Sample records for propagating gravity waves

  1. Selective excitation of tropical atmospheric waves in wave-CISK: The effect of vertical wind shear

    NASA Technical Reports Server (NTRS)

    Zhang, Minghua; Geller, Marvin A.

    1994-01-01

    The growth of waves and the generation of potential energy in wave-CISK require unstable waves to tilt with height oppositely to their direction of propagation. This makes the structures and instability properties of these waves very sensitive to the presence of vertical shear in the basic flow. Equatorial Kelvin and Rossby-gravity waves have opposite phase tilt with height to what they have in the stratosphere, and their growth is selectively favored by basic flows with westward vertical shear and eastward vertical shear, respectively. Similar calculations are also made for gravity waves and Rossby waves. It is shown that eastward vertical shear of the basic flow promotes CISK for westward propagating Rossby-gravity, Rossby, and gravity waves and suppresses CISK for eastward propagating Kelvin and gravity waves, while westward shear of the basic flow has the reverse effects.

  2. First tomographic observations of gravity waves by the infrared limb imager GLORIA

    NASA Astrophysics Data System (ADS)

    Krisch, Isabell; Preusse, Peter; Ungermann, Jörn; Dörnbrack, Andreas; Eckermann, Stephen D.; Ern, Manfred; Friedl-Vallon, Felix; Kaufmann, Martin; Oelhaf, Hermann; Rapp, Markus; Strube, Cornelia; Riese, Martin

    2017-12-01

    Atmospheric gravity waves are a major cause of uncertainty in atmosphere general circulation models. This uncertainty affects regional climate projections and seasonal weather predictions. Improving the representation of gravity waves in general circulation models is therefore of primary interest. In this regard, measurements providing an accurate 3-D characterization of gravity waves are needed. Using the Gimballed Limb Observer for Radiance Imaging of the Atmosphere (GLORIA), the first airborne implementation of a novel infrared limb imaging technique, a gravity wave event over Iceland was observed. An air volume disturbed by this gravity wave was investigated from different angles by encircling the volume with a closed flight pattern. Using a tomographic retrieval approach, the measurements of this air mass at different angles allowed for a 3-D reconstruction of the temperature and trace gas structure. The temperature measurements were used to derive gravity wave amplitudes, 3-D wave vectors, and direction-resolved momentum fluxes. These parameters facilitated the backtracing of the waves to their sources on the southern coast of Iceland. Two wave packets are distinguished, one stemming from the main mountain ridge in the south of Iceland and the other from the smaller mountains in the north. The total area-integrated fluxes of these two wave packets are determined. Forward ray tracing reveals that the waves propagate laterally more than 2000 km away from their source region. A comparison of a 3-D ray-tracing version to solely column-based propagation showed that lateral propagation can help the waves to avoid critical layers and propagate to higher altitudes. Thus, the implementation of oblique gravity wave propagation into general circulation models may improve their predictive skills.

  3. GPS Observations of Medium-Scale Traveling Ionospheric Disturbances over New Zealand

    NASA Astrophysics Data System (ADS)

    Otsuka, Y.; Lee, C.; Shiokawa, K.; Tsugawa, T.; Nishioka, M.

    2014-12-01

    Using the GPS data obtained from dual-frequency GPS receivers in New Zealand, we have made two-dimensional maps of total electron content (TEC) in 2012 in order to reveal statistical characteristics of MSTIDs at mid-latitudes in southern hemisphere. As of 2012, approximately 40 GPS receivers are in operation in New Zealand. We found that most of the MSITDs over New Zealand propagate northwestward during nighttime in summer and northeastward during daytime in winter. The propagation direction of the nighttime MSTIDs is consistent with the theory that polarization electric fields play an important role in the generating MSTIDs. Because the daytime MSTIDs propagate equatorward, we can speculate that they could be caused by atmospheric gravity waves in the thermosphere. The propagation direction of the daytime MSTIDs also has an eastward component in addition to the equatorward component. This feature is consistent with the daytime MSTIDs observed at mid-latitudes in both northern and southern hemispheres. By carrying out model calculations, we have shown that the eastward component of the MSTID propagation direction during daytime is attributed to an interaction of gravity waves to the background neutral winds. Because most of the daytime MSTIDs appear before 14 LT, the background neutral winds could blow westward. According to the dispersion relation for atmospheric gravity waves, vertical wavelength of the gravity waves becomes larger when the gravity wave propagates in the direction opposite to the background winds. Consequently, the gravity waves having an eastward component of the propagation direction could cause larger amplitude of TEC variations compared to the gravity waves propagating westward. This could be a reason why the propagation direction of the dime MSTIDs has an eastward component.

  4. Long-Term Observation of Small and Medium-Scale Gravity Waves over the Brazilian Equatorial Region

    NASA Astrophysics Data System (ADS)

    Essien, Patrick; Buriti, Ricardo; Wrasse, Cristiano M.; Medeiros, Amauri; Paulino, Igo; Takahashi, Hisao; Campos, Jose Andre

    2016-07-01

    This paper reports the long term observations of small and medium-scale gravity waves over Brazilian equatorial region. Coordinated optical and radio measurements were made from OLAP at Sao Joao do Cariri (7.400S, 36.500W) to investigate the occurrences and properties and to characterize the regional mesospheric gravity wave field. All-sky imager measurements were made from the site. for almost 11 consecutive years (September 2000 to November 2010). Most of the waves propagated were characterized as small-scale gravity. The characteristics of the two waves events agreed well with previous gravity wave studies from Brazil and other sites. However, significant differences in the wave propagation headings indicate dissimilar source regions. The observed medium-scale gravity wave events constitute an important new dataset to study their mesospheric properties at equatorial latitudes. These data exhibited similar propagation headings to the short period events, suggesting they originated from the same source regions. It was also observed that some of the medium-scale were capable of propagating into the lower thermosphere where they may have acted directly as seeds for the Rayleigh-Taylor instability development. The wave events were primarily generated by meteorological processes since there was no correlation between the evolution of the wave events and solar cycle F10.7.

  5. Geometric controls of the flexural gravity waves on the Ross Ice Shelf

    NASA Astrophysics Data System (ADS)

    Sergienko, O. V.

    2017-12-01

    Long-period ocean waves, formed locally or at distant sources, can reach sub-ice-shelf cavities and excite coupled motion in the cavity and the ice shelf - flexural gravity waves. Three-dimensional numerical simulations of the flexural gravity waves on the Ross Ice Shelf show that propagation of these waves is strongly controlled by the geometry of the system - the cavity shape, its water-column thickness and the ice-shelf thickness. The results of numerical simulations demonstrate that propagation of the waves is spatially organized in beams, whose orientation is determined by the direction of the of the open ocean waves incident on the ice-shelf front. As a result, depending on the beams orientation, parts of the Ross Ice Shelf experience significantly larger flexural stresses compared to other parts where the flexural gravity beams do not propagate. Very long-period waves can propagate farther away from the ice-shelf front exciting flexural stresses in the vicinity of the grounding line.

  6. Advancement of Techniques for Modeling the Effects of Atmospheric Gravity-Wave-Induced Inhomogeneities on Infrasound Propagation

    DTIC Science & Technology

    2010-09-01

    ADVANCEMENT OF TECHNIQUES FOR MODELING THE EFFECTS OF ATMOSPHERIC GRAVITY-WAVE-INDUCED INHOMOGENEITIES ON INFRASOUND PROPAGATION Robert G...number of infrasound observations indicate that fine-scale atmospheric inhomogeneities contribute to infrasonic arrivals that are not predicted by...standard modeling techniques. In particular, gravity waves, or buoyancy waves, are believed to contribute to the multipath nature of infrasound

  7. Directional asymmetry of the nonlinear wave phenomena in a three-dimensional granular phononic crystal under gravity.

    PubMed

    Merkel, A; Tournat, V; Gusev, V

    2014-08-01

    We report the experimental observation of the gravity-induced asymmetry for the nonlinear transformation of acoustic waves in a noncohesive granular phononic crystal. Because of the gravity, the contact precompression increases with depth inducing space variations of not only the linear and nonlinear elastic moduli but also of the acoustic wave dissipation. We show experimentally and explain theoretically that, in contrast to symmetric propagation of linear waves, the amplitude of the nonlinearly self-demodulated wave depends on whether the propagation of the waves is in the direction of the gravity or in the opposite direction. Among the observed nonlinear processes, we report frequency mixing of the two transverse-rotational modes belonging to the optical band of vibrations and propagating with negative phase velocities, which results in the excitation of a longitudinal wave belonging to the acoustic band of vibrations and propagating with positive phase velocity. We show that the measurements of the gravity-induced asymmetry in the nonlinear acoustic phenomena can be used to compare the in-depth distributions of the contact nonlinearity and of acoustic absorption.

  8. Long-term variation of horizontal phase velocity and propagation direction of mesospheric and thermospheric gravity waves by using airglow images obtained at Shigarkai, Japan

    NASA Astrophysics Data System (ADS)

    Takeo, D.; Kazuo, S.; Hujinami, H.; Otsuka, Y.; Matsuda, T. S.; Ejiri, M. K.; Yamamoto, M.; Nakamura, T.

    2016-12-01

    Atmospheric gravity waves generated in the lower atmosphere transport momentum into the upper atmosphere and release it when they break. The released momentum drives the global-scale pole-to-pole circulation and causes global mass transport. Vertical propagation of the gravity waves and transportation of momentum depend on horizontal phase velocity of gravity waves according to equation about dispersion relation of waves. Horizontal structure of gravity waves including horizontal phase velocity can be seen in the airglow images, and there have been many studies about gravity waves by using airglow images. However, long-term variation of horizontal phase velocity spectrum of gravity waves have not been studied yet. In this study, we used 3-D FFT method developed by Matsuda et al., (2014) to analyze the horizontal phase velocity spectrum of gravity waves by using 557.7-nm (altitude of 90-100 km) and 630.0-nm (altitude of 200-300 km) airglow images obtained at Shigaraki MU Observatory (34.8 deg N, 136.1 deg E) over 16 years from October 1, 1998 to July 26, 2015. Results about 557.7-nm shows clear seasonal variation of propagation direction of gravity waves in the mesopause region. Between summer and winter, there are propagation direction anisotropies which probably caused by filtering due to zonal mesospheric jet and by difference of latitudinal location of wave sources relative to Shigaraki. Results about 630.0-nm shows clear negative correlation between the yearly power spectrum density of horizontal phase velocity and sunspot number. This negative correlation with solar activity is consistent with growth rate of the Perkins instability, which may play an important role in generating the nighttime medium-scale traveling ionospheric disturbances at middle latitudes.

  9. Gravity Waves in the Presence of Shear during DEEPWAVE

    NASA Astrophysics Data System (ADS)

    Doyle, J. D.; Jiang, Q.; Reinecke, P. A.; Reynolds, C. A.; Eckermann, S. D.; Fritts, D. C.; Smith, R. B.; Taylor, M. J.; Dörnbrack, A.

    2016-12-01

    The DEEP propagating gravity WAVE program (DEEPWAVE) is a comprehensive, airborne and ground-based measurement and modeling program centered on New Zealand and focused on providing a new understanding of gravity wave dynamics and impacts from the troposphere through the mesosphere and lower thermosphere. This program employed the NSF/NCAR GV (NGV) research aircraft from a base in New Zealand in a 6-week field measurement campaign in June-July 2014. During the field phase, the NGV was equipped with new Rayleigh and sodium resonance lidars and an advanced mesospheric temperature mapper (AMTM), a microwave temperature profiler (MTP), as well as dropwindsondes and flight level instruments providing measurements spanning altitudes from immediately above the NGV flight altitude ( 13 km) to 100 km. In this study, we utilize the DEEPWAVE observations and the nonhydrostatic COAMPS configured at high resolution (2 km) with a deep domain (60-80 km) to explore the effects of horizontal wind shear on gravity wave propagation and wave characteristics. Real-data simulations have been conducted for several DEEPWAVE cases. The results suggest that horizontal shear associated with the stratospheric polar night jet refracts the gravity waves and leads to propagation of waves significantly downwind of the South Island. These waves have been referred to as "trailing gravity waves", since they are found predominantly downwind of the orography of the South Island and the wave crests rotate nearly normal to the mountain crest. Observations from the G-V, remote sensing instruments, and the AIRS satellite confirm the presence of gravity waves downwind of the orography in numerous events. The horizontal propagation in the stratosphere can be explained by group velocity arguments for gravity waves in which the wave energy is advected downwind by the component of the flow normal to the horizontal wavevector. We explore the impact of the shear on gravity wave propagation in COAMPS configured in an idealized mode initialized with a zonally balanced stratospheric jet. The idealized results confirm the importance of horizontal wind shear for the refraction of the waves. The zonal momentum flux minimum is shown to bend or refract into the jet in the stratosphere as a consequence of the wind shear.

  10. On resonant coupling of acoustic waves and gravity waves

    NASA Astrophysics Data System (ADS)

    Millet, Christophe

    2017-11-01

    Acoustic propagation in the atmosphere is often modeled using modes that are confined within waveguides causing the sound to propagate through multiple paths to the receiver. On the other hand, direct observations in the lower stratosphere show that the gravity wave field is intermittent, and is often dominated by rather well defined large-amplitude wave packets. In the present work, we use normal modes to describe both the gravity wave field and the acoustic field. The gravity wave spectrum is obtained by launching few monochromatic waves whose properties are chosen stochastically to mimic the intermittency. Owing to the disparity of the gravity and acoustic length scales, the interactions between the gravity wave field and each of the acoustic modes can be described using a multiple-scale analysis. The appropriate amplitude evolution equation for the acoustic field involves certain random terms that can be directly related to the gravity wave sources. We will show that the cumulative effect of gravity wave breakings makes the sensitivity of ground-based acoustic signals large, in that small changes in the gravity wave parameterization can create or destroy specific acoustic features.

  11. Observation of Wood's anomalies on surface gravity waves propagating on a channel.

    PubMed

    Schmessane, Andrea

    2016-09-01

    I report on experiments demonstrating the appearance of Wood's anomalies in surface gravity waves propagating along a channel with a submerged obstacle. Space-time measurements of surface gravity waves allow one to compute the stationary complex field of the wave and the amplitude growth of localized and propagative modes over all the entire channel, including the scattering region. This allows one to access the near and far field dynamics, which constitute a new and complementary way of observation of mode resonances of the incoming wave displaying Wood's anomalies. Transmission coefficient, dispersion relations and normalized wave energy of the incoming wave and the excited mode are measured and found to be in good agreement with theoretical predictions.

  12. Gravity Waves in the Southern Hemisphere Extratropical Winter in the 7-km GEOS-5 Nature Run

    NASA Astrophysics Data System (ADS)

    Holt, L. A.; Alexander, M. J.; Coy, L.; Putman, W.; Molod, A.; Pawson, S.

    2016-12-01

    This study investigates winter Southern Hemisphere extratropical gravity waves and their sources in a 7-km horizontal resolution global climate simulation, the GEOS-5 Nature Run (NR). Gravity waves are evaluated by comparing brightness temperature anomalies to those from the Atmospheric Infrared Sounder (AIRS). Gravity wave amplitudes, wavelengths, and propagation directions are also computed in the NR and AIRS. The NR shows good agreement with AIRS in terms of spatial patterns of gravity wave activity and propagation directions, but the NR amplitudes are smaller by about a factor of 5 and the wavelengths are about a factor of 2 longer than in AIRS. In addition to evaluating gravity wave characteristics, gravity wave sources in the NR are also investigated by relating diagnostics of tropospheric sources of gravity waves, such as precipitation, frontogenesis, and potential vorticity anomalies to absolute gravity wave momentum fluxes in the lower stratosphere. Strong precipitation events are the most strongly correlated with absolute momentum flux, supporting previous studies highlighting the importance of moist processes in the generation of Southern Hemisphere extratropical gravity waves. Additionally, gravity wave absolute momentum fluxes over land are compared to those over ocean, and the contribution of orographic and nonorographic gravity waves to the total absolute momentum flux is examined.

  13. Analysis of the Characteristics of Inertia-Gravity Waves during an Orographic Precipitation Event

    NASA Astrophysics Data System (ADS)

    Liu, Lu; Ran, Lingkun; Gao, Shouting

    2018-05-01

    A numerical experiment was performed using the Weather Research and Forecasting (WRF) model to analyze the generation and propagation of inertia-gravity waves during an orographic rainstorm that occurred in the Sichuan area on 17 August 2014. To examine the spatial and temporal structures of the inertia-gravity waves and identify the wave types, three wavenumber-frequency spectral analysis methods (Fourier analysis, cross-spectral analysis, and wavelet cross-spectrum analysis) were applied. During the storm, inertia-gravity waves appeared at heights of 10-14 km, with periods of 80-100 min and wavelengths of 40-50 km. These waves were generated over a mountain and propagated eastward at an average speed of 15-20 m s-1. Meanwhile, comparison between the reconstructed inertia-gravity waves and accumulated precipitation showed there was a mutual promotion process between them. The Richardson number and Scorer parameter were used to demonstrate that the eastward-moving inertia-gravity waves were trapped in an effective atmospheric ducting zone with favorable reflector and critical level conditions, which were the primary causes of the long lives of the waves. Finally, numerical experiments to test the sensitivity to terrain and diabatic heating were conducted, and the results suggested a cooperative effect of terrain and diabatic heating contributed to the propagation and enhancement of the waves.

  14. Investigating middle-atmospheric gravity waves associated with a sprite-producing mesoscale convective event

    NASA Astrophysics Data System (ADS)

    Vollmer, D. R.; McHarg, M. G.; Harley, J.; Haaland, R. K.; Stenbaek-Nielsen, H.

    2016-12-01

    On 23 July 2014, a mesoscale convective event over western Nebraska produced a large number of sprites. One frame per second images obtained from a low-noise Andor Scientific CMOS camera showed regularly-spaced horizontal striations in the airglow both before and during several of the sprite events, suggesting the presence of vertically-propagating gravity waves in the middle atmosphere. Previous work hypothesized that the gravity waves were produced by the thunderstorm itself. We compare our observations with previous work, and present numerical simulations conducted to determine source, structure, and propagation of atmospheric gravity waves.

  15. Gravity Wave Predictability and Dynamics in Deepwave

    NASA Astrophysics Data System (ADS)

    Doyle, J. D.; Fritts, D. C.; Smith, R. B.; Eckermann, S. D.; Taylor, M. J.; Dörnbrack, A.; Uddstrom, M.; Reynolds, C. A.; Reinecke, A.; Jiang, Q.

    2015-12-01

    The DEEP propagating gravity WAVE program (DEEPWAVE) is a comprehensive, airborne and ground-based measurement and modeling program centered on New Zealand and focused on providing a new understanding of gravity wave dynamics and impacts from the troposphere through the mesosphere and lower thermosphere (MLT). This program employed the NSF/NCAR GV (NGV) research aircraft from a base in New Zealand in a 6-week field measurement campaign in June-July 2014. During the field phase, the NGV was equipped with new lidar and airglow instruments, as well as dropwindsondes and a full suite of flight level instruments including the microwave temperature profiler (MTP), providing temperatures and vertical winds spanning altitudes from immediately above the NGV flight altitude (~13 km) to ~100 km. The region near New Zealand was chosen since all the relevant GW sources (e.g., mountains, cyclones, jet streams) occur strongly here, and upper-level winds in austral winter permit gravity waves to propagate to very high altitudes. The COAMPS adjoint modeling system provided forecast sensitivity in real time during the six-week DEEPWAVE field phase. Five missions were conducted using the NGV to observe regions of high forecast sensitivity, as diagnosed using the COAMPS adjoint model. In this presentation, we provide a summary of the sensitivity characteristics and explore the implications for predictability of low-level winds crucial for gravity wave launching, as well as predictability of gravity wave characteristics in the stratosphere. In general, the sensitive regions were characterized by localized strong dynamics, often involving intense baroclinic systems with deep convection. The results of the adjoint modeling system suggest that gravity wave launching and the characteristics of the gravity waves can be linked to these sensitive regions near frontal zones within baroclinic systems. The predictability links between the tropospheric fronts, cyclones, jet regions, and gravity waves that vertically propagate upward through the stratosphere will be addressed further in the presentation. We examine RF23 during DEEPWAVE, which sampled deep propagating gravity waves over Auckland and Macquarie Islands. We provide insight into the gravity wave dynamics through applying the COAMPS and its adjoint at high resolution.

  16. Wave Dynamics and Transport in the Stratosphere

    NASA Technical Reports Server (NTRS)

    Holton, James R.; Alexander, M. Joan

    1999-01-01

    The report discusses: (1) Gravity waves generated by tropical convection: A study in which a two-dimensional cloud-resolving model was used to examine the possible role of gravity waves generated by a simulated tropical squall line in forcing the quasi-biennial oscillation was completed. (2) Gravity wave ray tracing studies:It was developed a linear ray tracing model of gravity wave propagation to extend the nonlinear storm model results into the mesosphere and thermosphere. (3) tracer filamentation: Vertical soundings of stratospheric ozone often exhibit laminated tracer structures characterized by strong vertical tracer gradients. (4) Mesospheric gravity wave modeling studies: Although our emphasis in numerical simulation of gravity waves generated by convection has shifted from simulation of idealized two-dimensional squall lines to the most realistic (and complex) study of wave generation by three-dimensional storms. (5) Gravity wave climatology studies: Mr. Alexander applied a linear gravity wave propagation model together with observations of the background wind and stability fields to compute climatologies of gravity wave activity for comparison to observations. (6) Convective forcing of gravity waves: Theoretical study of gravity wave forcing by convective heat sources has completed. (7) Gravity waves observation from UARS: The objective of this work is to apply ray tracing, and other model technique, in order to determine to what extend the horizontal and vertical variation in satellite observed distribution of small-scale temperature variance can be attributed to gravity waves from particular sources. (8) The annual and interannual variations in temperature and mass flux near the tropical tropopause. and (9) Three dimensional cloud model.

  17. Tsunami-Generated Atmospheric Gravity Waves and Their Atmospheric and Ionospheric Effects: a Review and Some Recent Modeling Results

    NASA Astrophysics Data System (ADS)

    Hickey, M. P.

    2017-12-01

    Tsunamis propagate on the ocean surface at the shallow water phase speed which coincides with the phase speed of fast atmospheric gravity waves. The forcing frequency also corresponds with those of internal atmospheric gravity waves. Hence, the coupling and effective forcing of gravity waves due to tsunamis is particularly effective. The fast horizontal phase speeds of the resulting gravity waves allows them to propagate well into the thermosphere before viscous dissipation becomes strong, and the waves can achieve nonlinear amplitudes at these heights resulting in large amplitude traveling ionospheric disturbances (TIDs). Additionally, because the tsunami represents a moving source able to traverse large distances across the globe, the gravity waves and associated TIDs can be detected at large distances from the original tsunami (earthquake) source. Although it was during the mid 1970s when the tsunami source of gravity waves was first postulated, only relatively recently (over the last ten to fifteen years) has there has been a surge of interest in this research arena, driven largely by significant improvements in measurement technologies and computational capabilities. For example, the use of GPS measurements to derive total electron content has been a particularly powerful technique used to monitor the propagation and evolution of TIDs. Monitoring airglow variations driven by atmospheric gravity waves has also been a useful technique. The modeling of specific events and comparison with the observed gravity waves and/or TIDs has been quite revealing. In this talk I will review some of the most interesting aspects of this research and also discuss some interesting and outstanding issues that need to be addressed. New modeling results relevant to the Tohoku tsunami event will also be presented.

  18. Dynamics of flexural gravity waves: from sea ice to Hawking radiation and analogue gravity

    NASA Astrophysics Data System (ADS)

    Das, S.; Sahoo, T.; Meylan, M. H.

    2018-01-01

    The propagation of flexural gravity waves, routinely used to model wave interaction with sea ice, is studied, including the effect of compression and current. A number of significant and surprising properties are shown to exist. The occurrence of blocking above a critical value of compression is illustrated. This is analogous to propagation of surface gravity waves in the presence of opposing current and light wave propagation in the curved space-time near a black hole, therefore providing a novel system for studying analogue gravity. Between the blocking and buckling limit of the compressive force, the dispersion relation possesses three positive real roots, contrary to an earlier observation of having a single positive real root. Negative energy waves, in which the phase and group velocity point in opposite directions, are also shown to exist. In the presence of an opposing current and certain critical ranges of compressive force, the second blocking point shifts from the positive to the negative branch of the dispersion relation. Such a shift is known as the Hawking effect from the analogous behaviour in the theory of relativity which leads to Hawking radiation. The theory we develop is illustrated with simulations of linear waves in the time domain.

  19. Dynamics of flexural gravity waves: from sea ice to Hawking radiation and analogue gravity.

    PubMed

    Das, S; Sahoo, T; Meylan, M H

    2018-01-01

    The propagation of flexural gravity waves, routinely used to model wave interaction with sea ice, is studied, including the effect of compression and current. A number of significant and surprising properties are shown to exist. The occurrence of blocking above a critical value of compression is illustrated. This is analogous to propagation of surface gravity waves in the presence of opposing current and light wave propagation in the curved space-time near a black hole, therefore providing a novel system for studying analogue gravity. Between the blocking and buckling limit of the compressive force, the dispersion relation possesses three positive real roots, contrary to an earlier observation of having a single positive real root. Negative energy waves, in which the phase and group velocity point in opposite directions, are also shown to exist. In the presence of an opposing current and certain critical ranges of compressive force, the second blocking point shifts from the positive to the negative branch of the dispersion relation. Such a shift is known as the Hawking effect from the analogous behaviour in the theory of relativity which leads to Hawking radiation. The theory we develop is illustrated with simulations of linear waves in the time domain.

  20. Middle Atmosphere Program. Handbook for MAP, volume 20

    NASA Technical Reports Server (NTRS)

    Bowhill, S. A. (Editor); Edwards, B. (Editor)

    1986-01-01

    Various topics related to investigations of the middle atmosphere are discussed. Numerical weather prediction, performance characteristics of weather profiling radars, determination of gravity wave and turbulence parameters, case studies of gravity-wave propagation, turbulence and diffusion due to gravity waves, the climatology of gravity waves, mesosphere-stratosphere-troposphere radar, antenna arrays, and data management techniques are among the topics discussed.

  1. Ionospheric effects of magneto-acoustic-gravity waves: Dispersion relation

    NASA Astrophysics Data System (ADS)

    Jones, R. Michael; Ostrovsky, Lev A.; Bedard, Alfred J.

    2017-06-01

    There is extensive evidence for ionospheric effects associated with earthquake-related atmospheric disturbances. Although the existence of earthquake precursors is controversial, one suggested method of detecting possible earthquake precursors and tsunamis is by observing possible ionospheric effects of atmospheric waves generated by such events. To study magneto-acoustic-gravity waves in the atmosphere, we have derived a general dispersion relation including the effects of the Earth's magnetic field. This dispersion relation can be used in a general atmospheric ray tracing program to calculate the propagation of magneto-acoustic-gravity waves from the ground to the ionosphere. The presence of the Earth's magnetic field in the ionosphere can radically change the dispersion properties of the wave. The general dispersion relation obtained here reduces to the known dispersion relations for magnetoacoustic waves and acoustic-gravity waves in the corresponding particular cases. The work described here is the first step in achieving a generalized ray tracing program permitting propagation studies of magneto-acoustic-gravity waves.

  2. Cosmological bound from the neutron star merger GW170817 in scalar-tensor and F(R) gravity theories

    NASA Astrophysics Data System (ADS)

    Nojiri, Shin'ichi; Odintsov, Sergei D.

    2018-04-01

    We consider the evolution of cosmological gravitational waves in scalar-tensor theory and F (R) gravity theory as typical models of the modified gravity. Although the propagation speed is not changed from the speed of light, the propagation phase changes when we compare the propagation in these modified gravity theories with the propagation in the ΛCDM model. The phase change might be detected in future observations.

  3. Gravity Wave Interactions with Fine Structures in the Mesosphere and Lower Thermosphere

    NASA Astrophysics Data System (ADS)

    Mixa, Tyler; Fritts, David; Bossert, Katrina; Laughman, Brian; Wang, Ling; Lund, Thomas; Kantha, Lakshmi

    2017-04-01

    An anelastic numerical model is used to probe the influences of fine layering structures on gravity wave propagation in the Mesosphere and Lower Thermosphere (MLT). Recent lidar observations confirm the presence of persistent layered structures in the MLT that have sharp stratification and vertical scales below 1km. Gravity waves propagating through finely layered environments can excite and modulate the evolution of small scale instabilities that redefine the layering structure in these regions. Such layers in turn filter the outgoing wave spectra, promote ducting or reflection, hasten the onset of self-acceleration dynamics, and encourage wave/mean-flow interactions via energy and momentum transport. Using high resolution simulations of a localized gravity wave packet in a deep atmosphere, we identify the relative impacts of various wave and mean flow parameters to improve our understanding of these dynamics and complement recent state-of-the-art observations.

  4. Statistical analysis of mesospheric gravity waves over King Sejong Station, Antarctica (62.2°S, 58.8°W)

    NASA Astrophysics Data System (ADS)

    Kam, Hosik; Jee, Geonhwa; Kim, Yong; Ham, Young-bae; Song, In-Sun

    2017-03-01

    We have investigated the characteristics of mesospheric short period (<1 h) gravity waves which were observed with all-sky images of OH Meinel band and OI 557 nm airglows over King Sejong Station (KSS) (62.22°S, 58.78°W) during a period of 2008-2015. By applying 2-dimensional FFT to time differenced images, we derived horizontal wavelengths, phase speeds, and propagating directions (188 and 173 quasi-monochromatic waves from OH and OI airglow images, respectively). The majority of the observed waves propagated predominantly westward, implying that eastward waves were filtered out by strong eastward stratospheric winds. In order to obtain the intrinsic properties of the observed waves, we utilized winds simultaneously measured by KSS Meteor Radar and temperatures from Aura Microwave Limb Sounder (MLS). More than half the waves propagated horizontally, as waves were in Doppler duct or evanescent in the vertical direction. This might be due to strong eastward background wind field in the mesosphere over KSS. For freely propagating waves, the vertical wavelengths were in the interquartile range of 9-33 km with a median value of 15 km. The vertical wavelengths are shorter than those observed at Halley station (76°S, 27°W) where the majority of the observed waves were freely propagating. The difference in the wave propagating characteristics between KSS and Halley station suggests that gravity waves may affect mesospheric dynamics in this part of the Antarctic Peninsula more strongly than over the Antarctic continent. Furthermore, strong wind shear over KSS played an important role in changing the vertical wavenumbers as the waves propagated upward between two airglow layers (87 and 96 km).

  5. Evidence at Mesospheric Altitude of Deeply Propagating Atmospheric Gravity Waves Created by Orographic Forcing over the Auckland Islands (50.5ºS) During the Deepwave Project

    NASA Astrophysics Data System (ADS)

    Pautet, P. D.; Ma, J.; Taylor, M. J.; Bossert, K.; Doyle, J. D.; Eckermann, S. D.; Williams, B. P.; Fritts, D. C.

    2014-12-01

    The DEEPWAVE project recently took place in New Zealand during the months of June and July 2014. This international program focused on investigating the generation and deep propagation of atmospheric gravity waves. A series of instruments was operated at several ground-based locations and on-board the NSF Gulfstream V aircraft. 26 research flights were performed to explore possible wave sources and their effects on the middle and upper atmosphere. On July 14th, a research flight was conducted over the Auckland Islands, a small sub Antarctic archipelago located ~450km south of New Zealand. Moderate southwesterly tropospheric wind (~25m/s) was blowing over the rugged topography of the islands, generating mountain wave signature at the flight altitude. Spectacular small-scale gravity waves were simultaneously observed at the mesopause level using the USU Advanced Mesospheric Temperature Mapper (AMTM). Their similarity with the model-predicted waves was striking. This presentation will describe this remarkable case of deep wave propagation and compare the measurements obtained with the instruments on-board the aircraft with forecasting and wave propagation models.

  6. Gravity waves in Titan's atmosphere

    NASA Technical Reports Server (NTRS)

    Friedson, A. James

    1994-01-01

    Scintillations (high frequency variations) observed in the radio signal during the occultation of Voyager 1 by Titan (Hinson and Tyler, 1983) provide information concerning neutral atmospheric density fluctuations on scales on hundreds of meters to a few kilometers. Those seen at altitudes higher than 25 km above the surface were interpreted by Hinson and Tyler as being caused by linear, freely propagating (energy-conserving) gravity waves, but this interpretation was found to be inconsistent with the scintillation data below the 25-km altitude level. Here an attempt is made to interpret the entire scintillation profile between the surface and the 90-km altitude level in terms of gravity waves generated at the surface. Numerical calculations of the density fluctuations caused by two-dimensional, nonhydrostatic, finite-amplitude gravity waves propagating vertically through Titan's atmosphere are performed to produce synthetic scintillation profiles for comparison with the observations. The numerical model accurately treats the effects of wave transience, nonlinearity, and breakdown due to convective instability in the overturned part of the wave. The high-altitude scintillation data were accurately recovered with a freely propagating wave solution, confirming the analytic model of Hinson and Tyler. It is found that the low-altitude scintillation data can be fit by a model where a component of the gravity waves becomes convectively unstable and breaks near the 15 km level. The large-scale structure of the observed scintillation profile in the entire altitude range between 5 and 85 km can be simulated by a model where the freely propagating and breaking waves are forced at the surface simultaneously. Further analysis of the Voyager 1 Titan low-altitude scintillation data, using inversion theory appropriate for strong scattering, could potentially remove some of the ambiguities remaining in this analysis and allow a better determination of the strength and source of the waves.

  7. Impacts of Horizontal Propagation of Orographic Gravity Waves on the Wave Drag in the Stratosphere and Lower Mesosphere

    NASA Astrophysics Data System (ADS)

    Xu, Xin; Wang, Yuan; Xue, Ming; Zhu, Kefeng

    2017-11-01

    The impact of horizontal propagation of mountain waves on the orographic gravity wave drag (OGWD) in the stratosphere and lower mesosphere of the Northern Hemisphere is evaluated for the first time. Using a fine-resolution (1 arc min) terrain and 2.5°×2.5° European Centre for Medium-Range Weather Forecasts ERA-Interim reanalysis data during 2011-2016, two sets of OGWD are calculated offline according to a traditional parameterization scheme (without horizontal propagation) and a newly proposed scheme (with horizontal propagation). In both cases, the zonal mean OGWDs show similar spatial patterns and undergo a notable seasonal variation. In winter, the OGWD is mainly distributed in the upper stratosphere and lower mesosphere of middle to high latitudes, whereas the summertime OGWD is confined in the lower stratosphere. Comparison between the two sets of OGWD reveal that the horizontal propagation of mountain waves tends to decrease (increase) the OGWD in the lower stratosphere (middle to upper stratosphere and lower mesosphere). Consequently, including the horizontal propagation of mountain waves in the parameterization of OGWD can reduce the excessive OGWD in the lower stratosphere and strengthen the insufficient gravity wave forcing in the mesosphere, which are the known problems of traditional OGWD schemes. The impact of horizontal propagation is more prominent in winter than in summer, with the OGWD in western Tibetan Plateau, Rocky Mountains, and Greenland notably affected.

  8. Comparison of Gravity Wave Temperature Variances from Ray-Based Spectral Parameterization of Convective Gravity Wave Drag with AIRS Observations

    NASA Technical Reports Server (NTRS)

    Choi, Hyun-Joo; Chun, Hye-Yeong; Gong, Jie; Wu, Dong L.

    2012-01-01

    The realism of ray-based spectral parameterization of convective gravity wave drag, which considers the updated moving speed of the convective source and multiple wave propagation directions, is tested against the Atmospheric Infrared Sounder (AIRS) onboard the Aqua satellite. Offline parameterization calculations are performed using the global reanalysis data for January and July 2005, and gravity wave temperature variances (GWTVs) are calculated at z = 2.5 hPa (unfiltered GWTV). AIRS-filtered GWTV, which is directly compared with AIRS, is calculated by applying the AIRS visibility function to the unfiltered GWTV. A comparison between the parameterization calculations and AIRS observations shows that the spatial distribution of the AIRS-filtered GWTV agrees well with that of the AIRS GWTV. However, the magnitude of the AIRS-filtered GWTV is smaller than that of the AIRS GWTV. When an additional cloud top gravity wave momentum flux spectrum with longer horizontal wavelength components that were obtained from the mesoscale simulations is included in the parameterization, both the magnitude and spatial distribution of the AIRS-filtered GWTVs from the parameterization are in good agreement with those of the AIRS GWTVs. The AIRS GWTV can be reproduced reasonably well by the parameterization not only with multiple wave propagation directions but also with two wave propagation directions of 45 degrees (northeast-southwest) and 135 degrees (northwest-southeast), which are optimally chosen for computational efficiency.

  9. Generalized framework for testing gravity with gravitational-wave propagation. I. Formulation

    NASA Astrophysics Data System (ADS)

    Nishizawa, Atsushi

    2018-05-01

    The direct detection of gravitational waves (GWs) from merging binary black holes and neutron stars marks the beginning of a new era in gravitational physics, and it brings forth new opportunities to test theories of gravity. To this end, it is crucial to search for anomalous deviations from general relativity in a model-independent way, irrespective of gravity theories, GW sources, and background spacetimes. In this paper, we propose a new universal framework for testing gravity with GWs, based on the generalized propagation of a GW in an effective field theory that describes modification of gravity at cosmological scales. Then, we perform a parameter estimation study, showing how well the future observation of GWs can constrain the model parameters in the generalized models of GW propagation.

  10. Propagation of inertial-gravity waves on an island shelf

    NASA Astrophysics Data System (ADS)

    Bondur, V. G.; Sabinin, K. D.; Grebenyuk, Yu. V.

    2015-09-01

    The propagation of inertial-gravity waves (IGV) at the boundary of the Pacific shelf near the island of Oahu (Hawaii), whose generation was studied in the first part of this work [1], is analyzed. It is shown that a significant role there is played by the plane oblique waves; whose characteristics were identified by the method of estimating 3D wave parameters for the cases when the measurements are available only for two verticals. It is established that along with the descending propagation of energy that is typical of IGVs, wave packets ascend from the bottom to the upper layers, which is caused by the emission of waves from intense jets of discharged waters flowing out of a diffusor located at the bottom.

  11. On the mechanism of self gravitating Rossby interfacial waves in proto-stellar accretion discs

    NASA Astrophysics Data System (ADS)

    Yellin-Bergovoy, Ron; Heifetz, Eyal; Umurhan, Orkan M.

    2016-05-01

    The dynamical response of edge waves under the influence of self-gravity is examined in an idealised two-dimensional model of a proto-stellar disc, characterised in steady state as a rotating vertically infinite cylinder of fluid with constant density except for a single density interface at some radius ?. The fluid in basic state is prescribed to rotate with a Keplerian profile ? modified by some additional azimuthal sheared flow. A linear analysis shows that there are two azimuthally propagating edge waves, kin to the familiar Rossby waves and surface gravity waves in terrestrial studies, which move opposite to one another with respect to the local basic state rotation rate at the interface. Instability only occurs if the radial pressure gradient is opposite to that of the density jump (unstably stratified) where self-gravity acts as a wave stabiliser irrespective of the stratification of the system. The propagation properties of the waves are discussed in detail in the language of vorticity edge waves. The roles of both Boussinesq and non-Boussinesq effects upon the stability and propagation of these waves with and without the inclusion of self-gravity are then quantified. The dynamics involved with self-gravity non-Boussinesq effect is shown to be a source of vorticity production where there is a jump in the basic state density In addition, self-gravity also alters the dynamics via the radial main pressure gradient, which is a Boussinesq effect. Further applications of these mechanical insights are presented in the conclusion including the ways in which multiple density jumps or gaps may or may not be stable.

  12. Acoustic and gravity waves in the neutral atmosphere and the ionosphere, generated by severe storms

    NASA Technical Reports Server (NTRS)

    Balachandran, N. K.

    1983-01-01

    Gravity waves in the neutral atmosphere and their propagation in the ionosphere and the study of infrasonic signals from thunder were investigated. Doppler shifts of the order of 0.1 Hz are determined and they provide high-resolution measurements of the movements in the ionosphere. By using an array of transmitters with different frequencies and at different locations, the horizontal and vertical propagation vectors of disturbances propagating through the ionosphere are determined.

  13. Occurrence characteristics of medium-scale gravity waves observed in OH and OI nightglow over Adelaide (34.5°S, 138.5°E)

    NASA Astrophysics Data System (ADS)

    Ding, F.; Yuan, H.; Wan, W.; Reid, I. M.; Woithe, J. M.

    2004-07-01

    This paper presents a 7 year climatology describing medium-scale gravity waves observed in the menopause region covering the years from 1995 to 2001. The data comes from the OI and OH airglow observations of the three-field photometer employed at the University of Adelaide's Buckland Park, Australia (34.5°S, 138.5°E). About 1300 gravity wave events (AGW) are identified during the years 1995-2001. These AGW events usually persist for between 40 min and 4 hours. The magnitudes range from 1% to 14% of the background intensities and peak at 2% for OI observations and at 3% for OH observations. The observed periods range from 10 to 30 min, and the horizontal phase speeds range from 20 to 250 m s-1, with dominant wave scales of 17 min, 70 m s-1 for OI observations and 20 min, 40 m s-1 for OH observations. The intrinsic parameters are obtained by using medium-frequency (MF) wind data observed at the same place. The occurrence frequency of AGW events peaks at 13 min, 40 m s-1 for both OI and OH observations. The occurrence rate of gravity waves has a major peak in summer and a minor peak in winter. There is an obvious dominating southeastward direction for gravity waves, with azimuths of 160° in summer and 130° in winter. Studies for gravity waves observed in various locations show a similar tendency of propagating meridionally toward the summer pole. This implies that the tendency of propagating toward the summer pole may be a global trend for medium-scale gravity waves observed in the mesopause region. During summer, gravity waves propagate against winds measured by MF radar in their dominating direction. Using the ray tracing method, we found that the seasonal variation of winds limits the access of gravity waves to the observation height through reflection and critical coupling, which is one of the causes leading to the seasonal behavior of gravity waves observed over Adelaide.

  14. Deep Orographic Gravity Wave Dynamics over Subantarctic Islands as Observed and Modeled during the Deep Propagating Gravity Wave Experiment (DEEPWAVE)

    NASA Astrophysics Data System (ADS)

    Eckermann, S. D.; Broutman, D.; Ma, J.; Doyle, J. D.; Pautet, P. D.; Taylor, M. J.; Bossert, K.; Williams, B. P.; Fritts, D. C.; Smith, R. B.; Kuhl, D.; Hoppel, K.; McCormack, J. P.; Ruston, B. C.; Baker, N. L.; Viner, K.; Whitcomb, T.; Hogan, T. F.; Peng, M.

    2016-12-01

    The Deep Propagating Gravity Wave Experiment (DEEPWAVE) was an international aircraft-based field program to observe and study the end-to-end dynamics of atmospheric gravity waves from 0-100 km altitude and the effects on atmospheric circulations. On 14 July 2014, aircraft remote-sensing instruments detected large-amplitude gravity-wave oscillations within mesospheric airglow and sodium layers downstream of the Auckland Islands, located 1000 km south of Christchurch, New Zealand. A high-altitude reanalysis and a three-dimensional Fourier gravity wave model are used to investigate the dynamics of this event from the surface to the mesosphere. At 0700 UTC when first observations were made, surface flow across the islands' terrain generated linear three-dimensional wavefields that propagated rapidly to ˜78 km altitude, where intense breaking occurred in a narrow layer beneath a zero-wind region at ˜83 km altitude. In the following hours, the altitude of weak winds descended under the influence of a large-amplitude migrating semidiurnal tide, leading to intense breaking of these wavefields in subsequent observations starting at 1000 UTC. The linear Fourier model constrained by upstream reanalysis reproduces the salient aspects of observed wavefields, including horizontal wavelengths, phase orientations, temperature and vertical displacement amplitudes, heights and locations of incipient wave breaking, and momentum fluxes. Wave breaking has huge effects on local circulations, with inferred layer-averaged westward mean-flow accelerations of ˜350 m s-1 hour-1 and dynamical heating rates of ˜8 K hour-1, supporting recent speculation of important impacts of orographic gravity waves from subantarctic islands on the mean circulation and climate of the middle atmosphere during austral winter. We also study deep orographic gravity waves from islands during DEEPWAVE more widely using observations from the Atmospheric Infrared Sounder (AIRS) and high-resolution high-altitude numerical weather prediction models.

  15. Turbulence and stress owing to gravity wave and tidal breakdown

    NASA Technical Reports Server (NTRS)

    Lindzen, R. S.

    1981-01-01

    For some years it has been accepted that tides and gravity waves propagating into the upper mesosphere from below are the major source of turbulence in the upper mesosphere. The considered investigation has the objective to examine the implications of such a situation in some detail. The main propagating diurnal mode seems to be the primary contributor at tropical latitudes. Because of the high phase speed of this mode, it is only slightly affected by the mean zonal flow of the atmosphere. Wavebreaking appears to occur around 85 km, leading to a layer of enhanced eddy diffusion and wave induced acceleration extending between 85 km and about 108 km. Above 108 km molecular transport dominates. Gravity waves appear to be dominant at middle and high latitudes. The flow distribution will effectively determine which gravity waves (depending on phase speed) can reach the mesosphere.

  16. Applications of acoustic-gravity waves numerical modeling to tsunami signals observed by gravimetry satellites in very low orbit

    NASA Astrophysics Data System (ADS)

    Brissaud, Q.; Garcia, R.; Sladen, A.; Martin, R.; Komatitsch, D.

    2016-12-01

    Acoustic and gravity waves propagating in planetary atmospheres have been studied intensively as markers of specific phenomena (tectonic events, explosions) or as contributors to atmosphere dynamics. To get a better understanding of the physics behind these dynamic processes, both acoustic and gravity waves propagation should be modeled in an attenuating and windy 3D atmosphere from the ground all the way to the upper thermosphere. Thus, in order to provide an efficient numerical tool at the regional or global scale we introduce a high-order finite-difference time domain (FDTD) approach that relies on the linearized compressible Navier-Stokes equations with spatially non constant physical parameters (density, viscosities and speed of sound) and background velocities (wind). We present applications of these simulations to the propagation of gravity waves generated by tsunamis for realistic cases for which atmospheric models are extracted from empirical models including variations with altitude of atmospheric parameters, and tsunami forcing at the ocean surface is extracted from shallow water simulations. We describe the specific difficulties induced by the size of the simulation, the boundary conditions and the spherical geometry and compare the simulation outputs to data gathered by gravimetric satellites crossing gravity waves generated by tsunamis.

  17. Study of gravity waves propagation in the thermosphere of Mars based on MAVEN/NGIMS density measurements

    NASA Astrophysics Data System (ADS)

    Vals, M.

    2017-09-01

    We use MAVEN/NGIMS CO2 density measurements to analyse gravity waves in the thermosphere of Mars. In particular the seasonal/latitudinal variability of their amplitude is studied and interpreted. Key background parameters controlling the activity of gravity waves are analysed with the help of the Mars Climate Database (MCD). Gravity waves activity presents a good anti-correlation to the temperature variability retrieved from the MCD. An analysis at pressure levels is ongoing.

  18. Constraints on Wave Drag Parameterization Schemes for Simulating the Quasi-Biennial Oscillation. Part I: Gravity Wave Forcing.

    NASA Astrophysics Data System (ADS)

    Campbell, Lucy J.; Shepherd, Theodore G.

    2005-12-01

    Parameterization schemes for the drag due to atmospheric gravity waves are discussed and compared in the context of a simple one-dimensional model of the quasi-biennial oscillation (QBO). A number of fundamental issues are examined in detail, with the goal of providing a better understanding of the mechanism by which gravity wave drag can produce an equatorial zonal wind oscillation. The gravity wave driven QBOs are compared with those obtained from a parameterization of equatorial planetary waves. In all gravity wave cases, it is seen that the inclusion of vertical diffusion is crucial for the descent of the shear zones and the development of the QBO. An important difference between the schemes for the two types of waves is that in the case of equatorial planetary waves, vertical diffusion is needed only at the lowest levels, while for the gravity wave drag schemes it must be included at all levels. The question of whether there is downward propagation of influence in the simulated QBOs is addressed. In the gravity wave drag schemes, the evolution of the wind at a given level depends on the wind above, as well as on the wind below. This is in contrast to the parameterization for the equatorial planetary waves in which there is downward propagation of phase only. The stability of a zero-wind initial state is examined, and it is determined that a small perturbation to such a state will amplify with time to the extent that a zonal wind oscillation is permitted.

  19. Ionospheric disturbances detected by high-resolution GPS-TEC observations after an earthquake and a tornado

    NASA Astrophysics Data System (ADS)

    Tsugawa, Takuya; Otsuka, Yuichi; Saito, Akinori; Ishii, Mamoru; Nishioka, Michi

    Ionospheric disturbances following the 2011 Tohoku earthquake and the 2013 Moore tornado were observed by high-resolution GPS total electron content (TEC) observations using dense GPS receiver networks. After the 2011 Tohoku earthquake, concentric waves with short propagation distance propagated in the radial direction in the propagation velocity of 3,457, 783, 423 m/s for the first, second, third peak, respectively. Following these waves, concentric waves with long propagation distance appeared to propagate at the velocity of 138-288 m/s. In the vicinity of the epicenter, sudden TEC depletions and short-period oscillations with a period of approximately 4 minutes were also observed. The center of these ionospheric variations, termed the "ionospheric epicenter", corresponded to the tsunami source. Comparing to the results of a numerical simulation using non-hydrostatic compressible atmosphere-ionosphere model, the first peak of circular wave would be caused by the acoustic waves generated from the propagating Rayleigh wave. The second and third waves would be caused by atmospheric gravity waves excited in the lower ionosphere due to the acoustic wave propagations from the tsunami source. The fourth and following waves are considered to be caused by the atmospheric gravity waves induced by the wavefronts of traveling tsunami. After the EF5 tornado hit Moore, Oklahoma, USA, on 20 May 2013, clear concentric waves and short-period oscillations were observed. These concentric waves were non-dispersive waves with a horizontal wavelength of approximately 120 km and a period of approximately 13 minutes. They were observed for more than seven hours throughout North America. TEC oscillations with a period of approximately 4 minutes were also observed in the south of Moore for more than eight hours. Comparison between the GPS-TEC observations and the infrared cloud images from the GOES satellite indicates that the concentric waves and the short-period oscillations would be caused by supercell-induced atmospheric gravity waves and acoustic resonances, respectively. In this presentation, we will introduce the observational results of these ionospheric disturbances and discuss about the mechanism of concentric waves and short-period oscillations observed in both events.

  20. Gravity waves and instabilities in the lower and middle atmosphere

    NASA Technical Reports Server (NTRS)

    Klostermeyer, Juergen

    1989-01-01

    Some basic aspects of mesoscale and small-scale gravity waves and instability mechanisms are discussed. Internal gravity waves with wavelengths between ten and less than one kilometer and periods between several hours and several minutes appear to play a central role in atmospheric wavenumber and frequency spectra. Therefore, the author discusses the propagation of gravity waves in simplified atmospheric models. Their interaction with the wind as well as their mutual interaction and stability mechanisms based on these processes are discussed. Mesosphere stratosphere troposphere radar observations showing the relevant hydrodynamic processes are stressed.

  1. Optical Dark Rogue Wave

    NASA Astrophysics Data System (ADS)

    Frisquet, Benoit; Kibler, Bertrand; Morin, Philippe; Baronio, Fabio; Conforti, Matteo; Millot, Guy; Wabnitz, Stefan

    2016-02-01

    Photonics enables to develop simple lab experiments that mimic water rogue wave generation phenomena, as well as relativistic gravitational effects such as event horizons, gravitational lensing and Hawking radiation. The basis for analog gravity experiments is light propagation through an effective moving medium obtained via the nonlinear response of the material. So far, analogue gravity kinematics was reproduced in scalar optical wave propagation test models. Multimode and spatiotemporal nonlinear interactions exhibit a rich spectrum of excitations, which may substantially expand the range of rogue wave phenomena, and lead to novel space-time analogies, for example with multi-particle interactions. By injecting two colliding and modulated pumps with orthogonal states of polarization in a randomly birefringent telecommunication optical fiber, we provide the first experimental demonstration of an optical dark rogue wave. We also introduce the concept of multi-component analog gravity, whereby localized spatiotemporal horizons are associated with the dark rogue wave solution of the two-component nonlinear Schrödinger system.

  2. Optical Dark Rogue Wave.

    PubMed

    Frisquet, Benoit; Kibler, Bertrand; Morin, Philippe; Baronio, Fabio; Conforti, Matteo; Millot, Guy; Wabnitz, Stefan

    2016-02-11

    Photonics enables to develop simple lab experiments that mimic water rogue wave generation phenomena, as well as relativistic gravitational effects such as event horizons, gravitational lensing and Hawking radiation. The basis for analog gravity experiments is light propagation through an effective moving medium obtained via the nonlinear response of the material. So far, analogue gravity kinematics was reproduced in scalar optical wave propagation test models. Multimode and spatiotemporal nonlinear interactions exhibit a rich spectrum of excitations, which may substantially expand the range of rogue wave phenomena, and lead to novel space-time analogies, for example with multi-particle interactions. By injecting two colliding and modulated pumps with orthogonal states of polarization in a randomly birefringent telecommunication optical fiber, we provide the first experimental demonstration of an optical dark rogue wave. We also introduce the concept of multi-component analog gravity, whereby localized spatiotemporal horizons are associated with the dark rogue wave solution of the two-component nonlinear Schrödinger system.

  3. Optical Dark Rogue Wave

    PubMed Central

    Frisquet, Benoit; Kibler, Bertrand; Morin, Philippe; Baronio, Fabio; Conforti, Matteo; Millot, Guy; Wabnitz, Stefan

    2016-01-01

    Photonics enables to develop simple lab experiments that mimic water rogue wave generation phenomena, as well as relativistic gravitational effects such as event horizons, gravitational lensing and Hawking radiation. The basis for analog gravity experiments is light propagation through an effective moving medium obtained via the nonlinear response of the material. So far, analogue gravity kinematics was reproduced in scalar optical wave propagation test models. Multimode and spatiotemporal nonlinear interactions exhibit a rich spectrum of excitations, which may substantially expand the range of rogue wave phenomena, and lead to novel space-time analogies, for example with multi-particle interactions. By injecting two colliding and modulated pumps with orthogonal states of polarization in a randomly birefringent telecommunication optical fiber, we provide the first experimental demonstration of an optical dark rogue wave. We also introduce the concept of multi-component analog gravity, whereby localized spatiotemporal horizons are associated with the dark rogue wave solution of the two-component nonlinear Schrödinger system. PMID:26864099

  4. Redistribution of energy available for ocean mixing by long-range propagation of internal waves.

    PubMed

    Alford, Matthew H

    2003-05-08

    Ocean mixing, which affects pollutant dispersal, marine productivity and global climate, largely results from the breaking of internal gravity waves--disturbances propagating along the ocean's internal stratification. A global map of internal-wave dissipation would be useful in improving climate models, but would require knowledge of the sources of internal gravity waves and their propagation. Towards this goal, I present here computations of horizontal internal-wave propagation from 60 historical moorings and relate them to the source terms of internal waves as computed previously. Analysis of the two most energetic frequency ranges--near-inertial frequencies and semidiurnal tidal frequencies--reveals that the fluxes in both frequency bands are of the order of 1 kW x m(-1) (that is, 15-50% of the energy input) and are directed away from their respective source regions. However, the energy flux due to near-inertial waves is stronger in winter, whereas the tidal fluxes are uniform throughout the year. Both varieties of internal waves can thus significantly affect the space-time distribution of energy available for global mixing.

  5. Inertio Gravity Waves in the Upper Mesosphere

    NASA Technical Reports Server (NTRS)

    Mayr, H. G.; Mengel, J. G.; Talaat, E. L.; Porter, H. S.; Chan, K. L.

    2003-01-01

    In the polar region of the upper mesosphere, horizontal wind oscillations have been observed with periods around 10 hours (Hernandez et al., 1992). Such waves are generated in our Numerical Spectral Model (NSM) and appear to be inertio gravity waves (IGW). Like the planetary waves (PW) in the model, the IGWs are generated by instabilities that arise in the mean zonal circulation. In addition to stationary waves for m = 0, eastward and westward propagating waves for m = 1 to 4 appear above 70 km that grow in magnitude up to about 110 km, having periods between 9 and 11 hours. The m = 1 westward propagating IGWs have the largest amplitudes, which can reach at the poles 30 m/s. Like PWs, the IGWs are intermittent but reveal systematic seasonal variations, with the largest amplitudes occurring generally in winter and spring. The IGWs propagate upward with a vertical wavelength of about 20 km.

  6. First 3D measurements of temperature fluctuations induced by gravity wave with the infrared limb imager GLORIA

    NASA Astrophysics Data System (ADS)

    Krisch, Isabell; Preusse, Peter; Ungermann, Jörn; Friedl-Vallon, Felix; Riese, Martin

    2017-04-01

    Gravity waves (GWs) are one of the most important coupling mechanisms in the atmosphere. They couple different compartments of the atmosphere. The GW-LCYCLE (Gravity Wave Life Cycle) project aims on studying the excitation, propagation, and dissipation of gravity waves. An aircraft campaign has been performed in winter 2015/2016, during which the first 3D tomographic measurements of GWs were performed with the infrared limb imager GLORIA (Gimballed Limb Observer for Radiance Imaging of the Atmosphere). GLORIA combines a classical Fourier Transform Spectrometer with a 2D detector array. The capability to image the atmosphere and thereby take several thousand spectra simultaneously improves the spatial sampling compared to conventional limb sounders by an order of magnitude. Furthermore GLORIA is able to pan the horizontal viewing direction and therefore measure the same volume of air under different angles. Due to these properties tomographic methods can be used to derive 3D temperature and tracer fields with spatial resolutions of better than 30km x 30km x 250m from measurements taken during circular flight patterns. Temperature distributions measured during a strong GW event on the 25.01.2016 during the GW-LCycle campaign over Iceland will be presented and analyzed for gravity waves. The three dimensional nature of the GLORIA measurements allows for the determination of the gravity wave momentum flux, including its horizontal direction. The calculated momentum fluxes rank this event under one of the strongest 1% observed in that latitude range in January 2016. The three dimensional wave vectors determined from the GLORIA measurements can be used for a ray tracing study with the Gravity wave Regional Or Global RAy Tracer (GROGRAT). Here 1D ray tracing, meaning solely vertical column propagation, as used by standard parameterizations in numerical weather prediction and climate models is compared to 4D ray tracing (spatially three dimensional with time varying background) for the presented event on the 25.01.2016. Here it is shown, that in the 1D case the GWs are filtered at lower altitudes, whereas in the 4D case the rays were able to propagate to altitudes of above 30km. Besides the forward propagation up to higher altitudes, also the backward propagation to the source region can be study with GROGRAT. Here the mountains of Iceland could be clearly identified as the source region of the measured GWs.

  7. Influence of QBO on stratospheric Kelvin and Mixed Rossby gravity waves in high-top CMIP5 models

    NASA Astrophysics Data System (ADS)

    Indah Solihah, Karina; Lubis, Sandro W.; Setiawan, Sonni

    2018-05-01

    It is well established that quasi-biennial oscillation (QBO) has a substantial influence on Kelvin and mixed Rossby gravity (MRG) wave activity in the tropical lower stratosphere. In this study, we examined how QBO influences Kelvin and MRG wave activity in the lower stratosphere, based on nine high-top CMIP5 models. The results show that the Kelvin and MRG wave signals are stronger in the models with QBO, and relatively weaker in the models without QBO. The results are consistent with established theory, whereby upward-propagating Kelvin waves occurs more frequently during the easterly QBO phase, while upward-propagating MRG waves occurs during the westerly QBO phase. Without the QBO, the mean flow exhibits a near-zero easterly wind, which prevents the waves from propagating and penetrating into the stratosphere. Our analysis also shows that models with the QBO tend to have more robust signatures (in terms of amplitude and phase speed) of Kelvin and MRG waves.

  8. Tsunami and infragravity waves impacting Antarctic ice shelves

    NASA Astrophysics Data System (ADS)

    Bromirski, P. D.; Chen, Z.; Stephen, R. A.; Gerstoft, P.; Arcas, D.; Diez, A.; Aster, R. C.; Wiens, D. A.; Nyblade, A.

    2017-07-01

    The responses of the Ross Ice Shelf (RIS) to the 16 September 2015 8.3 (Mw) Chilean earthquake tsunami (>75 s period) and to oceanic infragravity (IG) waves (50-300 s period) were recorded by a broadband seismic array deployed on the RIS from November 2014 to November 2016. Here we show that tsunami and IG-generated signals within the RIS propagate at gravity wave speeds (˜70 m/s) as water-ice coupled flexural-gravity waves. IG band signals show measureable attenuation away from the shelf front. The response of the RIS to Chilean tsunami arrivals is compared with modeled tsunami forcing to assess ice shelf flexural-gravity wave excitation by very long period (VLP; >300 s) gravity waves. Displacements across the RIS are affected by gravity wave incident direction, bathymetry under and north of the shelf, and water layer and ice shelf thicknesses. Horizontal displacements are typically about 10 times larger than vertical displacements, producing dynamical extensional motions that may facilitate expansion of existing fractures. VLP excitation is continuously observed throughout the year, with horizontal displacements highest during the austral winter with amplitudes exceeding 20 cm. Because VLP flexural-gravity waves exhibit no discernable attenuation, this energy must propagate to the grounding zone. Both IG and VLP band flexural-gravity waves excite mechanical perturbations of the RIS that likely promote tabular iceberg calving, consequently affecting ice shelf evolution. Understanding these ocean-excited mechanical interactions is important to determine their effect on ice shelf stability to reduce uncertainty in the magnitude and rate of global sea level rise.

  9. Acoustic-gravity waves in atmospheric and oceanic waveguides.

    PubMed

    Godin, Oleg A

    2012-08-01

    A theory of guided propagation of sound in layered, moving fluids is extended to include acoustic-gravity waves (AGWs) in waveguides with piecewise continuous parameters. The orthogonality of AGW normal modes is established in moving and motionless media. A perturbation theory is developed to quantify the relative significance of the gravity and fluid compressibility as well as sensitivity of the normal modes to variations in sound speed, flow velocity, and density profiles and in boundary conditions. Phase and group speeds of the normal modes are found to have certain universal properties which are valid for waveguides with arbitrary stratification. The Lamb wave is shown to be the only AGW normal mode that can propagate without dispersion in a layered medium.

  10. Effect of small floating disks on the propagation of gravity waves

    NASA Astrophysics Data System (ADS)

    De Santi, F.; Olla, P.

    2017-04-01

    A dispersion relation for gravity waves in water covered by disk-like impurities embedded in a viscous matrix is derived. The macroscopic equations are obtained by ensemble-averaging the fluid equations at the disk scale in the asymptotic limit of long waves and low disk surface fraction. Various regimes are identified depending on the disk radii and the thickness and viscosity of the top layer. Semi-quantitative analysis in the close-packing regime suggests dramatic modification of the dynamics, with orders of magnitude increase in wave damping and wave dispersion. A simplified model working in this regime is proposed. Possible applications to wave propagation in an ice-covered ocean are discussed and comparison with field data is provided.

  11. The mean zonal flow response to Rossby wave and gravity wave forcing in the equatorial lower stratosphere - Relationship to the QBO

    NASA Technical Reports Server (NTRS)

    Takahashi, Masaaki; Holton, James R.

    1991-01-01

    Observations show that the westerly acceleration of the equatorial quasi-biennial oscillation (QBO) can be accounted for by Kelvin waves, but that there is a deficiency in the easterly acceleration due to Rossby-gravity waves. Rossby waves and westward propagating gravity waves have been suggested as alternative sources for the easterly acceleration. The possible role of these two wave modes has been tested in a two-dimensional model of the QBO. When the easterly acceleration is due to Rossby waves, the zonal-mean response is steady; when it is due to gravity waves, an oscillation with some features similar to the QBO occurs, but it is of short period and weak amplitude. A similar result occurs when a standing-wave forcing pattern is imposed. These results suggest that Rossby waves play only a minor role in the QBO, and that while the Rossby-gravity mode is essential, other gravity modes may also be important for the easterly phase.

  12. Temporal variability of tidal and gravity waves during a record long 10-day continuous lidar sounding

    NASA Astrophysics Data System (ADS)

    Baumgarten, Kathrin; Gerding, Michael; Baumgarten, Gerd; Lübken, Franz-Josef

    2018-01-01

    Gravity waves (GWs) as well as solar tides are a key driving mechanism for the circulation in the Earth's atmosphere. The propagation of gravity waves is strongly affected by tidal waves as they modulate the mean background wind field and vice versa, which is not yet fully understood and not adequately implemented in many circulation models. The daylight-capable Rayleigh-Mie-Raman (RMR) lidar at Kühlungsborn (54° N, 12° E) typically provides temperature data to investigate both wave phenomena during one full day or several consecutive days in the middle atmosphere between 30 and 75 km altitude. Outstanding weather conditions in May 2016 allowed for an unprecedented 10-day continuous lidar measurement, which shows a large variability of gravity waves and tides on timescales of days. Using a one-dimensional spectral filtering technique, gravity and tidal waves are separated according to their specific periods or vertical wavelengths, and their temporal evolution is studied. During the measurement period a strong 24 h wave occurs only between 40 and 60 km and vanishes after a few days. The disappearance is related to an enhancement of gravity waves with periods of 4-8 h. Wind data provided by ECMWF are used to analyze the meteorological situation at our site. The local wind structure changes during the observation period, which leads to different propagation conditions for gravity waves in the last days of the measurement period and therefore a strong GW activity. The analysis indicates a further change in wave-wave interaction resulting in a minimum of the 24 h tide. The observed variability of tides and gravity waves on timescales of a few days clearly demonstrates the importance of continuous measurements with high temporal and spatial resolution to detect interaction phenomena, which can help to improve parametrization schemes of GWs in general circulation models.

  13. Planetary wave-gravity wave interactions during mesospheric inversion layer events

    NASA Astrophysics Data System (ADS)

    Ramesh, K.; Sridharan, S.; Raghunath, K.; Vijaya Bhaskara Rao, S.; Bhavani Kumar, Y.

    2013-07-01

    lidar temperature observations over Gadanki (13.5°N, 79.2°E) show a few mesospheric inversion layer (MIL) events during 20-25 January 2007. The zonal mean removed SABER temperature shows warm anomalies around 50°E and 275°E indicating the presence of planetary wave of zonal wave number 2. The MIL amplitudes in SABER temperature averaged for 10°N-15°N and 70°E-90°E show a clear 2 day wave modulation during 20-28 January 2007. Prior to 20 January 2007, a strong 2day wave (zonal wave number 2) is observed in the height region of 80-90 km and it gets largely suppressed during 20-26 January 2007 as the condition for vertical propagation is not favorable, though it prevails at lower heights. The 10 day mean zonal wind over Tirunelveli (8.7°N, 77.8°E) shows deceleration of eastward winds indicating the westward drag due to wave dissipation. The nightly mean MF radar observed zonal winds show the presence of alternating eastward and westward winds during the period of 20-26 January 2007. The two dimensional spectrum of Rayleigh lidar temperature observations available for the nights of 20, 22, and 24 January 2007 shows the presence of gravity wave activity with periods 18 min, 38 min, 38 min, and vertical wavelengths 6.4 km, 4.0 km, 6.4 km respectively. From the dispersion relation of gravity waves, it is inferred that these waves are internal gravity waves rather than inertia gravity waves with the horizontal phase speeds of ~40 m/s, ~37 m/s, and ~50 m/s respectively. Assuming the gravity waves are eastward propagating waves, they get absorbed only in the eastward local wind fields of the planetary wave thereby causing turbulence and eddy diffusion which can be inferred from the estimation of large drag force due to the breaking of gravity wave leading to the formation of large amplitude inversion events in alternate nights. The present study shows that, the mesospheric temperature inversion is caused mainly due to the gravity wave breaking and the inversion amplitude may get modulated by the interaction between gravity waves and planetary waves. The eddy diffusion associated with gravity wave drag may also cause suppression in the planetary wave activity.

  14. Gravity Waves and Mesospheric Clouds in the Summer Middle Atmosphere: A Comparison of Lidar Measurements and Ray Modeling of Gravity Waves Over Sondrestrom, Greenland

    NASA Technical Reports Server (NTRS)

    Gerrard, Andrew J.; Kane, Timothy J.; Eckermann, Stephen D.; Thayer, Jeffrey P.

    2004-01-01

    We conducted gravity wave ray-tracing experiments within an atmospheric region centered near the ARCLITE lidar system at Sondrestrom, Greenland (67N, 310 deg E), in efforts to understand lidar observations of both upper stratospheric gravity wave activity and mesospheric clouds during August 1996 and the summer of 2001. The ray model was used to trace gravity waves through realistic three-dimensional daily-varying background atmospheres in the region, based on forecasts and analyses in the troposphere and stratosphere and climatologies higher up. Reverse ray tracing based on upper stratospheric lidar observations at Sondrestrom was also used to try to objectively identify wave source regions in the troposphere. A source spectrum specified by reverse ray tracing experiments in early August 1996 (when atmospheric flow patterns produced enhanced transmission of waves into the upper stratosphere) yielded model results throughout the remainder of August 1996 that agreed best with the lidar observations. The model also simulated increased vertical group propagation of waves between 40 km and 80 km due to intensifying mean easterlies, which allowed many of the gravity waves observed at 40 km over Sondrestrom to propagate quasi-vertically from 40-80 km and then interact with any mesospheric clouds at 80 km near Sondrestrom, supporting earlier experimentally-inferred correlations between upper stratospheric gravity wave activity and mesospheric cloud backscatter from Sondrestrom lidar observations. A pilot experiment of real-time runs with the model in 2001 using weather forecast data as a low-level background produced less agreement with lidar observations. We believe this is due to limitations in our specified tropospheric source spectrum, the use of climatological winds and temperatures in the upper stratosphere and mesosphere, and missing lidar data from important time periods.

  15. The southern stratospheric gravity wave hot spot: individual waves and their momentum fluxes measured by COSMIC GPS-RO

    NASA Astrophysics Data System (ADS)

    Hindley, N. P.; Wright, C. J.; Smith, N. D.; Mitchell, N. J.

    2015-07-01

    Nearly all general circulation models significantly fail to reproduce the observed behaviour of the southern wintertime polar vortex. It has been suggested that these biases result from an underestimation of gravity wave drag on the atmosphere at latitudes near 60° S, especially around the "hot spot" of intense gravity wave fluxes above the mountainous Southern Andes and Antarctic peninsula. Here, we use Global Positioning System radio occultation (GPS-RO) data from the COSMIC satellite constellation to determine the properties of gravity waves in the hot spot and beyond. We show considerable southward propagation to latitudes near 60° S of waves apparently generated over the southern Andes. We propose that this propagation may account for much of the wave drag missing from the models. Furthermore, there is a long leeward region of increased gravity wave energy that sweeps eastwards from the mountains over the Southern Ocean. Despite its striking nature, the source of this region has historically proved difficult to determine. Our observations suggest that this region includes both waves generated locally and orographic waves advected downwind from the hot spot. We describe and use a new wavelet-based analysis technique for the quantitative identification of individual waves from COSMIC temperature profiles. This analysis reveals different geographical regimes of wave amplitude and short-timescale variability in the wave field over the Southern Ocean. Finally, we use the increased numbers of closely spaced pairs of profiles from the deployment phase of the COSMIC constellation in 2006 to make estimates of gravity wave horizontal wavelengths. We show that, given sufficient observations, GPS-RO can produce physically reasonable estimates of stratospheric gravity wave momentum flux in the hot spot that are consistent with measurements made by other techniques. We discuss our results in the context of previous satellite and modelling studies and explain how they advance our understanding of the nature and origins of waves in the southern stratosphere.

  16. Propagation of acoustic-gravity waves in arctic zones with elastic ice-sheets

    NASA Astrophysics Data System (ADS)

    Kadri, Usama; Abdolali, Ali; Kirby, James T.

    2017-04-01

    We present an analytical solution of the boundary value problem of propagating acoustic-gravity waves generated in the ocean by earthquakes or ice-quakes in arctic zones. At the surface, we assume elastic ice-sheets of a variable thickness, and show that the propagating acoustic-gravity modes have different mode shape than originally derived by Ref. [1] for a rigid ice-sheet settings. Computationally, we couple the ice-sheet problem with the free surface model by Ref. [2] representing shrinking ice blocks in realistic sea state, where the randomly oriented ice-sheets cause inter modal transition at the edges and multidirectional reflections. We then derive a depth-integrated equation valid for spatially slowly varying thickness of ice-sheet and water depth. Surprisingly, and unlike the free-surface setting, here it is found that the higher acoustic-gravity modes exhibit a larger contribution. These modes travel at the speed of sound in water carrying information on their source, e.g. ice-sheet motion or submarine earthquake, providing various implications for ocean monitoring and detection of quakes. In addition, we found that the propagating acoustic-gravity modes can result in orbital displacements of fluid parcels sufficiently high that may contribute to deep ocean currents and circulation, as postulated by Refs. [1, 3]. References [1] U. Kadri, 2016. Generation of Hydroacoustic Waves by an Oscillating Ice Block in Arctic Zones. Advances in Acoustics and Vibration, 2016, Article ID 8076108, 7 pages http://dx.doi.org/10.1155/2016/8076108 [2] A. Abdolali, J. T. Kirby and G. Bellotti, 2015, Depth-integrated equation for hydro-acoustic waves with bottom damping, J. Fluid Mech., 766, R1 doi:10.1017/jfm.2015.37 [3] U. Kadri, 2014. Deep ocean water transportation by acoustic?gravity waves. J. Geophys. Res. Oceans, 119, doi:10.1002/ 2014JC010234

  17. A case study of A mesoscale gravity wave in the MLT region using simultaneous multi-instruments in Beijing

    NASA Astrophysics Data System (ADS)

    Jia, Mingjiao; Xue, Xianghui; Dou, Xiankang; Tang, Yihuan; Yu, Chao; Wu, Jianfei; Xu, Jiyao; Yang, Guotao; Ning, Baiqi; Hoffmann, Lars

    2016-03-01

    In this work, we used observational data from an all-sky airglow imager at Xinglong (40.2 °N, 117.4 °E), a sodium lidar at Yanqing (40.4 °N, 116.0 °E) and a meteor radar at Shisanling (40.3 °N, 116.2 °E) to study the propagation of a mesoscale gravity wave. During the night of March 1, 2011, the imager identified a mesoscale gravity wave structure in the OH airglow that had a wave period of 2 hours, propagated along an azimuthal direction (clockwise) with an angle of 163°, a phase speed of 73 m/s, and a horizontal wavelength of 566 km. Simultaneous measurements provided by the sodium lidar also showed a perturbation in the sodium layer with a 2-hour period. Based on the SABER/TIMED and radar data, we estimated that the momentum flux and the energy flux of the gravity wave were approximately 0.59 m2/s2 and 0.22 mW/m2, respectively. Ray-tracing analysis showed that the gravity wave was likely generated in the center of Lake Baikal owing to the existence of a jet- front system in the upper troposphere at that time.

  18. An Integrative Wave Model for the Marginal Ice Zone Based on a Rheological Parameterization

    DTIC Science & Technology

    2015-09-30

    2015) Characterizing the behavior of gravity wave propagation into a floating or submerged viscous layer , 2015 AGU Joint Assembly Meeting, May 3–7...are the PI and a PhD student. Task 1: Use an analytical method to determine the propagation of waves through a floating viscoelastic mat for a wide...and Ben Holt. 2 Task 3: Assemble all existing laboratory and field data of wave propagation in ice covers. Task 4: Determine if all existing

  19. Numerical study of heating the upper atmosphere by acoustic-gravity waves from a local source on the Earth's surface and influence of this heating on the wave propagation conditions

    NASA Astrophysics Data System (ADS)

    Karpov, I. V.; Kshevetskii, S. P.

    2017-11-01

    The propagation of acoustic-gravity waves (AGW) from a source on the Earth's surface to the upper atmosphere is investigated with methods of mathematical modeling. The applied non-linear model of wave propagation in the atmosphere is based on numerical integration of a complete set of two-dimensional hydrodynamic equations. The source on the Earth's surface generates waves with frequencies near to the Brunt-Vaisala frequency. The results of simulation have revealed that some region of heating the atmosphere by propagated upward and dissipated AGWs arises above the source at altitudes nearby of 200 km. The horizontal scale of this heated region is about 1000 km in the case of the source that radiates AGWs during approximately 1 h. The appearing of the heated region has changed the conditions of AGW propagation in the atmosphere. When the heated region in the upper atmosphere has been formed, further a waveguide regime of propagation of waves with the periods shorter the Brunt-Vaisala period is realized. The upper boundary of the wave-guide coincides with the arisen heated region in the upper atmosphere. The considered mechanism of formation of large-scale disturbances in the upper atmosphere may be useful for explanation of connections of processes in the upper and lower atmospheric layers.

  20. Sixteen year variation of horizontal phase velocity and propagation direction of mesospheric and thermospheric waves in airglow images at Shigaraki, Japan

    NASA Astrophysics Data System (ADS)

    Takeo, D.; Shiokawa, K.; Fujinami, H.; Otsuka, Y.; Matsuda, T. S.; Ejiri, M. K.; Nakamura, T.; Yamamoto, M.

    2017-08-01

    We analyzed the horizontal phase velocity of gravity waves and medium-scale traveling ionospheric disturbances (MSTIDs) by using the three-dimensional fast Fourier transform method developed by Matsuda et al. (2014) for 557.7 nm (altitude: 90-100 km) and 630.0 nm (altitude: 200-300 km) airglow images obtained at Shigaraki MU Observatory (34.8°N, 136.1°E, dip angle: 49°) over ˜16 years from 16 March 1999 to 20 February 2015. The analysis of 557.7 nm airglow images shows clear seasonal variation of the propagation direction of gravity waves in the mesopause region. In spring, summer, fall, and winter, the peak directions are northeastward, northeastward, northwestward, and southwestward, respectively. The difference in east-west propagation direction between summer and winter is probably caused by the wind filtering effect due to the zonal mesospheric jet. Comparison with tropospheric reanalysis data shows that the difference in north-south propagation direction between summer and winter is caused by differences in the latitudinal location of wave sources due to convective activity in the troposphere relative to Shigaraki. The analysis of 630.0 nm airglow images shows that the propagation direction of MSTIDs is mainly southwestward with a minor northeastward component throughout the 16 years. A clear negative correlation is seen between the yearly power spectral density of MSTIDs and F10.7 solar flux. This negative correlation with solar activity may be explained by the linear growth rate of the Perkins instability and secondary wave generation of gravity waves in the thermosphere.

  1. The Role of Gravity Waves in the Formation and Organization of Clouds during TWPICE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reeder, Michael J.; Lane, Todd P.; Hankinson, Mai Chi Nguyen

    2013-09-27

    All convective clouds emit gravity waves. While it is certain that convectively-generated waves play important parts in determining the climate, their precise roles remain uncertain and their effects are not (generally) represented in climate models. The work described here focuses mostly on observations and modeling of convectively-generated gravity waves, using the intensive observations from the DoE-sponsored Tropical Warm Pool International Cloud Experiment (TWP-ICE), which took place in Darwin, from 17 January to 13 February 2006. Among other things, the research has implications the part played by convectively-generated gravity waves in the formation of cirrus, in the initiation and organization ofmore » further convection, and in the subgrid-scale momentum transport and associated large-scale stresses imposed on the troposphere and stratosphere. The analysis shows two groups of inertia-gravity waves are detected: group L in the middle stratosphere during the suppressed monsoon period, and group S in the lower stratosphere during the monsoon break period. Waves belonging to group L propagate to the south-east with a mean intrinsic period of 35 h, and have vertical and horizontal wavelengths of about 5-6 km and 3000-6000 km, respectively. Ray tracing calculations indicate that these waves originate from a deep convective region near Indonesia. Waves belonging to group S propagate to the south-south-east with an intrinsic period, vertical wavelength and horizontal wavelength of about 45 h, 2 km and 2000-4000 km, respectively. These waves are shown to be associated with shallow convection in the oceanic area within about 1000 km of Darwin. The intrinsic periods of high-frequency waves are estimated to be between 20-40 minutes. The high-frequency wave activity in the stratosphere, defined by mass-weighted variance of the vertical motion of the sonde, has a maximum following the afternoon local convection indicating that these waves are generated by local convection. The wave activity is strongest in the lower stratosphere below 22 km and, during the suppressed monsoon period, is modulated with a 3-4-day period. The concentration of the wave activity in the lower stratosphere is consistent with the properties of the environment in which these waves propagate, whereas its 3-4-day modulation is explained by the variation of the convection activity in the TWP-ICE domain. At low rainfall intensity the wave activity increases as rainfall intensity increases. At high values of rainfall intensity, however, the wave activity associated with deep convective clouds is independent of the rainfall intensity. The convection and gravity waves observed during TWP-ICE are simulated with the Weather Research and Forecasting (WRF) Model. These simulations are compared with radiosonde observations described above and are used to determine some of the properties of convectively generated gravity waves. The gravity waves appear to be well simulated by the model. The model is used to explore the relationships between the convection, the gravity waves and cirrus.« less

  2. Eruptive Source Parameters from Near-Source Gravity Waves Induced by Large Vulcanian eruptions

    NASA Astrophysics Data System (ADS)

    Barfucci, Giulia; Ripepe, Maurizio; De Angelis, Silvio; Lacanna, Giorgio; Marchetti, Emanuele

    2016-04-01

    The sudden ejection of hot material from volcanic vent perturbs the atmosphere generating a broad spectrum of pressure oscillations from acoustic infrasound (<10 Hz) to gravity waves (<0.03 Hz). However observations of gravity waves excited by volcanic eruptions are still rare, mostly limited to large sub-plinian eruptions and frequently at large distance from the source (>100 km). Atmospheric Gravity waves are induced by perturbations of the hydrostatic equilibrium of the atmosphere and propagate within a medium with internal density stratification. They are initiated by mechanisms that cause the atmosphere to be displaced as for the injection of volcanic ash plume during an eruption. We use gravity waves to infer eruptive source parameters, such as mass eruption rate (MER) and duration of the eruption, which may be used as inputs in the volcanic ash transport and dispersion models. We present the analysis of near-field observations (<7 km) of atmospheric gravity waves, with frequencies of 0.97 and 1.15 mHz, recorded by a pressure sensors network during two explosions in July and December 2008 at Soufrière Hills Volcano, Montserrat. We show that gravity waves at Soufrière Hills Volcano originate above the volcanic dome and propagate with an apparent horizontal velocities of 8-10 m/s. Assuming a single mass injection point source model, we constrain the source location at ~3.5 km a.s.l., above the vent, duration of the gas thrust < 140 s and MERs of 2.6 and 5.4 x10E7 kg/s, for the two eruptive events. Source duration and MER derived by modeling Gravity Waves are fully compatible with others independent estimates from field observations. Our work strongly supports the use of gravity waves to model eruption source parameters and can have a strong impact on our ability to monitor volcanic eruption at a large distance and may have future application in assessing the relative magnitude of volcanic explosions.

  3. Experimental observation of negative effective gravity in water waves.

    PubMed

    Hu, Xinhua; Yang, Jiong; Zi, Jian; Chan, C T; Ho, Kai-Ming

    2013-01-01

    The gravity of Earth is responsible for the formation of water waves and usually difficult to change. Although negative effective gravity was recently predicted theoretically in water waves, it has not yet been observed in experiments and remains a mathematical curiosity which is difficult to understand. Here we experimentally demonstrate that close to the resonant frequency of purposely-designed resonating units, negative effective gravity can occur for water waves passing through an array of resonators composing of bottom-mounted split tubes, resulting in the prohibition of water wave propagation. It is found that when negative gravity occurs, the averaged displacement of water surface in a unit cell of the array has a phase difference of π to that along the boundary of the unit cell, consistent with theoretical predictions. Our results provide a mechanism to block water waves and may find applications in wave energy conversion and coastal protection.

  4. Experimental Observation of Negative Effective Gravity in Water Waves

    PubMed Central

    Hu, Xinhua; Yang, Jiong; Zi, Jian; Chan, C. T.; Ho, Kai-Ming

    2013-01-01

    The gravity of Earth is responsible for the formation of water waves and usually difficult to change. Although negative effective gravity was recently predicted theoretically in water waves, it has not yet been observed in experiments and remains a mathematical curiosity which is difficult to understand. Here we experimentally demonstrate that close to the resonant frequency of purposely-designed resonating units, negative effective gravity can occur for water waves passing through an array of resonators composing of bottom-mounted split tubes, resulting in the prohibition of water wave propagation. It is found that when negative gravity occurs, the averaged displacement of water surface in a unit cell of the array has a phase difference of π to that along the boundary of the unit cell, consistent with theoretical predictions. Our results provide a mechanism to block water waves and may find applications in wave energy conversion and coastal protection. PMID:23715132

  5. The generation of a zonal-wind oscillation by nonlinear interactions of internal gravity waves

    NASA Astrophysics Data System (ADS)

    Campbell, Lucy

    2003-11-01

    Nonlinear interactions of internal gravity waves give rise to numerous large-scale phenomena that are observed in the atmosphere, for example the quasi-biennial oscillation (QBO). This is an oscillation in zonal wind direction which is observed in the equatorial stratosphere; it is characterized by alternating regimes of easterly and westerly shear that descend with time. In the past few decades, a number of theories have been developed to explain the mechanism by which the QBO is generated. These theories are all based on ``quasi-linear'' representations of wave-mean-flow interactions. In this presentation, a fully nonlinear numerical simulation of the QBO is described. A spectrum of gravity waves over a range of phase speeds is forced at the lower boundary of the computational domain and propagates upwards in a density-stratified shear flow. As a result of the absorption and reflection of the waves at their critical levels, regions of large shear develop in the background flow and propagate downwards with time.

  6. The mean zonal flow response to Rossby wave and gravity wave forcing in the equatorial lower stratosphere: Relationship to the QBO. [QBO (quasi-biennial oscillation)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Takahashi, M.; Holton, J.R.

    1991-09-15

    Observations show that the westerly acceleration of the equatorial quasi-biennial oscillation (QBO) can be accounted for by Kelvin waves, but that there is a deficiency in the easterly acceleration due to Rossby-gravity waves. Rossby waves and westward propagating gravity waves have been suggested as alternative sources for the easterly acceleration. We have tested the possible role of these two wave modes in a two-dimensional model of the QBO. When the easterly acceleration is due to Rossby waves, the zonal-mean response is steady; when it is due to gravity waves, an oscillation with some features similar to the QBO occurs, butmore » it is of short period and weak amplitude. A similar result occurs when a standing-wave forcing pattern is imposed. These results suggest that Rossby waves play only a minor role in the QBO, and that while the Rossby-gravity mode is essential, other gravity modes may also be important for the easterly phase. 12 refs., 22 figs.« less

  7. Electric Field Effects in Self-Propagating High-Temperature Synthesis under Microgravity Conditions

    NASA Technical Reports Server (NTRS)

    Unuvar, C.; Frederick, D. M.; Shaw, B. D.; Munir, Z. A.

    2003-01-01

    Self-propagating high-temperature synthesis (SHS) has been used to form many materials. SHS generally involves mixing reactants together (e.g., metal powders) and igniting the mixture such that a combustion (deflagration) wave passes though the mixture. The imposition of an electric field (AC or DC) across SHS reactants has been shown to have a marked effect on the dynamics of wave propagation and on the nature, composition, and homogeneity of the product . The use of an electric field with SHS has been termed "field-assisted SHS". Combustion wave velocities and temperatures are directly affected by the field, which is typically perpendicular to the average wave velocity. The degree of activation by the field (e.g., combustion rate) is related to the current density distribution within the sample, and is therefore related to the temperature-dependent spatial distribution of the effective electrical conductivity of reactants and products. Furthermore, the field can influence other important SHS-related phenomena including capillary flow, mass-transport in porous media, and Marangoni flows. These phenomena are influenced by gravity in conventional SHS processes (i.e., without electric fields). As a result the influence of the field on SHS under reduced gravity is expected to be different than under normal gravity. It is also known that heat loss rates from samples, which can depend significantly on gravity, can influence final products in SHS. This research program is focused on studying field-assisted SHS under reduced gravity conditions. The broad objective of this research program is to understand the role of an electric field in SHS reactions under conditions where gravity-related effects are suppressed. The research will allow increased understanding of fundamental aspects of field-assisted SHS processes as well as synthesis of materials that cannot be formed in normal gravity.

