Defocusing of an ion beam propagating in background plasma due to two-stream instability
Tokluoglu, Erinc; Kaganovich, Igor D.
2015-04-15
The current and charge neutralization of charged particle beams by background plasma enable ballistic beam propagation and have a wide range of applications in inertial fusion and high energy density physics. However, the beam-plasma interaction can result in the development of collective instabilities that may have deleterious effects on ballistic propagation of an ion beam. In the case of fast, light-ion beams, non-linear fields created by instabilities can lead to significant defocusing of the beam. We study an ion beam pulse propagating in a background plasma, which is subjected to two-stream instability between the beam ions and plasma electrons, using PIC code LSP. The defocusing effects of the instability on the beam can be much more pronounced in small radius beams. We show through simulations that a beamlet produced from an ion beam passed through an aperture can be used as a diagnostic tool to identify the presence of the two-stream instability and quantify its defocusing effects. The effect can be observed on the Neutralized Drift Compression Experiment-II facility by measuring the spot size of the extracted beamlet propagating through several meters of plasma.
NASA Astrophysics Data System (ADS)
Kaganovich, Igor D.
2015-11-01
In this paper we study the effects of the two-stream instability on the propagation of intense nonrelativistic ion and electron beams in background plasma. Development of the two-stream instability between the beam ions and plasma electrons leads to beam breakup, a slowing down of the beam particles, acceleration of the plasma particles, and transfer of the beam energy to the plasma particles and wave excitations. Making use of the particle-in-cell codes EDIPIC and LSP, and analytic theory we have simulated the effects of the two-stream instability on beam propagation over a wide range of beam and plasma parameters. Because of the two-stream instability the plasma electrons can be accelerated to velocities as high as twice the beam velocity. The resulting return current of the accelerated electrons may completely change the structure of the beam self - magnetic field, thereby changing its effect on the beam from focusing to defocusing. Therefore, previous theories of beam self-electromagnetic fields that did not take into account the effects of the two-stream instability must be significantly modified. This effect can be observed on the National Drift Compression Experiment-II (NDCX-II) facility by measuring the spot size of the extracted beamlet propagating through several meters of plasma. Particle-in-cell, fluid simulations, and analytical theory also reveal the rich complexity of beam- plasma interaction phenomena: intermittency and multiple regimes of the two-stream instability in dc discharges; band structure of the growth rate of the two-stream instability of an electron beam propagating in a bounded plasma and repeated acceleration of electrons in a finite system. In collaboration with E. Tokluoglu, D. Sydorenko, E. A. Startsev, J. Carlsson, and R. C. Davidson. Research supported by the U.S. Department of Energy.
Two-stream Maxwellian kinetic theory of cloud droplet growth by condensation
NASA Technical Reports Server (NTRS)
Robinson, N. F.; Scott, W. T.
1981-01-01
A new growth rate formula (NGRF) is developed for the rate of growth of cloud droplets by condensation. The theory used is a modification of the Lees-Shankar theory in which the two-stream Maxwellian distribution function of Lees is used in Maxwell's method of moments to determine the transport of water vapor to and heat away from the droplet. Boundary conditions at the droplet are the usual conditions set in terms of accommodation coefficients, and the solution passes smoothly into diffusion flow in the far region. Comparisons are given between NGRF and the conventional formula showing close agreement (approximately 0.1%) for large radii with significant difference (approximately 5%) for small radii (not greater than 1 micron). Growth times for haze droplets in a Laktionov chamber are computed.
Startsev, Edward A.; Davidson, Ronald C.; Dorf, Mikhail
2009-09-15
When an ion beam with sharp edge propagates through a background plasma, its current is neutralized by the plasma return current everywhere except at the beam edge over a characteristic transverse distance {delta}x{sub perpendicular}{approx}{delta}{sub pe}, where {delta}{sub pe}=c/{omega}{sub pe} is the collisionless skin depth and {omega}{sub pe} is the electron plasma frequency. Because the background plasma electrons neutralizing the ion beam current inside the beam are streaming relative to the background plasma electrons outside the beam, the background plasma can support a two-stream surface-mode excitation. Such surface modes have been studied previously assuming complete charge and current neutralization, and have been shown to be strongly unstable. In this paper we study the detailed stability properties of this two-stream surface mode for an electron flow velocity profile self-consistently driven by the ion beam. In particular, it is shown that the self-magnetic field generated inside the unneutralized current layer, which has not been taken into account previously, completely eliminates the instability.
Theory of Collisional Two-Stream Plasma Instabilities in the Solar Chromosphere
NASA Astrophysics Data System (ADS)
Madsen, Chad Allen; Dimant, Yakov; Oppenheim, Meers; Fontenla, Juan
2014-06-01
The solar chromosphere experiences intense heating just above its temperature minimum. The heating increases the electron temperature in this region by over 2000 K. Furthermore, it exhibits little time variation and appears widespread across the solar disk. Although semi-empirical models, UV continuum observations, and line emission measurements confirm the existence of the heating, its source remains unexplained. Potential heating sources such as acoustic shocks, resistive dissipation, and magnetic reconnection via nanoflares fail to account for the intensity, persistence, and ubiquity of the heating. Fontenla (2005) suggested turbulence from a collisional two-stream plasma instability known as the Farley-Buneman instability (FBI) could contribute significantly to the heating. This instability is known to heat the plasma of the E-region ionosphere which bears many similarities to the chromospheric plasma. However, the ionospheric theory of the FBI does not account for the diverse ion species found in the solar chromosphere. This work develops a new collisional, two-stream instability theory appropriate for the chromospheric plasma environment using a linear fluid analysis to derive a new dispersion relationship and critical E x B drift velocity required to trigger the instability. Using a 1D, non-local thermodynamic equilibrium, radiative transfer model and careful estimates of collision rates and magnetic field strengths, we calculate the trigger velocities necessary to induce the instability throughout the chromosphere. Trigger velocities as low as 4 km s^-1 are found near the temperature minimum, well below the local neutral acoustic speed in that region. From this, we expect the instability to occur frequently, converting kinetic energy contained in neutral convective flows from the photosphere into thermal energy via turbulence. This could contribute significantly to chromospheric heating and explain its persistent and ubiquitous nature.
Kaganovich, I. D.; Sydorenko, D.
2016-11-18
Our paper presents a study of the two-stream instability of an electron beam propagating in a finite-size plasma placed between two electrodes. It is shown that the growth rate in such a system is much smaller than that of an infinite plasma or a finite size plasma with periodic boundary conditions. Even if the width of the plasma matches the resonance condition for a standing wave, a spatially growing wave is excited instead with the growth rate small compared to that of the standing wave in a periodic system. Furthermore, the approximate expression for this growth rate is γ≈(1/13)ωpe(nb/np)(Lωpe/vb)ln(Lωpe/vb)[1-0.18 cosmore » (Lωpe/vb+π/2)], where ωpe is the electron plasma frequency, nb and np are the beam and the plasma densities, respectively, vb is the beam velocity, and L is the plasma width. The frequency, wave number, and the spatial and temporal growth rates, as functions of the plasma size, exhibit band structure. Finally, the amplitude of saturation of the instability depends on the system length, not on the beam current. For short systems, the amplitude may exceed values predicted for infinite plasmas by more than an order of magnitude.« less
Kaganovich, I. D.; Sydorenko, D.
2016-11-18
Our paper presents a study of the two-stream instability of an electron beam propagating in a finite-size plasma placed between two electrodes. It is shown that the growth rate in such a system is much smaller than that of an infinite plasma or a finite size plasma with periodic boundary conditions. Even if the width of the plasma matches the resonance condition for a standing wave, a spatially growing wave is excited instead with the growth rate small compared to that of the standing wave in a periodic system. Furthermore, the approximate expression for this growth rate is γ≈(1/13)ω_{pe}(n_{b}/n_{p})(Lω_{pe}/v_{b})ln(Lω_{pe}/v_{b})[1-0.18 cos (Lω_{pe}/v_{b}+π/2)], where ωpe is the electron plasma frequency, n_{b} and n_{p} are the beam and the plasma densities, respectively, v_{b} is the beam velocity, and L is the plasma width. The frequency, wave number, and the spatial and temporal growth rates, as functions of the plasma size, exhibit band structure. Finally, the amplitude of saturation of the instability depends on the system length, not on the beam current. For short systems, the amplitude may exceed values predicted for infinite plasmas by more than an order of magnitude.
NASA Astrophysics Data System (ADS)
Kaganovich, I. D.; Sydorenko, D.
2016-11-01
This paper presents a study of the two-stream instability of an electron beam propagating in a finite-size plasma placed between two electrodes. It is shown that the growth rate in such a system is much smaller than that of an infinite plasma or a finite size plasma with periodic boundary conditions. Even if the width of the plasma matches the resonance condition for a standing wave, a spatially growing wave is excited instead with the growth rate small compared to that of the standing wave in a periodic system. The approximate expression for this growth rate is γ≈(1 /13 )ωpe(nb/np)(L ωpe/vb)ln (L ωpe/vb)[1 -0.18 cos (L ωpe/vb+π/2 ) ] , where ωpe is the electron plasma frequency, nb and np are the beam and the plasma densities, respectively, vb is the beam velocity, and L is the plasma width. The frequency, wave number, and the spatial and temporal growth rates, as functions of the plasma size, exhibit band structure. The amplitude of saturation of the instability depends on the system length, not on the beam current. For short systems, the amplitude may exceed values predicted for infinite plasmas by more than an order of magnitude.
The physical theory and propagation model of THz atmospheric propagation
NASA Astrophysics Data System (ADS)
Wang, R.; Yao, J. Q.; Xu, D. G.; Wang, J. L.; Wang, P.
2011-02-01
Terahertz (THz) radiation is extensively applied in diverse fields, such as space communication, Earth environment observation, atmosphere science, remote sensing and so on. And the research on propagation features of THz wave in the atmosphere becomes more and more important. This paper firstly illuminates the advantages and outlook of THz in space technology. Then it introduces the theoretical framework of THz atmospheric propagation, including some fundamental physical concepts and processes. The attenuation effect (especially the absorption of water vapor), the scattering of aerosol particles and the effect of turbulent flow mainly influence THz atmosphere propagation. Fundamental physical laws are illuminated as well, such as Lamber-beer law, Mie scattering theory and radiative transfer equation. The last part comprises the demonstration and comparison of THz atmosphere propagation models like Moliere(V5), SARTre and AMATERASU. The essential problems are the deep analysis of physical mechanism of this process, the construction of atmospheric propagation model and databases of every kind of material in the atmosphere, and the standardization of measurement procedures.
Random matrix theory for underwater sound propagation
NASA Astrophysics Data System (ADS)
Hegewisch, K. C.; Tomsovic, S.
2012-02-01
Ocean acoustic propagation can be formulated as a wave guide with a weakly random medium generating multiple scattering. Twenty years ago, this was recognized as a quantum chaos problem, and yet random matrix theory, one pillar of quantum or wave chaos studies, has never been introduced into the subject. The modes of the wave guide provide a representation for the propagation, which in the parabolic approximation is unitary. Scattering induced by the ocean's internal waves leads to a power-law random banded unitary matrix ensemble for long-range deep-ocean acoustic propagation. The ensemble has similarities, but differs, from those introduced for studying the Anderson metal-insulator transition. The resulting long-range propagation ensemble statistics agree well with those of full wave propagation using the parabolic equation.
Propagation in polymer parameterised field theory
NASA Astrophysics Data System (ADS)
Varadarajan, Madhavan
2017-01-01
The Hamiltonian constraint operator in loop quantum gravity acts ultralocally. Smolin has argued that this ultralocality seems incompatible with the existence of a quantum dynamics which propagates perturbations between macroscopically seperated regions of quantum geometry. We present evidence to the contrary within an LQG type ‘polymer’ quantization of two dimensional parameterised field theory (PFT). PFT is a generally covariant reformulation of free field propagation on flat spacetime. We show explicitly that while, as in LQG, the Hamiltonian constraint operator in PFT acts ultralocally, states in the joint kernel of the Hamiltonian and diffeomorphism constraints of PFT necessarily describe propagation effects. The particular structure of the finite triangulation Hamiltonian constraint operator plays a crucial role, as does the necessity of imposing (the continuum limit of) its kinematic adjoint as a constraint. Propagation is seen as a property encoded by physical states in the kernel of the constraints rather than that of repeated actions of the finite triangulation Hamiltonian constraint on kinematic states. The analysis yields robust structural lessons for putative constructions of the Hamiltonian constraint in LQG for which ultralocal action co-exists with a description of propagation effects by physical states.
Crack propagation modeling using Peridynamic theory
NASA Astrophysics Data System (ADS)
Hafezi, M. H.; Alebrahim, R.; Kundu, T.
2016-04-01
Crack propagation and branching are modeled using nonlocal peridynamic theory. One major advantage of this nonlocal theory based analysis tool is the unifying approach towards material behavior modeling - irrespective of whether the crack is formed in the material or not. No separate damage law is needed for crack initiation and propagation. This theory overcomes the weaknesses of existing continuum mechanics based numerical tools (e.g. FEM, XFEM etc.) for identifying fracture modes and does not require any simplifying assumptions. Cracks grow autonomously and not necessarily along a prescribed path. However, in some special situations such as in case of ductile fracture, the damage evolution and failure depend on parameters characterizing the local stress state instead of peridynamic damage modeling technique developed for brittle fracture. For brittle fracture modeling the bond is simply broken when the failure criterion is satisfied. This simulation helps us to design more reliable modeling tool for crack propagation and branching in both brittle and ductile materials. Peridynamic analysis has been found to be very demanding computationally, particularly for real-world structures (e.g. vehicles, aircrafts, etc.). It also requires a very expensive visualization process. The goal of this paper is to bring awareness to researchers the impact of this cutting-edge simulation tool for a better understanding of the cracked material response. A computer code has been developed to implement the peridynamic theory based modeling tool for two-dimensional analysis. A good agreement between our predictions and previously published results is observed. Some interesting new results that have not been reported earlier by others are also obtained and presented in this paper. The final objective of this investigation is to increase the mechanics knowledge of self-similar and self-affine cracks.
Infrared propagators of Yang-Mills theory from perturbation theory
Tissier, Matthieu; Wschebor, Nicolas
2010-11-15
We show that the correlation functions of ghosts and gluons for the pure Yang-Mills theory in Landau gauge can be accurately reproduced for all momenta by a one-loop calculation. The key point is to use a massive extension of the Faddeev-Popov action. The agreement with lattice simulation is excellent in d=4. The one-loop calculation also reproduces all the characteristic features of the lattice simulations in d=3 and naturally explains the peculiarities of the propagators in d=2.
Thermal Theory of Combustion and Explosion. 3; Theory of Normal Flame Propagation
NASA Technical Reports Server (NTRS)
Semenov, N. N.
1942-01-01
The technical memorandum covers experimental data on flame propagation, the velocity of flame propagation, analysis of the old theoretical views of flame propagation, confirmation of the theory for simple reactions (theory of combustion of explosive substances and in particular nitroglycol), and check of the theory by example of a chain oxidizing reaction (theory of flame propagation in carbon monoxide, air and carbon monoxide - oxygen mixtures).
Light-cone pathology of theories with noncausal propagation
Singh, L.P.S.; Hagen, C.R.
1983-02-15
Couplings of fields with spin values 0, 1/2, and 1 are examined in light-front coordinates. It is found that all theories which have noncausal modes of propagation in ordinary spacetime suffer from loss of constraints.
Quantum theory of light propagation - Linear medium
NASA Astrophysics Data System (ADS)
Abram, I.
1987-06-01
A quantum-mechanical formalism has been developed which permits the treatment of light propagation within the conceptual framework of quantum optics. The formalism rests on the calculation of the momentum operator for the radiation field, and yields directly a description for the spatial progression of the electromagnetic waves. In this paper, a quantum-mechanical treatment for refraction and reflection is given by applying the formalism to propagation through a linear dielectric. The fidelity with which this formalism reproduces all results known from classical optics demonstrates its validity.
Transport Theory for Shallow Water Propagation with Rough Boundaries
Thorsos, Eric I.; Henyey, Frank S.; Elam, W. T.; Hefner, Brian T.; Reynolds, Stephen A.; Yang Jie
2010-09-06
At frequencies of about 1 kHz and higher, forward scattering from a rough sea surface (and/or a rough bottom) can strongly affect shallow water propagation and reverberation. The need exists for a fast, yet accurate method for modeling such propagation where multiple forward scattering occurs. A transport theory method based on mode coupling is described that yields the first and second moments of the field. This approach shows promise for accurately treating multiple forward scattering in one-way propagation. The method is presently formulated in two space dimensions, and Monte-Carlo rough surface PE simulations are used for assessing the accuracy of transport theory results.
Transport Theory for Propagation and Reverberation
2014-09-30
and reverberation modeling is important for many prediction methods that are important for Navy applications and for underwater acoustics systems...development. While acoustic propagation and reverberation modeling has been extensively developed for many years, significant limitations still exist on...the acoustic field in modes, and therefore would most readily apply at mid-frequencies and below, and in relatively shallow water environments such as
Sonic boom propagation through turbulence: A ray theory approach
NASA Technical Reports Server (NTRS)
Robinson, Leick D.
1994-01-01
A ray theory approach is used to examine the propagation of sonic booms through a turbulent ground layer, and to make predictions about the received waveform. The rays are not propagated one at a time, as is typical in ray theory; instead, sufficient rays to represent a continuous wave front are propagated together. New rays are interpolated as needed to maintain the continuity of the wave front. In order to predict the received boom signature, the wave front is searched for eigenrays after it has propagated to the receiver. The Comte-Bellot turbulence model is used to generate an instantaneous 'snapshot' of the turbulent field. The transient acoustic wave is assumed to be sufficiently short in duration such that the time-dependacde of the turbulent field may be neglected.
Transport Theory for Propagation and Reverberation
2016-07-20
reverberation, since the data spikes due to scattering from inclusions in the mud regions are not being modeled. Even so, a “ perfect result” for the...spectra in Figures 12 and 13 are not in perfect agreement, the differences are modest. Figure 14 shows a comparison of the reverberation level with...when methods are perfected to treat the directional nature of the wave field with transport theory modeling of reverberation, then it should be possible
Radiative transport theory for light propagation in luminescent media.
Sahin, Derya; Ilan, Boaz
2013-05-01
We propose a generalization of radiative transport theory to account for light propagation in luminescent random media. This theory accounts accurately for the multiple absorption and reemission of light at different wavelengths and for anisotropic luminescence. To test this theory, we apply it to model light propagation in luminescent solar concentrators (LSCs). The source-iteration method is used in two spatial dimensions for LSCs based on semiconductor quantum dots and aligned nanorods. The LSC performance is studied in detail, including its dependence on particle concentration and the anisotropy of the luminescence. The computational results using this theory are compared with Monte Carlo simulations of photon transport and found to agree qualitatively. The proposed approach offers a deterministic methodology, which can be advantageous for analytic and computational modeling. This approach has potential for more efficient and cost-effective LSCs, as well as in other applications involving luminescent radiation.
Inviscid interpenetration of two streams with unequal total pressures
NASA Technical Reports Server (NTRS)
Goldstein, M. E.; Braun, W. H.
1975-01-01
A theory is proposed for analyzing the inviscid interpretation of two streams in the case when the difference in total pressure between the streams is relatively small. A stream is considered which discharges from a nozzle or reservoir into a partially moving and partially stationary environment in such a way that the flows leave the solid boundaries in a tangential direction where the two streams first interact. The problem is solved by expanding in a small parameter related to the difference in total pressure between the streams, the zeroth-order solution is obtained by classical methods, and a technique similar to that employed in thin-airfoil theory is used to transfer the first-order boundary conditions to the zeroth-order boundary. A procedure is developed to transform the problem into one that can be solved by standard techniques of the theory of sectionally analytic functions. Solutions are obtained for flows with and without free streamlines, and the general theory is applied to several specific flow configurations.
Theory of Pulse Propagation in Optical Directional Couplers
NASA Astrophysics Data System (ADS)
Chiang, Kin Seng
Since the existence of intermodal dispersion or coupling coefficient dispersion in an optical directional coupler was highlighted ten years ago, a number of theoretical studies for the understanding of the significance of this dispersion effect on pulse propagation in a directional coupler under various situations have been reported. This paper provides a review of these studies. Both the normal-mode theory and the coupled-mode theory of the coupler are described. The application of the more popular coupled-mode theory to the study of nonlinear pulse switching, soliton interaction, soliton formation, and active couplers is discussed. Experimental works are also described briefly.
Pumping induced depletion from two streams
NASA Astrophysics Data System (ADS)
Sun, Dongmin; Zhan, Hongbin
2007-04-01
We have proved that the Hantush's model [Hantush MS. Wells near streams with semipervious beds. J Geophys Res 1965;70:2829-38] in a half-domain can be extended to a whole-domain and becomes identical to that of Hunt [Hunt B. Unsteady stream depletion from ground water pumping. Ground Water 1999;37(1):98-102] for a shallow and infinitely narrow stream, provided that the Dupuit assumption is adopted. This proof helps correct a false concept that regards the Hantush's model as less useful because of its fully penetrating stream assumption. This study deals with interaction of an aquifer with two parallel streams based on the Hantush's model. Semi-analytical solutions are obtained based on rigorous mass conservation requirement by maintaining continuity of flux and head along the aquifer-streambed boundaries. This study shows that the hydraulic conductivity ratio of the two streambeds appears to be the most important factor controlling the stream-aquifer interaction, followed by a less important role played by the thickness ratio of the two streambeds. When the low-permeability streambeds do not exist, the steady-state stream depletion from one stream is linearly proportional to the ratio of the shortest distance from the pumping well to the other stream over the shortest distance between the two streams. When the low-permeability streambeds are presented, similar conclusion can be drawn except that the stream depletion now also strongly depends on the hydraulic conductivity ratio of the two streambeds. When the values of the hydraulic conductivity of the two streambeds are different by an order of magnitude, the location of the pumping well that receives equal flux from two streams can be off the middle-line between the two streams by nearly 90%.
Nucleon propagation through nuclear matter in chiral effective field theory
NASA Astrophysics Data System (ADS)
Mallik, S.; Mishra, H.
2007-05-01
We treat the propagation of a nucleon in nuclear matter by evaluating the ensemble average of the two-point function of the nucleon currents in the framework of chiral effective field theory. We first derive the effective parameters of the nucleon to one loop. The resulting formula for the effective mass has been known since before and gives an absurd value at normal nuclear density. We then modify it following Weinberg’s method for the two-nucleon system in the effective theory. Our results for the effective mass and the width of the nucleon are compared with those in the literature.
New developments in the theory of flame propagation
Sivashinsky, G.I.
1996-12-31
Two topics in combustion fluid mechanics are discussed. The first is a theory of the outward propagating spherical flame in the regime of well-developed hydrodynamic instability. In a qualitative agreement with experimental observations it is shown that the flame assumes a fractal-like wrinkled structure resulting in the overall burning rate acceleration. In contrast to hydrodynamically unstable flames, the expanding flame subject exclusively to the effect of diffusive instability does not indicate any disposition toward acceleration. The second topic concerns the dynamics of diffusively unstable flames subjected to radiative heat losses. At high enough heat losses the flame breaks up into separate self-propagating cap-like flamelets while a significant portion of the fuel remains unconsumed.
Can dichotic pitches form two streams?
NASA Astrophysics Data System (ADS)
Akeroyd, Michael A.; Carlyon, Robert P.; Deeks, John M.
2005-08-01
The phenomenon of auditory streaming reflects the perceptual organization of sounds over time. A series of ``A'' and ``B'' tones, presented in a repeating ``ABA-ABA'' sequence, may be perceived as one ``galloping'' stream or as two separate streams, depending on the presentation rate and the A-B frequency separation. The present experiment examined whether streaming occurs for sequences of ``Huggins pitches,'' for which the percepts of pitch are derived from the binaural processing of a sharp transition in interaural phase in an otherwise diotic noise. Ten-second ``ABA'' sequences were presented to eight normal-hearing listeners for two types of stimuli: Huggins-pitch stimuli with interaural phase transitions centered on frequencies between 400 and 800 Hz, or partially-masked diotic tones-in-noise, acting as controls. Listeners indicated, throughout the sequence, the number of streams perceived. The results showed that, for both Huggins-pitch stimuli and tones-in-noise, two streams were often reported. In both cases, the amount of streaming built up over time, and depended on the frequency separation between the A and B tones. These results provide evidence that streaming can occur between stimuli whose pitch percept is derived binaurally. They are inconsistent with models of streaming based solely on differences in the monaural excitation pattern.
Kinetic theory of turbulence for parallel propagation revisited: Formal results
Yoon, Peter H.
2015-08-15
In a recent paper, Gaelzer et al. [Phys. Plasmas 22, 032310 (2015)] revisited the second-order nonlinear kinetic theory for turbulence propagating in directions parallel/anti-parallel to the ambient magnetic field. The original work was according to Yoon and Fang [Phys. Plasmas 15, 122312 (2008)], but Gaelzer et al. noted that the terms pertaining to discrete-particle effects in Yoon and Fang's theory did not enjoy proper dimensionality. The purpose of Gaelzer et al. was to restore the dimensional consistency associated with such terms. However, Gaelzer et al. was concerned only with linear wave-particle interaction terms. The present paper completes the analysis by considering the dimensional correction to nonlinear wave-particle interaction terms in the wave kinetic equation.
Uncertainty Quantification and Propagation in Nuclear Density Functional Theory
Schunck, N.; McDonnell, J. D.; Higdon, D.; Sarich, J.; Wild, S. M.
2015-12-23
Nuclear density functional theory (DFT) is one of the main theoretical tools used to study the properties of heavy and superheavy elements, or to describe the structure of nuclei far from stability. While on-going efforts seek to better root nuclear DFT in the theory of nuclear forces (see Duguet et al., this Topical Issue), energy functionals remain semi-phenomenological constructions that depend on a set of parameters adjusted to experimental data in finite nuclei. In this paper, we review recent efforts to quantify the related uncertainties, and propagate them to model predictions. In particular, we cover the topics of parameter estimation for inverse problems, statistical analysis of model uncertainties and Bayesian inference methods. Illustrative examples are taken from the literature.
Uncertainty Quantification and Propagation in Nuclear Density Functional Theory
Schunck, N; McDonnell, J D; Higdon, D; Sarich, J; Wild, S M
2015-03-17
Nuclear density functional theory (DFT) is one of the main theoretical tools used to study the properties of heavy and superheavy elements, or to describe the structure of nuclei far from stability. While on-going eff orts seek to better root nuclear DFT in the theory of nuclear forces, energy functionals remain semi-phenomenological constructions that depend on a set of parameters adjusted to experimental data in fi nite nuclei. In this paper, we review recent eff orts to quantify the related uncertainties, and propagate them to model predictions. In particular, we cover the topics of parameter estimation for inverse problems, statistical analysis of model uncertainties and Bayesian inference methods. Illustrative examples are taken from the literature.
Theory of nonlinear pulse propagation in silicon-nanocrystal waveguides.
Rukhlenko, Ivan D
2013-02-11
We develop a comprehensive theory of the nonlinear propagation of optical pulses through silica waveguides doped with highly nonlinear silicon nanocrystals. Our theory describes the dynamics of arbitrarily polarized pump and Stokes fields by a system of four generalized nonlinear Schrödinger equations for the slowly varying field amplitudes, coupled to the rate equation for the number density of free carriers. In deriving these equations, we use an analytic expression for the third-order effective susceptibility of the waveguide with randomly oriented nanocrystals, which takes into account both the weakening of the nonlinear optical response of silicon nanocrystals due to their embedment in fused silica and the change in the tensor properties of the response due to the modification of light interaction with electrons and phonons inside the silicon-nanocrystal waveguide. In order to facilitate the use of our theory by experimentalists, and for reasons of methodology, we provide a great deal of detail on the mathematical treatment throughout the paper, even though the derivation of the coupled-amplitude equations is quite straightforward. The developed theory can be applied for the solving of a wide variety of specific problems that require modeling of nonlinear optical phenomena in silicon-nanocrystal waveguides.
Two-stream instability with time-dependent drift velocity
Qin, Hong; Davidson, Ronald C.
2014-06-26
The classical two-stream instability driven by a constant relative drift velocity between two plasma components is extended to the case with time-dependent drift velocity. A solution method is developed to rigorously define and calculate the instability growth rate for linear perturbations relative to the time-dependent unperturbed two-stream motions. The stability diagrams for the oscillating two-stream instability are presented over a large region of parameter space. It is shown that the growth rate for the classical two-stream instability can be significantly reduced by adding an oscillatory component to the relative drift velocity.
Acoustic Propagation Modeling in Shallow Water Using Ray Theory.
