistance at service temperatures above 1000 'C. The greatest challenge to date is the development of high quality ceramic fibers with associate coatings able to maintain their high strength in oxidizing environment at high temperature. In the area of processing, critical issues are, preparation of optimum matrix precursors, precursor infiltration into fiber array, and matrix densification at a temperature, where grain crystallization and fiber degradation do not occur. A broad scope of effort is required for improved processing and properties with a better understanding of all candidate composite systems.

  19. An Experimental and Numerical Study on Cracking Behavior of Brittle Sandstone Containing Two Non-coplanar Fissures Under Uniaxial Compression

    NASA Astrophysics Data System (ADS)

    Yang, Sheng-Qi; Tian, Wen-Ling; Huang, Yan-Hua; Ranjith, P. G.; Ju, Yang

    2016-04-01

    To understand the fracture mechanism in all kinds of rock engineering, it is important to investigate the fracture evolution behavior of pre-fissured rock. In this research, we conducted uniaxial compression experiments to evaluate the influence of ligament angle on the strength, deformability, and fracture coalescence behavior of rectangular prismatic specimens (80 × 160 × 30 mm) of brittle sandstone containing two non-coplanar fissures. The experimental results show that the peak strength of sandstone containing two non-coplanar fissures depends on the ligament angle, but the elastic modulus is not closely related to the ligament angle. With the increase of ligament angle, the peak strength decreased at a ligament angle of 60°, before increasing up to our maximum ligament angle of 120°. Crack initiation, propagation, and coalescence were all observed and characterized from the inner and outer tips of pre-existing non-coplanar fissures using photographic monitoring. Based on the results, the sequence of crack evolution in sandstone containing two non-coplanar fissures was analyzed in detail. In order to fully understand the crack evolution mechanism of brittle sandstone, numerical simulations using PFC2D were performed for specimens containing two non-coplanar fissures under uniaxial compression. The results are in good agreement with the experimental results. By analyzing the stress field, the crack evolution mechanism in brittle sandstone containing two non-coplanar fissures under uniaxial compression is revealed. These experimental and numerical results are expected to improve the understanding of the unstable fracture mechanism of fissured rock engineering structures.

  20. Damage Tolerant Analysis of Cracked Al 2024-T3 Panels repaired with Single Boron/Epoxy Patch

    NASA Astrophysics Data System (ADS)

    Mahajan, Akshay D.; Murthy, A. Ramachandra; Nanda Kumar, M. R.; Gopinath, Smitha

    2018-06-01

    It is known that damage tolerant analysis has two objectives, namely, remaining life prediction and residual strength evaluation. To achieve the these objectives, determination of accurate and reliable fracture parameter is very important. XFEM methodologies for fatigue and fracture analysis of cracked aluminium panels repaired with different patch shapes made of single boron/epoxy have been developed. Heaviside and asymptotic crack tip enrichment functions are employed to model the crack. XFEM formulations such as displacement field formulation and element stiffness matrix formulation are presented. Domain form of interaction integral is employed to determine Stress Intensity Factor of repaired cracked panels. Computed SIFs are incorporated in Paris crack growth model to predict the remaining fatigue life. The residual strength has been computed by using the remaining life approach, which accounts for both crack growth constants and no. of cycles to failure. From the various studies conducted, it is observed that repaired panels have significant effect on reduction of the SIF at the crack tip and hence residual strength as well as remaining life of the patched cracked panels are improved significantly. The predicted remaining life and residual strength will be useful for design of structures/components under fatigue loading.

  1. The Statistical Nature of Fatigue Crack Propagation

    DTIC Science & Technology

    1977-03-01

    LEVEL x - V AFFDL-TRt-T843 r THE STATISTICAL NATURE OF b FATIGUE CRACK PROPAGATION D. A. VIRKLER B. M. HILLBERR Y LL= P. K. GOEL C* SCHOOL...function of crack length was best represented by the three-parameter log-normal distribution. Six growth rate calculation methods were investigated and the...dN, which varied moderately as a function of crack length, replicate a vs. N data were predicted This predicted data reproduced the mean behavior but

  2. A methodology for the investigation of toughness and crack propagation in mouse bone.

    PubMed

    Carriero, Alessandra; Zimmermann, Elizabeth A; Shefelbine, Sandra J; Ritchie, Robert O

    2014-11-01

    Bone fracture is a health concern for those with aged bone and brittle bone diseases. Mouse bone is widely used as a model of human bone, especially to investigate preclinical treatment strategies. However, little is known about the mechanisms of mouse bone fracture and its similarities and differences from fracture in human bone. In this work we present a methodology to investigate the fracture toughness during crack initiation and crack propagation for mouse bone. Mouse femora were dissected, polished on their periosteal surface, notched on the posterior surface at their mid-diaphysis, and tested in three-point bending under displacement control at a rate of 0.1mm/min using an in situ loading stage within an environmental scanning electron microscope. We obtained high-resolution real-time imaging of the crack initiation and propagation in mouse bone. From the images we can measure the crack extension at each step of the crack growth and calculate the toughness of the bone (in terms of stress intensity factor (K) and work to fracture (Wf)) as a function of stable crack length (Δa), thus generating a resistance curve for the mouse bone. The technique presented here provides insight into the evolution of microdamage and the toughening mechanisms that resist crack propagation, which are essential for preclinical development of treatments to enhance bone quality and combat fracture risk. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. Characterization of Cracking Mechanisms of Carbon Anodes Used in Aluminum Industry by Optical Microscopy and Tomography

    NASA Astrophysics Data System (ADS)

    Amrani, Salah; Kocaefe, Duygu; Kocaefe, Yasar; Bhattacharyay, Dipankar; Bouazara, Mohamed; Morais, Brigitte

    2016-10-01

    The objective of this work is to understand the different mechanisms of crack formation in dense anodes used in the aluminum industry. The first approach used is based on the qualitative characterization of the surface cracks and the depth of these cracks. The second approach, which constitutes a quantitative characterization, is carried out by determining the distribution of the crack width along its length as well as the percentage of the surface containing cracks. A qualitative analysis of crack formation was also carried out using 3D tomography. It was observed that mixing and forming conditions have a significant effect on crack formation in green anodes. The devolatilization of pitch during baking causes the formation and propagation of cracks in baked anodes in which large particles control the direction of crack propagation.