  8. First tsunami gravity wave detection in ionospheric radio occultation data

    DOE PAGES

    Coïsson, Pierdavide; Lognonné, Philippe; Walwer, Damian; ...

    2015-05-09

    After the 11 March 2011 earthquake and tsunami off the coast of Tohoku, the ionospheric signature of the displacements induced in the overlying atmosphere has been observed by ground stations in various regions of the Pacific Ocean. We analyze here the data of radio occultation satellites, detecting the tsunami-driven gravity wave for the first time using a fully space-based ionospheric observation system. One satellite of the Constellation Observing System for Meteorology, Ionosphere and Climate (COSMIC) recorded an occultation in the region above the tsunami 2.5 h after the earthquake. The ionosphere was sounded from top to bottom, thus providing themore » vertical structure of the gravity wave excited by the tsunami propagation, observed as oscillations of the ionospheric Total Electron Content (TEC). The observed vertical wavelength was about 50 km, with maximum amplitude exceeding 1 total electron content unit when the occultation reached 200 km height. We compared the observations with synthetic data obtained by summation of the tsunami-coupled gravity normal modes of the Earth/Ocean/atmosphere system, which models the associated motion of the ionosphere plasma. These results provide experimental constraints on the attenuation of the gravity wave with altitude due to atmosphere viscosity, improving the understanding of the propagation of tsunami-driven gravity waves in the upper atmosphere. They demonstrate that the amplitude of the tsunami can be estimated to within 20% by the recorded ionospheric data.« less

  9. Detection of traveling ionospheric disturbances induced by atmospheric gravity waves using the global positioning system

    NASA Technical Reports Server (NTRS)

    Bassiri, Sassan; Hajj, George A.

    1993-01-01

    Natural and man-made events like earthquakes and nuclear explosions launch atmospheric gravity waves (AGW) into the atmosphere. Since the particle density decreases exponentially with height, the gravity waves increase exponentially in amplitude as they propagate toward the upper atmosphere and ionosphere. As atmospheric gravity waves approach the ionospheric heights, the neutral particles carried by gravity waves collide with electrons and ions, setting these particles in motion. This motion of charged particles manifests itself by wave-like fluctuations and disturbances that are known as traveling ionospheric disturbances (TID). The perturbation in the total electron content due to TID's is derived analytically from first principles. Using the tilted dipole magnetic field approximation and a Chapman layer distribution for the electron density, the variations of the total electron content versus the line-of-sight direction are numerically analyzed. The temporal variation associated with the total electron content measurements due to AGW's can be used as a means of detecting characteristics of the gravity waves. As an example, detection of tsunami generated earthquakes from their associated atmospheric gravity waves using the Global Positioning System is simulated.

  10. A Model Study of Zonal Forcing in the Equatorial Stratosphere by Convectively Induced Gravity Waves

    NASA Technical Reports Server (NTRS)

    Alexander, M. J.; Holton, James R.

    1997-01-01

    A two-dimensional cloud-resolving model is used to examine the possible role of gravity waves generated by a simulated tropical squall line in forcing the quasi-biennial oscillation (QBO) of the zonal winds in the equatorial stratosphere. A simulation with constant background stratospheric winds is compared to simulations with background winds characteristic of the westerly and easterly QBO phases, respectively. In all three cases a broad spectrum of both eastward and westward propagating gravity waves is excited. In the constant background wind case the vertical momentum flux is nearly constant with height in the stratosphere, after correction for waves leaving the model domain. In the easterly and westerly shear cases, however, westward and eastward propagating waves, respectively, are strongly damped as they approach their critical levels, owing to the strongly scale-dependent vertical diffusion in the model. The profiles of zonal forcing induced by this wave damping are similar to profiles given by critical level absorption, but displaced slightly downward. The magnitude of the zonal forcing is of order 5 m/s/day. It is estimated that if 2% of the area of the Tropics were occupied by storms of similar magnitude, mesoscale gravity waves could provide nearly 1/4 of the zonal forcing required for the QBO.

  11. Investigating gravity waves evidences in the Venus upper atmosphere

    NASA Astrophysics Data System (ADS)

    Migliorini, Alessandra; Altieri, Francesca; Shakun, Alexey; Zasova, Ludmila; Piccioni, Giuseppe; Bellucci, Giancarlo; Grassi, Davide

    2014-05-01

    We present a method to investigate gravity waves properties in the upper mesosphere of Venus, through the O2 nightglow observations acquired with the imaging spectrometer VIRTIS on board Venus Express. Gravity waves are important dynamical features that transport energy and momentum. They are related to the buoyancy force, which lifts air particles. Then, the vertical displacement of air particles produces density changes that cause gravity to act as restoring force. Gravity waves can manifest through fluctuations on temperature and density fields, and hence on airglow intensities. We use the O2 nightglow profiles showing double peaked structures to study the influence of gravity waves in shaping the O2 vertical profiles and infer the waves properties. In analogy to the Earth's and Mars cases, we use a well-known theory to model the O2 nightglow emissions affected by gravity waves propagation. Here we propose a statistical discussion of the gravity waves characteristics, namely vertical wavelength and wave amplitude, with respect to local time and latitude. The method is applied to about 30 profiles showing double peaked structures, and acquired with the VIRTIS/Venus Express spectrometer, during the mission period from 2006-07-05 to 2008-08-15.

  12. Analysis of the Effect of Electron Density Perturbations Generated by Gravity Waves on HF Communication Links

    NASA Astrophysics Data System (ADS)

    Fagre, M.; Elias, A. G.; Chum, J.; Cabrera, M. A.

    2017-12-01

    In the present work, ray tracing of high frequency (HF) signals in ionospheric disturbed conditions is analyzed, particularly in the presence of electron density perturbations generated by gravity waves (GWs). The three-dimensional numerical ray tracing code by Jones and Stephenson, based on Hamilton's equations, which is commonly used to study radio propagation through the ionosphere, is used. An electron density perturbation model is implemented to this code based upon the consideration of atmospheric GWs generated at a height of 150 km in the thermosphere and propagating up into the ionosphere. The motion of the neutral gas at these altitudes induces disturbances in the background plasma which affects HF signals propagation. To obtain a realistic model of GWs in order to analyze the propagation and dispersion characteristics, a GW ray tracing method with kinematic viscosity and thermal diffusivity was applied. The IRI-2012, HWM14 and NRLMSISE-00 models were incorporated to assess electron density, wind velocities, neutral temperature and total mass density needed for the ray tracing codes. Preliminary results of gravity wave effects on ground range and reflection height are presented for low-mid latitude ionosphere.

  13. Rayleigh lidar observations of gravity wave characteristics in the middle atmosphere at Gadanki, India (13.5 degrees N, 79.2 degreesE.)

    NASA Astrophysics Data System (ADS)

    Parameswaran, K.; Rajeev, K.; Sasi, M. N.; Ramkumar, Geetha; Krishna Murthy, B. V.; Satheesan, K.; Jain, A. R.; Bhavanikumar, Y.; Raghunath, Kalavai J.; Krishnaiah, M.

    2002-01-01

    Rayleigh lidar observations of temperature in the stratosphere and mesosphere are carried out an Gadanki from February 29 to March 31, 2000, which provided a powerful means of studying the gravity wave characteristics over the tropical atmosphere during winter. The potential energy per unit mass associated with the gravity wave activity in the upper stratosphere and mesosphere is found to undergo periodic fluctuations, which are closely correlated with the zonal wind fluctuations in the stratosphere produced by the equatorial waves. This provides the first observational evidence for the modulation of the gravity wave activity by the long period equatorial waves over the tropical middle atmosphere. The vertical wave number spectra of gravity waves shows that power spectral density decease with increasing wave number with a slope less than that expected for the saturated gravity wave spectrum in the stratosphere and mesosphere. PSD decreases for vertical wavelengths smaller than about 10 km in the stratosphere while the decrease is observed for the complete range of observed gravity wave spectrum in the mesosphere. A monochromatic upward propagating gravity wave with periodicity of 6 hour, amplitude of about 1 K to 3 K and vertical wavelength of 11 km was observed on 22 March, 2000.

  14. Observations of planetary mixed Rossby-gravity waves in the upper stratosphere

    NASA Technical Reports Server (NTRS)

    Randel, William J.; Boville, Byron A.; Gille, John C.

    1990-01-01

    Observational evidence is presented for planetary scale (zonal wave number 1-2) mixed Rossby-gravity (MRG) waves in the equatorial upper stratosphere (35-50 km). These waves are detected in LIMS measurements as coherently propagating temperature maxima of amplitude 0.1-0.3 K, which are antisymmetric (out of phase) about the equator, centered near 10-15 deg north and south latitude. These features have vertical wavelengths of order 10-15 km, periods near 2-3 days, and zonal phase velocities close to 200 m/s. Both eastward and westward propagating waves are found, and the observed vertical wavelengths and meridional structures are in good agreement with the MRG dispersion relation. Theoretical estimates of the zonal accelerations attributable to these waves suggest they do not contribute substantially to the zonal momentum balance in the middle atmosphere.

  15. Infragravity waves in the ocean as a source of acoustic-gravity waves in the atmosphere

    NASA Astrophysics Data System (ADS)

    Zabotin, Nikolay A.; Godin, Oleg A.

    2013-04-01

    Infragravity waves (IGWs) are surface gravity waves in the ocean with periods longer than the longest periods (~30s) of wind-generated waves. IGWs propagate transoceanic distances with very little attenuation in deep water and, because of their long wavelengths (from ~1 km to hundreds of km), provide a mechanism for coupling wave processes in the ocean, ice shelves, the atmosphere, and the solid Earth. Here, we build on recent advances in understanding spectral and spatial variability of background infragravity waves in deep ocean to evaluate the IGW manifestations in the atmosphere. Water compressibility has a minor effect on IGWs. On the contrary, much larger compressibility and vertical extent of the atmosphere makes it necessary to treat IGW extension into the atmosphere as acoustic-gravity waves. There exist two distinct regimes of IGW penetration into the atmosphere. At higher frequencies, one has surface waves in the atmosphere propagating horizontally along the ocean surface and prominent up to heights of the order of the wavelength. At lower frequencies, IGWs are leaky waves, which continuously radiate their energy into the upper atmosphere. The transition between the two regimes occurs at a frequency of the order of 3 mHz, with the exact value of the transition frequency being a function of the ocean depth, the direction of IGW propagation and the vertical profiles of temperature and wind velocity. The transition frequency decreases with increasing ocean depth. Using recently obtained semi-empirical model of power spectra the IGWs over varying bathymetry [Godin O. A., Zabotin N. A., Sheehan A. F., Yang Z., and Collins J. A. Power spectra of infragravity waves in a deep ocean, Geophys. Res. Lett., under review (2012)], we derive an estimate of the flux of the mechanical energy from the deep ocean into the atmosphere due to IGWs. Significance will be discussed of the IGW contributions into the field of acoustic-gravity waves in the atmosphere.

  16. The significance of ultra-refracted surface gravity waves on sheltered coasts, with application to San Francisco Bay

    USGS Publications Warehouse

    Hanes, D.M.; Erikson, L.H.

    2013-01-01

    Ocean surface gravity waves propagating over shallow bathymetry undergo spatial modification of propagation direction and energy density, commonly due to refraction and shoaling. If the bathymetric variations are significant the waves can undergo changes in their direction of propagation (relative to deepwater) greater than 90° over relatively short spatial scales. We refer to this phenomenon as ultra-refraction. Ultra-refracted swell waves can have a powerful influence on coastal areas that otherwise appear to be sheltered from ocean waves. Through a numerical modeling investigation it is shown that San Francisco Bay, one of the earth's largest and most protected natural harbors, is vulnerable to ultra-refracted ocean waves, particularly southwest incident swell. The flux of wave energy into San Francisco Bay results from wave transformation due to the bathymetry and orientation of the large ebb tidal delta, and deep, narrow channel through the Golden Gate. For example, ultra-refracted swell waves play a critical role in the intermittent closure of the entrance to Crissy Field Marsh, a small restored tidal wetland located on the sheltered north-facing coast approximately 1.5 km east of the Golden Gate Bridge.

  17. Medium-Scale Traveling Ionospheric Disturbances Observed by Detrended Total Electron Content Maps Over Brazil

    NASA Astrophysics Data System (ADS)

    Figueiredo, C. A. O. B.; Takahashi, H.; Wrasse, C. M.; Otsuka, Y.; Shiokawa, K.; Barros, D.

    2018-03-01

    A ground-based network of Global Navigation Satellite Systems receivers has been used to monitor medium-scale traveling ionospheric disturbances (MSTIDs). MSTIDs were studied using total electron content perturbation maps and keograms over south-southeast of Brazil during the period from December 2012 to February 2016. In total, 826 MSTIDs were observed mainly in daytime, thus presenting median values of horizontal wavelength, period, and horizontal phase velocity of 452 ± 107 km, 24 ± 4 min. and 323 ± 81 m/s, respectively. The direction of propagation varies on the season: during the winter (June-August), the waves preferentially propagated to north-northeast, while in the other seasons the waves propagated to other directions. The anisotropy observed in the MSTID propagation direction could be associated with the region of the gravity wave generation that takes place in the troposphere. We also found that the MSTIDs were observed most frequently during the daytime, between 11 and 15 local time in winter and near to dusk solar terminator (17-19 local time) in the other seasons. Furthermore, the occurrence of MSTIDs was higher in winter. We suggest that atmospheric gravity waves in the thermosphere, mesosphere, and troposphere could play an important role in generating the MSTIDs and the propagation direction may depend on location of the wave sources.

  18. Chilean Tsunami Rocks the Ross Ice Shelf

    NASA Astrophysics Data System (ADS)

    Bromirski, P. D.; Gerstoft, P.; Chen, Z.; Stephen, R. A.; Diez, A.; Arcas, D.; Wiens, D.; Aster, R. C.; Nyblade, A.

    2016-12-01

    The response of the Ross Ice Shelf (RIS) to the September 16, 2015 9.3 Mb Chilean earthquake tsunami (> 75 s period) and infragravity (IG) waves (50 - 300 s period) were recorded by a broadband seismic array deployed on the RIS from November 2014 to November 2015. The array included two linear transects, one approximately orthogonal to the shelf front extending 430 km southward toward the grounding zone, and an east-west transect spanning the RIS roughly parallel to the front about 100 km south of the ice edge (https://scripps.ucsd.edu/centers/iceshelfvibes/). Signals generated by both the tsunami and IG waves were recorded at all stations on floating ice, with little ocean wave-induced energy reaching stations on grounded ice. Cross-correlation and dispersion curve analyses indicate that tsunami and IG wave-generated signals propagate across the RIS at gravity wave speeds (about 70 m/s), consistent with coupled water-ice flexural-gravity waves propagating through the ice shelf from the north. Gravity wave excitation at periods > 100 s is continuously observed during the austral winter, providing mechanical excitation of the RIS throughout the year. Horizontal displacements are typically about 3 times larger than vertical displacements, producing extensional motions that could facilitate expansion of existing fractures. The vertical and horizontal spectra in the IG band attenuate exponentially with distance from the front. Tsunami model data are used to assess variability of excitation of the RIS by long period gravity waves. Substantial variability across the RIS roughly parallel to the front is observed, likely resulting from a combination of gravity wave amplitude variability along the front, signal attenuation, incident angle of the wave forcing at the front that depends on wave generation location as well as bathymetry under and north of the shelf, and water layer and ice shelf thickness and properties.

  19. Acoustic-gravity waves, theory and application

    NASA Astrophysics Data System (ADS)

    Kadri, Usama; Farrell, William E.; Munk, Walter

    2015-04-01

    Acoustic-gravity waves (AGW) propagate in the ocean under the influence of both the compressibility of sea water and the restoring force of gravity. The gravity dependence vanishes if the wave vector is normal to the ocean surface, but becomes increasingly important as the wave vector acquires a horizontal tilt. They are excited by many sources, including non-linear surface wave interactions, disturbances of the ocean bottom (submarine earthquakes and landslides) and underwater explosions. In this introductory lecture on acoustic-gravity waves, we describe their properties, and their relation to organ pipe modes, to microseisms, and to deep ocean signatures by short surface waves. We discuss the generation of AGW by underwater earthquakes; knowledge of their behaviour with water depth can be applied for the early detection of tsunamis. We also discuss their generation by the non-linear interaction of surface gravity waves, which explains the major role they play in transforming energy from the ocean surface to the crust, as part of the microseisms phenomenon. Finally, they contribute to horizontal water transport at depth, which might affect benthic life.

  20. Tsunami-driven gravity waves in the presence of vertically varying background and tidal wind structures

    NASA Astrophysics Data System (ADS)

    Laughman, B.; Fritts, D. C.; Lund, T. S.

    2017-05-01

    Many characteristics of tsunami-driven gravity waves (TDGWs) enable them to easily propagate into the thermosphere and ionosphere with appreciable amplitudes capable of producing detectable perturbations in electron densities and total electron content. The impact of vertically varying background and tidal wind structures on TDGW propagation is investigated with a series of idealized background wind profiles to assess the relative importance of wave reflection, critical-level approach, and dissipation. These numerical simulations employ a 2-D nonlinear anelastic finite-volume neutral atmosphere model which accounts for effects accompanying vertical gravity wave (GW) propagation such as amplitude growth with altitude. The GWs are excited by an idealized tsunami forcing with a 50 cm sea surface displacement, a 400 km horizontal wavelength, and a phase speed of 200 ms-1 consistent with previous studies of the tsunami generated by the 26 December 2004 Sumatra earthquake. Results indicate that rather than partial reflection and trapping, the dominant process governing TDGW propagation to thermospheric altitudes is refraction to larger and smaller vertical scales, resulting in respectively larger and smaller vertical group velocities and respectively reduced and increased viscous dissipation. Under all considered background wind profiles, TDGWs were able to attain ionospheric altitudes with appreciable amplitudes. Finally, evidence of nonlinear effects is observed and the conditions leading to their formation is discussed.

  1. Vertical propagation of information in a middle atmosphere data assimilation system by gravity-wave drag feedbacks

    NASA Astrophysics Data System (ADS)

    Ren, Shuzhan; Polavarapu, Saroja M.; Shepherd, Theodore G.

    2008-03-01

    The mesospheric response to the 2002 Antarctic Stratospheric Sudden Warming (SSW) is analysed using the Canadian Middle Atmosphere Model Data Assimilation System (CMAM-DAS), where it represents a vertical propagation of information from the observations into the data-free mesosphere. The CMAM-DAS simulates a cooling in the lowest part of the mesosphere which is accomplished by resolved motions, but which is extended to the mid- to upper mesosphere by the response of the model's non-orographic gravity-wave drag parameterization to the change in zonal winds. The basic mechanism is that elucidated by Holton consisting of a net eastward wave-drag anomaly in the mesosphere during the SSW, although in this case there is a net upwelling in the polar mesosphere. Since the zonal-mean mesospheric response is shown to be predictable, this demonstrates that variations in the mesospheric state can be slaved to the lower atmosphere through gravity-wave drag.

  2. The evolution of a localized nonlinear wave of the Kelvin-Helmholtz instability with gravity

    NASA Astrophysics Data System (ADS)

    Orazzo, Annagrazia; Hoepffner, Jérôme

    2012-11-01

    At the interface between two fluids of different density and in the presence of gravity, there are well known periodic surface waves which can propagate for long distances with little attenuation, as it is for instance the case at the surface of the sea. If wind is present, these waves progressively accumulate energy as they propagate and grow to large sizes—this is the Kelvin-Helmholtz instability. On the other hand, we show in this paper that for a given wind strength, there is potential for the growth of a localized nonlinear wave. This wave can reach a size such that the hydrostatic pressure drop from top to bottom equals the stagnation pressure of the wind. This process for the disruption of the flat interface is localized and nonlinear. We study the properties of this wave using numerical simulations of the Navier-Stokes equations.

  3. A new physics-based modeling approach for tsunami-ionosphere coupling

    NASA Astrophysics Data System (ADS)

    Meng, X.; Komjathy, A.; Verkhoglyadova, O. P.; Yang, Y.-M.; Deng, Y.; Mannucci, A. J.

    2015-06-01

    Tsunamis can generate gravity waves propagating upward through the atmosphere, inducing total electron content (TEC) disturbances in the ionosphere. To capture this process, we have implemented tsunami-generated gravity waves into the Global Ionosphere-Thermosphere Model (GITM) to construct a three-dimensional physics-based model WP (Wave Perturbation)-GITM. WP-GITM takes tsunami wave properties, including the wave height, wave period, wavelength, and propagation direction, as inputs and time-dependently characterizes the responses of the upper atmosphere between 100 km and 600 km altitudes. We apply WP-GITM to simulate the ionosphere above the West Coast of the United States around the time when the tsunami associated with the March 2011 Tohuku-Oki earthquke arrived. The simulated TEC perturbations agree with Global Positioning System observations reasonably well. For the first time, a fully self-consistent and physics-based model has reproduced the GPS-observed traveling ionospheric signatures of an actual tsunami event.

  4. Breaking Gravity Waves Over Large-Scale Topography

    NASA Astrophysics Data System (ADS)

    Doyle, J. D.; Shapiro, M. A.

    2002-12-01

    The importance of mountain waves is underscored by the numerous studies that document the impact on the atmospheric momentum balance, turbulence generation, and the creation of severe downslope winds. As stably stratified air is forced to rise over topography, large amplitude internal gravity waves may be generated that propagate vertically, amplify and breakdown in the upper troposphere and lower stratosphere. Many of the numerical studies reported on in the literature have used two- and three-dimensional models with simple, idealized initial states to examine gravity wave breaking. In spite of the extensive previous work, many questions remain regarding gravity wave breaking in the real atmosphere. Outstanding issues that are potentially important include: turbulent mixing and wave overturning processes, mountain wave drag, downstream effects, and the mesoscale predictability of wave breaking. The current limit in our knowledge of gravity wave breaking can be partially attributed to lack of observations. During the Fronts and Atlantic Storm-Track Experiment (FASTEX), a large amplitude gravity wave was observed in the lee of Greenland on 29 January 1997. Observations taken collected during FASTEX presented a unique opportunity to study topographically forced gravity wave breaking and to assess the ability of high-resolution numerical models to predict the structure and evolution of such phenomena. Measurements from the NOAA G-4 research aircraft and high-resolution numerical simulations are used to study the evolution and dynamics of the large-amplitude gravity wave event that took place during the FASTEX. Vertical cross section analysis of dropwindsonde data, with 50-km horizontal spacing, indicates the presence of a large amplitude breaking gravity wave that extends from above the 150-hPa level to 500 hPa. Flight-level data indicate a horizontal shear of over 10-3 s-1 across the breaking wave with 25 K potential temperature perturbations. This breaking wave may have important implications for momentum flux parameterization in mesoscale models, stratospheric-tropospheric exchange dynamics as well as the dynamic sources and sinks of the ozone budget. Additionally, frequent breaking waves over Greenland are a known commercial and military aviation hazard. NRL's nonhydrostatic COAMPS^{TM}$ model is used with four nested grids with horizontal resolutions of 45 km, 15 km, 5 km and 1.67 km and 65 vertical levels to simulate the gravity wave event. The model simulation captures the temporal evolution and horizontal structure of the wave. However, the model underestimates the vertical amplitude of the wave. The model simulation suggests that the breaking wave may be triggered as a consequence of vertically propagating internal gravity waves emanating from katabatic flow near the extreme slopes of eastern Greenland. Additionally, a number of simulations that make use of a horizontally homogeneous initial state and both idealized and actual Greenland topography are performed. These simulations highlight the sensitivity of gravity wave amplification and breaking to the planetary rotation, slope of the Greenland topography, representation of turbulent mixing, and surface processes.

  5. Study of internal gravity waves in the meteor zone

    NASA Technical Reports Server (NTRS)

    Gavrilov, N. M.

    1987-01-01

    An important component of the dynamical regime of the atmosphere at heights near 100 km are internal gravity waves (IGW) with periods from about 5 min to about 17.5 hrs which propagate from the lower atmospheric layers and are generated in the uppermost region of the atmosphere. As IGW propagate upwards, their amplitudes increase and they have a considerable effect on upper atmospheric processes: (1) they provide heat flux divergences comparable with solar heating; (2) they influence the gaseous composition and produce wave variations of the concentrations of gaseous components and emissions of the upper atmosphere; and (3) they cause considerable acceleration of the mean stream. It was concluded that the periods, wavelengths, amplitudes and velocities of IGW propagation in the meteor zone are now measured quite reliably. However, for estimating the influence of IGW on the thermal regime and the circulation of the upper atmosphere these parameters are not as important as the values of wave fluxes of energy, heat, moment and mass.

  6. On the use of infrasound for constraining global climate models

    NASA Astrophysics Data System (ADS)

    Millet, Christophe; Ribstein, Bruno; Lott, Francois; Cugnet, David

    2017-11-01

    Numerical prediction of infrasound is a complex issue due to constantly changing atmospheric conditions and to the random nature of small-scale flows. Although part of the upward propagating wave is refracted at stratospheric levels, where gravity waves significantly affect the temperature and the wind, yet the process by which the gravity wave field changes the infrasound arrivals remains poorly understood. In the present work, we use a stochastic parameterization to represent the subgrid scale gravity wave field from the atmospheric specifications provided by the European Centre for Medium-Range Weather Forecasts. It is shown that regardless of whether the gravity wave field possesses relatively small or large features, the sensitivity of acoustic waveforms to atmospheric disturbances can be extremely different. Using infrasound signals recorded during campaigns of ammunition destruction explosions, a new set of tunable parameters is proposed which more accurately predicts the small-scale content of gravity wave fields in the middle atmosphere. Climate simulations are performed using the updated parameterization. Numerical results demonstrate that a network of ground-based infrasound stations is a promising technology for dynamically tuning the gravity wave parameterization.

  7. Dynamics and Stability of Acoustic Wavefronts in the Ocean

    DTIC Science & Technology

    2013-09-30

    propagation and also has been demonstrated to be an efficient and robust technique for modeling infrasound propagation in the atmosphere (Zabotin et al...tracing provides an efficient technique for simulating long-range propagation of infrasound and acoustic-gravity waves in the atmosphere. RELATED

  8. Three-Dimensional Acoustic Propagation Through Shallow Water Internal, Surface Gravity and Bottom Sediment Waves

    DTIC Science & Technology

    2011-09-01

    energy never ends. I am also very pleased to have Dr. William M. Carey, Dr. Henrik Schmidt, Dr. Glen G. Gawarkiewicz and Dr. Pierre Lermusiaux on my...Internal Waves for Multi- Megameter Acoustic Propagation in the Ocean, J. Acoust. Soc. Amer., Vol. 100, P. 3607-3620, 1996. [6] J.R. Apel , M. Badiey

  9. A Simulated Spectrum of Convectively Generated Gravity Waves: Propagation from the Tropopause to the Mesopause and Effects on the Middle Atmosphere

    NASA Technical Reports Server (NTRS)

    Alexander, Joan

    1996-01-01

    This work evaluates the interaction of a simulated spectrum of convectively generated gravity waves with realistic middle atmosphere mean winds. The wave spectrum is derived from the nonlinear convection model described by Alexander et al. that simulated a two-dimensional midlatitude squall line. This spectrum becomes input to a linear ray tracing model for evaluation of wave propagation as a function of height through climatological background wind and buoyancy frequency profiles. The energy defined by the spectrum as a function of wavenumber and frequency is distributed spatially and temporally into wave packets for the purpose of estimating wave amplitudes at the lower boundary of the ray tracing model. A wavelet analysis provides an estimate of these wave packet widths in space and time. Without this redistribution of energies into wave packets the Fourier analysis alone inaccurately assumes the energy is evenly distributed throughout the storm model domain. The growth with height of wave amplitudes is derived from wave action flux conservation coupled to a convective instability saturation condition. Mean flow accelerations and wave energy dissipation profiles are derived from this analysis and compared to parameterized estimates of gravity wave forcing, providing a measure of the importance of the storm source to global gravity wave forcing. The results suggest that a single large convective storm system like the simulated squall line could provide a significant fraction of the zonal mean gravity wave forcing at some levels, particularly in the mesosphere. The vertical distributions of mean flow acceleration and energy dissipation do not much resemble the parameterized profiles in form because of the peculiarities of the spectral properties of the waves from the storm source. The ray tracing model developed herein provides a tool for examining the role of convectively generated waves in middle atmosphere physics.

  10. A Simulated Spectrum of Convectively Generated Gravity Waves: Propagation from the Tropopause to the Mesopause and Effects on the Middle Atmosphere

    NASA Technical Reports Server (NTRS)

    Alexander, M. Joan

    1996-01-01

    This work evaluates the interaction of a simulated spectrum of convectively generated gravity waves with realistic middle atmosphere mean winds. The wave spectrum is derived from the nonlinear convection model described by Alexander et al. [1995] that simulated a two-dimensional midlatitude squall line. This spectrum becomes input to a linear ray tracing model for evaluation of wave propagation as a function of height through climatological background wind and buoyancy frequency profiles. The energy defined by the spectrum as a function of wavenumber and frequency is distributed spatially and temporally into wave packets for the purpose of estimating wave amplitudes at the lower boundary of the ray tracing model. A wavelet analysis provides an estimate of these wave packet widths in space and time. Without this redistribution of energies into wave packets the Fourier analysis alone inaccurately assumes the energy is evenly distributed throughout the storm model domain. The growth with height of wave amplitudes is derived from wave action flux conservation coupled to a convective instability saturation condition. Mean flow accelerations and wave energy dissipation profiles are derived from this analysis and compared to parameterized estimates of gravity wave forcing, providing a measure of the importance of the storm source to global gravity wave forcing. The results suggest that a single large convective storm system like the simulated squall line could provide a significant fraction of the zonal mean gravity wave forcing at some levels, particularly in the mesosphere. The vertical distributions of mean flow acceleration and energy dissipation do not much resemble the parameterized profiles in form because of the peculiarities of the spectral properties of the waves from the storm source. The ray tracing model developed herein provides a tool for examining the role of convectively generated waves in middle atmosphere physics.

  11. Transport equations for linear surface waves with random underlying flows

    NASA Astrophysics Data System (ADS)

    Bal, Guillaume; Chou, Tom

    1999-11-01

    We define the Wigner distribution and use it to develop equations for linear surface capillary-gravity wave propagation in the transport regime. The energy density a(r, k) contained in waves propagating with wavevector k at field point r is given by dota(r,k) + nabla_k[U_⊥(r,z=0) \\cdotk + Ω(k)]\\cdotnabla_ra [13pt] \\: hspace1in - (nabla_r\\cdotU_⊥)a - nabla_r(k\\cdotU_⊥)\\cdotnabla_ka = Σ(δU^2) where U_⊥(r, z=0) is a slowly varying surface current, and Ω(k) = √(k^3+k)tanh kh is the free capillary-gravity dispersion relation. Note that nabla_r\\cdotU_⊥(r,z=0) neq 0, and that the surface currents exchange energy density with the propagating waves. When an additional weak random current √\\varepsilon δU(r/\\varepsilon) varying on the scale of k-1 is included, we find an additional scattering term Σ(δU^2) as a function of correlations in δU. Our results can be applied to the study of surface wave energy transport over a turbulent ocean.

  12. Propagation of gravity waves across the tropopause

    NASA Astrophysics Data System (ADS)

    Bense, Vera; Spichtinger, Peter

    2015-04-01

    The tropopause region is characterised by strong gradients in various atmospheric quantities that exhibit different properties in the troposphere compared to the stratosphere. The temperature lapse rate typically changes from negative to near-zero values resulting in a strong increase in stability. Accordingly, the buoyancy frequency often undergoes a jump at the tropopause. Analysis of radiosounding data also shows the existence of a strong inversion layer (tropopause inversion layer, TIL) characterised by a strong maximum in buoyancy frequency just above the tropopause, see e.g. Birner et al. (2002). Additionally, the magnitude of the vertical wind shear of the horizontal wind maximizes at the tropopause and the region also exhibits characteristical gradients of trace gases. Vertically propagating gravity waves can be excited in the troposphere by several mechanisms, e.g. by flow over topography (e.g. Durran, 1990), by jets and fronts (for a recent review: Plougonven and Zhang, 1990) or by convection (e.g. Clark et al., 1986). When these waves enter the tropopause region, their properties can be changed drastically by the changing stratification and strong wind shear. Within this work, the EULAG (Eulerian/semi-Lagrangian fluid solver, see e.g. Smolarkiewicz and Margolin, 1997) model is used to investigate the impact of the tropopause on vertically propagating gravity waves excited by flows over topography. The choice of topography (sine-shaped mountains, bell-shaped mountain) along with horizontal wind speed and tropospheric value of buoyancy frequency determine the spectrum of waves (horizontal and vertical wavelengths) that is excited in the tropsphere. In order to analyse how these spectra change for several topographies when a tropopause is present, we investigate different idealized cases in a two-dimensional domain. By varying the vertical profiles of buoyancy frequency (step-wise vs. continuos change, including TIL) and wind shear, the tropopause characteristics are changed and the impact on vertically propagating gravity waves, such as change in wavelength, partial reflection or wave trapping can be studied. References Birner, T., A. Doernbrack, and U. Schumann, 2002: How sharp is the tropopause at midlatitudes?, Geophys. Res. Lett., 29, 1700, doi:10.1029/2002GL015142. Durran, D.R., 1990: Mountain Waves and Downslope Winds, Atmospheric Processes over Complex Terrain. Meteorological Monographs, Vol 23, No. 45 Plougonven, R. and F. Zhang, 2013: Gravity Waves From Atmospheric Jets and Fronts. Rev. Geophys. doi:10.1002/2012RG000419 Clark, T., T. Hauf, and J. Kuettner, 1986: Convectively forced internal gravity waves: results from two- dimensional numerical experiments, Q.J.R. Meteorol. Soc., 112, 899-925. Smolarkiewicz, P. and L. Margolin, 1997.: On forward-in-time differencing for fluids: an Eulerian/Semi- Lagrangian non-hydrostatic model for stratified flows, Atmos.-Ocean., 35, 127-152.

  13. A ray tracing model of gravity wave propagation and breakdown in the middle atmosphere

    NASA Technical Reports Server (NTRS)

    Schoeberl, M. R.

    1985-01-01

    Gravity wave ray tracing and wave packet theory is used to parameterize wave breaking in the mesosphere. Rays are tracked by solving the group velocity equations, and the interaction with the basic state is determined by considering the evolution of the packet wave action density. The ray tracing approach has a number of advantages over the steady state parameterization as the effects of gravity wave focussing and refraction, local dissipation, and wave response to rapid changes in the mean flow are more realistically considered; however, if steady state conditions prevail, the method gives identical results. The ray tracing algorithm is tested using both interactive and noninteractive models of the basic state. In the interactive model, gravity wave interaction with the polar night jet on a beta-plane is considered. The algorithm produces realistic polar night jet closure for weak topographic forcing of gravity waves. Planetary scale waves forced by local transfer of wave action into the basic flow in turn transfer their wave action into the zonal mean flow. Highly refracted rays are also found not to contribute greatly to the climatology of the mesosphere, as their wave action is severely reduced by dissipation during their lateral travel.

  14. Analytic solutions for Long's equation and its generalization

    NASA Astrophysics Data System (ADS)

    Humi, Mayer

    2017-12-01

    Two-dimensional, steady-state, stratified, isothermal atmospheric flow over topography is governed by Long's equation. Numerical solutions of this equation were derived and used by several authors. In particular, these solutions were applied extensively to analyze the experimental observations of gravity waves. In the first part of this paper we derive an extension of this equation to non-isothermal flows. Then we devise a transformation that simplifies this equation. We show that this simplified equation admits solitonic-type solutions in addition to regular gravity waves. These new analytical solutions provide new insights into the propagation and amplitude of gravity waves over topography.

  15. Tropospheric weather influenced by solar wind through atmospheric vertical coupling downward control

    NASA Astrophysics Data System (ADS)

    Prikryl, Paul; Bruntz, Robert; Tsukijihara, Takumi; Iwao, Koki; Muldrew, Donald B.; Rušin, Vojto; Rybanský, Milan; Turňa, Maroš; Šťastný, Pavel

    2018-06-01

    Occurrence of severe weather in the context of solar wind coupling to the magnetosphere-ionosphere-atmosphere (MIA) system is investigated. It is observed that significant snowfall, wind and heavy rain, particularly if caused by low pressure systems in winter, tend to follow arrivals of high-speed solar wind. Previously published statistical evidence that explosive extratropical cyclones in the northern hemisphere tend to occur within a few days after arrivals of high-speed solar wind streams from coronal holes (Prikryl et al., 2009, 2016) is corroborated for the southern hemisphere. Cases of severe weather events are examined in the context of the magnetosphere-ionosphere-atmosphere (MIA) coupling. Physical mechanism to explain these observations is proposed. The leading edge of high-speed solar wind streams is a locus of large-amplitude magneto-hydrodynamic waves that modulate Joule heating and/or Lorentz forcing of the high-latitude lower thermosphere generating medium-scale atmospheric gravity waves that propagate upward and downward through the atmosphere. Simulations of gravity wave propagation in a model atmosphere using the Transfer Function Model (Mayr et al., 1990) reveal that propagating waves originating in the lower thermosphere can excite a spectrum of gravity waves in the lower atmosphere. In spite of significantly reduced amplitudes but subject to amplification upon reflection in the upper troposphere, these gravity waves can provide a lift of unstable air to release instabilities in the troposphere and initiate convection to form cloud/precipitation bands. It is primarily the energy provided by release of latent heat that leads to intensification of storms. These results indicate that vertical coupling in the atmosphere exerts downward control from solar wind to the lower atmospheric levels influencing tropospheric weather development.

  16. Auroral origin of medium scale gravity waves in neutral composition and temperature

    NASA Technical Reports Server (NTRS)

    Chandra, S.; Spencer, N. W.; Krankowsky, D.; Laemmerzahl, P.

    1979-01-01

    The kinetic temperature and neutral composition data obtained from the Aeros B neutral atmosphere temperature experiment and the neutral and ion mass spectrometer show spatial structures characteristic of medium scale gravity waves with a wavelength in the range of several hundred kilometers. These waves are associated with auroral activity, and their spatial structure reflects the time history of the auroral electrojet. The medium scale gravity waves tend to propagate to mid-latitudes on the nightside. On the dayside their range is limited to high latitudes. Gravity waves are carriers of auroral energy to middle and low latitudes where they may cause irreversible changes in temperature via viscous dissipation. Since auroral activity occurs frequently, it is suggested that this energy reaches the mid-latitude region of the thermosphere much more frequently than is indicated by planetary magnetic indices.

  17. Experimental and Numerical Investigation of Internal Gravity Waves Excited by Turbulent Penetrative Convection in Water Around Its Density Maximum

    NASA Astrophysics Data System (ADS)

    Perrard, Stéphane; Le Bars, Michaël; Le Gal, Patrice

    This study is devoted to the experimental and numerical analysis of the excitation of gravity waves by turbulent convection. This situation is representative of many geophysical or astrophysical systems such as the convective bottom layer of the atmosphere that radiates internal waves in the stratosphere, or the interaction between the convective and the radiative zones in stars. In our experiments, we use water as a working fluid as it possesses the remarkable property of having a maximum density at 4 °C. Therefore, when establishing on a water layer a temperature gradient between 0 °C at the bottom and room temperature at the top, a turbulent convective region appears spontaneously under a stably stratified zone. In these conditions, gravity waves are excited by the convective fluid motions penetrating the stratified layer. Although this type of flow, called penetrative convection, has already been described, we present here the first velocity field measurement of wave emission and propagation. We show in particular that an intermediate layer that we call the buffer layer emerges between the convective and the stratified zones. In this buffer layer, the angle of propagation of the waves varies with the altitude since it is slaved to the Brunt-Väisälä frequency which evolves rapidly between the convective and the stratified layer. A minimum angle is reached at the end of the buffer layer. Then we observe that an angle of propagation is selected when the waves travel through the stratified layer. We expect this process of wave selection to take place in natural situations.

  18. Nonstationary Gravity Wave Forcing of the Stratospheric Zonal Mean Wind

    NASA Technical Reports Server (NTRS)

    Alexander, M. J.; Rosenlof, K. H.

    1996-01-01

    The role of gravity wave forcing in the zonal mean circulation of the stratosphere is discussed. Starting from some very simple assumptions about the momentum flux spectrum of nonstationary (non-zero phase speed) waves at forcing levels in the troposphere, a linear model is used to calculate wave propagation through climatological zonal mean winds at solstice seasons. As the wave amplitudes exceed their stable limits, a saturation criterion is imposed to account for nonlinear wave breakdown effects, and the resulting vertical gradient in the wave momentum flux is then used to estimate the mean flow forcing per unit mass. Evidence from global, assimilated data sets are used to constrain these forcing estimates. The results suggest the gravity-wave-driven force is accelerative (has the same sign as the mean wind) throughout most of the stratosphere above 20 km. The sense of the gravity wave forcing in the stratosphere is thus opposite to that in the mesosphere, where gravity wave drag is widely believed to play a principal role in decelerating the mesospheric jets. The forcing estimates are further compared to existing gravity wave parameterizations for the same climatological zonal mean conditions. Substantial disagreement is evident in the stratosphere, and we discuss the reasons for the disagreement. The results suggest limits on typical gravity wave amplitudes near source levels in the troposphere at solstice seasons. The gravity wave forcing in the stratosphere appears to have a substantial effect on lower stratospheric temperatures during southern hemisphere summer and thus may be relevant to climate.

  19. Atmospheric sound propagation

    NASA Technical Reports Server (NTRS)

    Cook, R. K.

    1969-01-01

    The propagation of sound waves at infrasonic frequencies (oscillation periods 1.0 - 1000 seconds) in the atmosphere is being studied by a network of seven stations separated geographically by distances of the order of thousands of kilometers. The stations measure the following characteristics of infrasonic waves: (1) the amplitude and waveform of the incident sound pressure, (2) the direction of propagation of the wave, (3) the horizontal phase velocity, and (4) the distribution of sound wave energy at various frequencies of oscillation. Some infrasonic sources which were identified and studied include the aurora borealis, tornadoes, volcanos, gravity waves on the oceans, earthquakes, and atmospheric instability waves caused by winds at the tropopause. Waves of unknown origin seem to radiate from several geographical locations, including one in the Argentine.

  20. Influence of vertically and obliquely propagating gravity waves on the polar summer mesosphere

    NASA Astrophysics Data System (ADS)

    Thurairajah, B.; Siskind, D. E.; Bailey, S. M.

    2017-12-01

    Polar Mesospheric Clouds (PMCs) are sensitive to changes in temperature of the cold polar summer mesosphere, which in turn are modulated by gravity waves (GWs). In this study we investigate the link between PMCs and GWs that propagate both vertically (i.e. wave propagation is directly above the source region) and obliquely (lateral or non-vertical propagation upward but away from the source region). Several observational studies have analyzed the link between PMCs and vertically propagating GWs and have reported both positive and negative correlations. Moreover, while modelling studies have noted the possibility of oblique propagation of GWs from the low-latitude stratosphere to the high-latitude mesosphere, observational studies of the influence of these waves on the polar summer mesosphere are sparse. We present a comprehensive analysis of the influence of vertically and obliquely propagating GWs on the northern hemisphere (NH) polar summer mesosphere using data from 8 PMC seasons. Temperature data from the SOFIE experiment on the AIM satellite and SABER instrument on the TIMED satellite are used to derive GW parameters. SOFIE PMC data in terms of Ice Water Content (IWC) are used to quantify the changes in the polar summer mesosphere. At high latitudes, preliminary analysis of vertically propagating waves indicate a weak but positive correlation between GWs at 50 km and GWs at the PMC altitude of 84 km. Overall there is a negative correlation between GWs at 50 km and IWC and a positive correlation between GWs at 84 km and IWC. These results and the presence of a slanted structure (slanted from the low-latitude stratosphere to the high-latitude mesosphere) in GW momentum flux suggest the possibility of a significant influence of obliquely propagating GWs on the polar summer mesosphere

  1. Recent Advances in Remote Sensing of Natural Hazards-Induced Atmospheric and Ionospheric Perturbations

    NASA Astrophysics Data System (ADS)

    Yang, Y. M.; Komjathy, A.; Meng, X.; Verkhoglyadova, O. P.; Langley, R. B.; Mannucci, A. J.

    2015-12-01

    Traveling ionospheric disturbances (TIDs) induced by acoustic-gravity waves in the neutral atmosphere have significant impact on trans-ionospheric radio waves such as Global Navigation Satellite System (GNSS, including Global Position System (GPS)) measurements. Natural hazards and solid Earth events, such as earthquakes, tsunamis and volcanic eruptions are actual sources that may trigger acoustic and gravity waves resulting in traveling ionospheric disturbances (TIDs) in the upper atmosphere. Trans-ionospheric radio wave measurements sense the total electron content (TEC) along the signal propagation path. In this research, we introduce a novel GPS-based detection and estimation technique for remote sensing of atmospheric wave-induced TIDs including space weather phenomena induced by major natural hazard events, using TEC time series collected from worldwide ground-based dual-frequency GNSS (including GPS) receiver networks. We demonstrate the ability of using ground- and space-based dual-frequency GPS measurements to detect and monitor tsunami wave propagation from the 2011 Tohoku-Oki earthquake and tsunami. Major wave trains with different propagation speeds and wavelengths were identified through analysis of the GPS remote sensing observations. Dominant physical characteristics of atmospheric wave-induced TIDs are found to be associated with specific tsunami propagations and oceanic Rayleigh waves. In this research, we compared GPS-based observations, corresponding model simulations and tsunami wave propagation. Results are shown to lead to a better understanding of the tsunami-induced ionosphere responses. Based on current distribution of Plate Boundary Observatory GPS stations, the results indicate that tsunami-induced TIDs may be detected about 60 minutes prior to tsunamis arriving at the U.S. west coast. It is expected that this GNSS-based technology will become an integral part of future early-warning systems.

  2. Earthquake- and tsunami-induced ionospheric disturbances detected by GPS total electron content observation

    NASA Astrophysics Data System (ADS)

    Tsugawa, T.; Nishioka, M.; Matsumura, M.; Shinagawa, H.; Maruyama, T.; Ogawa, T.; Saito, A.; Otsuka, Y.; Nagatsuma, T.; Murata, T.

    2012-12-01

    Ionospheric disturbances induced by the 2011 Tohoku earthquake and tsunami were studied by the high-resolution GPS total electron content (TEC) observation in Japan and in the world. The initial ionospheric disturbance appeared as sudden depletions by about 6 TEC unit (20%) about seven minutes after the earthquake onset, near the epicenter. From 06:00UT to 06:15UT, circular waves with short propagation distance propagated in the radial direction in the propagation velocity of 3,457, 783, 423 m/s for the first, second, third peak, respectively. Following these waves, concentric waves with long propagation distance appeared to propagate at the velocity of 138-288 m/s. In the vicinity of the epicenter, shortperiod oscillations with period of about 4 minutes were observed after 06:00 UT for 3 hours or more. We focus on the the circular and concentric waves in this paper. The circular or concentric structures indicate that these ionospheric disturbances had a point source. The center of these structures, termed as "ionospheric epicenter", was located around 37.5 deg N of latitude and 144.0 deg E of longitude, 170 km far from the epicenter to the southeast direction, and corresponded to the tsunami source. Comparing to the results of a numerical simulation using non-hydrostatic compressible atmosphere-ionosphere model, the first peak of circular wave would be caused by the acoustic waves generated from the propagating Rayleigh wave. The second and third waves would be caused by atmospheric gravity waves excited in the lower ionosphere due to the acoustic wave propagations from the tsunami source. The fourth and following waves are considered to be caused by the atmospheric gravity waves induced by the wavefronts of traveling tsunami. Long-propagation of these TEC disturbances were studied also using high-resolution GPS-TEC data in North America and Europe. Medium-scale wave structures with wavelengths of several 100 km appeared in the west part of North America at the almost same time as the tsunami arrival. On the other hand, no remarkable wave structure was observed in Europe. We will introduce these observational results and discuss about the generation and propagation mechanisms of the ionospheric disturbances induced by the earthquake and tsunami.

  3. Thermospheric gravity waves - Observations and interpretation using the transfer function model (TFM)

    NASA Technical Reports Server (NTRS)

    Mayr, H. G.; Harris, I.; Herrero, F. A.; Spencer, N. W.; Varosi, F.; Pesnell, W. D.

    1990-01-01

    This paper presents some numerical experiments performed with the TFM to study the various wave components excited in the auroral regions that propagate through the thermosphere and lower atmosphere, and to demonstrate the properties of realistic source geometries. The model is applied to the interpretation of satellite measurements, and gravity waves seen in the thermosphere of Venus are discussed. Gravity waves are prominent in the terrestrial thermosphere polar region and can be excited by perturbations in Joule heating and Lorentz force due to magnetospheric processes. Observations from the Dynamics Explorer-2 satellite are used to illustrate the complexity of the phenomenon and to review the TFM that is utilized.

  4. Determination of gravity wave parameters in the airglow combining photometer and imager data

    NASA Astrophysics Data System (ADS)

    Nyassor, Prosper K.; Arlen Buriti, Ricardo; Paulino, Igo; Medeiros, Amauri F.; Takahashi, Hisao; Wrasse, Cristiano M.; Gobbi, Delano

    2018-05-01

    Mesospheric airglow measurements of two or three layers were used to characterize both vertical and horizontal parameters of gravity waves. The data set was acquired coincidentally from a multi-channel filter (Multi-3) photometer and an all-sky imager located at São João do Cariri (7.4° S, 36.5° W) in the equatorial region from 2001 to 2007. Using a least-square fitting and wavelet analysis technique, the phase and amplitude of each observed wave were determined, as well as the amplitude growth. Using the dispersion relation of gravity waves, the vertical and horizontal wavelengths were estimated and compared to the horizontal wavelength obtained from the keogram analysis of the images observed by an all-sky imager. The results show that both horizontal and vertical wavelengths, obtained from the dispersion relation and keogram analysis, agree very well for the waves observed on the nights of 14 October and 18 December 2006. The determined parameters showed that the observed wave on the night of 18 December 2006 had a period of ˜ 43.8 ± 2.19 min, with the horizontal wavelength of 235.66 ± 11.78 km having a downward phase propagation, whereas that of 14 October 2006 propagated with a period of ˜ 36.00 ± 1.80 min with a horizontal wavelength of ˜ 195 ± 9.80 km, and with an upward phase propagation. The observation of a wave taken by a photometer and an all-sky imager allowed us to conclude that the same wave could be observed by both instruments, permitting the investigation of the two-dimensional wave parameter.

  5. Finite-Difference Modeling of Acoustic and Gravity Wave Propagation in Mars Atmosphere: Application to Infrasounds Emitted by Meteor Impacts

    NASA Astrophysics Data System (ADS)

    Garcia, Raphael F.; Brissaud, Quentin; Rolland, Lucie; Martin, Roland; Komatitsch, Dimitri; Spiga, Aymeric; Lognonné, Philippe; Banerdt, Bruce

    2017-10-01

    The propagation of acoustic and gravity waves in planetary atmospheres is strongly dependent on both wind conditions and attenuation properties. This study presents a finite-difference modeling tool tailored for acoustic-gravity wave applications that takes into account the effect of background winds, attenuation phenomena (including relaxation effects specific to carbon dioxide atmospheres) and wave amplification by exponential density decrease with height. The simulation tool is implemented in 2D Cartesian coordinates and first validated by comparison with analytical solutions for benchmark problems. It is then applied to surface explosions simulating meteor impacts on Mars in various Martian atmospheric conditions inferred from global climate models. The acoustic wave travel times are validated by comparison with 2D ray tracing in a windy atmosphere. Our simulations predict that acoustic waves generated by impacts can refract back to the surface on wind ducts at high altitude. In addition, due to the strong nighttime near-surface temperature gradient on Mars, the acoustic waves are trapped in a waveguide close to the surface, which allows a night-side detection of impacts at large distances in Mars plains. Such theoretical predictions are directly applicable to future measurements by the INSIGHT NASA Discovery mission.

  6. Atmospheric gravity wave detection following the 2011 Tohoku earthquakes combining COSMIC occultation and GPS observations

    NASA Astrophysics Data System (ADS)

    Yan, X.; Tao, Y.; Xia, C.; Qi, Y.; Zuo, X.

    2017-12-01

    Several studies have reported the earthquake-induced atmospheric gravity waves detected by some new technologies such as airglow (Makela et al., 2011), GOCE (Garcia et al., 2013), GRACE (Yang et al., 2014), F3/C radio occultation sounding (Coïsson et al., 2015). In this work, we collected all occultation events on 11 March, and selected four events to analyze at last. The original and filtered podTEC is represented as function of the altitude of the impact parameter and UT of the four events. Then, the travel time diagrams of filtered podTEC derived from the events were analyzed. The occultation signal from one event (marked as No.73) is consistent with the previous results reported by Coïsson. 2015, which is corresponds to the ionospheric signal induced from tsunami gravity wave. What is noticeable, in this work, is that three occultation events of No.403, 77 and 118 revealed a disturbance of atmospheric gravity wave with velocity 300m/s, preceding the tsunami. It would probably be correspond to the gravity waves caused by seismic rupture but not tsunami. In addition, it can be seen that the perturbation height of occultation observation TEC is concentrated at 200-400km, corresponding ionosphere F region. The signals detected above are compared with GPS measurements of TEC from GEONET and IGS. From GPS data, traveling ionospheric disturbances were observed spreading out from the epicenter as a quasi-circular propagation pattern with the time. Exactly, we observed an acoustic wave coupled with Rayleigh wave starting from the epicenter with a speed of 3.0km/s and a superimposed acoustic-gravity wave moving with a speed of 800m/s. The acoustic-gravity wave generated at the epicenter and gradually attenuated 800km away, then it is replaced by a gravity wave coupled with the tsunami that moves with a speed of between 100 and 300m/s. It is necessary to confirm the propagation process of the waves if we attempt to evaluate the use of ionospheric seismology as a potential support for future earthquake and tsunami warning systems. Acknowledgement: This work is supported by NSFC (41604135), China Postdoctoral Science Foundation funded project (1231703), State Key Laboratory of Earthquake Dynamics (LED2015B04), Key Laboratory of Earth and Planetary Physics, Hubei Subsurface Multi-scale Imaging Key Laboratory.

  7. Global excitation of wave phenomena in a dissipative multiconstituent medium. I - Transfer function of the earth's thermosphere. II - Impulsive perturbations in the earth's thermosphere

    NASA Technical Reports Server (NTRS)

    Mayr, H. G.; Harris, I.; Herrero, F. A.; Varosi, F.

    1984-01-01

    A transfer function approach is taken in constructing a spectral model of the acoustic-gravity wave response in a multiconstituent thermosphere. The model is then applied to describing the thermospheric response to various sources around the globe. Zonal spherical harmonics serve to model the horizontal variations in propagating waves which, when integrated with respect to height, generate a transfer function for a vertical source distribution in the thermosphere. Four wave components are characterized as resonance phenomena and are associated with magnetic activity and ionospheric disturbances. The waves are either trapped or propagate, the latter becoming significant when possessing frequencies above 3 cycles/day. The energy input is distributed by thermospheric winds. The disturbances decay slowly, mainly due to heat conduction and diffusion. Gravity waves appear abruptly and are connected to a sudden switching on or off of a source. Turn off of a source coincides with a reversal of the local atmospheric circulation.

  8. No slip gravity

    NASA Astrophysics Data System (ADS)

    Linder, Eric V.

    2018-03-01

    A subclass of the Horndeski modified gravity theory we call No Slip Gravity has particularly interesting properties: 1) a speed of gravitational wave propagation equal to the speed of light, 2) equality between the effective gravitational coupling strengths to matter and light, Gmatter and Glight, hence no slip between the metric potentials, yet difference from Newton's constant, and 3) suppressed growth to give better agreement with galaxy clustering observations. We explore the characteristics and implications of this theory, and project observational constraints. We also give a simple expression for the ratio of the gravitational wave standard siren distance to the photon standard candle distance, in this theory and others, and enable a direct comparison of modified gravity in structure growth and in gravitational waves, an important crosscheck.

  9. Study of atmospheric gravity waves and infrasonic sources using the USArray Transportable Array pressure data

    NASA Astrophysics Data System (ADS)

    Hedlin, Michael; de Groot-Hedlin, Catherine; Hoffmann, Lars; Alexander, M. Joan; Stephan, Claudia

    2016-04-01

    The upgrade of the USArray Transportable Array (TA) with microbarometers and infrasound microphones has created an opportunity for a broad range of new studies of atmospheric sources and the large- and small-scale atmospheric structure through which signals from these events propagate. These studies are akin to early studies of seismic events and the Earth's interior structure that were made possible by the first seismic networks. In one early study with the new dataset we use the method of de Groot-Hedlin and Hedlin (2015) to recast the TA as a massive collection of 3-element arrays to detect and locate large infrasonic events. Over 2,000 events have been detected in 2013. The events cluster in highly active regions on land and offshore. Stratospherically ducted signals from some of these events have been recorded more than 2,000 km from the source and clearly show dispersion due to propagation through atmospheric gravity waves. Modeling of these signals has been used to test statistical models of atmospheric gravity waves. The network is also useful for making direct observations of gravity waves. We are currently studying TA and satellite observations of gravity waves from singular events to better understand how the waves near ground level relate to those observed aloft. We are also studying the long-term statistics of these waves from the beginning of 2010 through 2014. Early work using data bandpass filtered from 1-6 hr shows that both the TA and satellite data reveal highly active source regions, such as near the Great Lakes. de Groot-Hedlin and Hedlin, 2015, A method for detecting and locating geophysical events using clusters of arrays, Geophysical Journal International, v203, p960-971, doi: 10.1093/gji/ggv345.

  10. Gravity Wave Variances and Propagation Derived from AIRS Radiances

    DTIC Science & Technology

    2011-04-15

    synoptically warm condition and susequently affect ozone depletion (Hamill and Toon, 1991). The importance of gravity waves on climate and weather... troposphere to upper stratosphere can those GWs grow into significant strengths. Locations of high occurrence of convectively generated GWs are also...maximum comes in one month later. A close look at the vertical config- uration of the zonal wind reveals that tropospheric westerlies in the SH high

  11. Investigating mesospheric mountain wave characteristics over New Zealand during DEEPWAVE

    NASA Astrophysics Data System (ADS)

    McLaughlin, P.; Taylor, M. J.; Pautet, P. D.; Kaifler, B.; Smith, S. M.

    2017-12-01

    The Deep Propagating Gravity Wave Experiment, "DEEPWAVE" was an international measurement and modelling program designed to characterize and predict the generation and propagation of a broad range of atmospheric gravity waves (GWs) with measurements extending from the ground to 100 km altitude. An analysis of 2 months of GW image data obtained during 2014 in New Zealand by a ground-based Advanced Mesospheric Temperature Mapper (AMTM) identified 19 events with clear signatures of orographic forcing. This is by far the largest occurrence of MW activity ever recorded at MLT heights. The observed events were quasi-stationary, exhibited a variety of horizontal wavelengths and lasted for > 1 hour. One prior study has reported such waves in the mesosphere over the Andes Mountain Range. We utilize data obtained by a collection of ground-based instrumentation operated at NIWA Lauder Station, NZ [45.0°S] to perform a detailed investigation of the generation and propagation of mountain waves into the upper mesosphere and to quantify their impact on this region using their measured momentum fluxes (MF). Instruments included an AMTM, a Rayleigh Lidar and an all-sky imager. The results focus on the derived MFs, comparing and contrasting their magnitudes and variability under different forcing conditions.

  12. Internal Gravity Waves in the Magnetized Solar Atmosphere. I. Magnetic Field Effects

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vigeesh, G.; Steiner, O.; Jackiewicz, J., E-mail: vigeesh@leibniz-kis.de

    Observations of the solar atmosphere show that internal gravity waves are generated by overshooting convection, but are suppressed at locations of magnetic flux, which is thought to be the result of mode conversion into magnetoacoustic waves. Here, we present a study of the acoustic-gravity wave spectrum emerging from a realistic, self-consistent simulation of solar (magneto)convection. A magnetic field free, hydrodynamic simulation and a magnetohydrodynamic (MHD) simulation with an initial, vertical, homogeneous field of 50 G flux density were carried out and compared with each other to highlight the effect of magnetic fields on the internal gravity wave propagation in themore » Sun’s atmosphere. We find that the internal gravity waves are absent or partially reflected back into the lower layers in the presence of magnetic fields and argue that the suppression is due to the coupling of internal gravity waves to slow magnetoacoustic waves still within the high- β region of the upper photosphere. The conversion to Alfvén waves is highly unlikely in our model because there is no strongly inclined magnetic field present. We argue that the suppression of internal waves observed within magnetic flux concentrations may also be due to nonlinear breaking of internal waves due to vortex flows that are ubiquitously present in the upper photosphere and the chromosphere.« less

  13. Experimental study of three-wave interactions among capillary-gravity surface waves

    NASA Astrophysics Data System (ADS)

    Haudin, Florence; Cazaubiel, Annette; Deike, Luc; Jamin, Timothée; Falcon, Eric; Berhanu, Michael

    2016-04-01

    In propagating wave systems, three- or four-wave resonant interactions constitute a classical nonlinear mechanism exchanging energy between the different scales. Here we investigate three-wave interactions for gravity-capillary surface waves in a closed laboratory tank. We generate two crossing wave trains and we study their interaction. Using two optical methods, a local one (laser doppler vibrometry) and a spatiotemporal one (diffusive light photography), a third wave of smaller amplitude is detected, verifying the three-wave resonance conditions in frequency and in wave number. Furthermore, by focusing on the stationary regime and by taking into account viscous dissipation, we directly estimate the growth rate of the resonant mode. The latter is then compared to the predictions of the weakly nonlinear triadic resonance interaction theory. The obtained results confirm qualitatively and extend previous experimental results obtained only for collinear wave trains. Finally, we discuss the relevance of three-wave interaction mechanisms in recent experiments studying gravity-capillary turbulence.

  14. Experimental study of three-wave interactions among capillary-gravity surface waves.

    PubMed

    Haudin, Florence; Cazaubiel, Annette; Deike, Luc; Jamin, Timothée; Falcon, Eric; Berhanu, Michael

    2016-04-01

    In propagating wave systems, three- or four-wave resonant interactions constitute a classical nonlinear mechanism exchanging energy between the different scales. Here we investigate three-wave interactions for gravity-capillary surface waves in a closed laboratory tank. We generate two crossing wave trains and we study their interaction. Using two optical methods, a local one (laser doppler vibrometry) and a spatiotemporal one (diffusive light photography), a third wave of smaller amplitude is detected, verifying the three-wave resonance conditions in frequency and in wave number. Furthermore, by focusing on the stationary regime and by taking into account viscous dissipation, we directly estimate the growth rate of the resonant mode. The latter is then compared to the predictions of the weakly nonlinear triadic resonance interaction theory. The obtained results confirm qualitatively and extend previous experimental results obtained only for collinear wave trains. Finally, we discuss the relevance of three-wave interaction mechanisms in recent experiments studying gravity-capillary turbulence.

  15. A novel method for the extraction of local gravity wave parameters from gridded three-dimensional data: description, validation, and application

    NASA Astrophysics Data System (ADS)

    Schoon, Lena; Zülicke, Christoph

    2018-05-01

    For the local diagnosis of wave properties, we develop, validate, and apply a novel method which is based on the Hilbert transform. It is called Unified Wave Diagnostics (UWaDi). It provides the wave amplitude and three-dimensional wave number at any grid point for gridded three-dimensional data. UWaDi is validated for a synthetic test case comprising two different wave packets. In comparison with other methods, the performance of UWaDi is very good with respect to wave properties and their location. For a first practical application of UWaDi, a minor sudden stratospheric warming on 30 January 2016 is chosen. Specifying the diagnostics for hydrostatic inertia-gravity waves in analyses from the European Centre for Medium-Range Weather Forecasts, we detect the local occurrence of gravity waves throughout the middle atmosphere. The local wave characteristics are discussed in terms of vertical propagation using the diagnosed local amplitudes and wave numbers. We also note some hints on local inertia-gravity wave generation by the stratospheric jet from the detection of shallow slow waves in the vicinity of its exit region.

  16. The ionospheric disturbances caused by the explosion of the Mount Tongariro volcano in 2012

    NASA Astrophysics Data System (ADS)

    Po Cheng, C.; Lin, C.; Chang, L. C.; Chen, C.

    2013-12-01

    Volcanic explosions are known to trigger acoustic waves that propagate in the atmosphere at infrasonic speeds. At ionospheric heights, coupling between neutral particles and free electrons induces variations of electron density detectable by dual-frequency Global Positioning System (GPS) measurements. In November 21 2012, the explosion of the Mount Tongariro volcano in New Zealand occurred at UT 0:20, when there were active synoptic waves passing over north New Zealand. The New Zealand dense array of Global Positioning System recorded ionospheric disturbances reflected in total electron content (TEC) ~10 minutes after the eruption, and the concentric spread of disturbances also can be observed this day. The velocity of disturbances varies from 130m/s to 700m/s. A spectral analysis of the rTEC time series shows two peaks. The larger amplitudes are centered at 800 and 1500 seconds, in the frequency range of acoustic waves and gravity waves. On the other hand, to model the rTEC perturbation created by the acoustic wave caused by the explosive eruption of the Mount Tongariro, we perform acoustic ray tracing and obtain sound speed at subionospheric height in a horizontally stratified atmosphere model (MSIS-E-90). The result show that the velocity of the disturbances is slower than sound speed range. Through using the MSIS-E-90 Atmosphere Model and Horizontal Wind Model(HWM), we obtain the vertical wave number and indicate that the gravity waves could propagate at subionospheric height for this event, suggesting that the ionospheric disturbances caused by the explosive eruption is gravity-wave type. This work demonstrates that GPS are useful for near real-time ionospheric disturbances monitoring, and help to understand the mechanism of the gravity wave caused by volcano eruption in the future.

  17. Magnetoelastic shear wave propagation in pre-stressed anisotropic media under gravity

    NASA Astrophysics Data System (ADS)

    Kumari, Nirmala; Chattopadhyay, Amares; Singh, Abhishek K.; Sahu, Sanjeev A.

    2017-03-01

    The present study investigates the propagation of shear wave (horizontally polarized) in two initially stressed heterogeneous anisotropic (magnetoelastic transversely isotropic) layers in the crust overlying a transversely isotropic gravitating semi-infinite medium. Heterogeneities in both the anisotropic layers are caused due to exponential variation (case-I) and linear variation (case-II) in the elastic constants with respect to the space variable pointing positively downwards. The dispersion relations have been established in closed form using Whittaker's asymptotic expansion and were found to be in the well-agreement to the classical Love wave equations. The substantial effects of magnetoelastic coupling parameters, heterogeneity parameters, horizontal compressive initial stresses, Biot's gravity parameter, and wave number on the phase velocity of shear waves have been computed and depicted by means of a graph. As a special case, dispersion equations have been deduced when the two layers and half-space are isotropic and homogeneous. The comparative study for both cases of heterogeneity of the layers has been performed and also depicted by means of graphical illustrations.

  18. Jet-front systems nearing strongly stratified region in differentially heated, rotating stratified annulus

    NASA Astrophysics Data System (ADS)

    Rolland, Joran; Achatz, Ulrich

    2017-04-01

    The differentially heated, rotating annulus configuration has been used for a long time as a model system of the earth troposphere. It can easily reproduce thermal wind and baroclinic waves in the laboratory. It has recently been shown numerically that provided the Rossby number, the rotation rate and the Brunt-Väisälä frequency were well chosen, this configuration also reproduces the spontaneous emission of gravity waves by jet front systems [1]. This offers a very practical configuration in which to study an important process of emission of atmospheric gravity waves. It has also been shown experimentally that this configuration can be modified in order to add the possibility for the emitted wave to reach a strongly stratified region [2]. It thus creates a system containing a model troposphere where gravity waves are spontaneously emitted and can propagate to a model stratosphere. For this matter a stratification was created using a salinity gradient in the experimental apparatus. Through double diffusion, this generates a strongly stratified layer in the middle of the flow (the model stratosphere) and two weakly stratified region in the top and bottom layers (the model troposphere). In this poster, we present simulations of this configuration displaying baroclinic waves in the top and bottom layers. We aim at creating jet front systems strong enough that gravity waves can be spontaneously emitted. This will thus offer the possibility of studying the wave characteristic and mechanisms in emission and propagation in details. References [1] S. Borchert, U. Achatz, M.D. Fruman, Spontaneous Gravity wave emission in the differentially heated annulus, J. Fluid Mech. 758, 287-311 (2014). [2] M. Vincze, I. Borcia, U. Harlander, P. Le Gal, Double-diffusive convection convection and baroclinic instability in a differentially heated and initially stratified rotating system: the barostrat instability, Fluid Dyn. Res. 48, 061414 (2016).

  19. f (T ) gravity after GW170817 and GRB170817A

    NASA Astrophysics Data System (ADS)

    Cai, Yi-Fu; Li, Chunlong; Saridakis, Emmanuel N.; Xue, Ling-Qin

    2018-05-01

    The combined observation of GW170817 and its electromagnetic counterpart GRB170817A reveals that gravitational waves propagate at the speed of light in high precision. We apply the standard analysis of cosmological perturbations, as well as the effective field theory approach, to investigate the experimental consequences for the theory of f (T ) gravity. Our analysis verifies for the first time that the speed of gravitational waves within f (T ) gravity is equal to the light speed, and hence, the constraints from GW170817 and GRB170817A are trivially satisfied. Nevertheless, by examining the dispersion relation and the frequency of cosmological gravitational waves, we observe a deviation from the results of general relativity, quantified by a new parameter. Although its value is relatively small in viable f (T ) models, its possible future measurement in advancing gravitational-wave astronomy would be the smoking gun of testing this type of modified gravity.

  20. Observations of height-dependent pressure-perturbation structure of a strong mesoscale gravity wave

    NASA Technical Reports Server (NTRS)

    Starr, David O'C.; Korb, C. L.; Schwemmer, Geary K.; Weng, Chi Y.

    1992-01-01

    Airborne observations using a downward-looking, dual-frequency, near-infrared, differential absorption lidar system provide the first measurements of the height-dependent pressure-perturbation field associated with a strong mesoscale gravity wave. A pressure-perturbation amplitude of 3.5 mb was measured within the lowest 1.6 km of the atmosphere over a 52-km flight line. Corresponding vertical displacements of 250-500 m were inferred from lidar-observed displacement of aerosol layers. Accounting for probable wave orientation, a horizontal wavelength of about 40 km was estimated. Satellite observations reveal wave structure of a comparable scale in concurrent cirrus cloud fields over an extended area. Smaller-scale waves were also observed. Local meteorological soundings are analyzed to confirm the existence of a suitable wave duct. Potential wave-generation mechanisms are examined and discussed. The large pressure-perturbation wave is attributed to rapid amplification or possible wave breaking of a gravity wave as it propagated offshore and interacted with a very stable marine boundary layer capped by a strong shear layer.

  1. Gravitational wave probes of parity violation in compact binary coalescences

    NASA Astrophysics Data System (ADS)

    Alexander, Stephon H.; Yunes, Nicolás

    2018-03-01

    Is gravity parity violating? Given the recent observations of gravitational waves from coalescing compact binaries, we develop a strategy to find an answer with current and future detectors. We identify the key signatures of parity violation in gravitational waves: amplitude birefringence in their propagation and a modified chirping rate in their generation. We then determine the optimal binaries to test the existence of parity violation in gravity, and prioritize the research in modeling that will be required to carry out such tests before detectors reach their design sensitivity.

  2. The ANGWIN Antarctic Research Program: First Results on Coordinated Trans-Antarctic Gravity Wave Measurements

    NASA Astrophysics Data System (ADS)

    Taylor, M. J.; Pautet, P. D.; Zhao, Y.; Nakamura, T.; Ejiri, M. K.; Murphy, D. J.; Moffat-Griffin, T.; Kavanagh, A. J.; Takahashi, H.; Wrasse, C. M.

    2014-12-01

    ANGWIN (ANrctic Gravity Wave Instrument Network) is a new "scientist driven" research program designed to develop and utilize a network of Antarctic atmospheric gravity wave observatories, operated by different nations working together in a spirit of close scientific collaboration. Our research plan has brought together colleagues from several international institutions, all with a common goal to better understand the large "continental-scale" characteristics and impacts of gravity waves on the Mesosphere and Lower Thermosphere (MLT) environment over Antarctica. ANGWIN combines complementary measurements obtained using new and existing aeronomy instrumentation with new modeling capabilities. To date, our activities have focused on developing coordinated airglow image data of gravity waves in the MLT region at the following sites: McMurdo (US), Syowa (Japan), Davis (Australia), Halley (UK), Rothera (UK), and Comandante Ferraz (Brazil). These are all well-established international research stations that are uniformly distributed around the continental perimeter, and together with ongoing measurements at South Pole Station they provide unprecedented coverage of the Antarctic gravity wave field and its variability during the extended polar winter season. This presentation introduces the ANGWIN program and research goals, and presents first results on trans-Antarctic wave propagation using coordinated measurements during the winter season 2011. We also discuss future plans for the development of this exciting program for Antarctic research.

  3. Gravity waves produced by the total solar eclipse of 1 August 2008

    NASA Astrophysics Data System (ADS)

    Marty, Julien; Francis, Dalaudier; Damien, Ponceau; Elisabeth, Blanc; Ulziibat, Munkhuu

    2010-05-01

    Gravity waves are a major component of atmospheric small scale dynamics because of their ability to transport energy and momentum over considerable distances and of their interactions with the mean circulation or other waves. They produce pressure variations which can be detected at the ground by microbarographs. The solar intensity reduction which occurs in the atmosphere during solar eclipses is known to act as a temporary source of large scale gravity waves. Despite decades of research, observational evidence for a characteristic bow-wave response of the atmosphere to eclipse passages remains elusive. A new versatile numerical model (Marty, J. and Dalaudier, F.: Linear spectral numerical model for internal gravity wave propagation. J. Atmos. Sci. (in press)) is presented and applied to the cooling of the atmosphere during a solar eclipse. Calculated solutions appear to be in good agreement with ground pressure fluctuations recorded during the total solar eclipse of 1 August 2008. To the knowledge of the authors, this is the first time that such a result is presented. A three-dimensional linear spectral numerical model is used to propagate internal gravity wave fluctuations in a stably stratified atmosphere. The model is developed to get first-order estimations of gravity wave fluctuations produced by identified sources. It is based on the solutions of the linearized fundamental fluid equations and uses the fully-compressible dispersion relation for inertia-gravity waves. The spectral implementation excludes situations involving spatial variations of buoyancy frequency or background wind. However density stratification variations are taken into account in the calculation of fluctuation amplitudes. In addition to gravity wave packet free propagation, the model handles both impulsive and continuous sources. It can account for spatial and temporal variations of the sources allowing to cover a broad range of physical situations. It is applied to the case of solar eclipses, which are known to produce large-scale bow waves on the Earth's surface. The asymptotic response to a Gaussian thermal forcing travelling at constant velocity as well as the transient response to the 4 December 2002 eclipse are presented. They show good agreement with previous numerical simulations. The model is then applied to the case of the 1 August 2008 solar eclipse. Ground pressure variations produced by the response to the solar intensity reduction in both stratosphere and troposphere are calculated. These synthetic signals are then compared to pressure variations recorded by IMS (International Monitoring System) infrasound stations and a temporary network specifically set up in Western Mongolia for this occasion. The pressure fluctuations produced by the 1 August 2008 solar eclipse are in a frequency band highly disturbed by atmospheric tides. Pressure variations produced by atmospheric tides and synoptic disturbances are thus characterized and removed from the signal. A low frequency wave starting just after the passage of the eclipse is finally brought to light on all stations. Its frequency and amplitude are close to the one calculated with our model, which strongly suggest that this signal was produced by the total solar eclipse.

  4. Planetary-Scale Inertio Gravity Waves in the Numerical Spectral Model

    NASA Technical Reports Server (NTRS)

    Mayr, H. G.; Mengel, J. R.; Talaat, E. R.; Porter, H. S.

    2004-01-01

    In the polar region of the upper mesosphere, horizontal wind oscillations have been observed with periods around 10 hours. Waves with such a period are generated in our Numerical Spectral Model (NSM), and they are identified as planetary-scale inertio gravity waves (IGW). These IGWs have periods between 9 and 11 hours and appear above 60 km in the zonal mean (m = 0), as well as in zonal wavenumbers m = 1 to 4. The waves can propagate eastward and westward and have vertical wavelengths around 25 km. The amplitudes in the wind field are typically between 10 and 20 m/s and can reach 30 m/s in the westward propagating component for m = 1 at the poles. In the temperature perturbations, the wave amplitudes above 100 km are typically 5 K and as large as 10 K for m = 0 at the poles. The IGWs are intermittent but reveal systematic seasonal variations, with the largest amplitudes occurring generally in late winter and spring. In the NSM, the IGW are generated like the planetary waves (PW). They are produced apparently by the instabilities that arise in the zonal mean circulation. Relative to the PWs, however, the IGWs propagate zonally with much larger velocities, such that they are not affected much by interactions with the background zonal winds. Since the IGWs can propagate through the mesosphere without much interaction, except for viscous dissipation, one should then expect that they reach the thermosphere with significant and measurable amplitudes.

  5. Role of Gravity Waves in Determining Cirrus Cloud Properties

    NASA Technical Reports Server (NTRS)

    OCStarr, David; Singleton, Tamara; Lin, Ruei-Fong

    2008-01-01

    Cirrus clouds are important in the Earth's radiation budget. They typically exhibit variable physical properties within a given cloud system and from system to system. Ambient vertical motion is a key factor in determining the cloud properties in most cases. The obvious exception is convectively generated cirrus (anvils), but even in this case, the subsequent cloud evolution is strongly influenced by the ambient vertical motion field. It is well know that gravity waves are ubiquitous in the atmosphere and occur over a wide range of scales and amplitudes. Moreover, researchers have found that inclusion of statistical account of gravity wave effects can markedly improve the realism of simulations of persisting large-scale cirrus cloud features. Here, we use a 1 -dimensional (z) cirrus cloud model, to systematically examine the effects of gravity waves on cirrus cloud properties. The model includes a detailed representation of cloud microphysical processes (bin microphysics and aerosols) and is run at relatively fine vertical resolution so as to adequately resolve nucleation events, and over an extended time span so as to incorporate the passage of multiple gravity waves. The prescribed gravity waves "propagate" at 15 m s (sup -1), with wavelengths from 5 to 100 km, amplitudes range up to 1 m s (sup -1)'. Despite the fact that the net gravity wave vertical motion forcing is zero, it will be shown that the bulk cloud properties, e.g., vertically-integrated ice water path, can differ quite significantly from simulations without gravity waves and that the effects do depend on the wave characteristics. We conclude that account of gravity wave effects is important if large-scale models are to generate realistic cirrus cloud property climatology (statistics).

  6. Stratospheric mountain wave attenuation in positive and negative ambient wind shear

    NASA Astrophysics Data System (ADS)

    Kruse, C. G.; Smith, R. B.

    2016-12-01

    Recently, much has been learned about the vertical propagation and attenuation of mountain waves launched by the Southern Alps of New Zealand (NZ) from the Deep Propagating Gravity Wave Experiment (DEEPWAVE) field campaign. Over NZ, approximately half of mountain wave events are strongly attenuated in a lower-stratospheric "valve layer," defined as a layer of reduced wind with no critical levels. Within a valve layer, negative wind shear causes mountain waves steepen and attenuate, with the amount of transmitted momentum flux controlled by the minimum wind speed within the layer. The other half of wave events are deep (propagating to 35+ km), usually with positive wind shear. Within these deep events, increasing amplitude with decreasing density causes mountain waves to attenuate gradually (after spatial/temporal averaging). Global reanalyses indicate that this valve layer is a climatological feature in the wintertime mid-latitudes above the subtropical jet, while deep events and gradual attenuation occur over higher latitudes below the polar stratospheric jet. The local physics of mountain wave attenuation in positive and negative ambient wind shear are investigated using realistic winter-long (JJA) 6-km resolution Weather Research and Forecasting (WRF) model simulations over the Andes. Attention is given to the spatiotemporal variability of wave attenuation and the various factors driving this variability (e.g. variability in wave generation, ambient conditions at attenuation level, inherent wave-induced instabilities). Mesoscale potential vorticity generation is used as an indicator of wave attenuation. Additionally, regionally integrated wave momentum flux and gravity wave drag (GWD) within WRF are quantified and compared with parameterized quantities in the MERRA1 and 2 reanalyses.

  7. Convectively Generated Gravity Waves In The Tropical Stratosphere: Case Studies And Importance For The Circulation Of The Middle Atmosphere

    NASA Technical Reports Server (NTRS)

    Pfister, Leonhard; Chan, Kwoklong R.; Gary, Bruce; Singh, Hanwant B. (Technical Monitor)

    1995-01-01

    The advent of high altitude aircraft measurements in the stratosphere over tropical convective systems has made it possible to observe the mesoscale disturbances in the temperature field that these systems excite. Such measurements show that these disturbances have horizontal scales comparable to those of the underlying anvils (about 50-100 km) with peak to peak theta surface variations of about 300-400 meters. Moreover, correlative wind measurements from the tropical phase of the Stratosphere-Troposphere Exchange Project (STEP) clearly show that these disturbances are gravity waves. We present two case studies of anvil-scale gravity waves over convective systems. Using steady and time-dependent linear models of gravity wave propagation in the stratosphere, we show: (1) that the underlying convective systems are indeed the source of the observed phenomena; and (2) that their generating mechanism can be crudely represented as flow over a time-dependent mountain. We will then discuss the effects gravity waves of the observed amplitudes have on the circulation of the middle atmosphere, particularly the quasi-biennial, and semiannual oscillations.

  8. Quasi-biennial variation of equatorial waves as seen in satellite remote sensing data

    NASA Astrophysics Data System (ADS)

    Chen, Zeyu

    The quasi-biennial oscillation (QBO) in zonal winds in the lower stratosphere at the Equator is the most prominent inter-annual variation signal in the middle atmosphere. Theoretically, it is driven by the drag from the damping of equatorial waves including the equatorially trapped planetary scale waves, such as Kelvin waves propagating eastward and Rossby-gravity waves propagating westward, inertio-gravity waves and gravity waves. In current research, the tem-perature data collected by the SABER/TIMED mission in 2002-2009 are used to investigate the equatorial waves activities. The Fast Fourier Synoptic Mapping (FFSM) method is applied to delineate planetary wave components with the zonal wavenumber spanning over -6 to +6, hereby, positive (negative) wavenumber is assigned to westward (eastward) propagating waves. Limited by the SABER/TIMED sampling scheme, only the waves with periods longer than one day can be resolved. Focusing on the height region 70-10 hPa where the QBO signal is most significant, it is clearly observed that the composite activity of all the eastward waves exhibit QBO like variation. Specifically, for each QBO cycle, the activity at 50 hPa level is characterized by the occurrence of a substantially clear minimum that coincides to the fast downward propagation of the westerly phase, the typical pattern of the QBO phenomenon. Phase speed spectra are derived by using the FFSM analysis results. And vertical shear of the zonal wind is derived by using the rawinsonde data at Singapore. Comparison of the phase speed spectra and the wind shear indicates that the minimum is due to the westerly shear below 30 hPa. Between the minimum, significant wave activities emerge, thus the property for the components are investigated. Results show that in height range 70-10 hPa, both wave 1 to wave 3 are prominent during the inter-minimum period for each QBO cycle. At 50 hPa level, wave 1 component exhibits amplitude spectral peak at three kinds of period, 8, 11 and 20 day. Meanwhile, shifting to shorter period is seen as wave number increases, for example, the 20-day period spectrum is attenuated substantially for wave 2 and wave 3 components. Moreover, results also show that although with small amplitude, wave 4 and wave 5 with shorter periods of 4-7 days are discernable in particular in the inter-minimum period. Further details will be presented in the talk.

  9. Radar studies of gravity waves and tides in the middle atmosphere - A review

    NASA Technical Reports Server (NTRS)

    Rastogi, P. K.

    1981-01-01

    A review is presented of recent radar studies of gravity waves and tides in the middle atmosphere (over regions of approximately 10-30 and 60-90 km). The techniques used for monitoring the motions are outlined and their limitations are pointed out. The radars provide observations of short-period (1 min-1 h) gravity waves and tides at selected height intervals, depending on the radar frequency and the observation technique. The following contributions to the study of the midatmosphere are included in the discussion: (1) buoyancy oscillations and short-period (less than 10 min) acoustic-gravity waves have been observed in the troposphere and stratosphere and, in several cases, their generation and propagation near critical levels has been reconciled with theoretical models; (2) excitation of stratospheric waves by penetrative convection associated with thunderstorms has been established; (3) stratospheric and mesospheric tides at diurnal and semidiurnal periods have been observed; and (4) long-period (approximately 2 to 5 days) waves have been observed in the mesosphere. It is noted that more comprehensive data bases need to be obtained for further tidal and wave studies.

  10. Source tracing of thunderstorm generated inertia-gravity waves observed during the RADAGAST campaign in Niamey, Niger

    NASA Astrophysics Data System (ADS)

    Naren Athreyas, Kashyapa; Gunawan, Erry; Tay, Bee Kiat

    2018-07-01

    In recent years, the climate changes and weather have become a major concern which affects the daily life of a human being. Modelling and prediction of the complex atmospheric processes needs extensive theoretical studies and observational analyses to improve the accuracy of the prediction. The RADAGAST campaign was conducted by ARM climate research stationed at Niamey, Niger from January 2006 to January 2007, which was aimed to improve the west African climate studies have provided valuable data for research. In this paper, the characteristics and sources of inertia-gravity waves observed over Niamey during the campaign are investigated. The investigation focuses on highlighting the waves which are generated by thunderstorms which dominate the tropical region. The stratospheric energy densities spectrum is analysed for deriving the wave properties. The waves with Eulerian period from 20 to 50 h occupied most of the spectral power. It was found that the waves observed over Niamey had a dominant eastward propagation with horizontal wavelengths ranging from 350 to 1 400 km, and vertical wavelengths ranging from 0.9 to 3.6 km. GROGRAT model with ERA-Interim model data was used for establishing the background atmosphere to identify the source location of the waves. The waves generated by thunderstorms had propagation distances varying from 200 to 5 000 km and propagation duration from 2 to 4 days. The horizontal phase speeds varied from 2 to 20 m/s with wavelengths varying from 100 to 1 100 km, vertical phase speeds from 0.02 to 0.2 m/s and wavelengths from 2 to 15 km at the source point. The majority of sources were located in South Atlantic ocean and waves propagating towards northeast direction. This study demonstrated the complex large scale coupling in the atmosphere.

  11. Large-amplitude mesospheric response to an orographic wave generated over the Southern Ocean Auckland Islands (50.7°S) during the DEEPWAVE project

    NASA Astrophysics Data System (ADS)

    Pautet, P.-D.; Taylor, M. J.; Fritts, D. C.; Bossert, K.; Williams, B. P.; Broutman, D.; Ma, J.; Eckermann, S. D.; Doyle, J. D.