NASA Astrophysics Data System (ADS)
Westwood, Evan Kruse
A ray method is developed for modeling acoustic propagation in low-frequency, shallow water ocean environments. The theoretical foundation is laid by studying the reflected and transmitted fields due to a point source in the presence of a plane, penetrable interface. Each field is expressed as a plane wave integral. The approach for solving the integral is based on the classical method of steepest descent, but the plane wave reflection and transmission coefficients are allowed to influence the location of the saddle points and their steepest descent paths. As a consequence, saddle points are, in general, complex, and complicated processes such as the reflected lateral wave field and the transmitted evanescent field are incorporated in the saddle point formulation. The saddle point criterion may be expressed in terms of eigenrays and their characteristics, providing physical insight into the paths and mechanisms of propagation. The method developed for solving the single interface problem is then applied to two simple models for shallow water ocean environments: the flat, isovelocity waveguide (the Pekeris model) and the sloping-bottom, isovelocity waveguide (the penetrable wedge). For the flat waveguide, near perfect agreement is found between the ray model and a model whose algorithm solves the wave equation numerically (the SAFARI fast field model). The ray method proves to be accurate even when the water depth is only half of the acoustic wavelength. For the sloping-bottom waveguide, ray model solutions to benchmark problems proposed by the Acoustical Society of America are compared to solutions from a model based on two-way coupled mode theory. For cases of upslope propagation in shallow-water penetrable wedges, agreement between the two independent models is excellent, both in the water and in the bottom. The ray method for the three-dimensional wedge problem is discussed, and the method is also extended to model directional sources by placing a point source
Kinetic theory of weak turbulence in magnetized plasmas: Perpendicular propagation
Yoon, Peter H.
2015-08-15
The present paper formulates a weak turbulence theory in which electromagnetic perturbations are assumed to propagate in directions perpendicular to the ambient magnetic field. By assuming that all wave vectors lie in one direction transverse to the ambient magnetic field, the linear solution and second-order nonlinear solutions to the equation for the perturbed distribution function are obtained. Nonlinear perturbed current from the second-order nonlinearity is derived in general form, but the limiting situation of cold plasma temperature is taken in order to derive an explicit nonlinear wave kinetic equation that describes three-wave decay/coalescence interactions among X and Z modes. A potential application of the present formalism is also discussed.
Modeling of Beam Wave Pulse Propagation in Vegetation Using Transport Theory
2005-07-31
SUBTITLE 5. FUNDING NUMBERS Modeling of Beam Wave Pulse Propagation in Vegetation using Transport Theory DAAD190110- S S 6. AUTHOR(S) Gerald M. Whitman...real- time modeling ( of interest to the soldier in the field), three new approximate theories for beam wave propagation in vegetation were developed and...Enclosure 1 MODELING OF BEAM WAVE PULSE PROPAGATION IN VEGETATION USING TRANSPORT THEORY By Gerald M. Whitman Felix K. Schwering Michael Yu-Chi Wu DISB
Influence of {kappa}-distributed ions on the two-stream instability
Langmayr, D.; Biernat, H.K.; Erkaev, N.V.
2005-10-01
This paper is the first approach for analyzing the influence of {kappa}-distributed particles on the modified two-stream instability (MTSI). It is assumed that the plasma consists of a magnetized Maxwellian electron contribution and unmagnetized {kappa}-distributed ions drifting across the electrons. Within an electrostatic approximation, the influence of the {kappa} parameter on the maximum growth rate of the MTSI is evaluated for the special case of parallel drift velocity and wave propagation.
Towards a thermodynamic theory of nerve pulse propagation.
Andersen, Søren S L; Jackson, Andrew D; Heimburg, Thomas
2009-06-01
Nerve membranes consist of an approximately equal mixture of lipids and proteins. The propagation of nerve pulses is usually described with the ionic hypothesis, also known as the Hodgkin-Huxley model. This model assumes that proteins alone enable nerves to conduct signals due to the ability of various ion channel proteins to transport selectively sodium and potassium ions. While the ionic hypothesis describes electrical aspects of the action potential, it does not provide a theoretical framework for understanding other experimentally observed phenomena associated with nerve pulse propagation. This fact has led to a revised view of the action potential based on the laws of thermodynamics and the assumption that membrane lipids play a fundamental role in the propagation of nerve pulses. In general terms, we describe how pulses propagating in nerve membranes resemble propagating sound waves. We explain how the language of thermodynamics enables us to account for a number of phenomena not addressed by the ionic hypothesis. These include a thermodynamic explanation of the effect of anesthetics, the induction of action potentials by local nerve cooling, the physical expansion of nerves during pulse propagation, reversible heat production and the absence of net heat release during the action potential. We describe how these measurable features of a propagating nerve pulse, as well as the observed voltage change that accompanies an action potential, represent different aspects of a single phenomenon that can be predicted and explained by thermodynamics. We suggest that the proteins and lipids of the nerve membrane naturally constitute a single ensemble with thermodynamic properties appropriate for the description of a broad range of phenomena associated with a propagating nerve pulse.
Morse oscillator propagator in the high temperature limit I: Theory
NASA Astrophysics Data System (ADS)
Toutounji, Mohamad
2017-02-01
In an earlier work of the author the time evolution of Morse oscillator was studied analytically and exactly at low temperatures whereupon optical correlation functions were calculated using Morse oscillator coherent states were employed. Morse oscillator propagator in the high temperature limit is derived and a closed form of its corresponding canonical partition function is obtained. Both diagonal and off-diagonal forms of Morse oscillator propagator are derived in the high temperature limit. Partition functions of diatomic molecules are calculated.
Petrov, Nikolay V; Pavlov, Pavel V; Malov, A N
2013-06-30
Using the equations of scalar diffraction theory we consider the formation of an optical vortex on a diffractive optical element. The algorithms are proposed for simulating the processes of propagation of spiral wavefronts in free space and their reflections from surfaces with different roughness parameters. The given approach is illustrated by the results of numerical simulations. (propagation of wave fronts)
Ab initio electron propagator theory of molecular wires. I. Formalism.
Dahnovsky, Yu; Zakrzewski, V G; Kletsov, A; Ortiz, J V
2005-11-08
Ab initio electron propagator methodology may be applied to the calculation of electrical current through a molecular wire. A new theoretical approach is developed for the calculation of the retarded and advanced Green functions in terms of the electron propagator matrix for the bridge molecule. The calculation of the current requires integration in a complex half plane for a trace that involves terminal and Green's-function matrices. Because the Green's-function matrices have complex poles represented by matrices, a special scheme is developed to express these "matrix poles" in terms of ordinary poles. An expression for the current is derived for a terminal matrix of arbitrary rank. For a single terminal orbital, the analytical expression for the current is given in terms of pole strengths, poles, and terminal matrix elements of the electron propagator. It is shown that Dyson orbitals with high pole strengths and overlaps with terminal orbitals are most responsible for the conduction of electrical current.
Anomalous microwave propagation interpreted by the weak-measurement theory
NASA Astrophysics Data System (ADS)
Mugnai, Daniela; Ranfagni, Anedio; Cacciari, Ilaria
2017-08-01
In the light of new experimental results of microwave propagation in the near field, we demonstrate that, in addition to a standard electromagnetic description, the results obtained can be interpreted as a case of ;weak measurement;. In this framework, the analysis is performed in a similar way to the one already carried out for interpreting optical tunneling.
Mixed Pierce-two-stream instability development in an extraction system of a negative ion source
Barminova, H. Y.; Chikhachev, A. S.
2016-02-15
Mixed Pierce-two-stream instability may occur in an extraction system of a negative ion source based on a volume-produced plasma. The reasons for instability development are discussed. Analytically the conditions of unstable beam propagation are determined. The instability threshold is shown to be increased compared with the pure Pierce instability. The influence of inclined perturbations on the instability behavior is investigated. The numerical calculations are performed in COMSOL Multiphysics. The simulation results confirm the existence of such a mixed instability appearance that develops due to both the electrons of the external circuit and the background positive ions.
Mixed Pierce-two-stream instability development in an extraction system of a negative ion source
NASA Astrophysics Data System (ADS)
Barminova, H. Y.; Chikhachev, A. S.
2016-02-01
Mixed Pierce-two-stream instability may occur in an extraction system of a negative ion source based on a volume-produced plasma. The reasons for instability development are discussed. Analytically the conditions of unstable beam propagation are determined. The instability threshold is shown to be increased compared with the pure Pierce instability. The influence of inclined perturbations on the instability behavior is investigated. The numerical calculations are performed in COMSOL Multiphysics. The simulation results confirm the existence of such a mixed instability appearance that develops due to both the electrons of the external circuit and the background positive ions.
The modified two stream instability at nonmagnetic planets
Bingham, R.; Kellett, B. J.; Shapiro, V. D.; Uecer, D.; Quest, K. B.
2010-12-14
We describe the role the modified two stream instability plays in the interaction of the solar wind with non-magnetized planets. The instability leads to the production of energetic electrons that can be responsible for the observed x-ray emission.
Wave propagation in double walled carbon nanotubes by using doublet mechanics theory
NASA Astrophysics Data System (ADS)
Gul, Ufuk; Aydogdu, Metin
2017-09-01
Flexural and axial wave propagation in double walled carbon nanotubes embedded in an elastic medium and axial wave propagation in single walled carbon nanotubes are investigated. A length scale dependent theory which is called doublet mechanics is used in the analysis. Governing equations are obtained by using Hamilton principle. Doublet mechanics results are compared with classical elasticity and other size dependent continuum theories such as strain gradient theory, nonlocal theory and lattice dynamics. In addition, experimental wave frequencies of graphite are compared with the doublet mechanics theory. It is obtained that doublet mechanics gives accurate results for flexural and axial wave propagation in nanotubes. Thus, doublet mechanics can be used for the design of electro-mechanical nano-devices such as nanomotors, nanosensors and oscillators.
A quasi-one-dimensional theory for anisotropic propagation of excitation in cardiac muscle.
Wu, J; Johnson, E A; Kootsey, J M
1996-01-01
It has been shown that propagation of excitation in cardiac muscle is anisotropic. Compared to propagation at right angles to the long axes of the fibers, propagation along the long axis is faster, the extracellular action potential (AP) is larger in amplitude, and the intracellular AP has a lower maximum rate of depolarization, a larger time constant of the foot, and a lower peak amplitude. These observations are contrary to the predictions of classical one-dimensional (1-D) cable theory and, thus far, no satisfactory theory for them has been reported. As an alternative description of propagation in cardiac muscle, this study provides a quasi-1-D theory that includes a simplified description of the effects of action currents in extracellular space as well as resistive coupling between surface and deeper fibers in cardiac muscle. In terms of classical 1-D theory, this quasi-1-D theory reveals that the anisotropies in the wave form of the AP arise from modifications in the effective membrane ionic current and capacitance. The theory also shows that it is propagation in the longitudinal, not in the transverse direction that deviates from classical 1-D cable theory. Images FIGURE 1 PMID:8913583
Nonvariational mechanism of front propagation: Theory and experiments
NASA Astrophysics Data System (ADS)
Alvarez-Socorro, A. J.; Clerc, M. G.; González-Cortés, G.; Wilson, M.
2017-01-01
Multistable systems exhibit a rich front dynamics between equilibria. In one-dimensional scalar gradient systems, the spread of the fronts is proportional to the energy difference between equilibria. Fronts spreading proportionally to the energetic difference between equilibria is a characteristic of one-dimensional scalar gradient systems. Based on a simple nonvariational bistable model, we show analytically and numerically that the direction and speed of front propagation is led by nonvariational dynamics. We provide experimental evidence of nonvariational front propagation between different molecular orientations in a quasi-one-dimensional liquid-crystal light valve subjected to optical feedback. Free diffraction length allows us to control the variational or nonvariational nature of this system. Numerical simulations of the phenomenological model have quite good agreement with experimental observations.
Simplified theory of large-amplitude wave propagation
NASA Technical Reports Server (NTRS)
Kim, H.
1976-01-01
An orbit perturbation procedure was applied to the description of monochromatic, large-amplitude, electrostatic plasma wave propagation. In the lowest order approximation, untrapped electrons were assumed to follow constant-velocity orbits and trapped electrons were assumed to execute simple harmonic motion. The deviations of these orbits from the actual orbits were regarded as perturbations. The nonlinear damping rate and frequency shift were then obtained in terms of simple functions. The results are in good agreement with previous less approximate analyses.
Nonlinear damping of a finite amplitude whistler wave due to modified two stream instability
Saito, Shinji; Nariyuki, Yasuhiro; Umeda, Takayuki
2015-07-15
A two-dimensional, fully kinetic, particle-in-cell simulation is used to investigate the nonlinear development of a parallel propagating finite amplitude whistler wave (parent wave) with a wavelength longer than an ion inertial length. The cross field current of the parent wave generates short-scale whistler waves propagating highly oblique directions to the ambient magnetic field through the modified two-stream instability (MTSI) which scatters electrons and ions parallel and perpendicular to the magnetic field, respectively. The parent wave is largely damped during a time comparable to the wave period. The MTSI-driven damping process is proposed as a cause of nonlinear dissipation of kinetic turbulence in the solar wind.
[On the theory of action potential propagation in plant cells].
Sizonenko, V L; Kovalenko, N I
2012-01-01
The distribution of an electric field in plant cells and zooblasts has been investigated at propagation of the action potential. The behavior of ions in the cytoplasm and in the extracellular fluid has been described with the equations of electric charge motion in the electrolytes. It has been shown that the action potential causes an electric potential change not only in the depth of the cytoplasm but also in the extracellular area far from the lipidic bilayer. The biomembrane resistance has been expressed by physical parameters of a cell, such as ionic diffusion coefficient in fluid, Debye-Huckel radius, dielectric conductivity etc. The presence of breakings in the action potential diagrams has been explained as a result of insufficient resolving power of the measuring devices at the instant the sodium ionic canals of the bilayer opens.
Nonperturbative gluon and ghost propagators for d=3 Yang-Mills theory
Aguilar, A. C.; Binosi, D.; Papavassiliou, J.
2010-06-15
We study a manifestly gauge-invariant set of Schwinger-Dyson equations to determine the nonperturbative dynamics of the gluon and ghost propagators in d=3 Yang-Mills theory. The use of the well-known Schwinger mechanism, in the Landau gauge leads to the dynamical generation of a mass for the gauge boson (gluon in d=3), which, in turn, gives rise to an infrared finite gluon propagator and ghost dressing function. The propagators obtained from the numerical solution of these nonperturbative equations are in very good agreement with the results of SU(2) lattice simulations.
Field theory of propagating reaction-diffusion fronts
Escudero, C.
2004-10-01
The problem of velocity selection of reaction-diffusion fronts has been widely investigated. While the mean-field limit results are well known theoretically, there is a lack of analytic progress in those cases in which fluctuations are to be taken into account. Here, we construct an analytic theory connecting the first principles of the reaction-diffusion process to an effective equation of motion via field-theoretic arguments, and we arrive at results already confirmed by numerical simulations.
Analytical theory of wave propagation through stacked fishnet metamaterials.
Marqués, R; Jelinek, L; Mesa, F; Medina, F
2009-07-06
This work analyzes the electromagnetic wave propagation through periodically stacked fishnets from zero frequency to the first Wood's anomaly. It is shown that, apart from Fabry-Perot resonances, these structures support two transmission bands that can be backward under the appropriate conditions. The first band starts at Wood's anomaly and is closely related to the well-known phenomena of extraordinary transmission through a single fishnet. The second band is related to the resonances of the fishnet holes. In both cases, the in-plane periodicity of the fishnet cannot be made electrically small, which prevents any attempt of homogenization of the structure along the fishnet planes. However, along the normal direction, even with very small periodicity transmission is still possible. An homogenization procedure can then be applied along this direction, thus making that the structure can behave as a backward-wave transmission line for such transmission bands. Closed-form design formulas will be provided by the analytical formulation here presented. These formulas have been carefully validated by intensive numerical computations.
Gupta, D. N.; Singh, K. P.; Suk, H.
2007-01-15
The electrostatic oscillating two-stream instability of laser-driven plasma beat-wave was studied recently by Gupta et al. [Phys. Plasmas 11, 5250 (2004)], who applied their theory to limit the amplitude level of a plasma wave in the beat-wave accelerator. As a self-generated magnetic field is observed in laser-produced plasma, hence, the electromagnetic oscillating two-stream instability may be another possible mechanism for the saturation of laser-driven plasma beat-wave. The efficiency of this scheme is higher than the former.
Testing chameleon theories with light propagating through a magnetic field
Brax, Philippe; Davis, Anne-Christine; Mota, David F.
2007-10-15
It was recently argued that the observed PVLAS anomaly can be explained by chameleon field theories in which large deviations from Newton's law can be avoided. Here we present the predictions for the dichroism and the birefringence induced in the vacuum by a magnetic field in these models. We show that chameleon particles behave very differently from standard axionlike particles (ALPs). We find that, unlike ALPs, the chameleon particles are confined within the experimental setup. As a consequence, the birefringence is always bigger than the dichroism in PVLAS-type experiments.
Decision theory and information propagation in quantum physics
NASA Astrophysics Data System (ADS)
Forrester, Alan
In recent papers, Zurek [(2005). Probabilities from entanglement, Born's rule p k =| ψ k | 2 from entanglement. Physical Review A, 71, 052105] has objected to the decision-theoretic approach of Deutsch [(1999) Quantum theory of probability and decisions. Proceedings of the Royal Society of London A, 455, 3129-3137] and Wallace [(2003). Everettian rationality: defending Deutsch's approach to probability in the Everett interpretation. Studies in History and Philosophy of Modern Physics, 34, 415-438] to deriving the Born rule for quantum probabilities on the grounds that it courts circularity. Deutsch and Wallace assume that the many worlds theory is true and that decoherence gives rise to a preferred basis. However, decoherence arguments use the reduced density matrix, which relies upon the partial trace and hence upon the Born rule for its validity. Using the Heisenberg picture and quantum Darwinism-the notion that classical information is quantum information that can proliferate in the environment pioneered in Ollivier et al. [(2004). Objective properties from subjective quantum states: Environment as a witness. Physical Review Letters, 93, 220401 and (2005). Environment as a witness: Selective proliferation of information and emergence of objectivity in a quantum universe. Physical Review A, 72, 042113]-I show that measurement interactions between two systems only create correlations between a specific set of commuting observables of system 1 and a specific set of commuting observables of system 2. This argument picks out a unique basis in which information flows in the correlations between those sets of commuting observables. I then derive the Born rule for both pure and mixed states and answer some other criticisms of the decision theoretic approach to quantum probability.
An exact solution for the oscillating two-stream instability
NASA Astrophysics Data System (ADS)
Kaup, D. J.
1980-07-01
In the present paper, an exact solution of the oscillating two-stream instability is obtained for the case where the initial pump profile has a constant phase. The solution points to a very rapid partial pump depletion when the scaled pump energy is approximately pi/2, 3pi/2, 5pi/2, etc., to filamentation of a square pump profile undergoing any such partial depletion, and to stability when the scaled pump energy is just above npi and instability when it is just below npi.
NASA Astrophysics Data System (ADS)
Lim, C. W.; Zhang, G.; Reddy, J. N.
2015-05-01
approach. Two additional kinds of parameters, the higher-order nonlocal parameters and the nonlocal gradient length coefficients are introduced to account for the size-dependent characteristics of nonlocal gradient materials at nanoscale. To illustrate its application values, the theory is applied for wave propagation in a nonlocal strain gradient system and the new dispersion relations derived are presented through examples for wave propagating in Euler-Bernoulli and Timoshenko nanobeams. The numerical results based on the new nonlocal strain gradient theory reveal some new findings with respect to lattice dynamics and wave propagation experiment that could not be matched by both the classical nonlocal stress model and the contemporary strain gradient theory. Thus, this higher-order nonlocal strain gradient model provides an explanation to some observations in the classical and nonlocal stress theories as well as the strain gradient theory in these aspects.
Fracture propagation in the human cranium: a re-testing of popular theories.
Kroman, A; Kress, T; Porta, D
2011-04-01
Bone trauma interpretation is an important area of forensic anthropology. Notwithstanding the recent realization of the validity of fracture pattern interpretation, knowledge of trauma is largely based on case studies and older experimental work. Gurdjian and coauthors conducted a number of studies on blunt force fracture propagation that are still used today. Fracture propagation was noted to initiate in an area other than the point of impact, then radiate back toward it. Gurdjian's results are often used to suggest that the point of impact is at a location other than the fracture epicenter. This study is an examination and retesting of Gurdjian's theories of fracture propagation using current biomechanics research and technology. Specifically, the relationship of impact site and fracture patterning was tested using cadaver heads. The results demonstrate that fractures radiate from the point of impact, contrary to the theories of Gurdjian. Copyright © 2011 Wiley-Liss, Inc.
Valence photoelectron spectra of alkali bromides calculated within the propagator theory.
Karpenko, Alexander; Iablonskyi, Denys; Aksela, Helena
2013-04-28
The valence ionization spectra covering the binding energy range 0-45 eV of alkali bromide XBr (X = Li, Na, K, Rb) vapors are studied within the framework of the propagator theory. Relativistic Algebraic Diagrammatic Construction calculations have been carried out in order to investigate photoionization processes and to describe molecular electronic structure. Theoretical results are compared with available experimental data.
Coulomb-gauge ghost and gluon propagators in SU(3) lattice Yang-Mills theory
NASA Astrophysics Data System (ADS)
Nakagawa, Y.; Voigt, A.; Ilgenfritz, E.-M.; Müller-Preussker, M.; Nakamura, A.; Saito, T.; Sternbeck, A.; Toki, H.
2009-06-01
We study the momentum dependence of the ghost propagator and of the space and time components of the gluon propagator at equal time in pure SU(3) lattice Coulomb-gauge theory carrying out a joint analysis of data collected independently at the Research Center for Nuclear Physics, Osaka and Humboldt University, Berlin. We focus on the scaling behavior of these propagators at β=5.8,…,6.2 and apply a matching technique to relate the data for the different lattice cutoffs. Thereby, lattice artifacts are found to be rather strong for both instantaneous gluon propagators at a large momentum. As a byproduct we obtain the respective lattice scale dependences a(β) for the transversal gluon and the ghost propagator which indeed run faster with β than two-loop running, but slightly slower than what is known from the Necco-Sommer analysis of the heavy quark potential. The abnormal a(β) dependence as determined from the instantaneous time-time gluon propagator, D44, remains a problem, though. The role of residual gauge-fixing influencing D44 is discussed.
On the dimensionally correct kinetic theory of turbulence for parallel propagation
Gaelzer, R. E-mail: yoonp@umd.edu E-mail: luiz.ziebell@ufrgs.br; Ziebell, L. F. E-mail: yoonp@umd.edu E-mail: luiz.ziebell@ufrgs.br; Yoon, P. H. E-mail: yoonp@umd.edu E-mail: luiz.ziebell@ufrgs.br; Kim, Sunjung E-mail: yoonp@umd.edu E-mail: luiz.ziebell@ufrgs.br
2015-03-15
Yoon and Fang [Phys. Plasmas 15, 122312 (2008)] formulated a second-order nonlinear kinetic theory that describes the turbulence propagating in directions parallel/anti-parallel to the ambient magnetic field. Their theory also includes discrete-particle effects, or the effects due to spontaneously emitted thermal fluctuations. However, terms associated with the spontaneous fluctuations in particle and wave kinetic equations in their theory contain proper dimensionality only for an artificial one-dimensional situation. The present paper extends the analysis and re-derives the dimensionally correct kinetic equations for three-dimensional case. The new formalism properly describes the effects of spontaneous fluctuations emitted in three-dimensional space, while the collectively emitted turbulence propagates predominantly in directions parallel/anti-parallel to the ambient magnetic field. As a first step, the present investigation focuses on linear wave-particle interaction terms only. A subsequent paper will include the dimensionally correct nonlinear wave-particle interaction terms.
Novel theory for propagation of tilted Gaussian beam through aligned optical system
NASA Astrophysics Data System (ADS)
Xia, Lei; Gao, Yunguo; Han, Xudong
2017-03-01
A novel theory for tilted beam propagation is established in this paper. By setting the propagation direction of the tilted beam as the new optical axis, we establish a virtual optical system that is aligned with the new optical axis. Within the first order approximation of the tilt and off-axis, the propagation of the tilted beam is studied in the virtual system instead of the actual system. To achieve more accurate optical field distributions of tilted Gaussian beams, a complete diffraction integral for a misaligned optical system is derived by using the matrix theory with angular momentums. The theory demonstrates that a tilted TEM00 Gaussian beam passing through an aligned optical element transforms into a decentered Gaussian beam along the propagation direction. The deviations between the peak intensity axis of the decentered Gaussian beam and the new optical axis have linear relationships with the misalignments in the virtual system. ZEMAX simulation of a tilted beam through a thick lens exposed to air shows that the errors between the simulation results and theoretical calculations of the position deviations are less than 2‰ when the misalignments εx, εy, εx', εy' are in the range of [-0.5, 0.5] mm and [-0.5, 0.5]°.
Lehtovaara, Lauri; Havu, Ville; Puska, Martti
2011-10-21
We present an all-electron method for time-dependent density functional theory which employs hierarchical nonuniform finite-element bases and the time-propagation approach. The method is capable of treating linear and nonlinear response of valence and core electrons to an external field. We also introduce (i) a preconditioner for the propagation equation, (ii) a stable way to implement absorbing boundary conditions, and (iii) a new kind of absorbing boundary condition inspired by perfectly matched layers. © 2011 American Institute of Physics
O the Application of Horizontal Ray Theory to Acoustic Propagation in the Ocean Waveguide
NASA Astrophysics Data System (ADS)
Pitre, Richard
This dissertation is concerned with the description of wave propagation in inhomogeneous waveguides with curved boundaries. Horizontal ray theory, a 3-D analytical approximation method, is extended to multilayered waveguides and practical methods of implementation are developed. Higher order corrections are developed as integrals of lower order solutions. The ordinary differential equations for the lowest order approximation are integrated for translationally invariant and cylindrically symmetric environments. These solutions do not have the invariance or symmetry of the waveguide in which they propagate and exhibit three-dimensional propagation effects. The solution for cylindrically symmetric waveguides is employed in an examination of the effect of a seamount on the propagation of acoustic signals in the ocean waveguide. Isovelocity water and a rigid ocean bottom were assumed in order to facilitate the calculation. Local propagation effects induced by this simple geometric vertical structure and sound speed profile are compared with local propagation effects induced by a more realistic vertical structure and profile in order to validate the conclusions concerning propagation near the seamount. The effects of source and receiver depths and sub-bottom attenuation on the deflection effects of the seamount are also examined. In addition to blockage, it is found that enhanced geometrical spreading in the horizontal plane makes a significant contribution to the decrease in acoustic intensity when the source and receiver are on opposite sides of the seamount. It is also found that the seamount generates convergence zones in the horizontal plane. These convergence zones are a possible explanation for observed convergence zones in measured propagation near the Dickens seamount in the Northeast Pacific.
Xiao, Xifeng; Voelz, David G; Toselli, Italo; Korotkova, Olga
2016-05-20
Experimental and theoretical work has shown that atmospheric turbulence can exhibit "non-Kolmogorov" behavior including anisotropy and modifications of the classically accepted spatial power spectral slope, -11/3. In typical horizontal scenarios, atmospheric anisotropy implies that the variations in the refractive index are more spatially correlated in both horizontal directions than in the vertical. In this work, we extend Gaussian beam theory for propagation through Kolmogorov turbulence to the case of anisotropic turbulence along the horizontal direction. We also study the effects of different spatial power spectral slopes on the beam propagation. A description is developed for the average beam intensity profile, and the results for a range of scenarios are demonstrated for the first time with a wave optics simulation and a spatial light modulator-based laboratory benchtop counterpart. The theoretical, simulation, and benchtop intensity profiles show good agreement and illustrate that an elliptically shaped beam profile can develop upon propagation. For stronger turbulent fluctuation regimes and larger anisotropies, the theory predicts a slightly more elliptical form of the beam than is generated by the simulation or benchtop setup. The theory also predicts that without an outer scale limit, the beam width becomes unbounded as the power spectral slope index α approaches a maximum value of 4. This behavior is not seen in the simulation or benchtop results because the numerical phase screens used for these studies do not model the unbounded wavefront tilt component implied in the analytic theory.
Propagation of gravitational waves in the generalized tensor-vector-scalar theory
Sagi, Eva
2010-03-15
Efforts are underway to improve the design and sensitivity of gravitational wave detectors, with the hope that the next generation of these detectors will observe a gravitational wave signal. Such a signal will not only provide information on dynamics in the strong gravity regime that characterizes potential sources of gravitational waves, but will also serve as a decisive test for alternative theories of gravitation that are consistent with all other current experimental observations. We study the linearized theory of the tensor-vector-scalar theory of gravity with generalized vector action, an alternative theory of gravitation designed to explain the apparent deficit of visible matter in galaxies and clusters of galaxies without postulating yet-undetected dark matter. We find the polarization states and propagation speeds for gravitational waves in vacuum, and show that in addition to the usual transverse-traceless propagation modes, there are two more mixed longitudinal-transverse modes and two trace modes, of which at least one has longitudinal polarization. Additionally, the propagation speeds are different from the speed of light.