  4. In Situ SEM Observations of Fracture Behavior of Laser Welded-Brazed Al/Steel Dissimilar Joint

    NASA Astrophysics Data System (ADS)

    Xia, Hongbo; Tan, Caiwang; Li, Liqun; Ma, Ninshu

    2018-03-01

    Laser welding-brazing of 6061-T6 aluminum alloy to DP590 dual-phase steel with Al-Si12 flux-cored filler wire was performed. The microstructure at the brazing interface was characterized. Fracture behavior was observed and analyzed by in situ scanning electron microscope. The microstructure of the brazing interface showed that inhomogeneous intermetallic compounds formed along the thickness direction, which had a great influence on the crack initiation and propagation. In the top region, the reaction layer at the interface consisted of scattered needle-like Fe(Al,Si)3 and serration-shaped Fe1.8Al7.2Si. In the middle region, the compound at the interface was only serration-shaped Fe1.8Al7.2Si. In the bottom region, the interface was composed of lamellar-shaped Fe1.8Al7.2Si. The cracks were first detected in the bottom region and propagated from bottom to top along the interface. At the bottom region, the crack initiated and propagated along the Fe1.8Al7.2Si/weld seam interface during the in situ tensile test. When the crack propagated into the middle region, a deflection of crack propagation appeared. The crack first propagated along the steel/Fe1.8Al7.2Si interface and then moved along the weld seam until the failure of the joint. The tensile strength of the joint was 146.5 MPa. Some micro-cracks were detected at Fe(Al,Si)3 and the interface between the steel substrate and Fe(Al,Si)3 in the top region while the interface was still connected.

  5. Effect of micromorphology of cortical bone tissue on crack propagation under dynamic loading

    NASA Astrophysics Data System (ADS)

    Wang, Mayao; Gao, Xing; Abdel-Wahab, Adel; Li, Simin; Zimmermann, Elizabeth A.; Riedel, Christoph; Busse, Björn; Silberschmidt, Vadim V.

    2015-09-01

    Structural integrity of bone tissue plays an important role in daily activities of humans. However, traumatic incidents such as sports injuries, collisions and falls can cause bone fracture, servere pain and mobility loss. In addition, ageing and degenerative bone diseases such as osteoporosis can increase the risk of fracture [1]. As a composite-like material, a cortical bone tissue is capable of tolerating moderate fracture/cracks without complete failure. The key to this is its heterogeneously distributed microstructural constituents providing both intrinsic and extrinsic toughening mechanisms. At micro-scale level, cortical bone can be considered as a four-phase composite material consisting of osteons, Haversian canals, cement lines and interstitial matrix. These microstructural constituents can directly affect local distributions of stresses and strains, and, hence, crack initiation and propagation. Therefore, understanding the effect of micromorphology of cortical bone on crack initiation and propagation, especially under dynamic loading regimes is of great importance for fracture risk evaluation. In this study, random microstructures of a cortical bone tissue were modelled with finite elements for four groups: healthy (control), young age, osteoporosis and bisphosphonate-treated, based on osteonal morphometric parameters measured from microscopic images for these groups. The developed models were loaded under the same dynamic loading conditions, representing a direct impact incident, resulting in progressive crack propagation. An extended finite-element method (X-FEM) was implemented to realize solution-dependent crack propagation within the microstructured cortical bone tissues. The obtained simulation results demonstrate significant differences due to micromorphology of cortical bone, in terms of crack propagation characteristics for different groups, with the young group showing highest fracture resistance and the senior group the lowest.

  6. The crack problem in bonded nonhomogeneous materials

    NASA Technical Reports Server (NTRS)

    Erdogan, Fazil; Kaya, A. C.; Joseph, P. F.

    1988-01-01

    The plane elasticity problem for two bonded half planes containing a crack perpendicular to the interface was considered. The effect of very steep variations in the material properties near the diffusion plane on the singular behavior of the stresses and stress intensity factors were studied. The two materials were thus, assumed to have the shear moduli mu(o) and mu(o) exp (Beta x), x=0 being the diffusion plane. Of particular interest was the examination of the nature of stress singularity near a crack tip terminating at the interface where the shear modulus has a discontinuous derivative. The results show that, unlike the crack problem in piecewise homogeneous materials for which the singularity is of the form r/alpha, 0 less than alpha less than 1, in this problem the stresses have a standard square-root singularity regardless of the location of the crack tip. The nonhomogeneity constant Beta has, however, considerable influence on the stress intensity factors.

  7. The crack problem in bonded nonhomogeneous materials

    NASA Technical Reports Server (NTRS)

    Erdogan, F.; Joseph, P. F.; Kaya, A. C.

    1991-01-01

    The plane elasticity problem for two bonded half planes containing a crack perpendicular to the interface was considered. The effect of very steep variations in the material properties near the diffusion plane on the singular behavior of the stresses and stress intensity factors were studied. The two materials were thus, assumed to have the shear moduli mu(o) and mu(o) exp (Beta x), x=0 being the diffusion plane. Of particular interest was the examination of the nature of stress singularity near a crack tip termination at the interface where the shear modulus has a discontinuous derivative. The results show that, unlike the crack problem in piecewise homogeneous materials for which the singularity is of the form r/alpha, 0 less than alpha less than 1, in this problem the stresses have a standard square-root singularity regardless of the location of the crack tip. The nonhomogeneity constant Beta has, however, considerable influence on the stress intensity factors.