    2016-02-01

    The Deep Propagating Gravity Wave Experiment (DEEPWAVE) project was conducted over New Zealand and the surrounding regions during June and July 2014, to more fully understand the generation, propagation, and effects of atmospheric gravity waves. A large suite of instruments collected data from the ground to the upper atmosphere (~100 km), with several new remote-sensing instruments operating on board the NSF Gulfstream V (GV) research aircraft, which was the central measurement platform of the project. On 14 July, during one of the research flights (research flight 23), a spectacular event was observed as the GV flew in the lee of the sub-Antarctic Auckland Islands (50.7°S). An apparent "ship wave" pattern was imaged in the OH layer (at ~83.5 km) by the Utah State University Advanced Mesospheric Temperature Mapper and evolved significantly over four successive passes spanning more than 4 h. The waves were associated with orographic forcing generated by relatively strong (15-20 m/s) near-surface wind flowing over the rugged island topography. The mountain wave had an amplitude T' ~ 10 K, a dominant horizontal wavelength ~40 km, achieved a momentum flux exceeding 300 m2 s-2, and eventually exhibited instability and breaking at the OH altitude. This case of deep mountain wave propagation demonstrates the potential for strong responses in the mesosphere arising from a small source under suitable propagation conditions and suggests that such cases may be more common than previously believed.

  12. Experimentally Modeling Black and White Hole Event Horizons via Fluid Flow

    NASA Astrophysics Data System (ADS)

    Manheim, Marc E.; Lindner, John F.; Manz, Niklas

    We will present a scaled down experiment that hydrodynamically models the interaction between electromagnetic waves and black/white holes. It has been mathematically proven that gravity waves in water can behave analogously to electromagnetic waves traveling through spacetime. In this experiment, gravity waves will be generated in a water tank and propagate in a direction opposed to a flow of varying rate. We observe a noticeable change in the wave's spreading behavior as it travels through the simulated horizon with decreased wave speeds up to standing waves, depending on the opposite flow rate. Such an experiment has already been performed in a 97.2 cubic meter tank. We reduced the size significantly to be able to perform the experiment under normal lab conditions.

  13. Imaging Gravity Waves in Lower Stratospheric AMSU-A Radiances. Part 1: Simple Forward Model

    DTIC Science & Technology

    2006-08-14

    brightening” of microwave radiances acquired from purely vertical background temperature profiles by cross- track scanners. Waves propagating along track...three-dimensional wave fields. For example, some limb sensors return high- resolution vertical temperature profiles with wave oscilla- tions...provide only ver- tical profiles of wave oscillations, similar to radiosonde and rocketsonde data. Similarly, limb-tracking measurements from the

  14. Triad Resonance in the Gravity-Acoustic Family

    NASA Astrophysics Data System (ADS)

    Kadri, U.

    2015-12-01

    Resonance interactions of waves play a prominent role in energy share among the different wave types involved. Such interactions may significantly contribute, among others, to the evolution of the ocean energy spectrum by exchanging energy between surface-gravity waves; surface and internal gravity waves; or even surface and compression-type waves, that can transfer energy from the upper ocean through the whole water column reaching down to the seafloor. A resonant triad occurs among a triplet of waves, usually involving interaction of nonlinear terms of second order perturbed equations. Until recently, it has been believed that in a homogeneous fluid a resonant triad is possible only when tension forces are included, or at the limit of a shallow water, and that when the compressibility of water is considered, no resonant triads can occur within the family of gravity-acoustic waves. However, more recently it has been proved that, under some circumstances, resonant triads comprising two opposing surface-gravity waves of similar periods (though not identical) and a much longer acoustic-gravity wave, of almost double the frequency, exist [Kadri and Stiassnie 2013, J. Fluid Mech.735 R6]. Here, I report on a new resonant triad involving a gravity wave and two acoustic waves of almost double the length. Interestingly, the two acoustic waves propagate in the same direction with similar wavelengths, that are almost double of that of the gravity wave. The evolution of the wave triad amplitudes is periodic and it is derived analytically, in terms of Jacobian elliptic functions and elliptic integrals. The physical importance of this type of triad interactions is the modulation of pertinent acoustic signals, leading to inaccurate signal perceptions. Enclosed figure: presents an example spatio-temporal evolution of the wave triad amplitudes. The gravity wave (top) remains almost unaltered, while the envelope slowly displaces to the left. However, the prescribed acoustic envelope (middle) travels relatively fast to the right minimising the interaction time. Consequently, the resultant acoustic wave envelope (bottom) might be significantly smaller. As the two acoustic beams concurrently move away from the gravity wave, with disparate group velocities, the resonant interaction gradually vanishes.

  15. Seasonal Variation of Wave Activities near the Mesopause Region Observed at King Sejong Station (62.22°S, 58.78°W), Antarctica

    NASA Astrophysics Data System (ADS)

    Kim, Y.; Lee, C.; Kim, J.; Jee, G.; Won, Y.; Wu, D. L.

    2012-12-01

    We have analyzed neutral wind data obtained from a VHF meteor radar at King Sejong Station (KSS), Antarctica to investigate wave activities in the altitude region of 80 - 100 km over the Antarctic vortex boundary. The seasonal behavior of semidiurnal tides is generally consistent with the prediction of GSWM (Global Scale Wave Model) except for the altitude region above ~96 km. The gravity wave activities inferred from variances of neutral winds show very similar seasonal characteristics to the semidiurnal tides, implying that there is a close interaction between the gravity wave and tide. Although the seasonal behaviors of the wind variance as an indicator of the gravity wave activity are consistent with those observed at the adjacent Rothera station, the magnitude of the variances at KSS is much larger above the mesopause, especially from May through September, than those at Rothera. The Aura Microwave Limb Sounder (MLS) satellite observations also confirmed the enhancement of gravity wave activity during the same period near the tip of Antarctic Peninsula, where KSS is located. The observed large wind variances at KSS may imply that the atmospheric conditions near the Antarctic vortex are very effective for generation of the gravity waves that propagate to the upper atmosphere.

  16. Modeling Study of Planetary Waves in the Mesosphere Lower Thermosphere (MLT)

    NASA Technical Reports Server (NTRS)

    Mengel, J. G.; Mayr, H. g.; Drob, D.; Porter, H. S.; Hines, C. O.

    2003-01-01

    For comparison with measurements from the TIMED satellite and coordinated ground based observations, we present results from our Numerical Spectral Model (NSM) that incorporates the Doppler Spread Parameterization (Hines, 1997) for small-scale gravity waves (GWs). We discuss the planetary waves (PWs) that are purely generated by dynamical interactions, i.e., without explicitly specifying excitation sources related for example to tropospheric convection or topography. With tropospheric heating that reproduces the observed zonal jets near the tropopause and the accompanying reversal in the latitudinal temperature variation, which is conducive to baroclinic instability, long period PWs are produced that propagate up into the stratosphere to affect the wave driven equatorial oscillations (QBO and SAO) extending into the upper mesosphere. The PWs in the model that dominate higher up in the MLT region, however, are to a large extent produced by instabilities under the influence of the zonal circulation and temperature variations in the middle atmosphere and they are amplified by GW interactions. Three classes of PWs are generated there. (1) Rossby waves that slowly propagate westward but are carried by the zonal mean (m = 0) winds to produce eastward and westward propagating PWs respectively in the winter and summer hemispheres below 80 km. Depending on the zonal wave number and magnitudes of the zonal winds under the influence of the equatorial oscillations, the PWs typically have periods between 2 and 20 days and their horizontal wind amplitudes can exceed 40 m/s in the lower mesosphere. (2) Rossby gravity waves that propagate westward at low latitudes, having periods around 2 days for zonal wave numbers m = 2 to 4. (3) Eastward propagating equatorial Kelvin waves generated in the upper mesosphere with periods between 2 and 3 days for m = 1 & 2. The seasonal variations of the PWs reveal that the largest wind amplitudes tend to occur below 80 km in the winter hemisphere, but above that altitude in the summer hemisphere to approach magnitudes as large as 50 m/s.

  17. A nonreflecting upper boundary condition for anelastic nonhydrostatic mesoscale gravity-wave models

    NASA Technical Reports Server (NTRS)

    Kim, Young-Joon; Kar, Sajal K.; Arakawa, Akio

    1993-01-01

    A sponge layer is formulated to prevent spurious reflection of vertically propagating quasi-stationary gravity waves at the upper boundary of a two-dimensional numerical anelastic nonhydrostatic model. The sponge layer includes damping of both Newtonian-cooling type and Rayleigh-friction type, whose coefficients are determined in such a way that the reflectivity of wave energy at the bottom of the layer is zero. Unlike the formulations in earlier studies, our formulation includes the effects of vertical discretization, vertical mean density variation, and nonhydrostaticity. This sponge formulation is found effective in suppressing false downward reflection of waves for various types of quasi-stationary forcing.

  18. Cloud manifestations of atmospheric gravity waves over the water area of the Kuril Islands during the propagation of powerful transoceanic tsunamis

    NASA Astrophysics Data System (ADS)

    Skorokhodov, A. V.; Shevchenko, G. V.; Astafurov, V. G.

    2017-11-01

    The investigation results of atmospheric gravity waves cloudy manifestations observed over the water area of the Kuril Island ridge during the propagation of powerful transoceanic tsunami 2009-2010 are shown. The description of tsunami characteristics is based on the use of information from autonomous deep-water stations of the Institute of Marine Geology and Geophysics FEB RAS in the Southern Kuril Islands and the Tsunami Warning Service telemetering recorder located in one of the ports on Paramushir Island. The environment condition information was extracted from the results of remote sensing of the Earth from space by the MODIS sensor and aerological measurements at the meteorological station of Severo-Kurilsk. The results of analyzing the characteristics of wave processes in the atmosphere and the ocean are discussed and their comparison is carried out.

  19. Spatial gravity wave characteristics obtained from multiple OH(3-1) airglow temperature time series

    NASA Astrophysics Data System (ADS)

    Wachter, Paul; Schmidt, Carsten; Wüst, Sabine; Bittner, Michael

    2015-12-01

    We present a new approach for the detection of gravity waves in OH-airglow observations at the measurement site Oberpfaffenhofen (11.27°E, 48.08°N), Germany. The measurements were performed at the German Remote Sensing Data Center (DFD) of the German Aerospace Center (DLR) during the period from February 4th, 2011 to July 6th, 2011. In this case study the observations were carried out by three identical Ground-based Infrared P-branch Spectrometers (GRIPS). These instruments provide OH(3-1) rotational temperature time series, which enable spatio-temporal investigations of gravity wave characteristics in the mesopause region. The instruments were aligned in such a way that their fields of view (FOV) formed an equilateral triangle in the OH-emission layer at a height of 87 km. The Harmonic Analysis is applied in order to identify joint temperature oscillations in the three individual datasets. Dependent on the specific gravity wave activity in a single night, it is possible to detect up to four different wave patterns with this method. The values obtained for the waves' periods and phases are then used to derive further parameters, such as horizontal wavelength, phase velocity and the direction of propagation. We identify systematic relationships between periods and amplitudes as well as between periods and horizontal wavelengths. A predominant propagation direction towards the East and North-North-East characterizes the waves during the observation period. There are also indications of seasonal effects in the temporal development of the horizontal wavelength and the phase velocity. During late winter and early spring the derived horizontal wavelengths and the phase velocities are smaller than in the subsequent period from early April to July 2011.

  20. Tracing Acoustic-Gravity Waves from the Ocean into the Ionosphere

    NASA Astrophysics Data System (ADS)

    Zabotin, N. A.; Godin, O. A.; Bullett, T. W.; Negrea, C.

    2013-12-01

    Ionospheric manifestations of tsunamis provide dramatic evidence of a connection between wave processes in the ocean and in the atmosphere. But tsunamis are only a transient feature of a more general phenomenon, infragravity waves (IGWs). IGWs are permanently present surface gravity waves in the ocean with periods longer than the longest periods (~30 s) of wind-generated waves. IGWs propagate transoceanic distances and, because of their long wavelengths (from ~1 km to hundreds of km), provide a mechanism for coupling wave processes in the ocean, atmosphere, and the solid Earth. The notion that tsunamis may generate waves in the upper atmosphere has existed for a long time but no quantitative coupling theory for the background waves has been proposed. We provide a strict physical justification for the influence of the background IGWs on the upper atmosphere. Taking into account both fluid compressibility and the gravity in a coupled atmosphere-ocean system, we show that there exist two distinct regimes of IGW penetration into the atmosphere. At higher frequencies, one has evanescent waves in the atmosphere propagating horizontally along the ocean surface. At lower frequencies, IGWs continuously radiate their energy into the upper atmosphere in the form of acoustic gravity waves (AGWs). The transition frequency depends on the ocean depth; it varies slowly near 3 mHz for typical depth values and drops to zero sharply only for extremely large depths. Using semi-empirical model of the IGW power spectrum, we derive an estimate of the flux of the mechanical energy and mechanical momentum from the deep ocean into the atmosphere due to background IGWs and predict specific forcing on the atmosphere in coastal regions. We compare spectra of wave processes in the ionosphere measured using Dynasonde technique over Wallops Island, VA and San Juan, PR and interpret the differences in terms of the oceanic effects. We conclude that AGWs of oceanic origin may have an observable impact on the upper atmosphere and describe techniques for experimental verification of this finding.

  1. The Transfer Function Model (TFM) as a Tool for Simulating Gravity Wave Phenomena in the Mesosphere

    NASA Astrophysics Data System (ADS)

    Porter, H.; Mayr, H.; Moore, J.; Wilson, S.; Armaly, A.

    2008-12-01

    The Transfer Function Model (TFM) is semi-analytical and linear, and it is designed to describe the acoustic gravity waves (GW) propagating over the globe and from the ground to 600 km under the influence of vertical temperature variations. Wave interactions with the flow are not accounted for. With an expansion in terms of frequency-dependent spherical harmonics, the time consuming vertical integration of the conservation equations is reduced to computing the transfer function (TF). (The applied lower and upper boundary conditions assure that spurious wave reflections will not occur.) The TF describes the dynamical properties of the medium divorced from the complexities of the temporal and horizontal variations of the excitation source. Given the TF, the atmospheric response to a chosen source is then obtained in short order to simulate the GW propagating through the atmosphere over the globe. In the past, this model has been applied to study auroral processes, which produce distinct wave phenomena such as: (1) standing lamb modes that propagate horizontally in the viscous medium of the thermosphere, (2) waves generated in the auroral oval that experience geometric amplification propagating to the pole where constructive interference generates secondary waves that propagate equatorward, (3) ducted modes propagating through the middle atmosphere that leak back into the thermosphere, and (4) GWs reflected from the Earth's surface that reach the thermosphere in a narrow propagation cone. Well-defined spectral features characterize these wave modes in the TF to provide analytical understanding. We propose the TFM as a tool for simulating GW in the mesosphere and in particular the features observed in Polar Mesospheric Clouds (PMC). With present-day computers, it takes less than one hour to compute the TF, so that there is virtually no practical limitation on the source configurations that can be applied and tested in the lower atmosphere. And there is no limitation on the temporal and spatial resolutions the model simulations can provide. We shall discuss the concept and organization of the TFM and present samples of GW simulations that illustrate the capabilities of the model and its user interface. We shall discuss in particular the waves that leak into the mesopause from the thermosphere above and propagate into the region from tropospheric weather systems below.

  2. Sodium Lidar-observed Strong Inertia-gravity Wave Activities in the Mesopause Region over Fort Collins, Colorado (41 deg N, 105 deg W)

    NASA Technical Reports Server (NTRS)

    Li, Tao; She, C. -Y.; Liu, Han-Li; Leblanc, Thierry; McDermid, I. Stuart

    2007-01-01

    In December 2004, the Colorado State University sodium lidar system at Fort Collins, Colorado (41 deg N, 105 deg W), conducted an approximately 80-hour continuous campaign for the simultaneous observations of mesopause region sodium density, temperature, and zonal and meridional winds. This data set reveals the significant inertia-gravity wave activities with a period of approximately 18 hours, which are strong in both wind components since UT day 338 (second day of the campaign), and weak in temperature and sodium density. The considerable variability of wave activities was observed with both wind amplitudes growing up to approximately 40 m/s at 95-100 km in day 339 and then decreasing dramatically in day 340. We also found that the sodium density wave perturbation is correlated in phase with temperature perturbation below 90 km, and approximately 180 deg out of phase above. Applying the linear wave theory, we estimated the wave horizontal propagation direction, horizontal wavelength, and apparent horizontal phase speed to be approximately 25 deg south of west, approximately 1800 +/- 150 km, and approximately 28 +/- 2 m/s, respectively of wave intrinsic period, intrinsic phase speed, and vertical wavelength were also estimated. While the onset of enhanced inertia-gravity wave amplitude in the night of 338 was observed to be in coincidence with short-period gravity wave breaking via convective instability, the decrease of inertia-gravity wave amplitude after noon of day 339 was also observed to coincide with the development of atmospheric dynamical instability layers with downward phase progression clearly correlated with the 18-hour inertia-gravity wave, suggesting likely breaking of this inertia-gravity wave via dynamical (shear) instability.

  3. Synoptic-scale variability of arctic gravity wave activity during summer and potential impacts on the high latitude middle atmosphere

    NASA Astrophysics Data System (ADS)

    Gerrard, Andrew John

    Although the role of gravity waves in the global atmospheric circulation is generally understood, discussion of synoptic gravity wave activity, especially pertaining to high latitude summer environments, is lacking in the literature. Tropospherically generated gravity waves greatly contribute to the zonal drag necessary to induce meridional outflow and subsequent upwelling observed in the adiabatically cooled summer mesosphere, ultimately resulting in an environment conducive to mesospheric cloud formation. However, the very gravity wave activity responsible for this induced cooling is also believed to be a major source of variability on mesospheric clouds over shorter time scales, and this topic should be of considerable interest if such clouds are to be used as tracers of the global climate. It is therefore the purpose of this thesis to explore high latitude synoptic gravity wave activity and ultimately seek an understanding of the associated influence on overlaying summer mesospheric clouds. Another goal is to better understand and account for potential variability in high latitude middle and upper atmospheric measurements that can be directly associated with "weather conditions" at lower altitudes. These endeavors are addressed through Rayleigh/aerosol lidar data obtained from the ARCtic LIdar TEchnology (ARCLITE) facility located at Sondrestrom, Greenland (67°N, 310°E), global tropospheric and stratospheric analyses and forecasts, and the Gravity-wave Regional Or Global RAy Tracer (GROGRAT) model. In this study we are able to show that (a) the upper stratospheric gravity wave strength and the brightness of overlaying mesospheric clouds, as measured by representative field proxies, are negatively correlated over time scales of less than a day, (b) such upper stratospheric gravity wave variability is inversely related to mesospheric cloud variability on time scales of ˜1 to 4 hours, (c) gravity wave hindcasts faithfully reproduce experimental lidar observations taken over the month of August 1996, (d) the observed upper stratospheric gravity wave activity is shown to originate from regionalized, non-orographic sources in the troposphere, (e) such gravity wave activity can propagate through the middle atmosphere, potentially impacting overlaying mesospheric clouds, and (f) the forecasting of such upper stratospheric gravity wave activity, and therefore the corresponding mesospheric cloud activity, is feasible. In conclusion, the results herein provide additional evidence of gravity wave influence on mesospheric clouds, a step towards the forecasting of regional gravity wave activity, and ultimately a better understanding of synoptic gravity wave activity at high latitudes.

  4. Intercomparison of AIRS and HIRDLS stratospheric gravity wave observations

    NASA Astrophysics Data System (ADS)

    Meyer, Catrin I.; Ern, Manfred; Hoffmann, Lars; Trinh, Quang Thai; Alexander, M. Joan

    2018-01-01

    We investigate stratospheric gravity wave observations by the Atmospheric InfraRed Sounder (AIRS) aboard NASA's Aqua satellite and the High Resolution Dynamics Limb Sounder (HIRDLS) aboard NASA's Aura satellite. AIRS operational temperature retrievals are typically not used for studies of gravity waves, because their vertical and horizontal resolution is rather limited. This study uses data of a high-resolution retrieval which provides stratospheric temperature profiles for each individual satellite footprint. Therefore the horizontal sampling of the high-resolution retrieval is 9 times better than that of the operational retrieval. HIRDLS provides 2-D spectral information of observed gravity waves in terms of along-track and vertical wavelengths. AIRS as a nadir sounder is more sensitive to short-horizontal-wavelength gravity waves, and HIRDLS as a limb sounder is more sensitive to short-vertical-wavelength gravity waves. Therefore HIRDLS is ideally suited to complement AIRS observations. A calculated momentum flux factor indicates that the waves seen by AIRS contribute significantly to momentum flux, even if the AIRS temperature variance may be small compared to HIRDLS. The stratospheric wave structures observed by AIRS and HIRDLS often agree very well. Case studies of a mountain wave event and a non-orographic wave event demonstrate that the observed phase structures of AIRS and HIRDLS are also similar. AIRS has a coarser vertical resolution, which results in an attenuation of the amplitude and coarser vertical wavelengths than for HIRDLS. However, AIRS has a much higher horizontal resolution, and the propagation direction of the waves can be clearly identified in geographical maps. The horizontal orientation of the phase fronts can be deduced from AIRS 3-D temperature fields. This is a restricting factor for gravity wave analyses of limb measurements. Additionally, temperature variances with respect to stratospheric gravity wave activity are compared on a statistical basis. The complete HIRDLS measurement period from January 2005 to March 2008 is covered. The seasonal and latitudinal distributions of gravity wave activity as observed by AIRS and HIRDLS agree well. A strong annual cycle at mid- and high latitudes is found in time series of gravity wave variances at 42 km, which has its maxima during wintertime and its minima during summertime. The variability is largest during austral wintertime at 60° S. Variations in the zonal winds at 2.5 hPa are associated with large variability in gravity wave variances. Altogether, gravity wave variances of AIRS and HIRDLS are complementary to each other. Large parts of the gravity wave spectrum are covered by joint observations. This opens up fascinating vistas for future gravity wave research.

  5. Interfacial waves generated by gravity currents in two-layer fluid.

    NASA Astrophysics Data System (ADS)

    O'Leary, A.; Parker, D.; Peakall, J.; Ross, A.; Knippertz, P.; Marsham, J.

    2012-04-01

    The mesoscale convective systems of the West African Monsoon have a huge energetic impact on the surrounding environment. Energy is radiated away from these systems by internal waves formed by the vigorous movements of air mass at their core, propagating over long range in the existence of a suitable waveguide. Gravity currents formed by convective downdrafts are an exceedlingly common phenomenon around the monsoon, covering significant distances on the continental scale. The initiation of solitary waves and bores by gravity currents incident on a marine or nocturnal inversion is well documented, the Morning Glory of Northern Australia being a well known and spectacular example. The interior of the African continent exhibits a further mechanism for the propagation of wave energy, with the environment of the Sahara often characterised by a deep convective boundary layer topped by a well mixed residual layer. This suggests a simple laboratory analogy for the idealised study of deep moist convection at the edge of the monsoon; that of a gravity current generated by lock release into a two layer fluid. This work looks specifically at the waves generated on the interface, especially with regard to their amplitude and propagation speed relative to the current. A series of simple experiments have been performed in the laboratory and combined with data from previous work. In addition to improving the basic dynamical understanding of the idealised problem the aim of these experiments is to examine whether there exist regions in the bulk parameter space in which waves are generated that are fast and of large amplitude. That is, were this an appropriate analog for the atmosphere, under which conditions are waves produced that would favour the initiation of subsequent convection? Ultimately this work aims to bring together research from fluid dynamics, field observations and numerical modelling to explore the phenomena of the convective environment of the Sahel. This fundamental work is a small part of efforts initiated in the AMMA* project to further understand the West African Monsoon. * African Monsoon and Multidisciplinary Analyses

  6. Mesospheric gravity-wave climatology at Adelaide

    NASA Technical Reports Server (NTRS)

    Vincent, R. A.

    1986-01-01

    The MF Adelaide partial-reflection radar has been operating continuously since November 1983. This has enabled a climatology of gravity-wave activity to be constructed for the mesosphere. The data have been analyzed for a medium-period range of 1 to 8 hr. and a longer period range between 8 and 24 hr. covering the inertio-period waves. The tidal motions have been filtered out prior to analysis. For the data analyses so far (Nov. 1983 to Dec. 1984), a number of interesting features emerged. Firstly, the wave activity at heights above 80 km shows a small seimannual variation with season with the activity being strongest in summer and winter. At heights below 80 km however, there is a similar but more marked variation with the weakest amplitudes occurring at the time of the changeovers in the prevailing circulation. If breaking gravity waves are responsible for much of the turbulence in the mesosphere, then the periods March to April and September to October might also be expected to be periods of weak turbulence. The wave field appears to be partially polarized. The meridional amplitudes are larger than the zonal amplitudes, especially in water. It is found that the degree of polarization is about 15% in summer and 30% in winter. The polarized component is found to propagate in the opposite direction to the background flow in the stratosphere, which suggests that the polarization arises through directional filtering of the waves as they propagate up from below.

  7. Self-similar gravity wave spectra resulting from the modulation of bound waves

    NASA Astrophysics Data System (ADS)

    Michel, Guillaume; Semin, Benoît; Cazaubiel, Annette; Haudin, Florence; Humbert, Thomas; Lepot, Simon; Bonnefoy, Félicien; Berhanu, Michaël; Falcon, Éric

    2018-05-01

    We experimentally study the properties of nonlinear surface gravity waves in a large-scale basin. We consider two different configurations: a one-dimensional (1D) monochromatic wave forcing, and a two-dimensional (2D) forcing with bichromatic waves satisfying resonant-wave interaction conditions. For the 1D forcing, we find a discrete wave-energy spectrum dominated at high frequencies by bound waves whose amplitudes decrease as a power law of the frequency. Bound waves (e.g., to the carrier) are harmonics superimposed on the carrier wave propagating with the same phase velocity as the one of the carrier. When a narrow frequency random modulation is applied to this carrier, the high-frequency part of the wave-energy spectrum becomes continuous with the same frequency-power law. Similar results are found for the 2D forcing when a random modulation is also applied to both carrier waves. Our results thus show that all these nonlinear gravity wave spectra are dominated at high frequencies by the presence of bound waves, even in the configuration where resonant interactions occur. Moreover, in all these configurations, the power-law exponent of the spectrum is found to depend on the forcing amplitude with the same trend as the one found in previous gravity wave turbulence experiments. Such a set of bound waves may thus explain this dependence that was previously poorly understood.

  8. Mesospheric heating due to intense tropospheric convection

    NASA Technical Reports Server (NTRS)

    Taylor, L. L.

    1979-01-01

    A series of rocket measurements made twice daily at Wallops Island, Va., revealed a rapid heating of the mesosphere on the order of 10 K on days when thunderstorms or squall lines were in the area. This heating is explained as the result of frictional dissipation of vertically propagating internal gravity waves generated by intense tropospheric convection. Ray-tracing theory is used to determine the spectrum of gravity wave groups that actually reach mesospheric heights. This knowledge is used in an equation describing the spectral energy density of a penetrative convective element to calculate the fraction of the total energy initially available to excite those waves that do reach the level of heating. This value, converted into a vertical velocity, is used as the lower boundary condition for a multilayer model used to determine the detailed structure of the vertically propagating waves. The amount of frictional dissipation produced by the waves is calculated from the solutions of the frictionless model by use of a vertically varying eddy viscosity coefficient. The heating produced by the dissipation is then calculated from the thermodynamic equation.

  9. Cosmic Tsunamis in Modified Gravity: Disruption of Screening Mechanisms from Scalar Waves.

    PubMed

    Hagala, R; Llinares, C; Mota, D F

    2017-03-10

    Extending general relativity by adding extra degrees of freedom is a popular approach for explaining the accelerated expansion of the Universe and to build high energy completions of the theory of gravity. The presence of such new degrees of freedom is, however, tightly constrained from several observations and experiments that aim to test general relativity in a wide range of scales. The viability of a given modified theory of gravity, therefore, strongly depends on the existence of a screening mechanism that suppresses the extra degrees of freedom. We perform simulations, and find that waves propagating in the new degrees of freedom can significantly impact the efficiency of some screening mechanisms, thereby threatening the viability of these modified gravity theories. Specifically, we show that the waves produced in the symmetron model can increase the amplitude of the fifth force and the parametrized post Newtonian parameters by several orders of magnitude.

  10. Cosmic Tsunamis in Modified Gravity: Disruption of Screening Mechanisms from Scalar Waves

    NASA Astrophysics Data System (ADS)

    Hagala, R.; Llinares, C.; Mota, D. F.

    2017-03-01

    Extending general relativity by adding extra degrees of freedom is a popular approach for explaining the accelerated expansion of the Universe and to build high energy completions of the theory of gravity. The presence of such new degrees of freedom is, however, tightly constrained from several observations and experiments that aim to test general relativity in a wide range of scales. The viability of a given modified theory of gravity, therefore, strongly depends on the existence of a screening mechanism that suppresses the extra degrees of freedom. We perform simulations, and find that waves propagating in the new degrees of freedom can significantly impact the efficiency of some screening mechanisms, thereby threatening the viability of these modified gravity theories. Specifically, we show that the waves produced in the symmetron model can increase the amplitude of the fifth force and the parametrized post Newtonian parameters by several orders of magnitude.

  11. Gravity wave characteristics in the middle atmosphere during the CESAR campaign at Palma de Mallorca in 2011/2012: Impact of extratropical cyclones and cold fronts

    NASA Astrophysics Data System (ADS)

    Kramer, R.; Wüst, S.; Schmidt, C.; Bittner, M.

    2015-06-01

    Based on a measuring campaign which was carried out at Mallorca (39.6°N, 2.7°E) as cooperation between Agència Estatal de Meteorologia (AEMET) and Deutsches Zentrum für Luft- und Raumfahrt, engl. 'German Aerospace Center' (DLR) in 2011/2012 (September-January), 143 radiosondes (day and night) providing vertical temperature and wind profiles were released. Additionally, nocturnal mesopause temperature measurements with a temporal resolution of about 1 min were conducted by the infrared (IR) - Ground-based Infrared P-branch Spectrometer (GRIPS) during the campaign period. Strongly enhanced gravity wave activity in the lower stratosphere is observed which can be attributed to a hurricane-like storm (so-called Medicane) and to passing by cold fronts. Statistical features of gravity wave parameters including energy densitiy and momentum fluxes are calculated. Gravity wave momentum fluxes turned out being up to five times larger during severe weather. Moreover, gravity wave horizontal propagation characteristics are derived applying hodograph and Stokes parameter analysis. Preferred directions are of southeast and northwest due to prevailing wind directions at Mallorca.

  12. Initial results from SKiYMET meteor radar at Thumba (8.5°N, 77°E): 2. Gravity wave observations in the MLT region

    NASA Astrophysics Data System (ADS)

    Kumar, Karanam Kishore; Antonita, T. Maria; Shelbi, S. T.

    2007-12-01

    In the present communication, allSKy interferometric METeor (SKiYMET) radar observations of gravity wave activity in the mesosphere lower thermosphere (MLT) region over Thumba (8.5°N, 77°E) are presented. The present meteor radar system provides hourly zonal and meridional winds in the MLT region, which can be readily used for studying the tides, planetary waves, gravity waves of periods 2-6 hours, and other long period oscillations in this region. However, these hourly winds are not sufficient for studying short period gravity waves having periods less than an hour, which demand high temporal resolution measurements. Even though the winds are estimated on an hourly basis, information such as zenith angle, azimuth angle, and radial velocity of each detected meteor are archived. Using these details of the meteor, an algorithm is developed to obtain the 15-min temporal resolution wind data. The output of the algorithm is compared with hourly wind data, and it showed a good agreement during the high meteor shower periods. Most of the times high meteor counts are observed during late night and early morning hours (local) over this latitude. Continuous wind measurements during the high meteor shower periods are used for studying the gravity wave activity in the MLT region. As the wave activity is intermittent and nonstationary, wavelet analysis has been used for delineating the wave features. The results showed the upward propagating intermittent gravity waves with periods 1-2 and 4-5 hours. The new aspect of the present communication is the usage of meteor radar for gravity wave studies for the first time over this latitude and studying their seasonal variability.

  13. Detecting atmospheric normal modes with periods less than 6 h by barometric observations

    NASA Astrophysics Data System (ADS)

    Ermolenko, S. I.; Shved, G. M.; Jacobi, Ch.

    2018-04-01

    The theory of atmospheric normal modes (ANMs) predicts the existence of relatively short-period gravity-inertia ANMs. Simultaneous observations of surface air-pressure variations by barometers at distant stations of the Global Geodynamics Project network during an interval of 6 months were used to detect individual gravity-inertia ANMs with periods of ∼2-5 h. Evidence was found for five ANMs with a lifetime of ∼10 days. The data of the stations, which are close in both latitude and longitude, were utilized for deriving the phases of the detected ANMs. The phases revealed wave propagation to the west and increase of zonal wavenumbers with frequency. As all the detected gravity-inertia ANMs are westward propagating, they are suggested to be generated due to the breakdown of migrating solar tides and/or large-scale Rossby waves. The existence of an ANM background will complicate the detection of the translational motions of the Earth's inner core.

  14. Gravity Waves and Wind-Farm Efficiency in Neutral and Stable Conditions

    NASA Astrophysics Data System (ADS)

    Allaerts, Dries; Meyers, Johan

    2018-02-01

    We use large-eddy simulations (LES) to investigate the impact of stable stratification on gravity-wave excitation and energy extraction in a large wind farm. To this end, the development of an equilibrium conventionally neutral boundary layer into a stable boundary layer over a period of 8 h is considered, using two different cooling rates. We find that turbulence decay has considerable influence on the energy extraction at the beginning of the boundary-layer transition, but afterwards, energy extraction is dominated by geometrical and jet effects induced by an inertial oscillation. It is further shown that the inertial oscillation enhances gravity-wave excitation. By comparing LES results with a simple one-dimensional model, we show that this is related to an interplay between wind-farm drag, variations in the Froude number and the dispersive effects of vertically-propagating gravity waves. We further find that the pressure gradients induced by gravity waves lead to significant upstream flow deceleration, reducing the average turbine output compared to a turbine in isolated operation. This leads us to the definition of a non-local wind-farm efficiency, next to a more standard wind-farm wake efficiency, and we show that both can be of the same order of magnitude. Finally, an energy flux analysis is performed to further elucidate the effect of gravity waves on the flow in the wind farm.

  15. Ice-coupled wave propagation across an abrupt change in ice rigidity, density, or thickness

    NASA Astrophysics Data System (ADS)

    Barrett, Murray D.; Squire, Vernon A.

    1996-09-01

    The model of Fox and Squire [1990, 1991, 1994], which discusses the oblique propagation of surface gravity waves from the open sea into an ice sheet of constant thickness and properties, is augmented to include propagation across an abrupt transition of properties within a continuous ice sheet or across two dissimilar ice sheets that abut one another but are free to move independently. Rigidity, thickness, and/or density may change across the transition, allowing, for example, the modeling of ice-coupled waves into, across, and out of refrozen leads and polynyas, across cracks, and through coherent pressure ridges. Reflection and transmission behavior is reported for various changes in properties under both types of transition conditions.

  16. Wave Measurements in Landfast Ice in Svalbard: Evolution of Wave Propagation following Wind Waves to Swell Transition

    NASA Astrophysics Data System (ADS)

    Sutherland, G.; Rabault, J.; Jensen, A.; Christensen, K. H.; Ward, B.; Marchenko, A. V.; Morozov, E.; Gundersen, O.; Halsne, T.; Lindstrøm, E.

    2016-02-01

    The impact of sea-ice cover on propagation of water waves has been studied over five decades, both theoretically and from measurements on the ice. Understanding the interaction between water waves and sea-ice covers is a topic of interest for a variety of purposes such as formulation of ocean models for climate, weather and sea state predictions, and the analysis of pollution dispersion in the Arctic. Our knowledge of the underlying phenomena is still partial, and more experimental data is required to gain further insight into the associated physics. Three Inertial Motion Units (IMUs) have been assessed in the lab and used to perform measurements on landfast ice over 2 days in Tempelfjorden, Svalbard during March 2015. The ice thickness in the measurement area was approximately 60 to 80 cm. Two IMUs were located close to each other (6 meters) at a distance around 180 m from the ice edge. The third IMU was placed 120 m from the ice edge. The data collected contains a transition from high frequency, wind generated waves to lower frequency swell. Drastic changes in wave propagation are observed in relation with this transition. The level of reflected energy obtained from rotational spectra is much higher before the transition to low frequency swell than later on. The correlation between the signal recorded by the IMU closer to the ice edge and the two others IMUs is low during the wind waves dominated period, and increases with incoming swell. The dispersion relation for waves in ice was found to correspond to flexural-gravity waves before the transition and deepwater gravity waves afterwards.

  17. Is tropospheric weather influenced by solar wind through atmospheric vertical coupling downward control?

    NASA Astrophysics Data System (ADS)

    Prikryl, Paul; Tsukijihara, Takumi; Iwao, Koki; Muldrew, Donald B.; Bruntz, Robert; Rušin, Vojto; Rybanský, Milan; Turňa, Maroš; Šťastný, Pavel; Pastirčák, Vladimír

    2017-04-01

    More than four decades have passed since a link between solar wind magnetic sector boundary structure and mid-latitude upper tropospheric vorticity was discovered (Wilcox et al., Science, 180, 185-186, 1973). The link has been later confirmed and various physical mechanisms proposed but apart from controversy, little attention has been drawn to these results. To further emphasize their importance we investigate the occurrence of mid-latitude severe weather in the context of solar wind coupling to the magnetosphere-ionosphere-atmosphere (MIA) system. It is observed that significant snowstorms, windstorms and heavy rain, particularly if caused by low pressure systems in winter, tend to follow arrivals of high-speed solar wind. Previously published statistical evidence that explosive extratropical cyclones in the northern hemisphere tend to occur after arrivals of high-speed solar wind streams from coronal holes (Prikryl et al., Ann. Geophys., 27, 1-30, 2009; Prikryl et al., J. Atmos. Sol.-Terr. Phys., 149, 219-231, 2016) is corroborated for the southern hemisphere. A physical mechanism to explain these observations is proposed. The leading edge of high-speed solar wind streams is a locus of large-amplitude magneto-hydrodynamic waves that modulate Joule heating and/or Lorentz forcing of the high-latitude lower thermosphere generating medium-scale atmospheric gravity waves that propagate upward and downward through the atmosphere. Simulations of gravity wave propagation in a model atmosphere using the Transfer Function Model (Mayr et al., Space Sci. Rev., 54, 297-375, 1990) show that propagating waves originating in the thermosphere can excite a spectrum of gravity waves in the lower atmosphere. In spite of significantly reduced amplitudes but subject to amplification upon reflection in the upper troposphere, these gravity waves can provide a lift of unstable air to release instabilities in the troposphere thus initiating convection to form cloud/precipitation bands (Prikryl et al., Ann. Geophys., 27, 31-57, 2009). It is primarily the energy provided by release of latent heat that leads to intensification of storms. These results indicate that vertical coupling in the atmosphere exerts downward control from solar wind to the lower atmospheric levels influencing tropospheric weather development.

  18. Simulations of Atmospheric Neutral Wave Coupling to the Ionosphere

    NASA Astrophysics Data System (ADS)

    Siefring, C. L.; Bernhardt, P. A.

    2005-12-01

    The densities in the E- and F-layer plasmas are much less than the density of background neutral atmosphere. Atmospheric neutral waves are primary sources of plasma density fluctuations and are the sources for triggering plasma instabilities. The neutral atmosphere supports acoustic waves, acoustic gravity waves, and Kelvin Helmholtz waves from wind shears. These waves help determine the structure of the ionosphere by changes in neutral density that affect ion-electron recombination and by neutral velocities that couple to the plasma via ion-neutral collisions. Neutral acoustic disturbances can arise from thunderstorms, chemical factory explosions and intentional high-explosive tests. Based on conservation of energy, acoustic waves grow in amplitude as they propagate upwards to lower atmospheric densities. Shock waves can form in an acoustic pulse that is eventually damped by viscosity. Ionospheric effects from acoustic waves include transient perturbations of E- and F-Regions and triggering of E-Region instabilities. Acoustic-gravity waves affect the ionosphere over large distances. Gravity wave sources include thunderstorms, auroral region disturbances, Space Shuttle launches and possibly solar eclipses. Low frequency acoustic-gravity waves propagate to yield traveling ionospheric disturbances (TID's), triggering of Equatorial bubbles, and possible periodic structuring of the E-Region. Gravity wave triggering of equatorial bubbles is studied numerically by solving the equations for plasma continuity and ion velocity along with Ohms law to provide an equation for the induced electric potential. Slow moving gravity waves provide density depressions on bottom of ionosphere and a gravitational Rayleigh-Taylor instability is initiated. Radar scatter detects field aligned irregularities in the resulting plasma bubble. Neutral Kelvin-Helmholtz waves are produced by strong mesospheric wind shears that are also coincident with the formation of intense E-layers. An atmospheric model for periodic structures with Kelvin-Helmholtz (KH) wavelengths is used to show the development of quasi-periodic structures in the E-layer. For the model, a background atmosphere near 100 km altitude with a scale height of 12.2 km is subjected to a wind shear profile varying by 100 m/s over a distance of 1.7 km. This neutral speed shear drives the KH instability with a growth time of about 100 seconds. The neutral KH wave is a source of plasma turbulence. The E-layer responds to the KH-Wave structure in the neutral atmosphere as an electrodynamic tracer. The plasma flow leads to small scale plasma field aligned irregularities from a gradient drift, plasma interchange instability (GDI) or a Farley-Buneman, two-stream instability (FBI). These irregularities are detected by radar scatter as quasi-periodic structures. All of these plasma phenomena would not occur without the initiation by neutral atmospheric waves.

  19. On the generation of internal wave modes by surface waves

    NASA Astrophysics Data System (ADS)

    Harlander, Uwe; Kirschner, Ian; Maas, Christian; Zaussinger, Florian

    2016-04-01

    Internal gravity waves play an important role in the ocean since they transport energy and momentum and the can lead to mixing when they break. Surface waves and internal gravity waves can interact. On the one hand, long internal waves imply a slow varying shear current that modifies the propagation of surface waves. Surface waves generated by the atmosphere can, on the other hand, excite internal waves by nonlinear interaction. Thereby a surface wave packet consisting of two close frequencies can resonate with a low frequency internal wave (Phillips, 1966). From a theoretical point of view, the latter has been studied intensively by using a 2-layer model, i.e. a surface layer with a strong density contrast and an internal layer with a comparable weak density contrast (Ball, 1964; Craig et al., 2010). In the present work we analyse the wave coupling for a continuously stratified fluid using a fully non-linear 2D numerical model (OpenFoam) and compare this with laboratory experiments (see Lewis et al. 1974). Surface wave modes are used as initial condition and the time development of the dominant surface and internal waves are studied by spectral and harmonic analysis. For the simple geometry of a box, the results are compared with analytical spectra of surface and gravity waves. Ball, F.K. 1964: Energy transfer between external and internal gravity waves. J. Fluid Mech. 19, 465. Craig, W., Guyenne, P., Sulem, C. 2010: Coupling between internal and surface waves. Natural Hazards 57, 617-642. Lewis, J.E., Lake, B.M., Ko, D.R.S 1974: On the interaction of internal waves and surfacr gravity waves, J. Fluid Mech. 63, 773-800. Phillips, O.M. 1966: The dynamics of the upper ocean, Cambridge University Press, 336pp.

  20. Massive gravity and the suppression of anisotropies and gravitational waves in a matter-dominated contracting universe

    NASA Astrophysics Data System (ADS)

    Lin, Chunshan; Quintin, Jerome; Brandenberger, Robert H.

    2018-01-01

    We consider a modified gravity model with a massive graviton, but which nevertheless only propagates two gravitational degrees of freedom and which is free of ghosts. We show that non-singular bouncing cosmological background solutions can be generated. In addition, the mass term for the graviton prevents anisotropies from blowing up in the contracting phase and also suppresses the spectrum of gravitational waves compared to that of the scalar cosmological perturbations. This addresses two of the main problems of the matter bounce scenario.

  1. Analysis of a jet stream induced gravity wave associated with an observed ice cloud over Greenland

    NASA Astrophysics Data System (ADS)

    Buss, S.; Hertzog, A.; Hostettler, C.; Bui, T. P.; Lüthi, T.; Wernli, H.

    2003-11-01

    A polar stratospheric ice cloud (PSC type II) was observed by airborne lidar above Greenland on 14 January 2000. Is was the unique observation of an ice cloud over Greenland during the SOLVE/THESEO 2000 campaign. Mesoscale simulations with the hydrostatic HRM model are presented which, in contrast to global analyses, are capable to produce a vertically propagating gravity wave that induces the low temperatures at the level of the PSC afforded for the ice formation. The simulated minimum temperature is ~8 K below the driving analyses and ~3 K below the frost point, exactly coinciding with the location of the observed ice cloud. Despite the high elevations of the Greenland orography the simulated gravity wave is not a mountain wave. Analyses of the horizontal wind divergence, of the background wind profiles, of backward gravity wave ray-tracing trajectories, of HRM experiments with reduced Greenland topography and of several instability diagnostics near the tropopause level provide consistent evidence that the wave is emitted by the geostrophic adjustment of a jet instability associated with an intense, rapidly evolving, anticyclonically curved jet stream. In order to evaluate the potential frequency of such non-orographic polar stratospheric cloud events, an approximate jet instability diagnostic is performed for the winter 1999/2000. It indicates that ice-PSCs are only occasionally generated by gravity waves emanating from an unstable jet.

  2. A coordinated study of 1 h mesoscale gravity waves propagating from Logan to Boulder with CRRL Na Doppler lidars and temperature mapper

    NASA Astrophysics Data System (ADS)

    Lu, Xian; Chen, Cao; Huang, Wentao; Smith, John A.; Chu, Xinzhao; Yuan, Tao; Pautet, Pierre-Dominique; Taylor, Mike J.; Gong, Jie; Cullens, Chihoko Y.

    2015-10-01

    We present the first coordinated study using two lidars at two separate locations to characterize a 1 h mesoscale gravity wave event in the mesopause region. The simultaneous observations were made with the Student Training and Atmospheric Research (STAR) Na Doppler lidar at Boulder, CO, and the Utah State University Na Doppler lidar and temperature mapper at Logan, UT, on 27 November 2013. The high precision possessed by the STAR lidar enabled these waves to be detected in vertical wind. The mean wave amplitudes are ~0.44 m/s in vertical wind and ~1% in relative temperature at altitudes of 82-107 km. Those in the zonal and meridional winds are 6.1 and 5.2 m/s averaged from 84 to 99 km. The horizontal and vertical wavelengths inferred from the mapper and lidars are ~219 ± 4 and 16.0 ± 0.3 km, respectively. The intrinsic period is ~1.3 h for the airglow layer, Doppler shifted by a mean wind of ~17 m/s. The wave packet propagates from Logan to Boulder with an azimuth angle of ~135° clockwise from north and an elevation angle of ~ 3° from the horizon. The observed phase difference between the two locations can be explained by the traveling time of the 1 h wave from Logan to Boulder, which is about ~2.4 h. The wave polarization relations are examined through the simultaneous quantifications of the three wind components and temperature. This study has developed a systematic methodology for fully characterizing mesoscale gravity waves, inspecting their intrinsic properties and validating the derivation of horizontal wave structures by applying multiple instruments from coordinated stations.

  3. Criticality in third order lovelock gravity and butterfly effect

    NASA Astrophysics Data System (ADS)

    Qaemmaqami, Mohammad M.

    2018-01-01

    We study third order Lovelock Gravity in D=7 at the critical point which three (A)dS vacua degenerate into one. We see there is not propagating graviton at the critical point. And also we compute the butterfly velocity for this theory at the critical point by considering the shock wave solutions near horizon, this is important to note that although there is no propagating graviton at the critical point, due to boundary gravitons the butterfly velocity is non-zero. Finally we observe that the butterfly velocity for third order Lovelock Gravity at the critical point in D=7 is less than the butterfly velocity for Einstein-Gauss-Bonnet Gravity at the critical point in D=7 which is less than the butterfly velocity in D = 7 for Einstein Gravity, vB^{E.H}>vB^{E.G.B}>vB^{3rd Lovelock} . Maybe we can conclude that by adding higher order curvature corrections to Einstein Gravity the butterfly velocity decreases.

  4. Unexpected climatological behavior of MLT gravity wave momentum flux in the lee of the Southern Andes hot spot

    NASA Astrophysics Data System (ADS)

    de Wit, R. J.; Janches, D.; Fritts, D. C.; Stockwell, R. G.; Coy, L.

    2017-01-01

    The Southern Argentina Agile MEteor Radar (SAAMER), located at Tierra del Fuego (53.7°S, 67.7°W), has been providing near-continuous high-resolution measurements of winds and high-frequency gravity wave (GW) momentum fluxes of the mesopause region since May 2008. As SAAMER is located in the lee of the largest seasonal GW hot spot on Earth, this is a key location to study GWs and their interaction with large-scale motions. GW momentum flux climatologies are shown for the first time for this location and discussed in light of these unique dynamics. Particularly, the large eastward GW momentum fluxes during local winter are surprising, as these observations cannot be explained by the direct upward propagation of expected large-amplitude mountain waves (MWs) through the eastward stratospheric jet. Instead, these results are interpreted as secondary GWs propagating away from stratospheric sources over the Andes accompanying MW breaking over the Southern Andes.

  5. Nonstandard gravitational waves imply gravitational slip: On the difficulty of partially hiding new gravitational degrees of freedom

    NASA Astrophysics Data System (ADS)

    Sawicki, Ignacy; Saltas, Ippocratis D.; Motta, Mariele; Amendola, Luca; Kunz, Martin

    2017-04-01

    In many generalized models of gravity, perfect fluids in cosmology give rise to gravitational slip. Simultaneously, in very broad classes of such models, the propagation of gravitational waves is altered. We investigate the extent to which there is a one-to-one relationship between these two properties in three classes of models with one extra degree of freedom: scalar (Horndeski and beyond), vector (Einstein-aether), and tensor (bimetric). We prove that in bimetric gravity and Einstein-aether, it is impossible to dynamically hide the gravitational slip on all scales whenever the propagation of gravitational waves is modified. Horndeski models are much more flexible, but it is nonetheless only possible to hide gravitational slip dynamically when the action for perturbations is tuned to evolve in time toward a divergent kinetic term. These results provide an explicit, theoretical argument for the interpretation of future observations if they disfavored the presence of gravitational slip.

  6. Unexpected Climatological Behavior of MLT Gravity Wave Momentum Flux in the Lee of the Southern Andes Hot Spot

    NASA Technical Reports Server (NTRS)

    DeWit, R. J.; Janches, D.; Fritts, D. C.; Stockwell, R. G.; Coy, L.

    2017-01-01

    The Southern Argentina Agile MEteor Radar (SAAMER), located at Tierra del Fuego (53.7degS, 67.7degW), has been providing near-continuous high-resolution measurements of winds and high-frequency gravity wave (GW) momentum fluxes of the mesopause region since May 2008. As SAAMER is located in the lee of the largest seasonal GW hot spot on Earth, this is a key location to study GWs and their interaction with large-scale motions. GW momentum flux climatologies are shown for the first time for this location and discussed in light of these unique dynamics. Particularly, the large eastward GW momentum fluxes during local winter are surprising, as these observations cannot be explained by the direct upward propagation of expected large-amplitude mountain waves (MWs) through the eastward stratospheric jet. Instead, these results are interpreted as secondary GWs propagating away from stratospheric sources over the Andes accompanying MW breaking over the Southern Andes.

  7. Satellite observations of atmosphere-ionosphere vertical coupling by gravity waves

    NASA Astrophysics Data System (ADS)

    Trinh, Thai; Ern, Manfred; Preusse, Peter; Riese, Martin

    2017-04-01

    The Earth's thermosphere/ionosphere (T/I) is strongly influenced by various processes from above as well as from below. One of the most important processes from below is vertical coupling by atmospheric waves. Among these waves, gravity waves (GWs) excited in the lower atmosphere, mainly in the troposphere and tropopause region, are likely essential for the mean state of the T/I system. The penetration of GWs into the T/I system is however not well understood in modeling as well as observations. In this work, we analyze the correlation between different GW parameters at lower altitudes (below 90 km) and GW induced perturbations in the T/I. At lower altitudes, GW parameters are derived from temperature observations of the Sounding of the Atmosphere using Broadband Emission Radiometry (SABER). In the T/I, GW induced perturbations of neutral density measured by Gravity field and Ocean Circulation Explorer (GOCE) and CHAllenging Minisatellite Payload (CHAMP) are analyzed. Interestingly, we find positive correlations between the spatial distributions at low altitudes (i.e. below 90km) and the spatial distributions of GW-induced density fluctuations in the T/I (at 200km and above), which suggests that many waves seen in the T/I have their origins in the troposphere or lower stratosphere. It is also indicated that mountain waves generated near the Andes and Antarctic Peninsula propagate up to the T/I. Strong positive correlations between GW perturbations in the T/I and GW parameters at 30 km are mainly found at mid latitudes, which may be an indicator of propagation of convectively generated GWs. Increase of correlation starting from 70 km in many cases shows that filtering of the GW distribution by the background atmosphere is very important. Processes that are likely involved are GW dissipation, generation of secondary GWs, as well as horizontal propagation of GWs. Limitations of our method and of the observations are also discussed.

  8. Gravity wave momentum flux in the lower stratosphere over convection

    NASA Technical Reports Server (NTRS)

    Alexander, M. Joan; Pfister, Leonhard

    1995-01-01

    This work describes a method for estimating vertical fluxes of horizontal momentum carried by short horizontal scale gravity waves (lambda(sub x) = 10-100 km) using aircraft measured winds in the lower stratosphere. We utilize in situ wind vector and pressure altitude measurements provided by the Meteorological Measurement System (MMS) on board the ER-2 aircraft to compute the momentum flux vectors at the flight level above deep convection during the tropical experiment of the Stratosphere Troposphere Exchange Project (STEP-Tropical). Data from Flight 9 are presented here for illustration. The vertical flux of horizontal momentum these observations points in opposite directions on either side of the location of a strong convective updraft in the cloud shield. This property of internal gravity waves propagating from a central source compares favorably with previously described model results.

  9. Prompt gravity signal induced by the 2011 Tohoku-Oki earthquake

    PubMed Central

    Montagner, Jean-Paul; Juhel, Kévin; Barsuglia, Matteo; Ampuero, Jean Paul; Chassande-Mottin, Eric; Harms, Jan; Whiting, Bernard; Bernard, Pascal; Clévédé, Eric; Lognonné, Philippe

    2016-01-01

    Transient gravity changes are expected to occur at all distances during an earthquake rupture, even before the arrival of seismic waves. Here we report on the search of such a prompt gravity signal in data recorded by a superconducting gravimeter and broadband seismometers during the 2011 Mw 9.0 Tohoku-Oki earthquake. During the earthquake rupture, a signal exceeding the background noise is observed with a statistical significance higher than 99% and an amplitude of a fraction of μGal, consistent in sign and order of magnitude with theoretical predictions from a first-order model. While prompt gravity signal detection with state-of-the-art gravimeters and seismometers is challenged by background seismic noise, its robust detection with gravity gradiometers under development could open new directions in earthquake seismology, and overcome fundamental limitations of current earthquake early-warning systems imposed by the propagation speed of seismic waves. PMID:27874858

  10. Prompt gravity signal induced by the 2011 Tohoku-Oki earthquake.

    PubMed

    Montagner, Jean-Paul; Juhel, Kévin; Barsuglia, Matteo; Ampuero, Jean Paul; Chassande-Mottin, Eric; Harms, Jan; Whiting, Bernard; Bernard, Pascal; Clévédé, Eric; Lognonné, Philippe

    2016-11-22

    Transient gravity changes are expected to occur at all distances during an earthquake rupture, even before the arrival of seismic waves. Here we report on the search of such a prompt gravity signal in data recorded by a superconducting gravimeter and broadband seismometers during the 2011 Mw 9.0 Tohoku-Oki earthquake. During the earthquake rupture, a signal exceeding the background noise is observed with a statistical significance higher than 99% and an amplitude of a fraction of μGal, consistent in sign and order of magnitude with theoretical predictions from a first-order model. While prompt gravity signal detection with state-of-the-art gravimeters and seismometers is challenged by background seismic noise, its robust detection with gravity gradiometers under development could open new directions in earthquake seismology, and overcome fundamental limitations of current earthquake early-warning systems imposed by the propagation speed of seismic waves.

  11. Prompt gravity anomaly induced to the 2011Tohoku-Oki earthquake

    NASA Astrophysics Data System (ADS)

    Montagner, Jean-Paul; Juhel, Kevin; Barsuglia, Matteo; Ampuero, Jean-Paul; Harms, Jan; Chassande-Mottin, Eric; Whiting, Bernard; Bernard, Pascal; Clévédé, Eric; Lognonné, Philippe

    2017-04-01

    Transient gravity changes are expected to occur at all distances during an earthquake rupture, even before the arrival of seismic waves. Here we report on the search of such a prompt gravity signal in data recorded by a superconducting gravimeter and broadband seismometers during the 2011 Mw 9.0 Tohoku-Oki earthquake. During the earthquake rupture, a signal exceeding the background noise is observed with a statistical significance higher than 99% and an amplitude of a fraction of μGal, consistent in sign and order-of-magnitude with theoretical predictions from a first-order model. While prompt gravity signal detection with state-of-the-art gravimeters and seismometers is challenged by background seismic noise, its robust detection with gravity gradiometers under development could open new directions in earthquake seismology, and overcome fundamental limitations of current earthquake early-warning systems (EEWS) imposed by the propagation speed of seismic waves.

  12. Unexpected Occurrence of Mesospheric Frontal Gravity Wave Events Over South Pole (90°S)

    NASA Astrophysics Data System (ADS)

    Pautet, P.-D.; Taylor, M. J.; Snively, J. B.; Solorio, C.

    2018-01-01

    Since 2010, Utah State University has operated an infrared Advanced Mesospheric Temperature Mapper at the Amundsen-Scott South Pole station to investigate the upper atmosphere dynamics and temperature deep within the vortex. A surprising number of "frontal" gravity wave events (86) were recorded in the mesospheric OH(3,1) band intensity and rotational temperature images (typical altitude of 87 km) during four austral winters (2012-2015). These events are gravity waves (GWs) characterized by a sharp leading wave front followed by a quasi-monochromatic wave train that grows with time. A particular subset of frontal gravity wave events has been identified in the past (Dewan & Picard, 1998) as "bores." These are usually associated with wave ducting within stable mesospheric inversion layers, which allow them to propagate over very large distances. They have been observed on numerous occasions from low-latitude and midlatitude sites, but to date, very few have been reported at high latitudes. This study provides new analyses of the characteristics of frontal events at high latitudes and shows that most of them are likely ducted. The occurrence of these frontal GW events over this isolated region strongly supports the existence of horizontally extensive mesospheric thermal inversion layers over Antarctica, leading to regions of enhanced stability necessary for GW trapping and ducting.

  13. Analysis of a jet stream induced gravity wave associated with an observed stratospheric ice cloud over Greenland

    NASA Astrophysics Data System (ADS)

    Buss, S.; Hertzog, A.; Hostettler, C.; Bui, T. B.; Lüthi, D.; Wernli, H.

    2004-08-01

    A polar stratospheric ice cloud (PSC type II) was observed by airborne lidar above Greenland on 14 January 2000. It was the unique observation of an ice cloud over Greenland during the SOLVE/THESEO 2000 campaign. Mesoscale simulations with the hydrostatic HRM model are presented which, in contrast to global analyses, are capable to produce a vertically propagating gravity wave that induces the low temperatures at the level of the PSC afforded for the ice formation. The simulated minimum temperature is ~8 K below the driving analyses and ~4.5 K below the frost point, exactly coinciding with the location of the observed ice cloud. Despite the high elevations of the Greenland orography the simulated gravity wave is not a mountain wave. Analyses of the horizontal wind divergence, of the background wind profiles, of backward gravity wave ray-tracing trajectories, of HRM experiments with reduced Greenland topography and of several diagnostics near the tropopause level provide evidence that the wave is emitted from an intense, rapidly evolving, anticyclonically curved jet stream. The precise physical process responsible for the wave emission could not be identified definitely, but geostrophic adjustment and shear instability are likely candidates.

    In order to evaluate the potential frequency of such non-orographic polar stratospheric cloud events, the non-linear balance equation diagnostic is performed for the winter 1999/2000. It indicates that ice-PSCs are only occasionally generated by gravity waves emanating from spontaneous adjustment.

  14. Model for predicting mountain wave field uncertainties

    NASA Astrophysics Data System (ADS)

    Damiens, Florentin; Lott, François; Millet, Christophe; Plougonven, Riwal

    2017-04-01

    Studying the propagation of acoustic waves throughout troposphere requires knowledge of wind speed and temperature gradients from the ground up to about 10-20 km. Typical planetary boundary layers flows are known to present vertical low level shears that can interact with mountain waves, thereby triggering small-scale disturbances. Resolving these fluctuations for long-range propagation problems is, however, not feasible because of computer memory/time restrictions and thus, they need to be parameterized. When the disturbances are small enough, these fluctuations can be described by linear equations. Previous works by co-authors have shown that the critical layer dynamics that occur near the ground produces large horizontal flows and buoyancy disturbances that result in intense downslope winds and gravity wave breaking. While these phenomena manifest almost systematically for high Richardson numbers and when the boundary layer depth is relatively small compare to the mountain height, the process by which static stability affects downslope winds remains unclear. In the present work, new linear mountain gravity wave solutions are tested against numerical predictions obtained with the Weather Research and Forecasting (WRF) model. For Richardson numbers typically larger than unity, the mesoscale model is used to quantify the effect of neglected nonlinear terms on downslope winds and mountain wave patterns. At these regimes, the large downslope winds transport warm air, a so called "Foehn" effect than can impact sound propagation properties. The sensitivity of small-scale disturbances to Richardson number is quantified using two-dimensional spectral analysis. It is shown through a pilot study of subgrid scale fluctuations of boundary layer flows over realistic mountains that the cross-spectrum of mountain wave field is made up of the same components found in WRF simulations. The impact of each individual component on acoustic wave propagation is discussed in terms of absorption and dispersion and a stochastic model is constructed for ground-based acoustic signals in mountain environments.

  15. UA-ICON - A non-hydrostatic global model for studying gravity waves from the troposphere to the thermosphere

    NASA Astrophysics Data System (ADS)

    Borchert, Sebastian; Zängl, Günther; Baldauf, Michael; Zhou, Guidi; Schmidt, Hauke; Manzini, Elisa

    2017-04-01

    In numerical weather prediction as well as climate simulations, there are ongoing efforts to raise the upper model lid, acknowledging the possible influence of middle and upper atmosphere dynamics on tropospheric weather and climate. As the momentum deposition of gravity waves (GWs) is responsible for key features of the large scale flow in the middle and upper atmosphere, the upward model extension has put GWs in the focus of atmospheric research needs. The Max Planck Institute for Meteorology (MPI-M) and the German Weather Service (DWD) have been developing jointly the non-hydrostatic global model ICON (Zängl et al, 2015) which features a new dynamical core based on an icosahedral grid. The extension of ICON beyond the mesosphere, where most GWs deposit their momentum, requires, e.g., relaxing the shallow-atmosphere and other traditional approximations as well as implementing additional physical processes that are important to the upper atmosphere. We would like to present aspects of the model development and its evaluation, and first results from a simulation of a period of the DEEPWAVE campaign in New Zealand in 2014 (Fritts et al, 2016) using grid nesting up to a horizontal mesh size of about 1.25 km. This work is part of the research unit: Multi-Scale Dynamics of Gravity Waves (MS-GWaves: sub-project GWING, https://ms-gwaves.iau.uni-frankfurt.de/index.php), funded by the German Research Foundation. Fritts, D.C. and Coauthors, 2016: "The Deep Propagating Gravity Wave Experiment (DEEPWAVE): An airborne and ground-based exploration of gravity wave propagation and effects from their sources throughout the lower and middle atmosphere". Bull. Amer. Meteor. Soc., 97, 425 - 453, doi:10.1175/BAMS-D-14-00269.1 Zängl, G., Reinert, D., Ripodas, P., Baldauf, M., 2015: "The ICON (ICOsahedral Non-hydrostatic) modelling framework of DWD and MPI-M: Description of the non-hydrostatic dynamical core". Quart. J. Roy. Met. Soc., 141, 563 - 579, doi:10.1002/qj.2378

  16. Wave turbulence in a two-layer fluid: Coupling between free surface and interface waves

    NASA Astrophysics Data System (ADS)

    Falcon, Eric; Issenmann, Bruno; Laroche, Claude

    2017-11-01

    We experimentally study gravity-capillary wave turbulence on the interface between two immiscible fluids of close density with free upper surface. We locally measure the wave height at the interface between both fluids by means of a highly sensitive laser Doppler vibrometer. We show that the inertial range of the capillary wave turbulence regime is significantly extended when the upper fluid depth is increased: The crossover frequency between the gravity and capillary wave turbulence regimes is found to decrease whereas the dissipative cut-off frequency of the spectrum is found to increase. We explain these observations by the progressive decoupling between waves propagating at the interface and the ones at the free surface, using the full dispersion relation of gravity-capillary waves in a two-layer fluid of finite depths. The cut-off evolution is due to the disappearance of parasitic capillaries responsible for the main wave dissipation for a single fluid. B. Issenmann, C. Laroche & E. Falcon, EPL 116, 64005 (2016) published online 16 feb. 2017. This work has been partially supported by CNRS (1-year postdoctoral funding), ANR Turbulon 12-BS04-0005, and ANR Dysturb 2017.

  17. 2D instabilities of surface gravity waves on a linear shear current

    NASA Astrophysics Data System (ADS)

    Francius, Marc; Kharif, Christian

    2016-04-01

    Periodic 2D surface water waves propagating steadily on a rotational current have been studied by many authors (see [1] and references therein). Although the recent important theoretical developments have confirmed that periodic waves can exist over flows with arbitrary vorticity, their stability and their nonlinear evolution have not been much studied extensively so far. In fact, even in the rather simple case of uniform vorticity (linear shear), few papers have been published on the effect of a vertical shear current on the side-band instability of a uniform wave train over finite depth. In most of these studies [2-5], asymptotic expansions and multiple scales method have been used to obtain envelope evolution equations, which allow eventually to formulate a condition of (linear) instability to long modulational perturbations. It is noted here that this instability is often referred in the literature as the Benjamin-Feir or modulational instability. In the present study, we consider the linear stability of finite amplitude two-dimensional, periodic water waves propagating steadily on the free surface of a fluid with constant vorticity and finite depth. First, the steadily propagating surface waves are computed with steepness up to very close to the highest, using a Fourier series expansions and a collocation method, which constitutes a simple extension of Fenton's method [6] to the cases with a linear shear current. Then, the linear stability of these permanent waves to infinitesimal 2D perturbations is developed from the fully nonlinear equations in the framework of normal modes analysis. This linear stability analysis is an extension of [7] to the case of waves in the presence of a linear shear current and permits the determination of the dominant instability as a function of depth and vorticity for a given steepness. The numerical results are used to assess the accuracy of the vor-NLS equation derived in [5] for the characteristics of modulational instabilities due to resonant four-wave interactions, as well as to study the influence of vorticity and nonlinearity on the characteristics of linear instabilities due to resonant five-wave and six-wave interactions. Depending on the dimensionless depth, superharmonic instabilities due to five-wave interactions can become dominant with increasing positive vorticiy. Acknowledgments: This work was supported by the Direction Générale de l'Armement and funded by the ANR project n°. ANR-13-ASTR-0007. References [1] A. Constantin, Two-dimensionality of gravity water flows of constant non-zero vorticity beneath a surface wave train, Eur. J. Mech. B/Fluids, 2011, 30, 12-16. [2] R. S. Johnson, On the modulation of water waves on shear flows, Proc. Royal Soc. Lond. A., 1976, 347, 537-546. [3] M. Oikawa, K. Chow, D. J. Benney, The propagation of nonlinear wave packets in a shear flow with a free surface, Stud. Appl. Math., 1987, 76, 69-92. [4] A. I Baumstein, Modulation of gravity waves with shear in water, Stud. Appl. Math., 1998, 100, 365-90. [5] R. Thomas, C. Kharif, M. Manna, A nonlinear Schrödinger equation for water waves on finite depth with constant vorticity, Phys. Fluids, 2012, 24, 127102. [6] M. M Rienecker, J. D Fenton, A Fourier approximation method for steady water waves , J. Fluid Mech., 1981, 104, 119-137 [7] M. Francius, C. Kharif, Three-dimensional instabilities of periodic gravity waves in shallow water, J. Fluid Mech., 2006, 561, 417-437

  18. Atmospheric resonances of the Rayleigh and tsunami normal modes and its sensitivity to local time and geographical location.

    NASA Astrophysics Data System (ADS)

    Rakoto, V.; Astafyeva, E.; Lognonne, P. H.

    2017-12-01

    It is known that natural hazard events, such as earthquakes, tsunamis, volcano eruptions, etc. can generate atmospheric/ionospheric perturbations. During earthquakes, vertical displacements of the ground or of the ocean floor generate acoustic-gravity waves that further propagate upward in the upper atmosphere and ionosphere. In turn, tsunamis propagating in the open sea, generate gravity waves which propagate obliquely and reach the ionosphere in 45-60 min. The properties of the atmospheric "channel" in the vertical and oblique propagation depend on a variety of factors such as solar and geomagnetic conditions, latitude, local time, season, and their influence on propagation and properties of co-seismic and co-tsunamic perturbations is not well understood yet. In this work, we use present a detailed study of the coupling efficiency between solid earth, ocean and atmosphere. For this purpose, we use the normal mode technique extended to the whole solid Earth-ocean-atmosphere system. In our study, we focus on the Rayleigh modes (solid modes) and tsunami modes (oceanic modes). As the normal modes amplitude are also depending on the spatial and temporal variation of the structure of the atmosphere, we also performed a sensitivity study location of the normal modes amplitude with local time and geographical position.

  19. Application of a Phase-resolving, Directional Nonlinear Spectral Wave Model

    NASA Astrophysics Data System (ADS)

    Davis, J. R.; Sheremet, A.; Tian, M.; Hanson, J. L.

    2014-12-01

    We describe several applications of a phase-resolving, directional nonlinear spectral wave model. The model describes a 2D surface gravity wave field approaching a mildly sloping beach with parallel depth contours at an arbitrary angle accounting for nonlinear, quadratic triad interactions. The model is hyperbolic, with the initial wave spectrum specified in deep water. Complex amplitudes are generated based on the random phase approximation. The numerical implementation includes unidirectional propagation as a special case. In directional mode, it solves the system of equations in the frequency-alongshore wave number space. Recent enhancements of the model include the incorporation of dissipation caused by breaking and propagation over a viscous mud layer and the calculation of wave induced setup. Applications presented include: a JONSWAP spectrum with a cos2s directional distribution, for shore-perpendicular and oblique propagation, a study of the evolution of a single directional triad, and several preliminary comparisons to wave spectra collected at the USACE-FRF in Duck, NC which show encouraging results although further validation with a wider range of beach slopes and wave conditions is needed.

  20. Pseudo-incompressible, finite-amplitude gravity waves: wave trains and stability

    NASA Astrophysics Data System (ADS)

    Schlutow, Mark; Klein, Rupert

    2017-04-01

    Based on weak asymptotic WKB-like solutions for two-dimensional atmospheric gravity waves (GWs) traveling wave solutions (wave trains) are derived and analyzed with respect to stability. A systematic multiple-scale analysis using the ratio of the dominant wavelength and the scale height as a scale separation parameter is applied on the fully compressible Euler equations. A distinguished limit favorable for GWs close to static instability, reveals that pseudo-incompressible rather than Boussinesq theory applies. A spectral expansion including a mean flow, combined with the additional WKB assumption of slowly varying phases and amplitudes, is used to find general weak asymptotic solutions. This ansatz allows for arbitrarily strong, non-uniform stratification and holds even for finite-amplitude waves. It is deduced that wave trains as leading order solutions can only exist if either some non-uniform background stratification is given but the wave train propagates only horizontally or if the wave train velocity vector is given but the background is isothermal. For the first case, general analytical solutions are obtained that may be used to model mountain lee waves. For the second case with the additional assumption of horizontal periodicity, upward propagating wave train fronts were found. These wave train fronts modify the mean flow beyond the non-acceleration theorem. Stability analysis reveal that they are intrinsically modulationally unstable. The range of validity for the scale separation parameter was tested with fully nonlinear simulations. Even for large values an excellent agreement with the theory was found.

  1. Theoretical and lidar studies of the density response of the mesospheric sodium layer to gravity wave perturbations

    NASA Technical Reports Server (NTRS)

    Shelton, J. D.; Gardner, C. S.

    1981-01-01

    The density response of atmospheric layers to gravity waves is developed in two forms, an exact solution and a perturbation series solution. The degree of nonlinearity in the layer density response is described by the series solution whereas the exact solution gives insight into the nature of the responses. Density perturbation in an atmospheric layer are shown to be substantially greater than the atmospheric density perturbation associated with the propagation of a gravity wave. Because of the density gradients present in atmospheric layers, interesting effects were observed such as a phase reversal in the linear layer response which occurs near the layer peak. Once the layer response is understood, the sodium layer can be used as a tracer of atmospheric wave motions. A two dimensional digital signal processing technique was developed. Both spatial and temporal filtering are utilized to enhance the resolution by decreasing shot noise by more han 10 dB. Many of the features associated with a layer density response to gravity waves were observed in high resolution density profiles of the mesospheric sodium layer. These include nonlinearities as well as the phase reversal in the linear layer response.

  2. Kelvin wave coupling from TIMED and GOCE: Inter/intra-annual variability and solar activity effects

    NASA Astrophysics Data System (ADS)

    Gasperini, Federico; Forbes, Jeffrey M.; Doornbos, Eelco N.; Bruinsma, Sean L.

    2018-06-01

    The primary mechanism through which energy and momentum are transferred from the lower atmosphere to the thermosphere is through the generation and propagation of atmospheric waves. It is becoming increasingly evident that a few waves from the tropical wave spectrum preferentially propagate into the thermosphere and contribute to modify satellite drag. Two of the more prominent and well-established tropical waves are Kelvin waves: the eastward-propagating 3-day ultra-fast Kelvin wave (UFKW) and the eastward-propagating diurnal tide with zonal wave number 3 (DE3). In this work, Sounding of the Atmosphere using Broadband Emission Radiometry (SABER) temperatures at 110 km and Gravity field and steady-state Ocean Circulation Explorer (GOCE) neutral densities and cross-track winds near 260 km are used to demonstrate vertical coupling in this height regime due to the UFKW and DE3. Significant inter- and intra-annual variability is found in DE3 and the UFKW, with evidence of latitudinal broadening and filtering of the latitude structures with height due to the effect of dissipation and mean winds. Additionally, anti-correlation between the vertical penetration of these waves to the middle thermosphere and solar activity level is established and explained through the effect of molecular dissipation.

  3. The Effect of Aerosol on Gravity Wave Characteristics above the Boundary Layer over a Tropical Location

    NASA Astrophysics Data System (ADS)

    Rakshit, G.; Jana, S.; Maitra, A.

    2017-12-01

    The perturbations of temperature profile over a location give an estimate of the potential energy of gravity waves propagating through the atmosphere. Disturbances in the lower atmosphere due to tropical deep convection, orographic effects and various atmospheric disturbances generates of gravity waves. The present study investigates the gravity wave energy estimated from fluctuations in temperature profiles over the tropical location Kolkata (22°34' N, 88°22' E). Gravity waves are most intense during the pre-monsoon period (March-June) at the present location, the potential energy having high values above the boundary layer (2-4 km) as observed from radiosonde profiles. An increase in temperature perturbation, due to high ambient temperature in the presence of heat absorbing aerosols, causes an enhancement in potential energy. As the present study location is an urban metropolitan city experiencing high level of pollution, pollutant aerosols can go much above the normal boundary layer during daytime due to convection causing an extended boundary layer. The Aerosol Index (AAI) obtained from Global Ozone Monitoring Experiment-2 (GOME-2) on MetOp-A platform at 340 nm and 380 nm confirms the presence of absorbing aerosol particles over the present location. The Hysplit back trajectory analysis shows that the aerosol particles at those heights are of local origin and are responsible for depleting liquid water content due to cloud burning. The aerosol extinction coefficient obtained from CALIPSO data exhibits an increasing trend during 2006-2016 accompanied by a similar pattern of gravity wave energy. Thus the absorbing aerosols have a significant role in increasing the potential energy of gravity wave at an urban location in the tropical region.

  4. Convectively-generated gravity waves and clear-air turbulence (CAT)

    NASA Astrophysics Data System (ADS)

    Sharman, Robert; Lane, Todd; Trier, Stanley

    2013-04-01

    Upper-level turbulence is a well-known hazard to aviation that is responsible for numerous injuries each year, with occasional fatalities, and results in millions of dollars of operational costs to airlines each year. It has been widely accepted that aviation-scale turbulence that occurs in clear air (CAT) at upper levels (upper troposphere and lower stratosphere) has its origins in Kelvin-Helmholtz instabilities induced by enhanced shears and reduced Richardson numbers associated with the jet stream and upper level fronts. However, it is becoming increasingly apparent that gravity waves and gravity wave "breaking" also play a major role in instigating turbulence that affects aviation. Gravity waves and inertia-gravity waves may be produced by a variety of sources, but one major source that impacts aviation seems to be those produced by convection. The relation of convectively-induced gravity waves to turbulence outside the cloud (either above cloud or laterally away from cloud) is examined based on high resolution cloud-resolving simulations, both with and without cloud microphysics in the simulations. Results for both warm-season and cold-season cloud systems indicate that the turbulence in the clear air away from cloud is often caused by gravity wave production processes in or near the cloud which once initiated, are able to propagate away from the storm, and may eventually "break." Without microphysics of course this effect is absent and turbulence is not produced in the simulations. In some cases the convectively-induced turbulence may be many kilometers away from the active convection and can easily be misinterpreted as "clear-air turbulence" (CAT). This is a significant result, and may be cause for a reassessment of the working definition of CAT ("turbulence encountered outside of convective clouds", FAA Advisory Circular AC 00-30B, 1997).

  5. An evaluation of gravity waves and gravity wave sources in the Southern Hemisphere in a 7 km global climate simulation.

    PubMed

    Holt, L A; Alexander, M J; Coy, L; Liu, C; Molod, A; Putman, W; Pawson, S

    2017-07-01

    In this study, gravity waves (GWs) in the high-resolution GEOS-5 Nature Run are first evaluated with respect to satellite and other model results. Southern Hemisphere winter sources of non-orographic GWs in the model are then investigated by linking measures of tropospheric non-orographic gravity wave generation tied to precipitation and frontogenesis with absolute gravity wave momentum flux in the lower stratosphere. Finally, non-orographic GW momentum flux is compared to orographic gravity wave momentum flux and compared to previous estimates. The results show that the global patterns in GW amplitude, horizontal wavelength, and propagation direction are realistic compared to observations. However, as in other global models, the amplitudes are weaker and horizontal wavelengths longer than observed. The global patterns in absolute GW momentum flux also agree well with previous model and observational estimates. The evaluation of model non-orographic GW sources in the Southern Hemisphere winter shows that strong intermittent precipitation (greater than 10 mm h -1 ) is associated with GW momentum flux over the South Pacific, whereas frontogenesis and less intermittent, lower precipitation rates (less than 10 mm h -1 ) are associated with GW momentum flux near 60°S. In the model, orographic GWs contribute almost exclusively to a peak in zonal mean momentum flux between 70 and 75°S, while non-orographic waves dominate at 60°S, and non-orographic GWs contribute a third to a peak in zonal mean momentum flux between 25 and 30°S.

  6. Estimation of the Kelvin wave contribution to the semiannual oscillation

    NASA Technical Reports Server (NTRS)

    Hitchman, Matthew H.; Leovy, Conway B.

    1988-01-01

    Daily temperature data acquired during the Limb Infrared Monitor of the Stratosphere experiment are used to study the behavior of Kelvin waves in the equatorial middle atmosphere. It is suggested that Kelvin wave packets of different zonal wave numbers propagate separately and may be forced separately. Two Kelvin wave regimes were identified during the October 1978 to May 1979 data period. Most of the properties of the observed waves are shown to be consistent with slowly-varying theory. Results suggest that gravity waves may contribute significantly to the equatorial stratopause semiannual oscillation.

  7. Correlations and linkages between the sun and the earth's atmosphere: Needed measurements and observations

    NASA Technical Reports Server (NTRS)

    Kellogg, W. W.

    1975-01-01

    A study was conducted to identify the sequence of processes that lead from some change in solar input to the earth to a change in tropospheric circulation and weather. Topics discussed include: inputs from the sun, the solar wind, and the magnetosphere; bremsstrahlung, ionizing radiation, cirrus clouds, thunderstorms, wave propagation, and gravity waves.

  8. A simple model for testing the effects of gravity-wave-produced vertical oscillations of scattering irregularities on spaced-antenna, horizontal drift measurements

    NASA Technical Reports Server (NTRS)

    Meek, C. E.; Reid, I. M.

    1984-01-01

    It has been suggested that the velocities produced by the spaced antenna partial-reflection drift experiment may constitute a measure of the vertical oscillations due to short-period gravity waves rather than the mean horizontal flow. The contention is that the interference between say two scatterers, one of which is traveling upward, and the other down, will create a pattern which sweeps across the ground in the direction (or anti-parallel) of the wave propagation. Since the expected result, viz., spurious drift directions, is seldom, if ever, seen in spaced antenna drift velocities, this speculation is tested in an atmospheric model.

  9. Propagation and Breaking at High Altitudes of Gravity Waves Excited by Tropospheric Forcing

    NASA Technical Reports Server (NTRS)

    Prusa, Joseph M.; Smolarkiewicz, Piotr K.; Garcia, Rolando R.

    1996-01-01

    An anelastic approximation is used with a time-variable coordinate transformation to formulate a two-dimensional numerical model that describes the evolution of gravity waves. The model is solved using a semi-Lagrangian method with monotone (nonoscillatory) interpolation of all advected fields. The time-variable transformation is used to generate disturbances at the lower boundary that approximate the effect of a traveling line of thunderstorms (a squall line) or of flow over a broad topographic obstacle. The vertical propagation and breaking of the gravity wave field (under conditions typical of summer solstice) is illustrated for each of these cases. It is shown that the wave field at high altitudes is dominated by a single horizontal wavelength; which is not always related simply to the horizontal dimension of the source. The morphology of wave breaking depends on the horizontal wavelength; for sufficiently short waves, breaking involves roughly one half of the wavelength. In common with other studies, it is found that the breaking waves undergo "self-acceleration," such that the zonal-mean intrinsic frequency remains approximately constant in spite of large changes in the background wind. It is also shown that many of the features obtained in the calculations can be understood in terms of linear wave theory. In particular, linear theory provides insights into the wavelength of the waves that break at high altitudes, the onset and evolution of breaking. the horizontal extent of the breaking region and its position relative to the forcing, and the minimum and maximum altitudes where breaking occurs. Wave breaking ceases at the altitude where the background dissipation rate (which in our model is a proxy for molecular diffusion) becomes greater than the rate of dissipation due to wave breaking, This altitude, in effect, the model turbopause, is shown to depend on a relatively small number of parameters that characterize the waves and the background state.

  10. Constraint on reconstructed f(R) gravity models from gravitational waves

    NASA Astrophysics Data System (ADS)

    Lee, Seokcheon

    2018-06-01

    The gravitational wave (GW) detection of a binary neutron star inspiral made by the Advanced LIGO and Advanced Virgo paves the unprecedented way for multi-messenger observations. The propagation speed of this GW can be scrutinized by comparing the arrival times between GW and neutrinos or photons. It provides the constraint on the mass of the graviton. f(R) gravity theories have the habitual non-zero mass gravitons in addition to usual massless ones. Previously, we show that the model independent f(R) gravity theories can be constructed from the both background evolution and the matter growth with one undetermined parameter. We show that this parameter can be constrained from the graviton mass bound obtained from GW detection. Thus, the GW detection provides the invaluable constraint on the validity of f(R) gravity theories.

  11. A study of the dynamics of the equatorial lower stratosphere by use of ultra-long-duration balloons, 2, Gravity waves

    NASA Astrophysics Data System (ADS)

    Hertzog, A.; Vial, F.

    2001-10-01

    This study is the companion paper of Vial et al. [this issue]. A campaign of ultra-long-duration, superpressure balloons in the equatorial lower stratosphere was held in September 1998. By conception these balloons evolve on isopycnic surfaces. Pressure and position were measured every 12 min, which enable to infer the characteristics of gravity waves with periods between 1 hour and 1 day in this region of the atmosphere. The intrinsic-frequency spectra of horizontal wind fluctuations exhibit a -2 slope, while the one associated with vertical-wind fluctuations is flat. Significant inhomogeneity of the wave activity is observed, and the variance of the shortest frequency waves is found to be linked to the position of the balloons with respect to the Intertropical Convergence Zone. On average, the total energy associated with gravity waves in the period range studied in this paper is found to be ˜ 7 J kg-1. Calculations of momentum flux have also been undertaken. It appears that there is an approximate equipartition of flux between eastward and westward propagating gravity waves and that the absolute value of the flux is 8-12 × 10-3 m2 s-2 at 20 km. A larger flux is also observed above convective regions. These values suggest that gravity waves may carry the largest part of the Eliassen-Palm flux required for the driving of the quasi-biennial oscillation.

  12. Propagation characteristics of dust-acoustic waves in presence of a floating cylindrical object in the DC discharge plasma

    NASA Astrophysics Data System (ADS)

    Choudhary, Mangilal; Mukherjee, S.; Bandyopadhyay, P.

    2016-08-01

    The experimental observation of the self-excited dust acoustic waves (DAWs) and its propagation characteristics in the absence and presence of a floating cylindrical object is investigated. The experiments are carried out in a direct current (DC) glow discharge dusty plasma in a background of argon gas. Dust particles are found levitated at the interface of plasma and cathode sheath region. The DAWs are spontaneously excited in the dust medium and found to propagate in the direction of ion drift (along the gravity) above a threshold discharge current at low pressure. Excitation of such a low frequency wave is a result of the ion-dust streaming instability in the dust cloud. Characteristics of the propagating dust acoustic wave get modified in the presence of a floating cylindrical object of radius larger than that of the dust Debye length. Instead of propagation in the vertical direction, the DAWs are found to propagate obliquely in the presence of the floating object (kept either vertically or horizontally). In addition, a horizontally aligned floating object forms a wave structure in the cone shaped dust cloud in the sheath region. Such changes in the propagation characteristics of DAWs are explained on the basis of modified potential (or electric field) distribution, which is a consequence of coupling of sheaths formed around the cylindrical object and the cathode.

  13. Gravitational Waves Propagation through the Stochastic Background of Gravitational Waves

    NASA Astrophysics Data System (ADS)

    Frajuca, C.; Bortoli, F. S.; Nakamoto, F. Y.; Santos, G. A.

    2018-02-01

    With the recent claim that gravitational waves were finally detected and with other efforts around the world for GWs detection, its is reasonable to imagine that the relic gravitational wave background could be detected in some time in the future and with such information gather some hints about the origin of the universe. But, it’s also be considered that gravity has self-interaction, with such assumption it’s reasonable to expect that these gravitational wave will interact with the relic or nonrelic GW background by scattering, for example. Such interaction should decrease the distance which such propagating waves could be detected The propagation of gravitational waves (GWs) is analyzed in an asymptotically de Sitter space by the perturbation expansion around Minkowski space using a scalar component. Using the case of de Sitter inflationary phase scenario, the perturbation propagates through a FRW background. The GW, using the actual value for the Hubble scale (Ho), has a damping factor with a very small valor for the size of the observational universe; the stochastic relic GW background is given by a dimensionless function of the frequency. In this work we analyze this same damping including the gravitational wave background due to astrophysical sources such background is 3 orders of magnitude bigger in some frequencies and produces a higher damping factor.

  14. Internal gravity waves in Titan's atmosphere observed by Voyager radio occultation

    NASA Technical Reports Server (NTRS)

    Hinson, D. P.; Tyler, G. L.