Application of ray theory to propagation of low frequency noise from wind turbines
NASA Technical Reports Server (NTRS)
Hawkins, James A.
1987-01-01
Ray theory is used to explain data from two experiments (1985 and 1985) on the propagation of low frequency sound generated by the WTS-4 wind turbine. Emphasis is on downwind data, but some upwind measurements taken during the 1985 experiment are also considered. General ray theory for a moving medium is reviewed and ray equations obtained. Restrictions are introduced simplifying the equations and permitting the use of a ray theory program MEDUSA, the computed propagation loss curve of which is compared to the measurements. Good qualitative agreement is obtained with 1984 downwind data. The results indicate that the downwind sound field is that of a near-ground sound channel. Although more scatter is seen in the 1985 data, agreement between theory and data is also good. In particular, the position and magnitude of the jump in the sound levels associated with the beginning of the sound channel is correctly predicted. The theoretical explanation of the upwind data is less successful. Ray theory calculations indicate the formation of a shadow zone that, in fact, does not occur. While no sharp shadow zone is apparent in the data, the general expectation (based on ray theory) that sound levels should be much reduced upwind is confirmed by the data.
NASA Technical Reports Server (NTRS)
Plumblee, H. E., Jr.; Dean, P. D.; Wynne, G. A.; Burrin, R. H.
1973-01-01
The results of an experimental and theoretical study of many of the fundamental details of sound propagation in hard wall and soft wall annular flow ducts are reported. The theory of sound propagation along such ducts and the theory for determining the complex radiation impedance of higher order modes of an annulus are outlined, and methods for generating acoustic duct modes are developed. The results of a detailed measurement program on propagation in rigid wall annular ducts with and without airflow through the duct are presented. Techniques are described for measuring cut-on frequencies, modal phase speed, and radial and annular mode shapes. The effects of flow velocity on cut-on frequencies and phase speed are measured. Comparisons are made with theoretical predictions for all of the effects studies. The two microphone method of impedance is used to measure the effects of flow on acoustic liners. A numerical study of sound propagation in annular ducts with one or both walls acoustically lined is presented.
Nonparametric Second-Order Theory of Error Propagation on Motion Groups.
Wang, Yunfeng; Chirikjian, Gregory S
2008-01-01
Error propagation on the Euclidean motion group arises in a number of areas such as in dead reckoning errors in mobile robot navigation and joint errors that accumulate from the base to the distal end of kinematic chains such as manipulators and biological macromolecules. We address error propagation in rigid-body poses in a coordinate-free way. In this paper we show how errors propagated by convolution on the Euclidean motion group, SE(3), can be approximated to second order using the theory of Lie algebras and Lie groups. We then show how errors that are small (but not so small that linearization is valid) can be propagated by a recursive formula derived here. This formula takes into account errors to second-order, whereas prior efforts only considered the first-order case. Our formulation is nonparametric in the sense that it will work for probability density functions of any form (not only Gaussians). Numerical tests demonstrate the accuracy of this second-order theory in the context of a manipulator arm and a flexible needle with bevel tip.
Nonparametric Second-Order Theory of Error Propagation on Motion Groups
Wang, Yunfeng; Chirikjian, Gregory S.
2010-01-01
Error propagation on the Euclidean motion group arises in a number of areas such as in dead reckoning errors in mobile robot navigation and joint errors that accumulate from the base to the distal end of kinematic chains such as manipulators and biological macromolecules. We address error propagation in rigid-body poses in a coordinate-free way. In this paper we show how errors propagated by convolution on the Euclidean motion group, SE(3), can be approximated to second order using the theory of Lie algebras and Lie groups. We then show how errors that are small (but not so small that linearization is valid) can be propagated by a recursive formula derived here. This formula takes into account errors to second-order, whereas prior efforts only considered the first-order case. Our formulation is nonparametric in the sense that it will work for probability density functions of any form (not only Gaussians). Numerical tests demonstrate the accuracy of this second-order theory in the context of a manipulator arm and a flexible needle with bevel tip. PMID:20333324
NASA Astrophysics Data System (ADS)
Vadepu, S. K.; Spencer, E. A.; Gollapalli, R.
2016-12-01
Shorter scale electron density irregularities in the ionosphere necessitates the consideration of diffractive in addition to refractive effects on the propagation of radio wave signals. For the GPS L1 frequency of 1575.42 MHz, the diffractive effects become appreciable for irregularities on the order of 1- 5 meters (around 5 to 25 wavelengths). Such irregularities are suggested during times of strong ionospheric scintillation. Although the diffractive effects are much weaker than the refraction which can be calculated using the geometrical optics approximation, we are interested to examine how the geometrical theory of diffraction (GTD) can be used to obtain higher order corrections to the propagated fields. Here we calculate the diffraction coefficients for an electromagnetic plane wave propagating through a small ionospheric patch, approximated as a circular convex lens. We use a particular form of the GTD, called the Uniform Theory Of Diffraction (UTD) (Pathak and Kouyoumjian, Proc. IEEE, vol. 62, no. 11, pp. 1448-1461) to extract diffraction coefficients for a plasma wedge in 2 dimensions, and then introduce a spatial attenuation factor for a curved edge as a modification to the diffracted rays as they propagate away from the simulated curved wedge. We estimate the diffraction contribution as a function of patch size, and evaluate the contribution of the diffracted component of the field to both the amplitude and phase scintillation of GPS L1 signals.
Towards the Finite Temperature Gluon Propagator in Landau Gauge Yang-Mills Theory
NASA Astrophysics Data System (ADS)
Maas, A.
2003-12-01
Yang-Mills theories undergo a deconfining phase transition at a critical temperature. In lattice calculations the temporal Wilson loop and. Z3 order parameter show above this temperature a behavior typical of deconfinement. A quantity of interest in the study of this transition is the gluon propagator and its evolution with temperature. This contribution describes the current status of an investigation of the finite temperature gluon propagator in Landau gauge. It analyzes the high temperature case. The resulting equations are compared to the corresponding ones of three-dimensional Yang-Mills theory. Under certain assumptions it is found that a kind of spatial "confinement" is still present, even at very high temperatures.
One-electron density matrices and energy gradients in second-order electron propagator theory
NASA Astrophysics Data System (ADS)
Cioslowski, Jerzy; Ortiz, J. V.
1992-06-01
A formalism for evaluation of the effective first-order density matrices associated with second-order electron propagator theory is described. Computer implementation of this formalism affords first-order density properties, such as dipole moments, and energy gradients. Given an initial state with N electrons, this approach enables geometry optimization of the ground and excited electronic states of species with N-1 and N+1 electrons. The performance of the present method is assessed with test calculations on the formyl radical.
Indoor propagation and assessment of blast waves from weapons using the alternative image theory
NASA Astrophysics Data System (ADS)
Kong, B.; Lee, K.; Lee, S.; Jung, S.; Song, K. H.
2016-03-01
Blast waves generated from the muzzles of various weapons might have significant effects on the human body, and these effects are recognized as being more severe when weapons are fired indoors. The risk can be assessed by various criteria, such as waveform, exposed energy, and model-based types. This study introduces a prediction model of blast wave propagation for estimating waveform parameters related to damage risk assessment. To simulate indoor multiple reflections in a simple way, the model is based on the alternative image theory and discrete wavefront method. The alternative theory is a kind of modified image theory, but it uses the image space concept from a receiver's perspective, so that it shows improved efficiency for indoor problems. Further, the discrete wavefront method interprets wave propagation as the forward movement of a finite number of wavefronts. Even though the predicted results show slight differences from the measured data, the locations of significant shock waves indicate a high degree of correlation between them. Since the disagreement results not from the proposed techniques but from the assumptions used, it is concluded that the model is appropriate for analysis of blast wave propagation in interior spaces.
Pressure wave propagation in fluid-filled co-axial elastic tubes. Part 1: Basic theory.
Berkouk, K; Carpenter, P W; Lucey, A D
2003-12-01
Our work is motivated by ideas about the pathogenesis of syringomyelia. This is a serious disease characterized by the appearance of longitudinal cavities within the spinal cord. Its causes are unknown, but pressure propagation is probably implicated. We have developed an inviscid theory for the propagation of pressure waves in co-axial, fluid-filled, elastic tubes. This is intended as a simple model of the intraspinal cerebrospinal-fluid system. Our approach is based on the classic theory for the propagation of longitudinal waves in single, fluid-filled, elastic tubes. We show that for small-amplitude waves the governing equations reduce to the classic wave equation. The wave speed is found to be a strong function of the ratio of the tubes' cross-sectional areas. It is found that the leading edge of a transmural pressure pulse tends to generate compressive waves with converging wave fronts. Consequently, the leading edge of the pressure pulse steepens to form a shock-like elastic jump. A weakly nonlinear theory is developed for such an elastic jump.
Robinson, P A
2012-01-01
It is shown how to compute effective and functional connection matrices (eCMs and fCMs) from anatomical CMs (aCMs) and corresponding strength-of-connection matrices (sCMs) using propagator methods in which neural interactions play the role of scatterings. This analysis demonstrates how network effects dress the bare propagators (the sCMs) to yield effective propagators (the eCMs) that can be used to compute the covariances customarily used to define fCMs. The results incorporate excitatory and inhibitory connections, multiple structures and populations, asymmetries, time delays, and measurement effects. They can also be postprocessed in the same manner as experimental measurements for direct comparison with data and thereby give insights into the role of coarse-graining, thresholding, and other effects in determining the structure of CMs. The spatiotemporal results show how to generalize CMs to include time delays and how natural network modes give rise to long-range coherence at resonant frequencies. The results are demonstrated using tractable analytic cases via neural field theory of cortical and corticothalamic systems. These also demonstrate close connections between the structure of CMs and proximity to critical points of the system, highlight the importance of indirect links between brain regions and raise the possibility of imaging specific levels of indirect connectivity. Aside from the results presented explicitly here, the expression of the connections among aCMs, sCMs, eCMs, and fCMs in terms of propagators opens the way for propagator theory to be further applied to analysis of connectivity. © 2012 American Physical Society
NASA Astrophysics Data System (ADS)
Robinson, P. A.
2012-01-01
It is shown how to compute effective and functional connection matrices (eCMs and fCMs) from anatomical CMs (aCMs) and corresponding strength-of-connection matrices (sCMs) using propagator methods in which neural interactions play the role of scatterings. This analysis demonstrates how network effects dress the bare propagators (the sCMs) to yield effective propagators (the eCMs) that can be used to compute the covariances customarily used to define fCMs. The results incorporate excitatory and inhibitory connections, multiple structures and populations, asymmetries, time delays, and measurement effects. They can also be postprocessed in the same manner as experimental measurements for direct comparison with data and thereby give insights into the role of coarse-graining, thresholding, and other effects in determining the structure of CMs. The spatiotemporal results show how to generalize CMs to include time delays and how natural network modes give rise to long-range coherence at resonant frequencies. The results are demonstrated using tractable analytic cases via neural field theory of cortical and corticothalamic systems. These also demonstrate close connections between the structure of CMs and proximity to critical points of the system, highlight the importance of indirect links between brain regions and raise the possibility of imaging specific levels of indirect connectivity. Aside from the results presented explicitly here, the expression of the connections among aCMs, sCMs, eCMs, and fCMs in terms of propagators opens the way for propagator theory to be further applied to analysis of connectivity.
Electron proton two-stream instability at the PSR.
Macek, R. J.; Browman, A.; Fitzgerald, D.; McCrady, R.; Merrill, F.; Plum, M.; Spickermann, T.; Wang, T. S.; Griffin, J.; Ng, K. Y.; Wildman, D.; Harkay, K.; Kustom, R.; Rosenberg, R.
2002-02-19
A strong, fast, transverse instability has long been observed at the Los Alamos Proton Storage Ring (PSR) where it is a limiting factor on peak intensity. Most of the available evidence, based on measurements of the unstable proton beam motion, is consistent with an electron-proton two-stream instability. The need for higher beam intensity at PSR [1] and for future high-intensity, proton drivers has motivated a multi-lab collaboration (LANL, ANL, FNAL, LBNL, BNL, ORNL, and PPPL) to coordinate research on the causes, dynamics and cures for this instability. Important characteristics of the electron cloud were recently measured with retarding field electron analyzers and various collection electrodes. Suppression of the electron cloud formation by TiN coatings has confirmed the importance of secondary emission processes in its generation. New tests of potential controls included dual harmonic rf, damping by higher order multipoles, damping by X,Y coupling and the use of inductive inserts to compensate longitudinal space charge forces. With these controls and higher rf voltage the PSR has accumulated stable beam intensity up to 9.7 {micro}C/pulse (6 x 10{sup 13} protons), which is a 60% increase over the previous maximum.
Electrostatic two-stream instability in Fermi-Dirac plasmas
NASA Astrophysics Data System (ADS)
Akbari-Moghanjoughi, M.; Mohammadnejad, M.; Esfandyari-Kalejahi, A.
2016-09-01
In this paper the electrostatic two-stream instability is investigated for a large range of plasma number-density using the quantum hydrodynamic model by incorporating the relativistic degeneracy, electron-exchange, quantum diffraction and strong parallel quantizing magnetic field effects. It is found that the electron diffraction effect significantly alters the instability growth rate in a wide range of plasma number density. Two cases of classical and quantum Landau quantization limits are compared and the parametric instability condition is closely inspected. It is remarked that for a given streaming speed the instability is bounded by an upper plasma number-density limit. It is also shown that for a given stream speed there is a maximal growth rate corresponding to specific plasma number-density and perturbation wavelength. Current study can help in better understanding of electron-beam plasma interactions and energy exchange for a wide area of number densities ranging from solid density, inertial confined plasmas, big planetary cores and compact stars. It may also be useful in understanding of electrostatic beam-plasma interactions and origin of large magnitude sustainable electrical currents in super-intense plasmas with critically high magnetic fields such as, pulsars, white dwarf interiors and neutron star crusts.
Computation of three-dimensional flows using two stream functions
NASA Technical Reports Server (NTRS)
Greywall, Mahesh S.
1991-01-01
An approach to compute 3-D flows using two stream functions is presented. The method generates a boundary fitted grid as part of its solution. Commonly used two steps for computing the flow fields are combined into a single step in the present approach: (1) boundary fitted grid generation; and (2) solution of Navier-Stokes equations on the generated grid. The presented method can be used to directly compute 3-D viscous flows, or the potential flow approximation of this method can be used to generate grids for other algorithms to compute 3-D viscous flows. The independent variables used are chi, a spatial coordinate, and xi and eta, values of stream functions along two sets of suitably chosen intersecting stream surfaces. The dependent variables used are the streamwise velocity, and two functions that describe the stream surfaces. Since for a 3-D flow there is no unique way to define two sets of intersecting stream surfaces to cover the given flow, different types of two sets of intersecting stream surfaces are considered. First, the metric of the (chi, xi, eta) curvilinear coordinate system associated with each type is presented. Next, equations for the steady state transport of mass, momentum, and energy are presented in terms of the metric of the (chi, xi, eta) coordinate system. Also included are the inviscid and the parabolized approximations to the general transport equations.
Propagation of in-plane wave in viscoelastic monolayer graphene via nonlocal strain gradient theory
NASA Astrophysics Data System (ADS)
Xiao, Weiwei; Li, Li; Wang, Meng
2017-06-01
The behaviors of monolayer graphene sheet have attracted increasing attention of many scientists and researchers. In this study, the propagation behaviors of in-plane wave in viscoelastic monolayer graphene are investigated. The constitutive equation and governing equation for in-plane wave propagation is developed by employing Hamilton's principle and nonlocal strain gradient theory. By solving the governing equation of motion, the closed-form dispersion relation between phase velocity and wave number is derived and an asymptotic phase velocity can be acquired. The effects of wave number, material length scale parameter, nonlocal parameter and damping coefficient on in-plane wave propagation behaviors are discussed in the numerical studies. It is found that, when exciting wavelengths or structural dimensions become comparable to the material length scale parameters and nonlocal parameters, the scaling effects on wave propagation behaviors are significant. For nanoscaled graphene sheet, the effects of nonlocal parameter, material length scale parameter and damping coefficient on phase velocity are tiny at low wave numbers while significant at high wave numbers. The phase velocity would increase with the increase of material length scale parameter or the decrease of nonlocal parameter and damping coefficient. Furthermore, results indicate that the asymptotic phase velocity can be increase by increasing material length scale parameter or decreasing nonlocal parameter.
Yang, Lee-Wei; Kitao, Akio; Huang, Bang-Chieh; Gō, Nobuhiro
2014-01-01
In this study, a general linear response theory (LRT) is formulated to describe time-dependent and -independent protein conformational changes upon CO binding with myoglobin. Using the theory, we are able to monitor protein relaxation in two stages. The slower relaxation is found to occur from 4.4 to 81.2 picoseconds and the time constants characterized for a couple of aromatic residues agree with those observed by UV Resonance Raman (UVRR) spectrometry and time resolved x-ray crystallography. The faster “early responses”, triggered as early as 400 femtoseconds, can be best described by the theory when impulse forces are used. The newly formulated theory describes the mechanical propagation following ligand-binding as a function of time, space and types of the perturbation forces. The “disseminators”, defined as the residues that propagate signals throughout the molecule the fastest among all the residues in protein when perturbed, are found evolutionarily conserved and the mutations of which have been shown to largely change the CO rebinding kinetics in myoglobin. PMID:25229149
Yang, Lee-Wei; Kitao, Akio; Huang, Bang-Chieh; Gō, Nobuhiro
2014-09-16
In this study, a general linear response theory (LRT) is formulated to describe time-dependent and -independent protein conformational changes upon CO binding with myoglobin. Using the theory, we are able to monitor protein relaxation in two stages. The slower relaxation is found to occur from 4.4 to 81.2 picoseconds and the time constants characterized for a couple of aromatic residues agree with those observed by UV Resonance Raman (UVRR) spectrometry and time resolved x-ray crystallography. The faster "early responses", triggered as early as 400 femtoseconds, can be best described by the theory when impulse forces are used. The newly formulated theory describes the mechanical propagation following ligand-binding as a function of time, space and types of the perturbation forces. The "disseminators", defined as the residues that propagate signals throughout the molecule the fastest among all the residues in protein when perturbed, are found evolutionarily conserved and the mutations of which have been shown to largely change the CO rebinding kinetics in myoglobin. Copyright © 2014 Biophysical Society. Published by Elsevier Inc. All rights reserved.
Arunasalam, V.
1995-07-01
It is shown here that the marginally mirror-trapped fraction of the newly-born fusion alpha particles in the deuterium-tritium (DT) reaction dominated tokamak plasmas can induce a two-stream cyclotron radiative instability for the fast Alfven waves propagating near the harmonics of the alpha particle cyclotron frequency {omega}{sub c{alpha}}. This can explain both the experimentally observed time behavior and the spatially localized origin of the fusion product ion cyclotron emission (ICE) in TFTR at frequencies {omega} {approx} m{omega}{sub c{alpha}}.
A theory of solar type 3 radio bursts
NASA Technical Reports Server (NTRS)
Goldstein, M. L.; Papadopoulos, K.; Smith, R. A.
1979-01-01
Energetic electrons propagating through the interplanetary medium are shown to excite the one dimensional oscillating two stream instability (OTSI). The OTSI is in turn stabilized by anomalous resistivity which completes the transfer of long wavelength Langmuir waves to short wavelengths, out of resonance with the electrons. The theory explains the small energy losses suffered by the electrons in propagating to 1 AU, the predominance of second harmonic radiation, and the observed correlation between radio and electron fluxes.
Radiative diffusivity factors in cirrus and stratocumulus clouds: Application to two-stream models
NASA Technical Reports Server (NTRS)
Stephens, Graeme L.; Flatau, P. J.; Tsay, S.-C.; Hein, Paul F.
1990-01-01
A diffusion-like description of radiative transfer in clouds and the free atmosphere is often used. The two stream model is probably the best known example of such a description. The main idea behind the approach is that only the first few moments of radiance are needed to describe the radiative field correctly. Integration smooths details of the angular distribution of specific intensity and it is assumed that the closure parameters of the theory (diffusivity factors) are only weakly dependent on the distribution. The diffusivity factors are investigated using the results obtained from both Stratocumulus and Cirrus phases of FIRE experiment. A new theoretical framework is described in which two (upwards and downwards) diffusivity factors are used and a detailed multistream model is used to provide further insight about both the diffusivity factors and their dependence on scattering properties of clouds.
Space-time evolution of the nonlinear two-stream instability
Lemons, D.S.; Jones, M.E.; Lee, H.
1983-01-01
A cold electron beam penetrating a cold plasma is electrostatically unstable. The instability produces a growing electric field that saturates when the beam electrons are suddenly trapped by a single wave. During trapping a significant amount of energy is transferred from the beam to the field and ultimately to the plasma. At Los Alamos experiments are being performed that demonstrate this anomalous beam-driven plasma heating. The heating efficiency is a function of the phase velocity of the trapping wave. According to our generalization of a previous calculation, the instability is absolute and its wave form evolves in both space and time. Modifying trapping theory to account for the space and time evolution of the two-stream instability, we find that the heating efficiency should change in time. This prediction is in agreement with results from one-dimensional PIC simulations.
Kinetic theory of hydromagnetic turbulence. I. Formal results for parallel propagation
NASA Astrophysics Data System (ADS)
Yoon, Peter H.
2007-10-01
Formal weak turbulence kinetic equations for magnetized collisionless plasmas are derived. The kinetic theory of plasma turbulence found in the literature is largely applicable for unmagnetized plasmas, and most of the available literature only deal with electrostatic Langmuir turbulence problem. However, real plasmas in nature and laboratory are usually immersed in magnetic fields. At present there is no practical kinetic theory for turbulence in magnetized plasmas. The present paper and a companion article [P. H. Yoon and T.-M. Fang, Phys. Plasmas 14, 102303 (2007)] constitute a first step in the formulation of general kinetic theory for magnetized plasmas. For the sake of simplicity, it is assumed that turbulent fluctuations predominantly propagate along the direction of ambient magnetic field vector, and that the characteristic frequency associated with the fluctuations is much lower than the electron gyrofrequency, i.e., hydromagnetic turbulence. The effects of spontaneous thermal fluctuation and spatial inhomogeneity are also ignored.
Shock Waves Propagation in Scope of the Nonlocal Theory of Dynamical Plasticity
NASA Astrophysics Data System (ADS)
Khantuleva, Tatyana A.
2004-07-01
From the point of view of the modern statistical mechanics the problems on shock compression of solids require a reformulation in terms of highly nonequilibrium effects arising inside the wave front. The self-organization during the multiscale and multistage momentum and energy exchange are originated by the correlation function. The theory of dynamic plasticity has been developed by the author on the base of the self-consistent nonlocal hydrodynamic approach had been applied to the shock wave propagation in solids. Nonlocal balance equations describe both the reversible wave type transport at the initial stage and the diffusive (dissipative) one in the end. The involved inverse influence of the mesoeffects on the wave propagation makes the formulation of problems self-consistent and involves a concept of the cybernetic control close-loop.
Yoon, Peter H.
2015-09-15
A previous paper [P. H. Yoon, “Kinetic theory of turbulence for parallel propagation revisited: Formal results,” Phys. Plasmas 22, 082309 (2015)] revisited the second-order nonlinear kinetic theory for turbulence propagating in directions parallel/anti-parallel to the ambient magnetic field, in which the original work according to Yoon and Fang [Phys. Plasmas 15, 122312 (2008)] was refined, following the paper by Gaelzer et al. [Phys. Plasmas 22, 032310 (2015)]. The main finding involved the dimensional correction pertaining to discrete-particle effects in Yoon and Fang's theory. However, the final result was presented in terms of formal linear and nonlinear susceptibility response functions. In the present paper, the formal equations are explicitly written down for the case of low-to-intermediate frequency regime by making use of approximate forms for the response functions. The resulting equations are sufficiently concrete so that they can readily be solved by numerical means or analyzed by theoretical means. The derived set of equations describe nonlinear interactions of quasi-parallel modes whose frequency range covers the Alfvén wave range to ion-cyclotron mode, but is sufficiently lower than the electron cyclotron mode. The application of the present formalism may range from the nonlinear evolution of whistler anisotropy instability in the high-beta regime, and the nonlinear interaction of electrons with whistler-range turbulence.
Constraints on the infrared behavior of the ghost propagator in Yang-Mills theories
Cucchieri, A.; Mendes, T.
2008-11-01
We present rigorous upper and lower bounds for the momentum-space ghost propagator G(p) of Yang-Mills theories in terms of the smallest nonzero eigenvalue (and of the corresponding eigenvector) of the Faddeev-Popov matrix. We apply our analysis to data from simulations of SU(2) lattice gauge theory in Landau gauge, using the largest lattice sizes to date. Our results suggest that, in three and in four space-time dimensions, the Landau gauge ghost propagator is not enhanced as compared to its tree-level behavior. This is also seen in plots and fits of the ghost dressing function. In the two-dimensional case, on the other hand, we find that G(p) diverges as p{sup -2-2{kappa}} with {kappa}{approx_equal}0.15, in agreement with A. Maas, Phys. Rev. D 75, 116004 (2007). We note that our discussion is general, although we make an application only to pure gauge theory in Landau gauge. Our simulations have been performed on the IBM supercomputer at the University of Sao Paulo.
Constraints on the infrared behavior of the ghost propagator in Yang-Mills theories
NASA Astrophysics Data System (ADS)
Cucchieri, A.; Mendes, T.
2008-11-01
We present rigorous upper and lower bounds for the momentum-space ghost propagator G(p) of Yang-Mills theories in terms of the smallest nonzero eigenvalue (and of the corresponding eigenvector) of the Faddeev-Popov matrix. We apply our analysis to data from simulations of SU(2) lattice gauge theory in Landau gauge, using the largest lattice sizes to date. Our results suggest that, in three and in four space-time dimensions, the Landau gauge ghost propagator is not enhanced as compared to its tree-level behavior. This is also seen in plots and fits of the ghost dressing function. In the two-dimensional case, on the other hand, we find that G(p) diverges as p-2-2κ with κ≈0.15, in agreement with A. Maas, Phys. Rev. D 75, 116004 (2007)PRVDAQ0556-282110.1103/PhysRevD.75.116004. We note that our discussion is general, although we make an application only to pure gauge theory in Landau gauge. Our simulations have been performed on the IBM supercomputer at the University of São Paulo.
More on Gribov copies and propagators in Landau-gauge Yang-Mills theory
Maas, Axel
2009-01-01
Fixing a gauge in the nonperturbative domain of Yang-Mills theory is a nontrivial problem due to the presence of Gribov copies. In particular, there are different gauges in the nonperturbative regime which all correspond to the same definition of a gauge in the perturbative domain. Gauge-dependent correlation functions may differ in these gauges. Two such gauges are the minimal Landau gauge and the absolute Landau gauge, both corresponding to the perturbative Landau gauge. These, and their numerical implementation, are described and presented in detail. Other choices will also be discussed. This investigation is performed, using numerical lattice gauge theory calculations, by comparing the propagators of gluons and ghosts for the minimal Landau gauge and the absolute Landau gauge in SU(2) Yang-Mills theory. It is found that the propagators are different in the far infrared and even at energy scales of the order of half a GeV. In particular, the finite-volume effects are also modified. This is observed in two and three dimensions. Some remarks on the four-dimensional case are provided as well.
Yang, Li; Miklavcic, Stanley J
2005-09-01
A generally applicable theoretical model describing light propagating through turbid media is proposed. The theory is a generalization of the revised Kubelka-Munk theory, extending its applicability to accommodate a wider range of absorption influences. A general expression for a factor taking into account the effect of scattering on the total photon path traversed in a turbid medium is derived. The extended model is applied to systems of ink-dyed paper sheets-mixtures of wood fibers with dyes-which represent examples of systems that have thus far eluded the original Kubelka-Munk model. The results of simulations of the spectral dependence of Kubelka-Munk coefficients of absorption and scattering show that they compare very well with those derived from experimental results.
The physical theory of one dimensional galactic cosmic-ray propagation in the atmosphere
NASA Technical Reports Server (NTRS)
Obrien, K.
1972-01-01
An analytical theory of atmospheric cosmic-ray propagation is developed based on a phenomenological model of hadron-nucleus collisions. This model correctly predicts the sea level cosmic-ray nucleon, pion and muon spectra, the cosmic-ray ionization profile in the atmosphere, and neutron flux and density profiles in the atmosphere. It is concluded that the large scale properties of atmospheric cosmic-rays can be accurately predicted on the basis of a nucleonic cascade with all secondaries mediated by pion production. Implications for energy independence of cross sections, the recent 70 GeV results from Serpukhov, and nucleonic relaxation rates in the atmosphere are discussed.