  8. Mechanics of finite cracks in dissimilar anisotropic elastic media considering interfacial elasticity

    DOE PAGES

    Juan, Pierre -Alexandre; Dingreville, Remi

    2016-10-31

    Interfacial crack fields and singularities in bimaterial interfaces (i.e., grain boundaries or dissimilar materials interfaces) are considered through a general formulation for two-dimensional (2-D) anisotropic elasticity while accounting for the interfacial structure by means of an interfacial elasticity paradigm. The interfacial elasticity formulation introduces boundary conditions that are effectively equivalent to those for a weakly bounded interface. This formalism considers the 2-D crack-tip elastic fields using complex variable techniques. While the consideration of the interfacial elasticity does not affect the order of the singularity, it modifies the oscillatory effects associated with problems involving interface cracks. Constructive or destructive “interferences” aremore » directly affected by the interface structure and its elastic response. Furthermore, this general formulation provides an insight on the physical significance and the obvious coupling between the interface structure and the associated mechanical fields in the vicinity of the crack tip.« less

  9. Mechanics of finite cracks in dissimilar anisotropic elastic media considering interfacial elasticity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Juan, Pierre -Alexandre; Dingreville, Remi

    Interfacial crack fields and singularities in bimaterial interfaces (i.e., grain boundaries or dissimilar materials interfaces) are considered through a general formulation for two-dimensional (2-D) anisotropic elasticity while accounting for the interfacial structure by means of an interfacial elasticity paradigm. The interfacial elasticity formulation introduces boundary conditions that are effectively equivalent to those for a weakly bounded interface. This formalism considers the 2-D crack-tip elastic fields using complex variable techniques. While the consideration of the interfacial elasticity does not affect the order of the singularity, it modifies the oscillatory effects associated with problems involving interface cracks. Constructive or destructive “interferences” aremore » directly affected by the interface structure and its elastic response. Furthermore, this general formulation provides an insight on the physical significance and the obvious coupling between the interface structure and the associated mechanical fields in the vicinity of the crack tip.« less

  10. Investigation of the stress distribution around a mode 1 crack with a novel strain gradient theory

    NASA Astrophysics Data System (ADS)

    Lederer, M.; Khatibi, G.

    2017-01-01

    Stress concentrations at the tip of a sharp crack have extensively been investigated in the past century. According to the calculations of Inglis, the stress ahead of a mode 1 crack shows the characteristics of a singularity. This solution is exact in the framework of linear elastic fracture mechanics (LEFM). From the viewpoint of multiscale modelling, however, it is evident that the stress at the tip of a stable crack cannot be infinite, because the strengths of atomic bonds are finite. In order to prevent the problem of this singularity, a new version of strain gradient elasticity is employed here. This theory is implemented in the commercial FEM code ABAQUS through user subroutine UEL. Convergence of the model is proved through consecutive mesh refinement. In consequence, the stresses ahead of a mode 1 crack become finite. Furthermore, the model predicts a size effect in the sense “smaller is stronger”.

  11. The effect of broken stringers on the stress intensity factor for a uniformly stiffened sheet containing a crack

    NASA Technical Reports Server (NTRS)

    Poe, C. C., Jr.

    1973-01-01

    A linear elastic stress analysis was made of a centrally cracked sheet stiffened by riveted, uniformly spaced and sized stringers. The stress intensity factor for the sheet and the load concentration factor for the most highly loaded stringer were determined for various numbers of broken stringers. A broken stringer causes the stress intensity factor to be very high when the crack tip is near the broken stringer, but causes little effect when the crack tip extends beyond several intact stringers. A broken stringer also causes an increase in the load concentration factor of the adjacent stringers. The calculated residual strengths and fatigue-crack-growth lives of a stiffened aluminum sheet with a broken stringer were only slightly less than a sheet with all intact stringers, and were still much higher than those of an unstiffened sheet.

  12. Determination of Fracture Parameters for Multiple Cracks of Laminated Composite Finite Plate

    NASA Astrophysics Data System (ADS)

    Srivastava, Amit Kumar; Arora, P. K.; Srivastava, Sharad Chandra; Kumar, Harish; Lohumi, M. K.

    2018-04-01

    A predictive method for estimation of stress state at zone of crack tip and assessment of remaining component lifetime depend on the stress intensity factor (SIF). This paper discusses the numerical approach for prediction of first ply failure load (FL), progressive failure load, SIF and critical SIF for multiple cracks configurations of laminated composite finite plate using finite element method (FEM). The Hashin and Chang failure criterion are incorporated in ABAQUS using subroutine approach user defined field variables (USDFLD) for prediction of progressive fracture response of laminated composite finite plate, which is not directly available in the software. A tensile experiment on laminated composite finite plate with stress concentration is performed to validate the numerically predicted subroutine results, shows excellent agreement. The typical results are presented to examine effect of changing the crack tip distance (S), crack offset distance (H), and stacking fiber angle (θ) on FL, and SIF .

  13. Universality of periodicity as revealed from interlayer-mediated cracks

    NASA Astrophysics Data System (ADS)

    Cho, Myung Rae; Jung, Jong Hyun; Seo, Min Key; Cho, Sung Un; Kim, Young Duck; Lee, Jae Hyun; Kim, Yong Seung; Kim, Pilkwang; Hone, James; Ihm, Jisoon; Park, Yun Daniel

    2017-03-01

    A crack and its propagation is a challenging multiscale materials phenomenon of broad interest, from nanoscience to exogeology. Particularly in fracture mechanics, periodicities are of high scientific interest. However, a full understanding of this phenomenon across various physical scales is lacking. Here, we demonstrate periodic interlayer-mediated thin film crack propagation and discuss the governing conditions resulting in their periodicity as being universal. We show strong confinement of thin film cracks and arbitrary steering of their propagation by inserting a predefined thin interlayer, composed of either a polymer, metal, or even atomically thin graphene, between the substrate and the brittle thin film. The thin interlayer-mediated controllability arises from local modification of the effective mechanical properties of the crack medium. Numerical calculations incorporating basic fracture mechanics principles well model our experimental results. We believe that previous studies of periodic cracks in SiN films, self-de-bonding sol-gel films, and even drying colloidal films, along with this study, share the same physical origins but with differing physical boundary conditions. This finding provides a simple analogy for various periodic crack systems that exist in nature, not only for thin film cracks but also for cracks ranging in scale.

  14. Thermal Analysis by Numerical Methods of Debonding Effects near the Crack Tip under Composite Repairs

    NASA Astrophysics Data System (ADS)

    Tsamasphyros, G. J.; Kanderakis, G. N.; Marioli-Riga, Z. P.