    1983-01-01

    The radio scintillations caused by scattering from small-scale irregularities in Titan's neutral atmosphere during a radio occultation of Voyager 1 by Titan are investigated. Intensity and frequency fluctuations occurred on time scales from about 0.1 to 1.0 sec at 3.6 and 13 cm wavelengths whenever the radio path passed within 90 km of the surface, indicating the presence of variations in refractivity on length scales from a few hundred meters to a few kilometers. Above 25 km, the altitude profile of intensity scintillations closely agrees with the predictions of a simple theory based on the characteristics of internal gravity waves propagating with little or no attenuation through the vertical stratification in Titan's atmosphere. These observations support a hypothesis of stratospheric gravity waves, possibly driven by a cloud-free convective region in the lowest few kilometers of the stratosphere.

  15. Shock waves in strongly coupled plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Khlebnikov, Sergei; Kruczenski, Martin; Michalogiorgakis, Georgios

    2010-12-15

    Shock waves are supersonic disturbances propagating in a fluid and giving rise to dissipation and drag. Weak shocks, i.e., those of small amplitude, can be well described within the hydrodynamic approximation. On the other hand, strong shocks are discontinuous within hydrodynamics and therefore probe the microscopics of the theory. In this paper, we consider the case of the strongly coupled N=4 plasma whose microscopic description, applicable for scales smaller than the inverse temperature, is given in terms of gravity in an asymptotically AdS{sub 5} space. In the gravity approximation, weak and strong shocks should be described by smooth metrics withmore » no discontinuities. For weak shocks, we find the dual metric in a derivative expansion, and for strong shocks we use linearized gravity to find the exponential tail that determines the width of the shock. In particular, we find that, when the velocity of the fluid relative to the shock approaches the speed of light v{yields}1 the penetration depth l scales as l{approx}(1-v{sup 2}){sup 1/4}. We compare the results with second-order hydrodynamics and the Israel-Stewart approximation. Although they all agree in the hydrodynamic regime of weak shocks, we show that there is not even qualitative agreement for strong shocks. For the gravity side, the existence of shock waves implies that there are disturbances of constant shape propagating on the horizon of the dual black holes.« less

  16. Meteor radar observations of vertically propagating low-frequency inertia-gravity waves near the southern polar mesopause region

    NASA Astrophysics Data System (ADS)

    Song, I.-S.; Lee, C.; Kim, J.-H.; Jee, G.; Kim, Y.-H.; Choi, H.-J.; Chun, H.-Y.; Kim, Y. H.

    2017-04-01

    Vertically propagating low-frequency inertia-gravity waves (IGWs) are retrieved from meteor radar winds observed at King Sejong Station (KSS: 62.22°S, 58.78°W), Antarctica. IGW horizontal winds extracted from temporal band-pass filtering in regular time-height bins show the frequent occurrence of IGWs with the downward phase progression and the counterclockwise rotation of their horizontal wind vectors with time (i.e., upward energy propagation) near the mesopause region throughout the whole year of 2014. The vertical wavelengths of the observed IGWs roughly range from 14 km to more than 20 km, which is consistent with previous observational studies on the mesospheric IGWs over Antarctica. Stokes parameters and rotary spectra computed from the hodographs of the IGW horizontal wind components reveal that the intrinsic frequencies of the upward propagating IGWs are |f|-3|f| with seasonal variations of the relative predominance between |f|-2|f| and 2|f|-3|f|, where f is the Coriolis parameter at KSS. The hodograph analysis also indicates that the N-S propagation is dominant in austral summer, while the NE-SW propagation is pronounced in austral winter. The propagation direction is discussed in relation to the generation of IGWs due to dynamical imbalances occurring in the tropospheric and stratospheric jet flow systems. Ray tracing results indicate that the N-S propagation in summer may be due to the jet flow systems roughly north of KSS and the NE-SW propagation in winter may be either the SW propagation from the jet flow systems northeast of KSS or the NE propagation (around the South Pole) from the south of Australia and Southern Indian and Pacific Oceans.

  17. Propagation of acoustic waves in a stratified atmosphere, 1

    NASA Technical Reports Server (NTRS)

    Kalkofen, W.; Rossi, P.; Bodo, G.; Massaglia, S.

    1994-01-01

    This work is motivated by the chromospheric 3 minute oscillations observed in the K(sub 2v) bright points. We study acoustic gravity waves in a one-dimensional, gravitationally stratified, isothermal atmosphere. The oscillations are excited either by a velocity pulse imparted to a layer in an atmosphere of infinite vertical extent, or by a piston forming the lower boundary of a semi-infinite medium. We consider both linear and non-linear waves.

  18. Dissipative dark soliton in a complex plasma.

    PubMed

    Heidemann, R; Zhdanov, S; Sütterlin, R; Thomas, H M; Morfill, G E

    2009-04-03

    The observation of a dark soliton in a three-dimensional complex plasma containing monodisperse microparticles is presented. We perform our experiments using neon gas in the bulk plasma of an rf discharge. A gas temperature gradient of 500K/m is applied to balance gravity and to levitate the particles in the bulk plasma. The wave is excited by a short voltage pulse on the electrodes of the radio frequency discharge chamber. It is found that the wave propagates with constant speed. The propagation time of the dark soliton is approximately 20 times longer than the damping time.

  19. Dissipative Dark Soliton in a Complex Plasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heidemann, R.; Zhdanov, S.; Suetterlin, R.

    2009-04-03

    The observation of a dark soliton in a three-dimensional complex plasma containing monodisperse microparticles is presented. We perform our experiments using neon gas in the bulk plasma of an rf discharge. A gas temperature gradient of 500K/m is applied to balance gravity and to levitate the particles in the bulk plasma. The wave is excited by a short voltage pulse on the electrodes of the radio frequency discharge chamber. It is found that the wave propagates with constant speed. The propagation time of the dark soliton is approximately 20 times longer than the damping time.

  20. Dynamical Meteorology of the Equatorial and Extratropical Stratosphere

    NASA Technical Reports Server (NTRS)

    Dunkerton, Tomothy

    1999-01-01

    Observational studies were performed of westward propagating synoptic scale waves in the tropical troposphere, the structure of monsoon circulations in the upper troposphere and lower stratosphere, and zonally propagating features in deep tropical convection. The effect of the quasi-biennial oscillation (QBO) were investigated, and a numerical study of the QBO was performed using a two-dimensional model, highlighting the role of gravity waves in the momentum balance of the QBO. Vertical coupling of the troposphere and stratosphere was examined in polar regions on intraseasonal and interannual timescales. A deep circumpolar mode was discovered, now known as the Arctic Oscillation.

  1. Short-Term Perturbations Within the D-Region Detected Above the Mediterranean

    NASA Astrophysics Data System (ADS)

    Silber, I.; Price, C. G.

    2015-12-01

    The ionospheric D-region lies in the altitude range of ~65-95 km. This part of the atmosphere is highly sensitive to waves propagating upwards from the troposphere, either as pressure perturbations (gravity and acoustic waves) or electromagnetic perturbations from lightning discharges (resulting in EMPs, sprites, elves, etc.). These perturbations can affect the temperature, wind, species concentration, and even ionization in the upper atmosphere. Very low frequencies (VLF) radio signals, generated by man-made communication transmitters, have been recorded using ground-based VLF receivers in Israel. These radio waves propagate over long distances within the Earth-ionosphere waveguide, reflected off the Earth's surface and the D-region. The characteristics of the received signals depend on several parameters along the path, but are fairly constant over short periods of time. In this study we present analysis of VLF narrowband data transmitted from Sicily, Italy, spanning one year, and detected in Tel Aviv, Israel. We show observations of the interaction between both pressure and EM perturbations from thunderstorms with the narrowband VLF data aloft. We clearly observe short period (~2-4 minutes) acoustic waves, longer period gravity waves (~5-7 minutes periods), while also many transient events related to heating and ionization of the D-region. Comparisons with WWLLN lightning data show the link between tropospheric thunderstorms and D-region variability.

  2. A numerical study of three-dimensional diurnal variations within the thermosphere.

    NASA Technical Reports Server (NTRS)

    Volland, H.; Mayr, H. G.

    1973-01-01

    A thermosphere model with a realistic temperature profile is assumed. Heat conduction waves are introduced in addition to gravity waves. The temporal and spatial distribution of ion-neutral collisions is taken into account. However, the influence of viscosity waves is neglected. Viscosity-wave effects are simulated by an effective height-dependent collision number. Numerical calculations are conducted of the generation and propagation of two of the most important symmetric tidal waves at thermospheric heights. The influence of the solar EUV-heat upon the generation of the two tidal modes is investigated.

  3. Dynamics of Nearshore Sand Bars and Infra-gravity Waves: The Optimal Theory Point of View

    NASA Astrophysics Data System (ADS)

    Bouchette, F.; Mohammadi, B.

    2016-12-01

    It is well known that the dynamics of near-shore sand bars are partly controlled by the features (location of nodes, amplitude, length, period) of the so-called infra-gravity waves. Reciprocally, changes in the location, size and shape of near-shore sand bars can control wave/wave interactions which in their turn alter the infra-gravity content of the near-shore wave energy spectrum. The coupling infra-gravity / near-shore bar is thus definitely two ways. Regarding numerical modelling, several approaches have already been considered to analyze such coupled dynamics. Most of them are based on the following strategy: 1) define an energy spectrum including infra-gravity, 2) tentatively compute the radiation stresses driven by this energy spectrum, 3) compute sediment transport and changes in the seabottom elevation including sand bars, 4) loop on the computation of infra-gravity taking into account the morphological changes. In this work, we consider an alternative approach named Nearshore Optimal Theory, which is a kind of breakdown point of view for the modeling of near-shore hydro-morphodynamics and wave/ wave/ seabottom interactions. Optimal theory applied to near-shore hydro-morphodynamics arose with the design of solid coastal defense structures by shape optimization methods, and is being now extended in order to model dynamics of any near-shore system combining waves and sand. The basics are the following: the near-shore system state is through a functional J representative of the energy of the system in some way. This J is computed from a model embedding the physics to be studied only (here hydrodynamics forced by simple infra-gravity). Then the paradigm is to say that the system will evolve so that the energy J tends to minimize. No really matter the complexity of wave propagation nor wave/bottom interactions. As soon as J embeds the physics to be explored, the method does not require a comprehensive modeling. Near-shore Optimal Theory has already given promising results for the generation of near-shore sand bar from scratch and their growth when forced by fair-weather waves. Here, we use it to explore the coupling between a very simple infra-gravity content and the nucleation of near-shore sand-bars. It is shown that even a very poor infra-gravity content strongly improves the generation of sand bars.

  4. Guided solitary waves.

    PubMed

    Miles, J

    1980-04-01

    Transversely periodic solitary-wave solutions of the Boussinesq equations (which govern wave propagation in a weakly dispersive, weakly nonlinear physical system) are determined. The solutions for negative dispersion (e.g., gravity waves) are singular and therefore physically unacceptable. The solutions for positive dispersion (e.g., capillary waves or magnetosonic waves in a plasma) are physically acceptable except in a limited parametric interval, in which they are complex. The two end points of this interval are associated with (two different) resonant interactions among three basic solitary waves, two of which are two-dimensional complex conjugates and the third of which is one-dimensional and real.

  5. Dispersion and transport of hypersaline gravity currents in the presence of internal waves at a pycnocline

    NASA Astrophysics Data System (ADS)

    Hogg, C. A. R.; Pietrasz, V. B.; Ouellette, N. T.; Koseff, J. R.

    2015-12-01

    Desalination of seawater offers a source of potable water in arid regions and during drought. However, hypersaline discharge from desalination facilities presents environmental risks, particularly to benthic organisms. The risks posed by salt levels and chemical additives, which can be toxic to local ecosystems, are typically mitigated by ensuring high levels of dilution close to the source. We report on laboratory flume experiments examining how internal waves at the pycnocline of a layered ambient density stratification influence the transport of hypersaline effluent moving as a gravity current down the slope. We found that some of the hypersaline fluid from the gravity current was diverted away from the slope into an intrusion along the pycnocline. A parametric study investigated how varying the energy of the internal wave altered the amount of dense fluid that was diverted into the pycnocline intrusion. The results are compared to an analytical framework that compares the incident energy in the internal wave to potential energy used in diluting the gravity current. These results are significant for desalination effluents because fluid diverted into the intrusion avoids the ecologically sensitive benthic layer and disperses more quickly than if it had continued to propagate along the bed.

  6. Gravity waves generated by a tropical cyclone during the STEP tropical field program - A case study

    NASA Technical Reports Server (NTRS)

    Pfister, L.; Chan, K. R.; Bui, T. P.; Bowen, S.; Legg, M.; Gary, B.; Kelly, K.; Proffitt, M.; Starr, W.

    1993-01-01

    Overflights of a tropical cyclone during the Australian winter monsoon field experiment of the Stratosphere-Troposphere Exchange Project (STEP) show the presence of two mesoscale phenomena: a vertically propagating gravity wave with a horizontal wavelength of about 110 km and a feature with a horizontal scale comparable to that of the cyclone's entire cloud shield. The larger feature is fairly steady, though its physical interpretation is ambiguous. The 110-km gravity wave is transient, having maximum amplitude early in the flight and decreasing in amplitude thereafter. Its scale is comparable to that of 100-to 150-km-diameter cells of low satellite brightness temperatures within the overall cyclone cloud shield; these cells have lifetimes of 4.5 to 6 hrs. These cells correspond to regions of enhanced convection, higher cloud altitude, and upwardly displaced potential temperature surfaces. The temporal and spatial distribution of meteorological variables associated with the 110-km gravity wave can be simulated by a slowly moving transient forcing at the anvil top having an amplitude of 400-600 m, a lifetime of 4.5-6 hrs, and a size comparable to the cells of low brightness temperature.

  7. Widespread tsunami-like waves of 23-27 June in the Mediterranean and Black Seas generated by high-altitude atmospheric forcing.

    PubMed

    Šepić, Jadranka; Vilibić, Ivica; Rabinovich, Alexander B; Monserrat, Sebastian

    2015-06-29

    A series of tsunami-like waves of non-seismic origin struck several southern European countries during the period of 23 to 27 June 2014. The event caused considerable damage from Spain to Ukraine. Here, we show that these waves were long-period ocean oscillations known as meteorological tsunamis which are generated by intense small-scale air pressure disturbances. An unique atmospheric synoptic pattern was tracked propagating eastward over the Mediterranean and the Black seas in synchrony with onset times of observed tsunami waves. This pattern favoured generation and propagation of atmospheric gravity waves that induced pronounced tsunami-like waves through the Proudman resonance mechanism. This is the first documented case of a chain of destructive meteorological tsunamis occurring over a distance of thousands of kilometres. Our findings further demonstrate that these events represent potentially dangerous regional phenomena and should be included in tsunami warning systems.

  8. Widespread tsunami-like waves of 23-27 June in the Mediterranean and Black Seas generated by high-altitude atmospheric forcing

    PubMed Central

    Šepić, Jadranka; Vilibić, Ivica; Rabinovich, Alexander B.; Monserrat, Sebastian

    2015-01-01

    A series of tsunami-like waves of non-seismic origin struck several southern European countries during the period of 23 to 27 June 2014. The event caused considerable damage from Spain to Ukraine. Here, we show that these waves were long-period ocean oscillations known as meteorological tsunamis which are generated by intense small-scale air pressure disturbances. An unique atmospheric synoptic pattern was tracked propagating eastward over the Mediterranean and the Black seas in synchrony with onset times of observed tsunami waves. This pattern favoured generation and propagation of atmospheric gravity waves that induced pronounced tsunami-like waves through the Proudman resonance mechanism. This is the first documented case of a chain of destructive meteorological tsunamis occurring over a distance of thousands of kilometres. Our findings further demonstrate that these events represent potentially dangerous regional phenomena and should be included in tsunami warning systems. PMID:26119833

  9. Wave theory in rotating systems: Schrödinger equations bridge the gaps between the equatorial β-plane and the spherical earth

    NASA Astrophysics Data System (ADS)

    Paldor, N.

    2017-12-01

    The concise and elegant wave theory developed on the equatorial β-plane by Matsuno (1966, M66 hereafter) is based on the formulation of a Schrödinger equation associated with the governing Linear Rotating Shallow Water Equations (LRSWE). The theory yields explicit expressions for the dispersion relations and meridional amplitude structures of all zonally propagating waves - Rossby, Inertia-Gravity, Kelvin and Yanai. In contrast, the spherical wave theory of Longuet-Higgins (1968) is a collection of asymptotic expansions in many sub-ranges e.g. large, small (and even negative) Lamb Number; high and low frequency; low-latitudes, etc. that rests upon extensive numerical solutions of several Ordinary Differential Equations. The difference between the two theories is highlighted by their lengths. The essential elements of the former planar study are completely revealed in just 3-4 pages including the derivation of explicit formulae for the phase speeds and amplitude meridional structures. In comtrast, the latter spherical theory contains 97 pages and the results of the numerical calculations are summarized in 30 pages of tables filled with numerical values and about 31 figures, each of which containing many separate curves! In my talk I will re-visit the wave problem on a sphere by developing several Schrödinger equations that approximate the governing eigenvalue equation associated with zonally propagating waves. Each of the Schrödinger equations approximates the original second order Ordinary Differential Equation in a different range of the 3 parameters: Lamb-Number, frequency and zonal wavenumber. As in M66, each of the Schrödinger equations yields explicit expressions for the dispersion relations and meridional amplitude structure of Rossby and Inertia-Gravity waves. In addition, the analysis shows that Yanai wave exists on a sphere even tough the zonal velocity is regular everywhere there (in contrast to the β-plane where the zonal velocity is singular everywhere) and that Kelvin waves do not exist as a separate mode (but the eastward propagating n=0 Inertia-Gravity is nearly non-dispersive). References Longuet-Higgins, M. S. Phil. Trans. Roy. Soc. London; 262, 511-607; 1968 Matsuno, T.; J. Met. Soc. Japan. 44(1), 25-43; 1966

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Choudhary, Mangilal, E-mail: mangilal@ipr.res.in; Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai 400085; Mukherjee, S.

    The experimental observation of the self–excited dust acoustic waves (DAWs) and its propagation characteristics in the absence and presence of a floating cylindrical object is investigated. The experiments are carried out in a direct current (DC) glow discharge dusty plasma in a background of argon gas. Dust particles are found levitated at the interface of plasma and cathode sheath region. The DAWs are spontaneously excited in the dust medium and found to propagate in the direction of ion drift (along the gravity) above a threshold discharge current at low pressure. Excitation of such a low frequency wave is a resultmore » of the ion–dust streaming instability in the dust cloud. Characteristics of the propagating dust acoustic wave get modified in the presence of a floating cylindrical object of radius larger than that of the dust Debye length. Instead of propagation in the vertical direction, the DAWs are found to propagate obliquely in the presence of the floating object (kept either vertically or horizontally). In addition, a horizontally aligned floating object forms a wave structure in the cone shaped dust cloud in the sheath region. Such changes in the propagation characteristics of DAWs are explained on the basis of modified potential (or electric field) distribution, which is a consequence of coupling of sheaths formed around the cylindrical object and the cathode.« less

  11. The effect of rotation on shoaling of large amplitude internal solitary waves in the northern South China Sea

    NASA Astrophysics Data System (ADS)

    Guo, C.; Vlasenko, V.

    2012-12-01

    The propagation of large amplitude internal solitary waves (ISWs) in the northern South China Sea (SCS) is simulated using the fully nonlinear, nonhydrostatic MIT general circulation model (MITgcm). Special attention is paid to the effects of rotation and the shoaling three-dimensional topography. It is found that for the conditions of the northern SCS, a propagating ISW continuously loses its energy under the action of rotation by shedding inertia-gravity waves backwards, which further become steepened and form a new ISW. Such a decay-reemergence process repeats itself in a similar way as discussed by Helfrich (2007) with the only difference that, instead of the formation of a final localized wave packet, the frontal waves constantly attenuate by repeatedly shedding inertia-gravity waves backwards. Under the action of rotation and variable topography, the shoaling ISWs attenuate severely and disintegrate after passing through the continental slope. Wave polarity starts to reverse at the depth of about 130 m, which is consistent with the prediction of weakly nonlinear theories. It is also found that the rotational effects are more pronounced in combination with the topographic effects in the three-dimensional realistic context. Discrepancies between the wave profiles obtained with and without rotation are small in the deep part of the ocean but eventually turn out to be significant when going upon the shelf, addressing the crucial roles played by the rotation in the northern SCS.

  12. On the Chemical Mixing Induced by Internal Gravity Waves

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rogers, T. M.; McElwaine, J. N.

    Detailed modeling of stellar evolution requires a better understanding of the (magneto)hydrodynamic processes that mix chemical elements and transport angular momentum. Understanding these processes is crucial if we are to accurately interpret observations of chemical abundance anomalies, surface rotation measurements, and asteroseismic data. Here, we use two-dimensional hydrodynamic simulations of the generation and propagation of internal gravity waves in an intermediate-mass star to measure the chemical mixing induced by these waves. We show that such mixing can generally be treated as a diffusive process. We then show that the local diffusion coefficient does not depend on the local fluid velocity,more » but rather on the wave amplitude. We then use these findings to provide a simple parameterization for this diffusion, which can be incorporated into stellar evolution codes and tested against observations.« less

  13. Observations of vertical winds and the origin of thermospheric gravity waves launched by auroral substorms and westward travelling surges

    NASA Technical Reports Server (NTRS)

    Rees, D.

    1986-01-01

    Several sequences of observations of strong vertical winds in the upper thermosphere are discussed, in conjunction with models of the generation of such winds. In the auroral oval, the strongest upward winds are observed in or close to regions of intense auroral precipitation and strong ionospheric currents. The strongest winds, of the order of 100 to 200 m/sec are usually upward, and are both localized and of relatively short duration (10 to 20 min). In regions adjacent to those displaying strong upward winds, and following periods of upward winds, downward winds of rather lower magnitude (40 to about 80 m/sec) may be observed. Strong and rapid changes of horizontal winds are correlated with these rapid vertical wind variations. Considered from a large scale viewpoint, this class of strongly time dependent winds propagate globally, and may be considered to be gravity waves launched from an auroral source. During periods of very disturbed geomagnetic activity, there may be regions within and close to the auroral oval where systematic vertical winds of the order of 50 m/sec will occur for periods of several hours. Such persistent winds are part of a very strong large scale horizontal wind circulation set up in the polar regions during a major geomagnetic disturbance. This second class of strong horizontal and vertical winds corresponds more to a standing wave than to a gravity wave, and it is not as effective as the first class in generating large scale propagating gravity waves and correlated horizontal and vertical oscillations. A third class of significant (10 to 30 m/sec) vertical winds can be associated with systematic features of the average geomagnetic energy and momentum input to the polar thermosphere, and appear in statistical studies of the average vertical wind as a function of Universal Time at a given location.

  14. Satellite observations of middle atmosphere-thermosphere vertical coupling by gravity waves

    NASA Astrophysics Data System (ADS)

    Trinh, Quang Thai; Ern, Manfred; Doornbos, Eelco; Preusse, Peter; Riese, Martin

    2018-03-01

    Atmospheric gravity waves (GWs) are essential for the dynamics of the middle atmosphere. Recent studies have shown that these waves are also important for the thermosphere/ionosphere (T/I) system. Via vertical coupling, GWs can significantly influence the mean state of the T/I system. However, the penetration of GWs into the T/I system is not fully understood in modeling as well as observations. In the current study, we analyze the correlation between GW momentum fluxes observed in the middle atmosphere (30-90 km) and GW-induced perturbations in the T/I. In the middle atmosphere, GW momentum fluxes are derived from temperature observations of the Sounding of the Atmosphere using Broadband Emission Radiometry (SABER) satellite instrument. In the T/I, GW-induced perturbations are derived from neutral density measured by instruments on the Gravity field and Ocean Circulation Explorer (GOCE) and CHAllenging Minisatellite Payload (CHAMP) satellites. We find generally positive correlations between horizontal distributions at low altitudes (i.e., below 90 km) and horizontal distributions of GW-induced density fluctuations in the T/I (at 200 km and above). Two coupling mechanisms are likely responsible for these positive correlations: (1) fast GWs generated in the troposphere and lower stratosphere can propagate directly to the T/I and (2) primary GWs with their origins in the lower atmosphere dissipate while propagating upwards and generate secondary GWs, which then penetrate up to the T/I and maintain the spatial patterns of GW distributions in the lower atmosphere. The mountain-wave related hotspot over the Andes and Antarctic Peninsula is found clearly in observations of all instruments used in our analysis. Latitude-longitude variations in the summer midlatitudes are also found in observations of all instruments. These variations and strong positive correlations in the summer midlatitudes suggest that GWs with origins related to convection also propagate up to the T/I. Different processes which likely influence the vertical coupling are GW dissipation, possible generation of secondary GWs, and horizontal propagation of GWs. Limitations of the observations as well as of our research approach are discussed.

  15. An integrated geophysical study of north African and Mediterranean lithospheric structure

    NASA Astrophysics Data System (ADS)

    Dial, Paul Joseph

    1998-07-01

    This dissertation utilizes gravity and seismic waveform modeling techniques to: (1) determine models of lithospheric structure across northern African through gravity modeling and (2) determine lithospheric and crustal structure and seismic wave propagation characteristics across northern Africa and the Mediterranean region. The purpose of the gravity investigation was to construct models of lithospheric structure across northern Africa through the analysis of gravity data constrained by previous geological and geophysical studies. Three lithospheric models were constructed from Bouguer gravity data using computer modeling, and the gravity data was wavelength-filtered to investigate the relative depth and extent of the structures associated with the major anomalies. In the Atlas Mountains area, the resulting earth models showed slightly greater crustal thickness than those of previous studies if a low density mantle region is not included in the models. However, if a low density mantle region (density = 3.25 g/cm3) was included beneath the Atlas, the earth models showed little crustal thickening (38 km), in accord with previous seismic studies. The second portion of the research consisted of seismic waveform modeling of regional and teleseismic events to determine crustal and lithospheric structure across northern Africa and the Mediterranean. A total of 174 seismograms (145 at regional distances (200--1400 km) and 29 with epicentral distances exceeding 1900 km) were modeled using 1-D velocity models and a reflectivity code. At regional distances from four stations surrounding the western Mediterranean basin (MAL, TOL, PTO and AQU) and one station near the Red Sea (HLW), 1-D velocity models can satisfactorily model the relative amplitudes of both the Pnl and surface wave portions of the seismograms. Modeling of propagation paths greater than 1900 km was also conducted across northern Africa and the Mediterranean. The results indicate that the S-wave velocity model of Corchete et al. (1995) is more appropriate for the Iberian Peninsula, southwestern Mediterranean basin and northwest African coast than the other models tested. This model was better able to predict both the timing and amplitudes of the observed Sn and surface wave components on the observed seismograms. (Abstract shortened by UMI.)

  16. 3D DNS and LES of Breaking Inertia-Gravity Waves

    NASA Astrophysics Data System (ADS)

    Remmler, S.; Fruman, M. D.; Hickel, S.; Achatz, U.

    2012-04-01

    As inertia-gravity waves we refer to gravity waves that have a sufficiently low frequency and correspondingly large horizontal wavelength to be strongly influenced by the Coriolis force. Inertia-gravity waves are very active in the middle atmosphere and their breaking is potentially an important influence on the circulation in this region. The parametrization of this process requires a good theoretical understanding, which we want to enhance with the present study. Primary linear instabilities of an inertia-gravity wave and "2.5-dimensional" nonlinear simulations (where the spatial dependence is two dimensional but the velocity and vorticity fields are three-dimensional) with the wave perturbed by its leading primary instabilities by Achatz [1] have shown that the breaking differs significantly from that of high-frequency gravity waves due to the strongly sheared component of velocity perpendicular to the plane of wave-propagation. Fruman & Achatz [2] investigated the three-dimensionalization of the breaking by computing the secondary linear instabilities of the same waves using singular vector analysis. These secondary instabilities are variations perpendicular to the direction of the primary perturbation and the wave itself, and their wavelengths are an order of magnitude shorter than both. In continuation of this work, we carried out fully three-dimensional nonlinear simulations of inertia-gravity waves perturbed by their leading primary and secondary instabilities. The direct numerical simulation (DNS) was made tractable by restricting the domain size to the dominant scales selected by the linear analyses. The study includes both convectively stable and unstable waves. To the best of our knowledge, this is the first fully three-dimensional nonlinear direct numerical simulation of inertia-gravity waves at realistic Reynolds numbers with complete resolution of the smallest turbulence scales. Previous simulations either were restricted to high frequency gravity waves (e. g. Fritts et al. [3]), or the ratio N/f was artificially reduced (e. g. Lelong & Dunkerton [4]). The present simulations give us insight into the three-dimensional breaking process as well as the emerging turbulence. We assess the possibility of reducing the computational costs of three-dimensional simulations by using an implicit turbulence subgrid-scale parametrization based on the Adaptive Local Deconvolution Method (ALDM) for stratified turbulence [5]. In addition, we have performed ensembles of nonlinear 2.5-dimensional DNS, like those in Achatz [1] but with a small amount of noise superposed to the initial state, and compared the results with coarse-resolution simulations using either ALDM as well as with standard LES schemes. We found that the results of the models with parametrized turbulence, which are orders of magnitude more computationally economical than the DNS, compare favorably with the DNS in terms of the decay of the wave amplitude with time (the quantity most important for application to gravity-wave drag parametrization) suggesting that they may be trusted in future simulations of gravity wave breaking.

  17. Electric Current Activated Combustion Synthesis and Chemical Ovens Under Terrestrial and Reduced Gravity Conditions

    NASA Technical Reports Server (NTRS)

    Unuvar, C.; Fredrick, D.; Anselmi-Tamburini, U.; Manerbino, A.; Guigne, J. Y.; Munir, Z. A.; Shaw, B. D.

    2004-01-01

    Combustion synthesis (CS) generally involves mixing reactants together (e.g., metal powders) and igniting the mixture. Typically, a reaction wave will pass through the sample. In field activated combustion synthesis (FACS), the addition of an electric field has a marked effect on the dynamics of wave propagation and on the nature, composition, and homogeneity of the product as well as capillary flow, mass-transport in porous media, and Marangoni flows, which are influenced by gravity. The objective is to understand the role of an electric field in CS reactions under conditions where gravity-related effects are suppressed or altered. The systems being studied are Ti+Al and Ti+3Al. Two different ignition orientations have been used to observe effects of gravity when one of the reactants becomes molten. This consequentially influences the position and concentration of the electric current, which in turn influences the entire process. Experiments have also been performed in microgravity conditions. This process has been named Microgravity Field Activated Combustion Synthesis (MFACS). Effects of gravity have been demonstrated, where the reaction wave temperature and velocity demonstrate considerable differences besides the changes of combustion mechanisms with the different high currents applied. Also the threshold for the formation of a stable reaction wave is increased under zero gravity conditions. Electric current was also utilized with a chemical oven technique, where inserts of aluminum with minute amounts of tungsten and tantalum were used to allow observation of effects of settling of the higher density solid particles in liquid aluminum at the present temperature profile and wave velocity of the reaction.

  18. Viscosity in the thermosphere: Evidence from gravity wave, neutral wind and direct lab measurements that the standard viscosity coefficients are too large in the thermosphere; and implication for gravity wave propagation in the thermosphere

    NASA Astrophysics Data System (ADS)

    Vadas, Sharon; Crowley, Geoff

    2017-04-01

    In this paper, we review measurements of 1) gravity waves (GWs) observed as traveling ionospheric disturbances (TIDs) at z 283 km by the TIDDBIT sounder on 30 October 2007, and 2) simultaneous rockets measurements of in-situ neutral winds at z 320-385 km. The neutral wind contains a 100 m/s peak at z 325 km in the same direction as the GWs, but oppositely-directed to the diurnal tides. We hypothesize that several of the TIDDBIT GWs propagated upwards and created this neutral wind peak. Using an anelastic GW ray trace model which includes thermospheric dissipation from molecular viscosity and thermal conductivity with mu proportional to the temperature to the power of 0.7, we forward ray trace the GWs from z_i=220 km. Surprisingly, the GWs dissipate below z 260 km, well below the altitude they were observed. Furthermore, none of the GWs could have propagated high-enough to create the neutral wind peak. In our opinion, this constitutes a significant discrepancy between observations and GW dissipative theory. We perform sensitivity experiments to rule out background temperature and wind effects as being the cause. We propose a modification to the formula for mu, and show that this yields ray trace results that agree reasonably well with the observations. We examine papers and reports for laboratory experiments which measured mu at low pressures, and find similar results. We conclude that the standard formulas for mu routinely used in thermospheric models must be modified in the thermosphere to account for this important effect. We also show preliminary GW ray trace results using this modified formula for mu, and compare with previous theoretical results.

  19. Gravity Wave Variances and Propagation Derived from AIRS Radiances

    NASA Technical Reports Server (NTRS)

    Gong, Jie; Wu, Dong L.; Eckermann, S. D.

    2012-01-01

    As the first gravity wave (GW) climatology study using nadir-viewing infrared sounders, 50 Atmospheric Infrared Sounder (AIRS) radiance channels are selected to estimate GW variances at pressure levels between 2-100 hPa. The GW variance for each scan in the cross-track direction is derived from radiance perturbations in the scan, independently of adjacent scans along the orbit. Since the scanning swaths are perpendicular to the satellite orbits, which are inclined meridionally at most latitudes, the zonal component of GW propagation can be inferred by differencing the variances derived between the westmost and the eastmost viewing angles. Consistent with previous GW studies using various satellite instruments, monthly mean AIRS variance shows large enhancements over meridionally oriented mountain ranges as well as some islands at winter hemisphere high latitudes. Enhanced wave activities are also found above tropical deep convective regions. GWs prefer to propagate westward above mountain ranges, and eastward above deep convection. AIRS 90 field-of-views (FOVs), ranging from +48 deg. to -48 deg. off nadir, can detect large-amplitude GWs with a phase velocity propagating preferentially at steep angles (e.g., those from orographic and convective sources). The annual cycle dominates the GW variances and the preferred propagation directions for all latitudes. Indication of a weak two-year variation in the tropics is found, which is presumably related to the Quasi-biennial oscillation (QBO). AIRS geometry makes its out-tracks capable of detecting GWs with vertical wavelengths substantially shorter than the thickness of instrument weighting functions. The novel discovery of AIRS capability of observing shallow inertia GWs will expand the potential of satellite GW remote sensing and provide further constraints on the GW drag parameterization schemes in the general circulation models (GCMs).

  20. Part of evanescent modes in the normally incident gravity surface wave's energy layout around a submerged obstacle

    NASA Astrophysics Data System (ADS)

    Charland, J.; Rey, V.; Touboul, J.

    2012-04-01

    Part of evanescent modes in the normally incident gravity surface wave's energy layout around a submerged obstacle Jenna Charland *1, Vincent Rey *2, Julien Touboul *2 *1 Mediterraneen Institute of Oceanography. Institut des Sciences de l'Ingénieur Toulon-Var. Avenue Georges Pompidou, BP 56, 83162 La Valette du Var Cedex, France. Centre National de la Recherche Scientifique, Délégation Normandie. Projet soutenu financièrement par la Délégation Générale de l'Armement. *2 Mediterraneen Institute of Oceanography. Institut des Sciences de l'Ingénieur Toulon-Var. Avenue Georges Pompidou, BP 56, 83162 La Valette du Var Cedex, France. During the last decades various studies have been performed to understand the wave propagation over varying bathymetries. Few answers related to this non linear problem were given by the Patarapanich's studies which described the reflection coefficient of a submerged plate as a function of the wavelength. Later Le-Thi-Minh [2] demonstrated the necessity of taking into account the evanescent modes to better describe the propagation of waves over a varying bathymetry. However, all these studies stare at pseudo-stationary state that allows neither the comprehension of the transient behaviour of propagative modes nor the role of the evanescent modes in this unstationnary process. Our study deals with the wave establishment over a submerged plate or step and focuses on the evanescent modes establishment. Rey [3] described the propagation of a normally incident surface gravity wave over a varying topography on the behaviour of the fluid using a linearized potential theory solved by a numerical model using an integral method. This model has a large field of application and has been adapted to our case. This code still solves a stationary problem but allows us to calculate the contribution of the evanescent modes in the energy layout around a submerged plate or a submerged step. The results will show the importance of the trapped energy compared to the incident wave's energy flow and lead to the definition of a characteristic time of the evanescent modes establishment. First results show that the system is influenced by the wave frequency, and geometric parameters such as the deep in front of the obstacle, the deep of immersion and the deep under the obstacle in the case of a submerged plate. The energy trapped by the evanescent modes and under the plate is able to reach around 15% of the incident wave's energy flow. In further studies we will investigate the influence of each geometrical parameter to a better understanding of its contribution in energy trapping.

  1. Modelization of highly nonlinear waves in coastal regions

    NASA Astrophysics Data System (ADS)

    Gouin, Maïté; Ducrozet, Guillaume; Ferrant, Pierre

    2015-04-01

    The proposed work deals with the development of a highly non-linear model for water wave propagation in coastal regions. The accurate modelization of surface gravity waves is of major interest in ocean engineering, especially in the field of marine renewable energy. These marine structures are intended to be settled in coastal regions where the effect of variable bathymetry may be significant on local wave conditions. This study presents a numerical model for the wave propagation with complex bathymetry. It is based on High-Order Spectral (HOS) method, initially limited to the propagation of non-linear wave fields over flat bottom. Such a model has been developed and validated at the LHEEA Lab. (Ecole Centrale Nantes) over the past few years and the current developments will enlarge its application range. This new numerical model will keep the interesting numerical properties of the original pseudo-spectral approach (convergence, efficiency with the use of FFTs, …) and enable the possibility to propagate highly non-linear wave fields over long time and large distance. Different validations will be provided in addition to the presentation of the method. At first, Bragg reflection will be studied with the proposed approach. If the Bragg condition is satisfied, the reflected wave generated by a sinusoidal bottom patch should be amplified as a result of resonant quadratic interactions between incident wave and bottom. Comparisons will be provided with experiments and reference solutions. Then, the method will be used to consider the transformation of a non-linear monochromatic wave as it propagates up and over a submerged bar. As the waves travel up the front slope of the bar, it steepens and high harmonics are generated due to non-linear interactions. Comparisons with experimental data will be provided. The different test cases will assess the accuracy and efficiency of the method proposed.

  2. The influence of the directional energy distribution on the nonlinear dispersion relation in a random gravity wave field

    NASA Technical Reports Server (NTRS)

    Huang, N. E.; Tung, C.-C.

    1977-01-01

    The influence of the directional distribution of wave energy on the dispersion relation is calculated numerically using various directional wave spectrum models. The results indicate that the dispersion relation varies both as a function of the directional energy distribution and the direction of propagation of the wave component under consideration. Furthermore, both the mean deviation and the random scatter from the linear approximation increase as the energy spreading decreases. Limited observational data are compared with the theoretical results. The agreement is favorable.

  3. Temporal variability of gravity wave drag - vertical coupling and possible climate links

    NASA Astrophysics Data System (ADS)

    Miksovsky, Jiri; Sacha, Petr; Kuchar, Ales; Pisoft, Petr

    2017-04-01

    In the atmosphere, the internal gravity waves (IGW) are one of the fastest ways of natural information transfer in the vertical direction. Tropospheric changes that result in modification of sourcing, propagation or breaking conditions for IGWs almost immediately influence the distribution of gravity wave drag in the stratosphere. So far most of the related studies deal with IGW impacts higher in the upper stratospheric/mesospheric region and with the modulation of IGWs by planetary waves. This is most likely due to the fact that IGWs induce highest accelerations in the mesosphere and lower thermosphere region. However, the imposed drag force is much bigger in the stratosphere. In the presented analysis, we have assessed the relationship between the gravity wave activity in the stratosphere and other climatic phenomena through statistical techniques. Multivariable regression has been applied to investigate the IGW-related eastward and northward wind tendencies in the CMAM30-SD data, subject to the explanatory variables involving local circulation characteristics (derived from regional configuration of the thermobaric field) as well as the phases of the large-scale internal climate variability modes (ENSO, NAO, QBO). Our tests have highlighted several geographical areas with statistically significant responses of the orographic gravity waves effect to each of the variability modes under investigation; additional experiments have also indicated distinct signs of nonlinearity in some of the links uncovered. Furthermore, we have also applied composite analysis of displaced and split stratospheric polar vortex events (SPV) from CMAM30-SD to focus on how the strength and occurrence of the IGW hotspots can play a role in SPV occurrence and frequency.

  4. Investigation of the Ionsopheric Response to Tropical Cyclones Using Ground and Satellite Based Observations Over Indian Region

    NASA Astrophysics Data System (ADS)

    G J, B.; Lal, M.

    2015-12-01

    The present work investigates the equatorial ionospheric response to tropical cyclones which were observed over the Arabian and Bay of Bengal Ocean during the year 2009-2013. The present study utilizes various datasets in order to strengthen the mechanism of troposphere-ionosphere coupling. The tropical cyclone track and data can be obtained from the Indian Meteorological Department, New Delhi. Ionsopheric variations can be monitored from the ground based digisonde located at equatorial station, Trivandrum (8.48oN, 76.95oE), Tirunelveli (8.7oN, 77.8oE) and off equatorial station Allahabad (25.45oN, 81.85oE) and CDAAC COSMIC satellite data. It is believed that tropical cyclone induced convection as the driving agent for the increased gravity wave activity in the lower atmosphere. The convective regions are identified with the help of Outgoing Long wave radiation from NOAA. Gravity wave propagation is mainly depends on the background wind condition, can be examined by using NASA MERRA reanalyses. These Upward propagating gravity waves deposit their energy and momentum into the upper atmosphere as Travelling Ionospheric Disturbances (TIDs). It is found that the enhancement of this wave activity is increased by orders of 10 at ionospheric level. The Ionospheric variability is measured by examining the variation in the parameters such as, Total Electron Content (TEC), foF2, hmF2, foE, MUF, h'E and h'F. The extensive analysis will be carried out in order to understand the coupling mechanism between troposphere and ionosphere region. The detailed results will be discussed in the meeting.

  5. Evidence of Tropospheric 90 Day Oscillations in the Thermosphere

    NASA Astrophysics Data System (ADS)

    Gasperini, F.; Hagan, M. E.; Zhao, Y.

    2017-10-01

    In the last decade evidence demonstrated that terrestrial weather greatly impacts the dynamics and mean state of the thermosphere via small-scale gravity waves and global-scale solar tidal propagation and dissipation effects. While observations have shown significant intraseasonal variability in the upper mesospheric mean winds, relatively little is known about this variability at satellite altitudes (˜250-400 km). Using cross-track wind measurements from the Challenging Minisatellite Payload and Gravity field and steady-state Ocean Circulation Explorer satellites, winds from a Modern-Era Retrospective Analysis for Research and Applications/Thermosphere-Ionosphere-Mesosphere-Electrodynamics General Circulation Model simulation, and outgoing longwave radiation data, we demonstrate the existence of a prominent and global-scale 90 day oscillation in the thermospheric zonal mean winds and in the diurnal eastward propagating tide with zonal wave number 3 (DE3) during 2009-2010 and present evidence of its connection to variability in tropospheric convective activity. This study suggests that strong coupling between the troposphere and the thermosphere occurs on intraseasonal timescales.

  6. Generalized framework for testing gravity with gravitational-wave propagation. II. Constraints on Horndeski theory

    NASA Astrophysics Data System (ADS)

    Arai, Shun; Nishizawa, Atsushi

    2018-05-01

    Gravitational waves (GW) are generally affected by modification of a gravity theory during propagation at cosmological distances. We numerically perform a quantitative analysis on Horndeski theory at the cosmological scale to constrain the Horndeski theory by GW observations in a model-independent way. We formulate a parametrization for a numerical simulation based on the Monte Carlo method and obtain the classification of the models that agrees with cosmic accelerating expansion within observational errors of the Hubble parameter. As a result, we find that a large group of the models in the Horndeski theory that mimic cosmic expansion of the Λ CDM model can be excluded from the simultaneous detection of a GW and its electromagnetic transient counterpart. Based on our result and the latest detection of GW170817 and GRB170817A, we conclude that the subclass of Horndeski theory including arbitrary functions G4 and G5 can hardly explain cosmic accelerating expansion without fine-tuning.

  7. Facilitating Heliophysics Research by the Virtual Wave Observatory (VWO) Context Data Search Capability

    NASA Technical Reports Server (NTRS)

    Fung, Shing F.; Shao, Xi; Garcia, Leonard N.; Galkin, Ivan A.; Benson, Robert F.

    2009-01-01

    Wave phenomena, ranging from freely propagating electromagnetic radiation (e.g., solar radio bursts, AKR) to plasma wave modes trapped in various plasma regimes (e.g., whistlers, Langmuir and ULF waves) and atmospheric gravity waves, are ubiquitous in the heliosphere. Because waves can propagate, wave data obtained at a given observing location may pertain to wave oscillations generated locally or from afar. While wave data analysis requires knowledge of wave characteristics specific to different wave modes, the search for appropriate data for heliophysics wave studies also requires knowledge of wave phenomena. In addition to deciding whether the interested wave activity is electrostatic (i.e., locally trapped) or electromagnetic (with propagation over distances), considerations must be given to the dependence of the wave activity on observer's location or viewing geometry, propagating frequency range and whether the wave data were acquired by passive or active observations. Occurances of natural wave emissions i the magnetosphere (e.g, auroral kilometric radiation) are often dependent also on the state (e.e., context) of the magnetosphere that varies with the changing solar wind, IMF and geomagnetic conditions. Fung and Shao [2008] showed recently that magnetospheric state can be specified by a set of suitably time-shifted solar wind, IMF and the multi-scale geomagnetic response parameters. These parameters form a magnetospheric state vector that provides the basis for searching magnetospheric wave data by their context conditions. Using the IMAGE Radio Plasma Imager (RPI) data and the NASA Magnetospheric State Query System (MSOS) [Fung, 2004], this presentation demonstrates the VWO context data search capability under development and solicits feedback from the Heliophysics research community for improvements.

  8. Generalized analytical model for benthic water flux forced by surface gravity waves

    USGS Publications Warehouse

    King, J.N.; Mehta, A.J.; Dean, R.G.

    2009-01-01

    A generalized analytical model for benthic water flux forced by linear surface gravity waves over a series of layered hydrogeologic units is developed by adapting a previous solution for a hydrogeologic unit with an infinite thickness (Case I) to a unit with a finite thickness (Case II) and to a dual-unit system (Case III). The model compares favorably with laboratory observations. The amplitude of wave-forced benthic water flux is shown to be directly proportional to the amplitude of the wave, the permeability of the hydrogeologic unit, and the wave number and inversely proportional to the kinematic viscosity of water. A dimensionless amplitude parameter is introduced and shown to reach a maximum where the product of water depth and the wave number is 1.2. Submarine groundwater discharge (SGD) is a benthic water discharge flux to a marine water body. The Case I model estimates an 11.5-cm/d SGD forced by a wave with a 1 s period and 5-cm amplitude in water that is 0.5-m deep. As this wave propagates into a region with a 0.3-m-thick hydrogeologic unit, with a no-flow bottom boundary, the Case II model estimates a 9.7-cm/d wave-forced SGD. As this wave propagates into a region with a 0.2-m-thick hydrogeologic unit over an infinitely thick, more permeable unit, the Case III quasi-confined model estimates a 15.7-cm/d wave-forced SGD. The quasi-confined model has benthic constituent flux implications in coral reef, karst, and clastic regions. Waves may undermine tracer and seepage meter estimates of SGD at some locations. Copyright 2009 by the American Geophysical Union.

  9. The Gravity Wave Response Above Deep Convection in a Squall Line Simulation

    NASA Technical Reports Server (NTRS)

    Alexander, M. J.; Holton, J. R.; Durran, D. R.

    1995-01-01

    High-frequency gravity waves generated by convective storms likely play an important role in the general circulation of the middle atmosphere. Yet little is known about waves from this source. This work utilizes a fully compressible, nonlinear, numerical, two-dimensional simulation of a midlatitude squall line to study vertically propagating waves generated by deep convection. The model includes a deep stratosphere layer with high enough resolution to characterize the wave motions at these altitudes. A spectral analysis of the stratospheric waves provides an understanding of the necessary characteristics of the spectrum for future studies of their effects on the middle atmosphere in realistic mean wind scenarios. The wave spectrum also displays specific characteristics that point to the physical mechanisms within the storm responsible for their forcing. Understanding these forcing mechanisms and the properties of the storm and atmosphere that control them are crucial first steps toward developing a parameterization of waves from this source. The simulation also provides a description of some observable signatures of convectively generated waves, which may promote observational verification of these results and help tie any such observations to their convective source.

  10. A case study of the energy dissipation of the gravity wave field based on satellite altimeter measurements

    NASA Technical Reports Server (NTRS)

    Huang, N. E.; Parsons, C. L.; Long, S. R.; Bliven, L. F.

    1983-01-01

    Wave breaking is proposed as the primary energy dissipation mechanism for the gravity wave field. The energy dissipation rate is calculated based on the statistical model proposed by Longuet-Higgins (1969) with a modification of the breaking criterion incorporating the surface stress according to Phillips and Banner (1974). From this modified model, an analytic expression is found for the wave attenuation rate and the half-life time of the wave field which depend only on the significant slope of the wave field and the ratio of friction velocity to initial wave phase velocity. These expressions explain why the freshly generated wave field does not last long, but why swells are capable of propagating long distances without substantial change in energy density. It is shown that breaking is many orders of magnitude more effective in dissipating wave energy than the molecular viscosity, if the significant slope is higher than 0.01. Limited observational data from satellite and laboratory are used to compare with the analytic results, and show good agreement.

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peralta, J.; López-Valverde, M. A.; Imamura, T.

    This paper is the first of a two-part study devoted to developing tools for a systematic classification of the wide variety of atmospheric waves expected on slowly rotating planets with atmospheric superrotation. Starting with the primitive equations for a cyclostrophic regime, we have deduced the analytical solution for the possible waves, simultaneously including the effect of the metric terms for the centrifugal force and the meridional shear of the background wind. In those cases when the conditions for the method of the multiple scales in height are met, these wave solutions are also valid when vertical shear of the backgroundmore » wind is present. A total of six types of waves have been found and their properties were characterized in terms of the corresponding dispersion relations and wave structures. In this first part, only waves that are direct solutions of the generic dispersion relation are studied—acoustic and inertia-gravity waves. Concerning inertia-gravity waves, we found that in the cases of short horizontal wavelengths, null background wind, or propagation in the equatorial region, only pure gravity waves are possible, while for the limit of large horizontal wavelengths and/or null static stability, the waves are inertial. The correspondence between classical atmospheric approximations and wave filtering has been examined too, and we carried out a classification of the mesoscale waves found in the clouds of Venus at different vertical levels of its atmosphere. Finally, the classification of waves in exoplanets is discussed and we provide a list of possible candidates with cyclostrophic regimes.« less

  12. General Relativistic Theory of the VLBI Time Delay in the Gravitational Field of Moving Bodies

    NASA Technical Reports Server (NTRS)

    Kopeikin, Sergei

    2003-01-01

    The general relativistic theory of the gravitational VLBI experiment conducted on September 8, 2002 by Fomalont and Kopeikin is explained. Equations of radio waves (light) propagating from the quasar to the observer are integrated in the time-dependent gravitational field of the solar system by making use of either retarded or advanced solutions of the Einstein field equations. This mathematical technique separates explicitly the effects associated with the propagation of gravity from those associated with light in the integral expression for the relativistic VLBI time delay of light. We prove that the relativistic correction to the Shapiro time delay, discovered by Kopeikin (ApJ, 556, L1, 2001), changes sign if one retains direction of the light propagation but replaces the retarded for the advanced solution of the Einstein equations. Hence, this correction is associated with the propagation of gravity. The VLBI observation measured its speed, and that the retarded solution is the correct one.

  13. Propagation of 3D internal gravity wave beams in a slowly varying stratification

    NASA Astrophysics Data System (ADS)

    Fan, Boyu; Akylas, T. R.

    2017-11-01

    The time-mean flows induced by internal gravity wave beams (IGWB) with 3D variations have been shown to have dramatic implications for long-term IGWB dynamics. While uniform stratifications are convenient both theoretically and in the laboratory, stratifications in the ocean can vary by more than an order of magnitude over the ocean depth. Here, in view of this fact, we study the propagation of a 3D IGWB in a slowly varying stratification. We assume that the stratification varies slowly relative to the local variations in the wave profile. In the 2D case, the IGWB bends in response to the changing stratification, but nonlinear effects are minor even in the finite amplitude regime. For a 3D IGWB, in addition to bending, we find that nonlinearity results in the transfer of energy from waves to a large-scale time-mean flow associated with the mean potential vorticity, similar to IGWB behavior in a uniform stratification. In a weakly nonlinear setting, we derive coupled evolution equations that govern this process. We also use these equations to determine the stability properties of 2D IGWB to 3D perturbations. These findings indicate that 3D effects may be relevant and possibly fundamental to IGWB dynamics in nature. Supported by NSF Grant DMS-1512925.

  14. Mesoscale Simulations of Gravity Waves During the 2008-2009 Major Stratospheric Sudden Warming

    NASA Technical Reports Server (NTRS)

    Limpasuvan, Varavut; Alexander, M. Joan; Orsolini, Yvan J.; Wu, Dong L.; Xue, Ming; Richter, Jadwiga H.; Yamashita, Chihoko

    2011-01-01

    A series of 24 h mesoscale simulations (of 10 km horizontal and 400 m vertical resolution) are performed to examine the characteristics and forcing of gravity waves (GWs) relative to planetary waves (PWs) during the 2008-2009 major stratospheric sudden wam1ing (SSW). Just prior to SSW occurrence, widespread westward propagating GWs are found along the vortex's edge and associated predominantly with major topographical features and strong near-surface winds. Momentum forcing due to GWs surpasses PW forcing in the upper stratosphere and tends to decelerate the polar westerly jet in excess of 30 m/s/d. With SSW onset, PWs dominate the momentum forcing, providing decelerative effects in excess of 50 m/s/d throughout the upper polar stratosphere. GWs related to topography become less widespread largely due to incipient wind reversal as the vortex starts to elongate. During the SSW maturation and early recovery, the polar vortex eventually splits and both wave signatures and forcing greatly subside. Nonetheless, during SSW, westward and eastward propagating GWs are found in the polar region and may be generated in situ by flow adjustment processes in the stratosphere or by secondary GW breaking. The simulated large-scale features agree well with those resolved in satellite observations and analysis products.

  15. Drake Antarctic Agile Meteor Radar first results: Configuration and comparison of mean and tidal wind and gravity wave momentum flux measurements with Southern Argentina Agile Meteor Radar

    NASA Astrophysics Data System (ADS)

    Fritts, D. C.; Janches, D.; Iimura, H.; Hocking, W. K.; Bageston, J. V.; Leme, N. M. P.

    2012-01-01

    A new generation meteor radar was installed at the Brazilian Antarctic Comandante Ferraz Base (62.1°S) in March 2010. This paper describes the motivations for the radar location, its measurement capabilities, and comparisons of measured mean winds, tides, and gravity wave momentum fluxes from April to June of 2010 and 2011 with those by a similar radar on Tierra del Fuego (53.8°S). Motivations for the radars include the “hotspot” of small-scale gravity wave activity extending from the troposphere into the mesosphere and lower thermosphere (MLT) centered over the Drake Passage, the maximum of the semidiurnal tide at these latitudes, and the lack of other MLT wind measurements in this latitude band. Mean winds are seen to be strongly modulated at planetary wave and longer periods and to exhibit strong coherence over the two radars at shorter time scales as well as systematic seasonal variations. The semidiurnal tide contributes most to the large-scale winds over both radars, with maximum tidal amplitudes during May and maxima at the highest altitudes varying from ˜20 to >70 ms-1. In contrast, the diurnal tide and various planetary waves achieve maximum winds of ˜10 to 20 ms-1. Monthly mean gravity wave momentum fluxes appear to reflect the occurrence of significant sources at lower altitudes, with relatively small zonal fluxes over both radars, but with significant, and opposite, meridional momentum fluxes below ˜85 km. These suggest gravity waves propagating away from the Drake Passage at both sites, and may indicate an important source region accounting in part for this “hotspot.”

  16. Drake Antarctic Agile Meteor Radar (DrAAMER) First Results: Configuration and Comparison of Mean and Tidal Wind and Gravity Wave Momentum Flux Measurements with SAAMER

    NASA Technical Reports Server (NTRS)

    Fritts, D. C.; Janches, D.; Iimura, H.; Hocking, W. K.; Bageston, J. V.; Pene, N. M.

    2011-01-01

    A new-generation meteor radar was installed at the Brazilian Antarctic Comandante Ferraz Base (62.1degS) in March 2010. This paper describes the motivations for the radar location, its measurement capabilities, and comparisons of measured mean winds, tides, and gravity wave momentum fluxes from April to June of 2010 and 2011 with those by a similar radar on Tierra del Fuego (53.8degS). Motivations for the radars include the "hotspot" of small-scale gravity wave activity extending from the troposphere into the mesosphere and lower thermosphere (MLT) centered over the Drake Passage, the maximum of the semidiurnal tide at these latitudes, and the lack of other MLT wind measurements in this latitude band. Mean winds are seen to be strongly modulated at planetary wave and longer periods and to exhibit strong coherence over the two radars at shorter time scales as well as systematic seasonal variations. The semidiurnal tide contribute most to the large-scale winds over both radars, with maximum tidal amplitudes during May and maxima at the highest altitudes varying from approx.20 to >70 m/s. In contrast, the diurnal tide and various planetary waves achieve maximum winds of approx.10 to 20 m/s. Monthly-mean gravity wave momentum fluxes appear to reflect the occurrence of significant sources at lower altitudes, with relatively small zonal fluxes over both radars, but with significant, and opposite, meridional momentum fluxes below approx.85 km. These suggest gravity waves propagating away from the Drake Passage at both sites, and may indicate an important source region accounting in part for this "hotspot".

  17. Satellite Detection of Orographic Gravity-wave Activity in the Winter Subtropical Stratosphere over Australia and Africa

    NASA Technical Reports Server (NTRS)

    Eckermann, S. D.; Wu, D. L.

    2012-01-01

    Orographic gravity-wave (OGW) parameterizations in models produce waves over subtropical mountain ranges in Australia and Africa that propagate into the stratosphere during austral winter and deposit momentum, affecting weather and climate. Satellite sensors have measured stratospheric GWs for over a decade, yet find no evidence of these waves. So are parameterizations failing here? Here we argue that the short wavelengths of subtropical OGWs place them near or below the detection limits of satellite sensors. To test this hypothesis, we reanalyze nine years of stratospheric radiances from the Atmospheric Infrared Sounder (AIRS) on NASA's Aqua satellite during austral winter, applying new averaging techniques to maximize signal-to-noise and improve thresholds for OGW detection. Deep climatological enhancements in stratospheric OGW variance over specific mountain ranges in Australia and southern Africa are revealed for the first time, which exhibit temporal and vertical variations consistent with predicted OGW responses to varying background winds.

  18. Demystifying the Complexities of Gravity Wave Dynamics in the Middle Atmosphere: a Roadmap to Improved Weather Forecasts through High-Fidelity Modeling

    NASA Astrophysics Data System (ADS)

    Mixa, T.; Fritts, D. C.; Bossert, K.; Laughman, B.; Wang, L.; Lund, T.; Kantha, L. H.

    2017-12-01

    Gravity waves play a profound role in the mixing of the atmosphere, transporting vast amounts of momentum and energy among different altitudes as they propagate vertically. Above 60km in the middle atmosphere, high wave amplitudes enable a series of complex, nonlinear interactions with the background environment that produce highly-localized wind and temperature variations which alter the layering structure of the atmosphere. These small-scale interactions account for a significant portion of energy transport in the middle atmosphere, but they are difficult to characterize, occurring at spatial scales that are both challenging to observe with ground instruments and prohibitively small to include in weather forecasting models. Using high fidelity numerical simulations, these nuanced wave interactions are analyzed to better our understanding of these dynamics and improve the accuracy of long-term weather forecasting.

  19. GPS detection of ionospheric perturbations following the January 17, 1994, northridge earthquake

    NASA Technical Reports Server (NTRS)

    Calais, Eric; Minster, J. Bernard

    1995-01-01

    Sources such as atmospheric or buried explosions and shallow earthquakes producing strong vertical ground displacements produce pressure waves that propagate at infrasonic speeds in the atmosphere. At ionospheric altitudes low frequency acoustic waves are coupled to ionispheric gravity waves and induce variations in the ionoispheric electron density. Global Positioning System (GPS) data recorded in Southern California were used to compute ionospheric electron content time series for several days preceding and following the January 17, 1994, M(sub w) = 6.7 Northridge earthquake. An anomalous signal beginning several minutes after the earthquake with time delays that increase with distance from the epicenter was observed. The signal frequency and phase velocity are consistent with results from numerical models of atmospheric-ionospheric acoustic-gravity waves excited by seismic sources as well as previous electromagnetic sounding results. It is believed that these perturbations are caused by the ionospheric response to the strong ground displacement associated with the Northridge earthquake.

  20. Short-Term Perturbations Within the D-Region Detected Above the Mediterranean

    NASA Astrophysics Data System (ADS)

    Silber, Israel; Price, Colin

    2016-04-01

    The ionospheric D-region lies in the altitude range of ~60-95 km. This part of the atmosphere is highly sensitive to waves propagating upwards from the troposphere, either as pressure perturbations (gravity and acoustic waves) or electromagnetic (EM) perturbations from lightning discharges (resulting in EMPs, sprites, elves, etc.). These perturbations can affect the temperature, wind, species concentration, conductivity, and ionization in the upper atmosphere. Very low frequencies (VLF) radio signals, generated by man-made communication transmitters, have been recorded using ground-based VLF receivers in Israel. These radio waves propagate over long distances within the Earth-ionosphere waveguide, reflected off the Earth's surface and the D-region. The characteristics of the received signals depend on several parameters along the path, but are fairly constant over short periods of time. In this study we present analysis of VLF narrowband data transmitted from Sicily, Italy, spanning one year, and detected in Tel Aviv, Israel. We show observations of the interaction between both pressure and EM perturbations from thunderstorms with the narrowband VLF signals aloft. We clearly observe short period (~2-4 minutes) acoustic waves, longer period gravity waves (~5-7 minutes periods), while also many transient events related to heating and ionization of the D-region. Comparisons with WWLLN lightning data show the potential link between tropospheric thunderstorms and D-region variability.

  1. Short-Term Perturbations Within the D-Region Detected Above the Mediterranean

    NASA Astrophysics Data System (ADS)

    Price, Colin; Silber, Israel

    2016-07-01

    The ionospheric D-region lies in the altitude range of ~60-95 km. This part of the atmosphere is highly sensitive to waves propagating upwards from the troposphere, either as pressure perturbations (gravity and acoustic waves) or electromagnetic (EM) perturbations from lightning discharges (resulting in EMPs, sprites, elves, etc.). These perturbations can affect the temperature, wind, species concentration, conductivity, and ionization in the upper atmosphere. Very low frequencies (VLF) radio signals, generated by man-made communication transmitters, have been recorded using ground-based VLF receivers in Israel. These radio waves propagate over long distances within the Earth-ionosphere waveguide, reflected off the Earth's surface and the D-region. The characteristics of the received signals depend on several parameters along the path, but are fairly constant over short periods of time. In this study we present analysis of VLF narrowband data transmitted from Sicily, Italy, spanning one year, and detected in Tel Aviv, Israel. We show observations of the interaction between both pressure and EM perturbations from thunderstorms with the narrowband VLF signals aloft. We clearly observe short period (~2-4 minutes) acoustic waves, longer period gravity waves (~5-7 minutes periods), while also many transient events related to heating and ionization of the D-region. Comparisons with WWLLN lightning data show the potential link between tropospheric thunderstorms and D-region variability.

  2. Gravity Waves Near 300 km Over the Polar Caps

    NASA Technical Reports Server (NTRS)

    Johnson, F. S.; Hanson, W. B.; Hodges, R. R.; Coley, W. R.; Carignan, G. R.; Spencer, N. W.

    1995-01-01

    Distinctive wave forms in the distributions of vertical velocity and temperature of both neutral particles and ions are frequently observed from Dynamics Explorer 2 at altitudes above 250 km over the polar caps. These are interpreted as being due to internal gravity waves propagating in the neutral atmosphere. The disturbances characterized by vertical velocity perturbations of the order of 100 m/s and horizontal wave lengths along the satellite path of about 500 km. They often extend across the entire polar cap. The associated temperature perturbations indicate that the horizontal phase progression is from the nightside to the dayside. Vertical displacements are inferred to be of the order of 10 km and the periods to be of the order of 10(exp 3) s. The waves must propagate in the neutral atmosphere, but they usually are most clearly recognizable in the observations of ion vertical velocity and ion temperature. By combining the neutral pressure calculated from the observed neutral concentration and temperature with the vertical component of the neutral velocity, an upward energy flux of the order of 0.04 erg/sq cm-s at 250 km has been calculated, which is about equal to the maximum total solar ultraviolet heat input above that altitude. Upward energy fluxes calculated from observations on orbital passes at altitudes from 250 to 560 km indicate relatively little attenuation with altitude.

  3. Rotating magnetic shallow water waves and instabilities in a sphere

    NASA Astrophysics Data System (ADS)

    Márquez-Artavia, X.; Jones, C. A.; Tobias, S. M.

    2017-07-01

    Waves in a thin layer on a rotating sphere are studied. The effect of a toroidal magnetic field is considered, using the shallow water ideal MHD equations. The work is motivated by suggestions that there is a stably stratified layer below the Earth's core mantle boundary, and the existence of stable layers in stellar tachoclines. With an azimuthal background field known as the Malkus field, ?, ? being the co-latitude, a non-diffusive instability is found with azimuthal wavenumber ?. A necessary condition for instability is that the Alfvén speed exceeds ? where ? is the rotation rate and ? the sphere radius. Magneto-inertial gravity waves propagating westward and eastward occur, and become equatorially trapped when the field is strong. Magneto-Kelvin waves propagate eastward at low field strength, but a new westward propagating Kelvin wave is found when the field is strong. Fast magnetic Rossby waves travel westward, whilst the slow magnetic Rossby waves generally travel eastward, except for some ? modes at large field strength. An exceptional very slow westward ? magnetic Rossby wave mode occurs at all field strengths. The current-driven instability occurs for ? when the slow and fast magnetic Rossby waves interact. With strong field the magnetic Rossby waves become trapped at the pole. An asymptotic analysis giving the wave speed and wave form in terms of elementary functions is possible both in polar trapped and equatorially trapped cases.

  4. Diffraction and Dissipation of Atmospheric Waves in the Vicinity of Caustics

    NASA Astrophysics Data System (ADS)

    Godin, O. A.

    2015-12-01

    A large and increasing number of ground-based and satellite-borne instruments has been demonstrated to reliably reveal ionospheric manifestations of natural hazards such as large earthquakes, strong tsunamis, and powerful tornadoes. To transition from detection of ionospheric manifestations of natural hazards to characterization of the hazards for the purposes of improving early warning systems and contributing to disaster recovery, it is necessary to relate quantitatively characteristics of the observed ionospheric disturbances and the underlying natural hazard and, in particular, accurately model propagation of atmospheric waves from the ground or ocean surface to the ionosphere. The ray theory has been used extensively to model propagation of atmospheric waves and proved to be very efficient in elucidating the effects of atmospheric variability on ionospheric signatures of natural hazards. However, the ray theory predicts unphysical, divergent values of the wave amplitude and needs to be modified in the vicinity of caustics. This paper presents an asymptotic theory that describes diffraction, focusing and increased dissipation of acoustic-gravity waves in the vicinity of caustics and turning points. Air temperature, viscosity, thermal conductivity, and wind velocity are assumed to vary gradually with height and horizontal coordinates, and slowness of these variations determines the large parameter of the problem. Uniform asymptotics of the wave field are expressed in terms of Airy functions and their derivatives. The geometrical, or Berry, phase, which arises in the consistent WKB approximation for acoustic-gravity waves, plays an important role in the caustic asymptotics. In addition to the wave field in the vicinity of the caustic, these asymptotics describe wave reflection from the caustic and the evanescent wave field beyond the caustic. The evanescent wave field is found to play an important role in ionospheric manifestations of tsunamis.

  5. Estimation of neutral wind velocity in the ionospheric heights by HF-Doppler technique

    NASA Technical Reports Server (NTRS)

    Kitamura, T.; Takefu, M.; Hiroshige, N.

    1985-01-01

    Three net stations located about 100 kilometers apart were set up around the station of the standard frequency and time signals (JJY) in central Japan and measurements of atmospheric gravity waves in the ionospheric heights (F-region, 200 to 400 km) were made by means of the HF-Doppler technique during the period of February 1983 to December 1983. The frequencies of the signals received are 5.0, 8.0 and 10.0 MHz, but only the 8.0 MHz signals are used for the present study, because no ambiguities due to the interference among other stations such as BPM, BSF, etc. exist by the use of 8.0 MHz. Two main results concerning the horizontal phase velocity of the atmospheric gravity waves with periods of 40 to 70 min may be summarized as follows: (1) the value of the phase velocity ranges from 50 m/s to 300 m/s; (2) the direction of the gravity wave propagation shows a definite seasonal variation. The prevailing direction of the gravity waves in winter is from north to south, which is consistent with the results obtained from other investigations. On the other hand, the two directions, from northeast to southwest and from southeast to northeast, dominate in summer.

  6. Observation of `third sound' in superfluid 3He

    NASA Astrophysics Data System (ADS)

    Schechter, A. M. R.; Simmonds, R. W.; Packard, R. E.; Davis, J. C.

    1998-12-01

    Waves on the surface of a fluid provide a powerful tool for studying the fluid itself and the surrounding physical environment. For example, the wave speed is determined by the force per unit mass at the surface, and by the depth of the fluid: the decreasing speed of ocean waves as they approach the shore reveals the changing depth of the sea and the strength of gravity. Other examples include propagating waves in neutron-star oceans and on the surface of levitating liquid drops. Although gravity is a common restoring force, others exist, including the electrostatic force which causes a thin liquid film to adhere to a solid. Usually surface waves cannot occur on such thin films because viscosity inhibits their motion. However, in the special case of thin films of superfluid 4He, surface waves do exist and are called `third sound'. Here we report the detection of similar surface waves in thin films of superfluid 3He. We describe studies of the speed of these waves, the properties of the surface force, and the film's superfluid density.

  7. Evidence of spectrally broad Gravity Wave packet propagation and dispersion in the mesopause region observed by the Na lidar and Mesospheric Temperature Mapper above Logan, Utah

    NASA Astrophysics Data System (ADS)

    Yuan, T.; Heale, C. J.; Snively, J. B.

    2016-12-01

    Utilizing observations from the Na lidar at Utah State University and the nearby Mesospheric Temperature Mapper (MTM) at Bear Lake Observatory (BLO) [41.9°N, 111.4°W], we investigate a unique case of vertical dispersion for a spectrally broad gravity wave packet in the mesopause region over Logan, Utah (41.7°N, 111.8°W) that occurred on September 2nd, 2011, to study the waves' evolution as a packet propagates upward. The lidar observed temperature perturbation was dominated by close to a 1-hour modulation at 100 km during the early hours, but gradually evolved into a 1.5-hour modulation during the second half of the night. The vertical wavelength also decreased simultaneously, while the vertical group and phase velocities of the packet apparently slowed, as it was approaching a critical level during the second half of the night. A two-dimensional numerical model is utilized to simulate the observed GW processes, finding that the location of the lidar relative to the source can strongly influence which portion of the spectrum can be observed at a particular location relative to a source.

  8. Generation and Upper Atmospheric Propagation of Acoustic Gravity Waves according to Numerical Modeling and Radio Tomography

    NASA Astrophysics Data System (ADS)

    Vorontsov, Artem; Andreeva, Elena; Nesterov, Ivan; Padokhin, Artem; Kurbatov, Grigory

    2016-04-01

    The acoustic-gravity waves (AGW) in the upper atmosphere and ionosphere can be generated by a variety of the phenomena in the near-Earth environment and atmosphere as well as by some perturbations of the Earth's ground or ocean surface. For instance, the role of the AGW sources can be played by the earthquakes, explosions, thermal heating, seisches, tsunami waves. We present the examples of AGWs excited by the tsunami waves traveling in the ocean, by seisches, and by ionospheric heating by the high-power radio wave. In the last case, the gravity waves are caused by the pulsed modulation of the heating wave. The AGW propagation in the upper atmosphere induces the variations and irregularities in the electron density distribution of the ionosphere, whose structure can be efficiently reconstructed by the method of the ionospheric radio tomography (RT) based on the data from the global navigational satellite systems (GNSS). The input data for RT diagnostics are composed of the 150/400 MHz radio signals from the low-orbiting (LO) satellites and 1.2-1.5 GHz radio signals from the high-orbiting (HO) satellites with their orbits at ~1000 and ~20000 km above the ground, respectively. These data enable ionospheric imaging on different spatiotemporal scales with different spatiotemporal resolution and coverage, which is suitable, inter alia, for tracking the waves and wave-like features in the ionosphere. In particular, we demonstrate the maps of the ionospheric responses to the tornado at Moore (Oklahoma, USA) of May 20, 2013, which are reconstructed from the HO data. We present the examples of LORT images containing the waves and wavelike disturbances associated with various sources (e.g., auroral precipitation and high-power heating of the ionosphere). We also discuss the results of modeling the AGW generation by the surface and volumetric sources. The millihertz AGW from these sources initiate the ionospheric perturbation with a typical scale of a few hundred km at the heights corresponding to the middle atmosphere and ionosphere. The results of numerical modeling based on the solution of the equation of geophysical hydrodynamics agree with the observations.

  9. Observations of OH-airglow from ground, aircraft, and satellite during the GW-LCYCLE campaign: investigation of different wave types

    NASA Astrophysics Data System (ADS)

    Wüst, Sabine; Schmidt, Carsten; Hannawald, Patrick; Offenwanger, Thomas; Sedlak, René; Bittner, Michael; Yee, Jeng-Hwa; Mlynczak, Martin G.; Russell, James M., III

    2017-04-01

    During the GW-LCYCLE campaign from January to February 2016 in Northern Scandinavia, we operated four instruments: two ground-based OH* IR-spectrometers (scanning and non-scanning mode at ALOMAR (69°N), Norway, and Kiruna (68°N), Sweden) and one ground-based OH* IR all-sky camera (at Kiruna) as well as one OH* IR-camera on board the research aircraft FALCON (field of view ca. 30°, spatial resolution 150 m x 150 m). Due to the differing spatial and temporal resolution of the instruments, this equipment allows the investigation of temporal and spatial gravity wave parameters in a wide spectral range. The flights of the research aircraft provide the opportunity to investigate gravity waves in between both measurement sites. During the campaign period, the dynamical situation changed due to a minor stratospheric warming. The effect of this warming on the OH*-layer is investigated using TIMED-SABER data. We provide an overview of the development of planetary and gravity wave parameters and energy density at mesopause height during the campaign period and present first results of the airborne measurements. Finally, we discuss possible wave sources and the influence of the stratospheric warming on wave parameters, and propagation.

  10. Dynamical response of the summer MLT to tropospheric global warming: Results from a mechanistic GCM with resolved gravity waves

    NASA Astrophysics Data System (ADS)

    Becker, E.

    2009-04-01

    The sensitivity of the mesosphere and lower thermosphere (MLT) to climate variability of the troposphere is largely controlled by the generation, propagation, and dissipation of gravity waves (GWs). Conventional climate models cannot fully describe this sensitivity since GWs must be parameterized by invoking strong assumptions. Since the Eliassen-Palm flux (EPF) of low-frequency inertia GWs is negligible, the main contribution to the EPF divergence at high latitudes of the MLT is due to mid- and high-frequency GWs with periods of a few hours or less. In order to resolve at least a good portion of these waves in a GCM, a high spatial resolution from the boundary layer to the lower thermosphere is required. Furthermore, both the generation and dissipation of resolved GWs is expected to depend strongly on the details of the parameterization of turbulence. The present study proposes a new formulation of the Kuehlungsborn mechanistic general circulation model (KMCM) with high spatial resolution and Smagorinsky-type horizontal and vertical diffusion coefficients that are both scaled by the Richardson criterion. This model version allows for an explicit and self-consistent simulation of the gravity-wave drag in the MLT. A sensitivity experiment is conducted in which the main changes associated with tropospheric global warming are imposed by the differential heating, i.e., reduced static stability in the lower troposphere along with a reduced equator-to-pole temperature difference and enhanced latent heating in the intertropical convergence zone. These changes result in both a stronger Lorenz energy cycle and enhanced gravity-wave activity in the upper troposphere at middle latitudes. The altered gravity-wave sources result in the following remote effects in the summer MLT: downward shift of the residual circulation, as well as lower temperatures and reduced easterlies below the mesopause. These changes are consistent with enhanced turbulent diffusion and dissipation below the mesopause due to larger gravity-wave amplitudes.

  11. Concentric traveling ionospheric disturbances triggered by the launch of a SpaceX Falcon 9 rocket

    NASA Astrophysics Data System (ADS)

    Lin, Charles C. H.; Shen, Ming-Hsueh; Chou, Min-Yang; Chen, Chia-Hung; Yue, Jia; Chen, Po-Cheng; Matsumura, Mitsuru

    2017-08-01

    We report the first observation of concentric traveling ionospheric disturbances (CTIDs) triggered by the launch of a SpaceX Falcon 9 rocket on 17 January 2016. The rocket-triggered ionospheric disturbances show shock acoustic wave signature in the time rate change (time derivative) of total electron content (TEC), followed by CTIDs in the 8-15 min band-pass filtering of TEC. The CTIDs propagated northward with phase velocity of 241-617 m/s and reached distances more than 1000 km away from the source on the rocket trajectory. The wave characteristics of CTIDs with periods of 10.5-12.7 min and wavelength 200-400 km agree well with the gravity wave dispersion relation. The optimal wave source searching and gravity wave ray tracing technique suggested that the CTIDs have multiple sources which are originated from 38-120 km altitude before and after the ignition of the second-stage rocket, 200 s after the rocket was launched.

  12. Studies of Gravity Waves Using Michelson Interferometer Measurements of OH (3-1) Bands

    NASA Astrophysics Data System (ADS)

    Won, Young-In; Cho, Young-Min; Lee, Bang Yong; Kim, J.

    2001-06-01

    As part of a long-term program for polar upper atmospheric studies, temperatures and intensities of the OH (3-1) bands were derived from spectrometric observations of airglow emissions over King Sejong station (62.22o S, 301.25o E). These measurements were made with a Michelson interferometer to cover wavelength regions between 1000 nm and 2000 nm. A spectral analysis was performed to individual nights of data to acquire information on the waves in the upper mesosphere/lower thermosphere. It is assumed that the measured fluctuations in the intensity and temperature of the OH (3-1) airglow were caused by gravity waves propagating through the emission layer. Correlation of intensity and temperature variation revealed oscillations with periods ranging from 2 to 9 hours. We also calculated Krassovsky's parameter and compared with published values.

  13. A three-dimensional simulation of the equatorial quasi-biennial oscillation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Takahashi, M.; Boville, B.A.

    1992-06-15

    A simulation of the equatorial quasi-biennial oscillation (QBO) has been obtained using a three-dimensional mechanistic model of the stratosphere. The model is a simplified form of the NCAR CCM (Community Climate Model) in which the troposphere has been replaced with a specified geopotential distribution near the tropical tropopause and most of the physical parameterizations have been removed. A Kelvin wave and a Rossby-gravity wave are forced at the bottom boundary as in previous one- and two-dimensional models. The model reproduces most of the principal features of the observed QBO, as do previous models with lower dimensionality. The principal difference betweenmore » the present model and previous QBO models is that the wave propagation is explicitly represented, allowing wave-wave interactions to take place. It is found that these interactions significantly affect the simulated oscillation. The interaction of the Rossby-gravity waves with the Kelvin waves results in about twice as much easterly compared to westerly forcing being required in order to obtain a QBO. 26 refs., 12 figs.« less

  14. Ignition and Combustion of Bulk Metals in a Microgravity Environment

    NASA Technical Reports Server (NTRS)

    Branch, Melvyn C.; Daily, John W.; Abbud-Madrid, Angel

    1999-01-01

    Results of a study of heterogeneous and homogeneous combustion of metals in reduced gravity are presented. Cylindrical titanium and magnesium samples are radiatively ignited in pure-oxygen at 1 atm. Qualitative observations, propagation rates, and burning times are extracted from high-speed cinematography. Time-resolved emission spectra of gas-phase reactions are acquired with an imaging spectrograph. Lower propagation rates of the reacting mass on titanium and of ignition waves on magnesium are obtained at reduced gravity. These rates are compared to theoretical results from fire-spread analyses with a diffusion/convection controlled reaction. The close agreement found between experimental and theoretical propagation rates indicates the strong influence of natural-convection-enhanced oxygen transp6rt on burning rates. Lower oxygen flux and lack of condensed product removal appear to be responsible for longer burning times of magnesium gas-phase diffusion flames in reduced gravity. Spherically symmetric explosions in magnesium flames at reduced gravity (termed radiation-induced metal explosions, or RIME) may be driven by increased radiation heat transfer from accumulated condensed products to an evaporating metal core covered by a porous, flexible oxide coating. In titanium specimens, predominantly heterogeneous burning characterizes the initial steady propagation of the molten mass, while homogeneous gas-phase reactions are detected around particles ejected from the molten mixture. In magnesium specimens, band and line reversal of all the UV spectral systems of Mg and MgO are attributed to the interaction between small oxide particles and the principal gaseous emitters.

  15. A numerical experiment on the formation of the tropopause inversion layer associated with an explosive cyclogenesis: possible role of gravity waves

    NASA Astrophysics Data System (ADS)

    Otsuka, Shigenori; Takeshita, Megumi; Yoden, Shigeo

    2014-12-01

    The tropopause inversion layer (TIL) is a persistent layer with high static stability. Although some mechanisms for the formation of the TIL have been proposed, the time evolution of the TIL under realistic conditions especially when factoring in the contribution of small-scale processes such as gravity waves is not well understood. To gain an understanding of this factor, we conducted a numerical experiment on an explosive cyclogenesis in mid-latitudes using a nonhydrostatic regional atmospheric model. Although the TIL in the model is consistent with previous observations in the sense that it is stronger in the negative vorticity areas, the relationship is clear only in the development and mature stages of a cyclone, suggesting that the evolution of the cyclone plays an important role in the formation of the TIL. To ascertain the effects of gravity waves on the TIL, vertical convergence at the tropopause is analyzed. Histograms of maximum buoyancy frequency squared within the TIL show that regions of vertical convergence have higher , in addition to regions with high ∂ 2 w/ ∂ z 2, implying that waves having downward phase propagation also play an important role in the dynamical formation of the TIL. This tendency is clearer in regions of negative relative vorticity at the tropopause. By taking account of the fact that the gravity wave activities associated with the cyclone and the jet streak are enhanced during the development and mature stages of the cyclone, vertical convergence due to gravity waves associated with synoptic weather systems can be seen to be a key process in the formation of the negative correlation between the strength of the TIL and the local relative vorticity at the tropopause.

  16. Waves in Radial Gravity Using Magnetic Fluid

    NASA Technical Reports Server (NTRS)

    Ohlsen, D. R.; Hart, J. E.; Weidman, P. D.

    1999-01-01

    Terrestrial laboratory experiments studying various fluid dynamical processes are constrained, by being in an Earth laboratory, to have a gravitational body force which is uniform and unidirectional. Therefore fluid free-surfaces are horizontal and flat. Such free surfaces must have a vertical solid boundary to keep the fluid from spreading horizontally along a gravitational potential surface. In atmospheric, oceanic, or stellar fluid flows that have a horizontal scale of about one-tenth the body radius or larger, sphericity is important in the dynamics. Further, fluids in spherical geometry can cover an entire domain without any sidewall effects, i.e. have truly periodic boundary conditions. We describe spherical body-force laboratory experiments using ferrofluid. Ferrofluids are dilute suspensions of magnetic dipoles, for example magnetite particles of order 10 nm diameter, suspended in a carrier fluid. Ferrofluids are subject to an additional body force in the presence of an applied magnetic field gradient. We use this body force to conduct laboratory experiments in spherical geometry. The present study is a laboratory technique improvement. The apparatus is cylindrically axisymmetric. A cylindrical ceramic magnet is embedded in a smooth, solid, spherical PVC ball. The geopotential field and its gradient, the body force, were made nearly spherical by careful choice of magnet height-to-diameter ratio and magnet size relative to the PVC ball size. Terrestrial gravity is eliminated from the dynamics by immersing the "planet" and its ferrofluid "ocean" in an immiscible silicone oil/freon mixture of the same density. Thus the earth gravity is removed from the dynamics of the ferrofluid/oil interface and the only dynamically active force there is the radial magnetic gravity. The entire apparatus can rotate, and waves are forced on the ferrofluid surface by exterior magnets. The biggest improvement in technique is in the wave visualization. Fluorescing dye is added to the oil/freon mixture and an argon ion laser generates a horizontal light that can be scanned vertically. Viewed from above, the experiment is a black circle with wave deformations surrounded by a light background. A contour of the image intensity at any light sheet position gives the surface of the ferrofluid "ocean" at that "latitude". Radial displacements of the waves as a function of longitude are obtained by subtracting the contour line positions from a no-motion contour at that laser sheet latitude. The experiments are run by traversing the forcing magnet with the laser sheet height fixed and images are frame grabbed to obtain a time-series at one latitude. The experiment is then re-run with another laser-sheet height to generate a full picture of the three-dimensional wave structure in the upper hemisphere of the ball as a function of time. We concentrate here on results of laboratory studies of waves that are important in Earth's atmosphere and especially the ocean. To get oceanic scaling in the laboratory, the experiment must rotate rapidly (4-second rotation period) so that the wave speed is slow compared to the planetary rotation speed as in the ocean. In the Pacific Ocean, eastward propagating Kelvin waves eventually run into the South American coast. Theory predicts that some of the wave energy should scatter into coastal-trapped Kelvin waves that propagate north and south along the coast. Some of this coastal wave energy might then scatter into mid-latitude Rossby waves that propagate back westward. Satellite observations of the Pacific Ocean sea-surface temperature and height seem to show signatures of westward propagating mid-latitude Rossby waves, 5 to 10 years after the 1982-83 El Nino. The observational data is difficult to interpret unambiguously owing to the large range of motions that fill the ocean at shorter timescales. This series of reflections giving eastward, north- ward, and then westward traveling waves is observed cleanly in the laboratory experiments, confirming the theoretical expectations.

  17. Infrasonic troposphere-ionosphere coupling in Hawaii

    NASA Astrophysics Data System (ADS)

    Garces, M. A.

    2011-12-01

    The propagation of infrasonic waves in the ionospheric layers has been considered since the 1960's. It is known that space weather can alter infrasonic propagation below the E layer (~120 km altitude), but it was thought that acoustic attenuation was too severe above this layer to sustain long-range propagation. Although volcanoes, earthquakes and tsunamis (all surface sources) appear to routinely excite perturbations in the ionospheric F layer by the propagation of acoustic and acoustic-gravity waves through the atmosphere, there are few reports of the inverse pathway. This paper discusses some of the routine ground-based infrasonic array observations of ionospheric returns from surface sources. These thermospheric returns generally point back towards the source, with an azimuth deviation that can be corrected using the wind velocity profiles in the mesosphere and lower thermosphere. However, the seismic excitation in the North Pacific by the Tohoku earthquake ensonified the coupled lithosphere-atmosphere-ionosphere waveguide in the 0.01 - 0.1 Hz frequency band, producing anomalous signals observed by infrasound arrays in Hawaii. These infrasonic signals propagated at curiously high velocities, suggesting that some assumptions on ionospheric sound generation and propagation could be revisited.

  18. On the unsteady gravity-capillary wave pattern found behind a slow moving localized pressure distribution

    NASA Astrophysics Data System (ADS)

    Masnadi, N.; Duncan, J. H.