The variation with T(e) and T(i) of the velocity of unstable ionospheric two-stream waves
NASA Astrophysics Data System (ADS)
Farley, Donald; Providakes, Jason
1989-11-01
In order to test the validity of the existing expressions for the ion-acoustic velocity, simultaneous measurements were made of the electron and ion temperatures together with full spectral measurements of the phase velocity of type 4 waves in the auroral zone. Details of the European Incoherent Scatter experiment using the Cornell University Portable Radar Interferometer are described, and a linear theory is developed for two-stream waves, with a fluid model used for the electrons and a kinetic model for the ions. The linear theory is found to be in satisfactory agreeement with the experimental results.
Nonlinear theory of shocked sound propagation in a nearly choked duct flow
NASA Astrophysics Data System (ADS)
Myers, M. K.; Callegari, A. J.
1982-04-01
The development of shocks in the sound field propagating through a nearly choked duct flow is analyzed by extending a quasi-one dimensional theory. The theory is applied to the case in which sound is introduced into the flow by an acoustic source located in the vicinity of a near-sonic throat. Analytical solutions for the field are obtained which illustrate the essential features of the nonlinear interaction between sound and flow. Numerical results are presented covering ranges of variation of source strength, throat Mach number, and frequency. It is found that the development of shocks leads to appreciable attenuation of acoustic power transmitted upstream through the near-sonic flow. It is possible, for example, that the power loss in the fundamental harmonic can be as much as 90% of that introduced at the source.
Nonlinear theory of shocked sound propagation in a nearly choked duct flow
NASA Technical Reports Server (NTRS)
Myers, M. K.; Callegari, A. J.
1982-01-01
The development of shocks in the sound field propagating through a nearly choked duct flow is analyzed by extending a quasi-one dimensional theory. The theory is applied to the case in which sound is introduced into the flow by an acoustic source located in the vicinity of a near-sonic throat. Analytical solutions for the field are obtained which illustrate the essential features of the nonlinear interaction between sound and flow. Numerical results are presented covering ranges of variation of source strength, throat Mach number, and frequency. It is found that the development of shocks leads to appreciable attenuation of acoustic power transmitted upstream through the near-sonic flow. It is possible, for example, that the power loss in the fundamental harmonic can be as much as 90% of that introduced at the source.
Ahmad, Nafis; Tripathi, V. K.; Rafat, M.; Husain, Mudassir M.
2009-06-15
An analytical formalism of oscillating two stream instability of a large amplitude electromagnetic wave in the ion cyclotron range of frequency in a plasma is developed. The instability produces electrostatic ion cyclotron sidebands and a driven low frequency mode. The nonlinear coupling arises primarily due to the motion of ions and is strong when the pump frequency is close to ion cyclotron frequency and the oscillatory ion velocity is a significant fraction of acoustic speed. For propagation perpendicular to the ambient magnetic field, the X-mode pump wave produces flute type perturbation with maximum growth rate at some specific wavelengths, which are three to four times larger than the ion Larmor radius. For propagation at oblique angles to ambient magnetic field, the ion cyclotron O-mode, the growth rate increases with the wave number of the low frequency mode.
Duality/propagation properties of gauge theories and attempts at supersymmetry breaking in N=4 SYM
NASA Astrophysics Data System (ADS)
Sarioglu, Bahtiyar Ozgur
2000-07-01
We first derive the conditions on a general gauge vector action for invariance under electromagnetic duality transformations using the Hamiltonian formulation. We then present the shock-free wave propagation requirements for various massless fields. First, we briefly argue how the ``completely exceptional'' approach, originally developed to study the characteristics of hyperbolic systems in 1 + 1 dimensions, can be generalized to higher dimensions and used to describe propagation without emerging shocks, with characteristic flow remaining parallel along the waves. We study the resulting requirements for scalar, vector, vector-scalar and gravity models and characterize physically acceptable actions in each case. Among the models of nonlinear electrodynamics we show that only Maxwell and Born-Infeld also obey duality invariance. Separately we show that, for actions depending only on the F
Theory for accelerated slow crack propagation in polyethylene fuel pipes. Annual report 1984-1985
Moet, A.; Chudnovsky, A.; Sehanobish, K.; Kasakevich, M.L.; Chaoui, K.
1985-04-01
Studies of field failure indicate that polyethylene fuel pipe fails by brittle crack propagation. To reproduce this type of failure in accelerated laboratory testing requires a similarity criterion. Quantitative fractographic analysis of field failure in MDPE pipe suggests that the number of ligaments broken per unit brittle crack excursion could probably serve as a similarity parameter. Efforts to accelerate brittle fracture in polyethylene has been successful under fatigue loading in 4'' MDPE pipe and in HDPE. The latter, used as a model material, displayed significant damage evolution that enabled the authors to apply concepts of the crack layer theory to describe entire slow crack-propagation regime. It is found that rate of crack extension is controlled by the rate of expansion and distortion (shape changes) of the damage zone preceding the crack. A method was developed to quantify this phenomena. It is also found that the observed energy release rate is significantly less than the theoretical predictions, for large cracks. Research is continued to develop quantitative account of this phenomena within the framework of the crack-layer theory.
NASA Astrophysics Data System (ADS)
Fan, Qiulin; Takatsubo, Junji; Yamamoto, Shigeyuki
1999-10-01
A straightforward nondestructive method based on the probabilistic theory of ultrasonic wave propagation [JSME Int. J., Ser. A, Mech. Mater. Eng. 39, 266 (1996)] was developed to quantitatively evaluate porosities, pore shapes, and pore sizes in advanced porous ceramics merely by measuring the ultrasonic delay time and pulse width. The extensive ultrasonic measurements and image microanalyses were conducted in advanced porous alumina, sialon, and zirconia with different porosities. A universal equation was established for porous ceramics, clarifying the intrinsic relationships between ultrasonic characteristics (propagation time and pulse width) and pore distribution (porosity, pore shape, and pore size). The critical volume fraction porosity were estimated separately as approximately 0.06, 0.11, and 0.10 in these ceramics using image microanalysis techniques, at which the transition from the continuous to discontinuous pore phase takes place during sintering. An excellent agreement of two useful corollaries with the data on the above nondestructive and destructive examinations validates the quantitative applicability of the probabilistic theory to pore characterization of advanced ceramics, metals, and their combinations.
Calculation of positron binding energies using the generalized any particle propagator theory.
Romero, Jonathan; Charry, Jorge A; Flores-Moreno, Roberto; Varella, Márcio T do N; Reyes, Andrés
2014-09-21
We recently extended the electron propagator theory to any type of quantum species based in the framework of the Any-Particle Molecular Orbital (APMO) approach [J. Romero, E. Posada, R. Flores-Moreno, and A. Reyes, J. Chem. Phys. 137, 074105 (2012)]. The generalized any particle molecular orbital propagator theory (APMO/PT) was implemented in its quasiparticle second order version in the LOWDIN code and was applied to calculate nuclear quantum effects in electron binding energies and proton binding energies in molecular systems [M. Díaz-Tinoco, J. Romero, J. V. Ortiz, A. Reyes, and R. Flores-Moreno, J. Chem. Phys. 138, 194108 (2013)]. In this work, we present the derivation of third order quasiparticle APMO/PT methods and we apply them to calculate positron binding energies (PBEs) of atoms and molecules. We calculated the PBEs of anions and some diatomic molecules using the second order, third order, and renormalized third order quasiparticle APMO/PT approaches and compared our results with those previously calculated employing configuration interaction (CI), explicitly correlated and quantum Montecarlo methodologies. We found that renormalized APMO/PT methods can achieve accuracies of ~0.35 eV for anionic systems, compared to Full-CI results, and provide a quantitative description of positron binding to anionic and highly polar species. Third order APMO/PT approaches display considerable potential to study positron binding to large molecules because of the fifth power scaling with respect to the number of basis sets. In this regard, we present additional PBE calculations of some small polar organic molecules, amino acids and DNA nucleobases. We complement our numerical assessment with formal and numerical analyses of the treatment of electron-positron correlation within the quasiparticle propagator approach.
Calculation of positron binding energies using the generalized any particle propagator theory
Romero, Jonathan; Charry, Jorge A.; Flores-Moreno, Roberto; Varella, Márcio T. do N.; Reyes, Andrés
2014-09-21
We recently extended the electron propagator theory to any type of quantum species based in the framework of the Any-Particle Molecular Orbital (APMO) approach [J. Romero, E. Posada, R. Flores-Moreno, and A. Reyes, J. Chem. Phys. 137, 074105 (2012)]. The generalized any particle molecular orbital propagator theory (APMO/PT) was implemented in its quasiparticle second order version in the LOWDIN code and was applied to calculate nuclear quantum effects in electron binding energies and proton binding energies in molecular systems [M. Díaz-Tinoco, J. Romero, J. V. Ortiz, A. Reyes, and R. Flores-Moreno, J. Chem. Phys. 138, 194108 (2013)]. In this work, we present the derivation of third order quasiparticle APMO/PT methods and we apply them to calculate positron binding energies (PBEs) of atoms and molecules. We calculated the PBEs of anions and some diatomic molecules using the second order, third order, and renormalized third order quasiparticle APMO/PT approaches and compared our results with those previously calculated employing configuration interaction (CI), explicitly correlated and quantum Montecarlo methodologies. We found that renormalized APMO/PT methods can achieve accuracies of ∼0.35 eV for anionic systems, compared to Full-CI results, and provide a quantitative description of positron binding to anionic and highly polar species. Third order APMO/PT approaches display considerable potential to study positron binding to large molecules because of the fifth power scaling with respect to the number of basis sets. In this regard, we present additional PBE calculations of some small polar organic molecules, amino acids and DNA nucleobases. We complement our numerical assessment with formal and numerical analyses of the treatment of electron-positron correlation within the quasiparticle propagator approach.
Calculation of positron binding energies using the generalized any particle propagator theory
NASA Astrophysics Data System (ADS)
Romero, Jonathan; Charry, Jorge A.; Flores-Moreno, Roberto; Varella, Márcio T. do N.; Reyes, Andrés
2014-09-01
We recently extended the electron propagator theory to any type of quantum species based in the framework of the Any-Particle Molecular Orbital (APMO) approach [J. Romero, E. Posada, R. Flores-Moreno, and A. Reyes, J. Chem. Phys. 137, 074105 (2012)]. The generalized any particle molecular orbital propagator theory (APMO/PT) was implemented in its quasiparticle second order version in the LOWDIN code and was applied to calculate nuclear quantum effects in electron binding energies and proton binding energies in molecular systems [M. Díaz-Tinoco, J. Romero, J. V. Ortiz, A. Reyes, and R. Flores-Moreno, J. Chem. Phys. 138, 194108 (2013)]. In this work, we present the derivation of third order quasiparticle APMO/PT methods and we apply them to calculate positron binding energies (PBEs) of atoms and molecules. We calculated the PBEs of anions and some diatomic molecules using the second order, third order, and renormalized third order quasiparticle APMO/PT approaches and compared our results with those previously calculated employing configuration interaction (CI), explicitly correlated and quantum Montecarlo methodologies. We found that renormalized APMO/PT methods can achieve accuracies of ˜0.35 eV for anionic systems, compared to Full-CI results, and provide a quantitative description of positron binding to anionic and highly polar species. Third order APMO/PT approaches display considerable potential to study positron binding to large molecules because of the fifth power scaling with respect to the number of basis sets. In this regard, we present additional PBE calculations of some small polar organic molecules, amino acids and DNA nucleobases. We complement our numerical assessment with formal and numerical analyses of the treatment of electron-positron correlation within the quasiparticle propagator approach.
Modeling of a Compact Terahertz Source based on the Two-Stream Instability
Svimonishvili, Tengiz
2016-05-17
THz radiation straddles the microwave and infrared bands of the electromagnetic spectrum, thus combining the penetrating power of lower-frequency waves and imaging capabilities of higher-energy infrared radiation. THz radiation is employed in various elds such as cancer research, biology, agriculture, homeland security, and environmental monitoring. Conventional vacuum electronic sources of THz radiation (e.g., fast- and slow-wave devices) either require very small structures or are bulky and expensive to operate. Optical sources necessitate cryogenic cooling and are presently capable of producing milliwatt levels of power at THz frequencies. We propose a millimeter and sub-millimeter wave source based on a well-known phenomenon called the two-stream instability. The two-beam source relies on lowenergy and low-current electron beams for operation. Also, it is compact, simple in design, and does not contain expensive parts that require complex machining and precise alignment. In this dissertation, we perform 2-D particle-in-cell (PIC) simulations of the interaction region of the two-beam source. The interaction region consists of a beam pipe of radius ra and two electron beams of radius rb co-propagating and interacting inside the pipe. The simulations involve the interaction of unmodulated (no initial energy modulation) and modulated (energy-modulated, seeded at a given frequency) electron beams. In addition, both cold (monoenergetic) and warm (Gaussian) beams are treated.
NASA Astrophysics Data System (ADS)
Muschietti, L.; Lembege, B.
2015-12-01
toward upstream for the oblique whistlers, as expected. We present a synthetic view of wave emissions of two-stream origin and connect our results with the low-frequency whistlers of Hellinger and Mangeney [JGR 102, 1997], the MTSI-1 and 2 of Matsukyio and Scholer [JGR 111, 2006], and the Bernstein waves of Muschietti and Lembege [JGR 118, 2013].
Lorentz covariant theory of light propagation in gravitational fields of arbitrary-moving bodies
NASA Astrophysics Data System (ADS)
Kopeikin, Sergei M.; Schäfer, Gerhard
1999-12-01
The Lorentz covariant theory of the propagation of light in the (weak) gravitational fields of N-body systems consisting of arbitrarily moving pointlike bodies with constant masses ma (a=1,2,...,N) is constructed. The theory is based on the Liénard-Wiechert representation of the metric tensor which describes a retarded type solution of the gravitational field equations. A new approach for integrating the equations of motion of light particles (photons) depending on the retarded time argument is invented. Its application in the first post-Minkowskian approximation, which is linear with respect to the universal gravitational constant G makes it evident that the equations of light propagation admit to be integrated straightforwardly by quadratures. Explicit expressions for the trajectory of a light ray and its tangent vector are obtained in algebraically closed form in terms of functionals of retarded time. General expressions for the relativistic time delay, the angle of light deflection, and the gravitational shift of electromagnetic frequency are derived in the form of instantaneous functions of retarded time. They generalize previously known results for the case of static or uniformly moving bodies. The most important applications of the theory to relativistic astrophysics and astrometry are given. They include a discussion of the velocity-dependent terms in the gravitational lens equation, the Shapiro time delay in binary pulsars, gravitational Doppler shift, and a precise theoretical formulation of the general relativistic algorithms of data processing of radio and optical astrometric measurements made in the nonstationary gravitational field of the solar system. Finally, proposals for future theoretical work being important for astrophysical applications are formulated.
NASA Astrophysics Data System (ADS)
Wang, Ying; Yuan, Chengxun; Jia, Jieshu; Gao, Ruilin; Hong, Yunhai; Yao, Jingfeng; Li, Hui; Zhou, Zhongxiang; Wu, Jian
2017-06-01
The multiple coherent identical Gaussian beams with symmetry distribution are abbreviated as multi-Gaussian beam, of which the propagation characters in collisionless plasma are studied with the WKB method and higher order paraxial theory. The initial beam profile presents the flat top like or hollow like distribution when the eccentric displacement is large enough. Based on the derived nonlinear propagation equations, the initial condition analyses are performed, and the impact of eccentric displacement on the free propagation effect and ponderomotive nonlinearity is thoroughly discussed. The propagation characters of dimensionless beam width parameter, spot intensity, and spatial distribution of plasma electron density are presented. Results show that the initial spot intensity is expanding outwards along the propagation and the ring structure of electron evacuation in plasmas is generated.
R. Davidso; H. Qin
2000-06-15
Use is made of the Vlasov-Maxwell equations to describe the electron-ion two-stream instability driven by the directed axial motion of a high-intensity ion beam propagating through a stationary population of (unwanted) background electrons. The ion beam is treated as continuous in the z-direction, and the electrons are electrostatically confined in the transverse direction by the space-charge potential produced by the excession charge. The analysis is carried out for arbitrary beam intensity, consistent with transverse confinement of the beam particles, and arbitrary fractional charge neutralization by the background electrons. For the case of overlapping step-function ion and electron density profiles, corresponding to monoenergetic electrons and ions in the transverse direction, detailed stability properties are calculated, including the important effects of an axial momentum spread, over a wide range of system parameters for dipole perturbations with azimuthal mode number l=1. The two-stream instability growth rate is found to increase with increasing beam intensity, increasing fractional charge neutralization, and decreasing proximity of the conducting wall. It is shown that Landau damping associated with a modest axial momentum spread of the beam ions and background electrons has a strong stabilizing influence on the instability.
Willatzen, M
2001-01-01
First-order perturbation theory is employed to examine sound propagation in flowing media confined by a cylindrical waveguide. The use of perturbation theory allows examination of mode phase-speed changes due to any radially dependent flow w(r) as long as the flow magnitude is sufficiently small. The condition to be fulfilled is satisfied in the flow range: 0-0.3 m/s for the specific values of cylinder radius, ultrasound frequency, and sound speed analyzed in the present work [in the general case, however, the condition in Eq. (1) of the present work must be fulfilled]. This freedom of choice, i.e., the possibility to handle any radial flow profile, is used to analyze two flow profile cases: (1) where w(r) is a linear combination of a laminar flow profile and a flat profile corresponding to turbulent flow, and (2) where w(r) is a linear combination of a laminar flow profile and a more realistic logarithmic-dependent turbulent flow profile. In both cases, it is shown that large errors may result in ultrasound flow measurements if several modes are excited by the transmitting transducer, and that a logarithmic flow profile in the turbulent regime leads to somewhat larger measurement errors at high flow values as compared to assuming a simple flat profile in the turbulent regime.
Quantum theory for the nanoscale propagation of light through stacked thin film layers
NASA Astrophysics Data System (ADS)
Forbes, Kayn A.; Williams, Mathew D.; Andrews, David L.
2016-04-01
Stacked multi-layer films have a range of well-known applications as optical elements. The various types of theory commonly used to describe optical propagation through such structures rarely take account of the quantum nature of light, though phenomena such as Anderson localization can be proven to occur under suitable conditions. In recent and ongoing work based on quantum electrodynamics, it has been shown possible to rigorously reformulate, in photonic terms, the fundamental mechanisms that are involved in reflection and optical transmission through stacked nanolayers. Accounting for sum-over-pathway features in the quantum mechanical description, this theory treats the sequential interactions of photons with material boundaries in terms of individual scattering events. The study entertains an arbitrary number of reflections in systems comprising two or three internally reflective surfaces. Analytical results are secured, without recourse to FTDT (finite-difference time-domain) software or any other finite-element approximations. Quantum interference effects can be readily identified. The new results, which cast the optical characteristics of such structures in terms of simple, constituent-determined properties, are illustrated by model calculations.
Light propagation in moderately dense particle systems: a reexamination of the Kubelka-Munk theory.
Latimer, P; Noh, S J
1987-02-01
A numerical method (NM) is developed to characterize radiative transfer in a moderately dense particle population, i.e., a suspension of concentration of <1-10% by volume. It assumes that the particles scatter in accord with the Mie equations, that the propagation of light over short distances is in accord with the exponential transmission law, and that the light flows in many (thirty-six) directions. For representative systems, predictions of the Kubelka-Munk theory (KMT) are compared with those of the NM; partial agreement is found. While this theory can be a useful tool, radiative transport in representative samples is found not to obey strictly either the assumptions for writing the basic differential equations of the KMT or those for solving them. The movement of diffuse light through an attenuating system is found to often collimate it, not to make it more diffuse as expected. This effect causes errors in absolute KMT predictions. New transport equations, like Schuster's, with four parameters instead of two are written and solved to obtain some new KMT equations. Their predictions are compared with those of the NM.
NASA Astrophysics Data System (ADS)
Chen, Chin-Wu; Huang, Chen-Fen; Lin, Chien-Wen; Kuo, Ban-Yuan
2017-05-01
T waves are conventionally defined as seismically generated acoustic energy propagating horizontally over long distances within the minimum sound speed layer in the ocean (SOFAR axis minimum). However, T waves have also been observed by ocean-bottom seismometers in ocean basins at depths greater than the SOFAR axis minimum. Previously, nongeometrical processes, such as local scattering at rough seafloor and water-sediment interface coupling, have been proposed as possible mechanisms for deep seafloor detection of T waves. Here we employ a new T wave modeling approach based on hydroacoustic ray theory to demonstrate that seismoacoustic energy can propagate to reach deep seafloor, previously considered as shadow zone of acoustic propagation. Our new hydroacoustic simulations explain well the observations of T waves on ocean-bottom seismometers at deep ocean basins east of Taiwan and shed new light on the mechanism for deep ocean T wave propagation.
NASA Astrophysics Data System (ADS)
Ancora, Daniele; Zacharopoulos, Athanasios; Ripoll, Jorge; Zacharakis, Giannis
2015-07-01
One of the major challenges within Optical Imaging, photon propagation through clear layers embedded between scattering tissues, can be now efficiently modelled in real-time thanks to the Monte Carlo approach based on GPU. Because of its nature, the photon propagation problem can be very easily parallelized and ran on low cost hardware, avoiding the need for expensive Super Computers. A comparison between Diffusion and MC photon propagation theory is presented in this work with application to neuroimaging, investigating low scattering regions in a mouse-like phantom. Regions such as the Cerebral Spinal Fluid, are currently not taken into account in the classical computational models because of the impossibility to accurately simulate light propagation using fast Diffusive Equation approaches, leading to inaccuracies during the reconstruction process. The goal of the study presented here, is to reduce and further improve the computation accuracy of the reconstructed solution in a highly realistic scenario in the case of neuroimaging in preclinical mouse models.
On the propagation of second-sound in linear and nonlinear media: Results from Green-Naghdi theory
NASA Astrophysics Data System (ADS)
Bargmann, S.; Steinmann, P.; Jordan, P. M.
2008-06-01
We investigate thermal wave propagation in one-dimensional media according to Green-Naghdi's heat conduction theory. Under the linearized theory, the dynamic propagation of a Heaviside input signal in a half-space is examined. Exact analytical solutions are derived for the three cases (i.e., types I-III) of this theory. We then numerically compare the evolution of the linear and nonlinear type-II temperature profiles, and track the finite-time blow-up of the latter's temperature rate wave, in the setting of an initial-boundary value problem involving a sudden sinusoidal input signal. Lastly, an exact traveling wave solution of a lossless, nonlinear equation, which arises under type-II theory, is determined and analyzed.
Analysis of light propagation in slotted resonator based systems via coupled-mode theory.
Hiremath, Kirankumar R; Niegemann, Jens; Busch, Kurt
2011-04-25
Optical devices with a slot configuration offer the distinct feature of strong electric field confinement in a low refractive index region and are, therefore, of considerable interest in many applications. In this work we investigate light propagation in a waveguide-resonator system where the resonators consist of slotted ring cavities. Owing to the presence of curved material interfaces and the vastly different length scales associated with the sub-wavelength sized slots and the waveguide-resonator coupling regions on the one hand, and the spatial extent of the ring on the other hand, this prototypical system provides significant challenges to both direct numerical solvers and semi-analytical approaches. We address these difficulties by modeling the slot resonators via a frequency-domain spatial Coupled-Mode Theory (CMT) approach, and compare its results with a Discontinuous Galerkin Time-Domain (DGTD) solver that is equipped with curvilinear finite elements. In particular, the CMT model is built on the underlying physical properties of the slotted resonators, and turns out to be quite efficient for analyzing the device characteristics. We also discuss the advantages and limitations of the CMT approach by comparing the results with the numerically exact solutions obtained by the DGTD solver. Besides providing considerable physical insight, the CMT model thus forms a convenient basis for the efficient analysis of more complex systems with slotted resonators such as entire arrays of waveguide-coupled resonators and systems with strongly nonlinear optical properties.
Wave-like warp propagation in circumbinary discs - I. Analytic theory and numerical simulations
NASA Astrophysics Data System (ADS)
Facchini, Stefano; Lodato, Giuseppe; Price, Daniel J.
2013-08-01
In this paper we analyse the propagation of warps in protostellar circumbinary discs. We use these systems as a test environment in which to study warp propagation in the bending-wave regime, with the addition of an external torque due to the binary gravitational potential. In particular, we want to test the linear regime, for which an analytic theory has been developed. In order to do so, we first compute analytically the steady-state shape of an inviscid disc subject to the binary torques. The steady-state tilt is a monotonically increasing function of radius, but misalignment is found at the disc inner edge. In the absence of viscosity, the disc does not present any twist. Then, we compare the time-dependent evolution of the warped disc calculated via the known linearized equations both with the analytic solutions and with full 3D numerical simulations. The simulations have been performed with the PHANTOM smoothed particle hydrodynamics (SPH) code using two million particles. We find a good agreement both in the tilt and in the phase evolution for small inclinations, even at very low viscosities. Moreover, we have verified that the linearized equations are able to reproduce the diffusive behaviour when α > H/R, where α is the disc viscosity parameter. Finally, we have used the 3D simulations to explore the non-linear regime. We observe a strongly non-linear behaviour, which leads to the breaking of the disc. Then, the inner disc starts precessing with its own precessional frequency. This behaviour has already been observed with numerical simulations in accretion discs around spinning black holes. The evolution of circumstellar accretion discs strongly depends on the warp evolution. Therefore, the issue explored in this paper could be of fundamental importance in order to understand the evolution of accretion discs in crowded environments, when the gravitational interaction with other stars is highly likely, and in multiple systems. Moreover, the evolution of
NASA Technical Reports Server (NTRS)
Rudraraju, Siva Shankar; Garikipati, Krishna; Waas, Anthony M.; Bednarcyk, Brett A.
2013-01-01
The phenomenon of crack propagation is among the predominant modes of failure in many natural and engineering structures, often leading to severe loss of structural integrity and catastrophic failure. Thus, the ability to understand and a priori simulate the evolution of this failure mode has been one of the cornerstones of applied mechanics and structural engineering and is broadly referred to as "fracture mechanics." The work reported herein focuses on extending this understanding, in the context of through-thickness crack propagation in cohesive materials, through the development of a continuum-level multiscale numerical framework, which represents cracks as displacement discontinuities across a surface of zero measure. This report presents the relevant theory, mathematical framework, numerical modeling, and experimental investigations of through-thickness crack propagation in fiber-reinforced composites using the Variational Multiscale Cohesive Method (VMCM) developed by the authors.
Two-stream instability assessment of fast ignition driven by quasi-monoenergetic ions
NASA Astrophysics Data System (ADS)
Khoshbinfar, Soheil
2017-01-01
During the past decade, the generation of energetic ion beams by high-intensity laser-plasma interactions has attracted much interest due to their many applications in high energy density physics and fast ignition. The interaction of the energetic beam with the pre-compressed DT plasma may be accompanied by micro-instabilities along normal and parallel to the beam direction. In application of ions heavier than hydrogen isotopes in fast ignition, we expect that the number of required ions reduces considerably. Here, we present a one-dimensional relativistic beam-plasma instability formulation to investigate the stabilization mode of a flow aligned two-stream instability spectrum where both cold-fluid and kinetic linear theory results are reported. In the latter, the saddle point expansion of the relativistic drift-Maxwellian distribution was applied. The stabilization mode was then extracted by using the Nyquist method. We have also restricted our stability analyses to quasi-monoenergetic ion beams of type Li3+, C6+, Al13+, and V23+ with optimal energies of 140 MeV, 450 MeV, 2.2 GeV, and 5.5 GeV, respectively, proposed by numerical simulations in fast ignition [Honrubia et al. Laser Part. Beams 32, 419 (2014)]. The stable mode is attained by two free system parameters, i.e., beam/plasma density ratio, α, and background plasma temperature, Tp. In the case of low Zb ions, by different degree levels, both parameters push the system to complete stability. However, in the case of high Zb ions, complete stabilization is achieved just through few orders of magnitude lower α. It has also been shown that in complete stabilization of the system, the α parameter scales as an inverse square of ions' atomic number, ∝Zb-2.
Breaking news dissemination in the media via propagation behavior based on complex network theory
NASA Astrophysics Data System (ADS)
Liu, Nairong; An, Haizhong; Gao, Xiangyun; Li, Huajiao; Hao, Xiaoqing
2016-07-01
The diffusion of breaking news largely relies on propagation behaviors in the media. The tremendous and intricate propagation relationships in the media form a complex network. An improved understanding of breaking news diffusion characteristics can be obtained through the complex network research. Drawing on the news data of Bohai Gulf oil spill event from June 2011 to May 2014, we constructed a weighted and directed complex network in which media are set as nodes, the propagation relationships as edges and the propagation times as the weight of the edges. The primary results show (1) the propagation network presents small world feature, which means relations among media are close and breaking news originating from any node can spread rapidly; (2) traditional media and official websites are the typical sources for news propagation, while business portals are news collectors and spreaders; (3) the propagation network is assortative and the group of core media facilities the spread of breaking news faster; (4) for online media, news originality factor become less important to propagation behaviors. This study offers a new insight to explore information dissemination from the perspective of statistical physics and is beneficial for utilizing the public opinion in a positive way.