    2003-05-01

    Composite patch repair of metallic structures has become a rapidly grown technology in the aerospace field due to the demand for significant increases in the useful life of both military and civilian aircraft. This has led to significant advances overall in the repair technology of cracked metallic structures. Adhesively bonded composite reinforcements offer remarkable advantages such as mechanical efficiency, repair time, cost reduction, high structural integrity, repair inspectability, damage tolerance to further causes of future strains, anticorrosion and antifretting properties. However, because of the different nature and properties of the materials that form a repair (metals, composites, adhesives), side-effects may occur: debonding due to high stress concentration in the vicinity of the crack, thermal residual stresses because of different thermal expansion coefficients of the adherents, etc. In this paper a three-dimensional finite elements analysis of the area around a patch repaired crack of a typical aircraft fuselage is performed, taking into account both the properties and the geometry of the involved materials. Examined in this case are 2024-T3 aluminum alloy as base material, FM-73 as the adhesive system and F4/5521 boron/epoxy prepreg as the patch material. Through the thickness stresses near the crack tip and along the patch edges with and without temperature effects are calculated and debonding near the crack tip is examined. Finally, the calculated results are compared with existing theories.

  15. Two dimensional modeling of elastic wave propagation in solids containing cracks with rough surfaces and friction - Part II: Numerical implementation.

    PubMed

    Delrue, Steven; Aleshin, Vladislav; Truyaert, Kevin; Bou Matar, Olivier; Van Den Abeele, Koen

    2018-01-01

    Our study aims at the creation of a numerical toolbox that describes wave propagation in samples containing internal contacts (e.g. cracks, delaminations, debondings, imperfect intergranular joints) of known geometry with postulated contact interaction laws including friction. The code consists of two entities: the contact model and the solid mechanics module. Part I of the paper concerns an in-depth description of a constitutive model for realistic contacts or cracks that takes into account the roughness of the contact faces and the associated effects of friction and hysteresis. In the crack model, three different contact states can be recognized: contact loss, total sliding and partial slip. Normal (clapping) interactions between the crack faces are implemented using a quadratic stress-displacement relation, whereas tangential (friction) interactions were introduced using the Coulomb friction law for the total sliding case, and the Method of Memory Diagrams (MMD) in case of partial slip. In the present part of the paper, we integrate the developed crack model into finite element software in order to simulate elastic wave propagation in a solid material containing internal contacts or cracks. We therefore implemented the comprehensive crack model in MATLAB® and introduced it in the Structural Mechanics Module of COMSOL Multiphysics®. The potential of the approach for ultrasound based inspection of solids with cracks showing acoustic nonlinearity is demonstrated by means of an example of shear wave propagation in an aluminum sample containing a single crack with rough surfaces and friction. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Strain Profiling of Fatigue Crack Overload Effects Using Energy Dispersive X-Ray Diffraction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Croft,M.; Zhong, Z.; Jisrawi, N.

    In this paper, an assessment of commonly used assumptions associated with {Delta}K{sub eff} and their implications on FCG predictions in light of existing experimental and numerical data is presented. In particular, the following assumptions are examined: (1). {Delta}K{sub eff} fully describes cyclic stresses and strains at the crack-tip vicinity. (2). K{sub op} can be determined experimentally or numerically with certain accuracy. (3). Overload alters K{sub op} but not K{sub max} and associated s{sub max} at the crack-tip 'process zone'. (4). Contact of crack faces curtails the crack driving force in terms of {Delta}K{sub eff}. The analysis indicates that there ismore » insufficient support to justify the above assumptions. In contrary, the analysis demonstrates that a two-parameter fatigue crack driving force in terms of {Delta}K and K{sub max}, which accounts for both applied and the internal stresses should be used in FCG analyses and predictions.« less

  17. Comparison of Stevia plants grown from seeds, cuttings and stem-tip cultures for growth and sweet diterpene glucosides.

    PubMed

    Tamura, Y; Nakamura, S; Fukui, H; Tabata, M

    1984-10-01

    The growth and sweet diterpene glucosides of Stevia plants propagated by stem-tip cultures were compared with those of the control plants propagated by seeds. There was no significant difference between the two groups both in growth and in chemical composition. As for the contents of sweet diterpene glucosides, however, the clonal plants showed significantly smaller variations than the sexually propagated plants; they were almost as homogeneous as the plants propagated by cuttings. These results suggest that the clonal propagation by stem-tip culture is an effective method of obtaining a population of uniform plants for the production of sweet diterpene glucosides.

  18. Determination of Stress Coefficient Terms in Cracked Solids for Monoclinic Materials with Plane Symmetry at x3 = 0

    NASA Technical Reports Server (NTRS)

    Yuan, F. G.

    1998-01-01

    Determination of all the coefficients in the crack tip field expansion for monoclinic materials under two-dimensional deformation is presented in this report. For monoclinic materials with a plane of material symmetry at x(sub 3) = 0, the in-plane deformation is decoupled from the anti-plane deformation. In the case of in-plane deformation, utilizing conservation laws of elasticity and Betti's reciprocal theorem, together with selected auxiliary fields, T-stress and third-order stress coefficients near the crack tip are evaluated first from path-independent line integrals. To determine the T-stress terms using the J-integral and Betti's reciprocal work theorem, auxiliary fields under a concentrated force and moment acting at the crack tip are used respectively. Through the use of Stroh formalism in anisotropic elasticity, analytical expressions for all the coefficients including the stress intensity factors are derived in a compact form that has surprisingly simple structure in terms of the Barnett-Lothe tensors, L. The solution forms for degenerated materials, orthotropic, and isotropic materials are presented.

  19. Theoretical Model of the Effect of Crack Tip Blunting on the Ultimate Tensile Strength of Welds in 2219-T87 Aluminum

    NASA Technical Reports Server (NTRS)

    Beil, R. J.

    1982-01-01

    A theoretical model representing blunting of a crack tip radius through diffusion of vacancies is presented. The model serves as the basis for a computer program which calculates changes, due to successive weld heat passes, in the ultimate tensile strength of 2219-T81 aluminum. In order for the model to yield changes of the same order in the ultimate tensile strength as that observed experimentally, a crack tip radius of the order of .001 microns is required. Such sharp cracks could arise in the fusion zone of a weld from shrinkage cavities or decohered phase boundaries between dendrites and the eutectic phase, or, possibly, from plastic deformation due to thermal stresses encountered during the welding process. Microstructural observations up to X2000 (resolution of about .1 micron) did not, in the fusion zone, show structural details which changed significantly under the influence of a heat pass, with the exception of possible small changes in the configuration of the interdendritic eutectic and in porosity build-up in the remelt zone.