    2013-11-01

    The non-linear response of a water surface to a slow-moving pressure distribution is studied experimentally using a vertically oriented carriage-mounted air-jet tube that is set to translate over the water surface in a long tank. The free surface deformation pattern is measured with a full-field refraction-based method that utilizes a vertically oriented digital movie camera (under the tank) and a random dot pattern (above the water surface). At towing speeds just below the minimum phase speed of gravity-capillary waves (cmin ~ 23 cm/s), an unsteady V-shaped pattern is formed behind the pressure source. Localized depressions are generated near the source and propagate in pairs along the two arms of the V-shaped pattern. These depressions are eventually shed from the tips of the pattern at a frequency of about 1 Hz. It is found that the shape and phase speeds of the first depressions shed in each run are quantitatively similar to the freely-propagating gravity-capillary lumps from potential flow calculations. In the experiments, the amplitudes of the depressions decrease by approximately 60 percent while travelling 12 wavelengths. The depressions shed later in each run behave in a less consistent manner, probably due to their interaction with neighboring depressions.

  19. The Effects of Gravity on Combustion and Structure Formation During Combustion Synthesis in Gasless Systems

    NASA Technical Reports Server (NTRS)

    Varma, Arvind; Mukasyan, Alexander; Pelekh, Aleksey

    1997-01-01

    There have been relatively few publications examining the role of gravity during combustion synthesis (CS), mostly involving thermite systems. The main goal of this research was to study the influence of gravity on the combustion characteristics of heterogeneous gasless systems. In addition, some aspects of microstructure formation processes which occur during gasless CS were also studied. Four directions for experimental investigation have been explored: (1) the influence of gravity force on the characteristic features of heterogeneous combustion wave propagation (average velocity, instantaneous velocities, shape of combustion front); (2) the combustion of highly porous mixtures (with porosity greater than that for loose powders), which cannot be obtained in normal gravity; (3) the effect of gravity on sample expansion during combustion, in order to produce highly porous materials under microgravity conditions; and (4) the effect of gravity on the structure formation mechanism during the combustion synthesis of poreless composite materials.

  20. Characterization of ceramics and intermetallics fabricated by self-propagating high-temperature synthesis

    NASA Technical Reports Server (NTRS)

    Hurst, Janet B.

    1989-01-01

    Three efforts aimed at investigating the process of self-propagating high temperature synthesis (SHS) for the fabrication of structural ceramics and intermetallics are summarized. Of special interest was the influence of processing variables such as exothermic dopants, gravity, and green state morphology in materials produced by SHS. In the first effort directed toward the fabrication of SiC, exothermic dopants of yttrium and zirconium were added to SiO2 or SiO2 + NiO plus carbon powder mix and processed by SHS. This approach was unsuccessful since it did not produce the desired product of crystalline SiC. In the second effort, the influence of gravity was investigated by examining Ni-Al microstructures which were produced by SHS combustion waves traveling with and opposite the gravity direction. Although final composition and total porosities of the combusted Ni-Al compounds were found to be gravity independent, larger pores were created in those specimens which were combusted opposite to the gravity force direction. Finally, it was found that green microstructure has a significant effect on the appearance of the combusted piece. Severe pressing laminations were observed to arrest the combustion front for TiC samples.

  1. Quintic quasi-topological gravity

    NASA Astrophysics Data System (ADS)

    Cisterna, Adolfo; Guajardo, Luis; Hassaïne, Mokhtar; Oliva, Julio

    2017-04-01

    We construct a quintic quasi-topological gravity in five dimensions, i.e. a theory with a Lagrangian containing {\\mathcal{R}}^5 terms and whose field equations are of second order on spherically (hyperbolic or planar) symmetric spacetimes. These theories have recently received attention since when formulated on asymptotically AdS spacetimes might provide for gravity duals of a broad class of CFTs. For simplicity we focus on five dimensions. We show that this theory fulfils a Birkhoff's Theorem as it is the case in Lovelock gravity and therefore, for generic values of the couplings, there is no s-wave propagating mode. We prove that the spherically symmetric solution is determined by a quintic algebraic polynomial equation which resembles Wheeler's polynomial of Lovelock gravity. For the black hole solutions we compute the temperature, mass and entropy and show that the first law of black holes thermodynamics is fulfilled. Besides of being of fourth order in general, we show that the field equations, when linearized around AdS are of second order, and therefore the theory does not propagate ghosts around this background. Besides the class of theories originally introduced in arXiv:1003.4773, the general geometric structure of these Lagrangians remains an open problem.

  2. Ring waves as a mass transport mechanism in air-driven core-annular flows.

    PubMed

    Camassa, Roberto; Forest, M Gregory; Lee, Long; Ogrosky, H Reed; Olander, Jeffrey

    2012-12-01

    Air-driven core-annular fluid flows occur in many situations, from lung airways to engineering applications. Here we study, experimentally and theoretically, flows where a viscous liquid film lining the inside of a tube is forced upwards against gravity by turbulent airflow up the center of the tube. We present results on the thickness and mean speed of the film and properties of the interfacial waves that develop from an instability of the air-liquid interface. We derive a long-wave asymptotic model and compare properties of its solutions with those of the experiments. Traveling wave solutions of this long-wave model exhibit evidence of different mass transport regimes: Past a certain threshold, sufficiently large-amplitude waves begin to trap cores of fluid which propagate upward at wave speeds. This theoretical result is then confirmed by a second set of experiments that show evidence of ring waves of annular fluid propagating over the underlying creeping flow. By tuning the parameters of the experiments, the strength of this phenomenon can be adjusted in a way that is predicted qualitatively by the model.

  3. Coherent reflection from surface gravity water waves during reciprocal acoustic transmissions.

    PubMed

    Badiey, Mohsen; Song, Aijun; Smith, Kevin B

    2012-10-01

    During a recent experiment in Kauai, Hawaii, reciprocal transmissions were conducted between two acoustic transceivers mounted on the seafloor at a depth of 100 m. The passage of moving surface wave crests was shown to generate focused and intense coherent acoustic returns, which had increasing or decreasing delay depending on the direction of propagation relative to the direction of surface wave crests. It is shown that a rough surface two-dimensional parabolic equation model with an evolving sea surface can produce qualitative agreement with data for the dynamic surface returns.

  4. Imaging the Chicxulub central crater zone from large scale seismic acoustic wave propagation and gravity modeling

    NASA Astrophysics Data System (ADS)

    Fucugauchi, J. U.; Ortiz-Aleman, C.; Martin, R.

    2017-12-01

    Large complex craters are characterized by central uplifts that represent large-scale differential movement of deep basement from the transient cavity. Here we investigate the central sector of the large multiring Chicxulub crater, which has been surveyed by an array of marine, aerial and land-borne geophysical methods. Despite high contrasts in physical properties,contrasting results for the central uplift have been obtained, with seismic reflection surveys showing lack of resolution in the central zone. We develop an integrated seismic and gravity model for the main structural elements, imaging the central basement uplift and melt and breccia units. The 3-D velocity model built from interpolation of seismic data is validated using perfectly matched layer seismic acoustic wave propagation modeling, optimized at grazing incidence using shift in the frequency domain. Modeling shows significant lack of illumination in the central sector, masking presence of the central uplift. Seismic energy remains trapped in an upper low velocity zone corresponding to the sedimentary infill, melt/breccias and surrounding faulted blocks. After conversion of seismic velocities into a volume of density values, we use massive parallel forward gravity modeling to constrain the size and shape of the central uplift that lies at 4.5 km depth, providing a high-resolution image of crater structure.The Bouguer anomaly and gravity response of modeled units show asymmetries, corresponding to the crater structure and distribution of post-impact carbonates, breccias, melt and target sediments

  5. Observed correlation of Venus topography with the zonal wind and albedo at cloud top level: the role of stationary gravity waves.

    NASA Astrophysics Data System (ADS)

    Bertaux, Jean-Loup; Khatunstsev, Igor; Hauchecorne, Alain; Markiewicz, Wojtek; Emmanuel, Marcq; Sébastien, Lebonnois; Marina, Patsaeva; Alex, Turin; Anna, Fedorova

    2016-04-01

    Based on the analysis of UV images (at 365 nm) of Venus cloud top (altitude 67±2 km) collected with VMC (Venus Monitoring Camera) on board Venus Express (VEX), it is found that the zonal wind speed south of the equator (from 5°S to 15°s) shows a conspicuous variation (from -101 to -83 m/s) with geographic longitude of Venus, correlated with the underlying relief of Aphrodite Terra. We interpret this pattern as the result of stationary gravity waves produced at ground level by the up lift of air when the horizontal wind encounters a mountain slope. These waves can propagate up to cloud top level, break there and transfer their momentum to the zonal flow. Such upward propagation of gravity waves and influence on the wind speed vertical profile was shown to play an important role in the middle atmosphere of the Earth by Lindzen [1981], but is not reproduced in a current GCM of Venus atmosphere. Consistent with present findings, the two VEGA mission balloons experienced a small, but significant, difference of westward velocity, at their 53 km floating altitude. The albedo at 365 nm varies also with longitude and latitude in a pattern strikingly similar in the low latitude regions to a recent map of cloud top H2O [Fedorova et al., 2015], in which a lower UV albedo is correlated with increased H2O. We argue that H2O enhancement is the sign of upwelling, suggesting that the UV absorber is also brought to cloud top by upwelling.

  6. Equatorial Mesosphere and Lower Thermosphere/Ionosphere (MLTI) Response to Severe Cyclonic Storm `Aila' and `Ward' observed over North Indian Ocean

    NASA Astrophysics Data System (ADS)

    G J, B.

    2016-12-01

    The present work investigates the Equatorial Mesosphere Lower Thermosphere/Ionosphere (MLTI) response to severe cyclonic storm `Aila (23-26 May 2009)' and `Ward (10-16 December 2009)' which were observed over north Indian Ocean during the extended solar minimum of the year 2009. This report reveals the coupling between Tropical Cyclone and MLTI region. Tropical cyclone track and data can be obtained from Indian Meteorological Department (IMD), New Delhi. Mesospheric and Ionospheric variation can be examined with the help of ground based Mesosphere Lower Thermosphere (MLT) radar and Digisonde located at equatorial low latitude station, Tirunelveli (8.7oN, 77.8oE). The Outgoing Long wave Radiation (OLR) data is used as a proxy for identifying the convective activity, which are retrieved from NOAA Climate Data Centre. It is observed that the tropical cyclone induced convection as the driving agent for the increased gravity wave activity in the lower atmosphere. These upward propagating gravity waves deposit their energy and momentum into the upper region of atmosphere as `Travelling Ionospheric Disturbances (TIDs). During the cyclonic storm periods, we found increased gravity wave amplitude with upward propagation in the MLT region. Ionospheric response to severe cyclonic storm is examined with the dynamical parameters, foF2, hmF2, h'F2 and Total Election Content (TEC). Significant increase of foF2 frequency is observed during `Ward' cyclonic storm. Drastic variation in foF2 and h'F2 is observed during Aila cyclonic storm than ward event. More statistical analysis has been done for finding the correlation between cyclonic storm and Ionospheric parameters. Detailed results will be presented in the meeting.

  7. Analysis of gravity wave propagation and properties, comparison between WRF model simulations and LIDAR data in Southern France

    NASA Astrophysics Data System (ADS)

    Costantino, Lorenzo; Heinrich, Philippe

    2014-05-01

    Small scale atmospheric waves, usually referred as internal of Gravity Waves (GW), represent an efficient transport mechanism of energy and momentum through the atmosphere. They propagate upward from their sources in the lower atmosphere (flow over topography, convection and jet adjustment) to the middle and upper atmosphere. Depending on the horizontal wind shear, they can dissipate at different altitudes and force the atmospheric circulation of the stratosphere and mesosphere. The deposition of momentum associated with the dissipation, or wave breaking, exerts an acceleration to the mean flow, that can significantly alter the thermal and dynamical structure of the atmosphere. GW may have spatial scales that range from few to hundreds of kilometers and range from minutes to hours. For that reason, General Circulation Model (GCM) used in climate studies have generally a coarse resolution, of approximately 2-5° horizontally and 3 km vertically, in the stratosphere. This resolution is fine enough to resolve Rossby-waves but not the small-scale GW activity. Hence, to calculate the momentum-forcing generated by the unresolved waves, they use a drag parametrization which mainly consists in some tuning parameters, constrained by observations of wind circulation and temperature in the upper troposphere and middle atmosphere (Alexander et al., 2010). Traditionally, the GW Drag (GWD) parametrization is used in climate and forecasting models to adjust the structure of winter jets and the horizontal temperature gradient. It was firstly based on the parametrization of orographic waves, which represent zero-phase-speed waves generated by sub-grid topography. Regional models, with horizontal resolutions that can reach few tens or hundreds of meters, are able to directly resolve small-scale GW and may represent a valuable addition to direct observations. In the framework of the ARISE (Atmospheric dynamics Research InfraStructure in Europe) project, this study tests the capability of the Weather Research and Forecasting (WRF) model to generate and propagate GW forced by convection and orography, without any GW parametrization. Results from model simulations are compared with in-situ observations of potential energy vertical profiles in the stratosphere, measured by a LIDAR located at the Observatoire de Haute Provence (Southern France). This comparison allows, to a certain extent, to validate WRF numerical results and quantify some of those wave parameters (e.g., GW drag force, intrinsic frequency, breaking level altitude, etc..) that are fundamental for a deeper understanding of GW role in atmospheric dynamics, but that are not easily measurable by ground- or space-based systems (limited to specific region or certain latitude band). Alexander, M. J., Geller, M., McLandress, C., Polavarapu, S., Preusse, P., Sassi, F., Sato, K., Eckermann, S., Ern, M., Hertzog, A., Kawatani, Y., Pulido, M., Shaw, T. A., Sigmond, M., Vincent, R. and Watanabe, S. (2010), Recent developments in gravity-wave effects in climate models and the global distribution of gravity-wave momentum flux from observations and models. Q.J.R. Meteorol. Soc., 136: 1103-1124. doi: 10.1002/qj.637

  8. Transition wave in the collapse of the San Saba bridge

    NASA Astrophysics Data System (ADS)

    Brun, Michele; Giaccu, Gian Felice; Movchan, Alexander; Slepyan, Leonid

    2014-09-01

    A domino wave is a well-known illustration of a transition wave, which appears to reach a stable regime of propagation. Nature also provides spectacular cases of gravity driven transition waves at large scale, observed in snow avalanches and landslides. On a different scale, the micro-structure level interaction between different constituents of the macro-system may influence critical regimes leading to instabilities in avalanche-like flow systems. Most transition waves observed in systems such as bulletproof vests, racing helmets under impact, shock-wave driven fracture in solids, are transient. For some structured waveguides a transition wave may stabilize to achieve a steady regime. Here we show that the failure of a long bridge is also driven by a transition wave that may allow for steady-state regimes. The recent observation of a failure of the San Saba Bridge in Texas provides experimental evidence supporting an elegant theory based on the notion of transition failure wave. No one would think of an analogy between a snow avalanche and a collapsing bridge. Despite an apparent controversy of such a comparison, these two phenomena can both be described in the framework of a model of the dynamic gravity driven transition fault.

  9. Deep Space Network Radiometric Remote Sensing Program

    NASA Technical Reports Server (NTRS)

    Walter, Steven J.

    1994-01-01

    Planetary spacecraft are viewed through a troposphere that absorbs and delays radio signals propagating through it. Tropospheric water, in the form of vapor, cloud liquid, and precipitation, emits radio noise which limits satellite telemetry communication link performance. Even at X-band, rain storms have severely affected several satellite experiments including a planetary encounter. The problem will worsen with DSN implementation of Ka-band because communication link budgets will be dominated by tropospheric conditions. Troposphere-induced propagation delays currently limit VLBI accuracy and are significant sources of error for Doppler tracking. Additionally, the success of radio science programs such as satellite gravity wave experiments and atmospheric occultation experiments depends on minimizing the effect of water vapor-induced propagation delays. In order to overcome limitations imposed by the troposphere, the Deep Space Network has supported a program of radiometric remote sensing. Currently, water vapor radiometers (WVRs) and microwave temperature profilers (MTPs) support many aspects of the Deep Space Network operations and research and development programs. Their capability to sense atmospheric water, microwave sky brightness, and atmospheric temperature is critical to development of Ka-band telemetry systems, communication link models, VLBI, satellite gravity wave experiments, and radio science missions. During 1993, WVRs provided data for propagation model development, supported planetary missions, and demonstrated advanced tracking capability. Collection of atmospheric statistics is necessary to model and predict performance of Ka-band telemetry links, antenna arrays, and radio science experiments. Since the spectrum of weather variations has power at very long time scales, atmospheric measurements have been requested for periods ranging from one year to a decade at each DSN site. The resulting database would provide reliable statistics on daily, monthly, and seasonal variations. Only long-term monitoring will prevent biases from being introduced by an exceptionally wet or dry year. Support for planetary missions included tropospheric calibration for the recent Mars Observer gravity wave experiments and Ka-band link experiment (KaBLE). Additionally, several proposed radio science experiments such as profiling planetary atmospheres using satellite occultations and Ka-band gravitational wave searches require advanced radiometer technology development. Finally, there has been a consistent advanced technology program to advance satellite navigational and tracking capabilities. This year that included an experiment with radiometer based tropospheric calibration for a series of VLBI catalog measurements.

  10. Spatially covariant theories of gravity: disformal transformation, cosmological perturbations and the Einstein frame

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fujita, Tomohiro; Gao, Xian; Yokoyama, Jun'ichi, E-mail: tomofuji@stanford.edu, E-mail: gao@th.phys.titech.ac.jp, E-mail: yokoyama@resceu.s.u-tokyo.ac.jp

    We investigate the cosmological background evolution and perturbations in a general class of spatially covariant theories of gravity, which propagates two tensor modes and one scalar mode. We show that the structure of the theory is preserved under the disformal transformation. We also evaluate the primordial spectra for both the gravitational waves and the curvature perturbation, which are invariant under the disformal transformation. Due to the existence of higher spatial derivatives, the quadratic Lagrangian for the tensor modes itself cannot be transformed to the form in the Einstein frame. Nevertheless, there exists a one-parameter family of frames in which themore » spectrum of the gravitational waves takes the standard form in the Einstein frame.« less

  11. Effects of initial amplitude and pycnocline thickness on the evolution of mode-2 internal solitary waves

    NASA Astrophysics Data System (ADS)

    Cheng, Ming-Hung; Hsieh, Chih-Min; Hwang, Robert R.; Hsu, John R.-C.

    2018-04-01

    Numerical simulations are performed to investigate the effects of the initial amplitude and pycnocline thickness on the evolutions of convex mode-2 internal solitary waves propagating on the flat bottom. A finite volume method based on a Cartesian grid system is adopted to solve the Navier-Stokes equations using the improved delayed detached eddy simulation turbulent closure model. Mode-2 internal solitary waves (ISWs) are found to become stable at t = 15 s after lifting a vertical sluice gate by a gravity collapse mechanism. Numerical results from three cases of pycnocline thickness reveal the following: (1) the occurrence of a smooth mode-2 ISW when the wave amplitude is small; (2) the PacMan phenomenon for large amplitude waves; and (3) pseudo vortex shedding in the case of very large amplitudes. In general, basic wave properties (wave amplitude, wave speed, vorticity, and wave energy) increase as the wave amplitude increases for a specific value of the pycnocline thickness. Moreover, the pycnocline thickness chiefly determines the core size of a convex mode-2 ISW, while the step depth (that generates an initial wave amplitude) and offset in pycnocline govern the waveform type during its propagation on the flat bottom.

  12. Role of Compressibility on Tsunami Propagation

    NASA Astrophysics Data System (ADS)

    Abdolali, Ali; Kirby, James T.