NASA Astrophysics Data System (ADS)
Setty, Srinivas J.; Cefola, Paul J.; Montenbruck, Oliver; Fiedler, Hauke
2016-05-01
Catalog maintenance for Space Situational Awareness (SSA) demands an accurate and computationally lean orbit propagation and orbit determination technique to cope with the ever increasing number of observed space objects. As an alternative to established numerical and analytical methods, we investigate the accuracy and computational load of the Draper Semi-analytical Satellite Theory (DSST). The standalone version of the DSST was enhanced with additional perturbation models to improve its recovery of short periodic motion. The accuracy of DSST is, for the first time, compared to a numerical propagator with fidelity force models for a comprehensive grid of low, medium, and high altitude orbits with varying eccentricity and different inclinations. Furthermore, the run-time of both propagators is compared as a function of propagation arc, output step size and gravity field order to assess its performance for a full range of relevant use cases. For use in orbit determination, a robust performance of DSST is demonstrated even in the case of sparse observations, which is most sensitive to mismodeled short periodic perturbations. Overall, DSST is shown to exhibit adequate accuracy at favorable computational speed for the full set of orbits that need to be considered in space surveillance. Along with the inherent benefits of a semi-analytical orbit representation, DSST provides an attractive alternative to the more common numerical orbit propagation techniques.
1982-12-31
expan- sion of a warm plasma; launching and propagation and decay of very large amplitude waves (8GK, solitons, etc.); thermal barriers (really...25.373.1981. ION-10N TWO-STREAM IN THERMAL BARRIERS : Vincent-lhonal,U.C.Berkeley. We present stu- dies or the eleclroTatic ion-ion two-stream instability as
NASA Technical Reports Server (NTRS)
Baumeister, K. J.
1977-01-01
Finite difference equations are derived for sound propagation in a two dimensional, straight, soft wall duct with a uniform flow by using the wave envelope concept. This concept reduces the required number of finite difference grid points by one to two orders of magnitude depending on the length of the duct and the frequency of the sound. The governing acoustic difference equations in complex notation are derived. An exit condition is developed that allows a duct of finite length to simulate the wave propagation in an infinitely long duct. Sample calculations presented for a plane wave incident upon the acoustic liner show the numerical theory to be in good agreement with closed form analytical theory. Complete pressure and velocity printouts are given to some sample problems and can be used to debug and check future computer programs.
NASA Astrophysics Data System (ADS)
Ghorbanalilu, M.; Sadegzadeh, S.
2017-01-01
Counter-streaming plasma structures are ubiquitous in astrophysical sources of non-thermal radiations. We discuss the dispersion properties and the stability of this non-thermal particle distribution, which is modeled on the basis of the relativistic Jüttner-Maxwell distribution function in the correct laboratory frame of reference. In this work, we aim to construct analytical solutions of the dispersion relations and investigate the properties of the growth rate of the filamentation and two-stream instabilities in an unmagnetized and homogeneous counter-propagating plasma. The Maxwell and the relativistic Vlasov equations are used to derive the covariant dispersion relations that are valid in any (conveniently chosen) reference frame. Aperiodic solutions ( ℜ(ω)≃0 ) to the covariant dispersion relations of the growing modes ( ℑ(ω)>0 ) are demonstrated with the aid of analytical calculations. The dependence of the growth rate on the normalized bulk velocity β0=V0/c and thermal parameter μ=m c2/KBT is shown in graphic illustrations. We found that for both kinds of instabilities, growth rates are decreased by increasing the temperature and decreasing the bulk velocity. Therefore, the electrons at sufficiently low temperatures and with relativistic streams are capable of increasing the range of unstable wave numbers and consequently prevent the instability to cease at small wave numbers. The results indicate that under the same condition and in contrast to the non-relativistic regime, the filamentation instability has the largest growth rate and the electrostatic two-stream instability is in the next place.
NASA Astrophysics Data System (ADS)
Lanning, R. Nicholas; Xiao, Zhihao; Zhang, Mi; Novikova, Irina; Mikhailov, Eugeniy E.; Dowling, Jonathan P.
2017-07-01
We present a general, Gaussian spatial-mode propagation formalism for describing the generation of higher-order multi-spatial-mode beams generated during nonlinear interactions. Furthermore, to implement the theory, we simulate optical angular momentum transfer interactions and show how one can optimize the interaction to reduce the undesired modes. Past theoretical treatments of this problem have often been phenomenological, at best. Here we present an exact solution for the single-pass no-cavity regime, in which the nonlinear interaction is not overly strong. We apply our theory to two experiments, with very good agreement, and give examples of several more configurations, easily tested in the laboratory.
Infrared suppression of the Coulomb gauge gluon propagator in SU(3) Yang-Mills theory
NASA Astrophysics Data System (ADS)
Nakagawa, Y.
We calculate the equal-time transverse gluon propagator in Coulomb gauge QCD using a SU(3) quenched lattice gauge simulation on large lattices, up to 114 [fm4 ]. We find that the equal-time gluon propagator shows scaling violation; namely, the data for different lattice spacings do not fall on top of one curve. This problem is cured by discarding data at large momenta, which suffer from discretization errors. In the infrared region, the transverse gluon propagator is strongly suppressed and shows a turnover at about 500 [MeV]. Fitting the power law ansatz to the data at small momenta predicts the vanishing gluon propagator at zero momentum, indicating the confinement of gluons.
Determination of chromatic aberration in the human eye by means of Fresnel propagation theory
NASA Astrophysics Data System (ADS)
Mas, David; Perez, Jorge; Illueca, Carlos; Espinosa, Julian; Hernandez, Consuelo; Vazquez, Carmen; Miret, Juan J.
2005-09-01
In this communication, the authors have determined the longitudinal chromatic aberrations in real eyes. The method that has been used combines real data of corneal morphology, central thickness of crystalline lens and biometric measures of axial length together with numerical calculation of the propagation process. The curvature of the crystalline lens has been adjusted to different curvature models and refractive index distributions. The wavelength dependence of all ocular media has been modelled through the Cauchy formula. Propagation through anterior and posterior chambers has been accomplished through numerical calculation of diffraction integral instead of classical ray-tracing approach. This imposes serous restrictions on the number of samples that are needed for a full propagation process. If we are only interested in amplitude calculations the method consists of evaluating propagation from cornea to crystalline lens with a spectrum propagation method. Propagation from the lens to the best image plane is accomplished by a direct calculation of Fresnel integral. With this model, we have obtained the refraction chromatic difference in diopters for several eyes. Results are compared with real measures of the chromatic aberration, showing a good agreement with numerical calculations. The capabilities of the technique have been demonstrated by applying the method to the study of the chromatic aberration of a keratoconus.
Interspecies Momentum transport in Collisionless Plasmas due to the two stream instability
NASA Astrophysics Data System (ADS)
Trejo, D. M.; Reyes-Ruiz, M.
2011-10-01
We study the linear development of the two-stream plasma instability in a system taken to represent the interaction of the solar wind and the ionosphere of non-magnetic solar system bodies. We consider the role of the instability in the interspecies momentum transfer in such systems.
NASA Technical Reports Server (NTRS)
Filyushkin, V. V.; Madronich, S.; Brasseur, G. P.; Petropavlovskikh, I. V.
1994-01-01
Based on a derivation of the two-stream daytime-mean equations of radiative flux transfer, a method for computing the daytime-mean actinic fluxes in the absorbing and scattering vertically inhomogeneous atmosphere is suggested. The method applies direct daytime integration of the particular solutions of the two-stream approximations or the source functions. It is valid for any duration of period of averaging. The merit of the method is that the multiple scattering computation is carried out only once for the whole averaging period. It can be implemented with a number of widely used two-stream approximations. The method agrees with the results obtained with 200-point multiple scattering calculations. The method was also tested in runs with a 1-km cloud layer with optical depth of 10, as well as with aerosol background. Comparison of the results obtained for a cloud subdivided into 20 layers with those obtained for a one-layer cloud with the same optical parameters showed that direct integration of particular solutions possesses an 'analytical' accuracy. In the case of the source function interpolation, the actinic fluxes calculated above the one-layer and 20-layer clouds agreed within 1%-1.5%, while below the cloud they may differ up to 5% (in the worst case). The ways of enhancing the accuracy (in a 'two-stream sense') and computational efficiency of the method are discussed.
Kulish, V. V.; Lysenko, A. V.; Rombovsky, M. Yu.
2010-07-15
A cubically nonlinear multiharmonic theory of two-stream instability in a two-velocity relativistic electron beam is constructed with allowance for parametric resonance between harmonics of longitudinal waves of different types, as well as between wave harmonics of the same type. The effect of these two kinds of parametric resonance interaction on the development of two-stream instability is investigated. It is shown that parametric resonance between different types of longitudinal waves excited in a two-velocity beam can substantially affect the development of physical processes in the system under study. It is proposed to use parametric resonance between longitudinal waves of different types to form waves with a prescribed broad multiharmonic spectrum.
Study of lower hybrid wave propagation in ionized gas by Hamiltonian theory
Casolari, A.; Cardinali, A.
2014-02-12
In order to find an approximate solution to the Vlasov-Maxwell equation system describing the lower hybrid wave propagation in magnetic confined plasmas, the use of the WKB method leads to the ray tracing equations. The Hamiltonian character of the ray tracing equations is investigated analytically and numerically in order to deduce the physical properties of the wave propagating without absorption in the confined plasma. The consequences of the Hamiltonian character of the equations on the travelling wave, in particular, on the evolution of the parallel wavenumber along the propagation path have been accounted and the chaotic diffusion of the timeaveraged parallel wave-number towards higher values has been evaluated. Numerical analysis by means of a Runge-Kutta based algorithm implemented in a ray tracing code supplies the analytical considerations. A numerical tool based on the symplectic integration of the ray trajectories has been developed.
Theory and experiments on the ice-water front propagation in droplets freezing on a subzero surface
NASA Astrophysics Data System (ADS)
Nauenberg, Michael
2016-07-01
An approximate theory is presented that describes the propagation of the ice-water front that develops in droplets of water that are deposited on a planar surface at a temperature below the melting point of ice. This theory is compared with experimental observation of the time evolution of this front. These experiments were performed by freezing water droplets directly on a block of dry ice, and to examine the effects of the thermal conductivity of a substrate during the freezing process. Such droplets were also deposited on a glass plate and on a copper plate placed on dry ice. The temperature at the base of these droplets, and the dependence of the freezing time on their size were also obtained experimentally, and compared with our analytic theory. These experiment can be readily performed by physics undergraduate students, and reveal that the usual assumption of constant temperature at the base of the droplets cannot be implemented in practice.
Light propagation beyond the mean-field theory of standard optics.
Javanainen, Juha; Ruostekoski, Janne
2016-01-25
With ready access to massive computer clusters we may now study light propagation in a dense cold atomic gas by means of basically exact numerical simulations. We report on a direct comparison between traditional optics, that is, electrodynamics of a polarizable medium, and numerical simulations in an elementary problem of light propagating through a slab of matter. The standard optics fails already at quite low atom densities, and the failure becomes dramatic when the average interatomic separation is reduced to around k(-1), where k is the wave number of resonant light. The difference between the two solutions originates from correlations between the atoms induced by light-mediated dipole-dipole interactions.
On the Theory of High-Power Ultrashort Pulse Propagation in Raman-Active Media
NASA Technical Reports Server (NTRS)
Belenov, E. M.; Isakov, V. A.; Kanavin, A. P.; Smetanin, I. V.
1996-01-01
The propagation of an intense femtosecond pulse in a Raman-active medium is analyzed. An analytic solution which describes in explicit form the evolution of the light pulse is derived. The field of an intense light wave undergoes a substantial transformation as the wave propagates through the medium. The nature of this transformation can change over time scales comparable to the period of the optical oscillations. As a result, the pulse of sufficiently high energy divides into stretched and compressed domains where the field decreases and increases respectively.
NASA Astrophysics Data System (ADS)
Son, Hyeonho; Choi, Honggu; Oh, Kyunghwan
2017-01-01
In this paper, a free-space light propagation analysis between 3-dimensional (3-D) volumetric spaces is proposed. In contrast to conventional scalar diffraction, the proposed theory is based on quantum mechanical scattering providing a general volumetric analysis for the free-space light propagation. Assuming a plane wave light incidence, we obtained a new analytic formula for 3-D volumetric convolution, which provided a transfer function in a closed form used for caculating the electric fields at the observation points. The proposed method was consistent with the conventional numerical methods for a 2-dimensional aperture and can be further applied to exact calculation of diffraction fields from 3-D surfaces, providing a compact reconstruction algorithm for 3-D images in a computer generated hologram.
NASA Astrophysics Data System (ADS)
Nanda, Namita; Kapuria, S.; Gopalakrishnan, S.
2014-07-01
In this paper, we present a spectral finite element model (SFEM) using an efficient and accurate layerwise (zigzag) theory, which is applicable for wave propagation analysis of highly inhomogeneous laminated composite and sandwich beams. The theory assumes a layerwise linear variation superimposed with a global third-order variation across the thickness for the axial displacement. The conditions of zero transverse shear stress at the top and bottom and its continuity at the layer interfaces are subsequently enforced to make the number of primary unknowns independent of the number of layers, thereby making the theory as efficient as the first-order shear deformation theory (FSDT). The spectral element developed is validated by comparing the present results with those available in the literature. A comparison of the natural frequencies of simply supported composite and sandwich beams obtained by the present spectral element with the exact two-dimensional elasticity and FSDT solutions reveals that the FSDT yields highly inaccurate results for the inhomogeneous sandwich beams and thick composite beams, whereas the present element based on the zigzag theory agrees very well with the exact elasticity solution for both thick and thin, composite and sandwich beams. A significant deviation in the dispersion relations obtained using the accurate zigzag theory and the FSDT is also observed for composite beams at high frequencies. It is shown that the pure shear rotation mode remains always evanescent, contrary to what has been reported earlier. The SFEM is subsequently used to study wavenumber dispersion, free vibration and wave propagation time history in soft-core sandwich beams with composite faces for the first time in the literature.
Electron two-stream instability and its application in solar and heliophysics
NASA Astrophysics Data System (ADS)
Che, Haihong
2016-06-01
It is well known that electron beams accelerated in solar flares can drive two-stream instability and produce radio bursts in the solar corona as well as in the interplanetary medium. Recent observations show that the solar wind likely originates from nanoflare-like events near the surface of the Sun where locally heated plasma escapes along open field lines into space. Recent numerical simulations and theoretical studies show that electron two-stream instability (ETSI) driven by nanoflare-accelerated electron beams can produce the observed nanoflare-type radio bursts, the non-Maxwellian electron velocity distribution function of the solar wind, and the kinetic scale turbulence in solar wind. This brief review focus on the basic theoretical framework and recent progress in the nonlinear evolution of ETSI driven by electron beams, including the formation of electron holes, Langmuir wave generation in warm plasma, and the nonlinear modulation instability and Langmuir collapse. Potential applications in heliophysics and astrophysics are discussed.
Instability saturation by the oscillating two-stream instability in a weakly relativistic plasma
Pal, Barnali; Poria, Swarup; Sahu, Biswajit
2015-04-15
The two-stream instability has wide range of astrophysical applications starting from gamma-ray bursts and pulsar glitches to cosmology. We consider one dimensional weakly relativistic Zakharov equations and describe nonlinear saturation of the oscillating two-stream instability using a three dimensional dynamical system resulting form a truncation of the nonlinear Schrodinger equation to three modes. The equilibrium points of the model are determined and their stability natures are discussed. Using the tools of nonlinear dynamics such as the bifurcation diagram, Poincaré maps, and Lyapunav exponents, existence of periodic, quasi-periodic, and chaotic solutions are established in the dynamical system. Interestingly, we observe the multistable behavior in this plasma model. The system has multiple attractors depending on the initial conditions. We also notice that the relativistic parameter plays the role of control parameter in the model. The theoretical results presented in this paper may be helpful for better understanding of space and astrophysical plasmas.
Relativistic electron-beam assisted growth of oscillating two-stream instability of a plasma wave
NASA Astrophysics Data System (ADS)
Yadav, Pinki; Gupta, D. N.; Avinash, K.
2017-06-01
Analytical formulism of oscillating two-stream instability of a plasma wave has been revisited by incorporating the effect of a relativistic electron-beam. A large-amplitude plasma wave may be susceptible to oscillating two-stream instability by decaying in a low-frequency mode and the sideband waves. The relativistic electron-beam may contribute in decaying the energy associated with the pump wave. In consequence, the growth of instability is enhanced. The findings of our calculations show that the growth of instability may be reached to a crucial level in the presence of a relativistic electron-beam. The growth of interacting waves during the instability is seriously affected by the relative motion between the beam electrons and the background plasma particles. This work may be important to understand the behavior of space and astrophysical plasmas.
Preliminary analysis of tone-excited two-stream jet velocity decay
NASA Technical Reports Server (NTRS)
Vonglahn, U. H.
1985-01-01
Acoustic research related to jet flows has established that sound, by amplifying the naturally occuring large-scale structures in turbulent shear layers, can cause a more rapidly decay of the jet plume velocity and temperature and an increase in jet spreading rate. One possible application of this sound-flow interaction phenomenon is to future STOL aircraft that may require modified jet plume characteristics in order to reduce the loads and temperatures on the deflected flaps during take-off and landing operations. The tone-excitation effect on the velocity decay of model-scale, two-stream jet plumes is analyzed. Measured data are correlated in terms of parameters that include excitation sound level and outer-to-inner stream velocity ratio. The effect of plume tone-excitation on far-field jet noise is examined and its implication for large-scale two-stream jets is discussed.
Velocity and temperature characteristics of two-stream, coplanar jet exhaust plumes
NASA Technical Reports Server (NTRS)
Vonglahn, U. H.; Goodykoontz, J. H.; Wasserbauer, C.
1984-01-01
The subsonic jet exhaust velocity and temperature characteristics of model scale, two stream coplanar nozzles were obtained experimentally. The data obtained included the effects of fan to primary stream velocity and temperature ratios on the jet axial and radial flow characteristics. Empirical parameters were developed to correlate the measured data. The resultant equations were shown to be extensions of a previously published single stream jet velocity and temperature correlation.
Creation of high-energy electron tails by means of the modified two-stream instability
NASA Technical Reports Server (NTRS)
Tanaka, M.; Papadopoulos, K.
1983-01-01
Particle simulations of the modified two-stream instability demonstrate strong electron acceleration rather than bulk heating when the relative drift speed is below a critical speed Vc. A very interesting nonlinear mode transition and autoresonance acceleration process is observed which accelerates the electrons much above the phase speed of the linearly unstable modes. Simple criteria are presented that predict the value of Vc and the number density of the accelerated electrons.
On retrieval of lidar extinction profiles using Two-Stream and Raman techniques
NASA Astrophysics Data System (ADS)
Stachlewska, I. S.; Ritter, C.
2009-09-01
The Two-Stream technique employes simultaneous measurements performed by two elastic backscatter lidars aiming at each other to sample into the same atmosphere. It allows for a direct retrieval of the extinction coefficient profile from the ratio of the two involved lidar signals. During a few Alfred-Wegener-Institute's (AWI) campaigns dedicated to the Arctic research, the AWI's Polar 2 aircraft with the integrated onboard nadir-aiming Airborne Mobile Merosol Lidar (AMALi) overflew a vicinity of Ny Ålesund on Svalbard, where the zenith-aiming Koldewey Aerosol Raman Lidar (KARL) has been located. This experimental approach gave a unique opportunity to retrieve the extinction profiles with rather rarely used Two-Stream technique against the well established Raman technique. Both methods were applied to data obtained for a clean Arctic conditions during the Arctic Study of Tropospheric clouds and Radiation (ASTAR 2004) campaign and a slightly polluted Arctic conditions during the Svalbard Experiment (SvalEx 2005) campaign. Successful intercomparison of both evaluation tools in a different measurement conditions demonstrates sensitivity and feasibility of the Two-Stream method to obtain particle extinction and backscatter coefficients profiles without assumption of their relationship (lidar ratio). The method has a potential to serve as an extinction retrieval tool for KARL or AMALi simultaneous observations with the spaceborne CALYPSO lidar taken during the ASTAR 2007.
On retrieval of lidar extinction profiles using Two-Stream and Raman techniques
NASA Astrophysics Data System (ADS)
Stachlewska, I. S.; Ritter, C.
2010-03-01
The Two-Stream technique employs simultaneous measurements performed by two elastic backscatter lidars pointing at each other to sample into the same atmosphere. It allows for a direct retrieval of the extinction coefficient profile from the ratio of the two involved lidar signals. During a number of Alfred-Wegener-Institute (AWI) campaigns dedicated to Arctic research, the AWI's Polar 2 aircraft with the integrated onboard nadir-pointing Airborne Mobile Aerosol Lidar (AMALi) was utilised. The aircraft flew over a vicinity of Ny Ålesund on Svalbard, where the zenith-pointing Koldewey Aerosol Raman Lidar (KARL) has been located. This experimental approach gave the unique opportunity to retrieve the extinction profiles with a rarely used Two-Stream technique against a well established Raman technique. Both methods were applied to data obtained for clean Arctic conditions during the Arctic Study of Tropospheric clouds and Radiation (ASTAR 2004) campaign, and slightly polluted Arctic conditions during the Svalbard Experiment (SvalEx 2005) campaign. Successful comparison of both evaluation tools in different measurement conditions demonstrates sensitivity and feasibility of the Two-Stream method to obtain particle extinction and backscatter coefficients profiles without assumption of their relationship (lidar ratio). The method has the potential to serve as an extinction retrieval tool for KARL or AMALi simultaneous observations with the space borne CALIPSO lidar overpasses during the ASTAR 2007.
One-dimensional transport equation models for sound energy propagation in long spaces: theory.
Jing, Yun; Larsen, Edward W; Xiang, Ning
2010-04-01
In this paper, a three-dimensional transport equation model is developed to describe the sound energy propagation in a long space. Then this model is reduced to a one-dimensional model by approximating the solution using the method of weighted residuals. The one-dimensional transport equation model directly describes the sound energy propagation in the "long" dimension and deals with the sound energy in the "short" dimensions by prescribed functions. Also, the one-dimensional model consists of a coupled set of N transport equations. Only N=1 and N=2 are discussed in this paper. For larger N, although the accuracy could be improved, the calculation time is expected to significantly increase, which diminishes the advantage of the model in terms of its computational efficiency.
NASA Astrophysics Data System (ADS)
Gill, Tarsem Singh; Kaur, Ravinder; Mahajan, Ranju
2010-09-01
This paper presents an analysis of self-consistent, steady-state, theoretical model, which explains the ring formation in a Gaussian electromagnetic beam propagating in a magnetoplasma, characterized by relativistic nonlinearity. Higher order terms (up to r4) in the expansion of the dielectric function and the eikonal have been taken into account. The condition for the formation of a dark and bright ring derived earlier by Misra and Mishra [J. Plasma Phys. 75, 769 (2009)] has been used to study focusing/defocusing of the beam. It is seen that inclusion of higher order terms does significantly affect the dependence of the beam width on the distance of propagation. Further, the effect of the magnetic field and the nature of nonlinearity on the ring formation and self-focusing of the beam have been explored.
Analytical theory for the propagation of laser beams in nonlinear media
Tatarinova, Larisa L.; Garcia, Martin E.
2007-10-15
The propagation of a laser beam of intensity I in a nonlinear medium with a refractive index n(I) of arbitrary form is studied. In particular, the influence of the functional form n=n(I) on self-focusing and self-trapping is investigated. Starting from the propagation equations and using symmetry considerations and the Bogoliubov renormalization group approach, we derive a general equation relating the self-focusing distance, the intensity, and n(I). For different polynomial dependences of n(I) on I, we construct analytical solutions for the spatial intensity profile I(r) for an initially collimated Gaussian beam inside the medium. We also explicitly analyze the case of nonlinear self-focusing accompanied by multiphoton ionization. For particular (already studied) cases, we considerably improve the accuracy of the results with respect to previous semianalytical studies and obtain very good agreement with recent numerical simulations.
A new theory to evaluate the critical length for fracture propagation in snow
NASA Astrophysics Data System (ADS)
Gaume, Johan; van Herwijnen, Alec; Chambon, Guillaume; Wever, Nander; Schweizer, Jürg
2016-04-01
The failure of a weak snow layer buried below cohesive slab layers is a necessary, but insufficient condition for the release of a dry-snow slab avalanche. The size of the crack in the weak layer must also exceed a critical length to propagate over a wide surface. In contrast to founding shear-based approaches, the recent anticrack model accounts for weak layer collapse and allows to better explain typical observations of remote triggering from flat areas. However, the latter model predicts that the critical length for crack propagation is independent of slope angle, a rather surprising and counterintuitive result. Our new mechanical model reconciles past approaches by considering for the first time the complex interplay between slab elasticity, the failure envelope of the weak layer and its structural collapse. We were able to reproduce crack propagation on flat terrain and the decrease of the critical length with slope angle observed in numerical experiments. Furthermore, we show that the anticrack model only works on flat terrain and significantly overestimates the critical crack length for steep slopes where most avalanches are triggered. This important limitation is due to strong and unfounded assumptions concerning the weak layer which is treated as a purely rigid material with a slope-independent failure criterion. The good agreement of our new model with extensive field data and its successful implementation in the snow cover model SNOWPACK opens promising prospect to improve avalanche forecasting.
NASA Astrophysics Data System (ADS)
Sarout, Joël.
2012-04-01
For the first time, a comprehensive and quantitative analysis of the domains of validity of popular wave propagation theories for porous/cracked media is provided. The case of a simple, yet versatile rock microstructure is detailed. The microstructural parameters controlling the applicability of the scattering theories, the effective medium theories, the quasi-static (Gassmann limit) and dynamic (inertial) poroelasticity are analysed in terms of pores/cracks characteristic size, geometry and connectivity. To this end, a new permeability model is devised combining the hydraulic radius and percolation concepts. The predictions of this model are compared to published micromechanical models of permeability for the limiting cases of capillary tubes and penny-shaped cracks. It is also compared to published experimental data on natural rocks in these limiting cases. It explicitly accounts for pore space topology around the percolation threshold and far above it. Thanks to this permeability model, the scattering, squirt-flow and Biot cut-off frequencies are quantitatively compared. This comparison leads to an explicit mapping of the domains of validity of these wave propagation theories as a function of the rock's actual microstructure. How this mapping impacts seismic, geophysical and ultrasonic wave velocity data interpretation is discussed. The methodology demonstrated here and the outcomes of this analysis are meant to constitute a quantitative guide for the selection of the most suitable modelling strategy to be employed for prediction and/or interpretation of rocks elastic properties in laboratory-or field-scale applications when information regarding the rock's microstructure is available.
Pulse Propagation Effects in Optical 2D Fourier-Transform Spectroscopy: Theory.
Spencer, Austin P; Li, Hebin; Cundiff, Steven T; Jonas, David M
2015-04-30
A solution to Maxwell's equations in the three-dimensional frequency domain is used to calculate rephasing two-dimensional Fourier transform (2DFT) spectra of the D2 line of atomic rubidium vapor in argon buffer gas. Experimental distortions from the spatial propagation of pulses through the sample are simulated in 2DFT spectra calculated for the homogeneous Bloch line shape model. Spectral features that appear at optical densities of up to 3 are investigated. As optical density increases, absorptive and dispersive distortions start with peak shape broadening, progress to peak splitting, and ultimately result in a previously unexplored coherent transient twisting of the split peaks. In contrast to the low optical density limit, where the 2D peak shape for the Bloch model depends only on the total dephasing time, these distortions of the 2D peak shape at finite optical density vary with the waiting time and the excited state lifetime through coherent transient effects. Experiment-specific conditions are explored, demonstrating the effects of varying beam overlap within the sample and of pseudo-time domain filtering. For beam overlap starting at the sample entrance, decreasing the length of beam overlap reduces the line width along the ωτ axis but also reduces signal intensity. A pseudo-time domain filter, where signal prior to the center of the last excitation pulse is excluded from the FID-referenced 2D signal, reduces propagation distortions along the ωt axis. It is demonstrated that 2DFT rephasing spectra cannot take advantage of an excitation-detection transformation that can eliminate propagation distortions in 2DFT relaxation spectra. Finally, the high optical density experimental 2DFT spectrum of rubidium vapor in argon buffer gas [J. Phys. Chem. A 2013, 117, 6279-6287] is quantitatively compared, in line width, in depth of peak splitting, and in coherent transient peak twisting, to a simulation with optical density higher than that reported.