  20. International Conference/Workshop on Small Fatigue Cracks (2nd) Held in Santa Barbara, California on 5-10 January 1986.

    DTIC Science & Technology

    1986-03-31

    critical issues thus pertain to the determination of crack tip conditions, as a function of crack length, in terms of the coupled processes of fluid...transport and chemical/electrochemical reactions within the crack, and the determination of the origin of the environmentally-enhanced cracking rates in...Depth in Determining Crack Electrochemistry and Crack Growth" A. Turnbull, National Physical Laboratory, U.K., and R. C. Newmann, UMIST, U.K. 7:30 p.m.-7

  1. Fracture process zone in granite

    USGS Publications Warehouse

    Zang, A.; Wagner, F.C.; Stanchits, S.; Janssen, C.; Dresen, G.

    2000-01-01

    In uniaxial compression tests performed on Aue granite cores (diameter 50 mm, length 100 mm), a steel loading plate was used to induce the formation of a discrete shear fracture. A zone of distributed microcracks surrounds the tip of the propagating fracture. This process zone is imaged by locating acoustic emission events using 12 piezoceramic sensors attached to the samples. Propagation velocity of the process zone is varied by using the rate of acoustic emissions to control the applied axial force. The resulting velocities range from 2 mm/s in displacement-controlled tests to 2 ??m/s in tests controlled by acoustic emission rate. Wave velocities and amplitudes are monitored during fault formation. P waves transmitted through the approaching process zone show a drop in amplitude of 26 dB, and ultrasonic velocities are reduced by 10%. The width of the process zone is ???9 times the grain diameter inferred from acoustic data but is only 2 times the grain size from optical crack inspection. The process zone of fast propagating fractures is wider than for slow ones. The density of microcracks and acoustic emissions increases approaching the main fracture. Shear displacement scales linearly with fracture length. Fault plane solutions from acoustic events show similar orientation of nodal planes on both sides of the shear fracture. The ratio of the process zone width to the fault length in Aue granite ranges from 0.01 to 0.1 inferred from crack data and acoustic emissions, respectively. The fracture surface energy is estimated from microstructure analysis to be ???2 J. A lower bound estimate for the energy dissipated by acoustic events is 0.1 J. Copyright 2000 by the American Geophysical Union.

  2. Microstructure-fatigue crack propagation relationship in TiB{sub 2} particulate reinforced Zn (ZA-8) alloy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hua, W.; Zhang, J.; Wang, Z.

    1995-10-01

    The relationship between microstructure and propagation behavior of fatigue crack in TiB{sub 2} particulate reinforced ZA-8 Zn alloy and in the corresponding constituent matrix material was studied in three point bending fatigue tests with well-polished and pre-etched specimens. Special attention was paid to the observation of microstructure along the crack path as well as on the fracture surface. Mechanism for the difference in fatigue crack growth behavior of the two materials was investigated. The present results indicate that the addition of reinforcement modified the solidification process of the matrix material leading to a considerable change in the matrix microstructure. Thismore » change in the matrix microstructure and the presence of reinforcing particles considerably affected the fatigue crack propagation behavior in the material.« less

  3. Measurement and modeling of temperature-dependent hydrogen embrittlement of chromium-molybdenum steel to enable fitness-for-service life prediction

    NASA Astrophysics Data System (ADS)

    Al-Rumaih, Abdullah M.

    Thick-wall vessels in petrochemical applications, fabricated from 2.25Cr-1Mo steel, operate in pressurized H2 at elevated temperature for more than 20 years. There is a concern regarding the interactive effects of temper-embrittlement and hydrogen-embrittlement on fitness-for-service during startup/shutdown near ambient temperatures. The database of degraded material properties is inadequate to enable accurate assessment. Specifically, H loss from small fracture mechanics specimens was substantial during either long-term or elevated temperature experiments. In addition, the influence of temperature on H-embrittlement of Cr-Mo steel is not fundamentally understood. The objectives of this research are to (1) design a novel laboratory method to retain H in small fracture mechanics specimens, (2) characterize the temperature dependent internal hydrogen embrittlement (IHE) of Cr-Mo weld metal using the developed method, and (3) model H distribution near a stressed crack tip in a H-trap laden bainitic microstructure to fundamentally understand the temperature dependent IHE. The new slotted CT specimen approach, with 3.0 wppm total H produced on the slot surface from acidified thiosulfate charging, quantitatively characterized the temperature dependent threshold stress intensity (KIH and K TH) and kinetics (da/dtRISE and da/dtHOLD) of IHE in Cr-Mo weld metal during both rising and slowly falling K loading. IHE was produced successfully and damage was more severe during rising K loading due to the role of crack tip plasticity in H cracking of low to moderate strength steel. The critical temperature at which embrittlement ceased is in the range 45°C < Tc ≤ 60°C for the weld metal and H content studied. This method provides a useful new tool to generate fracture mechanics based fitness-for-service data. A three-dimensional finite element diffusion model, that accounts for the effect of crack tip plasticity and trapping on H transport, established K, dK/dt and temperature dependencies of H distributed about the stressed crack tip in the slotted and standard CT specimens. The slot approach provides higher H levels for long times and/or elevated temperatures, and solves the problem of H loss during testing. The diffusion model was used to understand temperature dependent ME Stress field interaction energy (EH) vs. temperature at the blunted crack tip for Cr-Mo steel is lower than the estimated binding energies (EB) for the various surrounding reversible trap sites; indicating with probability calculations that H is unlikely to repartition from these traps to the stress field. Hydrogen transport to the fracture process zone (FPZ) from the surrounding bulk is by diffusion, enhanced by a plasticity-related mechanism. Interfaces and boundaries within the FPZ in the dilated region at the crack tip are the sites that form the interconnected H-fracture path. Trapped H concentration in these fracture sites critically governs the temperature dependent IHE, with negligible effect of temperature (≤100°C) on the crack tip stress field. The measured KIH for subcritical H cracking under rising K decreases systematically with increasing H trapped in the FPZ, as established by diffusion modeling for a variety of H cracking and temperature conditions. Diffusion model predictions of the critical trapped H concentration indicate that the Tc at which IHE is eliminated from Cr-Mo weld metal should be ≥110°C for a thick-wall hydroprocessing vessel with total-peak H of ≈4.0 wppm.