    2017-12-01

    In the present paper, we aim to reduce the discrepancies between tsunami arrival times evaluated from tsunami models and real measurements considering the role of ocean compressibility. We perform qualitative studies to reveal the phase speed reduction rate via a modified version of the Mild Slope Equation for Weakly Compressible fluid (MSEWC) proposed by Sammarco et al. (2013). The model is validated against a 3-D computational model. Physical properties of surface gravity waves are studied and compared with those for waves evaluated from an incompressible flow solver over realistic geometry for 2011 Tohoku-oki event, revealing reduction in phase speed.Plain Language SummarySubmarine earthquakes and submarine mass failures (SMFs), can generate long gravitational waves (or tsunamis) that propagate at the free surface. Tsunami waves can travel long distances and are known for their dramatic effects on coastal areas. Nowadays, numerical models are used to reconstruct the tsunamigenic events for many scientific and socioeconomic aspects i.e. Tsunami Early Warning Systems, inundation mapping, risk and hazard analysis, etc. A number of typically neglected parameters in these models cause discrepancies between model outputs and observations. Most of the tsunami models predict tsunami arrival times at distant stations slightly early in comparison to observations. In this study, we show how ocean compressibility would affect the tsunami wave propagation speed. In this framework, an efficient two-dimensional model equation for the weakly compressible ocean has been developed, validated and tested for simplified and real cases against three dimensional and incompressible solvers. Taking the effect of compressibility, the phase speed of surface gravity waves is reduced compared to that of an incompressible fluid. Then, we used the model for the case of devastating Tohoku-Oki 2011 tsunami event, improving the model accuracy. This study sheds light for future model development to include ocean compressibility among other typically neglected parameters.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20100026453','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20100026453"><span>Ten-Year Climatology of Summertime Diurnal Rainfall Rate Over the Conterminous U.S.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Matsui, Toshihisa; Mocko, David; Lee, Myong-In; Tao, Wei-Kuo; Suarez, Max J.; Pielke, Roger A., Sr.</p> <p>2010-01-01</p> <p>Diurnal cycles of summertime rainfall rates are examined over the conterminous United States, using radar-gauge assimilated hourly rainfall data. As in earlier studies, rainfall diurnal composites show a well-defined region of rainfall propagation over the Great Plains and an afternoon maximum area over the south and eastern portion of the United States. Zonal phase speeds of rainfall in three different small domains are estimated, and rainfall propagation speeds are compared with background zonal wind speeds. Unique rainfall propagation speeds in three different regions can be explained by the evolution of latent-heat theory linked to the convective available potential energy, than by gust-front induced or gravity wave propagation mechanisms.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20120000926','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20120000926"><span>The High-Resolution Wave-Propagation Method Applied to Meso- and Micro-Scale Flows</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Ahmad, Nashat N.; Proctor, Fred H.</p> <p>2012-01-01</p> <p>The high-resolution wave-propagation method for computing the nonhydrostatic atmospheric flows on meso- and micro-scales is described. The design and implementation of the Riemann solver used for computing the Godunov fluxes is discussed in detail. The method uses a flux-based wave decomposition in which the flux differences are written directly as the linear combination of the right eigenvectors of the hyperbolic system. The two advantages of the technique are: 1) the need for an explicit definition of the Roe matrix is eliminated and, 2) the inclusion of source term due to gravity does not result in discretization errors. The resulting flow solver is conservative and able to resolve regions of large gradients without introducing dispersion errors. The methodology is validated against exact analytical solutions and benchmark cases for non-hydrostatic atmospheric flows.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20020002330&hterms=wave+oscillation&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3Dwave%2Boscillation','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20020002330&hterms=wave+oscillation&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3Dwave%2Boscillation"><span>Model of Wave Driven Flow Oscillation for Solar Cycle</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Mayr, Hans G.; Wolff, Charles L.; Einaudi, Franco (Technical Monitor)</p> <p>2001-01-01</p> <p>At low latitudes in the Earth's atmosphere, the observed zonal flow velocities are dominated by the semi-annual and quasi-biennial oscillations with periods of 6 months and 20 to 32 months respectively. These terrestrial oscillations, the SAO and QBO respectively, are driven by wave-mean flow interactions due to upward propagating planetary-scale waves (periods of days) and small-scale gravity waves (periods of hours). We are proposing (see also Mayr et al., GRL, 2001) that such a mechanism may drive long period oscillations (reversing flows) in stellar and planetary interiors, and we apply it to the Sun. The reversing flows would occur below the convective envelope where waves can propagate. We apply a simplified, one dimensional, analytical flow model that incorporates a gravity wave parameterization due to Hines (1997). Based on this analysis, our estimates show that relatively small wave amplitudes less than 10 m/s can produce zonal flow amplitudes of 20 m/s, which should be sufficient to generate the observed variations in the magnetic field. To produce the 22-year period of oscillation, a low buoyancy frequency must be chosen, and this places the proposed flow in a region that is close to (and below) the base of the convective envelope. Enhanced turbulence associated with this low stability should help to generate the dynamo currents. With larger stability at deeper levels in the solar interior, the model can readily produce also oscillations with much longer periods. To provide an understanding of the fluid dynamics involved, we present numerical results from a 2D model for the terrestrial atmosphere that exemplify the non-linear nature of the wave interaction for which a mechanical analog is the escapement mechanism of the clock.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016JGRA..121.9204L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016JGRA..121.9204L"><span>Characteristics of mesospheric gravity waves over the southeastern Tibetan Plateau region</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Li, Qinzeng; Xu, Jiyao; Liu, Xiao; Yuan, Wei; Chen, Jinsong</p> <p>2016-09-01</p> <p>The Tibetan Plateau (TP), known as "Third Pole" of the Earth, has important influences on global climates and local weather. An important objective in present study is to investigate how orographic features of the TP affect the geographical distributions of gravity wave (GW) sources. Three-year OH airglow images (November 2011 to October 2014) from Qujing (25.6°N, 103.7°E) were used to study the characteristics of GWs over the southeastern TP region. Along with the almost concurrent and collocated meteor radar wind measurements and temperature data from SABER/TIMED satellite, the propagation conditions of three types of GWs (freely propagating, ducted, or evanescent) were estimated. Most of GWs exhibited ducted or evanescent characteristics. Almost all GWs propagate southeastward in winter. The GW propagation directions in winter are significantly different from other airglow imager observations at northern middle latitudes. Wind data and convective precipitation fields from the European Centre for Medium-Range Weather Forecasts reanalysis data are used to study the sources of GWs on the edge of the TP. Using backward ray-tracing analysis, we find that most of the mesospheric freely propagating GWs are located in or near the large wind shear intensity region ( 10 km- 17 km) on the southeastern edge of the TP in spring and winter. The averaged value of momentum flux is 11.6 ± 5.2 m2/s2 in winter and 7.5 ± 3.1 m2/s2 in summer. This work will provide valuable information for the GW parameterization schemes in general circulation models in TP region.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/21895060','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/21895060"><span>Observationally constrained modeling of sound in curved ocean internal waves: examination of deep ducting and surface ducting at short range.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Duda, Timothy F; Lin, Ying-Tsong; Reeder, D Benjamin</p> <p>2011-09-01</p> <p>A study of 400 Hz sound focusing and ducting effects in a packet of curved nonlinear internal waves in shallow water is presented. Sound propagation roughly along the crests of the waves is simulated with a three-dimensional parabolic equation computational code, and the results are compared to measured propagation along fixed 3 and 6 km source/receiver paths. The measurements were made on the shelf of the South China Sea northeast of Tung-Sha Island. Construction of the time-varying three-dimensional sound-speed fields used in the modeling simulations was guided by environmental data collected concurrently with the acoustic data. Computed three-dimensional propagation results compare well with field observations. The simulations allow identification of time-dependent sound forward scattering and ducting processes within the curved internal gravity waves. Strong acoustic intensity enhancement was observed during passage of high-amplitude nonlinear waves over the source/receiver paths, and is replicated in the model. The waves were typical of the region (35 m vertical displacement). Two types of ducting are found in the model, which occur asynchronously. One type is three-dimensional modal trapping in deep ducts within the wave crests (shallow thermocline zones). The second type is surface ducting within the wave troughs (deep thermocline zones). © 2011 Acoustical Society of America</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFMSA33A2429P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFMSA33A2429P"><span>Mesospheric Temperature Measurements over Scandinavia During the Gravity Wave Life Cycle Campaign (GW-LCYCLE)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Pautet, P. D.; Taylor, M.; Kaifler, B.</p> <p>2016-12-01</p> <p>The Gravity Wave Life Cycle (GW-LCYCLE) project took place in Northern Scandinavia during the winter 2015-16. This international program focused on investigating the generation and deep propagation of atmospheric gravity waves, especially the orographic waves generated over the Scandinavian mountain range. A series of instruments was operated at several ground-based locations and on-board the DLR HALO Gulfstream V and Falcon aircrafts. As part of this project, Utah State University (USU) deployed 3 Advanced Mesospheric Temperature Mappers (AMTM) at the ALOMAR facility, Norway (operational since December 2010), at the IRF institute in Kiruna, Sweden, and at the FMI institute in Sodankylä, Finland. Each of these instruments measures the OH (3,1) rotational temperature over a large region (200x160km) at 87km altitude. During the campaign, their total coverage extended across the Scandinavian Mountain Range, from the wind side in the west to 500 km to the east in the lee of the mountains, allowing the investigation of the occurrence and evolution of gravity waves (GWs) over this part of Scandinavia. Furthermore, the AMTM in Sodankylä operated in the container housing a DLR Rayleigh lidar. Both instruments ran simultaneously and autonomously from November 2015 to April 2016, providing an unprecedented complementary high-quality data set. This presentation will introduce preliminary results obtained during this campaign, in particular the evolution of the mesospheric temperature through the winter, the analysis of mountain waves occurrence and dynamics at mesospheric altitude, as well as the investigation of interesting individual GW cases.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMSA33A2581H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMSA33A2581H"><span>Numerical simulation of convective generated gravity waves in the stratosphere and MLT regions.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Heale, C. J.; Snively, J. B.</p> <p>2017-12-01</p> <p>Convection is an important source of gravity wave generation, especially in the summer tropics and midlatitudes, and coherent wave fields above convection are now routinely measured in the stratosphere and mesosphere [e.g. Hoffmann et al., JGR, 118, 2013; Gong et al., JGR, 120, 2015; Perwitasari et al., GRL, 42, 22, 2016]. Numerical studies have been performed to investigate the generation mechanisms, source spectra, and their effects on the middle and upper atmosphere [e.g. Fovell et al., AMS, 49,16, 1992; Alexander and Holton, Atmos. Chem. Phys., 4 2004; Vincent et al., JGR, 1118, 2013], however there is still considerable work needed to fully describe these parameters. GCMs currently lack the resolution to explicitly simulate convection generation and rely on simplified parameterizations while full cloud resolving models are computationally expensive and often only extend into the stratosphere. More recent studies have improved the realism of these simulations by using radar derived precipitation rates to drive latent heating in models that simulate convection [Grimsdell et al., AMS, 67, 2010; Stephan and Alexander., J. Adv. Model. Earth. Syst, 7, 2015], however they too only consider wave propagation in the troposphere and stratosphere. We use a 2D nonlinear, fully compressible model [Snively and Pasko., JGR, 113, 2008] to excite convectively generated waves, based on NEXRAD radar data, using the Stephan and Alexander [2015] algorithms. We study the propagation, and spectral evolution of the generated waves up into the MLT region. Ambient atmosphere parameters are derived from observations and MERRA-2 reanalysis data, and stratospheric (AIRS) and mesospheric (Lidar, OH airglow) observations enable comparisons with simulation results.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015EM%26P..116...67P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015EM%26P..116...67P"><span>Generation of Artificial Acoustic-Gravity Waves and Traveling Ionospheric Disturbances in HF Heating Experiments</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Pradipta, R.; Lee, M. C.; Cohen, J. A.; Watkins, B. J.</p> <p>2015-10-01</p> <p>We report the results of our ionospheric HF heating experiments to generate artificial acoustic-gravity waves (AGW) and traveling ionospheric disturbances (TID), which were conducted at the High-frequency Active Auroral Research Program facility in Gakona, Alaska. Based on the data from UHF radar, GPS total electron content, and ionosonde measurements, we found that artificial AGW/TID can be generated in ionospheric modification experiments by sinusoidally modulating the power envelope of the transmitted O-mode HF heater waves. In this case, the modulation frequency needs to be set below the characteristic Brunt-Vaisala frequency at the relevant altitudes. We avoided potential contamination from naturally-occurring AGW/TID of auroral origin by conducting the experiments during geomagnetically quiet time period. We determine that these artificial AGW/TID propagate away from the edge of the heated region with a horizontal speed of approximately 160 m/s.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li class="active"><span>14</span></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_14 --> <div id="page_15" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li class="active"><span>15</span></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="281"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/21230759','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/21230759"><span>Analog model for quantum gravity effects: phonons in random fluids.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Krein, G; Menezes, G; Svaiter, N F</p> <p>2010-09-24</p> <p>We describe an analog model for quantum gravity effects in condensed matter physics. The situation discussed is that of phonons propagating in a fluid with a random velocity wave equation. We consider that there are random fluctuations in the reciprocal of the bulk modulus of the system and study free phonons in the presence of Gaussian colored noise with zero mean. We show that, in this model, after performing the random averages over the noise function a free conventional scalar quantum field theory describing free phonons becomes a self-interacting model.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70028356','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70028356"><span>Integration of P- and SH-wave high-resolution seismic reflection and micro-gravity techniques to improve interpretation of shallow subsurface structure: New Madrid seismic zone</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Bexfield, C.E.; McBride, J.H.; Pugin, Andre J.M.; Ravat, D.; Biswas, S.; Nelson, W.J.; Larson, T.H.; Sargent, S.L.; Fillerup, M.A.; Tingey, B.E.; Wald, L.; Northcott, M.L.; South, J.V.; Okure, M.S.; Chandler, M.R.</p> <p>2006-01-01</p> <p>Shallow high-resolution seismic reflection surveys have traditionally been restricted to either compressional (P) or horizontally polarized shear (SH) waves in order to produce 2-D images of subsurface structure. The northernmost Mississippi embayment and coincident New Madrid seismic zone (NMSZ) provide an ideal laboratory to study the experimental use of integrating P- and SH-wave seismic profiles, integrated, where practicable, with micro-gravity data. In this area, the relation between "deeper" deformation of Paleozoic bedrock associated with the formation of the Reelfoot rift and NMSZ seismicity and "shallower" deformation of overlying sediments has remained elusive, but could be revealed using integrated P- and SH-wave reflection. Surface expressions of deformation are almost non-existent in this region, which makes seismic reflection surveying the only means of detecting structures that are possibly pertinent to seismic hazard assessment. Since P- and SH-waves respond differently to the rock and fluid properties and travel at dissimilar speeds, the resulting seismic profiles provide complementary views of the subsurface based on different levels of resolution and imaging capability. P-wave profiles acquired in southwestern Illinois and western Kentucky (USA) detect faulting of deep, Paleozoic bedrock and Cretaceous reflectors while coincident SH-wave surveys show that this deformation propagates higher into overlying Tertiary and Quaternary strata. Forward modeling of micro-gravity data acquired along one of the seismic profiles further supports an interpretation of faulting of bedrock and Cretaceous strata. The integration of the two seismic and the micro-gravity methods therefore increases the scope for investigating the relation between the older and younger deformation in an area of critical seismic hazard. ?? 2006 Elsevier B.V. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017PhRvL.119h4301B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017PhRvL.119h4301B"><span>Popsicle-Stick Cobra Wave</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Boucher, Jean-Philippe; Clanet, Christophe; Quéré, David; Chevy, Frédéric</p> <p>2017-08-01</p> <p>The cobra wave is a popular physical phenomenon arising from the explosion of a metastable grillage made of popsicle sticks. The sticks are expelled from the mesh by releasing the elastic energy stored during the weaving of the structure. Here we analyze both experimentally and theoretically the propagation of the wave front depending on the properties of the sticks and the pattern of the mesh. We show that its velocity and its shape are directly related to the recoil imparted to the structure by the expelled sticks. Finally, we show that the cobra wave can only exist for a narrow range of parameters constrained by gravity and rupture of the sticks.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015CQGra..32l4009D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015CQGra..32l4009D"><span>1974: the discovery of the first binary pulsar</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Damour, Thibault</p> <p>2015-06-01</p> <p>The 1974 discovery, by Russell A Hulse and Joseph H Taylor, of the first binary pulsar, PSR B1913+16, opened up new possibilities for the study of relativistic gravity. PSR B1913+16, as well as several other binary pulsars, provided direct observational proof that gravity propagates at the velocity of light and has a quadrupolar structure. Binary pulsars also provided accurate tests of the strong-field regime of relativistic gravity. General relativity has passed all of the binary pulsar tests with flying colors. The discovery of binary pulsars also had very important consequences for astrophysics, leading to accurate measurement of neutron star masses, improved understanding of the possible evolution scenarios for the co-evolution of binary stars, and proof of the existence of binary neutron stars emitting gravitational waves for hundreds of millions of years, before coalescing in catastrophic events radiating intense gravitational wave signals, and probably also leading to important emissions of electromagnetic radiation and neutrinos. This article reviews the history of the discovery of the first binary pulsar, and describes both its immediate impact and its longer-term effect on theoretical and experimental studies of relativistic gravity.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018JGRA..123.3548W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018JGRA..123.3548W"><span>Buoyancy Waves in Earth's Magnetosphere: Calculations for a 2-D Wedge Magnetosphere</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wolf, R. A.; Toffoletto, F. R.; Schutza, A. M.; Yang, J.</p> <p>2018-05-01</p> <p>To improve theoretical understanding of the braking oscillations observed in Earth's inner plasma sheet, we have derived a theoretical model that describes k∥ = 0 magnetohydrodynamic waves in an idealized magnetospheric configuration that consists of a 2-D wedge with circular-arc field lines. The low-frequency, short-perpendicular-wavelength mode obeys a differential equation that is often used to describe buoyancy oscillations in a neutral atmosphere, so we call those waves "buoyancy waves," though the magnetospheric buoyancy force results from magnetic tension rather than gravity. Propagation of the wave is governed mainly by a position-dependent frequency ωb, the "buoyancy frequency," which is a fundamental property of the magnetosphere. The waves propagate if ωb > ω but otherwise evanesce. In the wedge magnetosphere, ωb turns out to be exactly the fundamental oscillation frequency for poloidal oscillations of a thin magnetic filament, and we assume that the same is true for the real magnetosphere. Observable properties of buoyancy oscillations are discussed, but propagation characteristics vary considerably with the state of the magnetosphere. For a given event, the buoyancy frequency and propagation characteristics can be determined from pressure and density profiles and a magnetic field model, and these characteristics have been worked out for one typical configuration. A localized disturbance that initially resembles a dipolarizing flux bundle spreads east-west and also penetrates into the plasmasphere to some extent. The calculated amplitude near the center of the original wave packet decays in a few oscillation periods, even though our calculation includes no dissipation.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016JGRC..121.7701B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016JGRC..121.7701B"><span>Tsunami generation and associated waves in the water column and seabed due to an asymmetric earthquake motion within an anisotropic substratum</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Bagheri, Amirhossein; Greenhalgh, Stewart; Khojasteh, Ali; Rahimian, Mohammad; Attarnejad, Reza</p> <p>2016-10-01</p> <p>In this paper, closed-form integral expressions are derived to describe how surface gravity waves (tsunamis) are generated when general asymmetric ground displacement (due to earthquake rupturing), involving both horizontal and vertical components of motion, occurs at arbitrary depth within the interior of an anisotropic subsea solid beneath the ocean. In addition, we compute the resultant hydrodynamic pressure within the seawater and the elastic wavefield within the seabed at any position. The method of potential functions and an integral transform approach, accompanied by a special contour integration scheme, are adopted to handle the equations of motion and produce the numerical results. The formulation accounts for any number of possible acoustic-gravity modes and is valid for both shallow and deep water situations as well as for any focal depth of the earthquake source. Phase and group velocity dispersion curves are developed for surface gravity (tsunami mode), acoustic-gravity, Rayleigh, and Scholte waves. Several asymptotic cases which arise from the general analysis are discussed and compared to existing solutions. The role of effective parameters such as hypocenter location and frequency of excitation is examined and illustrated through several figures which show the propagation pattern in the vertical and horizontal directions. Attention is directed to the unexpected contribution from the horizontal ground motion. The results have important application in several fields such as tsunami hazard prediction, marine seismology, and offshore and coastal engineering. In a companion paper, we examine the effect of ocean stratification on the appearance and character of internal and surface gravity waves.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFMSA23C..03S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFMSA23C..03S"><span>A ground-base Radar network to access the 3D structure of MLT winds</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Stober, G.; Chau, J. L.; Wilhelm, S.; Jacobi, C.</p> <p>2016-12-01</p> <p>The mesosphere/lower thermosphere (MLT) is a highly variable atmospheric region driven by wave dynamics at various scales including planetary waves, tides and gravity waves. Some of these propagate through the MLT into the thermosphere/ionosphere carrying energy and momentum from the middle atmosphere into the upper atmosphere. To improve our understanding of the wave energetics and momentum transfer during their dissipation it is essential to characterize their space time properties. During the last two years we developed a new experimental approach to access the horizontal structure of wind fields at the MLT using a meteor radar network in Germany, which we called MMARIA - Multi-static Multi-frequency Agile Radar for Investigation of the Atmosphere. The network combines classical backscatter meteor radars and passive forward scatter radio links. We present our preliminary results using up to 7 different active and passive radio links to obtain horizontally resolved wind fields applying a statistical inverse method. The wind fields are retrieved with 15-30 minutes temporal resolution on a grid with 30x30 km horizontal spacing. Depending on the number of observed meteors, we are able to apply the wind field inversion at heights between 84-94 km. The horizontally resolved wind fields provide insights of the typical horizontal gravity wave length and the energy cascade from large scales to small scales. We present first power spectra indicating the transition from the synoptic wave scale to the gravity wave scale.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19890035218&hterms=Wave+Energy&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3DWave%2BEnergy','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19890035218&hterms=Wave+Energy&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3DWave%2BEnergy"><span>An estimate of equatorial wave energy flux at 9- to 90-day periods in the Central Pacific</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Eriksen, Charles C.; Richman, James G.</p> <p>1988-01-01</p> <p>Deep fluctuations in current along the equator in the Central Pacific are dominated by coherent structures which correspond closely to narrow-band propagating equatorial waves. Currents were measured roughly at 1500 and 3000 m depths at five moorings between 144 and 148 deg W from January 1981 to March 1983, as part of the Pacific Equatorial Ocean Dynamics program. In each frequency band resolved, a single complex empirical orthogonal function accounts for half to three quarters of the observed variance in either zonal or meridional current. Dispersion for equatorial first meridional Rossby and Rossby gravity waves is consistent with the observed vertical-zonal coherence structure. The observations indicate that energy flux is westward and downward in long first meridional mode Rossby waves at periods 45 days and longer, and eastward and downward in short first meridional mode Rossby waves and Rossby-gravity waves at periods 30 days and shorter. A local minimum in energy flux occurs at periods corresponding to a maximum in upper-ocean meridional current energy contributed by tropical instability waves. Total vertical flux across the 9- to 90-day period range is 2.5 kW/m.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/22591516-robust-acoustic-wave-manipulation-bubbly-liquids','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22591516-robust-acoustic-wave-manipulation-bubbly-liquids"><span>Robust acoustic wave manipulation of bubbly liquids</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Gumerov, N. A., E-mail: gumerov@umiacs.umd.edu; Center for Micro- and Nanoscale Dynamics of Dispersed Systems, Bashkir State University, Ufa 450076; Akhatov, I. S.</p> <p></p> <p>Experiments with water–air bubbly liquids when exposed to acoustic fields of frequency ∼100 kHz and intensity below the cavitation threshold demonstrate that bubbles ∼30 μm in diameter can be “pushed” away from acoustic sources by acoustic radiation independently from the direction of gravity. This manifests formation and propagation of acoustically induced transparency waves (waves of the bubble volume fraction). In fact, this is a collective effect of bubbles, which can be described by a mathematical model of bubble self-organization in acoustic fields that matches well with our experiments.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1438664','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/1438664"><span>Treatment of the polar coordinate singularity in axisymmetric wave propagation using high-order summation-by-parts operators on a staggered grid</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Prochnow, Bo; O'Reilly, Ossian; Dunham, Eric M.</p> <p></p> <p>In this paper, we develop a high-order finite difference scheme for axisymmetric wave propagation in a cylindrical conduit filled with a viscous fluid. The scheme is provably stable, and overcomes the difficulty of the polar coordinate singularity in the radial component of the diffusion operator. The finite difference approximation satisfies the principle of summation-by-parts (SBP), which is used to establish stability using the energy method. To treat the coordinate singularity without losing the SBP property of the scheme, a staggered grid is introduced and quadrature rules with weights set to zero at the endpoints are considered. Finally, the accuracy ofmore » the scheme is studied both for a model problem with periodic boundary conditions at the ends of the conduit and its practical utility is demonstrated by modeling acoustic-gravity waves in a magmatic conduit.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2011AGUFMSA21B..01M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2011AGUFMSA21B..01M"><span>Imaging, radio, and modeling results pertaining to the ionospheric signature of the 11 March 2011 tsunami over the Pacific Ocean</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Makela, J. J.; Lognonne, P.; Occhipinti, G.; Hebert, H.; Gehrels, T.; Coisson, P.; Rolland, L. M.; Allgeyer, S.; Kherani, A.</p> <p>2011-12-01</p> <p>The Mw=9.0 earthquake that occurred off the east coast of Honshu, Japan on 11 March 2011 launched a tsunami that traveled across the Pacific Ocean, in turn launching vertically propagating atmospheric gravity waves. Upon reaching 250-350 km in altitude, these waves impressed their signature on the thermosphere/ionosphere system. We present observations of this signature obtained using a variety of radio instruments and an imaging system located on the islands of Hawaii. These measurements represent the first optical images recorded of the airglow signature resulting from the passage of a tsunami. Results from these instruments clearly show wave structure propagating in the upper atmosphere with the same velocity as the ocean tsunami, emphasizing the coupled nature of the ocean, atmosphere, and ionosphere. Modeling results are also presented to highlight current understandings of this coupling process.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/pages/biblio/1438664-treatment-polar-coordinate-singularity-axisymmetric-wave-propagation-using-high-order-summation-parts-operators-staggered-grid','SCIGOV-DOEP'); return false;" href="https://www.osti.gov/pages/biblio/1438664-treatment-polar-coordinate-singularity-axisymmetric-wave-propagation-using-high-order-summation-parts-operators-staggered-grid"><span>Treatment of the polar coordinate singularity in axisymmetric wave propagation using high-order summation-by-parts operators on a staggered grid</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/pages">DOE PAGES</a></p> <p>Prochnow, Bo; O'Reilly, Ossian; Dunham, Eric M.; ...</p> <p>2017-03-16</p> <p>In this paper, we develop a high-order finite difference scheme for axisymmetric wave propagation in a cylindrical conduit filled with a viscous fluid. The scheme is provably stable, and overcomes the difficulty of the polar coordinate singularity in the radial component of the diffusion operator. The finite difference approximation satisfies the principle of summation-by-parts (SBP), which is used to establish stability using the energy method. To treat the coordinate singularity without losing the SBP property of the scheme, a staggered grid is introduced and quadrature rules with weights set to zero at the endpoints are considered. Finally, the accuracy ofmore » the scheme is studied both for a model problem with periodic boundary conditions at the ends of the conduit and its practical utility is demonstrated by modeling acoustic-gravity waves in a magmatic conduit.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018GeoRL..45..410C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018GeoRL..45..410C"><span>Mesoscale Dynamical Regimes in the Midlatitudes</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Craig, G. C.; Selz, T.</p> <p>2018-01-01</p> <p>The atmospheric mesoscales are characterized by a complex variety of meteorological phenomena that defy simple classification. Here a full space-time spectral analysis is carried out, based on a 7 day convection-permitting simulation of springtime midlatitude weather on a large domain. The kinetic energy is largest at synoptic scales, and on the mesoscale it is largely confined to an "advective band" where space and time scales are related by a constant of proportionality which corresponds to a velocity scale of about 10 m s-1. Computing the relative magnitude of different terms in the governing equations allows the identification of five dynamical regimes. These are tentatively identified as quasi-geostrophic flow, propagating gravity waves, stationary gravity waves related to orography, acoustic modes, and a weak temperature gradient regime, where vertical motions are forced by diabatic heating.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMSH24A..07H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMSH24A..07H"><span>First results of eclipse induced pressure and turbulence changes in South Carolina</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hiscox, A.; McCombs, A. G.; Stewart, M. J.</p> <p>2017-12-01</p> <p>Total solar eclipses supply both visual captivation and a controlled meteorological experiment by reason of a sudden decrease in radiation from the Sun. This presentation will provide first results from a field experiment focused on the atmospheric surface layer changes before, during, and after a total solar eclipse. A suite of instruments including radiosondes, aerosol lidar, sonic anemometers, and microbarographs will be deployed one mile from the total eclipse centerline outside Columbia, South Carolina. The results should not only confirm the commonly expected changes in sensible weather, but also provide insight into the generation and propagation of internal gravity waves. These waves propagate and transfer both energy and momentum vertically to and from the upper levels of the atmosphere. Early scientific results are expected to provide IGW vertical propagation speeds from succesive radiosonde measurements, while triangulated surface pressure measurements will provide timing of wave activity. Other anticipated results to be presented are changes in turbulence turbulence stationarity and pressure pertubations. Finally, the sucess of a major outreach event held in tandem with the scientific experiement will be discussed.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015JGRA..120.3009C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015JGRA..120.3009C"><span>Plasma flux and gravity waves in the midlatitude ionosphere during the solar eclipse of 20 May 2012</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Chen, Gang; Wu, Chen; Huang, Xueqin; Zhao, Zhengyu; Zhong, Dingkun; Qi, Hao; Huang, Liang; Qiao, Lei; Wang, Jin</p> <p>2015-04-01</p> <p>The solar eclipse effects on the ionosphere are very complex. Except for the ionization decay due to the decrease of the photochemical process, the couplings of matter and energy between the ionosphere and the regions above and below will introduce much more disturbances. Five ionosondes in the Northeast Asia were used to record the midlatitude ionospheric responses to the solar eclipse of 20 May 2012. The latitude dependence of the eclipse lag was studied first. The foF2 response to the eclipse became slower with increased latitude. The response of the ionosphere at the different latitudes with the same eclipse obscuration differed from each other greatly. The plasma flux from the protonsphere was possibly produced by the rapid temperature drop in the lunar shadow to make up the ionization loss. The greater downward plasma flux was generated at higher latitude with larger dip angle and delayed the ionospheric response later. The waves in the foEs and the plasma frequency at the fixed height in the F layer are studied by the time period analytic method. The gravity waves of 43-51 min center period during and after the solar eclipse were found over Jeju and I-Cheon. The northward group velocity component of the gravity waves was estimated as ~108.7 m/s. The vertical group velocities between 100 and 150 km height over the two stations were calculated as ~5 and ~4.3 m/s upward respectively, indicating that the eclipse-induced gravity waves propagated from below the ionosphere.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016PhDT.......177G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016PhDT.......177G"><span>Source modelling at the dawn of gravitational-wave astronomy</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Gerosa, Davide</p> <p>2016-09-01</p> <p>The age of gravitational-wave astronomy has begun. Gravitational waves are propagating spacetime perturbations ("ripples in the fabric of space-time") predicted by Einstein's theory of General Relativity. These signals propagate at the speed of light and are generated by powerful astrophysical events, such as the merger of two black holes and supernova explosions. The first detection of gravitational waves was performed in 2015 with the LIGO interferometers. This constitutes a tremendous breakthrough in fundamental physics and astronomy: it is not only the first direct detection of such elusive signals, but also the first irrefutable observation of a black-hole binary system. The future of gravitational-wave astronomy is bright and loud: the LIGO experiments will soon be joined by a network of ground-based interferometers; the space mission eLISA has now been fully approved by the European Space Agency with a proof-of-concept mission called LISA Pathfinder launched in 2015. Gravitational-wave observations will provide unprecedented tests of gravity as well as a qualitatively new window on the Universe. Careful theoretical modelling of the astrophysical sources of gravitational-waves is crucial to maximize the scientific outcome of the detectors. In this Thesis, we present several advances on gravitational-wave source modelling, studying in particular: (i) the precessional dynamics of spinning black-hole binaries; (ii) the astrophysical consequences of black-hole recoils; and (iii) the formation of compact objects in the framework of scalar-tensor theories of gravity. All these phenomena are deeply characterized by a continuous interplay between General Relativity and astrophysics: despite being a truly relativistic messenger, gravitational waves encode details of the astrophysical formation and evolution processes of their sources. We work out signatures and predictions to extract such information from current and future observations. At the dawn of a revolutionary era, our work contributes to turning the promise of gravitational-wave astronomy into reality.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19940029246','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19940029246"><span>Meso-beta scale numerical simulation studies of terrain-induced jet streak mass and momentum perturbations</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Lin, Yuh-Lang; Kaplan, Michael L.</p> <p>1994-01-01</p> <p>An in-depth analysis of observed gravity waves and their relationship to precipitation bands over the Montana mesonetwork during the 11-12 July 1981 CCOPE case study indicated two episodes of coherent waves. While geostrophic adjustment, shearing instability, and terrain were all implicated separately or in combination as possible wave generation mechanisms, the lack of upper-air data within the wave genesis region made it difficult to define the genesis processes from observations alone. The first part of this paper, 3D Numerical Modeling Studies of Terrain-Induced Mass/Momentum Perturbations, employs a mesoscale numerical model to help diagnose the intricate early wave generation mechanisms during the first observed gravity wave episode. The meso-beta scale numerical model is used to study various simulations of the role of multiple geostrophic adjustment processes in focusing a region for gravity wave genesis. The second part of this paper, Linear Theory and Theoretical Modeling, investigates the response of non-resting rotating homogeneous and continuously stratified Boussinesq models of the terrestrial atmosphere to temporally impulsive and uniformly propagating three-dimensional localized zonal momentum sources representative of midlatitude jet streaks. The methods of linear perturbation theory applied to the potential vorticity (PV) and wave field equations are used to study the geostrophic adjustment dynamics. The total zonal and meridional wind perturbations are separated into geostrophic and ageostrophic components in order to define and follow the evolution of both the primary and secondary mesocirculations accompanying midlatitude jetogenesis forced by geostrophic adjustment processes. This problem is addressed to help fill the gap in understanding the dynamics and structure of mesoscale inertia-gravity waves forced by geostrophic adjustment processes in simple two-dimensional quiescent current systems and those produced by mesoscale numerical models simulating the orographic and diabatic perturbation of three-dimensional quasi-geostrophically balanced synoptic scale jet streaks associated with complex baroclinic severe storm producing environments.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018PhRvE..97d3101C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018PhRvE..97d3101C"><span>Generation of intermittent gravitocapillary waves via parametric forcing</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Castillo, Gustavo; Falcón, Claudio</p> <p>2018-04-01</p> <p>We report on the generation of an intermittent wave field driven by a horizontally moving wave maker interacting with Faraday waves. The spectrum of the local gravitocapillary surface wave fluctuations displays a power law in frequency for a wide range of forcing parameters. We compute the probability density function of the local surface height increments, which show that they change strongly across time scales. The structure functions of these increments are shown to display power laws as a function of the time lag, with exponents that are nonlinear functions of the order of the structure function. We argue that the origin of this scale-invariant intermittent spectrum is the Faraday wave pattern breakup due to its advection by the propagating gravity waves. Finally, some interpretations are proposed to explain the appearance of this intermittent spectrum.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017JGRD..12211388R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017JGRD..12211388R"><span>A Climatological Study of Short-Period Gravity Waves and Ripples at Davis Station, Antarctica (68°S, 78°E), During the (Austral Winter February-October) Period 1999-2013</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Rourke, S.; Mulligan, F. J.; French, W. J. R.; Murphy, D. J.</p> <p>2017-11-01</p> <p>A scanning radiometer deployed at Davis Station, Antarctica (68°S, 78°E), has been recording infrared (1.10-1.65 μm) images of a small region (24 km × 24 km) of the zenith night sky once per minute each austral winter night since February 1999. These images have been processed to extract information on the passage of gravity waves (GWs) (horizontal wavelength, λh > 15 km) and ripples (λh ≤ 15 km) over the observing station. Phase speeds, periods, horizontal wavelengths, and predominant propagation directions have been deduced. Observed speeds were found to be highly correlated with horizontal wavelengths as has been reported in previous studies. Reverse ray tracing of the detected GWs only enabled us to identify four distinct groups. On average, only 15% of waves detected can be traced back to the troposphere, and a large proportion ( 45%) were not successfully reverse traced substantially below the airglow layer. Two smaller groups were found to reach a termination condition for reverse ray tracing at altitudes near 50 km and 75 km. Of those that reached the termination altitude in the troposphere (10 km), most of the end points fell within a radius of 300 km of the station, with a very pronounced concentration of wave initiation to the northwest of the observing point. The predominant direction of propagation was southward, and they were observed throughout the year. Recent reports suggest the interaction of planetary waves with the background wind field as a potential source for these waves.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFMSA33A2409H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFMSA33A2409H"><span>Interactions between finite amplitude small and medium-scale waves in the MLT region.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Heale, C. J.; Snively, J. B.</p> <p>2016-12-01</p> <p>Small-scale gravity waves can propagate high into the thermosphere and deposit significant momentum and energy into the background flow [e.g., Yamada et al., 2001, Fritts et al., 2014]. However, their propagation, dissipation, and spectral evolution can be significantly altered by other waves and dynamics and the nature of these complex interactions are not yet well understood. While many ray-tracing and time-dependent modeling studies have been performed to investigate interactions between waves of varying scales [e.g., Eckermann and Marks .1996, Sartelet. 2003, Liu et al. 2008, Vanderhoff et al., 2008, Senf and Achatz., 2011, Heale et al., 2015], the majority of these have considered waves of larger (tidal) scales, or have simplified one of the waves to be an imposed "background" and discount (or limit) the nonlinear feedback mechanisms between the two waves. In reality, both waves will influence each other, especially at finite amplitudes when nonlinear effects become important or dominant. We present a study of fully nonlinear interactions between small-scale 10s km, 10 min period) and medium-scale wave packets at finite amplitudes, which include feedback between the two waves and the ambient atmosphere. Time-dependence of the larger-scale wave has been identified as an important factor in reducing reflection [Heale et al., 2015] and critical level effects [Sartelet, 2003, Senf and Achatz, 2011], we choose medium-scale waves of different periods, and thus vertical scales, to investigate how this influences the propagation, filtering, and momentum and energy deposition of the small-scale waves, and in turn how these impacts affect the medium-scale waves. We also consider the observable features of these interactions in the mesosphere and lower thermosphere.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li class="active"><span>15</span></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_15 --> <div id="page_16" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li class="active"><span>16</span></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="301"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/pages/biblio/1369205-simulations-seismic-wave-propagation-mars','SCIGOV-DOEP'); return false;" href="https://www.osti.gov/pages/biblio/1369205-simulations-seismic-wave-propagation-mars"><span>Simulations of Seismic Wave Propagation on Mars</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/pages">DOE PAGES</a></p> <p>Bozdağ, Ebru; Ruan, Youyi; Metthez, Nathan; ...</p> <p>2017-03-23</p> <p>In this paper, we present global and regional synthetic seismograms computed for 1D and 3D Mars models based on the spectral-element method. For global simulations, we implemented a radially-symmetric Mars model with a 110 km thick crust. For this 1D model, we successfully benchmarked the 3D seismic wave propagation solver SPECFEM3D_GLOBE against the 2D axisymmetric wave propagation solver AxiSEM at periods down to 10 s. We also present higher-resolution body-wave simulations with AxiSEM down to 1 s in a model with a more complex 1D crust, revealing wave propagation effects that would have been difficult to interpret based on raymore » theory. For 3D global simulations based on SPECFEM3D_GLOBE, we superimposed 3D crustal thickness variations capturing the distinct crustal dichotomy between Mars’ northern and southern hemispheres, as well as topography, ellipticity, gravity, and rotation. The global simulations clearly indicate that the 3D crust speeds up body waves compared to the reference 1D model, whereas it significantly changes surface waveforms and their dispersive character depending on its thickness. We also perform regional simulations with the solver SES3D based on 3D crustal models derived from surface composition, thereby addressing the effects of various distinct crustal features down to 2 s. The regional simulations confirm the strong effects of crustal variations on waveforms. Finally, we conclude that the numerical tools are ready for examining more scenarios, including various other seismic models and sources.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1369205','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/1369205"><span>Simulations of Seismic Wave Propagation on Mars</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Bozdağ, Ebru; Ruan, Youyi; Metthez, Nathan</p> <p></p> <p>In this paper, we present global and regional synthetic seismograms computed for 1D and 3D Mars models based on the spectral-element method. For global simulations, we implemented a radially-symmetric Mars model with a 110 km thick crust. For this 1D model, we successfully benchmarked the 3D seismic wave propagation solver SPECFEM3D_GLOBE against the 2D axisymmetric wave propagation solver AxiSEM at periods down to 10 s. We also present higher-resolution body-wave simulations with AxiSEM down to 1 s in a model with a more complex 1D crust, revealing wave propagation effects that would have been difficult to interpret based on raymore » theory. For 3D global simulations based on SPECFEM3D_GLOBE, we superimposed 3D crustal thickness variations capturing the distinct crustal dichotomy between Mars’ northern and southern hemispheres, as well as topography, ellipticity, gravity, and rotation. The global simulations clearly indicate that the 3D crust speeds up body waves compared to the reference 1D model, whereas it significantly changes surface waveforms and their dispersive character depending on its thickness. We also perform regional simulations with the solver SES3D based on 3D crustal models derived from surface composition, thereby addressing the effects of various distinct crustal features down to 2 s. The regional simulations confirm the strong effects of crustal variations on waveforms. Finally, we conclude that the numerical tools are ready for examining more scenarios, including various other seismic models and sources.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/22311311-rotation-induced-nonlinear-wavepackets-internal-waves','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22311311-rotation-induced-nonlinear-wavepackets-internal-waves"><span>Rotation-induced nonlinear wavepackets in internal waves</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Whitfield, A. J., E-mail: ashley.whitfield.12@ucl.ac.uk; Johnson, E. R., E-mail: e.johnson@ucl.ac.uk</p> <p>2014-05-15</p> <p>The long time effect of weak rotation on an internal solitary wave is the decay into inertia-gravity waves and the eventual formation of a localised wavepacket. Here this initial value problem is considered within the context of the Ostrovsky, or the rotation-modified Korteweg-de Vries (KdV), equation and a numerical method for obtaining accurate wavepacket solutions is presented. The flow evolutions are described in the regimes of relatively-strong and relatively-weak rotational effects. When rotational effects are relatively strong a second-order soliton solution of the nonlinear Schrödinger equation accurately predicts the shape, and phase and group velocities of the numerically determined wavepackets.more » It is suggested that these solitons may form from a local Benjamin-Feir instability in the inertia-gravity wave-train radiated when a KdV solitary wave rapidly adjusts to the presence of strong rotation. When rotational effects are relatively weak the initial KdV solitary wave remains coherent longer, decaying only slowly due to weak radiation and modulational instability is no longer relevant. Wavepacket solutions in this regime appear to consist of a modulated KdV soliton wavetrain propagating on a slowly varying background of finite extent.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/867668','DOE-PATENT-XML'); return false;" href="https://www.osti.gov/servlets/purl/867668"><span>Methods and apparatus for moving and separating materials exhibiting different physical properties</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/doepatents">DOEpatents</a></p> <p>Peterson, Stephen C.; Brimhall, Owen D.; McLaughlin, Thomas J.; Baker, Charles D.; Sparks, Sam L.</p> <p>1991-01-01</p> <p>Methods and apparatus for controlling the movement of materials having different physical properties when one of the materials is a fluid. The invention does not rely on flocculation, sedimentation, centrifugation, the buoyancy of the materials, or any other gravity dependent characteristic, in order to achieve its desired results. The methods of the present invention provide that a first acoustic wave is propagated through a vessel containing the materials. A second acoustic wave, at a frequency different than the first acoustic wave, is also propagated through the vessel so that the two acoustic waves are superimposed upon each other. The superimposition of the two waves creates a beat frequency wave. The beat frequency wave comprises pressure gradients dividing regions of maximum and minimum pressure. The pressure gradients and the regions of maximum and minimum pressure move through space and time at a group velocity. The moving pressure gradients and regions of maximum and minimum pressure act upon the materials so as to move one of the materials towards a predetermined location in the vessel. The present invention provides that the materials may be controllably moved toward a location, aggregated at a particular location, or physically separated from each other.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1998PhDT........13N','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1998PhDT........13N"><span>Observational and numerical analysis of the genesis of a mesoscale convective system</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Nachamkin, Jason Edward</p> <p>1998-11-01</p> <p>A high resolution observational and numerical study was conducted on a mesoscale convective system (MCS) that developed in northeastern Colorado on 19 July 1993. Convection was followed from its origins in the Rockies west of Denver as it grew to near mesoscale convective complex (MCC) proportions over the plains. Five-minute surface data was collected from 48 mesonet stations over eastern Colorado, and six-minute dual Doppler data were collected from the CSU-CHILL and Mile High radars. The Regional Atmospheric Modeling System (RAMS) was then used to simulate this case. Initialization with variable topography, soil moisture, and atmospheric conditions facilitated the simulation of the inhomogeneous environment and its interactions with the MCS. Convection was explicitly resolved on the finest of four telescopically nested, moving grids. Storms developed consistently within the model without any artificial triggers such as warm bubbles or cold pools. Comparisons with the observations showed strong agreement down to the scale of the individual Doppler scans. The results show that convective position was deterministically focused by thermally driven solenoidal circulations and their interaction with a preexisting surface front. Away from the mountains, convection was fed by an intense low level jet less than 200 km across. The jet formed over southeastern Colorado in a region of localized thermal contrasts on either side of the plains inversion. Interactions between convection and its surrounding environment existed in two modes. When the upward mass flux was of moderate strength, continuity was maintained by linear, low frequency gravity waves. Most of the wave energy propagated rearward from the convective line, even though strong upper tropospheric shear advected most of the condensate ahead of the line. Almost all of the environmental compensating motions propagated rearward with the waves, inducing upper tropospheric front-to-rear and mid tropospheric rear-to-front perturbations in their wake. Most of the subsidence heating was also restricted to the narrow zone of wave propagation. When the convective mass flux became intense near sunset, condensate, heat and momentum were advected directly into the upper troposphere in a nonlinear outflow. The oval- shaped cold cloud top was defined by the leading edge of the outflow, and unlike the gravity waves, gradients of heat and momentum only slowly dispersed. This suggests that intense MCSs and MCCs with well defined anvils are more likely to produce a balanced disturbance because proportionately less energy is lost to gravity waves.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010AGUFMSA51E..02H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010AGUFMSA51E..02H"><span>Tsunamigenic Gravity Waves in the Thermosphere-Ionosphere System: Challenges and Opportunities (Invited)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hickey, M. P.</p> <p>2010-12-01</p> <p>There has been a recent resurgence of interest in the association between tsunamis and traveling ionospheric disturbances (TIDs), fueled in part by the use of GPS satellite technologies to remotely monitor the ionosphere. The TID observations have also triggered a renewed interest in the modeling of such events. Up to this point in time the various model simulations have incorporated various simplifications, some of which are briefly described. A future challenge is to bring together suites of models that each realistically describes one of the subsystems. In this talk I will describe the results of using a linear spectral full-wave model to simulate the propagation of a gravity wave disturbance from the sea surface to the thermosphere. In the model this disturbance is driven by a lower boundary perturbation that mimics a tsunami. A linear model describing the response of the ionosphere to neutral atmosphere perturbations, and airglow perturbations driven by ionosphere and neutral atmosphere fluctuations are also described. Additionally, the gravity wave disturbances carries wave momentum, which will be deposited in the thermosphere accompanying the viscous dissipation of wave energy and lead to accelerations of the mean state. In spite of the simplicity of these models, much can be learned from them. It is suggested that these rare events offer a fairly unique opportunity to test models describing such processes. Model predictions of total electron content (TEC) fluctuations are also briefly compared with TEC measurements obtained following some recent major tsunamis.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017PhRvD..96f4016C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017PhRvD..96f4016C"><span>Wave scattering in spatially inhomogeneous currents</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Churilov, Semyon; Ermakov, Andrei; Stepanyants, Yury</p> <p>2017-09-01</p> <p>We analytically study a scattering of long linear surface waves on stationary currents in a duct (canal) of constant depth and variable width. It is assumed that the background velocity linearly increases or decreases with the longitudinal coordinate due to the gradual variation of duct width. Such a model admits an analytical solution of the problem in hand, and we calculate the scattering coefficients as functions of incident wave frequency for all possible cases of sub-, super-, and transcritical currents. For completeness we study both cocurrent and countercurrent wave propagation in accelerating and decelerating currents. The results obtained are analyzed in application to recent analog gravity experiments and shed light on the problem of hydrodynamic modeling of Hawking radiation.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19950020172','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19950020172"><span>Meso-beta scale numerical simulation studies of terrain-induced jet streak mass/momentum perturbations</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Lin, Yuh-Lang; Kaplan, Michael L.</p> <p>1995-01-01</p> <p>Mesoscale model simulations provide insight into the complex jet streak adjustments on 11-12 July 1981 that preceded the first of two significant gravity wave events to have been generated over the Rocky Mountains in Montana. Simulations employing a variety of terrain treatments indicate that prior to wave formation, geostrophic adjustment processes modified the structure of the mid-upper tropospheric jet streak by creating secondary jetlets to the southeast of the polar jet streak in proximity to the gravity wave generation region. This simulated restructuring of the mid-upper tropospheric jet streak is the result of a four stage process. During stage 1, the wind adjusts to the mass field as the jet streak exit region propagates into the inflection point between the upstream trough and downstream ridge in the height field. Stage 2 is initiated as the mass field is forced to adjust to the new ageostrophic wind field created during stage 1. Stage 3 is defined by a second geostrophic adjustment process occurring in a similar manner but to the south and east of the adjustment which occurs during stage 1. A low-level mesoscale jetlet is formed during stage 4 in response to the low-level pressure falls that are established during stage 3. The perturbation of this jetlet, caused by orographically-induced adiabatic and diabatic physical processes, is the likely mechanism responsible for the generation of the first and second episode of observed gravity waves. The dynamics responsible for this wave episode are discussed as differential surface sensible heating inducing an orographically-forced mountain-plains solenoid, resulting in the formation of additional mesoscale jetlets and internal gravity waves. Also discussed is how convective latent heating modifies the numerically simulated terrain-induced internal gravity waves, especially their amplitude and phase velocities, which provide better agreement with those wave characteristics observed in nature. Finally, the three-dimensional linear response of a zonally uniform barotropic flow in a vertically unbounded, continuously stratified, Boussinesq atmosphere which is perturbed from geostrophic equilibrium is investigated.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://images.nasa.gov/#/details-GSFC_20171208_Archive_e000269.html','SCIGOVIMAGE-NASA'); return false;" href="https://images.nasa.gov/#/details-GSFC_20171208_Archive_e000269.html"><span>Making Waves in the Sky off of Africa</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://images.nasa.gov/">NASA Image and Video Library</a></p> <p></p> <p>2017-12-08</p> <p>On June 26, 2016, the Moderate Resolution Imaging Spectroradiometer (MODIS) on NASA’s Terra satellite acquired this natural-color image of cloud gravity waves off the coast of Angola and Namibia. “I [regularly] look at this area on Worldview because you quite often have these gravity waves,” said Bastiaan Van Diedenhoven, a researcher for Columbia University and NASA's Goddard Institute for Space Studies interested in cloud formations. “On this day, there was so much going on—so many different waves from different directions—that they really started interfering.” A distinctive criss-cross pattern formed in unbroken stretches hundreds of kilometers long. Similar to a boat’s wake, which forms as the water is pushed upward by the boat and pulled downward again by gravity, these clouds are formed by the rise and fall of colliding air columns. Off of west Africa, dry air coming off the Namib desert—after being cooled by the night—moves out under the balmy, moist air over the ocean and bumps it upwards. As the humid air rises to a higher altitude, the moisture condenses into droplets, forming clouds. Gravity rolls these newly formed clouds into a wave-like shape. When moist air goes up, it cools, and then gravity pushes it down again. As it plummets toward the earth, the moist air is pushed up again by the dry air. Repeated again and again, this process creates gravity waves. Clouds occur at the upward wave motions, while they evaporate at the downward motions. Such waves will often propagate in the morning and early afternoon, said Van Diedenhoven. During the course of the day, the clouds move out to sea and stretch out, as the dry air flowing off the land pushes the moist ocean air westward. NASA Earth Observatory image by Jesse Allen, using data from the Land Atmosphere Near real-time Capability for EOS (LANCE). via @NASAEarth go.nasa.gov/29Btxcy NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018JGRA..123.1018H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018JGRA..123.1018H"><span>Ionospheric Irregularities at Mars Probed by MARSIS Topside Sounding</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Harada, Y.; Gurnett, D. A.; Kopf, A. J.; Halekas, J. S.; Ruhunusiri, S.</p> <p>2018-01-01</p> <p>The upper ionosphere of Mars contains a variety of perturbations driven by solar wind forcing from above and upward propagating atmospheric waves from below. Here we explore the global distribution and variability of ionospheric irregularities around the exobase at Mars by analyzing topside sounding data from the Mars Advanced Radar for Subsurface and Ionosphere Sounding (MARSIS) instrument on board Mars Express. As irregular structure gives rise to off-vertical echoes with excess propagation time, the diffuseness of ionospheric echo traces can be used as a diagnostic tool for perturbed reflection surfaces. The observed properties of diffuse echoes above unmagnetized regions suggest that ionospheric irregularities with horizontal wavelengths of tens to hundreds of kilometers are particularly enhanced in the winter hemisphere and at high solar zenith angles. Given the known inverse dependence of neutral gravity wave amplitudes on the background atmospheric temperature, the ionospheric irregularities probed by MARSIS are most likely associated with plasma perturbations driven by atmospheric gravity waves. Though extreme events with unusually diffuse echoes are more frequently observed for high solar wind dynamic pressures during some time intervals, the vast majority of the diffuse echo events are unaffected by varying solar wind conditions, implying limited influence of solar wind forcing on the generation of ionospheric irregularities. Combination of remote and in situ measurements of ionospheric irregularities would offer the opportunity for a better understanding of the ionospheric dynamics at Mars.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20120011991','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20120011991"><span>A Review of Low Frequency Electromagnetic Wave Phenomena Related to Tropospheric-Ionospheric Coupling Mechanisms</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Simoes, Fernando; Pfaff, Robert; Berthelier, Jean-Jacques; Klenzing, Jeffrey</p> <p>2012-01-01</p> <p>Investigation of coupling mechanisms between the troposphere and the ionosphere requires a multidisciplinary approach involving several branches of atmospheric sciences, from meteorology, atmospheric chemistry, and fulminology to aeronomy, plasma physics, and space weather. In this work, we review low frequency electromagnetic wave propagation in the Earth-ionosphere cavity from a troposphere-ionosphere coupling perspective. We discuss electromagnetic wave generation, propagation, and resonance phenomena, considering atmospheric, ionospheric and magnetospheric sources, from lightning and transient luminous events at low altitude to Alfven waves and particle precipitation related to solar and magnetospheric processes. We review in situ ionospheric processes as well as surface and space weather phenomena that drive troposphere-ionosphere dynamics. Effects of aerosols, water vapor distribution, thermodynamic parameters, and cloud charge separation and electrification processes on atmospheric electricity and electromagnetic waves are reviewed. We also briefly revisit ionospheric irregularities such as spread-F and explosive spread-F, sporadic-E, traveling ionospheric disturbances, Trimpi effect, and hiss and plasma turbulence. Regarding the role of the lower boundary of the cavity, we review transient surface phenomena, including seismic activity, earthquakes, volcanic processes and dust electrification. The role of surface and atmospheric gravity waves in ionospheric dynamics is also briefly addressed. We summarize analytical and numerical tools and techniques to model low frequency electromagnetic wave propagation and solving inverse problems and summarize in a final section a few challenging subjects that are important for a better understanding of tropospheric-ionospheric coupling mechanisms.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19900005412','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19900005412"><span>Group-kinetic theory and modeling of atmospheric turbulence</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Tchen, C. M.</p> <p>1989-01-01</p> <p>A group kinetic method is developed for analyzing eddy transport properties and relaxation to equilibrium. The purpose is to derive the spectral structure of turbulence in incompressible and compressible media. Of particular interest are: direct and inverse cascade, boundary layer turbulence, Rossby wave turbulence, two phase turbulence; compressible turbulence, and soliton turbulence. Soliton turbulence can be found in large scale turbulence, turbulence connected with surface gravity waves and nonlinear propagation of acoustical and optical waves. By letting the pressure gradient represent the elementary interaction among fluid elements and by raising the Navier-Stokes equation to higher dimensionality, the master equation was obtained for the description of the microdynamical state of turbulence.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017JMP....58k2503S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017JMP....58k2503S"><span>Geodesics in nonexpanding impulsive gravitational waves with Λ. II</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Sämann, Clemens; Steinbauer, Roland</p> <p>2017-11-01</p> <p>We investigate all geodesics in the entire class of nonexpanding impulsive gravitational waves propagating in an (anti-)de Sitter universe using the distributional metric. We extend the regularization approach of part I [Sämann, C. et al., Classical Quantum Gravity 33(11), 115002 (2016)] to a full nonlinear distributional analysis within the geometric theory of generalized functions. We prove global existence and uniqueness of geodesics that cross the impulsive wave and hence geodesic completeness in full generality for this class of low regularity spacetimes. This, in particular, prepares the ground for a mathematically rigorous account on the "physical equivalence" of the continuous form with the distributional "form" of the metric.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016cosp...41E.638B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016cosp...41E.638B"><span>Tropical Cyclone - Equatorial Ionosphere Coupling: A Statistical Study</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Bhagavathiammal, G. J.</p> <p>2016-07-01</p> <p>This paper describes the equatorial ionosphere response to tropical cyclone events which was observed over the Indian Ocean. This statistical study tries to reveal the possible Tropical Cyclone (TC) - Ionosphere coupling. Tropical cyclone track and data can be obtained from the India Meteorological Department, New Delhi. Digisonde/Ionosonde data for the equatorial latitudes can be obtained from Global Ionospheric Radio Observatory. It is believed that TC induced convection as the driving agent for the increased gravity wave activity in the lower atmosphere and these propagating gravity waves deposit their energy and momentum into the upper atmosphere as Travelling Ionospheric Disturbances (TIDs). The convective regions are identified with the help of Outgoing Long wave radiation (OLR) data from NOAA Climate Data Center/ Precipitation data from TRMM Statellite. The variability of ionospheric parameter like Total Electron Content (TEC), foF2, h'F2 and Drift velocity are examined during TC periods. This study will report the possibility of TC-Ionosphere Coupling in equatorial atmosphere.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017GeoRL..44.7044R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017GeoRL..44.7044R"><span>New AIM/CIPS global observations of gravity waves near 50-55 km</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Randall, C. E.; Carstens, J.; France, J. A.; Harvey, V. L.; Hoffmann, L.; Bailey, S. M.; Alexander, M. J.; Lumpe, J. D.; Yue, J.; Thurairajah, B.; Siskind, D. E.; Zhao, Y.; Taylor, M. J.; Russell, J. M.</p> <p>2017-07-01</p> <p>This paper describes a new data set from the Aeronomy of Ice in the Mesosphere (AIM) Cloud Imaging and Particle Size (CIPS) instrument, from which gravity waves (GWs) at an altitude of 50-55 km can be inferred. CIPS is sensitive to GWs with horizontal wavelengths from 15 to 600 km and vertical wavelengths longer than 15 km. Several examples of GWs in CIPS observations are shown, including waves associated with the Andes Mountains, island topography, convection, the polar night jet, and the tropospheric jet stream. GW signatures in the CIPS data are shown to agree well with near-coincident but lower altitude measurements from the Atmospheric Infrared Sounder (AIRS) in June of 2016. Results suggest the power of combining CIPS measurements with those from other instruments to investigate GW filtering and propagation. The CIPS data set opens new areas of inquiry, enabling comprehensive investigations of GWs in the middle atmosphere on a near-global scale.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017JESS..126...88S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017JESS..126...88S"><span>Near InfraRed Imaging Spectrograph (NIRIS) for ground-based mesospheric OH(6-2) and O2(0-1) intensity and temperature measurements</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Singh, Ravindra P.; Pallamraju, Duggirala</p> <p>2017-08-01</p> <p>This paper describes the development of a new Near InfraRed Imaging Spectrograph (NIRIS) which is capable of simultaneous measurements of OH(6-2) Meinel and O2(0-1) atmospheric band nightglow emission intensities. In this spectrographic technique, rotational line ratios are obtained to derive temperatures corresponding to the emission altitudes of 87 and 94 km. NIRIS has been commissioned for continuous operation from optical aeronomy observatory, Gurushikhar, Mount Abu (24.6°N, 72.8°E) since January 2013. NIRIS uses a diffraction grating of 1200 lines mm^{-1} and 1024× 1024 pixels thermoelectrically cooled CCD camera and has a large field-of-view (FOV) of 80° along the slit orientation. The data analysis methodology adopted for the derivation of mesospheric temperatures is also described in detail. The observed NIRIS temperatures show good correspondence with satellite (SABER) derived temperatures and exhibit both tidal and gravity waves (GW) like features. From the time taken for phase propagation in the emission intensities between these two altitudes, vertical phase speed of gravity waves, cz, is calculated and along with the coherent GW time period `τ ', the vertical wavelength, λ z, is obtained. Using large FOV observations from NIRIS, the meridional wavelengths, λ y, are also calculated. We have used one year of data to study the possible cause(s) for the occurrences of mesospheric temperature inversions (MTIs). From the statistics obtained for 234 nights, it appears that in situ chemical heating is mainly responsible for the observed MTIs than the vertical propagation of the waves. Thus, this paper describes a novel near infrared imaging spectrograph, its working principle, data analysis method for deriving OH and O2 emission intensities and the corresponding rotational temperatures at these altitudes, derivation of gravity wave parameters (τ , cz, λ z, and λ y), and results on the statistical study of MTIs that exist in the earth's mesospheric altitudes.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017JGRC..122.3191V','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017JGRC..122.3191V"><span>A downslope propagating thermal front over the continental slope</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>van Haren, Hans; Hosegood, Phil J.</p> <p>2017-04-01</p> <p>In the ocean, internal frontal bores above sloping topography have many appearances, depending on the local density stratification, and on the angle and source of generation of the carrier wave. However, their common characteristics are a backward breaking wave, strong sediment resuspension, and relatively cool (denser) water moving more or less upslope underneath warm (less dense) water. In this paper, we present a rare example of a downslope moving front of cold water moving over near-bottom warm water. Large backscatter is observed in the downslope moving front's trailing edge, rather than the leading edge as is common in upslope moving fronts. Time series observations have been made during a fortnight in summer, using a 101 m long array of high-resolution temperature sensors moored with an acoustic Doppler current profiler at 396 m depth in near-homogeneous waters, near a small canyon in the continental slope off the Malin shelf (West-Scotland, UK). Occurring between fronts that propagate upslope with tidal periodicity, the rare downslope propagating one resembles a gravity current and includes strong convective turbulence coming from the interior rather than the more usual frictionally generated turbulence arising from interaction with the seabed. Its turbulence is 3-10 times larger than that of more common upslope propagating fronts. As the main turbulence is in the interior with a thin stratified layer close to the bottom, little sediment is resuspended by a downslope propagating front. The downslope propagating front is suggested to be generated by oblique propagation of internal (tidal) waves and flow over a nearby upstream promontory.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3857859','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3857859"><span>Transversally periodic solitary gravity–capillary waves</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Milewski, Paul A.; Wang, Zhan</p> <p>2014-01-01</p> <p>When both gravity and surface tension effects are present, surface solitary water waves are known to exist in both two- and three-dimensional infinitely deep fluids. We describe here solutions bridging these two cases: travelling waves which are localized in the propagation direction and periodic in the transverse direction. These transversally periodic gravity–capillary solitary waves are found to be of either elevation or depression type, tend to plane waves below a critical transverse period and tend to solitary lumps as the transverse period tends to infinity. The waves are found numerically in a Hamiltonian system for water waves simplified by a cubic truncation of the Dirichlet-to-Neumann operator. This approximation has been proved to be very accurate for both two- and three-dimensional computations of fully localized gravity–capillary solitary waves. The stability properties of these waves are then investigated via the time evolution of perturbed wave profiles. PMID:24399922</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2005NPGeo..12..671C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2005NPGeo..12..671C"><span>Statistical properties of nonlinear one-dimensional wave fields</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Chalikov, D.</p> <p>2005-06-01</p> <p>A numerical model for long-term simulation of gravity surface waves is described. The model is designed as a component of a coupled Wave Boundary Layer/Sea Waves model, for investigation of small-scale dynamic and thermodynamic interactions between the ocean and atmosphere. Statistical properties of nonlinear wave fields are investigated on a basis of direct hydrodynamical modeling of 1-D potential periodic surface waves. The method is based on a nonstationary conformal surface-following coordinate transformation; this approach reduces the principal equations of potential waves to two simple evolutionary equations for the elevation and the velocity potential on the surface. The numerical scheme is based on a Fourier transform method. High accuracy was confirmed by validation of the nonstationary model against known solutions, and by comparison between the results obtained with different resolutions in the horizontal. The scheme allows reproduction of the propagation of steep Stokes waves for thousands of periods with very high accuracy. The method here developed is applied to simulation of the evolution of wave fields with large number of modes for many periods of dominant waves. The statistical characteristics of nonlinear wave fields for waves of different steepness were investigated: spectra, curtosis and skewness, dispersion relation, life time. The prime result is that wave field may be presented as a superposition of linear waves is valid only for small amplitudes. It is shown as well, that nonlinear wave fields are rather a superposition of Stokes waves not linear waves. Potential flow, free surface, conformal mapping, numerical modeling of waves, gravity waves, Stokes waves, breaking waves, freak waves, wind-wave interaction.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20050180258','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20050180258"><span>Wave-driven Equatorial Annual Oscillation Induced and Modulated by the Solar Cycle</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Mayr, Hans G.; Mengel, John G.; Wolff, Charles</p> <p>2005-01-01</p> <p>Our model for the solar cycle (SC) modulation of the Quasi-Biennial Oscillation (QBO) produces a hemispherically symmetric 12-month Annual Oscillation (AO) in the zonal winds, which is confined to low latitudes. This Equatorial Annual Oscillation (EAO) is produced by interaction between the anti-symmetric component of SC forcing and the dominant anti-symmetric AO. The EA0 is amplified by the upward propagating small- scale gravity waves (GW), and the oscillation propagates down through the stratosphere like the QBO. The amplitude of the EA0 is relatively small, but its SC modulation contributes significantly to extend the effect to lower altitudes. Although the energy of the EA0 is concentrated at low latitudes, prominent signatures appear in the Polar Regions where the SC produces measurable temperature variations. At lower altitudes, the SC effects are significantly different in the two hemispheres because of the EAO, and due to its GW driven downward propagation the phase of the annual cycle is delayed.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li class="active"><span>16</span></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_16 --> <div id="page_17" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li class="active"><span>17</span></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="321"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20060013114&hterms=time+travel&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3Dtime%2Btravel','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20060013114&hterms=time+travel&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3Dtime%2Btravel"><span>Direct Measurement of Wave Kernels in Time-Distance Helioseismology</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Duvall, T. L., Jr.</p> <p>2006-01-01</p> <p>Solar f-mode waves are surface-gravity waves which propagate horizontally in a thin layer near the photosphere with a dispersion relation approximately that of deep water waves. At the power maximum near 3 mHz, the wavelength of 5 Mm is large enough for various wave scattering properties to be observable. Gizon and Birch (2002,ApJ,571,966)h ave calculated kernels, in the Born approximation, for the sensitivity of wave travel times to local changes in damping rate and source strength. In this work, using isolated small magnetic features as approximate point-sourc'e scatterers, such a kernel has been measured. The observed kernel contains similar features to a theoretical damping kernel but not for a source kernel. A full understanding of the effect of small magnetic features on the waves will require more detailed modeling.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19840059708&hterms=Tidal+waves&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D60%26Ntt%3DTidal%2Bwaves','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19840059708&hterms=Tidal+waves&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D60%26Ntt%3DTidal%2Bwaves"><span>The generation and propagation of internal gravity waves in a rotating fluid</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Maxworthy, T.; Chabert Dhieres, G.; Didelle, H.</p> <p>1984-01-01</p> <p>The present investigation is concerned with an extension of a study conducted bu Maxworthy (1979) on internal wave generation by barotropic tidal flow over bottom topography. A short series of experiments was carried out during a limited time period on a large (14-m diameter) rotating table. It was attempted to obtain, in particular, information regarding the plan form of the waves, the exact character of the flow over the obstacle, and the evolution of the waves. The main basin was a dammed section of a long free surface water tunnel. The obstacle was towed back and forth by a wire harness connected to an electronically controlled hydraulic piston, the stroke and period of which could be independently varied. Attention is given to the evolution of the wave crests, the formation of solitary wave groups the evolution of the three-dimensional wave field wave shapes, the wave amplitudes, and particle motion.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27922007','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27922007"><span>Generation of internal solitary waves by frontally forced intrusions in geophysical flows.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Bourgault, Daniel; Galbraith, Peter S; Chavanne, Cédric</p> <p>2016-12-06</p> <p>Internal solitary waves are hump-shaped, large-amplitude waves that are physically analogous to surface waves except that they propagate within the fluid, along density steps that typically characterize the layered vertical structure of lakes, oceans and the atmosphere. As do surface waves, internal solitary waves may overturn and break, and the process is thought to provide a globally significant source of turbulent mixing and energy dissipation. Although commonly observed in geophysical fluids, the origins of internal solitary waves remain unclear. Here we report a rarely observed natural case of the birth of internal solitary waves from a frontally forced interfacial gravity current intruding into a two-layer and vertically sheared background environment. The results of the analysis carried out suggest that fronts may represent additional and unexpected sources of internal solitary waves in regions of lakes, oceans and atmospheres that are dynamically similar to the situation examined here in the Saguenay Fjord, Canada.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20120010341&hterms=signature&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D90%26Ntt%3Dsignature','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20120010341&hterms=signature&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D90%26Ntt%3Dsignature"><span>Gravity and Rossby Wave Signatures in the Tropical Troposphere and Lower Stratosphere Based on Southern Hemisphere Additional Ozonesondes (SHADOZ), 1998-2007</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Thompson, Anne M.; Allen, Amber L.; Lee, Sukyoung; Miller, Sonya K.; Witte, Jacquelyn C.</p> <p>2011-01-01</p> <p>Prior investigations attempted to determine the relative influence of advection and convective processes on ozone and water vapor distributions in the tropical tropopause layer (TTL) through analyses of tracers, related physical parameters (e.g., outgoing long-wave radiation, precipitable water, and temperature), or with models. In this study, stable laminae in Southern Hemisphere Additional Ozonesonde Network (SHADOZ) ozone profIles from 1998 to 2007 are interpreted in terms of gravity waves (GW) or Rossby waves (RW) that are identified with vertical and quasi-horizontal displacements, respectively. Using the method of Pierce and Grant (1998) as applied by Thompson et al. (2007a, 2007b, 2010, 2011), amplitudes and frequencies in ozone laminae are compared among representative SHADOZ sites over Africa and the Pacific, Indian, and Atlantic oceans. GW signals maximize in the TTL and lower stratosphere. Depending on site and season, GW are identified in up to 90% of the soundings. GW are most prevalent over the Pacific and eastern Indian oceans, a distribution consistent with vertically propagating equatorial Kelvin waves. Ozone laminae from RW occur more often below the tropical tropopause and with lower frequency 20%). Gravity wave and Rossby wave indices (GWI, RWI) are formulated to facilitate analysis of interannual variability of wave signatures among sites. GWI is positively correlated with a standard ENSO (El Nino-Southern Oscillation) index over American Samoa (14degS, 171degW) and negatively correlated at Watukosek, Java (7.5degS, 114degE), Kuala Lumpur (3degN, 102degE), and Ascension Island (80degS, 15degW). Generally, the responses of GW and RW to ENSO are consistent with prior studies.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMSA31B..01T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMSA31B..01T"><span>The Atmospheric Waves Experiment (AWE): Quantifying the Impact of Gravity Waves on the Edge of Space</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Taylor, M. J.; Forbes, J. M.; Fritts, D. C.; Eckermann, S. D.; Snively, J. B.; Liu, H.; Janches, D.; Syrstad, E. A.; Esplin, R. W.; Pautet, P. D.; Zhao, Y.; Pendleton, W. R.</p> <p>2017-12-01</p> <p>New theory and modeling now indicate that upward-propagating gravity waves (GWs) originating in the lower atmosphere have profound effects on the variability and mean state of the ionosphere-thermosphere-mesosphere (ITM) system. A major unknown is the spectrum of small-scale ( 30-300 km) GWs entering this system from below. Yet, this part of the spectrum contains most of the waves that will produce the greatest ITM effects. To address this knowledge gap, the Atmospheric Waves Experiment (AWE) plans to deploy a high-resolution imager (based on the successful Utah State University Advanced Mesospheric Temperature Mapper) on the International Space Station (ISS) to gain a transformative set of GW-resolving temperature measurements using the OH nightglow emission (altitude 87 km). The ISS provides the ideal combination of altitude, geographic and local time coverage to accomplish our proposed science objectives, which seeks not only near-global measurements of GW characteristics in the mesopause region, but also quantification of GW momentum and energy fluxes driving the IT from below. Combined with state-of-the-art high-resolution models, the AWE mission will also assess the relative importance of sources versus propagation conditions in explaining the observed spatial and temporal variability of the GWs. The AWE mission was recently selected for a "Phase A" study as part of the NASA 2016 Heliophysics Explorers Mission of Opportunity (MO) Program. In this presentation, we describe the primary goals of this program and introduce our proposed research methods using proven IR instrument technology. AWE's exceptional capabilities are illustrated with recent discoveries in observing GWs from the ground and from aircraft during the NSF DEEPWAVE campaign, promising a major step forward in understanding how troposphere weather translates to space weather.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013EGUGA..1511690K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013EGUGA..1511690K"><span>GPS-TEC of the Ionospheric Disturbances as a Tool for Early Tsunami Warning</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kunitsyn, Viacheslav E.; Nesterov, Ivan A.; Shalimov, Sergey L.; Krysanov, Boris Yu.; Padokhin, Artem M.; Rekenthaler, Douglas</p> <p>2013-04-01</p> <p>Recently, the GPS measurements were used for retrieving the information on the various types of ionospheric responses to seismic events (earthquakes, seismic Rayleigh waves, and tsunami) which generate atmospheric waves propagating up to the ionospheric altitudes where the collisions between the neutrals and charge particles give rise to the motion of the ionospheric plasma. These experimental results can well be used in architecture of the future tsunami warning system. The point is an earlier (in comparison with seismological methods) detection of the ionospheric signal that can indicate the moment of tsunami generation. As an example we consider the two-dimensional distributions of the vertical total electron content (TEC) variations in the ionosphere both close to and far from the epicenter of the Japan undersea earthquake of March 11, 2011 using radio tomographic (RT) reconstruction of high-temporal-resolution (2-minute) data from the Japan and the US GPS networks. Near-zone TEC variations shows a diverging ionospheric perturbation with multi-component spectral composition emerging after the main shock. The initial phase of the disturbance can be used as an indicator of the tsunami generation and subsequently for the tsunami early warning. Far-zone TEC variations reveals distinct wave train associated with gravity waves generated by tsunami. According to observations tsunami arrives at Hawaii and further at the coast of Southern California with delay relative to the gravity waves. Therefore the gravity wave pattern can be used in the early tsunami warning. We support this scenario by the results of modeling with the parameters of the ocean surface perturbation corresponding to the considered earthquake. In addition it was observed in the modeling that at long distance from the source the gravity wave can pass ahead of the tsunami. The work was supported by the Russian Foundation for Basic Research (grants 11-05-01157 and 12-05-33065).</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20070034169&hterms=background+wind&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D60%26Ntt%3Dbackground%2Bwind','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20070034169&hterms=background+wind&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D60%26Ntt%3Dbackground%2Bwind"><span>Small-Scale Gravity Waves in ER-2 MMS/MTP Wind and Temperature Measurements during CRYSTAL-FACE</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Wang, L.; Alexander, M. J.; Bui, T. P.; Mahoney, M. J.</p> <p>2006-01-01</p> <p>Lower stratospheric wind and temperature measurements made from NASA's high-altitude ER-2 research aircraft during the CRYSTAL-FACE campaign in July 2002 were analyzed to retrieve information on small scale gravity waves (GWs) at the aircraft's flight level (typically approximately 20 km altitude). For a given flight segment, the S-transform (a Gaussian wavelet transform) was used to search for and identify small horizontal scale GW events, and to estimate their apparent horizontal wavelengths. The horizontal propagation directions of the events were determined using the Stokes parameter method combined with the cross S-transform analysis. The vertical temperature gradient was used to determine the vertical wavelengths of the events. GW momentum fluxes were calculated from the cross S-transform. Other wave parameters such as intrinsic frequencies were calculated using the GW dispersion relation. More than 100GW events were identified. They were generally high frequency waves with vertical wavelength of approximately 5 km and horizontal wavelength generally shorter than 20 km. Their intrinsic propagation directions were predominantly toward the east, whereas their ground-based propagation directions were primarily toward the west. Among the events, approximately 20% of them had very short horizontal wavelength, very high intrinsic frequency, and relatively small momentum fluxes, and thus they were likely trapped in the lower stratosphere. Using the estimated GW parameters and the background winds and stabilities from the NCAR/NCEP reanalysis data, we were able to trace the sources of the events using a simple reverse ray-tracing. More than 70% of the events were traced back to convective sources in the troposphere, and the sources were generally located upstream of the locations of the events observed at the aircraft level. Finally, a probability density function of the reversible cooling rate due to GWs was obtained in this study, which may be useful for cirrus cloud models.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017PhRvF...2j3901B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017PhRvF...2j3901B"><span>Understanding the destabilizing role for surface tension in planar shear flows in terms of wave interaction</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Biancofiore, L.; Heifetz, E.; Hoepffner, J.; Gallaire, F.</p> <p>2017-10-01</p> <p>Both surface tension and buoyancy force in stable stratification act to restore perturbed interfaces back to their initial positions. Hence, both are intuitively considered as stabilizing agents. Nevertheless, the Taylor-Caulfield instability is a counterexample in which the presence of buoyancy forces in stable stratification destabilize shear flows. An explanation for this instability lies in the fact that stable stratification supports the existence of gravity waves. When two vertically separated gravity waves propagate horizontally against the shear, they may become phase locked and amplify each other to form a resonance instability. Surface tension is similar to buoyancy but its restoring mechanism is more efficient at small wavelengths. Here, we show how a modification of the Taylor-Caulfield configuration, including two interfaces between three stably stratified immiscible fluids, supports interfacial capillary gravity whose interaction yields resonance instability. Furthermore, when the three fluids have the same density, an instability arises solely due to a pure counterpropagating capillary wave resonance. The linear stability analysis predicts a maximum growth rate of the pure capillary wave instability for an intermediate value of surface tension corresponding to We-1=5 , where We denotes the Weber number. We perform direct numerical nonlinear simulation of this flow and find nonlinear destabilization when 2 ≤We-1≤10 , in good agreement with the linear stability analysis. The instability is present also when viscosity is introduced, although it is gradually damped and eventually quenched.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/24116520','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/24116520"><span>A numerical model for ocean ultra-low frequency noise: wave-generated acoustic-gravity and Rayleigh modes.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Ardhuin, Fabrice; Lavanant, Thibaut; Obrebski, Mathias; Marié, Louis; Royer, Jean-Yves; d'Eu, Jean-François; Howe, Bruce M; Lukas, Roger; Aucan, Jerome</p> <p>2013-10-01</p> <p>The generation of ultra-low frequency acoustic noise (0.1 to 1 Hz) by the nonlinear interaction of ocean surface gravity waves is well established. More controversial are the quantitative theories that attempt to predict the recorded noise levels and their variability. Here a single theoretical framework is used to predict the noise level associated with propagating pseudo-Rayleigh modes and evanescent acoustic-gravity modes. The latter are dominant only within 200 m from the sea surface, in shallow or deep water. At depths larger than 500 m, the comparison of a numerical noise model with hydrophone records from two open-ocean sites near Hawaii and the Kerguelen islands reveal: (a) Deep ocean acoustic noise at frequencies 0.1 to 1 Hz is consistent with the Rayleigh wave theory, in which the presence of the ocean bottom amplifies the noise by 10 to 20 dB; (b) in agreement with previous results, the local maxima in the noise spectrum support the theoretical prediction for the vertical structure of acoustic modes; and (c) noise level and variability are well predicted for frequencies up to 0.4 Hz. Above 0.6 Hz, the model results are less accurate, probably due to the poor estimation of the directional properties of wind-waves with frequencies higher than 0.3 Hz.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1985EOSTr..66..458R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1985EOSTr..66..458R"><span>Ionospheric research opportunity</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Rickel, Dwight</p> <p>1985-05-01</p> <p>Ground-based explosions have been exploited successfully in the past as a relatively controlled source for producing ionospheric disturbances. On June 25, the Defense Nuclear Agency will conduct a high explosives test on the northern section of the White Sands Missile Range. Approximately 4,800 tons of ammonium nitrate and fuel oil (ANFO) will be detonated at ground level, producing an acoustic shock wave with a surface pressure change of approximately 20 mbar at a 6 km range. This shock front will have sufficient strength to propagate into the ionosphere with at least a 10% change in the ambient pressure across the disturbance front in the lower F region. Such an ionospheric perturbation will give ionospheric researchers an excellent opportunity to investigate acoustic propagation at ionospheric heights, shock dissipation effect, the ion-neutral coupling process, acoustic-gravity wave (traveling ionospheric disturbance) generation mechanisms, and associated RF phenomena.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018PhRvD..97l6005D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018PhRvD..97l6005D"><span>Gauge assisted quadratic gravity: A framework for UV complete quantum gravity</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Donoghue, John F.; Menezes, Gabriel</p> <p>2018-06-01</p> <p>We discuss a variation of quadratic gravity in which the gravitational interaction remains weakly coupled at all energies, but is assisted by a Yang-Mills gauge theory which becomes strong at the Planck scale. The Yang-Mills interaction is used to induce the usual Einstein-Hilbert term, which was taken to be small or absent in the original action. We study the spin-two propagator in detail, with a focus on the high mass resonance which is shifted off the real axis by the coupling to real decay channels. We calculate scattering in the J =2 partial wave and show explicitly that unitarity is satisfied. The theory will in general have a large cosmological constant and we study possible solutions to this, including a unimodular version of the theory. Overall, the theory satisfies our present tests for being a ultraviolet completion of quantum gravity.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/21469781','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/21469781"><span>Detecting vanishing dimensions via primordial gravitational wave astronomy.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Mureika, Jonas; Stojkovic, Dejan</p> <p>2011-03-11</p> <p>Lower dimensionality at higher energies has manifold theoretical advantages as recently pointed out by Anchordoqui et al. [arXiv:1003.5914]. Moreover, it appears that experimental evidence may already exist for it: A statistically significant planar alignment of events with energies higher than TeV has been observed in some earlier cosmic ray experiments. We propose a robust and independent test for this new paradigm. Since (2+1)-dimensional spacetimes have no gravitational degrees of freedom, gravity waves cannot be produced in that epoch. This places a universal maximum frequency at which primordial waves can propagate, marked by the transition between dimensions. We show that this cutoff frequency may be accessible to future gravitational wave detectors such as the Laser Interferometer Space Antenna.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/20389731','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/20389731"><span>Simulations of wave propagation and disorder in 3D non-close-packed colloidal photonic crystals with low refractive index contrast.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Glushko, O; Meisels, R; Kuchar, F</p> <p>2010-03-29</p> <p>The plane-wave expansion method (PWEM), the multiple-scattering method (MSM) and the 3D finite-difference time-domain method (FDTD) are applied for simulations of propagation of electromagnetic waves through 3D colloidal photonic crystals. The system investigated is not a "usual" artificial opal with close-packed fcc lattice but a dilute bcc structure which occurs due to long-range repulsive interaction between electrically charged colloidal particles during the growth process. The basic optical properties of non-close-packed colloidal PhCs are explored by examining the band structure and reflection spectra for a bcc lattice of silica spheres in an aqueous medium. Finite size effects and correspondence between the Bragg model, band structure and reflection spectra are discussed. The effects of size, positional and missing-spheres disorder are investigated. In addition, by analyzing the results of experimental work we show that the fabricated structures have reduced plane-to-plane distance probably due to the effect of gravity during growth.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016EGUGA..18.7315L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016EGUGA..18.7315L"><span>Internal Gravity Waves: Generation and Breaking Mechanisms by Laboratory Experiments</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>la Forgia, Giovanni; Adduce, Claudia; Falcini, Federico</p> <p>2016-04-01</p> <p>Internal gravity waves (IGWs), occurring within estuaries and the coastal oceans, are manifest as large amplitude undulations of the pycnocline. IGWs propagating horizontally in a two layer stratified fluid are studied. The breaking of an IGW of depression shoaling upon a uniformly sloping boundary is investigated experimentally. Breaking dynamics beneath the shoaling waves causes both mixing and wave-induced near-bottom vortices suspending and redistributing the bed material. Laboratory experiments are conducted in a Perspex tank through the standard lock-release method, following the technique described in Sutherland et al. (2013). Each experiment is analysed and the instantaneous pycnocline position is measured, in order to obtain both geometric and kinematic features of the IGW: amplitude, wavelength and celerity. IGWs main features depend on the geometrical parameters that define the initial experimental setting: the density difference between the layers, the total depth, the layers depth ratio, the aspect ratio, and the displacement between the pycnoclines. Relations between IGWs geometric and kinematic features and the initial setting parameters are analysed. The approach of the IGWs toward a uniform slope is investigated in the present experiments. Depending on wave and slope characteristics, different breaking and mixing processes are observed. Sediments are sprinkled on the slope to visualize boundary layer separation in order to analyze the suspension e redistribution mechanisms due to the wave breaking.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27001128','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27001128"><span>Emergent geometries and nonlinear-wave dynamics in photon fluids.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Marino, F; Maitland, C; Vocke, D; Ortolan, A; Faccio, D</p> <p>2016-03-22</p> <p>Nonlinear waves in defocusing media are investigated in the framework of the hydrodynamic description of light as a photon fluid. The observations are interpreted in terms of an emergent curved spacetime generated by the waves themselves, which fully determines their dynamics. The spacetime geometry emerges naturally as a result of the nonlinear interaction between the waves and the self-induced background flow. In particular, as observed in real fluids, different points of the wave profile propagate at different velocities leading to the self-steepening of the wave front and to the formation of a shock. This phenomenon can be associated to a curvature singularity of the emergent metric. Our analysis offers an alternative insight into the problem of shock formation and provides a demonstration of an analogue gravity model that goes beyond the kinematic level.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016NatSR...623282M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016NatSR...623282M"><span>Emergent geometries and nonlinear-wave dynamics in photon fluids</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Marino, F.; Maitland, C.; Vocke, D.; Ortolan, A.; Faccio, D.</p> <p>2016-03-01</p> <p>Nonlinear waves in defocusing media are investigated in the framework of the hydrodynamic description of light as a photon fluid. The observations are interpreted in terms of an emergent curved spacetime generated by the waves themselves, which fully determines their dynamics. The spacetime geometry emerges naturally as a result of the nonlinear interaction between the waves and the self-induced background flow. In particular, as observed in real fluids, different points of the wave profile propagate at different velocities leading to the self-steepening of the wave front and to the formation of a shock. This phenomenon can be associated to a curvature singularity of the emergent metric. Our analysis offers an alternative insight into the problem of shock formation and provides a demonstration of an analogue gravity model that goes beyond the kinematic level.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20000052702','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20000052702"><span>SAO and Kelvin Waves in the EuroGRIPS GCMS and the UK Meteorological Offices Analyses</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Amodei, M.; Pawson, S.; Scaife, A. A.; Lahoz, W.; Langematz, U.; Li, Ding Min; Simon, P.</p> <p>2000-01-01</p> <p>This work is an intercomparison of four tropospheric-stratospheric climate models, the Unified Model (UM) of the U.K. Meteorological Office (UKMO), the model of the Free University in Berlin (FUB). the ARPEGE-climat model of the National Center for Meteorological Research (CNRM), and the Extended UGAMP GCM (EUGCM) of the Center for Global Atmospheric Modelling (CGAM), against the UKMO analyses. This comparison has been made in the framework of the "GSM-Reality Intercomparison Project for SPARC" (GRIPS). SPARC (Stratospheric Processes and their Role in Climate) aims are to investigate the effects of the middle atmosphere on climate and the GRIPS purpose is to organized a comprehensive assessment of current Middle Atmosphere-Climate Models (MACMs). The models integrations were made without identical contraints e.g. boundary conditions, incoming solar radiation). All models are able to represent the dominant features of the extratropical circulation. In this paper, the structure of the tropical winds and the strengths of the Kelvin waves are examined. Explanations for the differences exhibited. between the models. as well as between models and analyses, are also proposed. In the analyses a rich spectrum of waves (eastward and westward) is present and contributes to drive the SAO (SemiAnnual Oscillation) and the QBO (Quasi-Biennal Oscillation). The amplitude of the Kelvin waves is close to the one observed in UARS (Upper Atmosphere Research Satellite) data. In agreement with observations, the Kelvin waves generated in the models propagate into the middle atmosphere as wave packets which underlines convective forcing origin. In most models, slow Kelvin waves propagate too high and are hence overestimated in the upper stratosphere and in the mesosphere, except for the UM which is more diffusive. These waves are not sufficient to force realistic westerlies of the QBO or SAO westerly phases. If the SAO is represented by all models only two of them are able to generate westerlies between 10 hPa and 50 hPa. The importance of the role played by subgrided gravity waves is more and more recognized. Actually, the EUGCM which includes a parametrization of gravity waves with a non-zero phase speed is able to simulate. with however some unrealistic features, clear easterly to westerly transitions as well as westerlies downward propagations. Thermal damping is also important in the westerlies forcing in the stratosphere. The model ARPEGE-climat shows more westerlies in the stratosphere than tile other three models probably due to the use of a simplified scheme to predict the ozone distribution in the middle atmosphere.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018JHEP...05..007J','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018JHEP...05..007J"><span>Quantum space and quantum completeness</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Jurić, Tajron</p> <p>2018-05-01</p> <p>Motivated by the question whether quantum gravity can "smear out" the classical singularity we analyze a certain quantum space and its quantum-mechanical completeness. Classical singularity is understood as a geodesic incompleteness, while quantum completeness requires a unique unitary time evolution for test fields propagating on an underlying background. Here the crucial point is that quantum completeness renders the Hamiltonian (or spatial part of the wave operator) to be essentially self-adjoint in order to generate a unique time evolution. We examine a model of quantum space which consists of a noncommutative BTZ black hole probed by a test scalar field. We show that the quantum gravity (noncommutative) effect is to enlarge the domain of BTZ parameters for which the relevant wave operator is essentially self-adjoint. This means that the corresponding quantum space is quantum complete for a larger range of BTZ parameters rendering the conclusion that in the quantum space one observes the effect of "smearing out" the singularity.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29390737','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29390737"><span>An investigation of infrasound propagation over mountain ranges.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Damiens, Florentin; Millet, Christophe; Lott, François</p> <p>2018-01-01</p> <p>Linear theory is used to analyze trapping of infrasound within the lower tropospheric waveguide during propagation above a mountain range. Atmospheric flow produced by the mountains is predicted by a nonlinear mountain gravity wave model. For the infrasound component, this paper solves the wave equation under the effective sound speed approximation using both a finite difference method and a Wentzel-Kramers-Brillouin approach. It is shown that in realistic configurations, the mountain waves can deeply perturb the low-level waveguide, which leads to significant acoustic dispersion. To interpret these results, each acoustic mode is tracked separately as the horizontal distance increases. It is shown that during statically stable situations, situations that are common during night over land in winter, the mountain waves induce a strong Foehn effect downstream, which shrinks the waveguide significantly. This yields a new form of infrasound absorption that can largely outweigh the direct effect the mountain induces on the low-level waveguide. For the opposite case, when the low-level flow is less statically stable (situations that are more common during day in summer), mountain wave dynamics do not produce dramatic responses downstream. It may even favor the passage of infrasound and mitigate the direct effect of the obstacle.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017RSPTA.37670091C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017RSPTA.37670091C"><span>Hamiltonian models for the propagation of irrotational surface gravity waves over a variable bottom</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Compelli, A.; Ivanov, R.; Todorov, M.</p> <p>2017-12-01</p> <p>A single incompressible, inviscid, irrotational fluid medium bounded by a free surface and varying bottom is considered. The Hamiltonian of the system is expressed in terms of the so-called Dirichlet-Neumann operators. The equations for the surface waves are presented in Hamiltonian form. Specific scaling of the variables is selected which leads to approximations of Boussinesq and Korteweg-de Vries (KdV) types, taking into account the effect of the slowly varying bottom. The arising KdV equation with variable coefficients is studied numerically when the initial condition is in the form of the one-soliton solution for the initial depth. This article is part of the theme issue 'Nonlinear water waves'.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li class="active"><span>17</span></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_17 --> <div id="page_18" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li class="active"><span>18</span></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="341"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19770052052&hterms=infrasound&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3Dinfrasound','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19770052052&hterms=infrasound&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3Dinfrasound"><span>Heating of the lower thermosphere by the dissipation of acoustic waves</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Rind, D.</p> <p>1977-01-01</p> <p>Infrasound of 0.2 Hz known as microbaroms, generated by interfering ocean waves, propagates into the lower thermosphere where it is dissipated between 110 and 140 km. It is shown here that under average conditions in winter the energy input into this region is of the order of 0.33 W/kg, the same as that estimated for gravity wave dissipation, and capable of producing a heating of at least 30 K/day. To arrive at this result different dissipation mechanisms are discussed, with the calculated attenuation compared to previously published observations and observations of natural infrasound at Palisades, N.Y. Increased acoustic attenuation due to the presence of turbulence is not, in general, in evidence.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..19.3534S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..19.3534S"><span>Measurement study on stratospheric turbulence generation by wave-wave interaction</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Söder, Jens; Gerding, Michael; Schneider, Andreas; Wagner, Johannes; Lübken, Franz-Josef</p> <p>2017-04-01</p> <p>During a joint campaign of the research programmes METROSI and GW-LCYCLE 2 (Northern Scandinavia, January 2016), an extraordinary case of turbulence generation by wave-wave interaction has been observed. To describe this turbulence, we will focus on the energy dissipation rate. The most feasible way to measure dissipation is to resolve the inner scale of turbulence. This is done by our balloon-borne instrument LITOS (Leibniz-Institute Turbulence Observations in the Stratosphere) that combines a precise turbulence measurement method with the capability of being launched from every radiosonde station. For the flight in discussion further information on the meteorological background is obtained by a radiosonde. Due to the fact that the balloon drifts horizontally during ascent, measurements of vertical and horizontal wave parameters are ambiguous. Hence further understanding of the wave field is aided by 3d-simulations using WRF and ECMWF. Concentrating on one out of six LITOS launches during that campaign, we see some turbulent activity across the whole flightpath as on most other LITOS measurements. Nevertheless, we find pronounced maxima in the middle stratosphere (24 - 32 km). They coincide with a distinct phase of a mountain wave. As seen from WRF and ECMWF wind fields, this mountain wave interacts with another larger scale gravity wave. That is, the second wave influences the propagation of the smaller scale mountain wave. With LITOS we see the strongest dissipation rates in areas where the phase direction of the smaller wave changes due to wave-wave interaction. Therefore, these measurements provide an opportunity for further investigation into breakdown processes of internal gravity waves.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..19.2040E','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..19.2040E"><span>Impact of 3-D orographic gravity wave parameterisation on stratosphere dynamics</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Eichinger, Roland; Garny, Hella; Cai, Duy; Jöckel, Patrick</p> <p>2017-04-01</p> <p>Stratosphere dynamics are strongly influenced by gravity waves (GWs) propagating upwards from the troposphere. Some of these GWs are generated through flow over small-scale orography and can not be resolved by common general circulation models (GCMs). Due to computational model designs, their parameterisation usually follows a one dimensional columnar approach that, among other simplifications, neglects the horizontal propagation of GWs on their way up into the Middle Atmosphere. This causes contradictions between models and observations in location and strength of GW drag force through their dissipation and as a consequence, also in stratospheric mean flow. In the EMAC (ECHAM MESSy Atmospheric Chemistry) model, we have found this deficiency to cause a too weak Antarctic polar vortex, which directly impacts stratospheric temperatures and thereby the chemical reactions that determine ozone depletion. For this reason, we adapt a three dimensional parameterisation for orographic GWs, that had been implemented and tested in the MIROC GCM, to the MESSy coding standard. This computationally light scheme can then be used in a modular and flexible way in a cascade of model setups from an idealised version for conceptional process analyses to full climate chemistry simulations for quantitative investigations. This model enhancement can help to reconcile models and observations in wave drag forcing itself, but in consequence, also in Brewer-Dobson Circulation trends across the recent decades. Furthermore, uncertainties in weather and climate predictions as well as in future ozone projections can be reduced.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015AGUFMNH21C1828O','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015AGUFMNH21C1828O"><span>Internal Gravity Wave Induced by the Queen Charlotte Event (27 October 2012, Mw 7.8): Airglow Observation and Modeling.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Occhipinti, G.; Bablet, A.; Makela, J. J.</p> <p>2015-12-01</p> <p>The detection of the tsunami related internal gravity waves (IGWtsuna) by airglow camera has been recently validated by observation (Makela et al., 2011) and modeling (Occhipinti et al., 2011) in the case of the Tohoku event (11 March 2011, Mw 9.0). The airglow is measuring the photon emission at 630 nm, indirectly linked to the plasma density of O2+ (Link & Cogger, 1988) and it is commonly used to detect transient event in the ionosphere (Kelley et al., 2002, Makela et al., 2009, Miller et al., 2009). The modeling of the IGWtsuna clearly reproduced the pattern of the airglow measurement observed over Hawaii and the comparison between the observation and the modeling allows to recognize the wave form and allow to explain the IGWtsuna arriving before the tsunami wavefront at the sea level (Occhipinti et al., 2011). Approaching the Hawaiian archipelagos the tsunami propagation is slowed down (reduction of the sea depth), instead, the IGWtsuna, propagating in the atmosphere/ionosphere, conserves its speed. In this work, we present the modeling of the new airglow observation following the Queen Charlotte event (27 October 2012, Mw 7.8) that has been recently detected, proving that the technique can be generalized for smaller events. Additionally, the effect of the wind on the IGWtsuna, already evocated in the past, is included in the modeling to better reproduce the airglow observations. All ref. here @ www.ipgp.fr/~ninto</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20140005694','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20140005694"><span>Diurnal Variation in Gravity Wave Activity at Low and Middle Latitudes</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Andrioli, V. F.; Fritts, D. C.; Batista, P. P.; Clemesha, B. R.; Janches, Diego</p> <p>2013-01-01</p> <p>We employ a modified composite day extension of the Hocking (2005) analysis method to study gravity wave (GW) activity in the mesosphere and lower thermosphere using 4 meteor radars spanning latitudes from 7deg S to 53.6deg S. Diurnal and semidiurnal modulations were observed in GW variances over all sites. Semidiurnal modulation with downward phase propagation was observed at lower latitudes mainly near the equinoxes. Diurnal modulations occur mainly near solstice and, except for the zonal component at Cariri (7deg S), do not exhibit downward phase propagation. At a higher latitude (SAAMER, 53.6deg S) these modulations are only observed in the meridional component where we can observe diurnal variation from March to May, and semidiurnal, during January, February, October (above 88 km) and November. Some of these modulations with downward phase progression correlate well with wind shear. When the wind shear is well correlated with the maximum of the variances the diurnal tide has its largest amplitudes, i.e., near equinox. Correlations exhibiting variations with tidal phases suggest significant GW-tidal interactions that have different characters depending on the tidal components and possible mean wind shears. Modulations that do not exhibit phase variations could be indicative of diurnal variations in GW sources.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012AGUFMOS33A1802K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012AGUFMOS33A1802K"><span>Observations of Convectively Coupled Kelvin Waves forced by Extratropical Wave Activity</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kiladis, G. N.; Biello, J. A.; Straub, K. H.</p> <p>2012-12-01</p> <p>It is well established by observations that deep tropical convection can in certain situations be forced by extratropical Rossby wave activity. Such interactions are a well-known feature of regions of upper level westerly flow, and in particular where westerlies and equatorward wave guiding by the basic state occur at low enough latitudes to interact with tropical and subtropical moisture sources. In these regions convection is commonly initiated ahead of upper level troughs, characteristic of forcing by quasi-geostrophic dynamics. However, recent observational evidence indicates that extratropical wave activity is also associated with equatorial convection even in regions where there is a "critical line" to Rossby wave propagation at upper levels, that is, where the zonal phase speed of the wave is equal to the zonal flow speed. A common manifestation of this type of interaction involves the initiation of convectively coupled Kelvin waves, as well as mixed Rossby-gravity (MRG) waves. These waves are responsible for a large portion of the convective variability within the ITCZ over the Indian, Pacific, and Atlantic sectors, as well as within the Amazon Basin of South America. For example, Kelvin waves originating within the western Pacific ITCZ are often triggered by Rossby wave activity propagating into the Australasian region from the South Indian Ocean extratropics. At other times, Kelvin waves are seen to originate along the eastern slope of the Andes. In the latter case the initial forcing is sometimes linked to a low-level "pressure surge," initiated by wave activity propagating equatorward from the South Pacific storm track. In yet other cases, such as over Africa, the forcing appears to be related to wave activity in the extratropics which is not necessarily propagating into low latitudes, but appears to "project" onto the Kelvin structure, in line with past theoretical and modeling studies. Observational evidence for extratropical forcing of Kelvin and MRG waves will be presented, and the seasonality of these statistical associations will be discussed. Extratropical forcing of equatorial waves appears to be most efficient during the solstice seasons by waves originating within the winter hemisphere and interacting with convection in the summer hemisphere. A companion presentation by J. Biello will examine the theoretical basis for these interactions.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/18851333','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/18851333"><span>Evidence of rayleigh-hertz surface waves and shear stiffness anomaly in granular media.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Bonneau, L; Andreotti, B; Clément, E</p> <p>2008-09-12</p> <p>Using the nonlinear dependence of sound propagation speed with pressure, we evidence the anomalous elastic softness of a granular packing in the vicinity of the jamming transition. Under gravity and close to a free surface, the acoustic propagation is only possible through surface modes guided by the stiffness gradient. These Rayleigh-Hertz modes are evidenced in a controlled laboratory experiment. The shape and the dispersion relation of both transverse and sagittal modes are compared to the prediction of nonlinear elasticity including finite size effects. These results allow one to access the elastic properties of the packing under vanishing confining pressure.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018ACP....18.6721S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018ACP....18.6721S"><span>Observation of Kelvin-Helmholtz instabilities and gravity waves in the summer mesopause above Andenes in Northern Norway</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Stober, Gunter; Sommer, Svenja; Schult, Carsten; Latteck, Ralph; Chau, Jorge L.</p> <p>2018-05-01</p> <p>We present observations obtained with the Middle Atmosphere Alomar Radar System (MAARSY) to investigate short-period wave-like features using polar mesospheric summer echoes (PMSEs) as a tracer for the neutral dynamics. We conducted a multibeam experiment including 67 different beam directions during a 9-day campaign in June 2013. We identified two Kelvin-Helmholtz instability (KHI) events from the signal morphology of PMSE. The MAARSY observations are complemented by collocated meteor radar wind data to determine the mesoscale gravity wave activity and the vertical structure of the wind field above the PMSE. The KHIs occurred in a strong shear flow with Richardson numbers Ri < 0.25. In addition, we observed 15 wave-like events in our MAARSY multibeam observations applying a sophisticated decomposition of the radial velocity measurements using volume velocity processing. We retrieved the horizontal wavelength, intrinsic frequency, propagation direction, and phase speed from the horizontally resolved wind variability for 15 events. These events showed horizontal wavelengths between 20 and 40 km, vertical wavelengths between 5 and 10 km, and rather high intrinsic phase speeds between 45 and 85 m s-1 with intrinsic periods of 5-10 min.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20030102174','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20030102174"><span>Mesospheric Non-Migrating Tides Generated With Planetary Waves: II Influence of Gravity Waves</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Mayr, H. G.; Mengel, J. G.; Talaat, E. L.; Porter, H. S.; Chan, K. L.</p> <p>2003-01-01</p> <p>We demonstrated that, in our model, non-linear interactions between planetary waves (PW) and migrating tides could generate in the upper mesosphere non-migrating tides with amplitudes comparable to those observed. The Numerical Spectral Model (NSM) we employ incorporates Hines Doppler Spread Parameterization for small-scale gravity waves (GW), which affect in numerous ways the dynamics of the mesosphere. The latitudinal (seasonal) reversals in the temperature and zonal circulation, which are largely caused by GWs (Lindzen, 198l), filter the PWs and contribute to the instabilities that generate the PWs. The PWs in turn are amplified by the momentum deposition of upward propagating GWs, as are the migrating tides. The GWs thus affect significantly the migrating tides and PWs, the building blocks of non-migrating tides. In the present paper, we demonstrate that GW filtering also contributes to the non-linear coupling between PWs and tides. Two computer experiments are presented to make this point. In one, we simply turn off the GW source to show the effect. In the second case, we demonstrate the effect by selectively suppressing the momentum source for the m = 0 non-migrating tides.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016cosp...41E1090K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016cosp...41E1090K"><span>Martian atmospheric gravity waves simulated by a high-resolution general circulation model</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kuroda, Takeshi; Yiǧit, Erdal; Medvedev, Alexander S.; Hartogh, Paul</p> <p>2016-07-01</p> <p>Gravity waves (GWs) significantly affect temperature and wind fields in the Martian middle and upper atmosphere. They are also one of the observational targets of the MAVEN mission. We report on the first simulations with a high-resolution general circulation model (GCM) and present a global distributions of small-scale GWs in the Martian atmosphere. The simulated GW-induced temperature variances are in a good agreement with available radio occultation data in the lower atmosphere between 10 and 30 km. For the northern winter solstice, the model reveals a latitudinal asymmetry with stronger wave generation in the winter hemisphere and two distinctive sources of GWs: mountainous regions and the meandering winter polar jet. Orographic GWs are filtered upon propagating upward, and the mesosphere is primarily dominated by harmonics with faster horizontal phase velocities. Wave fluxes are directed mainly against the local wind. GW dissipation in the upper mesosphere generates a body force per unit mass of tens of m s^{-1} per Martian solar day (sol^{-1}), which tends to close the simulated jets. The results represent a realistic surrogate for missing observations, which can be used for constraining GW parameterizations and validating GCMs.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFMNH53D..04R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFMNH53D..04R"><span>Tsunami normal modes with solid earth and atmospheric coupling and inversion of the TEC data to estimate tsunami water height in the case of the Queen Charlotte tsunami.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Rakoto, V.; Lognonne, P. H.; Rolland, L.</p> <p>2016-12-01</p> <p>Large underwater earthquakes (Mw > 7) can transmit part of their energy to the surrounding ocean through large sea-floor motions, generating tsunamis that propagate over long distances. The forcing effect of long period ocean surface vibrations due to tsunami waves on the atmosphere trigger atmospheric internal gravity waves (IGWs) that induce ionospheric disturbances when they reach the upper atmosphere. In this poster, we study the IGWs associated to tsunamis using a normal modes 1D modeling approach. Our model is first applied to the case of the October 2012 Haida Gwaii tsunami observed offshore Hawaii. We found three resonances between tsunami modes and the atmospheric gravity modes occurring around 1.5 mHz, 2 mHz and 2.5 mHz, with a large fraction of the energy of the tsunami modes transferred from the ocean to the atmosphere. At theses frequencies, the gravity branches are interacting with the tsunami one and have large amplitude in the ocean. As opposed to the tsunami, a fraction of their energy is therefore transferred from the atmosphere to the ocean. We also show that the fundamental of the gravity waves should arrive before the tsunami due to higher group velocity below 1.6 mHz. We demonstrate that only the 1.5 mHz resonance of the tsunami mode can trigger observable ionospheric perturbations, most often monitored using GPS dual-frequency measurements. Indeed, we show that the modes at 2 mHz and 2.5 mHz are already evanescent at the height of the F2 peak and have little energy in the ionosphere. This normal modes modeling offers a novel and comprehensive study of the transfer function from a propagating tsunami to the upper atmosphere. In particular, we can invert the perturbed TEC data induced by a tsunami in order to estimate the amplitude of the tsunami waveform using a least square method. This method has been performed in the case of the Haida Gwaii tsunami. The results showed a good agreement with the measurement of the dart buoy.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015AGUFMSH53B2494G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015AGUFMSH53B2494G"><span>Newtonian CAFE: a new ideal MHD code to study the solar atmosphere</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>González, J. J.; Guzmán, F.</p> <p>2015-12-01</p> <p>In this work we present a new independent code designed to solve the equations of classical ideal magnetohydrodynamics (MHD) in three dimensions, submitted to a constant gravitational field. The purpose of the code centers on the analysis of solar phenomena within the photosphere-corona region. In special the code is capable to simulate the propagation of impulsively generated linear and non-linear MHD waves in the non-isothermal solar atmosphere. We present 1D and 2D standard tests to demonstrate the quality of the numerical results obtained with our code. As 3D tests we present the propagation of MHD-gravity waves and vortices in the solar atmosphere. The code is based on high-resolution shock-capturing methods, uses the HLLE flux formula combined with Minmod, MC and WENO5 reconstructors. The divergence free magnetic field constraint is controlled using the Flux Constrained Transport method.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20080030786&hterms=Qbo&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D60%26Ntt%3DQbo','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20080030786&hterms=Qbo&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D60%26Ntt%3DQbo"><span>Identification of Stratospheric Waves in Ozone in the Tropics from OMI High Spectral Resolution Measurements</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Ziemke, J. R.; Liu, X.; Bhartia, P. K.</p> <p>2007-01-01</p> <p>Previous studies using Total Ozone Mapping Spectrometer (TOMS) measurements have identified several types of tropical waves in the stratosphere. These waves include Kelvin waves, mixed Rossby-gravity waves, equatorial Rossby waves, and global normal modes. All of these detected waves occur when their zonal phase speeds are opposite the zonal winds in the low-mid stratosphere associated with the Quasi-biennial Oscillation (QBO). Peak-to-peak amplitudes in all cases are typically 5 DU. While total ozone data from TOMS is sensitive in detecting these tropical waves, they provide each day only a single horizontal cross-sectional map. The high spatial and spectral resolution of the Aura Ozone Monitoring Instrument (OMI) provides a unique means to evaluate 3D structure in these waves including their propagation characteristics. Ozone profiles retrieved from OMI radiances for wavelengths 270-310 nm are utilized to examine the nature of these wave disturbances extending from the lower to upper stratosphere.