NASA Technical Reports Server (NTRS)
Baumeister, K. J.; Eversman, W.; Astley, R. J.; White, J. W.
1981-01-01
Sound propagation without flow in a rectangular duct with a converging-diverging area variation was studied experimentally and theoretically. The area variation was of sufficient magnitude to produce large reflections and induce modal scattering. The rms (root-mean-squared) pressure and phase angle on both the flat and curved surface were measured and tabulated. The steady state finite element theory and the transient finite difference theory are in good agreement with the data. It is concluded that numerical finite difference and finite element theories appear ideally suited for handling duct propagation problems which encounter large area variations.
Faizal, Mir; Higuchi, Atsushi
2008-09-15
The propagators of the Faddeev-Popov (FP) ghosts for Yang-Mills theories and perturbative quantum gravity in the covariant gauge are infrared (IR) divergent in de Sitter spacetime. We point out, however, that the modes responsible for these divergences will not contribute to loop diagrams in computations of time-ordered products in either Yang-Mills theories or perturbative quantum gravity. Therefore, we propose that the IR-divergent FP-ghost propagator should be regularized by a small mass term that is sent to zero in the end of any perturbative calculations. This proposal is equivalent to using the effective FP-ghost propagators, which we present in an explicit form, obtained by removing the modes responsible for the IR divergences. We also make some comments on the corresponding propagators in anti-de Sitter spacetime.
NASA Technical Reports Server (NTRS)
Wang, Zhengzhi; Ulrich, Roger K.; Coroniti, Ferdinand V.
1995-01-01
The normal dispersion analysis for linear adiabatic wave propagation in stratified atmospheres adopts a real frequency and solves for the complex vertical wavenumber. We show that an exponentially stratified atmosphere does not have any spatially bounded normal modes for real frequencies. The usual treatment involves a representation where the imaginary part of the vertical wavenumber yields a rho(sup -1/2) dependence of the velocity amplitude which diverges as the absolute value of z approaches infinity. This solution includes a cutoff frequency below which acoustic modes cannot propagate. The standard dispersion analysis is a local representation of the wave behavior in both space and time but which is assumed to represent the motion throughout - infinity is less than t is less than infinity and 0 is less than infinity. However, any solution which has a purely sinusoidal time dependence extends through this full domain and is divergent due to the rho(sup -1/2) dependence. We show that a proper description is in terms of a near field of a boundary piston which is driven arbitrarily as a function of space and time. The atmosphere which responds to this piston is a semi-infinite layer which has an initially constant sound speed but which has the usual gravitational stratification. In a restricted domain of space and time above this boundary, the wavelike behavior of the medium may be described by frequencies and vertical wavenumbers which are both complex. When both parameters are allowed to have imaginary components, a new range of solutions is found for which there is virtually no cutoff frequency. We show that vertical energy propagation can take place through the solar atmosphere as a result of oscillations below the nominal cutoff frequency. Previously, the largest amplitude oscillations which generally have low frequencies were dropped from the calculation of energy flux becuase their frequencies are below the cutoff frequency. This new family of near
Heng, Kevin; Mendonça, João M.; Lee, Jae-Min E-mail: joao.mendonca@csh.unibe.ch
2014-11-01
We present a comprehensive analytical study of radiative transfer using the method of moments and include the effects of non-isotropic scattering in the coherent limit. Within this unified formalism, we derive the governing equations and solutions describing two-stream radiative transfer (which approximates the passage of radiation as a pair of outgoing and incoming fluxes), flux-limited diffusion (which describes radiative transfer in the deep interior), and solutions for the temperature-pressure profiles. Generally, the problem is mathematically underdetermined unless a set of closures (Eddington coefficients) is specified. We demonstrate that the hemispheric (or hemi-isotropic) closure naturally derives from the radiative transfer equation if energy conservation is obeyed, while the Eddington closure produces spurious enhancements of both reflected light and thermal emission. We concoct recipes for implementing two-stream radiative transfer in stand-alone numerical calculations and general circulation models. We use our two-stream solutions to construct toy models of the runaway greenhouse effect. We present a new solution for temperature-pressure profiles with a non-constant optical opacity and elucidate the effects of non-isotropic scattering in the optical and infrared. We derive generalized expressions for the spherical and Bond albedos and the photon deposition depth. We demonstrate that the value of the optical depth corresponding to the photosphere is not always 2/3 (Milne's solution) and depends on a combination of stellar irradiation, internal heat, and the properties of scattering in both the optical and infrared. Finally, we derive generalized expressions for the total, net, outgoing, and incoming fluxes in the convective regime.
A Two-Stream Multilayer, Spectral Radiative Transfer Model for Sea Ice,
1989-07-01
lassified -c DECASS,. CA7:0ON DCWNGAD NG SCHEDJcE Approved for public releais(- Cist: Iitlol is_ unlimilted. ZE>\\ G RGA:Z O EOR NMEE~ S CON.;TOCNG CG...0N 6.1102 AT24 SS 05 Inckcoe Secur> CIassit’caofin. A Two-Stream, Multilaver, Spectral Radiative Transfer Model for Sea Ice 12 D2RSCNAL AUTHCO 1( S ...radiation fields is demonstrated., 20 DIST~i? BTION/AVAIABILITY OF ABSTRACT 2i ABSTRACT SEC dRJY : 4? S F N uNCLASSIFIED/ UNLIMITED [3 SAME AS RPT 0 DTIC
How electron two-stream instability drives cyclic Langmuir collapse and continuous coherent emission
NASA Astrophysics Data System (ADS)
Che, Haihong; Goldstein, Melvyn L.; Diamond, Patrick H.; Sagdeev, Roald Z.
2017-02-01
Continuous plasma coherent emission is maintained by repetitive Langmuir collapse driven by the nonlinear evolution of a strong electron two-stream instability. The Langmuir waves are modulated by solitary waves in the linear stage and electrostatic whistler waves in the nonlinear stage. Modulational instability leads to Langmuir collapse and electron heating that fills in cavitons. The high pressure is released via excitation of a short-wavelength ion acoustic mode that is damped by electrons and reexcites small-scale Langmuir waves; this process closes a feedback loop that maintains the continuous coherent emission.
How electron two-stream instability drives cyclic Langmuir collapse and continuous coherent emission
Goldstein, Melvyn L.; Diamond, Patrick H.; Sagdeev, Roald Z.
2017-01-01
Continuous plasma coherent emission is maintained by repetitive Langmuir collapse driven by the nonlinear evolution of a strong electron two-stream instability. The Langmuir waves are modulated by solitary waves in the linear stage and electrostatic whistler waves in the nonlinear stage. Modulational instability leads to Langmuir collapse and electron heating that fills in cavitons. The high pressure is released via excitation of a short-wavelength ion acoustic mode that is damped by electrons and reexcites small-scale Langmuir waves; this process closes a feedback loop that maintains the continuous coherent emission. PMID:28137887
Ponson, Laurent; Pindra, Nadjime
2017-05-01
The dynamics of a planar crack propagating within a brittle disordered material is investigated numerically. The fracture front evolution is described as the depinning of an elastic line in a random field of toughness. The relevance of this approach is critically tested through the comparison of the roughness front properties, the statistics of avalanches, and the local crack velocity distribution with experimental results. Our simulations capture the main features of the fracture front evolution as measured experimentally. However, some experimental observations such as the velocity distribution are not consistent with the behavior of an elastic line close to the depinning transition. This discrepancy suggests the presence of another failure mechanism not included in our model of brittle failure.
NASA Astrophysics Data System (ADS)
Blanc-Benon, Philippe; Dallois, Laurent; Scott, Julian; Berger, Uwe; Allwright, David
2006-05-01
The shock waves generated by a supersonic aircraft are reflected in the upper part of the atmosphere. Back to the ground, they are indirect sonic booms called secondary sonic booms. The recorded signals of secondary sonic booms show a low amplitude and a low frequency. They sound like rumbling noises due to amplitude bursts. These signals strongly depend on the atmospheric conditions, in particular to the amplitude and to the direction of the wind in the stratopause. In the present work, the propagation of secondary sonic booms is studied using realistic atmospheric models up to the thermosphere. The secondary carpet position is investigated by solving temporal ray equations. An amplitude equation including nonlinearity, absorption and relaxation by various chemical species is coupled to the ray solver to get the secondary boom signature at the ground level. Multipath arrivals are directly linked to wind field or 3D inhomogeneities.
Effective Hamiltonian theory for nonreciprocal light propagation in magnetic Rashba conductor
NASA Astrophysics Data System (ADS)
Kawaguchi, Hideo; Tatara, Gen
2016-12-01
Rashba spin-orbit interaction leads to a number of electromagnetic cross-correlation effects by inducing a mixing of electric and magnetic degrees of freedom. In this study, we investigate the optical properties of a magnetic Rashba conductor by deriving an effective Hamiltonian based on an imaginary-time path-integral formalism. We show that the effective Hamiltonian can be described in terms of toroidal and quadrupole moments, as has been argued in the case of insulator multiferroics. The toroidal moment turns out to coincide with the spin gauge field induced by the Rashba field. It causes Doppler shift by inducing intrinsic spin current, resulting in anisotropic light propagation (directional dichroism) irrespective of the polarization. The quadrupole moment on the other hand results in a magneto-optical phenomenon such as a Faraday effect for circularly polarized waves.
Time-dependent density functional theory for open quantum systems with unitary propagation.
Yuen-Zhou, Joel; Tempel, David G; Rodríguez-Rosario, César A; Aspuru-Guzik, Alán
2010-01-29
We extend the Runge-Gross theorem for a very general class of open quantum systems under weak assumptions about the nature of the bath and its coupling to the system. We show that for Kohn-Sham (KS) time-dependent density functional theory, it is possible to rigorously include the effects of the environment within a bath functional in the KS potential. A Markovian bath functional inspired by the theory of nonlinear Schrödinger equations is suggested, which can be readily implemented in currently existing real-time codes. Finally, calculations on a helium model system are presented.
Bochove, Erik J; Rao Gudimetla, V S
2017-01-01
We propose a self-consistency condition based on the extended Huygens-Fresnel principle, which we apply to the propagation kernel of the mutual coherence function of a partially coherent laser beam propagating through a turbulent atmosphere. The assumption of statistical independence of turbulence in neighboring propagation segments leads to an integral equation in the propagation kernel. This integral equation is satisfied by a Gaussian function, with dependence on the transverse coordinates that is identical to the previous Gaussian formulation by Yura [Appl. Opt.11, 1399 (1972)APOPAI0003-693510.1364/AO.11.001399], but differs in the transverse coherence length's dependence on propagation distance, so that this established version violates our self-consistency principle. Our formulation has one free parameter, which in the context of Kolmogorov's theory is independent of turbulence strength and propagation distance. We determined its value by numerical fitting to the rigorous beam propagation theory of Yura and Hanson [J. Opt. Soc. Am. A6, 564 (1989)JOAOD60740-323210.1364/JOSAA.6.000564], demonstrating in addition a significant improvement over other Gaussian models.
Purohit, Gunjan Rawat, Priyanka; Chauhan, Prashant; Mahmoud, Saleh T.
2015-05-15
This article presents higher-order paraxial theory (non-paraxial theory) for the ring ripple formation on an intense Gaussian laser beam and its propagation in plasma, taking into account the relativistic-ponderomotive nonlinearity. The intensity dependent dielectric constant of the plasma has been determined for the main laser beam and ring ripple superimposed on the main laser beam. The dielectric constant of the plasma is modified due to the contribution of the electric field vector of ring ripple. Nonlinear differential equations have been formulated to examine the growth of ring ripple in plasma, self focusing of main laser beam, and ring rippled laser beam in plasma using higher-order paraxial theory. These equations have been solved numerically for different laser intensities and plasma frequencies. The well established experimental laser and plasma parameters are used in numerical calculation. It is observed that the focusing of the laser beams (main and ring rippled) becomes fast in the nonparaxial region by expanding the eikonal and other relevant quantities up to the fourth power of r. The splitted profile of laser beam in the plasma is observed due to uneven focusing/defocusing of the axial and off-axial rays. The growths of ring ripple increase when the laser beam intensity increases. Furthermore, the intensity profile of ring rippled laser beam gets modified due to the contribution of growth rate.
Clem, J.R.
1982-01-01
It has been known for some time that normal-zone propagation in a multifilamentary composite conductor is driven primarily by Joule heating in both the normal zone and the current-sharing zone, which lies between the normal (T > T/sub c/) and superconducting (I < I/sub c/) zones. Bartlett et al., however, discovered that the normal-zone propagation velocity along a multifilamentary Nb/sub 3/Sn/Cu composite conductor has different values depending upon the direction of current flow, the velocity difference being about 10%. Some thermoelectric effect is evidently responsible for such a current-direction dependence. Gurevich and Mints proposed an explanation in terms of the Thomson effect. In the present paper, however, we show that this effect is about an order of magnitude too small to account for the experimental results in the Nb/sub 3/Sn/Cu conductor. Instead we demonstrate that the experiments are well understood in terms of the Peltier effect, which is an important secondary source of heating or cooling, depending upon the current direction. Our theory is based upon that of Dresner but includes as heat sources, in addition to the Joule contribution, Thomson heat in the normal matrix and Peltier heat at the superconductor/normal matrix interfaces in the current-sharing zone.
NASA Astrophysics Data System (ADS)
Korsakova, S. V.; Romanova, E. A.; Velmuzhov, A. P.; Kotereva, T. V.; Sukhanov, M. V.; Shiryaev, V. S.
2017-04-01
Chalcogenide fibers are considered as a base for creation of a fiber-optical platform for the mid-IR evanescent wave spectroscopy. In this work, transmittance of a multimode fiber made of Ge26As17Se25Te32 glass, immersed into an aqueous acetone solution was measured in the range of wavelengths 5 - 9 microns at various concentrations of the solution. A theoretical approach based on electromagnetic theory of optical fibers has been applied for analysis of evanescent modes propagation in the fiber. Attenuation coefficients calculated for each HE1m evanescent mode increase with the mode radial order m. This effect can be used for optimisation of the fiber-optic sensing elements for the mid-IR spectroscopy.
Fellah, M; Fellah, Z E A; Mitri, F G; Ogam, E; Depollier, C
2013-04-01
A temporal model based on the Biot theory is developed to describe the transient ultrasonic propagation in porous media with elastic structure, in which the viscous exchange between fluid and structure are described by fractional derivatives. The fast and slow waves obey a fractional wave equation in the time domain. The solution of Biot's equations in time depends on the Green functions of each of the waves (fast and slow), and their fractional derivatives. The reflection and transmission operators for a slab of porous materials are derived in the time domain, using calculations in the Laplace domain. Their analytical expressions, depend on Green's function of fast and slow waves. Experimental results for slow and fast waves transmitted through human cancellous bone samples are given and compared with theoretical predictions.
Theory and Modeling of Petawatt Laser Pulse Propagation in Low Density Plasmas
Shadwick, Bradley A.; Kalmykov, S. Y.
2016-12-08
Report describing accomplishments in all-optical control of self-injection in laser-plasma accelerators and in developing advanced numerical models of laser-plasma interactions. All-optical approaches to controlling electron self-injection and beam formation in laser-plasma accelerators (LPAs) were explored. It was demonstrated that control over the laser pulse evolution is the key ingredient in the generation of low-background, low-phase-space-volume electron beams. To this end, preserving a smooth laser pulse envelope throughout the acceleration process can be achieved through tuning the phase and amplitude of the incident pulse. A negative frequency chirp compensates the frequency red-shift accumulated due to wake excitation, preventing evolution of the pulse into a relativistic optical shock. This reduces the ponderomotive force exerted on quiescent plasma electrons, suppressing expansion of the bubble and continuous injection of background electrons, thereby reducing the charge in the low-energy tail by an order of magnitude. Slowly raising the density in the pulse propagation direction locks electrons in the accelerating phase, boosting their energy, keeping continuous injection at a low level, tripling the brightness of the quasi-monoenergetic component. Additionally, propagating the negatively chirped pulse in a plasma channel suppresses diffraction of the pulse leading edge, further reducing continuous injection. As a side effect, oscillations of the pulse tail may be enhanced, leading to production of low-background, polychromatic electron beams. Such beams, consisting of quasi-monoenergetic components with controllable energy and energy separation, may be useful as drivers of polychromatic x-rays based on Thomson backscattering. These all-optical methods of electron beam quality control are critically important for the development of future compact, high-repetition-rate, GeV-scale LPA using 10 TW-class, ultra-high bandwidth pulses and mm-scale, dense
Two-Stream Transformer Networks for Video-based Face Alignment.
Liu, Hao; Lu, Jiwen; Feng, Jianjiang; Zhou, Jie
2017-08-01
In this paper, we propose a two-stream transformer networks (TSTN) approach for video-based face alignment. Unlike conventional image-based face alignment approaches which cannot explicitly model the temporal dependency in videos and motivated by the fact that consistent movements of facial landmarks usually occur across consecutive frames, our TSTN aims to capture the complementary information of both the spatial appearance on still frames and the temporal consistency information across frames. To achieve this, we develop a two-stream architecture, which decomposes the video-based face alignment into spatial and temporal streams accordingly. Specifically, the spatial stream aims to transform the facial image to the landmark positions by preserving the holistic facial shape structure. Accordingly, the temporal stream encodes the video input as active appearance codes, where the temporal consistency information across frames is captured to help shape refinements. Experimental results on the benchmarking video-based face alignment datasets show very competitive performance of our method in comparisons to the state-of-the-arts.
NASA Astrophysics Data System (ADS)
Heng, Kevin; Kitzmann, Daniel
2017-10-01
We present a novel generalization of the two-stream method of radiative transfer, which allows for the accurate treatment of radiative transfer in the presence of strong infrared scattering by aerosols. We prove that this generalization involves only a simple modification of the coupling coefficients and transmission functions in the hemispheric two-stream method. This modification originates from allowing the ratio of the first Eddington coefficients to depart from unity. At the heart of the method is the fact that this ratio may be computed once and for all over the entire range of values of the single-scattering albedo and scattering asymmetry factor. We benchmark our improved two-stream method by calculating the fraction of flux reflected by a single atmospheric layer (the reflectivity) and comparing these calculations to those performed using a 32-stream discrete-ordinates method. We further compare our improved two-stream method to the two-stream source function (16 streams) and delta-Eddington methods, demonstrating that it is often more accurate at the order-of-magnitude level. Finally, we illustrate its accuracy using a toy model of the early Martian atmosphere hosting a cloud layer composed of carbon dioxide ice particles. The simplicity of implementation and accuracy of our improved two-stream method renders it suitable for implementation in three-dimensional general circulation models. In other words, our improved two-stream method has the ease of implementation of a standard two-stream method, but the accuracy of a 32-stream method.
NASA Astrophysics Data System (ADS)
Ryerson, F. J.; Ezzedine, S. M.; Antoun, T.
2013-12-01
The success of implementation and execution of numerous subsurface energy technologies such shale gas extraction, geothermal energy, underground coal gasification rely on detailed characterization of the geology and the subsurface properties. For example, spatial variability of subsurface permeability controls multi-phase flow, and hence impacts the prediction of reservoir performance. Subsurface properties can vary significantly over several length scales making detailed subsurface characterization unfeasible if not forbidden. Therefore, in common practices, only sparse measurements of data are available to image or characterize the entire reservoir. For example pressure, P, permeability, k, and production rate, Q, measurements are only available at the monitoring and operational wells. Elsewhere, the spatial distribution of k is determined by various deterministic or stochastic interpolation techniques and P and Q are calculated from the governing forward mass balance equation assuming k is given at all locations. Several uncertainty drivers, such as PSUADE, are then used to propagate and quantify the uncertainty (UQ) of quantities (variable) of interest using forward solvers. Unfortunately, forward-solver techniques and other interpolation schemes are rarely constrained by the inverse problem itself: given P and Q at observation points determine the spatially variable map of k. The approach presented here, motivated by fluid imaging for subsurface characterization and monitoring, was developed by progressively solving increasingly complex realistic problems. The essence of this novel approach is that the forward and inverse partial differential equations are the interpolator themselves for P, k and Q rather than extraneous and sometimes ad hoc schemes. Three cases with different sparsity of data are investigated. In the simplest case, a sufficient number of passive pressure data (pre-production pressure gradients) are given. Here, only the inverse hyperbolic
NASA Astrophysics Data System (ADS)
Kocifaj, Miroslav
2016-09-01
The study of diffuse light of a night sky is undergoing a renaissance due to the development of inexpensive high performance computers which can significantly reduce the time needed for accurate numerical simulations. Apart from targeted field campaigns, numerical modeling appears to be one of the most attractive and powerful approaches for predicting the diffuse light of a night sky. However, computer-aided simulation of night-sky radiances over any territory and under arbitrary conditions is a complex problem that is difficult to solve. This study addresses three concepts for modeling the artificial light propagation through a turbid stratified atmosphere. Specifically, these are two-stream approximation, iterative approach to Radiative Transfer Equation (RTE) and Method of Successive Orders of Scattering (MSOS). The principles of the methods, their strengths and weaknesses are reviewed with respect to their implications for night-light modeling in different environments.
Three-dimensional noncommutative Yukawa theory: Induced effective action and propagating modes
NASA Astrophysics Data System (ADS)
Bufalo, R.; Ghasemkhani, M.
2017-02-01
In this paper, we establish the analysis of noncommutative Yukawa theory, encompassing neutral and charged scalar fields. We approach the analysis by considering carefully the derivation of the respective effective actions. Hence, based on the obtained results, we compute the one-loop contributions to the neutral and charged scalar field self-energy, as well as to the Chern-Simons polarization tensor. In order to properly define the behavior of the quantum fields, the known UV/IR mixing due to radiative corrections is analyzed in the one-loop physical dispersion relation of the scalar and gauge fields.
Coupled mode theory approach to depolarization associated with propagation in turbulent media
NASA Astrophysics Data System (ADS)
Crosignani, B.; di Porto, P.; Clifford, Steven F.
1988-06-01
Marcuse's (1974) coupled-mode theory is invoked in the present consideration of the problem of light depolarization in a turbulent atmosphere, in order to allow the evaluation of the depolarization ratio for a plane wave and comparison of its expression with that obtained in the frame of two distinct approaches predicting different behaviors. It is found that both approaches yield the same result when calculated to the same order in both of the relevant smallness parameters, thereby resolving a long-standing controversy.
Shibata, Darryl K; Kern, Scott E
2008-01-01
Cancer stem cells either could be rare or common in tumors, constituting the major distinction between the two fundamentally opposed theoretical models of tumor progression: A newer and restrictive stem cell propagation model, in which the stem cells are a small and special minority of the tumor cells, and a standard older model, an unrestricted cell proliferation theory, in which many or most tumor cells are capable of indefinite generations of cell division. Stem cells of tumors are difficult to quantitate using functional assays, and the validity of the most common assays is seriously questioned. Nonetheless, stem cells are an essential component of any tumorigenesis model. Alternative approaches to studying tumor stem cells should be explored. Cell populations can be conceived of as having a genealogy, a relationship of cells to their ancestral lineage, from the zygote to the adult cells or neoplasms. Models using ancestral trees thus offer an anatomic and genetic means to "observe" stem cells independent of artificial conditions. Ancestral trees broaden our attention backward along a lineage, to the zygote stage, and thereby add insight into how the mutations of tumors accumulate. It is possible that a large fraction of mutations in a tumor originate from normal, endogenous, replication errors (nearly all being passenger mutations) occurring prior to the emergence of the first transformed cell. Trees can be constructed from experimental measurements - molecular clocks - of real human tissues and tumors. Detailed analysis of single-cell methylation patterns, heritable yet slightly plastic, now can provide this information in the necessary depth. Trees based on observations of molecular clocks may help us to distinguish between competing theories regarding the proliferative properties among cells of actual human tumors, to observe subtle and difficult phenomena such as the extinction of stem lineages, and to address the origins and rates of mutations in various
Valier-Brasier, Tony; Conoir, Jean-Marc; Coulouvrat, François; Thomas, Jean-Louis
2015-10-01
Sound propagation in dilute suspensions of small spheres is studied using two models: a hydrodynamic model based on the coupled phase equations and an acoustic model based on the ECAH (ECAH: Epstein-Carhart-Allegra-Hawley) multiple scattering theory. The aim is to compare both models through the study of three fundamental kinds of particles: rigid particles, elastic spheres, and viscous droplets. The hydrodynamic model is based on a Rayleigh-Plesset-like equation generalized to elastic spheres and viscous droplets. The hydrodynamic forces for elastic spheres are introduced by analogy with those of droplets. The ECAH theory is also modified in order to take into account the velocity of rigid particles. Analytical calculations performed for long wavelength, low dilution, and weak absorption in the ambient fluid show that both models are strictly equivalent for the three kinds of particles studied. The analytical calculations show that dilatational and translational mechanisms are modeled in the same way by both models. The effective parameters of dilute suspensions are also calculated.
On the theory of the propagation of detonation in gaseous systems
NASA Technical Reports Server (NTRS)
Zeldovich, Y B
1950-01-01
The existing theory of detonation is critically examined. It is shown that the considerations with which the steady value of the velocity of detonation is chosen are not convincing. In connection with the problem of the process of the chemical reaction in a detonation wave, the objections raised against the conceptions of Le Chatelier and Vieille of the 19th century with regard to the ignition of the gas by the shock wave are refuted. On the basis of this concept, it is possible to give a rigorous foundation for the existing method of computing the detonation velocity. The distributions of the temperature, the pressure, and the velocity in the detonation wave front as the chemical reaction proceeds, are considered. On the assumption of the absence of losses, the pure compression of the gas in the shock wave at the start of the chemical reaction develops a temperature that is near the temperature of combustion of the given mixture at constant pressure.
Spin-entanglement between two freely propagating electrons: Experiment and theory
NASA Astrophysics Data System (ADS)
Vasilyev, D.; Schumann, F. O.; Giebels, F.; Gollisch, H.; Kirschner, J.; Feder, R.
2017-03-01
Theory predicts that electron pairs, which are emitted from a crystalline surface upon impact of spin-polarized low-energy electrons, can be spin-entangled. We quantify this entanglement by the von Neumann entropy, which we show to be closely related to the spin polarization of the emitted electrons. Measurement of the spin polarization therefore facilitates an experimental study of the entanglement. As target we used a Cu(111) surface, which exhibits an electronic surface state giving rise to a high pair emission intensity. Experimental spin polarization spectra for several orientations of the reaction plane broadly agree with their theoretical counterparts. They are consistent with spin entanglement of the electron pair at a macroscopic distance.
Orbit propagation using semi-analytical theory and its applications in space debris field
NASA Astrophysics Data System (ADS)
Dutt, Pooja; Anilkumar, A. K.
2017-02-01
Lifetime estimation of space objects is very important for space debris related studies including mitigation studies and manoeuvre designs. It is essential to have a fast and accurate lifetime prediction tool for studies related to long term evolution of space debris environment. This paper presents the details of the Orbit Prediction using Semi-Analytic Theory (OPSAT) used for lifetime estimation of space objects. It uses BFGS Quasi-Newton algorithm to minimize least square error on apogee and perigee altitudes of a given TLE set to estimate ballistic coefficient (BC). This BC is used for future orbit prediction. OPSAT is evaluated for long term and short term orbit prediction using TLE data. It has been used for identification of potential candidate for active debris removal (ADR) and future projection of space debris environment with ADR.
VISCOUS BOUNDARY LAYERS OF RADIATION-DOMINATED, RELATIVISTIC JETS. I. THE TWO-STREAM MODEL
Coughlin, Eric R.; Begelman, Mitchell C. E-mail: mitch@jila.colorado.edu
2015-08-10
Using the relativistic equations of radiation hydrodynamics in the viscous limit, we analyze the boundary layers that develop between radiation-dominated jets and their environments. In this paper we present the solution for the self-similar, 2D, plane-parallel two-stream problem, wherein the jet and the ambient medium are considered to be separate, interacting fluids, and we compare our results to those of previous authors. (In a companion paper we investigate an alternative scenario, known as the free-streaming jet model.) Consistent with past findings, we show that the boundary layer that develops between the jet and its surroundings creates a region of low-density material. These models may be applicable to sources such as super-Eddington tidal disruption events and long gamma-ray bursts.
NASA Astrophysics Data System (ADS)
Nucci, M. C.; Leach, P. G. L.
2007-09-01
We apply the techniques of Lie's symmetry analysis to a caricature of the simplified multistrain model of Castillo-Chavez and Feng [C. Castillo-Chavez, Z. Feng, To treat or not to treat: The case of tuberculosis, J. Math. Biol. 35 (1997) 629-656] for the transmission of tuberculosis and the coupled two-stream vector-based model of Feng and Velasco-Hernandez [Z. Feng, J.X. Velasco-Hernandez, Competitive exclusion in a vector-host model for the dengue fever, J. Math. Biol. 35 (1997) 523-544] to identify the combinations of parameters which lead to the existence of nontrivial symmetries. In particular we identify those combinations which lead to the possibility of the linearization of the system and provide the corresponding solutions. Many instances of additional symmetry are analyzed.