  4. Consolidation of fatigue and fatigue-crack-propagation data for design use

    NASA Technical Reports Server (NTRS)

    Rice, R. C.; Davies, K. B.; Jaske, C. E.; Feddersen, C. E.

    1975-01-01

    Analytical methods developed for consolidation of fatigue and fatigue-crack-propagation data for use in design of metallic aerospace structural components are evaluated. A comprehensive file of data on 2024 and 7075 aluminums, Ti-6Al-4V alloy, and 300M steel was established by obtaining information from both published literature and reports furnished by aerospace companies. Analyses are restricted to information obtained from constant-amplitude load or strain cycling of specimens in air at room temperature. Both fatigue and fatigue-crack-propagation data are analyzed on a statistical basis using a least-squares regression approach. For fatigue, an equivalent strain parameter is used to account for mean stress or stress ratio effects and is treated as the independent variable; cyclic fatigue life is considered to be the dependent variable. An effective stress-intensity factor is used to account for the effect of load ratio on fatigue-crack-propagation and treated as the independent variable. In this latter case, crack-growth rate is considered to be the dependent variable. A two term power function is used to relate equivalent strain to fatigue life, and an arc-hyperbolic-tangent function is used to relate effective stress intensity to crack-growth rate.

  5. Transmission and reflection of the fundamental Lamb modes in a metallic plate with a semi-infinite horizontal crack.

    PubMed

    Ramadas, C; Hood, Avinash; Khan, Irfan; Balasubramaniam, Krishnan; Joshi, M

    2013-03-01

    Numerical simulations were carried out to quantify the reflection and transmission characteristics of the fundamental Lamb modes propagating in aluminium sub-plates, which are formed due to a semi-infinite horizontal crack. It was observed that, a Lamb mode propagating in a sub-plate when incident at the edge of a crack, undergoes reflection and transmits through the main plate, as well as the other sub-plate. The mode transmitted through the sub-plate has been termed the 'Turning Lamb Mode' (TLM). Furthermore, a mode converted mode also propagates along with the TLM. This mode has been termed the 'Mode Converted Turning Lamb Mode' (MCTLM). Reflection and transmission characteristics of the fundamental Lamb modes in aluminium sub-plates were studied at frequencies 150 kHz, 175 kHz, and 200 kHz. Experiments conducted to validate the observations made in numerical simulations, confirmed that the transmission and reflection characteristics depend on the thickness ratio. From this study it is surmised that when a Lamb mode propagates through a plate containing horizontal crack, the TLM and the MCTLM start propagating from one sub-plate to the other at the rear edge of the crack and amplitude of these modes depends on the location of the crack across the plate thickness. Copyright © 2012 Elsevier B.V. All rights reserved.

  6. dK/da effects on the SCC growth rates of nickel base alloys in high-temperature water

    NASA Astrophysics Data System (ADS)

    Chen, Kai; Wang, Jiamei; Du, Donghai; Andresen, Peter L.; Zhang, Lefu

    2018-05-01

    The effect of dK/da on crack growth behavior of nickel base alloys has been studied by conducting stress corrosion cracking tests under positive and negative dK/da loading conditions on Alloys 690, 600 and X-750 in high temperature water. Results indicate that positive dK/da accelerates the SCC growth rates, and the accelerating effect increases with dK/da and the initial CGR. The FRI model was found to underestimate the dK/da effect by ∼100X, especially for strain hardening materials, and this underscores the need for improved insight and models for crack tip strain rate. The effect of crack tip strain rate and dK/dt in particular can explain the dK/da accelerating effect.

  7. Intergranular fracture in irradiated Inconel X-750 containing very high concentrations of helium and hydrogen

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Judge, Colin D.; Gauquelin, Nicolas; Walters, Lori

    2015-02-01

    In recent years, it has been determined that Inconel X-750 CANDU spacers have lost strength and material ductility following irradiation in reactor. The irradiated fracture behaviour of ex-service material was also found to be entirely intergranular. The heavily thermalized flux spectrum in a CANDU reactor results in transmutation of 58Ni to 59Ni. The 59Ni itself has unusually high thermal neutron reaction cross-sections of the type: (n, γ), (n, p), and (n,α). The latter two reactions, in particular, contribute to a significant enhancement of the atomic displacements in addition to creating high concentrations of hydrogen and helium within the material. Metallographicmore » examinations by transmission electron microscopy (TEM) have confirmed the presence of helium bubbles in the matrix and aligned along grain boundaries and matrix-precipitate interfaces. He bubble size and density are found to be highly dependent on the irradiation temperature and material microstructure; the bubbles are larger within grain boundary precipitates. TEM specimens extracted from fracture surfaces and crack tips give direct evidence linking crack propagation with grain boundary He bubbles.« less

  8. The initiation and growth of delaminations induced by matrix microcracks in laminated composites

    NASA Technical Reports Server (NTRS)

    Nairn, J. A.; Hu, S.

    1992-01-01

    A recent variational mechanics analysis of microcracking damage in cross-ply laminates of the form /(S)/90n/s, where (S) is any orthotropic sublaminate much stiffer than /90n/, has been extended to account for the presence of delaminations emanating from the tips of microcracks in the /90 2n/T sublaminate. The new two-dimensional stress analysis is used to calculate the total strain energy, effective modulus, and longitudinal thermal expansion coefficient for a laminate having microcracks and delaminations. These results are used to calculate the energy release rate for the initiation and growth of a delamination induced by a matrix microcrack. At low crack densities, /(S)/90n/s laminates are expected to fail by microcracking and to show little or no delamination. At some critical crack density, which is a function of laminate structure and material properties, the energy release rate for delamination exceeds that for microcracking and delamination is predicted to dominate over microcracking. A quasi-three-dimensional model is used to predict the propagation of arbitrarily shaped delamination fronts. All predictions agree with experimental observations.

  9. Review of the Effects of Microstructure on Fatigue in Aluminum Alloys. Ph.D. Thesis - Cincinnati Univ.

    NASA Technical Reports Server (NTRS)

    Telesman, J.