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018EPJC...78..378H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018EPJC...78..378H"><span>Polarizations of gravitational waves in Horndeski theory</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hou, Shaoqi; Gong, Yungui; Liu, Yunqi</p> <p>2018-05-01</p> <p>We analyze the polarization content of gravitational waves in Horndeski theory. Besides the familiar plus and cross polarizations in Einstein's General Relativity, there is one more polarization state which is the mixture of the transverse breathing and longitudinal polarizations. The additional mode is excited by the massive scalar field. In the massless limit, the longitudinal polarization disappears, while the breathing one persists. The upper bound on the graviton mass severely constrains the amplitude of the longitudinal polarization, which makes its detection highly unlikely by the ground-based or space-borne interferometers in the near future. However, pulsar timing arrays might be able to detect the polarization excited by the massive scalar field. Since additional polarization states appear in alternative theories of gravity, the measurement of the polarizations of gravitational waves can be used to probe the nature of gravity. In addition to the plus and cross states, the detection of the breathing polarization means that gravitation is mediated by massless spin 2 and spin 0 fields, and the detection of both the breathing and longitudinal states means that gravitation is propagated by the massless spin 2 and massive spin 0 fields.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMSA33A2594I','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMSA33A2594I"><span>Magnetic Ripples Observed by Low-altitude Satellites and their Relation to Micro-barometric and Ground Magnetic Variations</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Iyemori, T.; Aoyama, T.; Nakanishi, K.; Odagi, Y.; Sanoo, Y.; Yokoyama, Y.; Yamada, A.</p> <p>2017-12-01</p> <p>The `magnetic ripples' are small scale magnetic fluctuations observed in upper ionosphere by low altitude satellites such as CHAMP or Swarm, and they are spatial structure of field-aligned currents along satellite orbit. They are observed almost always in mid- and low-latitudes. From their geographical and seasonal characteristics, they are supposed to be caused by the atmospheric waves which propagates from lower atmosphere to the ionosphere. Although the global distribution and its local time or seasonal variation of the amplitude of magnetic ripples, or the correlation with meteorological phenomena such as typhoons strongly suggest the cumulus convection as the main origin, we need to clarify which mode of atmospheric waves, i.e., acoustic wave or internal gravity wave, mainly contributes to the magnetic ripples and what meteorological condition correspond them. For those purposes, we analyze ground based magnetic and micro-barometric variations. We try to make quantitative estimation of the contribution from both acoustic and internal mode of gravity waves, acoustic resonance, etc. by calculating PSD (power spectral density) of pressure and ground magnetic variations. In this paper, we present their basic characteristics and discuss the relation with magnetic ripples. [Acknowledgments]: The ground observations have been supported by many people including students at our graduate school and by the collaboration with other institutions.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20010064835&hterms=glass+ceramic&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3Dglass%2Bceramic','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20010064835&hterms=glass+ceramic&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3Dglass%2Bceramic"><span>The Effects of Gravity on the Combustion Synthesis of B2O3-Al2O3-MgO Glass Ceramic Composites</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Manerbino, A. R.; Yi, H. C.; Guigne, J. Y.; Moore, J. J.; Schowengerdt, F. D.</p> <p>2000-01-01</p> <p>Glass ceramic composites based on B2O3-Al2O3-MgO have been produced by combustion synthesis in a Self-propagating mode. The gravitational effects on the combustion characteristics such as combustion wave velocity (V), and combustion temperature (T(sub c)) were studied. The results showed that the gravitational effects on these parameters were inconclusive. The microstructure of this system has also been analyzed with X-ray Diffraction and light microscopy. These results showed a higher amount of divitrification occurs under both reduced gravity and high gravity conditions. The gravitational effects on formation of pores, overall porosity and apparent porosity for this family of glass-ceramics also shows to be inconclusive. Possible reasons for these results are discussed.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20020034902&hterms=gravity+model&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D90%26Ntt%3Dgravity%2Bmodel','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20020034902&hterms=gravity+model&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D90%26Ntt%3Dgravity%2Bmodel"><span>Hydrodynamic Instability in an Extended Landau/Levich Model of Liquid-Propellant Combustion at Normal and Reduced Gravity</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Margolis, Stephen B.</p> <p>1998-01-01</p> <p>The classical Landau/Levich models of liquid-propellant combustion, despite their relative simplicity, serve as seminal examples that correctly describe the onset of hydrodynamic instability in reactive systems. Recently, these two separate models have been combined and extended to account for a dynamic dependence, absent in the original formulations, of the local burning rate on the local pressure and temperature fields. The resulting model admits an extremely rich variety of both hydrodynamic and reactive/diffusive instabilities that can be analyzed either numerically or analytically in various limiting parameter regimes. In the present work, a formal asymptotic analysis, based on the realistic smallness of the gas-to-liquid density ratio, is developed to investigate the combined effects of gravity and other parameters on the hydrodynamic instability of the propagating liquid/gas interface. In particular, an analytical expression is derived for the neutral stability boundary A(sub p)(k), where A(sub p) is the pressure sensitivity of the burning rate and k is the wavenumber of the disturbance. The results demonstrate explicitly the stabilizing effect of gravity on long-wave disturbances, the stabilizing effect of viscosity (both liquid and gas) and surface tension on short-wave perturbations, and the instability associated with intermediate wavenumbers for critical negative values of A(sub p). In the limiting case of weak gravity, it is shown that hydrodynamic instability in liquid-propellant combustion is a long-wave instability phenomenon, whereas at normal gravity, this instability is first manifested through O(1) wavenumber disturbances. It is also demonstrated that, in general, surface tension and the viscosity of both the liquid and gas phases each produce comparable stabilizing effects in the large-wavenumber regime, thereby providing important modifications to previous analyses in which one or more of these effects were neglected.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19980202211&hterms=gravity+model&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D90%26Ntt%3Dgravity%2Bmodel','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19980202211&hterms=gravity+model&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D90%26Ntt%3Dgravity%2Bmodel"><span>Hydrodynamic Instability in an Extended Landau/Levich Model of Liquid-Propellant Combustion at Normal and Reduced Gravity</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Margolis, S. B.</p> <p>1997-01-01</p> <p>The classical Landau/Levich models of liquid-propellant combustion, despite their relative simplicity, serve as seminal examples that correctly describe the onset of hydrodynamic instability in reactive systems. Recently, these two separate models have been combined and extended to account for a dynamic dependence, absent in the original formulations, of the local burning rate on the local pressure and temperature fields. The resulting model admits an extremely rich variety of both hydrodynamic and reactive/diffusive instabilities that can be analyzed either numerically or analytically in various limiting parameter regimes. In the present work, a formal asymptotic analysis, based on the realistic smallness of the gas-to-liquid density ratio, is developed to investigate the combined effects of gravity and other parameters on the hydrodynamic instability of the propagating liquid/gas interface. In particular, an analytical expression is derived for the neutral stability boundary A(p)(k), where A(p) is the pressure sensitivity of the burning rate and k is the wavenumber of the disturbance. The results demonstrate explicitly the stabilizing effect of gravity on long-wave disturbances, the stabilizing effect of viscosity (both liquid and gas) and surface tension on short-wave perturbations, and the instability associated with intermediate wavenumbers for negative values of A(p). In the limiting case of weak gravity, it is shown that hydrodynamic instability in liquid-propellant combustion is a long-wave instability phenomenon, whereas at normal gravity, this instability is first manifested through O(1) wavenumber disturbances. it is also demonstrated that, in general, surface tension and the viscosity of both the liquid and gas phases each produce comparable stabilizing effects in the long-wavenumber regime, thereby providing important modifications to previous analyses in which one or more of these effects were neglected.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014AGUFMSA51B4100C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014AGUFMSA51B4100C"><span>Longitudinal Variations of Low-Latitude Gravity Waves and Their Impacts on the Ionosphere</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Cullens, C. Y.; England, S.; Immel, T. J.</p> <p>2014-12-01</p> <p>The lower atmospheric forcing has important roles in the ionospheric variability. However, influences of lower atmospheric gravity waves on the ionospheric variability are still not clear due to the simplified gravity wave parameterizations and the limited knowledge of gravity wave distributions. In this study, we aim to study the longitudinal variations of gravity waves and their impacts of longitudinal variations of low-latitude gravity waves on the ionospheric variability. Our SABER results show that longitudinal variations of gravity waves at the lower boundary of TIME-GCM are the largest in June-August and January-February. We have implemented these low-latitude gravity wave variations from SABER instrument into TIME-GCM model. TIME-GCM simulation results of ionospheric responses to longitudinal variations of gravity waves and physical mechanisms will be discussed.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19950052130&hterms=hinson&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAuthor-Name%26N%3D0%26No%3D20%26Ntt%3Dhinson','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19950052130&hterms=hinson&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAuthor-Name%26N%3D0%26No%3D20%26Ntt%3Dhinson"><span>Magellan radio occultation measurements of atmospheric waves on Venus</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Hinson, David P.; Jenkins, J. M.</p> <p>1995-01-01</p> <p>Radio occultation experiments were conducted at Venus on three consecutive orbits of the Magellan spacecraft in October 1991. Each occultation occurred over the same topography (67 deg N, 127 deg E) and at the same local time (22 hr 5 min), but the data are sensitive to zonal variations because the atmosphere rotates significantly during one orbit. Through comparisons between observations and predictions of standard wave theory, we have demonstrated that small-scale oscillations in retrieved temperature profiles as well as scintillations in received signal intensity are caused by a spectrum of vertically propagating internal gravity waves. There is a strong similarity between the intensity scintillations observed here and previous measurements, which pertain to a wide range of locations and experiment dates. This implies that the same basic phenomenon underlies all the observations and hence that gravity waves are a persistent, global feature of Venus' atmosphere. We obtained a fairly complete characterization of a gravity wave that appears above the middle cloud in temperature measurements on all three orbits. The amplitude and vertical wavelength are about 4 K and 2.5 km respectively, at 65 km. A model for radiative damping implies that the wave intrinsic frequency is approximately 2 x 10(exp 4) rad/sec, the corresponding ratio between horizontal and vertical wavelengths is approximately 100. The wave is nearly stationary relative to the surface or the Sun. Radiative attenuation limits the wave amplitude at altitudes above approximately 65 km, leading to wave drag on the mean zonal winds of about +0.4 m/sec per day (eastward). The sign, magnitude, and location of this forcing suggest a possible role in explaining the decrease with height in the zonal wind speed that is believed to occur above the cloud tops. Temperature oscillations with larger vertical wavelengths (5-10 km) were also observed on all three orbits, but we are able unable to interpret these unambiguously.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li class="active"><span>18</span></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_18 --> <div id="page_19" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li class="active"><span>19</span></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="361"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2008AGUFMOS13D1226C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2008AGUFMOS13D1226C"><span>Infragravity wave generation and dynamics over a mild slope beach : Experiments and numerical computations</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Cienfuegos, R.; Duarte, L.; Hernandez, E.</p> <p>2008-12-01</p> <p>Charasteristic frequencies of gravity waves generated by wind and propagating towards the coast are usually comprised between 0.05Hz and 1Hz. Nevertheless, lower frequecy waves, in the range of 0.001Hz and 0.05Hz, have been observed in the nearshore zone. Those long waves, termed as infragravity waves, are generated by complex nonlinear mechanisms affecting the propagation of irregular waves up to the coast. The groupiness of an incident random wave field may be responsible for producing a slow modulation of the mean water surface thus generating bound long waves travelling at the group speed. Similarly, a quasi- periodic oscillation of the break-point location, will be accompained by a slow modulation of set-up/set-down in the surf zone and generation and release of long waves. If the primary structure of the carrying incident gravity waves is destroyed (e.g. by breaking), forced long waves can be freely released and even reflected at the coast. Infragravity waves can affect port operation through resonating conditions, or strongly affect sediment transport and beach morphodynamics. In the present study we investigate infragravity wave generation mechanisms both, from experiments and numerical computations. Measurements were conducted at the 70-meter long wave tank, located at the Instituto Nacional de Hidraulica (Chile), prepared with a beach of very mild slope of 1/80 in order to produce large surf zone extensions. A random JONSWAP type wave field (h0=0.52m, fp=0.25Hz, Hmo=0.17m) was generated by a piston wave-maker and measurements of the free surface displacements were performed all over its length at high spatial resolution (0.2m to 1m). Velocity profiles were also measured at four verticals inside the surf zone using an ADV. Correlation maps of wave group envelopes and infragravity waves are computed in order to identify long wave generation and dynamics in the experimental set-up. It appears that both mechanisms (groupiness and break-point oscillation) are clearly present in this experiment while spectral analysis evidences the reorganization of energy density from the original narrow spectrum into the infragravity band. This experiment provides an opportunity to test numerical models that would in principle be able to reproduce infragravity wave generation and dynamics. We compare numerical results (free surface and velocities) produced by a fully nonlinear Boussinesq model including breaking and runup to the experimental data and show that the complex infragravity wave dynamics is adequately reproduced by the model.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.P43E2927P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.P43E2927P"><span>Simulations of Variability and Waves at Cloud Altitudes Using a Venus Middle Atmosphere General Circulation Model</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Parish, H. F.; Mitchell, J.</p> <p>2017-12-01</p> <p>We have developed a Venus general circulation model, the Venus Middle atmosphere Model (VMM), to simulate the atmosphere from just below the cloud deck 40 km altitude to around 100 km altitude. Our primary goal is to assess the influence of waves on the variability of winds and temperatures observed around Venus' cloud deck. Venus' deep atmosphere is not simulated directly in the VMM model, so the effects of waves propagating upwards from the lower atmosphere is represented by forcing at the lower boundary of the model. Sensitivity tests allow appropriate amplitudes for the wave forcing to be determined by comparison with Venus Express and probe measurements and allow the influence of waves on the cloud-level atmosphere to be investigated. Observations at cloud altitudes are characterized by waves with a wide variety of periods and wavelengths, including gravity waves, thermal tides, Rossby waves, and Kelvin waves. These waves may be generated within the cloud deck by instabilities, or may propagate up from the deep atmosphere. Our development of the VMM is motivated by the fact that the circulation and dynamics between the surface and the cloud levels are not well measured and wind velocities below 40 km altitude cannot be observed remotely, so we focus on the dynamics at cloud levels and above. Initial results from the VMM with a simplified radiation scheme have been validated by comparison with Pioneer Venus and Venus Express observations and show reasonable agreement with the measurements.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..19.3810P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..19.3810P"><span>Propagation Dynamics of Successive, Circumnavigating MJO Events in MERRA2 Reanalysis</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Powell, Scott</p> <p>2017-04-01</p> <p>Propagation speeds of strong circumnavigating successive MJO events are investigated in MERRA2 reanalysis. Coherent, statistically significant circumnavigating signals in parameterized latent heating and modeled adiabatic cooling associated with large-scale vertical motion are detected and tracked. The signals appear to be associated with propagation of a first baroclinic Kelvin wave, but they obviously moved at a rate much slower than the theoretical phase speed for a dry first baroclinic Kelvin wave. ( 45-50 m/s). The goal is to determine what factors primarily control the variable propagation speed of the MJO signal as a function of longitude. Following theory of Neelin and Held (1987) and Emanuel et al. (1994), the climatological offset (i.e. cancellation) between column integrated diabatic heating and adiabatic cooling in MERRA2 is used to the estimate the wave propagation speed if a reduction of "effective static stability" governed the phase speed. The offset is robust from year to year at all longitudes. A first baroclinic mode based on applying the theory to reanalysis output would propagate between 20-25 m/s over much of the Western Hemisphere, between 20-35 m/s over the eastern Atlantic and Africa, and between 5-20 m/s over the tropical warm pool. The theoretically predicted velocities closely match the propagation speed of the circumnavigating convective signal seen in reanalysis over regions of the tropics where the weak temperature gradient (WTG) approximation is apparently inapplicable (i.e. where deep convection is not prevalent and the offset between diabatic heating and adiabatic cooling is small enough to allow a non-negligible temperature tendency). However, in places where deep convection is prevalent and the offset is large (greater than about 0.9), such as over the warm pool, the theory greatly overestimates propagation speed of the MJO signal. Rather, the moisture wave theory of Adames and Kim (2016), which assumes a WTG, accurately predicts the speed of the MJO signal. Thus, two distinct dynamic regimes, one in which gravity waves dominate and another in which moisture wave dynamics are more applicable, govern MJO propagation depending on where the signal is located. In the East Pacific, the offset has seasonal dependence. It is small (about 0.7) during boreal winter, and a reduction of effective static stability adequately describes propagation of the MJO signal. During boreal summer, the offset approaches 0.9, meaning that the WTG dynamic regime is prevalent like over the warm pool. However, no known theory for MJO propagation can explain the propagation speed of the signal, 8-9 m/s. In the East Pacific, convection tends to have a second baroclinic vertical structure, and it is centered off the equator. This highlights the need for extension of moisture wave/moisture mode theories to incorporate the second convective vertical mode and convection that is not centered latitudinally at the equator.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016CQGra..33x5012B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016CQGra..33x5012B"><span>Covariant approach of perturbations in Lovelock type brane gravity</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Bagatella-Flores, Norma; Campuzano, Cuauhtemoc; Cruz, Miguel; Rojas, Efraín</p> <p>2016-12-01</p> <p>We develop a covariant scheme to describe the dynamics of small perturbations on Lovelock type extended objects propagating in a flat Minkowski spacetime. The higher-dimensional analogue of the Jacobi equation in this theory becomes a wave type equation for a scalar field Φ . Whithin this framework, we analyse the stability of membranes with a de Sitter geometry where we find that the Jacobi equation specializes to a Klein-Gordon (KG) equation for Φ possessing a tachyonic mass. This shows that, to some extent, these types of extended objects share the symmetries of the Dirac-Nambu-Goto (DNG) action which is by no means coincidental because the DNG model is the simplest included in this type of gravity.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26066112','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26066112"><span>Wave-packet formation at the zero-dispersion point in the Gardner-Ostrovsky equation.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Whitfield, A J; Johnson, E R</p> <p>2015-05-01</p> <p>The long-time effect of weak rotation on an internal solitary wave is the decay into inertia-gravity waves and the eventual emergence of a coherent, steadily propagating, nonlinear wave packet. There is currently no entirely satisfactory explanation as to why these wave packets form. Here the initial value problem is considered within the context of the Gardner-Ostrovsky, or rotation-modified extended Korteweg-de Vries, equation. The linear Gardner-Ostrovsky equation has maximum group velocity at a critical wave number, often called the zero-dispersion point. It is found here that a nonlinear splitting of the wave-number spectrum at the zero-dispersion point, where energy is shifted into the modulationally unstable regime of the Gardner-Ostrovsky equation, is responsible for the wave-packet formation. Numerical comparisons of the decay of a solitary wave in the Gardner-Ostrovsky equation and a derived nonlinear Schrödinger equation at the zero-dispersion point are used to confirm the spectral splitting.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA093713','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA093713"><span>Gravity and Acoustic Waves Applied to the Dynamics and Kinematics of the Atmosphere.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>1980-12-01</p> <p>following areas is presented: 1) Use of Infrasound as an Atmospheric Probe: Infrasonic signals from natural and artifi- cial sources were used as a passive...Probe After identifying the atmospheric factors controlling the propagation of infrasound we inverted the procedure to use infrasonic signals from...background infra - sound in the lower thermosphere could have a strong influence on the heating of this region. Our observations of wind speeds agree well</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20060037950&hterms=Ripple+labs&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D80%26Ntt%3DRipple%2Blabs','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20060037950&hterms=Ripple+labs&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D80%26Ntt%3DRipple%2Blabs"><span>(abstract) Spacecraft Doppler Tracking with the Deep Space Network in the Search for Gravitational Waves</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Asmar, Sami; Renzetti, Nicholas</p> <p>1994-01-01</p> <p>The Deep Space Network generates accurate radio science data observables for investigators who use radio links between spacecraft and the Earth to examine small changes in the phase and/or amplitude of the signal to study a wide variety of structures and phenomena in space. Several such studies are directed at aspects of the theory of general relativity such as gravitational redshift and gravitational waves. A gravitational wave is a propagating, polarized gravitational field, a ripple in the curvature of space-time. In Einstein's theory of general relativity, the waves are propagating solutions of the Einstein field equations. Their amplitudes are dimensionless strain amplitudes that change the fractional difference in distance between test masses and the rates at which separated clocks keep time. Predicted by all relativistic theories of gravity, they are extremely weak (the ratio of gravitational forces to electrical forces is about 10(sup -40)) and are generated at detectable levels only by astrophysical sources - very massive sources under violent dynamical conditions. The waves have never been detected but searches in the low-frequency band using Doppler tracking of many spacecraft have been conducted and others are being planned. Upper limits have been placed on the gravitational wave strength with the best sensitivities to date are for periodic waves being 7 x 10(sup -15).</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29229791','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29229791"><span>Hamiltonian models for the propagation of irrotational surface gravity waves over a variable bottom.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Compelli, A; Ivanov, R; Todorov, M</p> <p>2018-01-28</p> <p>A single incompressible, inviscid, irrotational fluid medium bounded by a free surface and varying bottom is considered. The Hamiltonian of the system is expressed in terms of the so-called Dirichlet-Neumann operators. The equations for the surface waves are presented in Hamiltonian form. Specific scaling of the variables is selected which leads to approximations of Boussinesq and Korteweg-de Vries (KdV) types, taking into account the effect of the slowly varying bottom. The arising KdV equation with variable coefficients is studied numerically when the initial condition is in the form of the one-soliton solution for the initial depth.This article is part of the theme issue 'Nonlinear water waves'. © 2017 The Author(s).</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016JGRE..121.1087B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016JGRE..121.1087B"><span>Influence of Venus topography on the zonal wind and UV albedo at cloud top level: The role of stationary gravity waves</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Bertaux, Jean-Loup; Khatuntsev, I. V.; Hauchecorne, A.; Markiewicz, W. J.; Marcq, E.; Lebonnois, S.; Patsaeva, M.; Turin, A.; Fedorova, A.</p> <p>2016-06-01</p> <p>Based on the analysis of UV images (at 365 nm) of Venus cloud top (altitude 67 ± 2 km) collected with Venus Monitoring Camera on board Venus Express (VEX), it is found that the zonal wind speed south of the equator (from 5°S to 15°S) shows a conspicuous variation (from -101 to -83 m/s) with geographic longitude of Venus, correlated with the underlying relief of Aphrodite Terra. We interpret this pattern as the result of stationary gravity waves produced at ground level by the uplift of air when the horizontal wind encounters a mountain slope. These waves can propagate up to the cloud top level, break there, and transfer their momentum to the zonal flow. Such upward propagation of gravity waves and influence on the wind speed vertical profile was shown to play an important role in the middle atmosphere of the Earth by Lindzen (1981) but is not reproduced in the current GCM of Venus atmosphere from LMD. (Laboratoire de Météorologie Dynamique) In the equatorial regions, the UV albedo at 365 nm varies also with longitude. We argue that this variation may be simply explained by the divergence of the horizontal wind field. In the longitude region (from 60° to -10°) where the horizontal wind speed is increasing in magnitude (stretch), it triggers air upwelling which brings the UV absorber at cloud top level and decreases the albedo and vice versa when the wind is decreasing in magnitude (compression). This picture is fully consistent with the classical view of Venus meridional circulation, with upwelling at equator revealed by horizontal air motions away from equator: the longitude effect is only an additional but important modulation of this effect. This interpretation is comforted by a recent map of cloud top H2O, showing that near the equator the lower UV albedo longitude region is correlated with increased H2O. We argue that H2O enhancement is the sign of upwelling, suggesting that the UV absorber is also brought to cloud top by upwelling.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016DPS....4811501B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016DPS....4811501B"><span>Observed longitude variations of zonal wind, UV albedo and H2O at Venus cloud top level: the role of stationary gravity waves generated by Venus topography</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Bertaux, Jean-Loup; Hauchecorne, Alain; khatuntsev, Igor; Markiewicz, Wojciech; Marcq, emmanuel; Lebonnois, Sebastien; Patsaeva, Marina; Turin, Alexander; Fedorova, Anna</p> <p>2016-10-01</p> <p>Based on the analysis of UV images (at 365 nm) of Venus cloud top (altitude 67±2 km) collected with VMC (Venus Monitoring Camera) on board Venus Express (VEX), it is found that the zonal wind speed south of the equator (from 5°S to 15°S) shows a conspicuous variation (from -101 to -83 m/s) with geographic longitude of Venus, correlated with the underlying relief of Aphrodite Terra. We interpret this pattern as the result of stationary gravity waves produced at ground level by the up lift of air when the horizontal wind encounters a mountain slope. These waves can propagate up to the cloud top level, break there and transfer their momentum to the zonal flow. Such upward propagation of gravity waves and influence on the wind speed vertical profile was shown to play an important role in the middle atmosphere of the Earth but is not reproduced in the current GCM of Venus atmosphere from LMD.In the equatorial regions, the UV albedo of clouds at 365 nm and the H2O mixing ratio at cloud top varies also with longitude, with an anti-correlation: the more H2O, the darker are the clouds. We argue that these variations may be simply explained by the divergence of the horizontal wind field. In the longitude region (from 60° to -10°) where the horizontal wind speed is increasing in magnitude (stretch), it triggers air upwelling which brings both the UV absorber and H2O at cloud top level and decreases the albedo, and vice-versa when the wind is decreasing in magnitude (compression). This picture is fully consistent with the classical view of Venus meridional circulation, with upwelling at equator revealed by horizontal air motions away from equator: the longitude effect is only an additional but important modulation of this effect. We argue that H2O enhancement is the sign of upwelling because the H2O mixing ratio decreases with altitude, comforting the view that the UV absorber is also brought to cloud top by upwelling.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2011GeoJI.185..890G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2011GeoJI.185..890G"><span>Infrasound radiated by the Gerdec and Chelopechene explosions: propagation along unexpected paths</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Green, David N.; Vergoz, Julien; Gibson, Robert; Le Pichon, Alexis; Ceranna, Lars</p> <p>2011-05-01</p> <p>Infrasound propagation paths through the atmosphere are controlled by the temporally and spatially varying sound speed and wind speed amplitudes. Because of the complexity of atmospheric acoustic propagation it is often difficult to reconcile observed infrasonic arrivals with the sound speed profiles predicted by meteorological specifications. This paper provides analyses of unexpected arrivals recorded in Europe and north Africa from two series of accidental munitions dump explosions, recorded at ranges greater than 1000 km: two explosions at Gerdec, Albania, on 2008 March 15 and four explosions at Chelopechene, Bulgaria, on 2008 July 3. The recorded signal characteristics include multiple pulsed arrivals, celerities between 0.24 and 0.34 km s-1 and some signal frequency content above 1 Hz. Often such characteristics are associated with waves that have propagated within a ground-to-stratosphere waveguide, although the observed celerities extend both above and below the conventional range for stratospheric arrivals. However, state-of-the-art meteorological specifications indicate that either weak, or no, ground-to-stratosphere waveguides are present along the source-to-receiver paths. By incorporating realistic gravity-wave induced horizontal velocity fluctuations into time-domain Parabolic Equation models the pulsed nature of the signals is simulated, and arrival times are predicted to within 30 s of the observed values (<1 per cent of the source-to-receiver transit time). Modelling amplitudes is highly dependent upon estimates of the unknown acoustic source strength (or equivalent chemical explosive yield). Current empirical explosive yield relationships, derived from infrasonic amplitude measurements from point-source chemical explosions, suggest that the equivalent chemical yield of the largest Gerdec explosion was of the order of 1 kt and the largest Chelopechene explosion was of the order of 100 t. When incorporating these assumed yields, the Parabolic Equation simulations predict peak signal amplitudes to within an order of magnitude of the observed values. As gravity wave velocity perturbations can significantly influence both infrasonic arrival times and signal amplitudes they need to be accounted for in source location and yield estimation routines, both of which are important for explosion monitoring, especially in the context of the Comprehensive Nuclear-Test-Ban Treaty.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018PhRvD..97j4018Y','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018PhRvD..97j4018Y"><span>Probing gravitational parity violation with gravitational waves from stellar-mass black hole binaries</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Yagi, Kent; Yang, Huan</p> <p>2018-05-01</p> <p>The recent discovery of gravitational-wave events has offered us unique test beds of gravity in the strong and dynamical field regime. One possible modification to General Relativity is the gravitational parity violation that arises naturally from quantum gravity. Such parity violation gives rise to the so-called amplitude birefringence in gravitational waves, in which one of the circularly polarized modes is amplified while the other one is suppressed during their propagation. In this paper, we study how well one can measure gravitational parity violation via the amplitude birefringence effect of gravitational waves sourced by stellar-mass black hole binaries. We choose Chern-Simons gravity as an example and work within an effective field theory formalism to ensure that the approximate theory is well posed. We consider gravitational waves from both individual sources and stochastic gravitational-wave backgrounds. Regarding bounds from individual sources, we estimate such bounds using a Fisher analysis and carry out Monte Carlo simulations by randomly distributing sources over their sky location and binary orientation. We find that the bounds on the scalar field evolution in Chern-Simons gravity from the recently discovered gravitational-wave events are too weak to satisfy the weak Chern-Simons approximation, while aLIGO with its design sensitivity can place meaningful bounds. Regarding bounds from stochastic gravitational-wave backgrounds, we set the threshold signal-to-noise ratio for detection of the parity-violation mode as 5 and estimate projected bounds with future detectors assuming that signals are consistent with no parity violation. In an ideal situation in which all the source parameters and binary black hole merger-rate history are known a priori, we find that a network of two third-generation detectors is able to place bounds that are comparable to or slightly stronger than binary pulsar bounds. In a more realistic situation in which one does not have such information beforehand, approximate bounds can be derived if the regular parity-insensitive mode is detected and the peak redshift of the merger-rate history is known theoretically. Since gravitational-wave observations probe either the difference in parity violation between the source and the detector (with individual sources) or the line-of-sight cosmological integration of the scalar field (with gravitational-wave backgrounds), such bounds are complementary to local measurements from solar system experiments and binary pulsar observations.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/AD1013727','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/AD1013727"><span>A Multiscale Nested Modeling Framework to Simulate the Interaction of Surface Gravity Waves with Nonlinear Internal Gravity Waves</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>2015-09-30</p> <p>We aim at understanding the impact of tidal , seasonal, and mesoscale variability of the internal wave field and how it influences the surface waves ...Interaction of Surface Gravity Waves with Nonlinear Internal Gravity Waves Lian Shen St. Anthony Falls Laboratory and Department of Mechanical...on studying surface gravity wave evolution and spectrum in the presence of surface currents caused by strongly nonlinear internal solitary waves</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018EPJC...78...81C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018EPJC...78...81C"><span>1/ r potential in higher dimensions</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Chakraborty, Sumanta; Dadhich, Naresh</p> <p>2018-01-01</p> <p>In Einstein gravity, gravitational potential goes as 1/r^{d-3} in d non-compactified spacetime dimensions, which assumes the familiar 1 / r form in four dimensions. On the other hand, it goes as 1/r^{α }, with α =(d-2m-1)/m, in pure Lovelock gravity involving only one mth order term of the Lovelock polynomial in the gravitational action. The latter offers a novel possibility of having 1 / r potential for the non-compactified dimension spectrum given by d=3m+1. Thus it turns out that in the two prototype gravitational settings of isolated objects, like black holes and the universe as a whole - cosmological models, the Einstein gravity in four and mth order pure Lovelock gravity in 3m+1 dimensions behave in a similar fashion as far as gravitational interactions are considered. However propagation of gravitational waves (or the number of degrees of freedom) does indeed serve as a discriminator because it has two polarizations only in four dimensions.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19960021669','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19960021669"><span>Water Surface Currents, Short Gravity-Capillary Waves and Radar Backscatter</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Atakturk, Serhad S.; Katsaros, Kristina B.</p> <p>1993-01-01</p> <p>Despite their importance for air-sea interaction and microwave remote sensing of the ocean surface, intrinsic properties of short gravity-capillary waves are not well established. This is largely due to water surface currents and their effects on the direct measurements of wave parameters conducted at a fixed point. Frequencies of small scale waves propagating on a surface which itself is in motion, are subject to Doppler shifts. Hence, the high frequency tail of the wave spectra obtained from such temporal observations is smeared. Conversion of this smeared measured-frequency spectra to intrinsic-frequency (or wavenumber) spectra requires corrections for the Doppler shifts. Such attempts in the past have not been very successful in particular when field data were used. This becomes evident if the amplitude modulation of short waves by underlying long waves is considered. Microwave radar studies show that the amplitude of a short wave component attains its maximum value near the crests and its minimum in the troughs of the long waves. Doppler-shifted wave data yield similar results but much larger in modulation magnitude, as expected. In general, Doppler shift corrections reduce the modulation magnitude. Overcorrection may result in a negligible modulation or even in a strong modulation with the maximum amplitude in the wave troughs. The latter situation is clearly contradictory to our visual observations as well as the radar results and imply that the advection by currents is overestimated. In this study, a differential-advection approach is used in which small scale waves are advected by the currents evaluated not at the free surface, but at a depth proportional to their wavelengths. Applicability of this approach is verified by the excellent agreement in phase and magnitude of short-wave modulation between results based on radar and on wave-gauge measurements conducted on a lake.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70184309','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70184309"><span>Observations and a model of undertow over the inner continental shelf</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Lentz, Steven J.; Fewings, Melanie; Howd, Peter; Fredericks, Janet; Hathaway, Kent</p> <p>2008-01-01</p> <p>Onshore volume transport (Stokes drift) due to surface gravity waves propagating toward the beach can result in a compensating Eulerian offshore flow in the surf zone referred to as undertow. Observed offshore flows indicate that wave-driven undertow extends well offshore of the surf zone, over the inner shelves of Martha’s Vineyard, Massachusetts, and North Carolina. Theoretical estimates of the wave-driven offshore transport from linear wave theory and observed wave characteristics account for 50% or more of the observed offshore transport variance in water depths between 5 and 12 m, and reproduce the observed dependence on wave height and water depth.During weak winds, wave-driven cross-shelf velocity profiles over the inner shelf have maximum offshore flow (1–6 cm s−1) and vertical shear near the surface and weak flow and shear in the lower half of the water column. The observed offshore flow profiles do not resemble the parabolic profiles with maximum flow at middepth observed within the surf zone. Instead, the vertical structure is similar to the Stokes drift velocity profile but with the opposite direction. This vertical structure is consistent with a dynamical balance between the Coriolis force associated with the offshore flow and an along-shelf “Hasselmann wave stress” due to the influence of the earth’s rotation on surface gravity waves. The close agreement between the observed and modeled profiles provides compelling evidence for the importance of the Hasselmann wave stress in forcing oceanic flows. Summer profiles are more vertically sheared than either winter profiles or model profiles, for reasons that remain unclear.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20050186600&hterms=pay&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D90%26Ntt%3Dpay','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20050186600&hterms=pay&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D90%26Ntt%3Dpay"><span>Wave Propagation in 2-D Granular Matrix and Dust Mitigation of Fabrics for Space Exploration Mission</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Thanh, Phi Hung X.</p> <p>2004-01-01</p> <p>Wave Propagation study is essential to exploring the soil on Mars or Moon and Dust Mitigation is a necessity in terms of crew's health in exploration missions. The study of Dust Mitigation has a significant impact on the crew s health when astronauts track dust back into their living space after exploration trips. We are trying to use piezoelectric fiber to create waves and vibrations at certain critical frequencies and amplitudes so that we can shake the particles off from the astronaut s fabrics. By shaking off the dust and removing it, the astronauts no longer have to worry about breathing in small and possibly hazardous materials, when they are back in their living quarters. The Wave Propagation in 2-D Granular Matrix studies how the individual particles interact with each other when a pressure wave travels through the matrix. This experiment allows us to understand how wave propagates through soils and other materials. By knowing the details about the interactions of particles when they act as a medium for waves, we can better understand how wave propagates through soils and other materials. With this experiment, we can study how less gravity effects the wave propagation and hence device a way to study soils in space and on Moon or Mars. Some scientists treat the medium that waves travel through as a "black box", they did not pay much attention to how individual particles act as wave travels through them. With this data, I believe that we can use it to model ways to measure the properties of different materials such as density and composition. In order to study how the particles interact with each other, I have continued Juan Agui's experiment of the effects of impacts on a 2-D matrix. By controlling the inputs and measuring the outputs of the system, I will be able to study now the particles in that system interact with each other. I will also try to model this with the software called PFC2D in order to obtain theoretical data to compare with the experiment. PFC2D is a program that allows the user to control the number of particle's characteristic, and the environment of the particle. With this I can run simulations that mimic the impulse test. This software uses a language called FISH, probably created by the creator of the software. This means that in order to model anything, one must use the command terminal instead of GUI's. I will also use this program to simulate the Moon/Mars simulate adhering to the fabric for the Dust Mitigation project. My goals for this summer are just to complete preliminary studies of the feasibility of the Shaking Fabric, learn the PFC-2D program, and to complete building and testing the wave propagation experiment.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20000115613','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20000115613"><span>Wave Driven Non-linear Flow Oscillator for the 22-Year Solar Cycle</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Mayr, Hans G.; Wolff, Charles L.; Hartle, Richard E.; Einaudi, Franco (Technical Monitor)</p> <p>2000-01-01</p> <p>In the Earth's atmosphere, a zonal flow oscillation is observed with periods between 20 and 32 months, the Quasi Biennial Oscillation. This oscillation does not require external time dependent forcing but is maintained by non-linear wave momentum deposition. It is proposed that such a mechanism also drives long-period oscillations in planetary and stellar interiors. We apply this mechanism to generate a flow oscillation for the 22-year solar cycle. The oscillation would occur just below the convective envelope where waves can propagate. Using scale analysis, we present results from a simplified model that incorporates Hines' gravity wave parameterization. Wave amplitudes less than 10 m/s can produce reversing zonal flows of 25 m/s that should be sufficient to generate a corresponding oscillation in the poloidal magnetic field. Low buoyancy frequency and the associated increase in turbulence help to produce the desired oscillation period of the flow.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20060039461&hterms=development+Deep+time&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D60%26Ntt%3Ddevelopment%2BDeep%2Btime','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20060039461&hterms=development+Deep+time&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D60%26Ntt%3Ddevelopment%2BDeep%2Btime"><span>(abstract) Deep Space Network Radiometric Remote Sensing Program</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Walter, Steven J.</p> <p>1994-01-01</p> <p>Planetary spacecraft are viewed through a troposphere that absorbs and delays radio signals propagating through it. Tropospheric water, in the form of vapor, cloud liquid,and precipitation , emits radio noise which limits satellite telemetry communication link performance. Even at X-band, rain storms have severely affected several satellite experiments including a planetary encounter. The problem will worsen with DSN implementation of Ka-band becausecommunication link budgets will be dominated by tropospheric conditions. Troposphere-induced propagation delays currently limit VLBI accuracy and are significant sources of error for Doppler tracking. Additionally, the success of radio science programs such as satellite gravity wave experiments and atmospheric occultation experiments depends on minimizing the effect of watervapor-induced prop agation delays. In order to overcome limitations imposed by the troposphere, the Deep Space Network has supported a program of radiometric remote sensing. Currently, water vapor radiometers (WVRs) and microwave temperature profilers (MTPs) support many aspects of the Deep Space Network operations and research and development programs. Their capability to sense atmospheric water, microwave sky brightness, and atmospheric temperature is critical to development of Ka-band telemetry systems, communication link models, VLBI, satellite gravity waveexperiments, and r adio science missions. During 1993, WVRs provided data for propagation mode development, supp orted planetary missions, and demonstrated advanced tracking capability. Collection of atmospheric statistics is necessary to model and predict performance of Ka-band telemetry links, antenna arrays, and radio science experiments. Since the spectrum of weather variations has power at very long time scales, atmospheric measurements have been requested for periods ranging from one year to a decade at each DSN site. The resulting database would provide reliable statistics on daily, monthly, and seasonal variations. Only long-term monitoring will prevent biases from being introduced by an exceptionally wet or dry year. Support for planetary missions included tropospheric calibration for the recent Mars Observer gravity wave experiments and Ka-band link experiment (KaBLE). Additionally, several proposed radio science experiments such as profiling planetary atmospheres using satellite occultations and Ka-band gravitational wave searches require advanced radiometer technology development. Finally, there has been a consistent advanced technology program to advance satellite navigational and tracking capabilities. This year that included an experiment with radiometer based tropospheric calibration for a series of VLBI catalog measurements.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017SSRv..211..571B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017SSRv..211..571B"><span>Simulations of Seismic Wave Propagation on Mars</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Bozdağ, Ebru; Ruan, Youyi; Metthez, Nathan; Khan, Amir; Leng, Kuangdai; van Driel, Martin; Wieczorek, Mark; Rivoldini, Attilio; Larmat, Carène S.; Giardini, Domenico; Tromp, Jeroen; Lognonné, Philippe; Banerdt, Bruce W.</p> <p>2017-10-01</p> <p>We present global and regional synthetic seismograms computed for 1D and 3D Mars models based on the spectral-element method. For global simulations, we implemented a radially-symmetric Mars model with a 110 km thick crust (Sohl and Spohn in J. Geophys. Res., Planets 102(E1):1613-1635, 1997). For this 1D model, we successfully benchmarked the 3D seismic wave propagation solver SPECFEM3D_GLOBE (Komatitsch and Tromp in Geophys. J. Int. 149(2):390-412, 2002a; 150(1):303-318, 2002b) against the 2D axisymmetric wave propagation solver AxiSEM (Nissen-Meyer et al. in Solid Earth 5(1):425-445, 2014) at periods down to 10 s. We also present higher-resolution body-wave simulations with AxiSEM down to 1 s in a model with a more complex 1D crust, revealing wave propagation effects that would have been difficult to interpret based on ray theory. For 3D global simulations based on SPECFEM3D_GLOBE, we superimposed 3D crustal thickness variations capturing the distinct crustal dichotomy between Mars' northern and southern hemispheres, as well as topography, ellipticity, gravity, and rotation. The global simulations clearly indicate that the 3D crust speeds up body waves compared to the reference 1D model, whereas it significantly changes surface waveforms and their dispersive character depending on its thickness. We also perform regional simulations with the solver SES3D (Fichtner et al. Geophys. J. Int. 179:1703-1725, 2009) based on 3D crustal models derived from surface composition, thereby addressing the effects of various distinct crustal features down to 2 s. The regional simulations confirm the strong effects of crustal variations on waveforms. We conclude that the numerical tools are ready for examining more scenarios, including various other seismic models and sources.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li class="active"><span>19</span></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_19 --> <div id="page_20" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li class="active"><span>20</span></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="381"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017JGRD..122..846H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017JGRD..122..846H"><span>Numerical modeling of a multiscale gravity wave event and its airglow signatures over Mount Cook, New Zealand, during the DEEPWAVE campaign</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Heale, C. J.; Bossert, K.; Snively, J. B.; Fritts, D. C.; Pautet, P.-D.; Taylor, M. J.</p> <p>2017-01-01</p> <p>A 2-D nonlinear compressible model is used to simulate a large-amplitude, multiscale mountain wave event over Mount Cook, NZ, observed as part of the Deep Propagating Gravity Wave Experiment (DEEPWAVE) campaign and to investigate its observable signatures in the hydroxyl (OH) layer. The campaign observed the presence of a λx=200 km mountain wave as part of the 22nd research flight with amplitudes of >20 K in the upper stratosphere that decayed rapidly at airglow heights. Advanced Mesospheric Temperature Mapper (AMTM) showed the presence of small-scale (25-28 km) waves within the warm phase of the large mountain wave. The simulation results show rapid breaking above 70 km altitude, with the preferential formation of almost-stationary vortical instabilities within the warm phase front of the mountain wave. An OH airglow model is used to identify the presence of small-scale wave-like structures generated in situ by the breaking of the mountain wave that are consistent with those seen in the observations. While it is easy to interpret these feature as waves in OH airglow data, a considerable fraction of the features are in fact instabilities and vortex structures. Simulations suggest that a combination of a large westward perturbation velocity and shear, in combination with strong perturbation temperature gradients, causes both dynamic and convective instability conditions to be met particularly where the wave wind is maximized and the temperature gradient is simultaneously minimized. This leads to the inevitable breaking and subsequent generation of smaller-scale waves and instabilities which appear most prominent within the warm phase front of the mountain wave.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19870000914','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19870000914"><span>Daytime lidar measurements of tidal winds in the mesospheric sodium layer at Urbana, Illinois</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Kwon, K. H.; Senft, D. C.; Gardner, C. S.; Voelz, D. G.; Sechrist, C. F., Jr.; Roesler, F. L.</p> <p>1986-01-01</p> <p>For more than 15 years lidar systems have been used to study the chemistry and dynamics of the mesospheric sodium layer. Because the layer is an excellent tracer of atmospheric wave motions, sodium lidar has proven to be particularly useful for studying the influence of gravity waves and tides on mesospheric dynamics. These waves, which originate in the troposphere and stratosphere, propagate through the mesosphere and dissipate their energy near the mesopause making important contributions to the momentum and turbulence budget in this region of the atmosphere. Recently, the sodium lidar was modified for daytime operation so that wave phenomena and chemical effects could be monitored throughout the complete diurnal cycle. The results of continuous 24 hour lidar observations of the sodium layer structure are presented alond with measurement of the semidiurnal tidal winds.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010EGUGA..12.4070K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010EGUGA..12.4070K"><span>Waiting for 21-Lutetia "Rosetta" images as a final proof of structurizing force of inertia-gravity waves</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kochemasov, Gennady G.</p> <p>2010-05-01</p> <p>The 100 km long flattened asteroid 21-Lutetia will be imaged by the "Rosetta' spacecraft in July 2010. Knowing that heavenly bodies are effectively structurized by warping inertia-gravity waves one might expect that Lutetia will not be an exclusion out of a row of bodies subjected to an action of these waves [1-9]. The elliptical keplerian orbits with periodically changing bodies' accelerations imply inertia-gravity forces applied to any body notwithstanding its size, mass, density, chemical composition, and physical state. These forces produce inertia-gravity waves having in rotating bodied standing character and four directions of propagation (orthogonal and diagonal). Interfering these waves produce in bodies three (five) kinds of tectonic blocks: uprising strongly and moderately (++, +), subsiding deeply and moderately (--, -), and neutral (0) where + and - are compensated. Lengths and amplitudes of warping waves form the harmonic sequence. The fundamental wave1 (long 2πR) makes ubiquitous tectonic dichotomy (two antipodean segments or hemispheres: one risen, another fallen). In small bodies this structurization is expressed in their convexo-concave shape: one hemisphere is bulged, another one pressed in. Bulging hemisphere is extended, pressed in hemisphere contracted. This wave shaping tends to transform a globular body into a tetrahedron - the essentially dichotomous simplest Plato's figure. In this polyhedron always there is an opposition of extension (a face) to contraction (a vertex). The first overtone wave2 (long πR) makes tectonic sectors, also risen and fallen, and regularly disposed on (and in) a globe. This regularity is expressed in an octahedron form. The octahedron (diamond) or its parts are often observed in shapes of small bodies with small gravities. Larger bodies with rather strong gravity tend to smooth polyhedron vertices and edges but a polyhedron structurization is always present inside their globes and is shown in their tectonics, geomorphology and geophysical fields. The shorter warping waves are also present but because of their comparatively small lengths and amplitudes they are not so important in distorting globes. The presented main harmonic row is complicated by superimposed individual waves lengths of which are inversely proportional to orbital frequencies: higher frequency - smaller wave, and, vice versa, lower frequency - larger wave. In the main asteroid belt the fundamental wave of the main sequence and the individual wave (also long 2πR) are in the strongest 1:1 resonance what prohibits an accretion of a real planet because of prevailing debris scattering. Thus, the Lutetia shape can support the main point of the wave planetology - «orbits make structures». [1] Kochemasov G.G. (1999) "Diamond" and "dumb-bells"-like shapes of celestial bodies induced by inertia-gravity waves // 30th Vernadsky-Brown microsymposium on comparative planetology, Abstracts, Moscow, Vernadsky Inst., 49-50. [2] -"- (1999) On convexo-concave shape of small celestial bodies // Asteroids, Comets, Meteors. Cornell Univ., July 26-30, 1999, Abstr. # 24.22. [3] -"- (2006) The wave planetology illustrated - I: dichotomy, sectoring // 44th Vernadsky-Brown microsymposium "Topics in Comparative Planetology", Oct. 9-11, 2006, Moscow, Vernadsky Inst., Abstr. m44_39, CD-ROM; [4] -"- (2006) Theorems of the wave planetology imprinted in small bodies // Geophys. Res. Abstracts, Vol. 8, EGU06-A-01098, CD-ROM. [5] -"- (2007) Plato's polyhedra in space // EPSC Abstracts, Vol. 2, EPSC2007-A-00014, 2007. [6] -"-(2007) Wave shaping of small saturnian satellites and wavy granulation of saturnian rings // Geophys. Res. Abstracts, Vol. 9, EGU2007-A-01594, CD-ROM. [7] -"- (2007) Plato's polyhedra as shapes of small satellites in the outer Solar system // New Concepts in Global Tectonics Newsletter, # 44, 43-45. [8] -"- (2008) Plato' polyhedra as shapes of small icy satellites // Geophys. Res. Abstracts, Vol. 10, EGU2008-A-01271, CD-ROM. [9] -"- (2008) A wave geometrization of small heavenly bodies // GRA, Vol. 10, EGU2008-A-01275, CD-ROM.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015EGUGA..17.4219G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015EGUGA..17.4219G"><span>Ionospheric manifestations of earthquakes and tsunamis in a dynamic atmosphere</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Godin, Oleg A.; Zabotin, Nikolay A.; Zabotina, Liudmila</p> <p>2015-04-01</p> <p>Observations of the ionosphere provide a new, promising modality for characterizing large-scale physical processes that occur on land and in the ocean. There is a large and rapidly growing body of evidence that a number of natural hazards, including large earthquakes, strong tsunamis, and powerful tornadoes, have pronounced ionospheric manifestations, which are reliably detected by ground-based and satellite-borne instruments. As the focus shifts from detecting the ionospheric features associated with the natural hazards to characterizing the hazards for the purposes of improving early warning systems and contributing to disaster recovery, it becomes imperative to relate quantitatively characteristics of the observed ionospheric disturbances and the underlying natural hazard. The relation between perturbations at the ground level and their ionospheric manifestations is strongly affected by parameters of the intervening atmosphere. In this paper, we employ the ray theory to model propagation of acoustic-gravity waves in three-dimensionally inhomogeneous atmosphere. Huygens' wavefront-tracing and Hamiltonian ray-tracing algorithms are used to simulate propagation of body waves from an earthquake hypocenter through the earth's crust and ocean to the upper atmosphere. We quantify the influence of temperature stratification and winds, including their seasonal variability, and air viscosity and thermal conductivity on the geometry and amplitude of ionospheric disturbances that are generated by seismic surface waves and tsunamis. Modeling results are verified by comparing observations of the velocity fluctuations at altitudes of 150-160 km by a coastal Dynasonde HF radar system with theoretical predictions of ionospheric manifestations of background infragravity waves in the ocean. Dynasonde radar systems are shown to be a promising means for monitoring acoustic-gravity wave activity and observing ionospheric perturbations due to earthquakes and tsunamis. We will discuss the effects of the background ionospheric disturbances and uncertainty in atmospheric parameters on the feasibility and accuracy of retrieval of the open-ocean tsunami heights from observations of the ionosphere.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018MNRAS.tmp.1567R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018MNRAS.tmp.1567R"><span>Local fragmentation of thin disks in Eddington-inspired gravity</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Roshan, Mahmood; Kazemi, Ali; De Martino, Ivan</p> <p>2018-06-01</p> <p>We find the generalized version of the Toomre's criterion for the stability of a rotating thin disk in the context of Eddington inspired Born-Infeld (EiBI) gravity which possesses one free parameter χ. To do so we use the weak field limit of the theory and find the dispersion relation for the propagation of matter density waves on the surface of a self-gravitating and differentially rotating disk. Finally we find a new version of Toomre's stability criterion for thin disks. We show that EiBI gravity with negative χ destabilizes all the rotating thin disks. On the other hand EiBI with positive χ substantially can suppress the local fragmentation, and has stabilizing effects against axi-symmetric perturbations. More specifically, we show that only an annulus remains unstable on the surface of the disk. The width of the annulus directly depends on the magnitude of χ.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018JGRD..123..276H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018JGRD..123..276H"><span>Observations of the Breakdown of Mountain Waves Over the Andes Lidar Observatory at Cerro Pachon on 8/9 July 2012</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hecht, J. H.; Fritts, D. C.; Wang, L.; Gelinas, L. J.; Rudy, R. J.; Walterscheid, R. L.; Taylor, M. J.; Pautet, P. D.; Smith, S.; Franke, S. J.</p> <p>2018-01-01</p> <p>Although mountain waves (MWs) are thought to be a ubiquitous feature of the wintertime southern Andes stratosphere, it was not known whether these waves propagated up to the mesopause region until Smith et al. (2009) confirmed their presence via airglow observations. The new Andes Lidar Observatory at Cerro Pachon in Chile provided the opportunity for a further study of these waves. Since MWs have near-zero phase speed, and zero wind lines often occur in the winter upper mesosphere (80 to 100 km altitude) region due to the reversal of the zonal mean and tidal wind, MW breakdown may routinely occur at these altitudes. Here we report on very high spatial/temporal resolution observations of the initiation of MW breakdown in the mesopause region. Because the waves are nearly stationary, the breakdown process was observed over several hours; a much longer interval than has previously been observed for any gravity wave breakdown. During the breakdown process observations were made of initial horseshoe-shaped vortices, leading to successive vortex rings, as is also commonly seen in Direct Numerical Simulations (DNS) of idealized and multiscale gravity wave breaking. Kelvin-Helmholtz instability (KHI) structures were also observed to form. Comparing the structure of observed KHI with the results of existing DNS allowed an estimate of the turbulent kinematic viscosity. This viscosity was found to be around 25 m2/s, a value larger than the nominal viscosity that is used in models.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016APS..GECMW6144G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016APS..GECMW6144G"><span>Quantum Cause of Gravity Waves and Dark Matter</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Goradia, Shantilal; Goradia Team</p> <p>2016-09-01</p> <p>Per Einstein's theory mass tells space how to curve and space tells mass how to move. How do they tell''? The question boils down to information created by quantum particles blinking ON and OFF analogous to `Ying and Yang' or some more complex ways that may include dark matter. If not, what creates curvature of space-time? Consciousness, dark matter, quantum physics, uncertainty principle, constants of nature like strong coupling, fine structure constant, cosmological constant introduced by Einstein, information, gravitation etc. are fundamentally consequences of that ONE TOE. Vedic philosophers, who impressed Schrodinger so much, called it ATMA split in the categories of AnuAtma (particle soul), JivAtma (life soul) and ParamAtma (Omnipresent soul) which we relate to quantum physics, biology and cosmology. There is no separate TOE for any one thing. The long range relativistic propagations of the strong and weak couplings of the microscopic black holes in are just gravity waves. What else could they be?</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017APS..DFDM19006F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017APS..DFDM19006F"><span>Axisymmetric capillary-gravity waves at the interface of two viscous, immiscible fluids - Initial value problem</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Farsoiya, Palas Kumar; Dasgupta, Ratul</p> <p>2017-11-01</p> <p>When the interface between two radially unbounded, viscous fluids lying vertically in a stable configuration (denser fluid below) at rest, is perturbed, radially propagating capillary-gravity waves are formed which damp out with time. We study this process analytically using a recently developed linearised theory. For small amplitude initial perturbations, the analytical solution to the initial value problem, represented as a linear superposition of Bessel modes at time t = 0 , is found to agree very well with results obtained from direct numerical simulations of the Navier-Stokes equations, for a range of initial conditions. Our study extends the earlier work by John W. Miles who studied this initial value problem analytically, taking into account, a single viscous fluid only. Implications of this study for the mechanistic understanding of droplet impact into a deep pool, will be discussed. Some preliminary, qualitative comparison with experiments will also be presented. We thank SERB Dept. Science & Technology, Govt. of India, Grant No. EMR/2016/000830 for financial support.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018AdSpR..61.1931A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018AdSpR..61.1931A"><span>Atmosphere-ionosphere coupling from convectively generated gravity waves</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Azeem, Irfan; Barlage, Michael</p> <p>2018-04-01</p> <p>Ionospheric variability impacts operational performances of a variety of technological systems, such as HF communication, Global Positioning System (GPS) navigation, and radar surveillance. The ionosphere is not only perturbed by geomagnetic inputs but is also influenced by atmospheric tides and other wave disturbances propagating from the troposphere to high altitudes. Atmospheric Gravity Waves (AGWs) excited by meteorological sources are one of the largest sources of mesoscale variability in the ionosphere. In this paper, Total Electron Content (TEC) data from networks of GPS receivers in the United States are analyzed to investigate AGWs in the ionosphere generated by convective thunderstorms. Two case studies of convectively generated gravity waves are presented. On April 4, 2014 two distinct large convective systems in Texas and Arkansas generated two sets of concentric AGWs that were observed in the ionosphere as Traveling Ionospheric Disturbances (TIDs). The period of the observed TIDs was 20.8 min, the horizontal wavelength was 182.4 km, and the horizontal phase speed was 146.4 m/s. The second case study shows TIDs generated from an extended squall line on December 23, 2015 stretching from the Gulf of Mexico to the Great Lakes in North America. Unlike the concentric wave features seen in the first case study, the extended squall line generated TIDs, which exhibited almost plane-parallel phase fronts. The TID period was 20.1 min, its horizontal wavelength was 209.6 km, and the horizontal phase speed was 180.1 m/s. The AGWs generated by both of these meteorological events have large vertical wavelength (>100 km), which are larger than the F2 layer thickness, thus allowing them to be discernible in the TEC dataset.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2004QJRMS.130.1977S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2004QJRMS.130.1977S"><span>Agradient velocity, vortical motion and gravity waves in a rotating shallow-water model</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Sutyrin Georgi, G.</p> <p>2004-07-01</p> <p>A new approach to modelling slow vortical motion and fast inertia-gravity waves is suggested within the rotating shallow-water primitive equations with arbitrary topography. The velocity is exactly expressed as a sum of the gradient wind, described by the Bernoulli function,B, and the remaining agradient part, proportional to the velocity tendency. Then the equation for inverse potential vorticity,Q, as well as momentum equations for agradient velocity include the same source of intrinsic flow evolution expressed as a single term J (B, Q), where J is the Jacobian operator (for any steady state J (B, Q) = 0). Two components of agradient velocity are responsible for the fast inertia-gravity wave propagation similar to the traditionally used divergence and ageostrophic vorticity. This approach allows for the construction of balance relations for vortical dynamics and potential vorticity inversion schemes even for moderate Rossby and Froude numbers assuming the characteristic value of |J(B, Q)| = to be small. The components of agradient velocity are used as the fast variables slaved to potential vorticity that allows for diagnostic estimates of the velocity tendency, the direct potential vorticity inversion with the accuracy of 2 and the corresponding potential vorticity-conserving agradient velocity balance model (AVBM). The ultimate limitations of constructing the balance are revealed in the form of the ellipticity condition for balanced tendency of the Bernoulli function which incorporates both known criteria of the formal stability: the gradient wind modified by the characteristic vortical Rossby wave phase speed should be subcritical. The accuracy of the AVBM is illustrated by considering the linear normal modes and coastal Kelvin waves in the f-plane channel with topography.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..1912649P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..1912649P"><span>Acoustic gravity microseismic pressure signal at shallow stations</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Peureux, Charles; Ardhuin, Fabrice; Royer, Jean-Yves</p> <p>2017-04-01</p> <p>It has been known for decades that the background permanent seismic noise, the so-called microseimic signal, is generated by the nonlinear interaction of oppositely travelling ocean surface waves [Longuet-Higgins 1951]. It can especially be used to infer the time variability of short ocean waves statistics [Peureux and Ardhuin 2016]. However, better quantitative estimates of the latter are made difficult due to a poor knowledge of the Earth's crust characteristics, whose coupling with acoustic modes can affect large uncertainties to the frequency response at the bottom of the ocean. The pressure field at depths less than an acoustic wave length to the surface is made of evanescent acoustic-gravity modes [Cox and Jacobs 1989]. For this reason, they are less affected by the ocean bottom composition. This near field is recorded and analyzed in the frequency range 0.1 to 0.5 Hz approximately, at two locations : at a shallow site in the North-East Atlantic continental shelf and a deep water site in the Southern Indian ocean, at the ocean bottom and 100 m below sea-surface and in the upper part of the water column respectively. Evanescent and propagating Rayleigh modes are compared against theoretical predictions. Comparisons against surface waves hindcast based on WAVEWATCH(R) III modelling framework help assessing its performances and can be used to help future model improvements. References Longuet-Higgins, M. S., A Theory of the Origin of Microseisms, Philos. Trans. Royal Soc. A, The Royal Society, 1950, 243, 1-3. Peureux, C. and Ardhuin, F., Ocean bottom pressure records from the Cascadia array and short surface gravity waves, J. Geophys. Res. Oceans, 2016, 121, 2862-2873. Cox, C. S. & Jacobs, D. C., Cartesian diver observations of double frequency pressure fluctuations in the upper levels of the ocean, Geophys. Res. Lett., 1989, 16, 807-810.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017JGRD..122..699B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017JGRD..122..699B"><span>A stationary phase solution for mountain waves with application to mesospheric mountain waves generated by Auckland Island</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Broutman, Dave; Eckermann, Stephen D.; Knight, Harold; Ma, Jun</p> <p>2017-01-01</p> <p>A relatively general stationary phase solution is derived for mountain waves from localized topography. It applies to hydrostatic, nonhydrostatic, or anelastic dispersion relations, to arbitrary localized topography, and to arbitrary smooth vertically varying background temperature and vector wind profiles. A simple method is introduced to compute the ray Jacobian that quantifies the effects of horizontal geometrical spreading in the stationary phase solution. The stationary phase solution is applied to mesospheric mountain waves generated by Auckland Island during the Deep Propagating Gravity Wave Experiment. The results are compared to a Fourier solution. The emphasis is on interpretations involving horizontal geometrical spreading. The results show larger horizontal geometrical spreading for nonhydrostatic waves than for hydrostatic waves in the region directly above the island; the dominant effect of horizontal geometrical spreading in the lower ˜30 km of the atmosphere, compared to the effects of refraction and background density variation; and the enhanced geometrical spreading due to directional wind in the approach to a critical layer in the mesosphere.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMNH51B0132B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMNH51B0132B"><span>Numerical modeling of the 2017 active seismic infrasound balloon experiment</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Brissaud, Q.; Komjathy, A.; Garcia, R.; Cutts, J. A.; Pauken, M.; Krishnamoorthy, S.; Mimoun, D.; Jackson, J. M.; Lai, V. H.; Kedar, S.; Levillain, E.</p> <p>2017-12-01</p> <p>We have developed a numerical tool to propagate acoustic and gravity waves in a coupled solid-fluid medium with topography. It is a hybrid method between a continuous Galerkin and a discontinuous Galerkin method that accounts for non-linear atmospheric waves, visco-elastic waves and topography. We apply this method to a recent experiment that took place in the Nevada desert to study acoustic waves from seismic events. This experiment, developed by JPL and its partners, wants to demonstrate the viability of a new approach to probe seismic-induced acoustic waves from a balloon platform. To the best of our knowledge, this could be the only way, for planetary missions, to perform tomography when one faces challenging surface conditions, with high pressure and temperature (e.g. Venus), and thus when it is impossible to use conventional electronics routinely employed on Earth. To fully demonstrate the effectiveness of such a technique one should also be able to reconstruct the observed signals from numerical modeling. To model the seismic hammer experiment and the subsequent acoustic wave propagation, we rely on a subsurface seismic model constructed from the seismometers measurements during the 2017 Nevada experiment and an atmospheric model built from meteorological data. The source is considered as a Gaussian point source located at the surface. Comparison between the numerical modeling and the experimental data could help future mission designs and provide great insights into the planet's interior structure.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20020080729','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20020080729"><span>Tropical Cumulus Convection and Upward Propagating Waves in Middle Atmospheric GCMs</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Horinouchi, T.; Pawson, S.; Shibata, K.; Langematz, U.; Manzini, E.; Giorgetta, M. A.; Sassi, F.; Wilson, R. J.; Hamilton, K. P.; deGranpre, J.; <a style="text-decoration: none; " href="javascript:void(0); " onClick="displayelement('author_20020080729'); toggleEditAbsImage('author_20020080729_show'); toggleEditAbsImage('author_20020080729_hide'); "> <img style="display:inline; width:12px; height:12px; " src="images/arrow-up.gif" width="12" height="12" border="0" alt="hide" id="author_20020080729_show"> <img style="width:12px; height:12px; display:none; " src="images/arrow-down.gif" width="12" height="12" border="0" alt="hide" id="author_20020080729_hide"></p> <p>2002-01-01</p> <p>It is recognized that the resolved tropical wave spectrum can vary considerably between general circulation models (GCMs) and that these differences can have an important impact on the simulated climate. A comprehensive comparison of the waves is presented for the December-January-February period using high-frequency (three-hourly) data archives from eight GCMs and one simple model participating in the GCM Reality Intercomparison Project for SPARC (GRIPS). Quantitative measures of the structure and causes of the wavenumber-frequency structure of resolved waves and their impacts on the climate are given. Space-time spectral analysis reveals that the wave spectrum throughout the middle atmosphere is linked to variability of convective precipitation, which is determined by the parameterized convection. The variability of the precipitation spectrum differs by more than an order of magnitude between the models, with additional changes in the spectral distribution (especially the frequency). These differences can be explained primarily by the choice of different, cumulus par amet erizations: quasi-equilibrium mass-flux schemes tend to produce small variability, while the moist-convective adjustment scheme is most active. Comparison with observational estimates of precipitation variability suggests that the model values are scattered around the truth. This result indicates that a significant portion of the forcing of the equatorial quasi-biennial oscillation (QBO) is provided by waves with scales that are not resolved in present-day GCMs, since only the moist convective adjustment scheme (which has the largest transient variability) can force a QBO in models that have no parameterization of non-stationary gravity waves. Parameterized cumulus convection also impacts the nonmigrating tides in the equatorial region. In most of the models, momentum transport by diurnal nonmigrating tides in the mesosphere is larger than that by Kelvin waves, being more significant than has been thought. It is shown that the equatorial semi-annual oscillation in the models examined is driven mainly by gravity waves with periods shorter than three days, with at least some contribution from parameterized gravity waves; the contribution from the ultra-fast zonal wavenumber-1 Kelvin waves is negligible.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2003JFM...493..151C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2003JFM...493..151C"><span>Nonlinear critical-layer evolution of a forced gravity wave packet</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Campbell, L. J.; Maslowe, S. A.</p> <p>2003-10-01</p> <p>In this paper, numerical simulations are presented of the nonlinear critical-layer evolution of a forced gravity wave packet in a stratified shear flow. The wave packet, localized in the horizontal direction, is forced at the lower boundary of a two-dimensional domain and propagates vertically towards the critical layer. The wave mean-flow interactions in the critical layer are investigated numerically and contrasted with the results obtained using a spatially periodic monochromatic forcing. With the horizontally localized forcing, the net absorption of the disturbance at the critical layer continues for large time and the onset of the nonlinear breakdown is delayed compared with the case of monochromatic forcing. There is an outward flux of momentum in the horizontal direction so that the horizontal extent of the packet increases with time. The extent to which this happens depends on a number of factors including the amplitude and horizontal length of the forcing. It is also seen that the prolonged absorption of the disturbance stabilizes the solution to the extent that it is always convectively stable; the local Richardson number remains positive well into the nonlinear regime. In this respect, our results for the localized forcing differ from those in the case of monochromatic forcing where significant regions with negative Richardson number appear.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..19.3805R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..19.3805R"><span>DTWT (Dispersive Tsunami Wave Tool): a new tool for computing the complete dispersion of tsunami travel time.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Reymond, Dominique</p> <p>2017-04-01</p> <p>We present a tool for computing the complete arrival times of the dispersed wave-train of a tsunami. The calculus is made using the exact formulation of the tsunami dispersion (and without approximations), at any desired periods between one hour or more (concerning the gravity waves propagation) until 10s (the highly dispersed mode). The computation of the travel times is based on the a summation of the necessary time for a tsunami to cross all the elementary blocs of a grid of bathymetry following a path between the source and receiver at a given period. In addition the source dimensions and the focal mechanism are taken into account to adjust the minimum travel time to the different possible points of emission of the source. A possible application of this tool is to forecast the arrival time of late arrivals of tsunami waves that could produce the resonnance of some bays and sites at higher frequencies than the gravity mode. The theoretical arrival times are compared to the observed ones and to the results obtained by TTT (P. Wessel, 2009) and the ones obtained by numerical simulations. References: Wessel, P. (2009). Analysis of oberved and predicted tsunami travel times for the Pacic and Indian oceans. Pure Appl. Geophys., 166:301-324.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..19.1929G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..19.1929G"><span>Gravity Shifting Due to Distribution of Momentum in Black Hole and its Relation with Time Flux</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Gholibeigian, Hassan; Gholibeygian, Mohammad Hossein</p> <p>2017-04-01</p> <p>There are many local convection systems of heat and mass in black holes. These large scale coupled systems including planets and molten masses which generate momentum in black hole and consequently generate coupled gravitational and electromagnetic waves. Therefore black hole's gravity is shifting due to distribution of masses/momentum in its convection systems. Two massive black holes which merged at a distance of 1.3 billion light years far from the Earth, produced different momentum and energy before, during, and after the event in different locations of the black hole. This energy and momentum produced gravitational waves which radiated away and recorded on September 14, 2015 by two detectors of the Laser Interferometry Gravitational Observatories (LIGO) in USA. On the other hand, the nature of time is wavy-like motion of the matter and nature of space is jerky-like motion of the matter. These two natures of space-time can be matched on wave-particle duality in quantum mechanics. And also magnitude of the time for an atom is momentum of its involved fundamental particles [Gholibeigian, adsabs.harvard.edu/abs/2016APS.APR.D1032G]. ∑ ⃗R(mv, σ,τ ) = (pnucleons + pelectrons) In which ⃗Ris time flux, σ&τare space and time coordinates on the string world sheet and p is momentum. Therefore, gravitational waves which travel from black hole to us including different fluxes of time which accompaniment propagated gravitational waves of momentum. As an observable factor, we can look at the 7 milliseconds difference of recorded at the time of arrival of the signals on September 14, 2015 by detector in Livingston before detector in Hanford. This difference of recorded time of signal GW150914 by LIGO cannot be due to warped space-time, because 3002 kilometers distance between two detectors with respect to the 1.3 billion light years (distance of black hole to detectors) is like zero! So, this 7 milliseconds difference between two time's fluxes can be due to gravitational waves propagated by different momentum which produced in different locations of the two merged black holes. We can see this phenomena in solar system like the Sun, Jupiter and our planet too, the Earth's gravity is shifting due to distribution of the mass/momentum in the Earth's core which resulted by the inner core dislocation and convection systems in the outer core. Because the inner core has a daily rotation around geophysical axis inverse of the Earth's spin due to its eccentricity and generates a huge variable momentum in the core [Gholibeigian, sabs.harvard.edu/abs/2012AGUFMPA23A1960G] - and therefore local gravity - inside the Earth is constantly changing. Results of the Gravity Recovery and Climate Experiment (GRACE) which lunched by NASA and the German Aerospace Center (DLR) in March 2002, approved this phenomena too. In other words generated momentum inside the large scale convection systems can be a source of coupled gravitational and electromagnetic fields in nature which has its own time flux.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015EGUGA..17.7744A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015EGUGA..17.7744A"><span>Gravity Waves Generated by Convection: A New Idealized Model Tool and Direct Validation with Satellite Observations</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Alexander, M. Joan; Stephan, Claudia</p> <p>2015-04-01</p> <p>In climate models, gravity waves remain too poorly resolved to be directly modelled. Instead, simplified parameterizations are used to include gravity wave effects on model winds. A few climate models link some of the parameterized waves to convective sources, providing a mechanism for feedback between changes in convection and gravity wave-driven changes in circulation in the tropics and above high-latitude storms. These convective wave parameterizations are based on limited case studies with cloud-resolving models, but they are poorly constrained by observational validation, and tuning parameters have large uncertainties. Our new work distills results from complex, full-physics cloud-resolving model studies to essential variables for gravity wave generation. We use the Weather Research Forecast (WRF) model to study relationships between precipitation, latent heating/cooling and other cloud properties to the spectrum of gravity wave momentum flux above midlatitude storm systems. Results show the gravity wave spectrum is surprisingly insensitive to the representation of microphysics in WRF. This is good news for use of these models for gravity wave parameterization development since microphysical properties are a key uncertainty. We further use the full-physics cloud-resolving model as a tool to directly link observed precipitation variability to gravity wave generation. We show that waves in an idealized model forced with radar-observed precipitation can quantitatively reproduce instantaneous satellite-observed features of the gravity wave field above storms, which is a powerful validation of our understanding of waves generated by convection. The idealized model directly links observations of surface precipitation to observed waves in the stratosphere, and the simplicity of the model permits deep/large-area domains for studies of wave-mean flow interactions. This unique validated model tool permits quantitative studies of gravity wave driving of regional circulation and provides a new method for future development of realistic convective gravity wave parameterizations.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19760003862','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19760003862"><span>Theoretical frameworks for testing relativistic gravity. 5: Post-Newtonian limit of Rosen's theory</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Lee, D. L.; Caves, C. M.</p> <p>1974-01-01</p> <p>The post-Newtonian limit of Rosen's theory of gravity is evaluated and is shown to be identical to that of general relativity, except for the PPN parameter alpha sub 2, which is related to the difference in propagation speeds for gravitational and electromagnetic waves. Both the value of alpha sub 2 and the value of the Newtonian gravitational constant depend on the present cosmological structure of the Universe. If the cosmological structure has a specific but presumably special form, the Newtonian gravitational constant assumes its current value, alpha sub 2 is zero, the post-Newtonian limit of Rosen's theory is identical to that of general relativity--and standard solar system experiments cannot distinguish between the two theories.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19760052405&hterms=theoretical+framework&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3Dtheoretical%2Bframework','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19760052405&hterms=theoretical+framework&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3Dtheoretical%2Bframework"><span>Theoretical frameworks for testing relativistic gravity. V - Post-Newtonian limit of Rosen's theory</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Lee, D. L.; Ni, W.-T.; Caves, C. M.; Will, C. M.</p> <p>1976-01-01</p> <p>The post-Newtonian limit of Rosen's theory of gravity is evaluated and is shown to be identical to that of general relativity, except for the post-Newtonian parameter alpha sub 2 (which is related to the difference in propagation speeds for gravitational and electromagnetic waves). Both the value of alpha sub 2 and the value of the Newtonian gravitational constant depend on the present cosmological structure of the Universe. If the cosmological structure has a specific (but presumably special) form, the Newtonian gravitational constant assumes its current value, alpha sub 2 is zero, the post-Newtonian limit of Rosen's theory is identical to that of general relativity - and standard solar system experiments cannot distinguish between the two theories.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li class="active"><span>20</span></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_20 --> <div id="page_21" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li class="active"><span>21</span></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="401"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4075788','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4075788"><span>Numerical study of interfacial solitary waves propagating under an elastic sheet</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Wang, Zhan; Părău, Emilian I.; Milewski, Paul A.; Vanden-Broeck, Jean-Marc</p> <p>2014-01-01</p> <p>Steady solitary and generalized solitary waves of a two-fluid problem where the upper layer is under a flexible elastic sheet are considered as a model for internal waves under an ice-covered ocean. The fluid consists of two layers of constant densities, separated by an interface. The elastic sheet resists bending forces and is mathematically described by a fully nonlinear thin shell model. Fully localized solitary waves are computed via a boundary integral method. Progression along the various branches of solutions shows that barotropic (i.e. surface modes) wave-packet solitary wave branches end with the free surface approaching the interface. On the other hand, the limiting configurations of long baroclinic (i.e. internal) solitary waves are characterized by an infinite broadening in the horizontal direction. Baroclinic wave-packet modes also exist for a large range of amplitudes and generalized solitary waves are computed in a case of a long internal mode in resonance with surface modes. In contrast to the pure gravity case (i.e without an elastic cover), these generalized solitary waves exhibit new Wilton-ripple-like periodic trains in the far field. PMID:25104909</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2011PhDT........50E','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2011PhDT........50E"><span>Analysis and numerical study of inertia-gravity waves generated by convection in the tropics</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Evan, Stephanie</p> <p>2011-12-01</p> <p>Gravity waves transport momentum and energy upward from the troposphere and by dissipation affect the large-scale structure of the middle atmosphere. An accurate representation of these waves in climate models is important for climate studies, but is still a challenge for most global and climate models. In the tropics, several studies have shown that mesoscale gravity waves and intermediate scale inertia-gravity waves play an important role in the dynamics of the upper atmosphere. Despite observational evidence for the importance of forcing of the tropical circulation by inertia-gravity waves, their exact properties and forcing of the tropical stratospheric circulation are not fully understood. In this thesis, properties of tropical inertia-gravity waves are investigated using radiosonde data from the 2006 Tropical Warm Pool International Cloud Experiment (TWP-ICE), the European Centre for Medium-Range Weather Forecasts (ECMWF) dataset and high-resolution numerical experiments. Few studies have characterized inertia-gravity wave properties using radiosonde profiles collected on a campaign basis. We first examine the properties of intermediate-scale inertia-gravity waves observed during the 2006 TWP-ICE campaign in Australia. We show that the total vertical flux of horizontal momentum associated with the waves is of the same order of magnitude as previous observations of Kelvin waves. This constitutes evidence for the importance of the forcing of the tropical circulation by intermediate-scale inertia-gravity waves. Then, we focus on the representation of inertia-gravity waves in analysis data. The wave event observed during TWP-ICE is also present in the ECMWF data. A comparison between the characteristics of the inertia-gravity wave derived with the ECMWF data to the properties of the wave derived with the radiosonde data shows that the ECMWF data capture similar structure for this wave event but with a larger vertical wavelength. The Weather Research and Forecasting (WRF) modeling system is used to understand the representation of the wave event in the ECMWF data. The model is configured as a tropical channel with a high top at 1 hPa. WRF is used with the same horizontal resolution (˜ 40 km) as the operational ECMWF in 2006 while using a finer vertical grid-spacing than ECMWF. Different experiments are performed to determine the sensitivity of the wave structure to cumulus schemes, initial conditions and vertical resolution. We demonstrate that high vertical resolution would be required for ECMWF to accurately resolve the vertical structure of inertia-gravity waves and their effect on the middle atmosphere circulation. Lastly we perform WRF simulations in January 2006 and 2007 to assess gravity wave forcing of the tropical stratospheric circulation. In these simulations a large part of the gravity wave spectrum is explicitly simulated. The WRF model is able to reproduce the evolution of the mean tropical stratospheric zonal wind when compared to observational data and the ECMWF reanalysis. It is shown that gravity waves account for 60% up to 80% of the total wave forcing of the tropical stratospheric circulation. We also compute wave forcing associated with intermediate-scale inertiagravity waves. In the WRF simulations this wave type represents ˜ 30% of the total gravity wave forcing. This suggests that intermediate-scale inertia-gravity waves can play an important role in the tropical middle-atmospheric circulation. In addition, the WRF high-resolution simulations are used to provide some guidance for constraining gravity wave parameterizations in coarse-grid climate models.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..19.3496E','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..19.3496E"><span>A climatology of gravity wave parameters based on satellite limb soundings</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ern, Manfred; Trinh, Quang Thai; Preusse, Peter; Riese, Martin</p> <p>2017-04-01</p> <p>Gravity waves are one of the main drivers of atmospheric dynamics. The resolution of most global circulation models (GCMs) and chemistry climate models (CCMs), however, is too coarse to properly resolve the small scales of gravity waves. Horizontal scales of gravity waves are in the range of tens to a few thousand kilometers. Gravity wave source processes involve even smaller scales. Therefore GCMs/CCMs usually parametrize the effect of gravity waves on the global circulation. These parametrizations are very simplified, and comparisons with global observations of gravity waves are needed for an improvement of parametrizations and an alleviation of model biases. In our study, we present a global data set of gravity wave distributions observed in the stratosphere and the mesosphere by the infrared limb sounding satellite instruments High Resolution Dynamics Limb Sounder (HIRDLS) and Sounding of the Atmosphere using Broadband Emission Radiometry (SABER). We provide various gravity wave parameters (for example, gravity variances, potential energies and absolute momentum fluxes). This comprehensive climatological data set can serve for comparison with other instruments (ground based, airborne, or other satellite instruments), as well as for comparison with gravity wave distributions, both resolved and parametrized, in GCMs and CCMs. The purpose of providing various different parameters is to make our data set useful for a large number of potential users and to overcome limitations of other observation techniques, or of models, that may be able to provide only one of those parameters. We present a climatology of typical average global distributions and of zonal averages, as well as their natural range of variations. In addition, we discuss seasonal variations of the global distribution of gravity waves, as well as limitations of our method of deriving gravity wave parameters from satellite data.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29379219','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29379219"><span>Sensitivity of Gravity Wave Fluxes to Interannual Variations in Tropical Convection and Zonal Wind.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Alexander, M Joan; Ortland, David A; Grimsdell, Alison W; Kim, Ji-Eun</p> <p>2017-09-01</p> <p>Using an idealized model framework with high-frequency tropical latent heating variability derived from global satellite observations of precipitation and clouds, the authors examine the properties and effects of gravity waves in the lower stratosphere, contrasting conditions in an El Niño year and a La Niña year. The model generates a broad spectrum of tropical waves including planetary-scale waves through mesoscale gravity waves. The authors compare modeled monthly mean regional variations in wind and temperature with reanalyses and validate the modeled gravity waves using satellite- and balloon-based estimates of gravity wave momentum flux. Some interesting changes in the gravity spectrum of momentum flux are found in the model, which are discussed in terms of the interannual variations in clouds, precipitation, and large-scale winds. While regional variations in clouds, precipitation, and winds are dramatic, the mean gravity wave zonal momentum fluxes entering the stratosphere differ by only 11%. The modeled intermittency in gravity wave momentum flux is shown to be very realistic compared to observations, and the largest-amplitude waves are related to significant gravity wave drag forces in the lowermost stratosphere. This strong intermittency is generally absent or weak in climate models because of deficiencies in parameterizations of gravity wave intermittency. These results suggest a way forward to improve model representations of the lowermost stratospheric quasi-biennial oscillation winds and teleconnections.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70015443','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70015443"><span>Large-scale magnetic field perturbation arising from the 18 May 1980 eruption from Mount St. Helens, Washington</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Mueller, R.J.; Johnston, M.J.S.</p> <p>1989-01-01</p> <p>A traveling magnetic field disturbance generated by the 18 may 1980 eruption of Mount St. Helens at 1532 UT was detected on an 800-km linear array of recording magnetometers installed along the San Andreas fault system in California, from San Francisco to the Salton Sea. Arrival times of the disturbance field, from the most northern of these 24 magnetometers (996 km south of the volcano) to the most southern (1493 km S23?? E), are consistent with the generation of a traveling ionospheric disturbance stimulated by the blast pressure wave in the atmosphere. The first arrivals at the north and the south ends of the array occurred at 26 and 48 min, respectively, after the initial eruption. Apparent average wave velocity through the array is 309 ?? 14 m s-1 but may have approached 600 m s-1 close to the volcano. The horizontal phase and the group velocity of ??? 300 m s-1 at periods of 70-80 min, and the attenuation with distance, strongly suggest that the magnetic field perturbations at distances of 1000-1500 km are caused by gravity mode acoustic-gravity waves propagating at F-region heights in the ionosphere. ?? 1989.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20030102152','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20030102152"><span>Mesospheric Non-Migrating Tides Generated With Planetary Waves. 1; Characteristics</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Mayr, H. G.; Mengel, J. G.; Talaat, E. L.; Porter, H. S.; Chan, K. L.</p> <p>2003-01-01</p> <p>We discuss results from a modeling study with our Numerical Spectral Model (NSM) that specifically deals with the non-migrating tides generated in the mesosphere. The NSM extends from the ground to the thermosphere, incorporates Hines' Doppler Spread Parameterization for small-scale gravity waves (GWs), and it describes the major dynamical features of the atmosphere including the wave driven equatorial oscillations (QBO and SAO), and the seasonal variations of tides and planetary waves. Accounting solely for the excitation sources of the solar migrating tides, the NSM generates through dynamical interactions also non-migrating tides in the mesosphere that are comparable in magnitude to those observed. Large non-migrating tides are produced in the diurnal and semi-diurnal oscillations for the zonal mean (m = 0) and in the semidiurnal oscillation for m = 1. In general, significant eastward and westward propagating tides are generated for all the zonal wave numbers m = 1 to 4. To identify the cause, the NSM is run without the solar heating for the zonal mean (m = 0), and the amplitudes of the resulting non-migrating tides are then negligibly small. In this case, the planetary waves are artificially suppressed, which are generated in the NSM through instabilities. This leads to the conclusion that the non-migrating tides are generated through non-linear interactions between planetary waves and migrating tides, as Forbes et al. and Talaat and Liberman had proposed. In an accompanying paper, we present results from numerical experiments, which indicate that gravity wave filtering contributes significantly to produce the non-linear coupling that is involved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/24492645','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/24492645"><span>Characteristics of atmospheric gravity waves observed using the MU (Middle and Upper atmosphere) radar and GPS (Global Positioning System) radio occultation.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Tsuda, Toshitaka</p> <p>2014-01-01</p> <p>The wind velocity and temperature profiles observed in the middle atmosphere (altitude: 10-100 km) show perturbations resulting from superposition of various atmospheric waves, including atmospheric gravity waves. Atmospheric gravity waves are known to play an important role in determining the general circulation in the middle atmosphere by dynamical stresses caused by gravity wave breaking. In this paper, we summarize the characteristics of atmospheric gravity waves observed using the middle and upper atmosphere (MU) radar in Japan, as well as novel satellite data obtained from global positioning system radio occultation (GPS RO) measurements. In particular, we focus on the behavior of gravity waves in the mesosphere (50-90 km), where considerable gravity wave attenuation occurs. We also report on the global distribution of gravity wave activity in the stratosphere (10-50 km), highlighting various excitation mechanisms such as orographic effects, convection in the tropics, meteorological disturbances, the subtropical jet and the polar night jet.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3923105','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3923105"><span>Characteristics of atmospheric gravity waves observed using the MU (Middle and Upper atmosphere) radar and GPS (Global Positioning System) radio occultation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>TSUDA, Toshitaka</p> <p>2014-01-01</p> <p>The wind velocity and temperature profiles observed in the middle atmosphere (altitude: 10–100 km) show perturbations resulting from superposition of various atmospheric waves, including atmospheric gravity waves. Atmospheric gravity waves are known to play an important role in determining the general circulation in the middle atmosphere by dynamical stresses caused by gravity wave breaking. In this paper, we summarize the characteristics of atmospheric gravity waves observed using the middle and upper atmosphere (MU) radar in Japan, as well as novel satellite data obtained from global positioning system radio occultation (GPS RO) measurements. In particular, we focus on the behavior of gravity waves in the mesosphere (50–90 km), where considerable gravity wave attenuation occurs. We also report on the global distribution of gravity wave activity in the stratosphere (10–50 km), highlighting various excitation mechanisms such as orographic effects, convection in the tropics, meteorological disturbances, the subtropical jet and the polar night jet. PMID:24492645</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19980237275','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19980237275"><span>Long-Term Global Morphology of Gravity Wave Activity Using UARS Data</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Eckermann, Stephen D.; Bacmeister, Julio T.; Wu, Dong L.</p> <p>1998-01-01</p> <p>This is the first quarter's report on research to extract global gravity-wave data from satellite data and to model those observations synoptically. Preliminary analysis of global maps of extracted middle atmospheric temperature variance from the CRISTA instrument is presented, which appear to contain gravity-wave information. Corresponding simulations of global gravity-wave and mountain-wave activity during this mission period are described using global ray-tracing and mountain-wave models, and interesting similarities among simulated data and CRISTA data are noted. Climatological simulations of mesospheric gravity-wave activity using the HWM-03 wind-temperature climatology are also reported, for comparison with UARS MLS data. Preparatory work on modeling of gravity wave observations from space-based platforms and subsequent interpretation of the MLS gravity-wave product are also described. Preliminary interpretation and relation to the research objectives are provided, and further action for the next quarter's research is recommended.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2002PhFl...14.2585O','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2002PhFl...14.2585O"><span>Spatial Holmboe instability</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ortiz, Sabine; Chomaz, Jean-Marc; Loiseleux, Thomas</p> <p>2002-08-01</p> <p>In mixing-layers between two parallel streams of different densities, shear and gravity effects interplay; buoyancy acts as a restoring force and the Kelvin-Helmholtz mode is known to be stabilized by the stratification. If the density interface is sharp enough, two new instability modes, known as Holmboe modes, appear, propagating in opposite directions. This mechanism has been studied in the temporal instability framework. The present paper analyzes the associated spatial instability problem. It considers, in the Boussinesq approximation, two immiscible inviscid fluids with a piecewise linear broken-line velocity profile. We show how the classical scenario for transition between absolute and convective instability should be modified due to the presence of propagating waves. In the convective region, the spatial theory is relevant and the slowest propagating wave is shown to be the most spatially amplified, as suggested by intuition. Predictions of spatial linear theory are compared with mixing-layer [C. G. Koop and F. K. Browand, J. Fluid Mech. 93, 135 (1979)] and exchange flow [G. Pawlak and L. Armi, J. Fluid Mech. 376, 1 (1999)] experiments. The physical mechanism for Holmboe mode destabilization is analyzed via an asymptotic expansion that predicts the absolute instability domain at large Richardson number.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2001APS..DFD.EP010S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2001APS..DFD.EP010S"><span>Spatial Holmboe Instability</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Sabine, Ortiz; Marc, Chomaz Jean; Thomas, Loiseleux</p> <p>2001-11-01</p> <p>In mixing layers between two parallel streams of different densities, shear and gravity effects interplay. When the Roosby number, which compares the nonlinear acceleration terms to the Coriolis forces, is large enough, buoyancy acts as a restoring force, the Kelvin-Helmholtz mode is known to be stabilized by the stratification. If the density interface is sharp enough, two new instability modes, known as Holmboe modes, propagating in opposite directions appear. This mechanism has been study in the temporal instability framework. We analyze the associated spatial instability problem, in the Boussinesq approximation, for two immiscible inviscid fluids with broken-line velocity profile. We show how the classical scenario for transition between absolute and convective instability should be modified due to the presence of propagating waves. In convective region, the spatial theory is relevant and the slowest propagative wave is shown to be the most spatially amplified, as suggested by the intuition. Spatial theory is compared with mixing layer experiments (C.G. Koop and Browand J. Fluid Mech. 93, part 1, 135 (1979)), and wedge flows (G. Pawlak and L. Armi J. Fluid Mech. 376, 1 (1999)). Physical mechanism for the Holmboe mode destabilization is analyzed via an asymptotic expansion that explains precisely the absolute instability domain at large Richardson number.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/22518790-electric-current-filamentation-non-potential-magnetic-null-point-due-pressure-perturbation','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22518790-electric-current-filamentation-non-potential-magnetic-null-point-due-pressure-perturbation"><span>ELECTRIC CURRENT FILAMENTATION AT A NON-POTENTIAL MAGNETIC NULL-POINT DUE TO PRESSURE PERTURBATION</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Jelínek, P.; Karlický, M.; Murawski, K., E-mail: pjelinek@prf.jcu.cz</p> <p>2015-10-20</p> <p>An increase of electric current densities due to filamentation is an important process in any flare. We show that the pressure perturbation, followed by an entropy wave, triggers such a filamentation in the non-potential magnetic null-point. In the two-dimensional (2D), non-potential magnetic null-point, we generate the entropy wave by a negative or positive pressure pulse that is launched initially. Then, we study its evolution under the influence of the gravity field. We solve the full set of 2D time dependent, ideal magnetohydrodynamic equations numerically, making use of the FLASH code. The negative pulse leads to an entropy wave with amore » plasma density greater than in the ambient atmosphere and thus this wave falls down in the solar atmosphere, attracted by the gravity force. In the case of the positive pressure pulse, the plasma becomes evacuated and the entropy wave propagates upward. However, in both cases, owing to the Rayleigh–Taylor instability, the electric current in a non-potential magnetic null-point is rapidly filamented and at some locations the electric current density is strongly enhanced in comparison to its initial value. Using numerical simulations, we find that entropy waves initiated either by positive or negative pulses result in an increase of electric current densities close to the magnetic null-point and thus the energy accumulated here can be released as nanoflares or even flares.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013GeoRL..40.5581N','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013GeoRL..40.5581N"><span>Concentric waves and short-period oscillations observed in the ionosphere after the 2013 Moore EF5 tornado</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Nishioka, Michi; Tsugawa, Takuya; Kubota, Minoru; Ishii, Mamoru</p> <p>2013-11-01</p> <p>We detected clear concentric waves and short-period oscillations in the ionosphere after an Enhanced Fujita scale (EF)5 tornado hit Moore, Oklahoma, U.S., on 20 May 2013 using dense wide-coverage ionospheric total electron content (TEC) observations in North America. These concentric waves were nondispersive, with a horizontal wavelength of ~120 km and a period of ~13 min. They were observed for more than 7 h throughout North America. TEC oscillations with a period of ~4 min were also observed to the south of Moore for more than 8 h. A comparison between the TEC observations and infrared cloud image from the GOES satellite indicates that the concentric waves and short-period oscillations are caused by supercell-induced atmospheric gravity waves and acoustic resonances, respectively. This observational result provides the first clear evidence of a severe meteorological event causing atmospheric waves propagating upward in the upper atmosphere and reaching the ionosphere.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19930060990&hterms=matter+theory&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D20%26Ntt%3Dmatter%2Btheory','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19930060990&hterms=matter+theory&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D20%26Ntt%3Dmatter%2Btheory"><span>Pulsar polarization measurements and the nonsymmetric gravitational theory</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Krisher, Timothy P.</p> <p>1991-01-01</p> <p>Because of the breakdown of the Einstein equivalence principle in the nonsymmetric gravitational theory (NGT) of Moffat, orthogonally polarized electromagnetic waves can propagate at different velocities in a gravitational field. Moffat has proposed that galactic dark matter, in the form of cosmions, may act as a significant source of gravity in the NGT. We discuss how observations of the highly polarized radiation from distant pulsars could provide significant limits on the strength of the coupling of cosmions in the NGT.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/23363091','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/23363091"><span>Determining probability distribution of coherent integration time near 133 Hz and 1346 km in the Pacific Ocean.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Spiesberger, John L</p> <p>2013-02-01</p> <p>The hypothesis tested is that internal gravity waves limit the coherent integration time of sound at 1346 km in the Pacific ocean at 133 Hz and a pulse resolution of 0.06 s. Six months of continuous transmissions at about 18 min intervals are examined. The source and receiver are mounted on the bottom of the ocean with timing governed by atomic clocks. Measured variability is only due to fluctuations in the ocean. A model for the propagation of sound through fluctuating internal waves is run without any tuning with data. Excellent resemblance is found between the model and data's probability distributions of integration time up to five hours.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017PhRvD..96h4023B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017PhRvD..96h4023B"><span>Nonminimal couplings, gravitational waves, and torsion in Horndeski's theory</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Barrientos, José; Cordonier-Tello, Fabrizio; Izaurieta, Fernando; Medina, Perla; Narbona, Daniela; Rodríguez, Eduardo; Valdivia, Omar</p> <p>2017-10-01</p> <p>The Horndeski Lagrangian brings together all possible interactions between gravity and a scalar field that yield second-order field equations in four-dimensional spacetime. As originally proposed, it only addresses phenomenology without torsion, which is a non-Riemannian feature of geometry. Since torsion can potentially affect interesting phenomena such as gravitational waves and early universe inflation, in this paper we allow torsion to exist and propagate within the Horndeski framework. To achieve this goal, we cast the Horndeski Lagrangian in Cartan's first-order formalism and introduce wave operators designed to act covariantly on p -form fields that carry Lorentz indices. We find that nonminimal couplings and second-order derivatives of the scalar field in the Lagrangian are indeed generic sources of torsion. Metric perturbations couple to the background torsion, and new torsional modes appear. These may be detected via gravitational waves but not through Yang-Mills gauge bosons.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26331898','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26331898"><span>Near-Inertial Internal Gravity Waves in the Ocean.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Alford, Matthew H; MacKinnon, Jennifer A; Simmons, Harper L; Nash, Jonathan D</p> <p>2016-01-01</p> <p>We review the physics of near-inertial waves (NIWs) in the ocean and the observations, theory, and models that have provided our present knowledge. NIWs appear nearly everywhere in the ocean as a spectral peak at and just above the local inertial period f, and the longest vertical wavelengths can propagate at least hundreds of kilometers toward the equator from their source regions; shorter vertical wavelengths do not travel as far and do not contain as much energy, but lead to turbulent mixing owing to their high shear. NIWs are generated by a variety of mechanisms, including the wind, nonlinear interactions with waves of other frequencies, lee waves over bottom topography, and geostrophic adjustment; the partition among these is not known, although the wind is likely the most important. NIWs likely interact strongly with mesoscale and submesoscale motions, in ways that are just beginning to be understood.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2011epsc.conf..110K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2011epsc.conf..110K"><span>Lutetia: an example of prediction of polyhedra in shapes of small cosmic bodies</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kochemasov, G. G.</p> <p>2011-10-01</p> <p>The following prediction based on rules of the wave planetology [1-12] was published before the Rosetta spacecraft imaged asteroid Lutetia [13]. "A 100 km long flattened asteroid 21-Lutetia will be imaged by the "Ros etta' s pacecraft in July 2010. Knowing that heavenly bodies are effectively structurized by warping inertia -gravity waves one might expect that Lutetia will not be an exclusion out of a row of bodies subjected to an action of these waves [1-9]. The elliptical keplerian orbits with periodically changing bodies 'accelerations imply inertia -gravity forces applied to any body notwithstanding its size, mass, density, chemical composition, and physical state. These forces produce inertia-gravity waves having in rotating bodied standing character and four direct ions of propagation (orthogonal and diagonal). Interfering these waves produce in bodies three (five) kinds of tectonic blocks: uprising s trongly and moderately (++, +), subsiding deeply and moderately (--, -), and neutral (0) where + and - are compensated. Lengths and amplitudes of warping waves form the harmonic sequence. The fundamental wave1 (long 2πR) ma kes ubiquitous tectonic dichotomy (two antipodean segments or hemispheres: one risen, another fallen). In small bodies this structurization is expressed in their convexo-concave shape: one hemisphere is bulged, another one pressed in. Bulging hemisphere is extended, pressed in hemisphere contracted. This wave shaping tends to transform a globular body into a tetrahedron - the ess entially dichotomous s imp les t Plato's figure. In this polyhedron always there is an oppos ition of extension (a face) to contraction (a vertex). The firs t overtone wave2 (long πR) ma kes tectonic s ectors , als o ris en and fallen, and regularly disposed on (and in) a globe. This regularity is expressed in an octahedron form. The octahedron (diamond) or its parts are often observed in shapes of small bodies with small gravities. Larger bodies with rather strong gravity tend to smooth polyhedron vertices and edges but a polyhedron structurization is always present inside their globes a nd is shown in their tectonics, geomorphology and geophysical fields. The shorter warping waves are also present but because of their comparatively small lengths and amplitudes they are not so important in distorting globes. The presented main harmonic row is complicated by superimposed individual waves lengths of which are inversely proportional to orbital frequencies: higher frequency - smaller wave, and, vice versa, lower frequency - larger wave. In the main asteroid belt the fundamental wave of the ma in s equence and the individual wave (a ls o long 2π R) a re in the s tron gest 1:1 resonance what prohibits an accretion of a real planet because of prevailing debris scattering. Thus, the Lutetia shape can support the main point of the wave planetology - "orbits make s tructures ." [13]. Below are some examples of cosmic polyhedra belonging to small bodies of various classes (asteroids, satellites, comets), s izes and compos itions . Thus , the prediction of Lutetia' s hape (s trengthened by the later Tempel's images ) was bas ed on rathe r representative observations.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015AGUFMNG23A1777G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015AGUFMNG23A1777G"><span>The Impacts of Numerical Schemes on Asymmetric Hurricane Intensification</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Guimond, S.; Reisner, J. M.; Marras, S.; Giraldo, F.</p> <p>2015-12-01</p> <p>The fundamental pathways for tropical cyclone (TC) intensification are explored by considering axisymmetric and asymmetric impulsive thermal perturbations to balanced, TC-like vortices using the dynamic cores of three different numerical models. Attempts at reproducing the results of previous work, which used the community atmospheric model WRF (Nolan and Grasso 2003; NG03), revealed a discrepancy with the impacts of purely asymmetric thermal forcing. The current study finds that thermal asymmetries can have an important, largely positive role on the vortex intensification whereas NG03 and other studies find that asymmetric impacts are negligible. Analysis of the spectral energetics of each numerical model indicates that the vortex response to asymmetric thermal perturbations is significantly damped in WRF relative to the other numerical models. Spectral kinetic energy budgets show that this anomalous damping is due to the increased removal of kinetic energy from the convergence of the vertical pressure flux, which is related to the flux of inertia-gravity wave energy. The increased kinetic energy in the other two models is shown to originate around the scales of the heating and propagate upscale with time. For very large thermal amplitudes (~ 50 K and above), the anomalous removal of kinetic energy due to inertia-gravity wave activity is much smaller resulting in little differences between models. The results of this paper indicate that the numerical treatment of small-scale processes that project strongly onto inertia-gravity wave energy are responsible for these differences, with potentially important impacts for the understanding and prediction of TC intensification.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19990088170&hterms=Tracer&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D60%26Ntt%3DTracer','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19990088170&hterms=Tracer&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D60%26Ntt%3DTracer"><span>Use of On-Line Tracers as a Diagnostic Tool in General Circulation Model Development. 2; Transport Between the Troposphere and Stratosphere</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Rind, David H.; Lerner, Jean; Shah, Kathy; Suozzo, Robert</p> <p>1999-01-01</p> <p>A key component of climate/chemistry modeling is how to handle the influx into (and egress from) the troposphere. This is especially important when considering tropospheric ozone, and its precursors (e.g., NO(x) from aircraft). A study has been conducted with various GISS models to determine the minimum requirements necessary for producing realistic troposphere-stratosphere exchange. Four on-line tracers are employed: CFC-11 and SF6 for mixing from the troposphere into the stratosphere, Rn222 for vertical mixing within the troposphere, and 14C for mixing from the stratosphere into the troposphere. Four standard models are tested, with varying vertical resolution, gravity wave drag and location of the model top, and additional subsidiary models are employed to examine specific features. The results show that proper vertical transport between the troposphere and stratosphere in the GISS models requires lifting the top of the model considerably out of the stratosphere, and including gravity wave drag in the lower stratosphere. Increased vertical resolution without these aspects does not improve troposphere-stratosphere exchange. The transport appears to be driven largely by the residual circulation within the stratosphere; associated E-P flux convergences require both realistic upward propagating energy from the troposphere, and realistic pass-through possibilities. A 23 layer version with a top at the mesopause and incorporating gravity wave drag appears to have reasonable stratospheric-tropospheric exchange, in terms of both the resulting tracer distributions and atmospheric mass fluxes.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li class="active"><span>21</span></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_21 --> <div id="page_22" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li class="active"><span>22</span></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="421"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20170004864&hterms=gravity&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D20%26Ntt%3Dgravity','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20170004864&hterms=gravity&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D20%26Ntt%3Dgravity"><span>Reconnection-Driven Coronal-Hole Jets with Gravity and Solar Wind</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Karpen, J. T.; Devore, C. R.; Antiochos, S. K.; Pariat, E.</p> <p>2017-01-01</p> <p>Coronal-hole jets occur ubiquitously in the Sun's coronal holes, at EUV and X-ray bright points associated with intrusions of minority magnetic polarity. The embedded-bipole model for these jets posits that they are driven by explosive, fast reconnection between the stressed closed field of the embedded bipole and the open field of the surrounding coronal hole. Previous numerical studies in Cartesian geometry, assuming uniform ambient magnetic field and plasma while neglecting gravity and solar wind, demonstrated that the model is robust and can produce jet-like events in simple configurations. We have extended these investigations by including spherical geometry,gravity, and solar wind in a nonuniform, coronal hole-like ambient atmosphere. Our simulations confirm that the jet is initiated by the onset of a kink-like instability of the internal closed field, which induces a burst of reconnection between the closed and external open field, launching a helical jet. Our new results demonstrate that the jet propagation is sustained through the outer corona, in the form of a traveling nonlinear Alfven wave front trailed by slower-moving plasma density enhancements that are compressed and accelerated by the wave. This finding agrees well with observations of white-light coronal-hole jets, and can explain microstreams and torsional Alfven waves detected in situ in the solar wind. We also use our numerical results to deduce scaling relationships between properties of the coronal source region and the characteristics of the resulting jet, which can be tested against observations.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20120010521','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20120010521"><span>New Gravity Wave Treatments for GISS Climate Models</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Geller, Marvin A.; Zhou, Tiehan; Ruedy, Reto; Aleinov, Igor; Nazarenko, Larissa; Tausnev, Nikolai L.; Sun, Shan; Kelley, Maxwell; Cheng, Ye</p> <p>2011-01-01</p> <p>Previous versions of GISS climate models have either used formulations of Rayleigh drag to represent unresolved gravity wave interactions with the model-resolved flow or have included a rather complicated treatment of unresolved gravity waves that, while being climate interactive, involved the specification of a relatively large number of parameters that were not well constrained by observations and also was computationally very expensive. Here, the authors introduce a relatively simple and computationally efficient specification of unresolved orographic and nonorographic gravity waves and their interaction with the resolved flow. Comparisons of the GISS model winds and temperatures with no gravity wave parameterization; with only orographic gravity wave parameterization; and with both orographic and nonorographic gravity wave parameterizations are shown to illustrate how the zonal mean winds and temperatures converge toward observations. The authors also show that the specifications of orographic and nonorographic gravity waves must be different in the Northern and Southern Hemispheres. Then results are presented where the nonorographic gravity wave sources are specified to represent sources from convection in the intertropical convergence zone and spontaneous emission from jet imbalances. Finally, a strategy to include these effects in a climate-dependent manner is suggested.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20100032912','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20100032912"><span>New Gravity Wave Treatments for GISS Climate Models</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Geller, Marvin A.; Zhou, Tiehan; Ruedy, Reto; Aleinov, Igor; Nazarenko, Larissa; Tausnev, Nikolai L.; Sun, Shan; Kelley, Maxwell; Cheng, Ye</p> <p>2010-01-01</p> <p>Previous versions of GISS climate models have either used formulations of Rayleigh drag to represent unresolved gravity wave interactions with the model resolved flow or have included a rather complicated treatment of unresolved gravity waves that, while being climate interactive, involved the specification of a relatively large number of parameters that were not well constrained by observations and also was computationally very expensive. Here, we introduce a relatively simple and computationally efficient specification of unresolved orographic and non-orographic gravity waves and their interaction with the resolved flow. We show comparisons of the GISS model winds and temperatures with no gravity wave parametrization; with only orographic gravity wave parameterization; and with both orographic and non-orographic gravity wave parameterizations to illustrate how the zonal mean winds and temperatures converge toward observations. We also show that the specifications of orographic and nonorographic gravity waves must be different in the Northern and Southern Hemispheres. We then show results where the non-orographic gravity wave sources are specified to represent sources from convection in the Intertropical Convergence Zone and spontaneous emission from jet imbalances. Finally, we suggest a strategy to include these effects in a climate dependent manner.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017APS..DFDD34006K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017APS..DFDD34006K"><span>Influence of Internal Waves on Transport by a Gravity Current</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Koseff, Jeffrey; Hogg, Charlie; Ouillon, Raphael; Ouellette, Nicholas; Meiburg, Eckart</p> <p>2017-11-01</p> <p>Gravity currents moving along the continental slope can be influenced by internal waves shoaling on the slope resulting in mixing between the gravity current and the ambient fluid. Whilst some observations of the potential influence of internal waves on gravity currents have been made, the process has not been studied systematically. We present laboratory experiments, and some initial numerical simulations, in which a gravity current descends down a sloped boundary through a pycnocline at the same time as an internal wave at the pycnocline shoals on the slope. Measurements of the downslope mass flux of the gravity current fluid in cases with different amplitudes of the incident internal wave will be discussed. For the parameter regime considered, the mass flux in the head of the gravity current was found to reduce with increasingly larger incident amplitude waves. This reduction was effectively caused by a ``decapitation'' process whereby the breaking internal wave captures and moves fluid from the head of the gravity current back up the slope. The significance of the impact of the internal waves on gravity current transport, strongly suggests that the local internal wave climate may need to be considered when calculating gravity current transport. The Bob and Norma Street Environmental Fluid Mechanics Laboratory.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19920001715','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19920001715"><span>Impact cratering calculations</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Ahrens, Thomas J.; Okeefe, J. D.; Smither, C.; Takata, T.</p> <p>1991-01-01</p> <p>In the course of carrying out finite difference calculations, it was discovered that for large craters, a previously unrecognized type of crater (diameter) growth occurred which was called lip wave propagation. This type of growth is illustrated for an impact of a 1000 km (2a) silicate bolide at 12 km/sec (U) onto a silicate half-space at earth gravity (1 g). The von Misses crustal strength is 2.4 kbar. The motion at the crater lip associated with this wave type phenomena is up, outward, and then down, similar to the particle motion of a surface wave. It is shown that the crater diameter has grown d/a of approximately 25 to d/a of approximately 4 via lip propagation from Ut/a = 5.56 to 17.0 during the time when rebound occurs. A new code is being used to study partitioning of energy and momentum and cratering efficiency with self gravity for finite-sized objects rather than the previously discussed planetary half-space problems. These are important and fundamental subjects which can be addressed with smoothed particle hydrodynamic (SPH) codes. The SPH method was used to model various problems in astrophysics and planetary physics. The initial work demonstrates that the energy budget for normal and oblique impacts are distinctly different than earlier calculations for silicate projectile impact on a silicate half space. Motivated by the first striking radar images of Venus obtained by Magellan, the effect of the atmosphere on impact cratering was studied. In order the further quantify the processes of meteor break-up and trajectory scattering upon break-up, the reentry physics of meteors striking Venus' atmosphere versus that of the Earth were studied.