Behavioral and catastrophic drift of invertebrates in two streams in northeastern Wyoming
Wangsness, David J.; Peterson, David A.
1980-01-01
Invertebrate drift samples were collected in August 1977 from two streams in the Powder River structural basin in northeastern Wyoming. The streams are Clear Creek, a mountain stream, and the Little Powder River, a plains stream. Two major patterns of drift were recognized. Clear Creek was sampled during a period of normal seasonal conditions. High drift rates occurred during the night indicating a behavioral drift pattern that is related to the benthic invertebrate density and carrying capacity of the stream substrates. The mayfly genes Baetis, a common drift organism, dominated the peak periods of drift in Clear Creek. The Little Powder River has a high discharge during the study period. Midge larvae of the families Chironomidae and Ceratopogonidae, ususally not common in drift, dominated the drift community. The dominance of midge larvae, the presence of several other organisms not common in drift, and the high discharge during the study period caused a catastrophic drift pattern. (USGS)
Oscillating two-stream instability in a magnetized electron-positron-ion plasma
Tinakiche, Nouara; Annou, R.
2015-04-15
Oscillating two-stream instability (OTSI) in a magnetized electron-ion plasma has been thoroughly studied, e.g., in ionospheric heating experiments [C. S. Liu and V. K. Tripathi, Interaction of Electromagnetic Waves With Electron Beams and Plasmas (World Scientific, 1994); V. K. Tripathi and P. V. Siva Rama Prasad, J. Plasma Phys. 41, 13 (1989); K. Ramachandran and V. K. Tripathi, IEEE Trans. Plasma Sci. 25, 423 (1997)]. In this paper, OTSI is investigated in a magnetized electron-positron-ion plasma. The dispersion relation of the process is established. The pump field threshold, along with the maximum growth rate of the instability is assessed using the Arecibo and HAARP parameters.
Oscillating two-stream instability in a magnetized electron-positron-ion plasma
NASA Astrophysics Data System (ADS)
Tinakiche, Nouara; Annou, R.
2015-04-01
Oscillating two-stream instability (OTSI) in a magnetized electron-ion plasma has been thoroughly studied, e.g., in ionospheric heating experiments [C. S. Liu and V. K. Tripathi, Interaction of Electromagnetic Waves With Electron Beams and Plasmas (World Scientific, 1994); V. K. Tripathi and P. V. Siva Rama Prasad, J. Plasma Phys. 41, 13 (1989); K. Ramachandran and V. K. Tripathi, IEEE Trans. Plasma Sci. 25, 423 (1997)]. In this paper, OTSI is investigated in a magnetized electron-positron-ion plasma. The dispersion relation of the process is established. The pump field threshold, along with the maximum growth rate of the instability is assessed using the Arecibo and HAARP parameters.
Weibel, Two-Stream, Filamentation, Oblique, Bell, Buneman...Which One Grows Faster?
NASA Astrophysics Data System (ADS)
Bret, A.
2009-07-01
Many competing linear instabilities are likely to occur in astrophysical settings, and it is important to assess which one grows faster for a given situation. An analytical model including the main beam plasma instabilities is developed. The full three-dimensional dielectric tensor is thus explained for a cold relativistic electron beam passing through a cold plasma, accounting for a guiding magnetic field, a return electronic current, and moving protons. Considering any orientations of the wave vector allows to retrieve the most unstable mode for any parameters set. An unified description of the filamentation (Weibel), two-stream, Buneman, Bell instabilities (and more) is thus provided, allowing for the exact determination of their hierarchy in terms of the system parameters. For relevance to both real situations and PIC simulations, the electron-to-proton mass ratio is treated as a parameter, and numerical calculations are conducted with two different values, namely 1/1836 and 1/100. In the system parameter phase space, the shape of the domains governed by each kind of instability is far from being trivial. For low-density beams, the ultra-magnetized regime tends to be governed by either the two-stream or the Buneman instabilities. For beam densities equaling the plasma one, up to four kinds of modes are likely to play a role, depending of the beam Lorentz factor. In some regions of the system parameters phase space, the dominant mode may vary with the electron-to-proton mass ratio. Application is made to solar flares, intergalactic streams, and relativistic shocks physics.
Frozen Gaussian series representation of the imaginary time propagator theory and numerical tests
Zhang, Dong H.; Shao Jiushu; Pollak, Eli
2009-07-28
Thawed Gaussian wavepackets have been used in recent years to compute approximations to the thermal density matrix. From a numerical point of view, it is cheaper to employ frozen Gaussian wavepackets. In this paper, we provide the formalism for the computation of thermal densities using frozen Gaussian wavepackets. We show that the exact density may be given in terms of a series, in which the zeroth order term is the frozen Gaussian. A numerical test of the methodology is presented for deep tunneling in the quartic double well potential. In all cases, the series is observed to converge. The convergence of the diagonal density matrix element is much faster than that of the antidiagonal one, suggesting that the methodology should be especially useful for the computation of partition functions. As a by product of this study, we find that the density matrix in configuration space can have more than two saddle points at low temperatures. This has implications for the use of the quantum instanton theory.
A nonlinear theory for describing the propagation of disturbances on a capillary jet
NASA Astrophysics Data System (ADS)
Torpey, Peter A.
1989-04-01
The problem of the growth of disturbances on a capillary jet has received much attention in the past. However, previous theories have produced only limited correlation with experimental evidence. Traditional perturbation approaches to the problem are not well suited to describing the highly nonlinear behavior of disturbances on a capillary jet, especially near the tip of the jet where it breaks up into isolated drops. On the other hand, numerical solutions necessitate the use of an extremely fine spatial resolution over a large extent to follow disturbances as they progress along the jet and grow in amplitude over several orders of magnitude. In this paper, a new approach to this well-studied problem is described. The new approach is based on a weighted residual technique and takes advantage of the particular strengths of both analytical and numerical methods. The method is shown to correctly predict many of the nonlinear phenomena observed on actual jets and offers some fresh insight into the dynamical processes taking place within the jet.
Model-independent mean-field theory as a local method for approximate propagation of information.
Haft, M; Hofmann, R; Tresp, V
1999-02-01
We present a systematic approach to mean-field theory (MFT) in a general probabilistic setting without assuming a particular model. The mean-field equations derived here may serve as a local, and thus very simple, method for approximate inference in probabilistic models such as Boltzmann machines or Bayesian networks. Our approach is 'model-independent' in the sense that we do not assume a particular type of dependences; in a Bayesian network, for example, we allow arbitrary tables to specify conditional dependences. In general, there are multiple solutions to the mean-field equations. We show that improved estimates can be obtained by forming a weighted mixture of the multiple mean-field solutions. Simple approximate expressions for the mixture weights are given. The general formalism derived so far is evaluated for the special case of Bayesian networks. The benefits of taking into account multiple solutions are demonstrated by using MFT for inference in a small and in a very large Bayesian network. The results are compared with the exact results.
Papacharalampopoulos, Alexios; Vavva, Maria G; Protopappas, Vasilios C; Fotiadis, Dimitrios I; Polyzos, Demosthenes
2011-08-01
Cortical bone is a multiscale heterogeneous natural material characterized by microstructural effects. Thus guided waves propagating in cortical bone undergo dispersion due to both material microstructure and bone geometry. However, above 0.8 MHz, ultrasound propagates rather as a dispersive surface Rayleigh wave than a dispersive guided wave because at those frequencies, the corresponding wavelengths are smaller than the thickness of cortical bone. Classical elasticity, although it has been largely used for wave propagation modeling in bones, is not able to support dispersion in bulk and Rayleigh waves. This is possible with the use of Mindlin's Form-II gradient elastic theory, which introduces in its equation of motion intrinsic parameters that correlate microstructure with the macrostructure. In this work, the boundary element method in conjunction with the reassigned smoothed pseudo Wigner-Ville transform are employed for the numerical determination of time-frequency diagrams corresponding to the dispersion curves of Rayleigh and guided waves propagating in a cortical bone. A composite material model for the determination of the internal length scale parameters imposed by Mindlin's elastic theory is exploited. The obtained results demonstrate the dispersive nature of Rayleigh wave propagating along the complex structure of bone as well as how microstructure affects guided waves.
NASA Technical Reports Server (NTRS)
Baumeister, K. J.; Eversman, W.; Astley, R. J.; White, J. W.
1981-01-01
Experimental data are presented for sound propagation in a simulated infinite hard wall duct with a large change in duct cross sectional area. The data are conveniently tabulated for further use. The 'steady' state finite element theory of Astley and Eversman (1981) and the transient finite difference theory of White (1981) are in good agreement with the data for both the axial and transverse pressure profiles and the axial phase angle. Therefore, numerical finite difference and finite element theories appear to be ideally suited for handling duct propagation problems which encounter large axial gradients in acoustic parameters. The measured energy reflection coefficient agrees with the values from the Astley-Eversman modal coupling model.
NASA Astrophysics Data System (ADS)
Morucci, Stephane; Noirard, Pierre; Grossetie, Jean-Claude
1996-03-01
In digital holography, computation of holograms is often reduced to calculations of fast Fourier transforms if the distance between the object plane and the hologram plane is large enough. Two classical approximations for solving this problem include a binomial series expansion of the distance and an elimination of the so-called inclination factor. We present here a vectorial algorithm which computes the discrete form of the light propagation equation obtained by the Huygens' principle for a bidimensional object. None of the approximations mentioned above have been used. This enables the computation of a diffraction pattern at any distance compatible with the scalar theory of diffraction. This vectorial algorithm has been implemented on workstations, on a Convex C-220 and on a Cray YMP computer. We focus our attention on the computing granularity of the problem and we present processing times and the associated performances for bidimensional images. Various holograms are computed and compared with those obtained by two traditional methods, namely, Fresnel transforms and the resolution of the rigorous scalar diffraction equation using discrete convolutions. We then consider the 3D case and modifications are proposed in order to parallelize this algorithm.
Goldstein, P. ); Archuleta, R.J. )
1991-04-10
The authors present an approach for measuring the spatial extent, duration, directions and speeds of rupture propagation during an earthquake using array signal processing techniques. They tested subarray spatial averaging and seismogram alignment with a variety of frequency-wavenumber techniques and found that the multiple signal classification (MUSIC) method gave the best resolution of multiple signals. They also note that standard theoretical estimates of uncertainties in peak locations of frequency-wavenumber spectra are much smaller than those typically observed using seismic arrays and they present a different formula that more accurately describes observed uncertainties. Using synthetic P and S body-wave seismograms from extended earthquake sources they show that the above array signal processing techniques can be combined with ray theory to obtain accurate estimates of the locations and rupture times of an earthquake's high-frequency seismic sources. They show how to estimate uncertainties in source locations and rupture times due to limitations of the data, uncertainties in source parameters, and uncertainties in velocity structure. They find that the size of the uncertainties can be very sensitive to a fault's geometry relative to an array and they suggest criteria for optimizing an array's location.
NASA Astrophysics Data System (ADS)
Cai, Huaqing
2001-07-01
Analysis of the non-tornadic Hays supercell and its comparison to the tornadic Garden City supercell are presented as the first major part of this dissertation. The motivation for this study comes from the fact that although there are a number of studies of tornadic storms in the past, there has been few analyses of non-tornadic storms. The lack of studies of the non-tornadic storms prevents us from completely understanding why some supercells produce tornadoes while others do not. Through a detailed analysis of a non-tomadic storm and its comparison to a tornadic storm, we should be able to find out if there are fundamental differences between these two storm types. The data set used in this study was collected during VORTEX 95 by the NCAR ELDORA. It is found that a non-tornadic storm could be very similar to a tornadic one based on the resolvable scales of motion using airborne Doppler radar. The updraft/downdraft pattern, the peak vorticity and the mesocyclone core diameter are almost identical in the two storms analyzed. Our research has very important implications for tornado forecasting. Another major part of this dissertation is the analysis of the observed propagation of the Garden City supercell. To the author's knowledge, there have been few attempts to observationally test supercell propagation theory advanced by numerical simulations, owing to lack of good data. Detailed Doppler radar data was collected over a 70-min period in the Garden City storm during VORTEX 95. A new technique was developed to retrieve the linear and nonlinear perturbation pressure fields. It is found that the rightward bias in the movement of the Garden City storm was primarily a result of the vertical gradient of nonlinear perturbation pressure. A decomposition of the nonlinear forcing into cyclostrophic and nonlinear shear effects was also presented. This partitioning revealed that both the forcing produced by the mesocyclone and the horizontal shear that was baroclinically
NASA Astrophysics Data System (ADS)
Marocchino, A.; Lapenta, G.; Evstatiev, E. G.; Nebel, R. A.; Park, J.
2006-10-01
Theoretical works by Barnes and Nebel [D. C. Barnes and R. A. Nebel, Phys. Plasmas 5, 2498 (1998); R. A. Nebel and D. C. Barnes, Fusion Technol. 38, 28 (1998)] have suggested that a tiny oscillating ion cloud (referred to as the periodically oscillating plasma sphere or POPS) may undergo a self-similar collapse in a harmonic oscillator potential formed by a uniform electron background. A major uncertainty in this oscillating plasma scheme is the stability of the virtual cathode that forms the harmonic oscillator potential. The electron-electron two-stream stability of the virtual cathode has previously been studied with a fluid model, a slab kinetic model, a spherically symmetric kinetic model, and experimentally [R. A. Nebel and J. M. Finn, Phys. Plasmas 8, 1505 (2001); R. A. Nebel et al., Phys. Plasmas 12, 040501 (2005)]. Here the mode is studied with a two-dimensional particle-in-cell code. Results indicate stability limits near those of the previously spherically symmetric case.
NASA Astrophysics Data System (ADS)
Fiorino, Steven T.; Elmore, Brannon; Schmidt, Jaclyn; Matchefts, Elizabeth; Burley, Jarred L.
2016-05-01
Properly accounting for multiple scattering effects can have important implications for remote sensing and possibly directed energy applications. For example, increasing path radiance can affect signal noise. This study describes the implementation of a fast-calculating two-stream-like multiple scattering algorithm that captures azimuthal and elevation variations into the Laser Environmental Effects Definition and Reference (LEEDR) atmospheric characterization and radiative transfer code. The multiple scattering algorithm fully solves for molecular, aerosol, cloud, and precipitation single-scatter layer effects with a Mie algorithm at every calculation point/layer rather than an interpolated value from a pre-calculated look-up-table. This top-down cumulative diffusivity method first considers the incident solar radiance contribution to a given layer accounting for solid angle and elevation, and it then measures the contribution of diffused energy from previous layers based on the transmission of the current level to produce a cumulative radiance that is reflected from a surface and measured at the aperture at the observer. Then a unique set of asymmetry and backscattering phase function parameter calculations are made which account for the radiance loss due to the molecular and aerosol constituent reflectivity within a level and allows for a more accurate characterization of diffuse layers that contribute to multiple scattered radiances in inhomogeneous atmospheres. The code logic is valid for spectral bands between 200 nm and radio wavelengths, and the accuracy is demonstrated by comparing the results from LEEDR to observed sky radiance data.
Radiative transfer in spherical dust shells using a generalized two-stream Eddington approximation
NASA Technical Reports Server (NTRS)
Haisch, B. M.
1979-01-01
Application of a generalized two-stream Eddington approximation to the problem of radiative transfer in extended, spherically symmetric dust shells is presented. It is assumed that the radiation field can be characterized by the mean intensity, the flux, and a positionally dependent direction cosine specifying the division into two solid-angle ranges. The direction cosine is not specified a priori and is a function of the geometry, opacity, and emissivity in the dust shell. A multiple-grain-size multiple-temperature-distribution dust shell is postulated in which isotropic and anisotropic scattering as well as absorption and thermal reemission are allowed. A program has been developed that solves for the multiple temperature distributions by applying the constraint of radiative equilibrium to each grain size, and then calculates emergent fluxes. Results of one such calculation are presented for a model dust shell having a maximum optical depth (approximately 41) in the visible, clearly showing large optical extinction and a moderate infrared excess.
NASA Astrophysics Data System (ADS)
Yuan, Hua; Dai, Yongjiu; Dickinson, Robert E.; Pinty, Bernard; Shangguan, Wei; Zhang, Shupeng; Wang, Lili; Zhu, Siguang
2017-03-01
Four representative two-stream canopy radiative transfer models were examined and intercompared using the same configuration. Based on the comparison results, two modifications were introduced to the widely used Dickinson-Sellers model and then incorporated into the Community Land Model (CLM4.5). The modified model was tested against Monte-Carlo simulations and produced significant improvements in the simulated canopy transmittance and albedo values. In direct comparison with MODIS albedo data, the modified model shows good performance over most snow/ice-free vegetated areas, especially for regions that are covered by dense canopy. The modified model shows seasonally dependent behavior mainly in the near-infrared band. Thus, the improvements are not present in all seasons. Large biases are still noticeable in sparsely vegetated areas, in particular for the snow/ice covered regions, that is possibly related to the model, the land surface input data, or even the observations themselves. Further studies focusing on the impact of the seasonal changes in leaf optical properties, the parameterizations for snow/ice covered regions and the case of sparsely vegetated areas, are recommended.
First Simulations of a Collisional Two-Stream Instability in the Chromosphere
NASA Astrophysics Data System (ADS)
Oppenheim, Meers; Dimant, Yakov; Madsen, Chad Allen; Fontenla, Juan
2014-06-01
Observations and modeling shows that immediately above the temperature minimum in the solar atmosphere, a steep rise from below 4,000 K to over 6,000K occurs. Recent papers show that a collisional two-stream plasma instability called the Farley-Buneman Instability can develop at the altitudes where this increase occurs. This instability may play an important role in transferring energy from turbulent neutral flows originating in the photosphere to the mid-chromosphere in the form of heat. Plasma turbulence resulting from this instability could account for some or most of this intense chromospheric heating. This paper presents a set of simulations showing the development and evolution of the Farley-Buneman Instability (FBI) applicable to the chromosphere. It compares these results with the better-understood ionospheric FBI. It examines the linear behavior and the dependence of growth rates for a range of altitudes and driving flows. It also presents the first study of FBI driven plasma nonlinearities and turbulence in the chromosphere. This research should help us evaluate the FBI as a mechanism to convert neutral flow and turbulence energy into electron thermal energy in the quiet Sun.
Duret, Q.
2010-10-15
Starting from Wigner's symmetry representation theorem, we give a general account of discrete symmetries (parity P, charge conjugation C, time-reversal T), focusing on fermions in Quantum Field Theory. We provide the rules of transformation of Weyl spinors, both at the classical level (grassmanian wave functions) and quantum level (operators). Making use of Wightman's definition of invariance, we outline ambiguities linked to the notion of classical fermionic Lagrangian. We then present the general constraints cast by these transformations and their products on the propagator of the simplest among coupled fermionic system, the one made with one fermion and its antifermion. Last, we put in correspondence the propagation of C eigenstates (Majorana fermions) and the criteria cast on their propagator by C and CP invariance.
Lódola, Soraya; Góis Junior, Edivaldo
2015-01-01
This article describes the debate over theories about the propagation of yellow fever in the São Paulo press. Our time span was defined as the period between 1895 and 1903, a time that saw high indices of the disease in Brazil. Documentary research involved mass circulation newspapers in São Paulo and medical journals of the period. The empirical data was collected from the Public Archives of the State of São Paulo and from the library of the Faculdade de Saúde Pública at Universidade de São Paulo. It was observed a clash between theories as to the propagation of yellow fever that revealed a symbolic dispute for influence in the formation of the scientific field.
NASA Astrophysics Data System (ADS)
Saviz, S.; Mehdian, H.; Aghamir, Farzin M.; Ghorannevis, M.; Ashkarran, A. A.
2011-12-01
A theory of two-stream free-electron laser in a combined electromagnetic wiggler and an ion-channel guiding is developed. In the analysis, the electron trajectories and the small signal gain are derived by considering the effects of self-fields. Numerical calculations show that there are seven group's trajectories rather than nine groups reported in Mehdian and Saviz (2010 Chin. Phys. B 19(1), 014214). The comparison of the normalized gains and their corresponding normalized frequencies by employing the axial magnetic field and ion-channel guiding, with and without self-fields, in FEL has been studied numerically. The results show that the normalized maximum gain in FEL with axial magnetic is larger than that for using ion-channel guiding except in small region, but the results for their corresponding normalized frequencies are opposite.
Fungal Growth, Production, and Sporulation during Leaf Decomposition in Two Streams
Suberkropp, Keller
2001-01-01
I examined the activity of fungi associated with yellow poplar (Liriodendron tulipifera) and white oak (Quercus alba) leaves in two streams that differed in pH and alkalinity (a hardwater stream [pH 8.0] and a softwater stream [pH 6.7]) and contained low concentrations of dissolved nitrogen (<35 μg liter−1) and phosphorus (<3 μg liter−1). The leaves of each species decomposed faster in the hardwater stream (decomposition rates, 0.010 and 0.007 day−1 for yellow poplar and oak, respectively) than in the softwater stream (decomposition rates, 0.005 and 0.004 day−1 for yellow poplar and oak, respectively). However, within each stream, the rates of decomposition of the leaves of the two species were not significantly different. During the decomposition of leaves, the fungal biomasses determined from ergosterol concentrations, the production rates determined from rates of incorporation of [14C]acetate into ergosterol, and the sporulation rates associated with leaves were dynamic, typically increasing to maxima and then declining. The maximum rates of fungal production and sporulation associated with yellow poplar leaves were greater than the corresponding rates associated with white oak leaves in the hardwater stream but not in the softwater stream. The maximum rates of fungal production associated with the leaves of the two species were higher in the hardwater stream (5.8 mg g−1 day−1 on yellow poplar leaves and 3.1 mg g−1 day−1 on oak leaves) than in the softwater stream (1.6 mg g−1 day−1 on yellow poplar leaves and 0.9 mg g−1 day−1 on oak leaves), suggesting that effects of water chemistry other than the N and P concentrations, such as pH or alkalinity, may be important in regulating fungal activity in streams. In contrast, the amount of fungal biomass (as determined from ergosterol concentrations) on yellow poplar leaves was greater in the softwater stream (12.8% of detrital mass) than in the hardwater stream (9.6% of detrital mass). This
Ator, Scott W.; Denver, Judith M.; Brayton, Michael J.
2004-01-01
Pesticides and nutrients move from application areas through ground water and surface runoff to streams on the Delmarva Peninsula. The relative importance of different transport media to the movement of these compounds in different watersheds is related to locally variable hydrologic and geochemical conditions among areas of regionally similar land use, geology, and soils. Consideration of such local variability is important to land-management efforts or future environmental investigations on the Peninsula. Chemical analyses of samples collected over a multiyear period from two streams on the Delmarva Peninsula were analyzed along with similar available analyses of ground water to document the occurrence of pesticides and nutrients, and illustrate important processes controlling their movement through watersheds to streams. The upper Pocomoke River and Chesterville Branch drain predominantly agricultural watersheds typical of the Delmarva Peninsula. Chesterville Branch drains a watershed of moderate relief, good drainage, and a permeable surficial aquifer that ranges in thickness from about 15 to 25 meters. The upper Pocomoke River Watershed, however, is extremely flat with poorly drained soils and abundant artificial drainage. Influences on the chemistry of water in each stream were determined from seasonal patterns in the concentrations of selected constituents from 1996 through 2001, and relations with streamflow. Nutrients and pesticides are detectable throughout the year in the upper Pocomoke River and Chesterville Branch. Water in both streams is typically dilute, slightly acidic, and well oxygenated, and nitrate and phosphorus concentrations generally exceed estimated natural levels. Pesticide concentrations are generally low, although concentrations of selected metabolites commonly exceed 1 microgram per liter, particularly in Chesterville Branch. Nitrate and metabolites of pesticide compounds are apparently transported to Chesterville Branch preferentially
Fungal growth, production, and sporulation during leaf decomposition in two streams.
Suberkropp, K
2001-11-01
I examined the activity of fungi associated with yellow poplar (Liriodendron tulipifera) and white oak (Quercus alba) leaves in two streams that differed in pH and alkalinity (a hard water stream [pH 8.0] and a soft water stream [pH 6.7]) and contained low concentrations of dissolved nitrogen (<35 microg liter(-1)) and phosphorus (<3 microg liter(-1)). The leaves of each species decomposed faster in the hard water stream (decomposition rates, 0.010 and 0.007 day(-1) for yellow poplar and oak, respectively) than in the soft water stream (decomposition rates, 0.005 and 0.004 day(-1) for yellow poplar and oak, respectively). However, within each stream, the rates of decomposition of the leaves of the two species were not significantly different. During the decomposition of leaves, the fungal biomasses determined from ergosterol concentrations, the production rates determined from rates of incorporation of [(14)C]acetate into ergosterol, and the sporulation rates associated with leaves were dynamic, typically increasing to maxima and then declining. The maximum rates of fungal production and sporulation associated with yellow poplar leaves were greater than the corresponding rates associated with white oak leaves in the hard water stream but not in the soft water stream. The maximum rates of fungal production associated with the leaves of the two species were higher in the hard water stream (5.8 mg g(-1) day(-1) on yellow poplar leaves and 3.1 mg g(-1) day(-1) on oak leaves) than in the soft water stream (1.6 mg g(-1) day(-1) on yellow poplar leaves and 0.9 mg g(-1) day(-1) on oak leaves), suggesting that effects of water chemistry other than the N and P concentrations, such as pH or alkalinity, may be important in regulating fungal activity in streams. In contrast, the amount of fungal biomass (as determined from ergosterol concentrations) on yellow poplar leaves was greater in the soft water stream (12.8% of detrital mass) than in the hard water stream (9.6% of
Two-Stream Model: Toward Data Production for Sharing Field Science Data
NASA Astrophysics Data System (ADS)
Baker, K. S.; Palmer, C. L.; Thomer, A. K.; Wickett, K.; DiLauro, T.; Asangba, A. E.; Fouke, B. W.; Choudhury, G. S.
2013-12-01
Scientific data play a central role in the production of knowledge reported in scientific publications. Today, data sharing policies together with technological capacity are fueling visions of data as open and accessible where data appear to stand-alone as products of the research process. Yet, guidelines and outputs are constantly being produced that impact subsequent work with the data, particularly in field-oriented, data-rich earth science research. We propose a model that focuses on two distinct yet intertwined data streams: internal-use data and public-reuse data. Internal-use data often involves a complex mix of processing, analysis and integration strategies creating data in forms leading to the publication of papers. Public-reuse data is prepared with a more standardized set of procedures creating data packages in the form of well-described, parameter-based datasets for release to a data repository and for reuse by others. While scientific researchers are familiar with collecting and analyzing data for publication in the scientific literature, the second data stream helps to identify tasks relating to the preparation of data for future, unanticipated reuse. The second stream represents an expansion in conceptualization of data management for the majority of natural scientists from a publication metaphor to recognition of a release metaphor (Parsons and Fox 2012). A combined dual-function model brings attention to some of the less recognized barriers that impede preparation of data for reuse. Digital data analysis spawns a multitude of files often assessed while ';in use' so for reuse of data, scientists must first identify what data files to share. They must also create robust data processes that frequently involve establishing new distributions of labor. The two-stream approach creates a visual representation for data generators who now must think about what data are most likely to have value not only for their work but also for the work of others
NASA Astrophysics Data System (ADS)
Tubaldi, Eleonora; Amabili, Marco; Païdoussis, Michael P.
2017-05-01
In deformable shells conveying pulsatile flow, oscillatory pressure changes cause local movements of the fluid and deformation of the shell wall, which propagate downstream in the form of a wave. In biomechanics, it is the propagation of the pulse that determines the pressure gradient during the flow at every location of the arterial tree. In this study, a woven Dacron aortic prosthesis is modelled as an orthotropic circular cylindrical shell described by means of the Novozhilov nonlinear shell theory. Flexible boundary conditions are considered to simulate connection with the remaining tissue. Nonlinear vibrations of the shell conveying pulsatile flow and subjected to pulsatile pressure are investigated taking into account the effects of the pulse-wave propagation. For the first time in literature, coupled fluid-structure Lagrange equations of motion for a non-material volume with wave propagation in case of pulsatile flow are developed. The fluid is modeled as a Newtonian inviscid pulsatile flow and it is formulated using a hybrid model based on the linear potential flow theory and considering the unsteady viscous effects obtained from the unsteady time-averaged Navier-Stokes equations. Contributions of pressure and velocity propagation are also considered in the pressure drop along the shell and in the pulsatile frictional traction on the internal wall in the axial direction. A numerical bifurcation analysis employs a refined reduced order model to investigate the dynamic behavior of a pressurized Dacron aortic graft conveying blood flow. A pulsatile time-dependent blood flow model is considered by applying the first harmonic of the physiological waveforms of velocity and pressure during the heart beating period. Geometrically nonlinear vibration response to pulsatile flow and transmural pulsatile pressure, considering the propagation of pressure and velocity changes inside the shell, is here presented via frequency-response curves, time histories, bifurcation
NASA Technical Reports Server (NTRS)
Baumeister, K. J.; Majjigi, R. K.