    1984-01-01

    Literature survey was conducted to determine the effects of different microstructural features and different load histories on fatigue crack initiation and propagation of aluminum alloys. Comparison of microstructure and monotonic and cyclic properties between powder metallurgy (P/M) and ingot metallurgy (I/M) alloys is presented. The two alloys that are representative of each process on which the comparison is focused are X7091 and 7050. Included is a detailed description of the microstructure produced through the P/M and I/M proesses. The effect of each pertinent microstructural feature on monotonic and cyclic properties, such as yield strength, toughness, crack initiation and propagation is discussed. Also discussed are the proposed mechanisms for crack initiation and propagation, as well as the effects of aggressive environments on these cyclic properties. The effects of variable amplitude loadin on fatigue crack propagation and the various models proposed to predict load interaction effects are discussed.

  10. Development of Standard Methods of Testing and Analyzing Fatigue Crack Growth Rate Data

    DTIC Science & Technology

    1978-05-01

    nitrogen cooled cryostat; high temperature tests were conducted using resistance heating tapes . An automatic controller maintained test temperatures...Cracking," Int. J. Fracture, Vol. 9, 1973, pp. 63-74. 87. P. Paris and F. Erdogan , "A Critical Analysis of Crack Propagation Laws," Trans. ASME, Ser. D: J...requirements of Sec. 7.2 and Appendix B. 200 REFERENCES 1. P. C. Paris and F. Erdogan , "A Critical Analysis of Crack Propagation Laws", Trans. ASME, Ser. D: 3

  11. Finite-element analysis of dynamic fracture

    NASA Technical Reports Server (NTRS)

    Aberson, J. A.; Anderson, J. M.; King, W. W.

    1976-01-01

    Applications of the finite element method to the two dimensional elastodynamics of cracked structures are presented. Stress intensity factors are computed for two problems involving stationary cracks. The first serves as a vehicle for discussing lumped-mass and consistent-mass characterizations of inertia. In the second problem, the behavior of a photoelastic dynamic tear test specimen is determined for the time prior to crack propagation. Some results of a finite element simulation of rapid crack propagation in an infinite body are discussed.

  12. Shear fatigue crack growth - A literature survey

    NASA Technical Reports Server (NTRS)

    Liu, H. W.

    1985-01-01

    Recent studies of shear crack growth are reviewed, emphasizing test methods and data analyses. The combined mode I and mode II elastic crack tip stress fields are considered. The development and design of the compact shear specimen are described, and the results of fatigue crack growth tests using compact shear specimens are reviewed. The fatigue crack growth tests are discussed and the results of inclined cracks in tensile panels, center cracks in plates under biaxial loading, cracked beam specimens with combined bending and shear loading, center-cracked panels and double edge-cracked plates under cyclic shear loading are examined and analyzed in detail.

  13. On the measurement of the crack tip stress field as a means of determining Delta K(sub eff) under conditions of fatigue crack closure

    NASA Technical Reports Server (NTRS)

    Wallhead, Ian R.; Edwards, Lyndon; Poole, Peter

    1994-01-01

    The optical method of caustics has been successfully extended to enable stress intensity factors as low as 1MPa square root of m to be determined accurately for central fatigue cracks in 2024-T3 aluminium alloy test panels. The feasibility of using this technique to study crack closure, and to determine the effective stress intensity factor range, Delta K(sub eff), has been investigated. Comparisons have been made between the measured values of stress intensity factor, K(sub caus), and corresponding theoretical values, K(sub theo), for a range of fatigue cracks grown under different loading conditions. The values of K(sub caus) and K(sub theo) were in good agreement at maximum stress, where the cracks are fully open, while K(sub caus) exceeded K(sub theo) at minimum stress, due to crack closure. However, the levels of crack closure and values of Delta K(sub eff) obtained could not account for the variations of crack growth rate with loading conditions. It is concluded that the values of Delta K(sub eff), based on caustic measurements in a 1/square root of r stress field well outside the plastic zone, do not fully reflect local conditions which control crack tip behavior.

  14. Critical Issues in Hydrogen Assisted Cracking of Structural Alloys

    DTIC Science & Technology

    2006-01-01

    does not precipitate ? Does the HEAC mechanism explain environment-assisted (stress corrosion ) crack growth in high strength alloys stressed in moist...superalloys were cracked in high pressure (100-200 M~a) H2, while maraging and tempered-martensitic steels were cracked in low pressure (-100 kPa) H2...of IRAC in ultra-high strength AerMet®l00 steel demonstrates the role of crack tip stress in promoting H accumulation and embrittlement. The cracking

  15. Gear fatigue crack prognosis using embedded model, gear dynamic model and fracture mechanics

    NASA Astrophysics Data System (ADS)

    Li, C. James; Lee, Hyungdae

    2005-07-01

    This paper presents a model-based method that predicts remaining useful life of a gear with a fatigue crack. The method consists of an embedded model to identify gear meshing stiffness from measured gear torsional vibration, an inverse method to estimate crack size from the estimated meshing stiffness; a gear dynamic model to simulate gear meshing dynamics and determine the dynamic load on the cracked tooth; and a fast crack propagation model to forecast the remaining useful life based on the estimated crack size and dynamic load. The fast crack propagation model was established to avoid repeated calculations of FEM and facilitate field deployment of the proposed method. Experimental studies were conducted to validate and demonstrate the feasibility of the proposed method for prognosis of a cracked gear.

  16. Healing of Fatigue Crack by High-Density Electropulsing in Austenitic Stainless Steel Treated with the Surface-Activated Pre-Coating

    PubMed Central

    Hosoi, Atsushi; Kishi, Tomoya; Ju, Yang

    2013-01-01

    A technique to heal a fatigue crack in austenitic stainless steel SUS316 by applying a controlled, high-density pulsed current was developed. A surface-activated pre-coating (SAPC), which eliminates the oxide layer and coats a Ni film on the crack surface, was used to improve the adhesion between crack surfaces. Cracks were observed by scanning electron microscopy before and after the application of high-density electropulsing. To evaluate the healing effect of the SAPC during crack propagation, fatigue tests were conducted under a constant stress intensity factor. The fatigue crack treated with the SAPC was found to be effectively healed as a result of electropulsing, and also showed a slower rate of crack propagation. PMID:28788327

  17. Residual Strength Analyses of Monolithic Structures

    NASA Technical Reports Server (NTRS)

    Forth, Scott (Technical Monitor); Ambur, Damodar R. (Technical Monitor); Seshadri, B. R.; Tiwari, S. N.