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017JGRA..122.4846Y','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017JGRA..122.4846Y"><span>Influence of parameterized small-scale gravity waves on the migrating diurnal tide in Earth's thermosphere</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Yiǧit, Erdal; Medvedev, Alexander S.</p> <p>2017-04-01</p> <p>Effects of subgrid-scale gravity waves (GWs) on the diurnal migrating tides are investigated from the mesosphere to the upper thermosphere for September equinox conditions, using a general circulation model coupled with the extended spectral nonlinear GW parameterization of Yiğit et al. (<link href="#jgra53482-bib-0076"/>). Simulations with GW effects cut off above the turbopause and included in the entire thermosphere have been conducted. GWs appreciably impact the mean circulation and cool the thermosphere down by up to 12-18%. GWs significantly affect the winds modulated by the diurnal migrating tide, in particular, in the low-latitude mesosphere and lower thermosphere and in the high-latitude thermosphere. These effects depend on the mutual correlation of the diurnal phases of the GW forcing and tides: GWs can either enhance or reduce the tidal amplitude. In the low-latitude MLT, the correlation between the direction of the deposited GW momentum and the tidal phase is positive due to propagation of a broad spectrum of GW harmonics through the alternating winds. In the Northern Hemisphere high-latitude thermosphere, GWs act against the tide due to an anticorrelation of tidal wind and GW momentum, while in the Southern high-latitudes they weakly enhance the tidal amplitude via a combination of a partial correlation of phases and GW-induced changes of the circulation. The variable nature of GW effects on the thermal tide can be captured in GCMs provided that a GW parameterization (1) considers a broad spectrum of harmonics, (2) properly describes their propagation, and (3) correctly accounts for the physics of wave breaking/saturation.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017GeoJI.211.1640J','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017GeoJI.211.1640J"><span>Linking source region and ocean wave parameters with the observed primary microseismic noise</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Juretzek, C.; Hadziioannou, C.</p> <p>2017-12-01</p> <p>In previous studies, the contribution of Love waves to the primary microseismic noise field was found to be comparable to those of Rayleigh waves. However, so far only few studies analysed both wave types present in this microseismic noise band, which is known to be generated in shallow water and the theoretical understanding has mainly evolved for Rayleigh waves only. Here, we study the relevance of different source region parameters on the observed primary microseismic noise levels of Love and Rayleigh waves simultaneously. By means of beamforming and correlation of seismic noise amplitudes with ocean wave heights in the period band between 12 and 15 s, we analysed how source areas of both wave types compare with each other around Europe. The generation effectivity in different source regions was compared to ocean wave heights, peak ocean gravity wave propagation direction and bathymetry. Observed Love wave noise amplitudes correlate comparably well with near coastal ocean wave parameters as Rayleigh waves. Some coastal regions serve as especially effective sources for one or the other wave type. These coincide not only with locations of high wave heights but also with complex bathymetry. Further, Rayleigh and Love wave noise amplitudes seem to depend equally on the local ocean wave heights, which is an indication for a coupled variation with swell height during the generation of both wave types. However, the wave-type ratio varies directionally. This observation likely hints towards a spatially varying importance of different source mechanisms or structural influences. Further, the wave-type ratio is modulated depending on peak ocean wave propagation directions which could indicate a variation of different source mechanism strengths but also hints towards an imprint of an effective source radiation pattern. This emphasizes that the inclusion of both wave types may provide more constraints for the understanding of acting generation mechanisms.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFMSA21C..02F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFMSA21C..02F"><span>Wave Coupling in the Atmosphere-Ionosphere System</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Forbes, J. M.</p> <p>2016-12-01</p> <p>Vertically-propagating solar and lunar tides, Kelvin waves, gravity waves (GW) and planetary waves (PW) constitute the primary mechanism for transmitting lower atmosphere variability to the upper atmosphere and ionosphere. Vertically propagating waves grow exponentially with height into the more rarified atmosphere where they dissipate, deposit net momentum and heat, and induce net constituent transport. Some waves penetrate to the base of the exosphere (ca. 500-600 km). Over the past decade, a mature knowledge of the tidal part of the spectrum has emerged, in an average or climatological sense, up to about 110 km. This knowledge has largely accrued as a result of remote sensing observations made from the TIMED satellite. These observations have also enabled limited studies on day-to-day variability of atmospheric tides, the PW and Kelvin wave spectra up to 110 km, and PW-tide coupling. Complementary ionospheric observations made by GPS receivers, COSMIC, CHAMP, and ROCSAT contain signatures of plasma redistributions induced by these waves, and ionosphere-thermosphere (IT) general circulation models have been developed that provide a corroborating theoretical foundation. Pioneering theoretical and modeling work also demonstrate the importance of the GW part of the spectrum on thermosphere circulation and thermal structure. While significant strides have been made, critical shortcomings in our understanding of atmosphere-IT coupling remain. In particular, we are practically absent any observations of the vertical evolution and dissipation of the wave spectrum between 100 and 200 km, which is also the region where electric fields and currents are generated by dynamo action. Moreover, the day-to-day variability of the wave spectrum and secondary wave generation remain to be quantified in this critical region. In this talk, the above progress and knowledge gaps will be examined in light of imminent and potential future missions.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012JPhCS.363a2019C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012JPhCS.363a2019C"><span>Testing Chern-Simons modified gravity with observations of extreme-mass-ratio binaries</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Canizares, P.; Gair, J. R.; Sopuerta, C. F.</p> <p>2012-06-01</p> <p>Extreme-Mass-Ratio Inspirals (EMRIs) are one of the most promising sources of gravitational waves (GWs) for space-based detectors like the Laser Interferometer Space Antenna (LISA). EMRIs consist of a compact stellar object orbiting around a massive black hole (MBH). Since EMRI signals are expected to be long lasting (containing of the order of hundred thousand cycles), they will encode the structure of the MBH gravitational potential in a precise way such that features depending on the theory of gravity governing the system may be distinguished. That is, EMRI signals may be used to test gravity and the geometry of black holes. However, the development of a practical methodology for computing the generation and propagation of GWs from EMRIs in theories of gravity different than General Relativity (GR) has only recently begun. In this paper, we present a parameter estimation study of EMRIs in a particular modification of GR, which is described by a four-dimensional Chern-Simons (CS) gravitational term. We focus on determining to what extent a space-based GW observatory like LISA could distinguish between GR and CS gravity through the detection of GWs from EMRIs.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20010079652&hterms=Qbo&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D20%26Ntt%3DQbo','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20010079652&hterms=Qbo&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D20%26Ntt%3DQbo"><span>Modeling Wave Driven Non-linear Flow Oscillations: The Terrestrial QBO and a Solar Analog</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Mayr, Hans G.; Bhartia, P. K. (Technical Monitor)</p> <p>2001-01-01</p> <p>The Quasi Biennial Oscillation (QBO) of the zonal circulation observed in the terrestrial atmosphere at low latitudes is driven by wave mean flow interaction as was demonstrated first by Lindzen and Holton (1968), shown in a laboratory experiment by Plumb and McEwan (1978), and modeled by others (e.g., Plumb, Dunkerton). Although influenced by the seasonal cycle of solar forcing, the QBO, in principle, represents a nonlinear flow oscillation that can be maintained by a steady source of upward propagating waves. The wave driven non-linearity is of third or odd order in the flow velocity, which regenerates the fundamental harmonic itself to keep the oscillation going - the fluid dynamical analog of the displacement mechanism in the mechanical clock. Applying Hines' Doppler Spread Parameterization (DSP) for gravity waves (GW), we discuss with a global-scale spectral model numerical experiments that elucidate some properties of the QBO and its possible effects on the climatology of the atmosphere. Depending on the period of the QBO, wave filtering can cause interaction with the seasonal variations to produce pronounced oscillations with beat periods around 10 years. Since the seasonal cycle and its variability influence the period of the QBO, it may also be a potent conduit of solar activity variations to lower altitudes. Analogous to the terrestrial QBO, we propose that a flow oscillation may account for the 22-year periodicity of the solar magnetic cycle, potentially answering Dicke (1978) who asked, "Is there a chronometer hidden deep inside the Sun?" The oscillation would occur below the convection region, where gravity waves can propagate. Employing a simplified, analytic model, Hines' DSP is applied to estimate the flow oscillation. Depending on the adopted horizontal wavelengths of GW's, wave amplitudes less than 10 m/s can be made to produce oscillating zonal flows of about 20 m/s that should be large enough to generate a significant oscillation in the magnetic field. For the large length scales of the Sun, the flow cycle period tends to be very long. The period, however, can be made to be 22 years, provided the buoyancy frequency (stability) is sufficiently small, thus placing the proposed flow near the base of the convection zone where a dynamo is now believed to operate.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010PhDT.......113C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010PhDT.......113C"><span>Migrating diurnal tide variability induced by propagating planetary waves</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Chang, Loren C.</p> <p></p> <p>The migrating diurnal tide is one of the dominant dynamical features in the low latitudes of the Earth's Mesosphere and Lower Thermosphere (MLT) region, representing the atmospheric response to the largest component of solar forcing, propagating upwards from excitation regions in the lower atmosphere. Ground-based observations of the tide have resolved short term variations attributed to nonlinear interactions between the tide and planetary waves also in the region. However, the conditions, effects, and mechanisms of a planetary wave - tidal interaction are still unclear. These questions are addressed using the NCAR Thermosphere Ionosphere Mesosphere Electrodynamics General Circulation Model (TIME-GCM) to examine two types of planetary waves, known to attain significant amplitudes in the low latitude and equatorial region where the migrating diurnal tide is dominant. The quasi-two day wave (QTDW) can rapidly amplify to large amplitudes from the summer hemisphere during post-solstice periods, while ultra fast Kelvin (UFK) waves occur sporadically in the temperature and zonal wind fields of the equatorial lower thermosphere. While child waves resulting from a nonlinear interaction are resolved in both cases, the response of the tidal structure and amplitudes to the two planetary waves differs significantly. In the case of the QTDW, the migrating diurnal tide displays a general amplitude decrease of 20 - 40%, as well as a shortening of vertical wavelength by roughly 4 km. Nonlinear advection is found to result in energy transfer to and from the tide, resulting in latitudinal smoothing of the tidal structure. The QTDW also produces significant changes to the mean zonal winds in the equator and at summer mid to high latitudes that can also account for changes in tidal amplitude and vertical wavelength. Filtering of gravity waves by the altered mean winds can also result in changes to the zonal mean zonal winds in the tropics. However, gravity wave momentum forcing on the tide is smaller than the advective tendencies throughout most of the MLT region, and cannot iv directly account for the changes in the tide during the QTDW model simulation. In the case of the UFK wave, baseline tidal amplitudes are found to show much smaller changes of 10% or less, despite the larger amplitudes of the UFK wave in the lower thermosphere region compared to the QTDW. Analysis of the nonlinear advective tendencies shows smaller magnitudes than those in the the case of the QTDW, with interaction regions limited primarily to a smaller region in latitude and altitude. Increased tidal convergence in the tropical lower thermosphere is attributed to eastward forcing of the background zonal mean winds by the UFK wave. Increasing the UFK wave forcing by an order of magnitude, although unrealistic, results in changes to the tide comparable in magnitude to the case of the QTDW. While child waves generated by nonlinear advection are present with both of the propagating planetary waves examined, the QTDW produces much greater tidal variability through both nonlinear and linear advection due to its broader horizontal and vertical structure, compared to the UFK wave. Planetary wave induced background atmosphere changes can also drive tidal variability, suggesting that changes to the tidal response in the MLT can also result from this indirect coupling mechanism, in addition to nonlinear advection.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016ClDy...46.3287A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016ClDy...46.3287A"><span>Diagnosis of boreal summer intraseasonal oscillation in high resolution NCEP climate forecast system</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Abhik, S.; Mukhopadhyay, P.; Krishna, R. P. M.; Salunke, Kiran D.; Dhakate, Ashish R.; Rao, Suryachandra A.</p> <p>2016-05-01</p> <p>The present study examines the ability of high resolution (T382) National Centers for Environmental Prediction coupled atmosphere-ocean climate forecast system version 2 (CFS T382) in simulating the salient spatio-temporal characteristics of the boreal summertime mean climate and the intraseasonal variability. The shortcomings of the model are identified based on the observation and compared with earlier reported biases of the coarser resolution of CFS (CFS T126). It is found that the CFS T382 reasonably mimics the observed features of basic state climate during boreal summer. But some prominent biases are noted in simulating the precipitation, tropospheric temperature (TT) and sea surface temperature (SST) over the global tropics. Although CFS T382 primarily reproduces the observed distribution of the intraseasonal variability over the Indian summer monsoon region, some difficulty remains in simulating the boreal summer intraseasonal oscillation (BSISO) characteristics. The simulated eastward propagation of BSISO decays rapidly across the Maritime Continent, while the northward propagation appears to be slightly slower than observation. However, the northward propagating BSISO convection propagates smoothly from the equatorial region to the northern latitudes with observed magnitude. Moreover, the observed northwest-southeast tilted rain band is not well reproduced in CFS T382. The warm mean SST bias and inadequate simulation of high frequency modes appear to be responsible for the weak simulation of eastward propagating BSISO. Unlike CFS T126, the simulated mean SST and TT exhibit warm biases, although the mean precipitation and simulated BSISO characteristics are largely similar in both the resolutions of CFS. Further analysis of the convectively coupled equatorial waves (CCEWs) indicates that model overestimates the gravest equatorial Rossby waves and underestimates the Kelvin and mixed Rossby-gravity waves. Based on analysis of CCEWs, the study further explains the possible reasons behind the realistic simulation of northward propagating BSISO in CFS T382, even though the model shows substantial biases in simulating mean state and other BSISO modes.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017APS..DFDD34007T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017APS..DFDD34007T"><span>Dense Gravity Currents with Breaking Internal Waves</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Tanimoto, Yukinobu; Hogg, Charlie; Ouellette, Nicholas; Koseff, Jeffrey</p> <p>2017-11-01</p> <p>Shoaling and breaking internal waves along a pycnocline may lead to mixing and dilution of dense gravity currents, such as cold river inflows into lakes or brine effluent from desalination plants in near-coastal environments. In order to explore the interaction between gravity currents and breaking interfacial waves a series of laboratory experiments was performed in which a sequence of internal waves impinge upon a shelf-slope gravity current. The waves are generated in a two-layer thin-interface ambient water column under a variety of conditions characterizing both the waves and the gravity currents. The mixing of the gravity current is measured through both intrusive (CTD probe) and nonintrusive (Planar-laser inducted fluorescence) techniques. We will present results over a full range of Froude number (characterizing the waves) and Richardson number (characterizing the gravity current) conditions, and will discuss the mechanisms by which the gravity current is mixed into the ambient environment including the role of turbulence in the process. National Science Foundation.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19830054922&hterms=calculate+gravity+model&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D20%26Ntt%3Dcalculate%2Bgravity%2Bmodel','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19830054922&hterms=calculate+gravity+model&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D20%26Ntt%3Dcalculate%2Bgravity%2Bmodel"><span>A numerical model of gravity wave breaking and stress in the mesosphere</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Schoeberl, M. R.; Strobel, D. F.; Apruzese, J. P.</p> <p>1983-01-01</p> <p>The goal of the study is to calculate numerically the deceleration and heating caused by breaking gravity waves. The effect of the radiative dissipation of the wave is included as vertical-wavelength-dependent Newtonian cooling. The parameterization for zonal deceleration is extended by breaking gravity waves (Lindzen, 1981) to include the turbulent diffusion of heat and momentum. After describing the numerical model, the numerical results are presented and compared with the parameterizations in a noninteractive model of the mean zonal wind. Attention is then given to the transport of constituents by gravity waves and the attendant turbulent zone. It is noted that if gravity wave breaking were not an intermittent process, gravity wave stresses would produce an adiabatic mesosphere with a zonal mean velocity close to the phase speed of the breaking wave.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016EPJP..131...69D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016EPJP..131...69D"><span>Stokes waves revisited: Exact solutions in the asymptotic limit</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Davies, Megan; Chattopadhyay, Amit K.</p> <p>2016-03-01</p> <p>The Stokes perturbative solution of the nonlinear (boundary value dependent) surface gravity wave problem is known to provide results of reasonable accuracy to engineers in estimating the phase speed and amplitudes of such nonlinear waves. The weakling in this structure though is the presence of aperiodic "secular variation" in the solution that does not agree with the known periodic propagation of surface waves. This has historically necessitated increasingly higher-ordered (perturbative) approximations in the representation of the velocity profile. The present article ameliorates this long-standing theoretical insufficiency by invoking a compact exact n -ordered solution in the asymptotic infinite depth limit, primarily based on a representation structured around the third-ordered perturbative solution, that leads to a seamless extension to higher-order (e.g., fifth-order) forms existing in the literature. The result from this study is expected to improve phenomenological engineering estimates, now that any desired higher-ordered expansion may be compacted within the same representation, but without any aperiodicity in the spectral pattern of the wave guides.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018ESSD...10..857E','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018ESSD...10..857E"><span>GRACILE: a comprehensive climatology of atmospheric gravity wave parameters based on satellite limb soundings</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ern, Manfred; Trinh, Quang Thai; Preusse, Peter; Gille, John C.; Mlynczak, Martin G.; Russell, James M., III; Riese, Martin</p> <p>2018-04-01</p> <p>Gravity waves are one of the main drivers of atmospheric dynamics. The spatial resolution of most global atmospheric models, however, is too coarse to properly resolve the small scales of gravity waves, which range from tens to a few thousand kilometers horizontally, and from below 1 km to tens of kilometers vertically. Gravity wave source processes involve even smaller scales. Therefore, general circulation models (GCMs) and chemistry climate models (CCMs) usually parametrize the effect of gravity waves on the global circulation. These parametrizations are very simplified. For this reason, comparisons with global observations of gravity waves are needed for an improvement of parametrizations and an alleviation of model biases. We present a gravity wave climatology based on atmospheric infrared limb emissions observed by satellite (GRACILE). GRACILE is a global data set of gravity wave distributions observed in the stratosphere and the mesosphere by the infrared limb sounding satellite instruments High Resolution Dynamics Limb Sounder (HIRDLS) and Sounding of the Atmosphere using Broadband Emission Radiometry (SABER). Typical distributions (zonal averages and global maps) of gravity wave vertical wavelengths and along-track horizontal wavenumbers are provided, as well as gravity wave temperature variances, potential energies and absolute momentum fluxes. This global data set captures the typical seasonal variations of these parameters, as well as their spatial variations. The GRACILE data set is suitable for scientific studies, and it can serve for comparison with other instruments (ground-based, airborne, or other satellite instruments) and for comparison with gravity wave distributions, both resolved and parametrized, in GCMs and CCMs. The GRACILE data set is available as supplementary data at <a href="https://doi.org/10.1594/PANGAEA.879658" target="_blank">https://doi.org/10.1594/PANGAEA.879658</a>.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010AGUFMSA21A1760K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010AGUFMSA21A1760K"><span>Seasonal and height variation of gravity wave activities observed by a meteor radar at King Sejong Station (62°S, 57°W), Antarctica</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kim, Y.; Lee, C.; Kim, J.; Choi, J.; Jee, G.</p> <p>2010-12-01</p> <p>We have analyzed wind data from individual meteor echoes detected by a meteor radar at King Sejong Station, Antarctica to measure gravity wave activity in the mesopause region. Wind data in the meteor altitudes has been obtained routinely by the meteor radar since its installation in March 2007. The mean variances in the wind data that were filtered for large scale motions (mean winds and tides) can be regarded as the gravity wave activity. Monthly mean gravity wave activities show strong seasonal and height dependences in the altitude range of 80 to 100 km. The gravity wave activities except summer monotonically increase with altitude, which is expected since decreasing atmospheric densities cause wave amplitudes to increase. During summer (Dec. - Feb.) the height profiles of gravity wave activities show a minimum near 90 - 95 km, which may be due to different zonal wind and strong wind shear near 80 - 95 km. Our gravity wave activities are generally stronger than those of the Rothera station, implying sensitive dependency on location. The difference may be related to gravity wave sources in the lower atmosphere near Antarctic vortex.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20060036766&hterms=Inertia&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3DInertia','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20060036766&hterms=Inertia&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3DInertia"><span>Altimeter Observations of Baroclinic Oceanic Inertia-Gravity Wave Turbulence</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Glazman, R. E.; Cheng, B.</p> <p>1996-01-01</p> <p>For a wide range of nonlinear wave processes - from capillary to planetary waves - theory predicts the existence of Kolmogorov-type spectral cascades of energy and other conserved quantities occuring via nonlinear resonant wave-wave interactions. So far, observations of wave turbulence (WT) have been limited to small-scale processes such as surface gravity and capillary-gravity waves.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2011AGUFMNH13G..04M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2011AGUFMNH13G..04M"><span>An unified numerical simulation of seismic ground motion, ocean acoustics, coseismic deformations and tsunamis of 2011 Tohoku earthquake</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Maeda, T.; Furumura, T.; Noguchi, S.; Takemura, S.; Iwai, K.; Lee, S.; Sakai, S.; Shinohara, M.</p> <p>2011-12-01</p> <p>The fault rupture of the 2011 Tohoku (Mw9.0) earthquake spread approximately 550 km by 260 km with a long source rupture duration of ~200 s. For such large earthquake with a complicated source rupture process the radiation of seismic wave from the source rupture and initiation of tsunami due to the coseismic deformation is considered to be very complicated. In order to understand such a complicated process of seismic wave, coseismic deformation and tsunami, we proposed a unified approach for total modeling of earthquake induced phenomena in a single numerical scheme based on a finite-difference method simulation (Maeda and Furumura, 2011). This simulation model solves the equation of motion of based on the linear elastic theory with equilibrium between quasi-static pressure and gravity in the water column. The height of tsunami is obtained from this simulation as a vertical displacement of ocean surface. In order to simulate seismic waves, ocean acoustics, coseismic deformations, and tsunami from the 2011 Tohoku earthquake, we assembled a high-resolution 3D heterogeneous subsurface structural model of northern Japan. The area of simulation is 1200 km x 800 km and 120 km in depth, which have been discretized with grid interval of 1 km in horizontal directions and 0.25 km in vertical direction, respectively. We adopt a source-rupture model proposed by Lee et al. (2011) which is obtained by the joint inversion of teleseismic, near-field strong motion, and coseismic deformation. For conducting such a large-scale simulation, we fully parallelized our simulation code based on a domain-partitioning procedure which achieved a good speed-up by parallel computing up to 8192 core processors with parallel efficiency of 99.839%. The simulation result demonstrates clearly the process in which the seismic wave radiates from the complicated source rupture over the fault plane and propagating in heterogeneous structure of northern Japan. Then, generation of tsunami from coseismic ground deformation at sea floor due to the earthquake and propagation is also well demonstrated . The simulation also demonstrates that a very large slip up to 40 m at shallow plate boundary near the trench pushes up sea floor with source rupture propagation, and the highly elevated sea surface gradually start propagation as tsunamis due to the gravity. The result of simulation of vertical-component displacement waveform matches the ocean-bottom pressure gauge record which is installed just above the source fault area (Maeda et al., 2011) very consistently. Strong reverberation of the ocean-acoustic waves between sea surface and sea bottom particularly near the Japan Trench for long time after the source rupture ends is confirmed in the present simulation. Accordingly, long wavetrains of high-frequency ocean acoustic waves is developed and overlap to later tsunami waveforms as we found in the observations.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2006JGRD..11119103N','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2006JGRD..11119103N"><span>Quasi-monochromatic inertia-gravity waves in the lower stratosphere from MST radar observations</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Nastrom, G. D.; Eaton, F. D.</p> <p>2006-10-01</p> <p>The frequency of occurrence of quasi-monochromatic oscillations with periods near the inertial period is examined using hourly mean wind observations from the MST radars at White Sands Missile Range, New Mexico, and Vandenberg Air Force Base, California, spanning 6 years and 4 years, respectively. Power spectral analyses show that the energy levels near the inertial frequency during summer are nearly constant with altitude from about 12 km up to the highest altitude available, about 20 km, while energy levels at lower frequencies decrease with altitude. This decrease leads to a relative enhancement of energy near the inertial frequency. During winter the relative enhancement near the inertial frequency is much smaller. Results from least squares curve fitting used to find the percent of wind variance explained (PEV) by a single wave over data blocks 72 hours long and 2 km deep indicate that a quasi-monochromatic oscillation is present when PEV ≥ 25%. During summer in the stratosphere over 50% of the cases have PEV ≥ 25%. The best fit waveform has mean period near 21 hours and vertical wavelength near 3 km. The wind vectors exhibit anticyclonic rotation in time and with height, consistent with upward propagating gravity waves. The mean ratio of the intrinsic to the inertial frequency is about 1.3 in this data set, and the associated mean horizontal wavelength of these waves is slightly over 1000 km.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li class="active"><span>22</span></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_22 --> <div id="page_23" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li class="active"><span>23</span></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="441"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018JGRD..123.2605B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018JGRD..123.2605B"><span>Secondary Gravity Waves in the Winter Mesosphere: Results From a High-Resolution Global Circulation Model</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Becker, Erich; Vadas, Sharon L.</p> <p>2018-03-01</p> <p>This study analyzes a new high-resolution general circulation model with regard to secondary gravity waves in the mesosphere during austral winter. The model resolves gravity waves down to horizontal and vertical wavelengths of 165 and 1.5 km, respectively. The resolved mean wave drag agrees well with that from a conventional model with parameterized gravity waves up to the midmesosphere in winter and up to the upper mesosphere in summer. About half of the zonal-mean vertical flux of westward momentum in the southern winter stratosphere is due to orographic gravity waves. The high intermittency of the primary orographic gravity waves gives rise to secondary waves that result in a substantial eastward drag in the winter mesopause region. This induces an additional eastward maximum of the mean zonal wind at z ˜ 100 km. Radar and lidar measurements at polar latitudes and results from other high-resolution global models are consistent with this finding. Hence, secondary gravity waves may play a significant role in the general circulation of the winter mesopause region.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/pages/biblio/1212471-ionospheric-acoustic-gravity-waves-associated-midlatitude-thunderstorms','SCIGOV-DOEP'); return false;" href="https://www.osti.gov/pages/biblio/1212471-ionospheric-acoustic-gravity-waves-associated-midlatitude-thunderstorms"><span>Ionospheric acoustic and gravity waves associated with midlatitude thunderstorms</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/pages">DOE PAGES</a></p> <p>Lay, Erin H.; Shao, Xuan -Min; Kendrick, Alexander K.; ...</p> <p>2015-07-30</p> <p>Acoustic waves with periods of 2 - 4 minutes and gravity waves with periods of 6 - 16 minutes have been detected at ionospheric heights (250-350 km) using GPS Total Electron Content (TEC) measurements. The area disturbed by these waves and the wave amplitudes have been associated with underlying thunderstorm activity. A statistical study comparing NEXRAD radar thunderstorm measurements with ionospheric acoustic and gravity waves in the mid-latitude U.S. Great Plains region was performed for the time period of May - July 2005. An increase of ionospheric acoustic wave disturbed area and amplitude is primarily associated with large thunderstorms (mesoscalemore » convective systems). Ionospheric gravity wave disturbed area and amplitude scale with thunderstorm activity, with even small storms (i.e. individual storm cells) producing an increase of gravity waves.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015EGUGA..1714228B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015EGUGA..1714228B"><span>Geographic distribution of zonal wind and UV albedo at cloud top level from VMC camera on Venus Express: Influence of Venus topography through stationary gravity waves vertical propagation.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Bertaux, Jean-Loup; Khatunstsev, Igor; Hauchecorne, Alain; Markiewicz, Wojciech; Marcq, Emmanuel; Lebonnois, Sébastien; Patsaeva, Marina; Turin, Alexander</p> <p>2015-04-01</p> <p>UV images (at 365 nm) of Venus cloud top collected with VMC camera on board Venus Express allowed to derive a large number of wind measurements at altitude 67±2 km from tracking of cloud features in the period 2006-2012. Both manual (45,600) and digital (391,600) individual wind measurements over 127 orbits were analyzed showing various patterns with latitude and local time. A new longitude-latitude geographic map of the zonal wind shows a conspicuous region of strongly decreased zonal wind, a remarkable feature that was unknown up to now. While the average zonal wind near equator (from 5°S to 15°s) is -100.9 m/s in the longitude range 200-330°, it reaches -83.4 m/s in the range 60-100°, a difference of 17.5 m/s. When compared to the altimetry map of Venus, it is found that the zonal wind pattern is well correlated with the underlying relief in the region of Aphrodite Terra, with a downstream shift of about 30° (˜3,200 km). We interpret this pattern as the result of stationary gravity waves produced at ground level by the up lift of air when the horizontal wind encounters a mountain slope. These waves can propagate up to cloud top level, break there and transfer their momentum to the zonal flow. A similar phenomenon is known to operate on Earth with an influence on mesospheric winds. The LMD-GCM for Venus was run with or without topography, with and without a parameterization of gravity waves and does not display such an observed change of velocity near equator. The cloud albedo map at 365 nm varies also in longitude and latitude. We speculate that it might be the result of increased vertical mixing associated to wave breaking, and decreased abundance of the UV absorber which makes the contrast in images. The impact of these new findings on current super rotation theories remains to be assessed. This work was triggered by the presence of a conspicuous peak at 117 days in a time series of wind measurements. This is the length of the solar day as seen at the ground of Venus. Since VMC measurements are done preferably in a local time window centred on the sub-solar point, any parameter having a geographic longitude dependence will show a peak at 117 days.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018PhRvD..97j4047T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018PhRvD..97j4047T"><span>Quasinormal modes of black holes in Horndeski gravity</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Tattersall, Oliver J.; Ferreira, Pedro G.</p> <p>2018-05-01</p> <p>We study the perturbations to general relativistic black holes (i.e., those without scalar hair) in Horndeski scalar-tensor gravity. First, we derive the equations of odd and even parity perturbations of both the metric and scalar field in the case of a Schwarzschild black hole, and show that the gravitational waves emitted from such a system contain a mixture of quasinormal mode frequencies from the usual general relativistic spectrum and those from the new scalar field spectrum, with the new scalar spectrum characterized by just two free parameters. We then specialize to the subfamily of Horndeski theories in which gravitational waves propagate at the speed of light c on cosmological backgrounds; the scalar quasinormal mode spectrum of such theories is characterized by just a single parameter μ acting as an effective mass of the scalar field. Analytical expressions for the quasinormal mode frequencies of the scalar spectrum in this subfamily of theories are provided for both static and slowly rotating black holes. In both regimes comparisons to quasinormal modes calculated numerically show good agreement with those calculated analytically in this work.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018PhRvD..97b1301C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018PhRvD..97b1301C"><span>Vainshtein mechanism after GW170817</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Crisostomi, Marco; Koyama, Kazuya</p> <p>2018-01-01</p> <p>The almost simultaneous detection of gravitational waves and a short gamma-ray burst from a neutron star merger has put a tight constraint on the difference between the speed of gravity and light. In the four-dimensional scalar-tensor theory with second-order equations of motion, the Horndeski theory, this translates into a significant reduction of the viable parameter space of the theory. Recently, extensions of Horndeski theory, which are free from Ostrogradsky ghosts despite the presence of higher-order derivatives in the equations of motion, have been identified and classified exploiting the degeneracy criterium. In these new theories, the fifth force mediated by the scalar field must be suppressed in order to evade the stringent Solar System constraints. We study the Vainshtein mechanism in the most general degenerate higher-order scalar-tensor theory in which light and gravity propagate at the same speed. We find that the Vainshtein mechanism generally works outside a matter source but it is broken inside matter, similarly to beyond Horndeski theories. This leaves interesting possibilities to test these theories that are compatible with gravitational wave observations using astrophysical objects.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/17155315','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/17155315"><span>Graviton propagator from background-independent quantum gravity.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Rovelli, Carlo</p> <p>2006-10-13</p> <p>We study the graviton propagator in Euclidean loop quantum gravity. We use spin foam, boundary-amplitude, and group-field-theory techniques. We compute a component of the propagator to first order, under some approximations, obtaining the correct large-distance behavior. This indicates a way for deriving conventional spacetime quantities from a background-independent theory.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018PhRvL.120m1101A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018PhRvL.120m1101A"><span>Fate of Large-Scale Structure in Modified Gravity After GW170817 and GRB170817A</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Amendola, Luca; Kunz, Martin; Saltas, Ippocratis D.; Sawicki, Ignacy</p> <p>2018-03-01</p> <p>The coincident detection of gravitational waves (GW) and a gamma-ray burst from a merger of neutron stars has placed an extremely stringent bound on the speed of GWs. We showed previously that the presence of gravitational slip (η ) in cosmology is intimately tied to modifications of GW propagation. This new constraint implies that the only remaining viable source of gravitational slip is a conformal coupling to gravity in scalar-tensor theories, while viable vector-tensor theories cannot now generate gravitational slip at all. We discuss structure formation in the remaining viable models, demonstrating that (i) the dark-matter growth rate must now be at least as fast as in general relativity (GR), with the possible exception of that beyond the Horndeski model, and (ii) if there is any scale dependence at all in the slip parameter, it is such that it takes the GR value at large scales. We show a consistency relation that must be violated if gravity is modified.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19960049623','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19960049623"><span>Ignition and Combustion of Bulk Metals in a Microgravity Environment</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Branch, M. C.; Daily, J. W.; Abbud-Madrid, A.</p> <p>1996-01-01</p> <p>This annual report summarizes the latest results obtained in a NASA-supported project to investigate the effect of gravity on the ignition and combustion of bulk metals. The experimental arrangement used for this purpose consists of a 1000-W xenon lamp that irradiates the top surface of cylindrical titanium and magnesium specimens, 4 mm in diameter and 4 mm in height, in a quiescent, pure-oxygen environment at 1 atm. Reduced gravity is obtained from the NASA LeRC DC-9 aircraft flying parabolic trajectories. Values of critical and ignition temperatures are obtained from thermocouple records. Qualitative observations and propagation rates are extracted from high-speed cinematography. Emission spectra of gas-phase reactions are obtained with an imaging spectrograph/diode array system. It was found that high applied heating rates and large internal conduction losses generate critical and ignition temperatures that are several hundred degrees above the values obtained from isothermal experiments. Because of high conduction and radiation heat losses, no appreciable effect on ignition temperatures with reduced convection in low gravity is detected. Lower propagation rates of the molten interface on titanium and of ignition waves on magnesium are obtained at reduced gravity. These rates are compared to theoretical results from heat conduction analyses with a diffusion/convection controlled reaction. The close agreement found between experimental and theoretical values indicates the importance of the influence of natural convection-enhanced oxygen transport on combustion rates. Lower oxygen flux and lack of oxide product removal in the absence of convective currents appear to be responsible for longer burning times of magnesium diffusion flames at reduced gravity. The accumulation of condensed oxide particles in the flame front at low gravity produces a previously unreported unsteady explosion phenomenon in bulk magnesium flames. This spherically symmetric explosion phenomenon seems to be driven by increased radiation heat transfer from the flame front to an evaporating metal core covered by a porous, flexible oxide coating. These important results have revealed the significant role of gravity on the burning of metals, and are now being used as the database for future experiments to be conducted with different metals at various pressures, oxygen concentrations and gravity levels.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018JASTP.171...72C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018JASTP.171...72C"><span>Infrasound in the ionosphere from earthquakes and typhoons</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Chum, J.; Liu, J.-Y.; Podolská, K.; Šindelářová, T.</p> <p>2018-06-01</p> <p>Infrasound waves are observed in the ionosphere relatively rarely, in contrast to atmospheric gravity waves. Infrasound waves excited by two distinguished sources as seismic waves from strong earthquakes (M > 7) and severe tropospheric weather systems (typhoons) are discussed and analyzed. Examples of observation by an international network of continuous Doppler sounders are presented. It is documented that the co-seismic infrasound is generated by vertical movement of the ground surface caused by seismic waves propagating at supersonic speeds. The coseismic infrasound propagates nearly vertically and has usually periods of several tens of seconds far away from the epicenter. However, in the vicinity of the epicenter (up to distance about 1000-1500 km), the large amplitudes might lead to nonlinear formation of N-shaped pulse in the upper atmosphere with much longer dominant period, e.g. around 2 min. The experimental observation is in good agreement with numerical modeling. The spectral content can also be nonlinearly changed at intermediate distances (around 3000-4000 km), though the N-shaped pulse is not obvious. Infrasound waves associated with seven typhoons that passed over Taiwan in 2014-2016 were investigated. The infrasound waves were observed at heights approximately from 200 to 300 km. Their spectra differed during the individual events and event from event and covered roughly the spectral range 3.5-20 mHz. The peak of spectral density was usually around 5 mHz. The observed spectra exhibited fine structures that likely resulted from modal resonances. The infrasound was recorded during several hours for strong events, especially for two typhoons in September 2016.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018JGeod..92..149F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018JGeod..92..149F"><span>The first Australian gravimetric quasigeoid model with location-specific uncertainty estimates</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Featherstone, W. E.; McCubbine, J. C.; Brown, N. J.; Claessens, S. J.; Filmer, M. S.; Kirby, J. F.</p> <p>2018-02-01</p> <p>We describe the computation of the first Australian quasigeoid model to include error estimates as a function of location that have been propagated from uncertainties in the EGM2008 global model, land and altimeter-derived gravity anomalies and terrain corrections. The model has been extended to include Australia's offshore territories and maritime boundaries using newer datasets comprising an additional {˜ }280,000 land gravity observations, a newer altimeter-derived marine gravity anomaly grid, and terrain corrections at 1^' ' }× 1^' ' } resolution. The error propagation uses a remove-restore approach, where the EGM2008 quasigeoid and gravity anomaly error grids are augmented by errors propagated through a modified Stokes integral from the errors in the altimeter gravity anomalies, land gravity observations and terrain corrections. The gravimetric quasigeoid errors (one sigma) are 50-60 mm across most of the Australian landmass, increasing to {˜ }100 mm in regions of steep horizontal gravity gradients or the mountains, and are commensurate with external estimates.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1995JApMe..34.2747D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1995JApMe..34.2747D"><span>The Interpretation of Wavelengths and Periods as Measured from Atmospheric Balloons.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>de La Torre, Alejandro; Alexander, Pedro</p> <p>1995-12-01</p> <p>Transformations that take into account the characteristics of balloon motion and wave propagation to infer the `real' wavelengths and frequencies from the `apparent' ones measured during sounding are derived. To estimate the differences that may arise in the observations of internal gravity waves, a statistical relation between their wavelength and period recently found from theory and experiment is applied. It is shown that it may not be possible to determine from each apparent datum a unique real value, because up to four different transformations may be applicable for each experimental datum of wavelength or frequency. However, under certain conditions this ambiguity can be removed. The omission of the appropriate transformation may lead one to seriously misinterpret the data.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2005JAtS...62.4196C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2005JAtS...62.4196C"><span>Constraints on Wave Drag Parameterization Schemes for Simulating the Quasi-Biennial Oscillation. Part II: Combined Effects of Gravity Waves and Equatorial Planetary Waves.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Campbell, Lucy J.; Shepherd, Theodore G.</p> <p>2005-12-01</p> <p>This study examines the effect of combining equatorial planetary wave drag and gravity wave drag in a one-dimensional zonal mean model of the quasi-biennial oscillation (QBO). Several different combinations of planetary wave and gravity wave drag schemes are considered in the investigations, with the aim being to assess which aspects of the different schemes affect the nature of the modeled QBO. Results show that it is possible to generate a realistic-looking QBO with various combinations of drag from the two types of waves, but there are some constraints on the wave input spectra and amplitudes. For example, if the phase speeds of the gravity waves in the input spectrum are large relative to those of the equatorial planetary waves, critical level absorption of the equatorial planetary waves may occur. The resulting mean-wind oscillation, in that case, is driven almost exclusively by the gravity wave drag, with only a small contribution from the planetary waves at low levels. With an appropriate choice of wave input parameters, it is possible to obtain a QBO with a realistic period and to which both types of waves contribute. This is the regime in which the terrestrial QBO appears to reside. There may also be constraints on the initial strength of the wind shear, and these are similar to the constraints that apply when gravity wave drag is used without any planetary wave drag.In recent years, it has been observed that, in order to simulate the QBO accurately, general circulation models require parameterized gravity wave drag, in addition to the drag from resolved planetary-scale waves, and that even if the planetary wave amplitudes are incorrect, the gravity wave drag can be adjusted to compensate. This study provides a basis for knowing that such a compensation is possible.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19740029285&hterms=falling+meteors&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3Dfalling%2Bmeteors','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19740029285&hterms=falling+meteors&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3Dfalling%2Bmeteors"><span>Upper atmospheric planetary-wave and gravity-wave observations</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Justus, C. G.; Woodrum, A.</p> <p>1973-01-01</p> <p>Previously collected data on atmospheric pressure, density, temperature and winds between 25 and 200 km from sources including Meteorological Rocket Network data, ROBIN falling sphere data, grenade release and pitot tube data, meteor winds, chemical release winds, satellite data, and others were analyzed by a daily-difference method, and results on the magnitude of atmospheric perturbations interpreted as gravity waves and planetary waves are presented. Traveling planetary-wave contributions in the 25-85 km range were found to have significant height and latitudinal variation. It was found that observed gravity-wave density perturbations and wind are related to one another in the manner predicted by gravity-wave theory. It was determined that, on the average, gravity-wave energy deposition or reflection occurs at all altitudes except the 55-75 km region of the mesosphere.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014AGUFMGP51A3713A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014AGUFMGP51A3713A"><span>Small-scale field-aligned currents caused by tropical cyclones as observed by the SWARM satellites above the ionosphere</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Aoyama, T.; Iyemori, T.; Nakanishi, K.</p> <p>2014-12-01</p> <p>We present case studies of small-scale magnetic fluctuations above typhoons, hurricanes and cyclones as observed by the swarm constellation. It is reported lately that AGWs(atmospheric gravity waves) generated by meteorological phenomena in the troposphere such as typhoons and tornadoes, large earthquakes and volcanic eruptions propagate to the mesosphere and thermosphere. We observe them in various forms(e.g. airglows, ionospheric disturbances and TEC variations). We are proposing the following model. AGWs caused by atmospheric disturbances in the troposphere propagate to the ionospheric E-layer, drive dynamo action and generate field-aligned currents. The satellites observe magnetic fluctuations above the ionosphere. In this presentation, we focus on cases of tropical cyclone(hurricanes in North America, typhoons in North-West Pacific).</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/24606251','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/24606251"><span>Shear waves in inhomogeneous, compressible fluids in a gravity field.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Godin, Oleg A</p> <p>2014-03-01</p> <p>While elastic solids support compressional and shear waves, waves in ideal compressible fluids are usually thought of as compressional waves. Here, a class of acoustic-gravity waves is studied in which the dilatation is identically zero, and the pressure and density remain constant in each fluid particle. These shear waves are described by an exact analytic solution of linearized hydrodynamics equations in inhomogeneous, quiescent, inviscid, compressible fluids with piecewise continuous parameters in a uniform gravity field. It is demonstrated that the shear acoustic-gravity waves also can be supported by moving fluids as well as quiescent, viscous fluids with and without thermal conductivity. Excitation of a shear-wave normal mode by a point source and the normal mode distortion in realistic environmental models are considered. The shear acoustic-gravity waves are likely to play a significant role in coupling wave processes in the ocean and atmosphere.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19870023916&hterms=Tidal+waves&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D50%26Ntt%3DTidal%2Bwaves','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19870023916&hterms=Tidal+waves&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D50%26Ntt%3DTidal%2Bwaves"><span>On the tidal interaction between protoplanets and the primordial solar nebula. II - Self-consistent nonlinear interaction</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Lin, D. N. C.; Papaloizou, J.</p> <p>1986-01-01</p> <p>A method to analyze the full nonlinear response and physical processes associated with the tidal interaction between a binary system and a thin disk in the steady state is presented. Using this approach, density wave propagation, induced by tidal interaction, may be studied for a wide range of sound speeds and viscosities. The effect of self-gravity may also be incorporated. The results of several calculations relevant to the tidal interaction between a protoplanet and the primordial solar nebula are also presented.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20150020913','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20150020913"><span>Consideration of Dynamical Balances</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Errico, Ronald M.</p> <p>2015-01-01</p> <p>The quasi-balance of extra-tropical tropospheric dynamics is a fundamental aspect of nature. If an atmospheric analysis does not reflect such balance sufficiently well, the subsequent forecast will exhibit unrealistic behavior associated with spurious fast-propagating gravity waves. Even if these eventually damp, they can create poor background fields for a subsequent analysis or interact with moist physics to create spurious precipitation. The nature of this problem will be described along with the reasons for atmospheric balance and techniques for mitigating imbalances. Attention will be focused on fundamental issues rather than on recipes for various techniques.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012AGUFM.A31C0042M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012AGUFM.A31C0042M"><span>Absorption of inertia-gravity waves in vertically sheared rotating stratified flows</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Millet, C.; Lott, F.</p> <p>2012-12-01</p> <p>It is well established that gravity waves have a substantial role on the large-scale atmospheric circulation, particularly in the middle atmosphere. In the present work, we re-examine the reflection and transmission of gravity waves through a critical layer surrounded by two inertial levels for the case of a constant vertically sheared flow. In this configuration, the vertical structure of the disturbance can be described as quasi-geostrophic from the critical layer up to the inertial levels, at which the Doppler-shifted frequency is equal to the Coriolis parameter. Near and beyond these levels, the balanced approximations do not apply and there is a transition from the quasi-geostrophic solution to propagating gravity waves. The three-dimensional disturbance solution is obtained analytically using both an exact method, in terms of hypergeometric functions, and a WKB approximation valid for large Richardson numbers; the latter includes an exponentially small term which captures the radiation feedback in the region between the inertial levels. We first focused on the homogeneous part of the disturbance equations, under the assumption of an unbounded domain. In contrast with past studies which show that there is a finite reflection and did not analyze the transmission (Yamanaka and Tanaka, 1984), we find that the reflection coefficient is too small to be significant and that the transmission coefficient is exactly like in the much simpler non-rotating case analyzed by Booker and Bretherton (1966). Our theoretical predictions are found to be in very good agreement with those obtained by numerically integrating the complete hydrostatic-Boussinesq equations with a small Rayleigh damping. The discrepancies between our results and those in Yamanaka and Tanaka (1984) are related to the fact that the solutions are given in term of multivalued functions and the values of the reflection and transmission coefficients are exponentially small, e.g. quite difficult to cross check numerically. More specifically, we suspect that the differences come from their treatment of the analytic continuations in the matching regions (e.g. the inertial layers). Our results are useful to study the evolution of initial disturbances. As an illustration, we consider the problem of gravity waves generated by potential-vorticity anomalies, a problem that was recently studied in Lott et al. (2013) for an unbounded atmosphere. The vertical structure of the potential-vorticity anomaly is represented by a Dirac distribution localized at the critical level. The disturbance field can be deduced from the homogeneous solutions above and below the critical level, by using suitable jump conditions. It is shown how the inclusion of a boundary condition within the problem, below the potential-vorticity anomaly, changes the amplitude of the radiated gravity wave, especially when the Richardson number is not too large. This process may be related to the occurrence of radiative instability waves in sheared rotating stratified flows.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016GeoRL..43.1759L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016GeoRL..43.1759L"><span>The vertical propagation of disturbances triggered by seismic waves of the 11 March 2011 M9.0 Tohoku earthquake over Taiwan</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Liu, J. Y.; Chen, C. H.; Sun, Y. Y.; Chen, C. H.; Tsai, H. F.; Yen, H. Y.; Chum, J.; Lastovicka, J.; Yang, Q. S.; Chen, W. S.; Wen, S.</p> <p>2016-02-01</p> <p>In this paper, concurrent/colocated measurements of seismometers, infrasonic systems, magnetometers, HF-CW (high frequency-continuous wave) Doppler sounding systems, and GPS receivers are employed to detect disturbances triggered by seismic waves of the 11 March 2011 M9.0 Tohoku earthquake. No time delay between colocated infrasonic (i.e., super long acoustic) waves and seismic waves indicates that the triggered acoustic and/or gravity waves in the atmosphere (or seismo-traveling atmospheric disturbances, STADs) near the Earth's surface can be immediately activated by vertical ground motions. The circle method is used to find the origin and compute the observed horizontal traveling speed of the triggered infrasonic waves. The speed of about 3.3 km/s computed from the arrival time versus the epicentral distance suggests that the infrasonic waves (i.e., STADs) are mainly induced by the Rayleigh waves. The agreements in the travel time at various heights between the observation and theoretical calculation suggest that the STADs triggered by the vertical motion of ground surface caused by the Tohoku earthquake traveled vertically from the ground to the ionosphere with speed of the sound in the atmosphere over Taiwan.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..19.4525W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..19.4525W"><span>Complete synthetic seismograms based on a spherical self-gravitating Earth model with an atmosphere-ocean-mantle-core structure</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wang, Rongjiang; Heimann, Sebastian; Zhang, Yong; Wang, Hansheng; Dahm, Torsten</p> <p>2017-04-01</p> <p>A hybrid method is proposed to calculate complete synthetic seismograms based on a spherically symmetric and self-gravitating Earth with a multi-layered structure of atmosphere, ocean, mantle, liquid core and solid core. For large wavelengths, a numerical scheme is used to solve the geodynamic boundary-value problem without any approximation on the deformation and gravity coupling. With the decreasing wavelength, the gravity effect on the deformation becomes negligible and the analytical propagator scheme can be used. Many useful approaches are used to overcome the numerical problems that may arise in both analytical and numerical schemes. Some of these approaches have been established in the seismological community and the others are developed for the first time. Based on the stable and efficient hybrid algorithm, an all-in-one code QSSP is implemented to cover the complete spectrum of seismological interests. The performance of the code is demonstrated by various tests including the curvature effect on teleseismic body and surface waves, the appearance of multiple reflected, teleseismic core phases, the gravity effect on long period surface waves and free oscillations, the simulation of near-field displacement seismograms with the static offset, the coupling of tsunami and infrasound waves, and free oscillations of the solid Earth, the atmosphere and the ocean. QSSP is open source software that can be used as a stand-alone FORTRAN code or may be applied in combination with a Python toolbox to calculate and handle Green's function databases for efficient coding of source inversion problems.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li class="active"><span>23</span></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_23 --> <div id="page_24" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li class="active"><span>24</span></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="461"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017GeoJI.210.1739W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017GeoJI.210.1739W"><span>Complete synthetic seismograms based on a spherical self-gravitating Earth model with an atmosphere-ocean-mantle-core structure</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wang, Rongjiang; Heimann, Sebastian; Zhang, Yong; Wang, Hansheng; Dahm, Torsten</p> <p>2017-09-01</p> <p>A hybrid method is proposed to calculate complete synthetic seismograms based on a spherically symmetric and self-gravitating Earth with a multilayered structure of atmosphere, ocean, mantle, liquid core and solid core. For large wavelengths, a numerical scheme is used to solve the geodynamic boundary-value problem without any approximation on the deformation and gravity coupling. With decreasing wavelength, the gravity effect on the deformation becomes negligible and the analytical propagator scheme can be used. Many useful approaches are used to overcome the numerical problems that may arise in both analytical and numerical schemes. Some of these approaches have been established in the seismological community and the others are developed for the first time. Based on the stable and efficient hybrid algorithm, an all-in-one code QSSP is implemented to cover the complete spectrum of seismological interests. The performance of the code is demonstrated by various tests including the curvature effect on teleseismic body and surface waves, the appearance of multiple reflected, teleseismic core phases, the gravity effect on long period surface waves and free oscillations, the simulation of near-field displacement seismograms with the static offset, the coupling of tsunami and infrasound waves, and free oscillations of the solid Earth, the atmosphere and the ocean. QSSP is open source software that can be used as a stand-alone FORTRAN code or may be applied in combination with a Python toolbox to calculate and handle Green's function databases for efficient coding of source inversion problems.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20180000558&hterms=Wrf&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D70%26Ntt%3DWrf','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20180000558&hterms=Wrf&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D70%26Ntt%3DWrf"><span>The Impacts of Dry Dynamic Cores on Asymmetric Hurricane Intensification</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Guimond, Stephen R.; Reisner, Jon M.; Marras, Simone; Giraldo, Francis X.</p> <p>2016-01-01</p> <p>The fundamental pathways for tropical cyclone (TC) intensification are explored by considering axisymmetric and asymmetric impulsive thermal perturbations to balanced, TC-like vortices using the dynamic cores of three different nonlinear numerical models. Attempts at reproducing the results of previous work, which used the community WRF Model, revealed a discrepancy with the impacts of purely asymmetric thermal forcing. The current study finds that thermal asymmetries can have an important, largely positive role on the vortex intensification, whereas other studies find that asymmetric impacts are negligible. Analysis of the spectral energetics of each numerical model indicates that the vortex response to asymmetric thermal perturbations is significantly damped in WRF relative to the other models. Spectral kinetic energy budgets show that this anomalous damping is primarily due to the increased removal of kinetic energy from the vertical divergence of the vertical pressure flux, which is related to the flux of inertia-gravity wave energy. The increased kinetic energy in the other two models is shown to originate around the scales of the heating and propagate upscale with time from nonlinear effects. For very large thermal amplitudes (50 K), the anomalous removal of kinetic energy due to inertia-gravity wave activity is much smaller, resulting in good agreement between models. The results of this paper indicate that the numerical treatment of small-scale processes that project strongly onto inertia-gravity wave energy can lead to significant differences in asymmetric TC intensification. Sensitivity tests with different time integration schemes suggest that diffusion entering into the implicit solution procedure is partly responsible for the anomalous damping of energy.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/22661414-reconnection-driven-coronal-hole-jets-gravity-solar-wind','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22661414-reconnection-driven-coronal-hole-jets-gravity-solar-wind"><span>RECONNECTION-DRIVEN CORONAL-HOLE JETS WITH GRAVITY AND SOLAR WIND</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Karpen, J. T.; DeVore, C. R.; Antiochos, S. K.</p> <p></p> <p>Coronal-hole jets occur ubiquitously in the Sun's coronal holes, at EUV and X-ray bright points associated with intrusions of minority magnetic polarity. The embedded-bipole model for these jets posits that they are driven by explosive, fast reconnection between the stressed closed field of the embedded bipole and the open field of the surrounding coronal hole. Previous numerical studies in Cartesian geometry, assuming uniform ambient magnetic field and plasma while neglecting gravity and solar wind, demonstrated that the model is robust and can produce jet-like events in simple configurations. We have extended these investigations by including spherical geometry, gravity, and solarmore » wind in a nonuniform, coronal hole-like ambient atmosphere. Our simulations confirm that the jet is initiated by the onset of a kink-like instability of the internal closed field, which induces a burst of reconnection between the closed and external open field, launching a helical jet. Our new results demonstrate that the jet propagation is sustained through the outer corona, in the form of a traveling nonlinear Alfvén wave front trailed by slower-moving plasma density enhancements that are compressed and accelerated by the wave. This finding agrees well with observations of white-light coronal-hole jets, and can explain microstreams and torsional Alfvén waves detected in situ in the solar wind. We also use our numerical results to deduce scaling relationships between properties of the coronal source region and the characteristics of the resulting jet, which can be tested against observations.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2003DPS....35.4803G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2003DPS....35.4803G"><span>Wave-clouds coupling in the Jovian troposphere.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Gaulme, P.; Mosser, B.</p> <p>2003-05-01</p> <p>First studies about Jovian oscillations are due to Vorontsov et al. (1976). Attempts to observe them started in the late 1980's (Deming et al. 1989, Mosser et al. 1991). The micro-satellite Jovis and ground-based observations campaign such as SŸMPA (e.g Baglin et al. 1999) account for an accurate analysis of the cloud response to an acoustic wave. Therefore, the propagation of sound or gravity waves in the Jovian troposphere is revisited, in order to estimate their effect on the highest clouds layer. From basic thermodynamics, the troposphere should be stratified in three major ice clouds layers: water-ammonia, ammonium-hydrosulfide and ammonia ice for the highest. The presence of ammonia ice clouds has been inferred from Kuiper in 1952, and was predicted to dominate the Jovian skies. However, they had been observed spectroscopically over less than one percent of the surface. This absence of spectral proof could come from a coating of ammonia particles from other substances (Baines et al. 2002). In this work, we study the behaviour of a cloud submitted to a periodic pressure perturbation. We suppose a vertical wave propagating in a plane parallel atmosphere including an ammonia ice cloud layer. We determine the relation between the Lagrangian pressure perturbation and the variation of the fraction of solid ammonia. The linearized equations governing the evolution of the Eulerian pressure and density perturbed terms allows us to study how the propagation is altered by the clouds and how the clouds move with the wave. Finally, because a pressure perturbation modifies the fraction of solid ammonia, we estimate how much an ammonia crystal should grow or decrease and how the clouds albedo could change with the wave. Baglin et al. 1999. BAAS 31, 813. Baines et al. 2002. Icarus 159, 74. Deming et al. 1989. Icarus 21, 943. Kuiper 1952.The atmospheres of the Earth and Planets pp. 306-405. Univ. of Chicago Press, Chicago. Mosser et al. 1991. A&A 251, 356. Vorontsov et al. 1976. Icarus 27, 109.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..1916667D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..1916667D"><span>The effect of stratification and topography on high-frequency internal waves in a continental shelf sea</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Domina, Anastasiia; Palmer, Matthew; Vlasenko, Vasil; Sharples, Jonathan; Green, Mattias; Stashchuk, Nataliya</p> <p>2017-04-01</p> <p>Internal gravity waves (IWs) have been recognised as one of the main drivers of climate controlling circulation, sustaining fisheries in shelf seas and CO2-pump system. High frequency IWs are particularly important to internal mixing in the shelf seas, where they contain an enhanced fraction of the available baroclinic energy. The origin, generation mechanism, propagation and spatial distribution of these waves are unfortunately still poorly understood since they are difficult to measure and simulate, and are therefore not represented in the vast majority of ocean and climate models. In this study we aim to increase our understanding of high frequency IWs dynamics in shelf seas through a combination of observational (from moorings and ocean gliders) and modelling methods (MITgcm), and test the hypothesis that "Solitary waves are responsible for driving a large fraction of the vertical diffusivity at the shelf edge and adjacent shelf region". A new high-resolution (50m horizontal) MITgcm configuration is employed to identify the generation and propagation of IWs in a regional shelf sea and subsequently identify internal wave generation hotspots by using calculated Froude number and body force maps. We assess the likely impact of changing seasonal and climate forcing on IWs with a range of different density structures. Our model suggests that under increasing stratification, the IW field becomes more energetic at all frequencies, however the increase in energy is not evenly distributed. While energy in the dominant low frequency IWs increase by 20-40%, energy associated with high frequency waves increases by as much as 90%. These model results are compared to varying stratification scenarios from observations made during 2012 and 2013 to interpret the impact on continental shelf sea IW generation and propagation. We use the results from a turbulence enabled ocean glider to assess the impact that this varying wavefield has on internal mixing, and discuss the implications this might have on future climate scenarios.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014EGUGA..16.9724K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014EGUGA..16.9724K"><span>Tropopause inversion layer formation and stratosphere-troposphere exchange during idealized baroclinic wave life cycle experiments</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kunkel, Daniel; Wirth, Volkmar; Hoor, Peter</p> <p>2014-05-01</p> <p>Recent simulations of baroclinic wave life cycles revealed that the tropopause inversion layer (TIL), commonly situated just above the thermal tropopause, is evident in such experiments and emerges after the onset of wave breaking. Furthermore, bidirectional stratosphere-troposphere exchange (STE) occurs during this non-linear stage of the wave evolution and might be affected by the appearance of the TIL. We study the evolution and the impact of the TIL on STE by using the COSMO model in an idealized mid-latitude channel geometry configuration without physical sub-grid scale parameterizations. We initialize the model with a geostrophically balanced upper level jet stream which is disturbed by an anomaly of potential vorticity to trigger the evolution of the baroclinic waves. Moreover, we use passive tracers of tropospheric or stratospheric origin to identify regions of potential STE. Our results show that the static stability is low in regions of stratosphere to troposphere exchange (STT), while it is high in regions dominated by exchange in the opposite direction (TST). Furthermore, inertia gravity waves, originating from regions with strong ageostrophic wind components, modulate the static stability as well as the vertical shear of the horizontal wind near and above the tropopause. While propagating away from their source, the inertia gravity waves lead to large values of the squared Brunt Vaisala frequency in regions which are simultaneously characterized by low bulk Richardson numbers. Thus, these regions are statically stable and turbulent at the same time and might be crucial for TST, thereby explaining tropospheric mixing ratio changes of e.g. CO across the tropopause which commonly change from tropospheric to stratospheric values a few hundred meters above the local thermal tropopause.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20040031773','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20040031773"><span>Modeling Study of Mesospheric Planetary Waves: Genesis and Characteristics</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Mayr, H. G.; Mengel, J. G.; Talaat, E. L.; Porter, H. S.; Chan, K. L.</p> <p>2003-01-01</p> <p>In preparation for the measurements from the TIMED mission and coordinated ground based observations, we discuss results for the planetary waves (PWs) that appear in our Numerical Spectral Model (NSM). The present model accounts for a tropospheric heat source in the zonal mean (m = 0), which reproduces qualitatively the observed zonal jets near the tropopause and the accompanying reversal in the latitudinal temperature variations. We discuss the PWs that are solely generated internally, i.e., without the explicit excitation sources related to tropospheric convection or topography. Our analysis shows that PWs are not produced when the zonally averaged heat source into the atmosphere is artificially suppressed, and that the PWs generally are significantly weaker when the tropospheric source is not applied. Instabilities associated with the zonal mean temperature, pressure and wind fields, which still need to be explored, are exciting PWs that have amplitudes in the mesosphere comparable to those observed. Three classes of PWs are generated in the NSM. (1) Rossby waves, (2) Rossby gravity waves propagating westward at low latitudes, and (3) Eastward propagating equatorial Kelvin waves. A survey of the PWs reveals that the largest wind amplitudes tend to occur below 80 km in the winter hemisphere, but above that altitude they occur in the summer hemisphere where the amplitudes can approach 50 meters per second. It is shown that the non-migrating tides in the mesosphere, generated by non-linear coupling between migrating tides and PWs, are significantly larger for the model with the tropospheric heat source.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20080032365&hterms=gravity+model&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D70%26Ntt%3Dgravity%2Bmodel','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20080032365&hterms=gravity+model&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D70%26Ntt%3Dgravity%2Bmodel"><span>A Study of Mesoscale Gravity Waves over the North Atlantic with Satellite Observations and a Mesoscale Model</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Wu, Dong L.; Zhang, Fuqing</p> <p>2004-01-01</p> <p>Satellite microwave data are used to study gravity wave properties and variabilities over the northeastern United States and the North Atlantic in the December-January periods. The gravity waves in this region, found in many winters, can reach the stratopause with growing amplitude. The Advanced Microwave Sounding Unit-A (AMSU-A) observations show that the wave occurrences are correlated well with the intensity and location of the tropospheric baroclinic jet front systems. To further investigate the cause(s) and properties of the North Atlantic gravity waves, we focus on a series of wave events during 19-21 January 2003 and compare AMSU-A observations to simulations from a mesoscale model (MM5). The simulated gravity waves compare qualitatively well with the satellite observations in terms of wave structures, timing, and overall morphology. Excitation mechanisms of these large-amplitude waves in the troposphere are complex and subject to further investigations.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20110007015','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20110007015"><span>Middle Atmosphere Dynamics with Gravity Wave Interactions in the Numerical Spectral Model: Tides and Planetary Waves</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Mayr, Hans G.; Mengel, J. G.; Chan, K. L.; Huang, F. T.</p> <p>2010-01-01</p> <p>As Lindzen (1981) had shown, small-scale gravity waves (GW) produce the observed reversals of the zonal-mean circulation and temperature variations in the upper mesosphere. The waves also play a major role in modulating and amplifying the diurnal tides (DT) (e.g., Waltersheid, 1981; Fritts and Vincent, 1987; Fritts, 1995a). We summarize here the modeling studies with the mechanistic numerical spectral model (NSM) with Doppler spread parameterization for GW (Hines, 1997a, b), which describes in the middle atmosphere: (a) migrating and non-migrating DT, (b) planetary waves (PW), and (c) global-scale inertio gravity waves. Numerical experiments are discussed that illuminate the influence of GW filtering and nonlinear interactions between DT, PW, and zonal mean variations. Keywords: Theoretical modeling, Middle atmosphere dynamics, Gravity wave interactions, Migrating and non-migrating tides, Planetary waves, Global-scale inertio gravity waves.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1127920','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/1127920"><span>Scalar Contribution to the Graviton Self-Energy During Inflation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Park, Sohyun</p> <p>2012-01-01</p> <p>We use dimensional regularization to evaluate the one loop contribution to the graviton self-energy from a massless, minimally coupled scalar on a locally de Sitter background. For noncoincident points our result agrees with the stress tensor correlators obtained recently by Perez-Nadal, Roura and Verdaguer. We absorb the ultraviolet divergences using the R 2 and C 2 counterterms first derived by ’t Hooft and Veltman, and we take the D = 4 limit of the finite remainder. The renormalized result is expressed as the sum of two transverse, 4th order differential operators acting on nonlocal, de Sitter invariant structure functions. Inmore » this form it can be used to quantum-correct the linearized Einstein equations so that one can study how the inflationary production of infrared scalars affects the propagation of dynamical gravitons and the force of gravity. We have seen that they have no effect on the propagation of dynamical gravitons. Our computation motivates a conjecture for the first correction to the vacuum state wave functional of gravitons. We comment as well on performing the same analysis for the more interesting contribution from inflationary gravitons, and on inferring one loop corrections to the force of gravity.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/17673413','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/17673413"><span>Central nervous tissue: an excitable medium. a study using the retinal spreading depression as a tool.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Hanke, Wolfgang; de Lima, Vera Maura Fernandes</p> <p>2008-02-13</p> <p>According to its physicochemical properties, neuronal tissue, including the central nervous system (CNS) and thus the human brain, is an excitable medium, which consequently exhibits, among other things, self-organization, pattern formation and propagating waves. Furthermore, such systems can be controlled by weak external forces. The spreading depression (SD), a propagating wave of excitation-depression, is such an event, which is additionally linked to a variety of medically important situations, classical migraine being just one example. Especially in retinal tissue, a true part of the CNS, the SD can be observed very easily with the naked eye and by video imaging techniques due to its big intrinsic optical signal. We have investigated the retinal SD and its control by external physical parameters such as gravity and temperature. Beyond this, especially due to its medical relevance, the control of CNS excitability by pharmacological tools is of specific interest, and we have studied this question in detail using the retinal SD as an experimental tool to collect information about the control of CNS tissue excitability.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFMNH12A..09B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFMNH12A..09B"><span>Simulations and analysis of asteroid-generated tsunamis using the shallow water equations</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Berger, M. J.; LeVeque, R. J.; Weiss, R.</p> <p>2016-12-01</p> <p>We discuss tsunami propagation for asteroid-generated air bursts and water impacts. We present simulations for a range of conditions using the GeoClaw simulation software. Examples include meteors that span 5 to 250 MT of kinetic energy, and use bathymetry from the U.S. coastline. We also study radially symmetric one-dimensional equations to better explore the nature and decay rate of waves generated by air burst pressure disturbances traveling at the speed of sound in air, which is much greater than the gravity wave speed of the tsunami generated. One-dimensional simulations along a transect of bathymetry are also used to explore the resolution needed for the full two-dimensional simulations, which are much more expensive even with the use of adaptive mesh refinement due to the short wave lengths of these tsunamis. For this same reason, shallow water equations may be inadequate and we also discuss dispersive effects.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28782729','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28782729"><span>Glacial seismology.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Aster, R C; Winberry, J P</p> <p>2017-12-01</p> <p>Seismic source and wave propagation studies contribute to understanding structure, transport, fracture mechanics, mass balance, and other processes within glaciers and surrounding environments. Glaciogenic seismic waves readily couple with the bulk Earth, and can be recorded by seismographs deployed at local to global ranges. Although the fracturing, ablating, melting, and/or highly irregular environment of active glaciers can be highly unstable and hazardous, informative seismic measurements can commonly be made at stable proximal ice or rock sites. Seismology also contributes more broadly to emerging studies of elastic and gravity wave coupling between the atmosphere, oceans, solid Earth, and cryosphere, and recent scientific and technical advances have produced glaciological/seismological collaborations across a broad range of scales and processes. This importantly includes improved insight into the responses of cryospheric systems to changing climate and other environmental conditions. Here, we review relevant fundamental physics and glaciology, and provide a broad review of the current state of glacial seismology and its rapidly evolving future directions.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017RPPh...80l6801A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017RPPh...80l6801A"><span>Glacial seismology</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Aster, R. C.; Winberry, J. P.</p> <p>2017-12-01</p> <p>Seismic source and wave propagation studies contribute to understanding structure, transport, fracture mechanics, mass balance, and other processes within glaciers and surrounding environments. Glaciogenic seismic waves readily couple with the bulk Earth, and can be recorded by seismographs deployed at local to global ranges. Although the fracturing, ablating, melting, and/or highly irregular environment of active glaciers can be highly unstable and hazardous, informative seismic measurements can commonly be made at stable proximal ice or rock sites. Seismology also contributes more broadly to emerging studies of elastic and gravity wave coupling between the atmosphere, oceans, solid Earth, and cryosphere, and recent scientific and technical advances have produced glaciological/seismological collaborations across a broad range of scales and processes. This importantly includes improved insight into the responses of cryospheric systems to changing climate and other environmental conditions. Here, we review relevant fundamental physics and glaciology, and provide a broad review of the current state of glacial seismology and its rapidly evolving future directions.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013APS..DPPUP8092R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013APS..DPPUP8092R"><span>A Novel Experimental Setup to Investigate Magnetized Dusty Plasmas</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Romero-Talamas, C. A.; Larocque, P.; Alvarez, J.; Sardin, J.</p> <p>2013-10-01</p> <p>Progress on the design and construction of a novel experimental setup to investigate dusty plasmas at the University of Maryland, Baltimore County (UMBC) is presented. The setup includes separation adjustability of discharge electrodes and their orientation with respect to gravity without breaking vacuum, and a pair of water-cooled coils to produce magnetic fields with strengths of up to several Tesla. The coils' orientation is also designed to be adjustable with respect to gravity. A pulse-forming network to power the coils with flattop times of several seconds is under design. The setup is mounted inside a large glass bell jar to provide wide optical access to the dusty plasmas, and to minimize interference of chamber walls and mounts with imposed electric or magnetic fields. Planned experiments include crystallization and wave propagation under strong magnetic fields.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMSA33A2583S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMSA33A2583S"><span>Atmospheric gravity waves with small vertical-to-horizotal wavelength ratios</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Song, I. S.; Jee, G.; Kim, Y. H.; Chun, H. Y.</p> <p>2017-12-01</p> <p>Gravity wave modes with small vertical-to-horizontal wavelength ratios of an order of 10-3 are investigated through the systematic scale analysis of governing equations for gravity wave perturbations embedded in the quasi-geostrophic large-scale flow. These waves can be categorized as acoustic gravity wave modes because their total energy is given by the sum of kinetic, potential, and elastic parts. It is found that these waves can be forced by density fluctuations multiplied by the horizontal gradients of the large-scale pressure (geopotential) fields. These theoretical findings are evaluated using the results of a high-resolution global model (Specified Chemistry WACCM with horizontal resolution of 25 km and vertical resolution of 600 m) by computing the density-related gravity-wave forcing terms from the modeling results.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016EGUGA..18.1463F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016EGUGA..18.1463F"><span>Atmosphere-Ionosphere Coupling due to Atmospheric Tides (Julius Bartels Medal Lecture)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Forbes, Jeffrey M.</p> <p>2016-04-01</p> <p>Within the last decade, a new realization has arrived on the scene of ionosphere-thermosphere (IT) science: terrestrial weather significantly influences space weather. The aspect of space weather referred to here consists of electron density variability that translates to uncertainties in navigation and communications systems, and neutral density variability that translates to uncertainties in orbital and reentry predictions. In the present context "terrestrial weather" primarily refers to the meteorological conditions that determine the spatial-temporal distribution of tropospheric water vapor and latent heating associated with tropical convection, and the middle atmosphere disturbances associated with sudden stratosphere warmings. The net effect of these processes is a spatially- and temporally-evolving spectrum of waves (gravity waves, tides, planetary waves, Kelvin waves) that grows in amplitude with height and enters the IT system near ~100 km. Some members of the wave spectrum penetrate all the way to the base of the exosphere (ca. 500 km). Along the way, nonlinear interactions between different wave components occur, modifying the interacting waves and giving rise to secondary waves. Finally, the IT wind perturbations carried by the waves can redistribute ionospheric plasma, either through the electric fields generated via the dynamo mechanism between 100 and 150 km, or directly by moving plasma along magnetic field lines at higher levels. Additionally, the signatures of wave-driven dynamo currents are reflected in magnetic perturbations observed at the ground. This is how terrestrial atmospheric variability, through the spectrum of vertically- propagating waves that it produces, can effectively drive IT space weather. The primary objective of this Julius Bartels Lecture is to provide an overview of the global observational evidence for the IT consequences of these upward-propagating waves. In honor of Julius Bartels, who performed much research (including his habilitation thesis) on atmospheric and geomagnetic tides, this talk will emphasize the tidal part of the wave spectrum and its effects on the upper atmosphere.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29303304','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29303304"><span>Dark Energy After GW170817: Dead Ends and the Road Ahead.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Ezquiaga, Jose María; Zumalacárregui, Miguel</p> <p>2017-12-22</p> <p>Multimessenger gravitational-wave (GW) astronomy has commenced with the detection of the binary neutron star merger GW170817 and its associated electromagnetic counterparts. The almost coincident observation of both signals places an exquisite bound on the GW speed |c_{g}/c-1|≤5×10^{-16}. We use this result to probe the nature of dark energy (DE), showing that a large class of scalar-tensor theories and DE models are highly disfavored. As an example we consider the covariant Galileon, a cosmologically viable, well motivated gravity theory which predicts a variable GW speed at low redshift. Our results eliminate any late-universe application of these models, as well as their Horndeski and most of their beyond Horndeski generalizations. Three alternatives (and their combinations) emerge as the only possible scalar-tensor DE models: (1) restricting Horndeski's action to its simplest terms, (2) applying a conformal transformation which preserves the causal structure, and (3) compensating the different terms that modify the GW speed (to be robust, the compensation has to be independent on the background on which GWs propagate). Our conclusions extend to any other gravity theory predicting varying c_{g} such as Einstein-Aether, Hořava gravity, Generalized Proca, tensor-vector-scalar gravity (TEVES), and other MOND-like gravities.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017PhRvL.119y1304E','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017PhRvL.119y1304E"><span>Dark Energy After GW170817: Dead Ends and the Road Ahead</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ezquiaga, Jose María; Zumalacárregui, Miguel</p> <p>2017-12-01</p> <p>Multimessenger gravitational-wave (GW) astronomy has commenced with the detection of the binary neutron star merger GW170817 and its associated electromagnetic counterparts. The almost coincident observation of both signals places an exquisite bound on the GW speed |cg/c -1 |≤5 ×10-16 . We use this result to probe the nature of dark energy (DE), showing that a large class of scalar-tensor theories and DE models are highly disfavored. As an example we consider the covariant Galileon, a cosmologically viable, well motivated gravity theory which predicts a variable GW speed at low redshift. Our results eliminate any late-universe application of these models, as well as their Horndeski and most of their beyond Horndeski generalizations. Three alternatives (and their combinations) emerge as the only possible scalar-tensor DE models: (1) restricting Horndeski's action to its simplest terms, (2) applying a conformal transformation which preserves the causal structure, and (3) compensating the different terms that modify the GW speed (to be robust, the compensation has to be independent on the background on which GWs propagate). Our conclusions extend to any other gravity theory predicting varying cg such as Einstein-Aether, Hořava gravity, Generalized Proca, tensor-vector-scalar gravity (TEVES), and other MOND-like gravities.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1398910','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/1398910"><span>Scalar gravitational waves in the effective theory of gravity</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Mottola, Emil</p> <p></p> <p>As a low energy effective field theory, classical General Relativity receives an infrared relevant modification from the conformal trace anomaly of the energy-momentum tensor of massless, or nearly massless, quantum fields. The local form of the effective action associated with the trace anomaly is expressed in terms of a dynamical scalar field that couples to the conformal factor of the spacetime metric, allowing it to propagate over macroscopic distances. Linearized around flat spacetime, this semi-classical EFT admits scalar gravitational wave solutions in addition to the transversely polarized tensor waves of the classical Einstein theory. The amplitude of the scalar wavemore » modes, as well as their energy and energy flux which are positive and contain a monopole moment, are computed. As a result, astrophysical sources for scalar gravitational waves are considered, with the excited gluonic condensates in the interiors of neutron stars in merger events with other compact objects likely to provide the strongest burst signals.« less</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li class="active"><span>24</span></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_24 --> <div id="page_25" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li class="active"><span>25</span></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="481"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017JCAP...10..029B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017JCAP...10..029B"><span>On gravitational waves in Born-Infeld inspired non-singular cosmologies</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Beltrán Jiménez, Jose; Heisenberg, Lavinia; Olmo, Gonzalo J.; Rubiera-Garcia, Diego</p> <p>2017-10-01</p> <p>We study the evolution of gravitational waves for non-singular cosmological solutions within the framework of Born-Infeld inspired gravity theories, with special emphasis on the Eddington-inspired Born-Infeld theory. We review the existence of two types of non-singular cosmologies, namely bouncing and asymptotically Minkowski solutions, from a perspective that makes their features more apparent. We study in detail the propagation of gravitational waves near these non-singular solutions and carefully discuss the origin and severity of the instabilities and strong coupling problems that appear. We also investigate the role of the adiabatic sound speed of the matter sector in the regularisation of the gravitational waves evolution. We extend our analysis to more general Born-Infeld inspired theories where analogous solutions are found. As a general conclusion, we obtain that the bouncing solutions are generally more prone to instabilities, while the asymptotically Minkowski solutions can be rendered stable, making them appealing models for the early universe.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/pages/biblio/1398910-scalar-gravitational-waves-effective-theory-gravity','SCIGOV-DOEP'); return false;" href="https://www.osti.gov/pages/biblio/1398910-scalar-gravitational-waves-effective-theory-gravity"><span>Scalar gravitational waves in the effective theory of gravity</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/pages">DOE PAGES</a></p> <p>Mottola, Emil</p> <p>2017-07-10</p> <p>As a low energy effective field theory, classical General Relativity receives an infrared relevant modification from the conformal trace anomaly of the energy-momentum tensor of massless, or nearly massless, quantum fields. The local form of the effective action associated with the trace anomaly is expressed in terms of a dynamical scalar field that couples to the conformal factor of the spacetime metric, allowing it to propagate over macroscopic distances. Linearized around flat spacetime, this semi-classical EFT admits scalar gravitational wave solutions in addition to the transversely polarized tensor waves of the classical Einstein theory. The amplitude of the scalar wavemore » modes, as well as their energy and energy flux which are positive and contain a monopole moment, are computed. As a result, astrophysical sources for scalar gravitational waves are considered, with the excited gluonic condensates in the interiors of neutron stars in merger events with other compact objects likely to provide the strongest burst signals.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/22667639-gravitational-waves-born-infeld-inspired-non-singular-cosmologies','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22667639-gravitational-waves-born-infeld-inspired-non-singular-cosmologies"><span>On gravitational waves in Born-Infeld inspired non-singular cosmologies</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Jiménez, Jose Beltrán; Heisenberg, Lavinia; Olmo, Gonzalo J.</p> <p></p> <p>We study the evolution of gravitational waves for non-singular cosmological solutions within the framework of Born-Infeld inspired gravity theories, with special emphasis on the Eddington-inspired Born-Infeld theory. We review the existence of two types of non-singular cosmologies, namely bouncing and asymptotically Minkowski solutions, from a perspective that makes their features more apparent. We study in detail the propagation of gravitational waves near these non-singular solutions and carefully discuss the origin and severity of the instabilities and strong coupling problems that appear. We also investigate the role of the adiabatic sound speed of the matter sector in the regularisation of themore » gravitational waves evolution. We extend our analysis to more general Born-Infeld inspired theories where analogous solutions are found. As a general conclusion, we obtain that the bouncing solutions are generally more prone to instabilities, while the asymptotically Minkowski solutions can be rendered stable, making them appealing models for the early universe.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016OcDyn..66..539W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016OcDyn..66..539W"><span>Can a minimalist model of wind forced baroclinic Rossby waves produce reasonable results?</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Watanabe, Wandrey B.; Polito, Paulo S.; da Silveira, Ilson C. A.</p> <p>2016-04-01</p> <p>The linear theory predicts that Rossby waves are the large scale mechanism of adjustment to perturbations of the geophysical fluid. Satellite measurements of sea level anomaly (SLA) provided sturdy evidence of the existence of these waves. Recent studies suggest that the variability in the altimeter records is mostly due to mesoscale nonlinear eddies and challenges the original interpretation of westward propagating features as Rossby waves. The objective of this work is to test whether a classic linear dynamic model is a reasonable explanation for the observed SLA. A linear-reduced gravity non-dispersive Rossby wave model is used to estimate the SLA forced by direct and remote wind stress. Correlations between model results and observations are up to 0.88. The best agreement is in the tropical region of all ocean basins. These correlations decrease towards insignificance in mid-latitudes. The relative contributions of eastern boundary (remote) forcing and local wind forcing in the generation of Rossby waves are also estimated and suggest that the main wave forming mechanism is the remote forcing. Results suggest that linear long baroclinic Rossby wave dynamics explain a significant part of the SLA annual variability at least in the tropical oceans.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20010111087','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20010111087"><span>Numerical Study of Buoyancy and Different Diffusion Effects on the Structure and Dynamics of Triple Flames</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Chen, Jyh-Yuan; Echekki, Tarek</p> <p>2001-01-01</p> <p>Numerical simulations of 2-D triple flames under gravity force have been implemented to identify the effects of gravity on triple flame structure and propagation properties and to understand the mechanisms of instabilities resulting from both heat release and buoyancy effects. A wide range of gravity conditions, heat release, and mixing widths for a scalar mixing layer are computed for downward-propagating (in the same direction with the gravity vector) and upward-propagating (in the opposite direction of the gravity vector) triple flames. Results of numerical simulations show that gravity strongly affects the triple flame speed through its contribution to the overall flow field. A simple analytical model for the triple flame speed, which accounts for both buoyancy and heat release, is developed. Comparisons of the proposed model with the numerical results for a wide range of gravity, heat release and mixing width conditions, yield very good agreement. The analysis shows that under neutral diffusion, downward propagation reduces the triple flame speed, while upward propagation enhances it. For the former condition, a critical Froude number may be evaluated, which corresponds to a vanishing triple flame speed. Downward-propagating triple flames at relatively strong gravity effects have exhibited instabilities. These instabilities are generated without any artificial forcing of the flow. Instead disturbances are initiated by minute round-off errors in the numerical simulations, and subsequently amplified by instabilities. A linear stability analysis on mean profiles of stable triple flame configurations have been performed to identify the most amplified frequency in spatially developed flows. The eigenfunction equations obtained from the linearized disturbance equations are solved using the shooting method. The linear stability analysis yields reasonably good agreements with the observed frequencies of the unstable triple flames. The frequencies and amplitudes of disturbances increase with the magnitude of the gravity vector. Moreover, disturbances appear to be most amplified just downstream of the premixed branches. The effects of mixing width and differential diffusion are investigated and their roles on the flame stability are studied.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/22667446-buoyancy-driven-magnetohydrodynamic-waves','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22667446-buoyancy-driven-magnetohydrodynamic-waves"><span>BUOYANCY-DRIVEN MAGNETOHYDRODYNAMIC WAVES</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Hague, A.; Erdélyi, R.</p> <p>2016-09-10</p> <p>Turbulent motions close to the visible solar surface may generate low-frequency internal gravity waves (IGWs) that propagate through the lower solar atmosphere. Magnetic activity is ubiquitous throughout the solar atmosphere, so it is expected that the behavior of IGWs is to be affected. In this article we investigate the role of an equilibrium magnetic field on propagating and standing buoyancy oscillations in a gravitationally stratified medium. We assume that this background magnetic field is parallel to the direction of gravitational stratification. It is known that when the equilibrium magnetic field is weak and the background is isothermal, the frequencies ofmore » standing IGWs are sensitive to the presence of magnetism. Here, we generalize this result to the case of a slowly varying temperature. To do this, we make use of the Boussinesq approximation. A comparison between the hydrodynamic and magnetohydrodynamic cases allows us to deduce the effects due to a magnetic field. It is shown that the frequency of IGWs may depart significantly from the Brunt–Väisälä frequency, even for a weak magnetic field. The mathematical techniques applied here give a clearer picture of the wave mode identification, which has previously been misinterpreted. An observational test is urged to validate the theoretical findings.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018GeoRL..45.1692H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018GeoRL..45.1692H"><span>Satellite Observations of Stratospheric Gravity Waves Associated With the Intensification of Tropical Cyclones</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hoffmann, Lars; Wu, Xue; Alexander, M. Joan</p> <p>2018-02-01</p> <p>Forecasting the intensity of tropical cyclones is a challenging problem. Rapid intensification is often preceded by the formation of "hot towers" near the eyewall. Driven by strong release of latent heat, hot towers are high-reaching tropical cumulonimbus clouds that penetrate the tropopause. Hot towers are a potentially important source of stratospheric gravity waves. Using 13.5 years (2002-2016) of Atmospheric Infrared Sounder observations of stratospheric gravity waves and tropical cyclone data from the International Best Track Archive for Climate Stewardship, we found empirical evidence that stratospheric gravity wave activity is associated with the intensification of tropical cyclones. The Atmospheric Infrared Sounder and International Best Track Archive for Climate Stewardship data showed that strong gravity wave events occurred about twice as often for tropical cyclone intensification compared to storm weakening. Observations of stratospheric gravity waves, which are not affected by obscuring tropospheric clouds, may become an important future indicator of storm intensification.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27610833','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27610833"><span>Universal Decoherence under Gravity: A Perspective through the Equivalence Principle.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Pang, Belinda H; Chen, Yanbei; Khalili, Farid Ya</p> <p>2016-08-26</p> <p>Pikovski et al. [Nat. Phys. 11, 668 (2015)] show that a composite particle prepared in a pure initial quantum state and propagated in a uniform gravitational field undergoes a decoherence process at a rate determined by the gravitational acceleration. By assuming Einstein's equivalence principle to be valid, we analyze a physical realization of the (1+1)D thought experiment of Pikovski et al. to demonstrate that the dephasing between the different internal states arises not from gravity but rather from differences in their rest mass, and the mass dependence of the de Broglie wave's dispersion relation. We provide an alternative view to the situation considered by Pikovski et al., where we propose that gravity plays a kinematic role by providing a relative velocity to the detector frame with respect to the particle; visibility can be easily recovered by giving the screen an appropriate uniform velocity. We then apply this insight to their thought experiment in (1+1)D to draw a direct correspondence, and obtain the same mathematical result for dephasing. We finally propose that dephasing due to gravity may in fact take place for certain modifications to the gravitational potential where the equivalence principle is violated.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.P23D2766H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.P23D2766H"><span>Thermal infrared sounding observations of lower atmospheric variances at Mars and their implications for gravity wave activity: a preliminary examination</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Heavens, N. G.</p> <p>2017-12-01</p> <p>It has been recognized for over two decades that the mesoscale statistical variance observed by Earth-observing satellites at temperature-sensitive frequencies above the instrumental noise floor is a measure of gravity wave activity. These types of observation have been made by a variety of satellite instruments have been an important validation tool for gravity wave parameterizations in global and mesoscale models. At Mars, the importance of topographic and non-topographic sources of gravity waves for the general circulation is now widely recognized and the target of recent modeling efforts. However, despite several ingenious studies, gravity wave activity near hypothetical lower atmospheric sources has been poorly and unsystematically characterized, partly because of the difficulty of separating the gravity wave activity from baroclinic wave activity and the thermal tides. Here will be presented a preliminary analysis of calibrated radiance variance at 15.4 microns (635-665 cm-1) from nadir, off-nadir, and limb observations by the Mars Climate Sounder on board Mars Reconnaissance Orbiter. The overarching methodology follows Wu and Waters (1996, 1997). Nadir, off-nadir, and lowest detector limb observations should sample variability with vertical weighting functions centered high in the lower atmosphere (20-30 km altitude) and full width half maximum (FWHM) 20 km but be sensitive to gravity waves with different horizontal wavelengths and slightly different vertical wavelengths. This work is supported by NASA's Mars Data Analysis Program (NNX14AM32G). References Wu, D.L. and J.W. Waters, 1996, Satellite observations of atmospheric variances: A possible indication of gravity waves, GRL, 23, 3631-3634. Wu D.L. and J.W. Waters, 1997, Observations of Gravity Waves with the UARS Microwave Limb Sounder. In: Hamilton K. (eds) Gravity Wave Processes. NATO ASI Series (Series I: Environmental Change), vol 50. Springer, Berlin, Heidelberg.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018JGRA..123.2168L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018JGRA..123.2168L"><span>First OH Airglow Observation of Mesospheric Gravity Waves Over European Russia Region</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Li, Qinzeng; Yusupov, Kamil; Akchurin, Adel; Yuan, Wei; Liu, Xiao; Xu, Jiyao</p> <p>2018-03-01</p> <p>For the first time, we perform a study of mesospheric gravity waves (GWs) for four different seasons of 1 year in the latitudinal band from 45°N to 75°N using an OH all-sky airglow imager over Kazan (55.8°N, 49.2°E), Russia, during the period of August 2015 to July 2016. Our observational study fills a huge airglow imaging observation gap in Europe and Russia region. In total, 125 GW events and 28 ripple events were determined by OH airglow images in 98 clear nights. The observed GWs showed a strong preference of propagation toward northeast in all seasons, which was significantly different from airglow imager observations at other latitudes that the propagation directions were seasonal dependent. The middle atmosphere wind field is used to explain the lack of low phase speed GWs since these GWs were falling into the blocking region due to the filtering effects. Deep tropospheric convections derived from the European Centre for Medium-Range Weather Forecasts reanalysis data are determined near Caucasus Mountains region, which suggests that the convections are the dominant source of the GWs in spring, summer, and autumn seasons. This finding extends our knowledge that convection might also be an important source of GWs in the higher latitudes. In winter the generation mechanism of the GWs are considered to be jet stream systems. In addition, the occurrence frequency of ripple is much lower than other stations. This study provides some constraints on the range of GW parameters in GW parameterization in general circulation models in Europe and Russia region.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/121739-modeling-effects-uv-variability-qbo-troposphere-stratosphere-system-part-middle-atmosphere','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/121739-modeling-effects-uv-variability-qbo-troposphere-stratosphere-system-part-middle-atmosphere"><span>Modeling the effects of UV variability and the QBO on the troposphere-stratosphere system. Part I: The middle atmosphere</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Balachandran, N.K.; Rind, D.</p> <p>1995-08-01</p> <p>Results of experiments with a GCM involving changes in UV input ({plus_minus}25%, {plus_minus}10%, {plus_minus}5% at wavelengths below 0.3 {mu}m) and simulated equatorial QBO are presented, with emphasis on the middle atmosphere response. The UV forcing employed is larger than observed during the last solar cycle and does not vary with wavelength, hence the relationship of these results to those from actual solar UV forcing should be treated with caution. The QBO alters the location of the zero wind line and the horizontal shear of the zonal wind in the low to middle stratosphere, while the UV change alters the magnitudemore » of the polar jet and the vertical shear of the zonal wind. Both mechanisms thus affect planetary wave propagation. The east phase of the QBO leads to tropical cooling and high-latitude warming in the lower stratosphere, with opposite effects in the upper stratosphere. This quadrupole pattern is also seen in the observations. The high-latitude responses are due to altered planetary wave effects, while the model`s tropical response in the upper stratosphere is due to gravity wave drag. Increased UV forcing warms tropical latitudes in the middle atmosphere, resulting in stronger extratropical west winds, an effect which peaks in the upper stratosphere/lower mesosphere with the more extreme UV forcing but at lower altitudes and smaller wind variations with the more realistic forcing. The increased vertical gradient of the zonal wind leads to increased vertical propagation of planetary waves, altering energy convergences and temperatures. The exact altitudes affected depend upon the UV forcing applied. Results with combined QBO and UV forcing show that in the Northern Hemisphere, polar warming for the east QBO is stronger when the UV input is reduced by 25% and 5% as increased wave propagation to high latitudes (east QBO effect) is prevented from then propagating vertically (reduced UV effect). 30 refs., 14 figs., 6 tabs.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/23277600','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/23277600"><span>A study of infrasonic anisotropy and multipathing in the atmosphere using seismic networks.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Hedlin, Michael A H; Walker, Kristoffer T</p> <p>2013-02-13</p> <p>We discuss the use of reverse time migration (RTM) with dense seismic networks for the detection and location of sources of atmospheric infrasound. Seismometers measure the response of the Earth's surface to infrasound through acoustic-to-seismic coupling. RTM has recently been applied to data from the USArray network to create a catalogue of infrasonic sources in the western US. Specifically, several hundred sources were detected in 2007-2008, many of which were not observed by regional infrasonic arrays. The influence of the east-west stratospheric zonal winds is clearly seen in the seismic data with most detections made downwind of the source. We study this large-scale anisotropy of infrasonic propagation, using a winter and summer source in Idaho. The bandpass-filtered (1-5 Hz) seismic waveforms reveal in detail the two-dimensional spread of the infrasonic wavefield across the Earth's surface within approximately 800 km of the source. Using three-dimensional ray tracing, we find that the stratospheric winds above 30 km altitude in the ground-to-space (G2S) atmospheric model explain well the observed anisotropy pattern. We also analyse infrasound from well-constrained explosions in northern Utah with a denser IRIS PASSCAL seismic network. The standard G2S model correctly predicts the anisotropy of the stratospheric duct, but it incorrectly predicts the dimensions of the shadow zones in the downwind direction. We show that the inclusion of finer-scale structure owing to internal gravity waves infills the shadow zones and predicts the observed time durations of the signals. From the success of this method in predicting the observations, we propose that multipathing owing to fine scale, layer-cake structure is the primary mechanism governing propagation for frequencies above approximately 1 Hz and infer that stochastic approaches incorporating internal gravity waves are a useful improvement to the standard G2S model for infrasonic propagation modelling.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014AGUFMSA31B4097M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014AGUFMSA31B4097M"><span>Comparison with the horizontal phase velocity distribution of gravity waves observed airglow imaging data of different sampling periods</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Matsuda, T. S.; Nakamura, T.; Ejiri, M. K.; Tsutsumi, M.; Shiokawa, K.</p> <p>2014-12-01</p> <p>Atmospheric gravity waves (AGWs), which are generated in the lower atmosphere, transport significant amount of energy and momentum into the mesosphere and lower thermosphere. Among many parameters to characterize AGWs, horizontal phase velocity is very important to discuss the vertical propagation. Airglow imaging is a useful technique for investigating the horizontal structures of AGWs around mesopause. There are many airglow imagers operated all over the world, and a large amount of data which could improve our understanding of AGWs propagation direction and source distribution in the MLT region. We have developed a new statistical analysis method for obtaining the power spectrum in the horizontal phase velocity domain (phase velocity spectrum), from airglow image data, so as to deal with huge amounts of imaging data obtained on different years and at various observation sites, without bias caused by different event extraction criteria for the observer. From a series of images projected onto the geographic coordinates, 3-D Fourier transform is applied and 3-D power spectrum in horizontal wavenumber and frequency domain is obtained. Then, it is converted into phase velocity and frequency domain. Finally, the spectrum is integrated along the frequency for the range of interest and 2-D spectrum in horizontal phase velocity is calculated. This method was applied to the data obtained at Syowa Station (69ºS, 40ºE), Antarctica, in 2011 and compared with a conventional event analysis in which the phase fronts were traced manually in order to estimate horizontal propagation characteristics. This comparison shows that our new method is adequate to deriving the horizontal phase velocity characteristics of AGWs observed by airglow imaging technique. Airglow imaging observation has been operated with various sampling intervals. We also presents how the images with different sample interval should be treated.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012APS..DPPNP8019L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012APS..DPPNP8019L"><span>Fundamental mode of ultra-low frequency electrostatic dust-cyclotron surface waves in a magnetized complex plasma with drifting ions</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Lee, Seungjun; Lee, Myoung-Jae</p> <p>2012-10-01</p> <p>The electrostatic dust-cyclotron (EDC) waves in a magnetized dusty plasma was reported that they could be excited by gravity in a collisional plasma [1]. Rosenberg suggested that EDC waves could be excited by ions drifting along the magnetic field in a collisional plasma containing dust grains with large thermal speeds [2]. The existing investigations, however, focus on EDC volume waves in which the boundary effects are not considered. In this work, we attempt to obtain some physical results concerning the fundamental mode of EDC surface wave and the stability of wave by utilizing a kinetic method. The EDC surface wave is assumed to propagate along an external magnetic field at the interface between the plasma and the vacuum. The plasma is comprised of drifting ions flowing along an external magnetic field. To derive the growth rate of surface waves, we employ the specular reflection boundary conditions. The EDC surface wave is found to be unstable when the ion drift velocity is larger than the phase velocity of the wave. In addition, the wave becomes to be more unstable if dust particles carry more negative charges.[4pt] [1] N. D'Angelo, Phys. Lett. A 323, 445 (2004).[0pt] [2] M. Rosenberg, Phys. Scr. 82, 035505 (2010).</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018MNRAS.477.5338L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018MNRAS.477.5338L"><span>Effects of a strong magnetic field on internal gravity waves: trapping, phase mixing, reflection, and dynamical chaos</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Loi, Shyeh Tjing; Papaloizou, John C. B.</p> <p>2018-07-01</p> <p>The spectrum of oscillation modes of a star provides information not only about its material properties (e.g. mean density), but also its symmetries. Spherical symmetry can be broken by rotation and/or magnetic fields. It has been postulated that strong magnetic fields in the cores of some red giants are responsible for their anomalously weak dipole mode amplitudes (the `dipole dichotomy' problem), but a detailed understanding of how gravity waves interact with strong fields is thus far lacking. In this work, we attack the problem through a variety of analytical and numerical techniques, applied to a localized region centred on a null line of a confined axisymmetric magnetic field which is approximated as being cylindrically symmetric. We uncover a rich variety of phenomena that manifest when the field strength exceeds a critical value, beyond which the symmetry is drastically broken by the Lorentz force. When this threshold is reached, the spatial structure of the g modes becomes heavily altered. The dynamics of wave packet propagation transitions from regular to chaotic, which is expected to fundamentally change the organization of the mode spectrum. In addition, depending on their frequency and the orientation of field lines with respect to the stratification, waves impinging on different parts of the magnetized region are found to undergo either reflection or trapping. Trapping regions provide an avenue for energy loss through Alfvén wave phase mixing. Our results may find application in various astrophysical contexts, including the dipole dichotomy problem, the solar interior, and compact star oscillations.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018MNRAS.tmp..878L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018MNRAS.tmp..878L"><span>Effects of a strong magnetic field on internal gravity waves: trapping, phase mixing, reflection and dynamical chaos</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Loi, Shyeh Tjing; Papaloizou, John C. B.</p> <p>2018-04-01</p> <p>The spectrum of oscillation modes of a star provides information not only about its material properties (e.g. mean density), but also its symmetries. Spherical symmetry can be broken by rotation and/or magnetic fields. It has been postulated that strong magnetic fields in the cores of some red giants are responsible for their anomalously weak dipole mode amplitudes (the "dipole dichotomy" problem), but a detailed understanding of how gravity waves interact with strong fields is thus far lacking. In this work, we attack the problem through a variety of analytical and numerical techniques, applied to a localised region centred on a null line of a confined axisymmetric magnetic field which is approximated as being cylindrically symmetric. We uncover a rich variety of phenomena that manifest when the field strength exceeds a critical value, beyond which the symmetry is drastically broken by the Lorentz force. When this threshold is reached, the spatial structure of the g-modes becomes heavily altered. The dynamics of wave packet propagation transitions from regular to chaotic, which is expected to fundamentally change the organisation of the mode spectrum. In addition, depending on their frequency and the orientation of field lines with respect to the stratification, waves impinging on different parts of the magnetised region are found to undergo either reflection or trapping. Trapping regions provide an avenue for energy loss through Alfvén wave phase mixing. Our results may find application in various astrophysical contexts, including the dipole dichotomy problem, the solar interior, and compact star oscillations.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20030000473&hterms=Tidal+waves&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3DTidal%2Bwaves','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20030000473&hterms=Tidal+waves&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3DTidal%2Bwaves"><span>Long-term Global Morphology of Gravity Wave Activity Using UARS Data</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Eckermann, Stephen D.; Jackman, C. (Technical Monitor)</p> <p>2000-01-01</p> <p>An extensive body of research this quarter is documented. Further methodical analysis of temperature residuals in Cryogenic Limb Array Etalon Spectrometer (CLAES) Version 8 level 3AT data show signatures during December 1992 at middle and high northern latitudes that, when compared to Naval Research Laboratory/Mountain Wave Forecast Model (NRL)/(MWFM) mountain wave hindcasts, reveal evidence of long mountain waves in these data over Eurasia, Greenland, Scandinavia and North America. The explicit detection of gravity waves in limb-scanned Cryogenic Infrared Spectrometers and Telescopes for the Atmosphere (CRISTA) temperatures is modeled at length, to derive visibility functions. These insights are used to convert CRISTA gravity wave temperature residuals into data that more closely resemble gravity wave fluctuations detected in data from other satellite instruments, such as Microwave Limb Sounder (MLS), Limb Infrared Monitor of the Stratosphere (LIMS) and Global Positioning System/Meteorology (GPS)/(MET). Finally, newly issued mesospheric temperatures from inversion of CRISTA 15gin emissions are analyzed using a new method that uses separate Kalman fits to the ascending and descending node data. This allows us to study global gravity wave amplitudes at two local times, 12 hours apart. In the equatorial mesosphere, where a large diurnal tidal temperature signal exists, we see modulations of gravity wave activity that are consistent with gravity wave-tidal interactions produced by tidal temperature variability.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016PhDT.......105L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016PhDT.......105L"><span>Internal Wave Generation by Convection</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Lecoanet, Daniel Michael</p> <p></p> <p>In nature, it is not unusual to find stably stratified fluid adjacent to convectively unstable fluid. This can occur in the Earth's atmosphere, where the troposphere is convective and the stratosphere is stably stratified; in lakes, where surface solar heating can drive convection above stably stratified fresh water; in the oceans, where geothermal heating can drive convection near the ocean floor, but the water above is stably stratified due to salinity gradients; possible in the Earth's liquid core, where gradients in thermal conductivity and composition diffusivities maybe lead to different layers of stable or unstable liquid metal; and, in stars, as most stars contain at least one convective and at least one radiative (stably stratified) zone. Internal waves propagate in stably stratified fluids. The characterization of the internal waves generated by convection is an open problem in geophysical and astrophysical fluid dynamics. Internal waves can play a dynamically important role via nonlocal transport. Momentum transport by convectively excited internal waves is thought to generate the quasi-biennial oscillation of zonal wind in the equatorial stratosphere, an important physical phenomenon used to calibrate global climate models. Angular momentum transport by convectively excited internal waves may play a crucial role in setting the initial rotation rates of neutron stars. In the last year of life of a massive star, convectively excited internal waves may transport even energy to the surface layers to unbind them, launching a wind. In each of these cases, internal waves are able to transport some quantity--momentum, angular momentum, energy--across large, stable buoyancy gradients. Thus, internal waves represent an important, if unusual, transport mechanism. This thesis advances our understanding of internal wave generation by convection. Chapter 2 provides an underlying theoretical framework to study this problem. It describes a detailed calculation of the internal gravity wave spectrum, using the Lighthill theory of wave excitation by turbulence. We use a Green's function approach, in which we convolve a convective source term with the Green's function of different internal gravity waves. The remainder of the thesis is a circuitous attempt to verify these analytical predictions. I test the predictions of Chapter 2 via numerical simulation. The first step is to identify a code suitable for this study. I helped develop the Dedalus code framework to study internal wave generation by convection. Dedalus can solve many different partial differential equations using the pseudo-spectral numerical method. In Chapter 3, I demonstrate Dedalus' ability to solve different equations used to model convection in astrophysics. I consider both the propagation and damping of internal waves, and the properties of low Rayleigh number convective steady states, in six different equation sets used in the astrophysics literature. This shows that Dedalus can be used to solve the equations of interest. Next, in Chapter 4, I verify the high accuracy of Dedalus by comparing it to the popular astrophysics code Athena in a standard Kelvin-Helmholtz instability test problem. Dedalus performs admirably in comparison to Athena, and provides a high standard for other codes solving the fully compressible Navier-Stokes equations. Chapter 5 demonstrates that Dedalus can simulate convective adjacent to a stably stratified region, by studying convective mixing near carbon flames. The convective overshoot and mixing is well-resolved, and is able to generate internal waves. Confident in Dedalus' ability to study the problem at hand, Chapter 6 describes simulations inspired by water experiments of internal wave generation by convection. The experiments exploit water's unusual property that its density maximum is at 4°C, rather than at 0°C. We use a similar equation of state in Dedalus, and study internal gravity waves generation by convection in a water-like fluid. We test two models of wave generation: bulk excitation (equivalent to the Lighthill theory described in Chapter 2), and surface excitation. We find the bulk excitation model accurately reproduces the waves generated in the simulations, validating the calculations of Chapter 2.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016EGUGA..1812871B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016EGUGA..1812871B"><span>Contribution of the infrasound technology to characterize large scale atmospheric disturbances and impact on infrasound monitoring</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Blanc, Elisabeth; Le Pichon, Alexis; Ceranna, Lars; Pilger, Christoph; Charlton Perez, Andrew; Smets, Pieter</p> <p>2016-04-01</p> <p>The International Monitoring System (IMS) developed for the verification of the Comprehensive nuclear-Test-Ban Treaty (CTBT) provides a unique global description of atmospheric disturbances generating infrasound such as extreme events (e.g. meteors, volcanoes, earthquakes, and severe weather) or human activity (e.g. explosions and supersonic airplanes). The analysis of the detected signals, recorded at global scales and over near 15 years at some stations, demonstrates that large-scale atmospheric disturbances strongly affect infrasound propagation. Their time scales vary from several tens of minutes to hours and days. Their effects are in average well resolved by the current model predictions; however, accurate spatial and temporal description is lacking in both weather and climate models. This study reviews recent results using the infrasound technology to characterize these large scale disturbances, including (i) wind fluctuations induced by gravity waves generating infrasound partial reflections and modifications of the infrasound waveguide, (ii) convection from thunderstorms and mountain waves generating gravity waves, (iii) stratospheric warming events which yield wind inversions in the stratosphere, (iv)planetary waves which control the global atmospheric circulation. Improved knowledge of these disturbances and assimilation in future models is an important objective of the ARISE (Atmospheric dynamics Research InfraStructure in Europe) project. This is essential in the context of the future verification of the CTBT as enhanced atmospheric models are necessary to assess the IMS network performance in higher resolution, reduce source location errors, and improve characterization methods.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28306286','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28306286"><span>Speed of Gravitational Waves from Strongly Lensed Gravitational Waves and Electromagnetic Signals.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Fan, Xi-Long; Liao, Kai; Biesiada, Marek; Piórkowska-Kurpas, Aleksandra; Zhu, Zong-Hong</p> <p>2017-03-03</p> <p>We propose a new model-independent measurement strategy for the propagation speed of gravitational waves (GWs) based on strongly lensed GWs and their electromagnetic (EM) counterparts. This can be done in two ways: by comparing arrival times of GWs and their EM counterparts and by comparing the time delays between images seen in GWs and their EM counterparts. The lensed GW-EM event is perhaps the best way to identify an EM counterpart. Conceptually, this method does not rely on any specific theory of massive gravitons or modified gravity. Its differential setting (i.e., measuring the difference between time delays in GW and EM domains) makes it robust against lens modeling details (photons and GWs travel in the same lensing potential) and against internal time delays between GW and EM emission acts. It requires, however, that the theory of gravity is metric and predicts gravitational lensing similar to general relativity. We expect that such a test will become possible in the era of third-generation gravitational-wave detectors, when about 10 lensed GW events would be observed each year. The power of this method is mainly limited by the timing accuracy of the EM counterpart, which for kilonovae is around 10^{4}  s. This uncertainty can be suppressed by a factor of ∼10^{10}, if strongly lensed transients of much shorter duration associated with the GW event can be identified. Candidates for such short transients include short γ-ray bursts and fast radio bursts.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li class="active"><span>25</span></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_25 --> <div class="footer-extlink text-muted" style="margin-bottom:1rem; text-align:center;">Some links on this page may take you to non-federal websites. Their policies may differ from this site.</div> </div><!-- container --> <a id="backToTop" href="#top"> Top </a> <footer> <nav> <ul class="links"> <li><a href="/sitemap.html">Site Map</a></li> <li><a href="/website-policies.html">Website Policies</a></li> <li><a href="https://www.energy.gov/vulnerability-disclosure-policy" target="_blank">Vulnerability Disclosure Program</a></li> <li><a href="/contact.html">Contact Us</a></li> </ul> </nav> </footer> <script type="text/javascript"><!-- // var lastDiv = ""; function showDiv(divName) { // hide last div if (lastDiv) { document.getElementById(lastDiv).className = "hiddenDiv"; } //if value of the box is not nothing and an object with that name exists, then change the class if (divName && document.getElementById(divName)) { document.getElementById(divName).className = "visibleDiv"; lastDiv = divName; } } //--> </script> <script> /** * Function that tracks a click on an outbound link in Google Analytics. * This function takes a valid URL string as an argument, and uses that URL string * as the event label. */ var trackOutboundLink = function(url,collectionCode) { try { h = window.open(url); setTimeout(function() { ga('send', 'event', 'topic-page-click-through', collectionCode, url); }, 1000); } catch(err){} }; </script> <!-- Google Analytics --> <script> (function(i,s,o,g,r,a,m){i['GoogleAnalyticsObject']=r;i[r]=i[r]||function(){ (i[r].q=i[r].q||[]).push(arguments)},i[r].l=1*new Date();a=s.createElement(o), m=s.getElementsByTagName(o)[0];a.async=1;a.src=g;m.parentNode.insertBefore(a,m) })(window,document,'script','//www.google-analytics.com/analytics.js','ga'); ga('create', 'UA-1122789-34', 'auto'); ga('send', 'pageview'); </script> <!-- End Google Analytics --> <script> showDiv('page_1') </script> </body> </html>