    2003-01-01

    Finite-element fracture simulation methodology predicts the residual strength of damaged aircraft structures. The methodology uses the critical crack-tip-opening-angle (CTOA) fracture criterion to characterize the fracture behavior of the material. The CTOA fracture criterion assumes that stable crack growth occurs when the crack-tip angle reaches a constant critical value. The use of the CTOA criterion requires an elastic- plastic, finite-element analysis. The critical CTOA value is determined by simulating fracture behavior in laboratory specimens, such as a compact specimen, to obtain the angle that best fits the observed test behavior. The critical CTOA value appears to be independent of loading, crack length, and in-plane dimensions. However, it is a function of material thickness and local crack-front constraint. Modeling the local constraint requires either a three-dimensional analysis or a two-dimensional analysis with an approximation to account for the constraint effects. In recent times as the aircraft industry is leaning towards monolithic structures with the intention of reducing part count and manufacturing cost, there has been a consistent effort at NASA Langley to extend critical CTOA based numerical methodology in the analysis of integrally-stiffened panels.In this regard, a series of fracture tests were conducted on both flat and curved aluminum alloy integrally-stiffened panels. These flat panels were subjected to uniaxial tension and during the test, applied load-crack extension, out-of-plane displacements and local deformations around the crack tip region were measured. Compact and middle-crack tension specimens were tested to determine the critical angle (wc) using three-dimensional code (ZIP3D) and the plane-strain core height (hJ using two-dimensional code (STAGS). These values were then used in the STAGS analysis to predict the fracture behavior of the integrally-stiffened panels. The analyses modeled stable tearing, buckling, and crack branching at the integral stiffener using different values of critical CTOA for different material thicknesses and orientation. Comparisons were made between measured and predicted load-crack extension, out-of-plane displacements and local deformations around the crack tip region. Simultaneously, three-dimensional capabilities to model crack branching and to monitor stable crack growth of multiple cracks in a large thick integrally-stiffened flat panels were implemented in three-dimensional finite element code (ZIP3D) and tested by analyzing the integrally-stiffened panels tested at Alcoa. The residual strength of the panels predicted from STAGS and ZP3D code compared very well with experimental data. In recent times, STAGS software has been updated with new features and now one can have combinations of solid and shell elements in the residual strength analysis of integrally-stiffened panels.

  18. Three-dimensional elastic-plastic finite-element analysis of fatigue crack propagation

    NASA Technical Reports Server (NTRS)

    Goglia, G. L.; Chermahini, R. G.

    1985-01-01

    Fatigue cracks are a major problem in designing structures subjected to cyclic loading. Cracks frequently occur in structures such as aircraft and spacecraft. The inspection intervals of many aircraft structures are based on crack-propagation lives. Therefore, improved prediction of propagation lives under flight-load conditions (variable-amplitude loading) are needed to provide more realistic design criteria for these structures. The main thrust was to develop a three-dimensional, nonlinear, elastic-plastic, finite element program capable of extending a crack and changing boundary conditions for the model under consideration. The finite-element model is composed of 8-noded (linear-strain) isoparametric elements. In the analysis, the material is assumed to be elastic-perfectly plastic. The cycle stress-strain curve for the material is shown Zienkiewicz's initial-stress method, von Mises's yield criterion, and Drucker's normality condition under small-strain assumptions are used to account for plasticity. The three-dimensional analysis is capable of extending the crack and changing boundary conditions under cyclic loading.

  19. Application of in situ thermography for evaluating the high-cycle and very high-cycle fatigue behaviour of cast aluminium alloy AlSi7Mg (T6).

    PubMed

    Krewerth, D; Weidner, A; Biermann, H

    2013-12-01

    The present paper illustrates the application of infrared thermal measurements for the investigation of crack initiation point and crack propagation in the high-cycle and the very high-cycle fatigue range of cast AlSi7Mg alloy (A356). The influence of casting defects, their location, size and amount was studied both by fractography and thermography. Besides internal and surface fatigue crack initiation as a further crack initiation type multiple fatigue crack initiation was observed via in situ thermography which can be well correlated with the results from fractography obtained by SEM investigations. In addition, crack propagation was studied by the development of the temperature measured via thermography. Moreover, the frequency influence on high-cycle fatigue behaviour was investigated. The presented results demonstrate well that the combination of fractography and thermography can give a significant contribution to the knowledge of crack initiation and propagation in the VHCF regime. Copyright © 2013 Elsevier B.V. All rights reserved.

  20. Fatigue crack propagation path across the dentinoenamel junction complex in human teeth.

    PubMed

    Dong, X D; Ruse, N D

    2003-07-01

    The human tooth structures should be understood clearly to improve clinically used restorative materials. The dentinoenamel junction (DEJ) plays a key role in resisting crack propagation in teeth. The aim of this study was to determine the fracture toughness of the enamel-DEJ-dentin complex and to investigate the influence of the DEJ on the fatigue crack propagation path across it by characterizing fatigue-fractured enamel-DEJ-dentin complexes using optical and scanning electron microscopy. The results of this study showed that the fracture toughness of the enamel-DEJ-dentin complex was 1.50 +/- 0.28 Mpa x m(1/2). Based on the results of this investigation, it was concluded that the DEJ complex played a critical role in resisting crack propagation from enamel into dentin. The DEJ complex is, approximately, a 100 to 150 microm broad region at the interface between enamel and dentin. The toughening mechanism of the DEJ complex may be explained by the fact that crack paths were deflected as cracks propagated across it. Understanding the mechanism of crack deflection could help in improving dentin-composite as well as ceramic-cement interfacial qualities with the aim to decrease the risk of clinical failure of restorations. Both can be viewed as being composed from a layer of material of high strength and hardness bonded to a softer but tougher substratum (dentin). The bonding agent or the luting cement layer may play the critical role of the DEJ in improving the strength of these restorations in clinical situations. Copyright 2003 Wiley Periodicals, Inc.

Top