1979-01-01
A finite element velocity potential program was developed to study acoustic wave propagation in complex geometries. For irrotational flows, relatively low sound frequencies, and plane wave input, the finite element solutions showed significant effects of inlet curvature and flow gradients on the attenuation of a given acoustic liner in a realistic variable area turbofan inlet. The velocity potential approach can not be used to estimate the effects of rotational flow on acoustic propagation, since the potential acoustic disturbances propagate at the speed of the media in sheared flow. Approaches are discussed that are being considered for extending the finite element solution to include the far field, as well as the internal portion of the duct. A new matrix partitioning approach is presented that can be incorporated in previously developed programs to allow the finite element calculation to be marched into the far field. The partitioning approach provided a large reduction in computer storage and running times.
Oliveira, O.; Silva, P. J.
2009-02-01
The Cucchieri-Mendes bounds for the gluon propagator are discussed for the four dimensional pure-gauge SU(3) theory. Assuming a pure power law dependence on the inverse of the lattice volume, the lattice data gives a vanishing zero-momentum gluon propagator in the infinite-volume limit in agreement with the Gribov-Zwanziger horizon condition but contradicting the SU(2) analysis. The results are robust against variations of the lattice volumes and corrections to the power law. Our analysis considers also more general ansatze that, although not conclusive, open the possibility of having D(0){ne}0 in the infinite-volume limit. A solution to this puzzle requires further investigations.
NASA Astrophysics Data System (ADS)
Arefi, Mohammad; Zenkour, Ashraf M.
2016-11-01
Strain gradient theory is used to study free vibration, wave propagation and tension analyses of a sandwich micro/nano rod made of piezoelectric materials under electric potential. The structure is resting on a Pasternak’s foundation medium. Love’s rod model is used for derivation of displacement field. The piezoelectric face sheets are subjected to two-dimensional electric potential including an applied voltage at top of plate and a cosine term along the thickness direction. Hamilton’s principle is used to derive governing equations of motion in terms of axial displacement and electric potential. Three distinct behaviors of the present problem including free vibration, wave propagation and tension analyses are performed. Some important numerical results are presented in detail to capture the effect of materials length scales and applied voltage on the different behaviors of microrod.
Shahmirzadi, Danial; Li, Ronny X; Konofagou, Elisa E
2012-11-01
Pulse wave imaging (PWI) is an ultrasound-based method for noninvasive characterization of arterial stiffness based on pulse wave propagation. Reliable numerical models of pulse wave propagation in normal and pathological aortas could serve as powerful tools for local pulse wave analysis and a guideline for PWI measurements in vivo. The objectives of this paper are to (1) apply a fluid-structure interaction (FSI) simulation of a straight-geometry aorta to confirm the Moens-Korteweg relationship between the pulse wave velocity (PWV) and the wall modulus, and (2) validate the simulation findings against phantom and in vitro results. PWI depicted and tracked the pulse wave propagation along the abdominal wall of canine aorta in vitro in sequential Radio-Frequency (RF) ultrasound frames and estimates the PWV in the imaged wall. The same system was also used to image multiple polyacrylamide phantoms, mimicking the canine measurements as well as modeling softer and stiffer walls. Finally, the model parameters from the canine and phantom studies were used to perform 3D two-way coupled FSI simulations of pulse wave propagation and estimate the PWV. The simulation results were found to correlate well with the corresponding Moens-Korteweg equation. A high linear correlation was also established between PWV² and E measurements using the combined simulation and experimental findings (R² = 0.98) confirming the relationship established by the aforementioned equation.
NASA Astrophysics Data System (ADS)
deGraffenried, Albert L.
2002-07-01
The paper presents a derivation showing the propagation mechanisms fundamental to the growth of the laminar aerodynamic boundary layer. The molecular mechanisms basic to such growth are those presented by James Clerk Maxwell in his classic derivation of mu, the viscosity of a gas, based on the Kinetic Theory of Gases. Maxwell's derivation is modified by moving the scene of the analysis from a free-stream location (where he assumes a linear velocity gradient) to a location immediately adjacent an infinite flat plate, using an unknown velocity profile. Gas, initially quiescent above the flat plate, suddenly jumps to velocity U0 at time t=0+. The resultant growth of a boundary-layer velocity profile, vx)(y,t, is solved for in the following manner: a. Phi-up, the stream momentum crossing an element of area, da=dxdz per second per square centimeter, in an upward (+y) direction, is found by integrating through all volume below da, using an unknown velocity profile, vx)(y,t. Similarly, Phi-down, the stream momentum crossing da in a downward (-y) direction is found by integrating through all volume above da. The net stream momentum, Phy(y) equals Phi-up minus Phi-down. The acceleration, dvx/dt of an element of mass dm, equal to rho times dxdydz is set equal to minus the partial of Phi with respect to y, the net momentum-flux gradient, based on Newton's Law. In cylindrical coordinates, azimuth angle gamma is promptly integrated out. Elevation angle theta is integrated-out numerically, using a short BASIC program on a PC. Separation of Variables is assumed, specifically, vx)(y,t may be set equal to f1(y)f2(t), thus producing two separate integro-differential equations which are each set equal to a common constant, -Beta2. LaPlace transforming these two equations into the sy and st domains, applying the Method of Partial Fractions to the sy equation, the FORM of the solution is found, viz., exponential and hyperbolic functions. Boundary conditions are satisfied in order to
NASA Astrophysics Data System (ADS)
Muschietti, Laurent; Lembège, Bertrand
2017-09-01
Quasi-perpendicular supercritical shocks are characterized by the presence of a magnetic foot due to the accumulation of a fraction of the incoming ions that is reflected by the shock front. There, three different plasma populations coexist (incoming ion core, reflected ion beam, electrons) and can excite various two-stream instabilities (TSIs) owing to their relative drifts. These instabilities represent local sources of turbulence with a wide frequency range extending from the lower hybrid to the electron cyclotron. Their linear features are analyzed by means of both a dispersion study and numerical PIC simulations. Three main types of TSI and correspondingly excited waves are identified: i. Oblique whistlers due to the (so-called fast
) relative drift between reflected ions/electrons; the waves propagate toward upstream away from the shock front at a strongly oblique angle (θ ˜ 50°) to the ambient magnetic field Bo, have frequencies a few times the lower hybrid, and have wavelengths a fraction of the ion inertia length c/ωpi. ii. Quasi-perpendicular whistlers due to the (so-called slow
) relative drift between incoming ions/electrons; the waves propagate toward the shock ramp at an angle θ a few degrees off 90°, have frequencies around the lower hybrid, and have wavelengths several times the electron inertia length c/ωpe. iii. Extended Bernstein waves which also propagate in the quasi-perpendicular domain, yet are due to the (so-called fast
) relative drift between reflected ions/electrons; the instability is an extension of the electron cyclotron drift instability (normally strictly perpendicular and electrostatic) and produces waves with a magnetic component which have frequencies close to the electron cyclotron as well as wavelengths close to the electron gyroradius and which propagate toward upstream. Present results are compared with previous works in order to stress some features not previously analyzed and to define a more
NASA Technical Reports Server (NTRS)
Barnes, A.
1979-01-01
An exact solution of the kinetic and electromagnetic equations for a large-amplitude plane magnetoacoustic wave propagating transverse to the magnetic field in a hot collisionless plasma is presented. The solution gives simple relations among the magnetic-field strength, density, stress tensor, and plasma velocity, all of which are measurable in the interplanetary plasma. These relations are independent of the electron and ion velocity distributions, subject to certain restrictions on 'high-velocity tails.' The magnetic field of the wave is linearly polarized. The wave steepens to form a shock much as the analogous waves of MHD theory do.
NASA Astrophysics Data System (ADS)
Prager, Stefan; Zech, Alexander; Aquilante, Francesco; Dreuw, Andreas; Wesolowski, Tomasz A.
2016-05-01
The combination of Frozen Density Embedding Theory (FDET) and the Algebraic Diagrammatic Construction (ADC) scheme for the polarization propagator for describing environmental effects on electronically excited states is presented. Two different ways of interfacing and expressing the so-called embedding operator are introduced. The resulting excited states are compared with supermolecular calculations of the total system at the ADC(2) level of theory. Molecular test systems were chosen to investigate molecule-environment interactions of varying strength from dispersion interaction up to multiple hydrogen bonds. The overall difference between the supermolecular and the FDE-ADC calculations in excitation energies is lower than 0.09 eV (max) and 0.032 eV in average, which is well below the intrinsic error of the ADC(2) method itself.
NASA Astrophysics Data System (ADS)
Capri, M. A. L.; Fiorentini, D.; Pereira, A. D.; Sorella, S. P.
2017-08-01
In this work, we study the propagators of matter fields within the framework of the refined Gribov-Zwanziger theory, which takes into account the effects of the Gribov copies in the gauge-fixing quantization procedure of Yang-Mills theory. In full analogy with the pure gluon sector of the refined Gribov-Zwanziger action, a non-local long-range term in the inverse of the Faddeev-Popov operator is added in the matter sector. Making use of the recent BRST-invariant formulation of the Gribov-Zwanziger framework achieved in Capri et al. (Phys Rev D 92(4):045039, 2015), (Phys Rev D 94(2):025035, 2016), (Phys Rev D 93(6):065019, 2016), (arXiv:1611.10077 [hep-th]), Pereira et al. (arXiv:1605.09747 [hep-th]),the propagators of scalar and quark fields in the adjoint and fundamental representations of the gauge group are worked out explicitly in the linear covariant, Curci-Ferrari and maximal Abelian gauges. Whenever lattice data are available, our results exhibit good qualitative agreement.
NASA Astrophysics Data System (ADS)
Zhen, Yaxin; Zhou, Lin
2017-03-01
Based on nonlocal strain gradient theory, wave propagation in fluid-conveying viscoelastic single-walled carbon nanotubes (SWCNTs) is studied in this paper. With consideration of thermal effect and surface effect, wave equation is derived for fluid-conveying viscoelastic SWCNTs under longitudinal magnetic field utilizing Euler-Bernoulli beam theory. The closed-form expressions are derived for the frequency and phase velocity of the wave motion. The influences of fluid flow velocity, structural damping coefficient, temperature change, magnetic flux and surface effect are discussed in detail. SWCNTs’ viscoelasticity reduces the wave frequency of the system and the influence gets remarkable with the increase of wave number. The fluid in SWCNTs decreases the frequency of wave propagation to a certain extent. The frequency (phase velocity) gets larger due to the existence of surface effect, especially when the diameters of SWCNTs and the wave number decrease. The wave frequency increases with the increase of the longitudinal magnetic field, while decreases with the increase of the temperature change. The results may be helpful for better understanding the potential applications of SWCNTs in nanotechnology.
NASA Astrophysics Data System (ADS)
Fort, Joaquim
2011-05-01
It is shown that Lotka-Volterra interaction terms are not appropriate to describe vertical cultural transmission. Appropriate interaction terms are derived and used to compute the effect of vertical cultural transmission on demic front propagation. They are also applied to a specific example, the Neolithic transition in Europe. In this example, it is found that the effect of vertical cultural transmission can be important (about 30%). On the other hand, simple models based on differential equations can lead to large errors (above 50%). Further physical, biophysical, and cross-disciplinary applications are outlined.
NASA Technical Reports Server (NTRS)
Baumeister, K. J.
1979-01-01
A time dependent numerical formulation was derived for sound propagation in a two dimensional straight soft-walled duct in the absence of mean flow. The time dependent governing acoustic-difference equations and boundary conditions were developed along with the maximum stable time increment. Example calculations were presented for sound attenuation in hard and soft wall ducts. The time dependent analysis were found to be superior to the conventional steady numerical analysis because of much shorter solution times and the elimination of matrix storage requirements.
Fort, Joaquim
2011-05-01
It is shown that Lotka-Volterra interaction terms are not appropriate to describe vertical cultural transmission. Appropriate interaction terms are derived and used to compute the effect of vertical cultural transmission on demic front propagation. They are also applied to a specific example, the Neolithic transition in Europe. In this example, it is found that the effect of vertical cultural transmission can be important (about 30%). On the other hand, simple models based on differential equations can lead to large errors (above 50%). Further physical, biophysical, and cross-disciplinary applications are outlined. © 2011 American Physical Society
NASA Astrophysics Data System (ADS)
Hovem, Jens M.; Knobles, D. P.
2002-11-01
The paper describes a range-dependent propagation model based on a combination of range-dependent ray tracing and plane-wave bottom responses. The ray-tracing module of the model determines all the eigenrays between any source/receiver pairs and stores the ray histories. The received wave field is then synthesized by adding the contributions of all the eigenrays, taking into account the reflections from the bottom and the surface. The model can treat arbitrarily varying bottom topography and a layered elastic bottom as long as the layers are parallel. In the current version, the bottom is modeled with a sedimentary layer over an elastic half space, but more complicated structures are easily implemented. The new model has been tested against other models on several benchmark problems and also applied in the analysis and modeling of up-slope and down-slope propagation data recorded on a 52-element center-tapered array that was deployed at two locations about 70 miles east of Jacksonville, FL. The paper presents the results of these tests with an assessment of the potential use in connection with geo-acoustic inversion of range-dependent and elastic scenarios. [Work supported by Applied Research Laboratories, The University of Texas.
NASA Astrophysics Data System (ADS)
Ebrahimi, Farzad; Barati, Mohammad Reza
2016-09-01
This article examines the application of nonlocal strain gradient elasticity theory to wave dispersion behavior of a size-dependent functionally graded (FG) nanobeam in thermal environment. The theory contains two scale parameters corresponding to both nonlocal and strain gradient effects. A quasi-3D sinusoidal beam theory considering shear and normal deformations is employed to present the formulation. Mori-Tanaka micromechanical model is used to describe functionally graded material properties. Hamilton's principle is employed to obtain the governing equations of nanobeam accounting for thickness stretching effect. These equations are solved analytically to find the wave frequencies and phase velocities of the FG nanobeam. It is indicated that wave dispersion behavior of FG nanobeams is significantly affected by temperature rise, nonlocality, length scale parameter and material composition.
Mahdizadeh, N.; Aghamir, F. M.
2013-02-28
A fluid theory is used to derive the dispersion relation of two-stream free electron laser (TSFEL) with a magnetic planar wiggler pump in the presence of background plasma (BP). The effect of finite beams and plasma temperature on the growth rate of a TSFEL has been verified. The twelve order dispersion equation has been solved numerically. Three instabilities, FEL along with the TS and TS-FEL instabilities occur simultaneously. The analysis in the case of cold BP shows that when the effect of the beam temperature is taken into account, both instable bands of wave-number and peak growth rate in the TS instability increase, but peak growth of the FEL and TS-FEL instabilities decreases. Thermal motion of the BP causes to diminish the TS instability and it causes to decrease the FEL and TS-FEL instabilities. By increasing the beam densities and lowering initial velocities (in the collective Raman regime), growth rate of instabilities increases; however, it has opposite behavior in the Campton regime.
NASA Astrophysics Data System (ADS)
Graczyk, Piotr; Krawczyk, Maciej
2017-07-01
We have investigated codirectional and contradirectional couplings between spin wave and acoustic wave in a one-dimensional periodic structure (the so-called magphonic crystal). The system consists of two ferromagnetic layers alternating in space. We have taken into consideration materials commonly used in magnonics: yttrium iron garnet, CoFeB, permalloy, and cobalt. The coupled mode theory (CMT) formalism has been successfully implemented to describe the magnetoelastic interaction as a periodic perturbation in the magphonic crystal. The results of CMT calculations have been verified by more rigorous simulations with the frequency-domain plane-wave method and the time-domain finite-element method. The presented resonant coupling in the magphonic crystal is an active in-space mechanism which spatially transfers energy between propagating spin and acoustic modes, thus creating a propagating magnetoelastic wave. We have shown that CMT analysis of the magnetoelastic coupling is an useful tool to optimize and design a spin wave-acoustic wave transducer based on magphonic crystals. The effect of spin-wave damping has been included to the model to discuss the efficiency of such a device. Our model shows that it is possible to obtain forward conversion of the acoustic wave to the spin wave in case of codirectional coupling and backward conversion in case of contradirectional coupling. That energy transfer may be realized for broadband coupling and for generation of spin waves which are of different wavelength (in particular, shorter) than exciting acoustic waves.
Tsukamoto, Yusuke; Ikabata, Yasuhiro; Romero, Jonathan; Reyes, Andrés; Nakai, Hiromi
2016-10-05
An efficient computational method to evaluate the binding energies of many protons in large systems was developed. Proton binding energy is calculated as a corrected nuclear orbital energy using the second-order proton propagator method, which is based on nuclear orbital plus molecular orbital theory. In the present scheme, the divide-and-conquer technique was applied to utilize local molecular orbitals. This use relies on the locality of electronic relaxation after deprotonation and the electron-nucleus correlation. Numerical assessment showed reduction in computational cost without the loss of accuracy. An initial application to model a protein resulted in reasonable binding energies that were in accordance with the electrostatic environment and solvent effects.
NASA Astrophysics Data System (ADS)
Staley, R.
1998-06-01
This essay explores the history and historiography of relativity through a study of the earliest, participant, histories of the subject. The author argues that participant histories from Einstein, Planck, Minkowski, and others provided an important means of shaping understandings of relativity - at a time when the theory was subject to major controversy and debate. One feature of the study is thus a detailed investigation of the use of historical resources in scientific research. Second, the accounts discussed provide a means of surveying the development of relativity in Germany. The study offers a new perspective on the complex process through which a plurality of approaches - many relativities with many histories - could become singular - one theory, one history - and through which the work of Einstein came to be sharply distinguished from that of others.
NASA Astrophysics Data System (ADS)
Aceves, H.; Reyes-Ruiz, M.; Trejo, D. M.; Perez De Tejada, H. A.
2011-12-01
We study the development of the two-stream plasma instability, and the ensuing momentum transfer between species, in a four component plasma. The system is taken to represent the interaction of heavy ions and electrons of planetary origin, assumed to be initially at rest, and a stream of protons and electrons representing the solar wind. A stability criterion in terms of solar wind and ionospheric plasma parameters, namely density and temperature as well as the solar wind streaming velocity, is derived from a linear analysis of the coupled fluid equations of motion for all species. The nonlinear development of the instability is studied using a particle plasma code developed by our group. A heuristic estimation of momentum transfer between species is compared with the value derived from the acceleration of the planetary ions resulting in our numerical simulations.
Summer-autumn habitat use of yearling rainbow trout in two streams in the Lake Ontario watershed
Johnson, James H.; McKenna, James E.; Chalupnicki, Marc
2016-01-01
Understanding the habitat requirements of salmonids in streams is an important component of fisheries management. We examined the summer and autumn habitat use of yearling Rainbow Trout Oncorhynchus mykiss in relation to available habitat in two streams in the Lake Ontario watershed. Little interstream variation in trout habitat use was observed; the variation that did occur was largely due to differences between streams in available habitat in the autumn. In both streams, yearling Rainbow Trout utilized pool habitat and during periods of high stream discharge were associated with larger substrate that may provide a velocity barrier. These findings may assist resource managers in their efforts to protect and restore habitat for migratory Rainbow Trout in the Lake Ontario watershed.
NASA Astrophysics Data System (ADS)
Cogley, Thomas
2010-02-01
A model of the Universe of man designated ``MU'' is proposed. Based upon 10 working and 1 generating dimension or firmament the makeup of MU will be described. The balance of the Universe and the position form of time space and gravity will be described. The particulate physical and ethereal nature is one that departs from previous theories but is of the utmost importance in balancing the Universe and accounting for the shortfalls of the proposed theories of the day. The ten-dimensional +1 matrix will be described along with its sub-parts each distinct and closely bound to a separate dimensional level. The connections or doors between the firmaments and the methods by which they stay open close and remain separated from each other is described. Of great importance is the propagation of a firmament within the Matrix. Each firmament is itself independent and distinctly wrapped by a unique layer of the matrix. Yet each firmament is itself a separate image or part of the next larger firmament as can be thought of a subunit of that firmament. Thus each is separate yet still a part of the greater sized firmament that follows. The sizes of the dimensions are in a repeatable and constant multiple of the previous dimension. Sizes of the dimensions will be discussed. The function, form, and structural layout of the universe will be shown to have a fractal relationship to natural systems on earth and even to the image of man. )
Tewary, V K
2002-09-01
The delta-function representation of the elastodynamic Green's function is used to derive an expression for the elastic wave forms on the surface of an anisotropic thin film on an anisotropic substrate due to a point or a line source located at the surface of the film. The dispersion relation for surface acoustic waves (SAWs) is obtained from the poles of the Green's function. A computationally efficient algorithm is formulated to obtain the elastic constants and the density of the film from the SAW dispersion data. The theory is used to analyze measured SAW dispersion relations in a titanium nitride film on silicon. The analysis yields values of the elastic constants and the density of the film. Excellent agreement is obtained between the theoretical and experimental dispersion results. Calculated wave forms for the surface wave due to a pulsed line source on the surface of the film are reported.
Colosi, John A
2013-10-01
Previously published results from path integral theory for the horizontal coherence length utilized an empirical relation for the phase structure function density that was quite different from path integral results obtained for depth and time coherence where the phase structure function density was expanded to second order in the lag. This letter presents a result for horizontal coherence length which carries out the quadratic expansion and analytically solves the integral equations. Some simple calculations of horizontal coherence length demonstrate the differences between the present and old expressions. In contrast to the empirical result the present expression shows the expected one over square-root range and one over frequency scalings. The results also show more clearly how transverse coherence is sensitive to the space-time scales of internal waves and other environmental parameters.
Comments on entanglement propagation
NASA Astrophysics Data System (ADS)
Rozali, Moshe; Vincart-Emard, Alexandre
2017-06-01
We extend our work on entanglement propagation following a local quench in 2+1 dimensional holographic conformal field theories. We find that entanglement propagates along an emergent lightcone, whose speed of propagation v E seems distinct from other measures of quantum information spreading. We compare the relations we find to information and hydrodynamic velocities in strongly coupled 2+1 dimensional theories. While early-time entanglement velocities corresponding to small entangling regions are numerically close to the butterfly velocity, late-time entanglement velocities for large regions show less regularity. We also generalize and extend our previous results regarding the late-time decay of the entanglement entropy back to its equilibrium value.
NASA Astrophysics Data System (ADS)
Hogan, Robin J.; Schäfer, Sophia A. K.; Klinger, Carolin; Chiu, J. Christine; Mayer, Bernhard
2016-07-01
Estimating the impact of radiation transport through cloud sides on the global energy budget is hampered by the lack of a fast radiation scheme suitable for use in global atmospheric models that can represent these effects in both the shortwave and longwave. This two-part paper describes the development of such a scheme, which we refer to as the Speedy Algorithm for Radiative Transfer through Cloud Sides (SPARTACUS). The principle of the method is to add extra terms to the two-stream equations to represent lateral transport between clear and cloudy regions, which vary in proportion to the length of cloud edge as a function of height. The present paper describes a robust and accurate method for solving the coupled system of equations in both the shortwave and longwave in terms of matrix exponentials. This solver has been coupled to a correlated-k model for gas absorption. We then confirm the accuracy of SPARTACUS by performing broadband comparisons with fully 3-D radiation calculations by the Monte Carlo model "MYSTIC" for a cumulus cloud field, examining particularly the percentage change in cloud radiative effect (CRE) when 3-D effects are introduced. In the shortwave, SPARTACUS correctly captures this change to CRE, which varies with solar zenith angle between -25% and +120%. In the longwave, SPARTACUS captures well the increase in radiative cooling of the cloud, although it is only able to correctly simulate the 30% increase in surface CRE (around 4 W m-2) if an approximate correction is made for cloud clustering.
Thejappa, G.; Bergamo, M.; Papadopoulos, K.; MacDowall, R. J. E-mail: mbergamo@umd.edu E-mail: Robert.MacDowall@nasa.gov
2012-03-15
We present observational evidence for the oscillating two stream instability (OTSI) and spatial collapse of Langmuir waves in the source region of a solar type III radio burst. High time resolution observations from the STEREO A spacecraft show that Langmuir waves excited by the electron beam occur as isolated field structures with short durations {approx}3.2 ms and with high intensities exceeding the strong turbulence thresholds. These short duration events are identified as the envelope solitons which have collapsed to spatial scales of a few hundred Debye lengths. The spectra of these wave packets contain an intense peak and two sidebands, corresponding to beam-resonant Langmuir waves, and down-shifted and up-shifted daughter Langmuir waves, respectively, and low-frequency enhancements below a few hundred Hz. The frequencies and wave numbers of these spectral components satisfy the resonance conditions of the OTSI. The observed high intensities, short scale lengths, sideband spectral structures, and low-frequency enhancements strongly suggest that the OTSI and spatial collapse of Langmuir waves probably control the nonlinear beam-plasma interactions in type III radio bursts.
NASA Astrophysics Data System (ADS)
Mushtak, V. C.
2009-12-01
Observations of electromagnetic fields in the Schumann resonance (SR) frequency range (5 to 40 Hz) contain information about both the major source of the electromagnetic radiation (repeatedly confirmed to be global lightning activity) and the source-to-observer propagation medium (the Earth-ionosphere waveguide). While the electromagnetic signatures from individual lightning discharges provide preferable experimental material for exploring the medium, the properties of the world-wide lightning process are best reflected in background spectral SR observations. In the latter, electromagnetic contributions from thousands of lightning discharges are accumulated in intervals of about 10-15 minutes - long enough to present a statistically significant (and so theoretically treatable) ensemble of individual flashes, and short enough to reflect the spatial-temporal dynamics of global lightning activity. Thanks to the small (well below 1 dB/Mm) attenuation in the SR range and the accumulated nature of background SR observations, the latter present globally integrated information about lightning activity not available via other (satellite, meteorological) techniques. The most interesting characteristics to be extracted in an inversion procedure are the rates of vertical charge moment change (and their temporal variations) in the major global lightning “chimneys”. The success of such a procedure depends critically on the accuracy of the propagation theory (used to carry out “direct” calculations for the inversion) and the quality of experimental material. Due to the nature of the problem, both factors - the accuracy and the quality - can only be estimated indirectly, which requires specific approaches to assure that the estimates are realistic and more importantly, that the factors could be improved. For the first factor, simulations show that the widely exploited theory of propagation in a uniform (spherically symmetrical) waveguide provides unacceptable (up to
Ordonez-Miranda, J.; Alvarado-Gil, J. J.; Zambrano-Arjona, Miguel A.
2010-02-15
Dual-phase lagging model is one of the most promising approaches to generalize the Fourier heat conduction equation, and it can be reduced in the appropriate limits to the hyperbolic Cattaneo-Vernotte and to the parabolic equations. In this paper it is shown that the Hamilton-Jacobi and quantum theory formulations that have been developed to study the thermal-wave propagation in the Fourier framework can be extended to include the more general approach based on dual-phase lagging. It is shown that the problem of solving the heat conduction equation can be treated as a thermal harmonic oscillator. In the classical approach a formulation in canonical variables is presented. This formalism is used to introduce a quantum mechanical approach from which the expectation values of observables such as the temperature and heat flux are obtained. These formalisms permit to use a methodology that could provide a deeper insight into the phenomena of heat transport at different time scales in media with inhomogeneous thermophysical properties.
NASA Technical Reports Server (NTRS)
Embleton, Tony F. W.; Daigle, Gilles A.
1991-01-01
Reviewed here is the current state of knowledge with respect to each basic mechanism of sound propagation in the atmosphere and how each mechanism changes the spectral or temporal characteristics of the sound received at a distance from the source. Some of the basic processes affecting sound wave propagation which are present in any situation are discussed. They are geometrical spreading, molecular absorption, and turbulent scattering. In geometrical spreading, sound levels decrease with increasing distance from the source; there is no frequency dependence. In molecular absorption, sound energy is converted into heat as the sound wave propagates through the air; there is a strong dependence on frequency. In turbulent scattering, local variations in wind velocity and temperature induce fluctuations in phase and amplitude of the sound waves as they propagate through an inhomogeneous medium; there is a moderate dependence on frequency.
1988-02-12
to be approximately one. 42 IV. RESULTS AND DISCUSSION To diagnose plasmold propagation , considerable emphasis was placed on downstream net current...reversel of necessary and Identify by block nutrber) FIELD GROUP SUB-GOU >Plasmoids: Charged Particle Beamsil Beam Propagation , Ion -Diodes, Pulsed Pwr 191...ABSTRACT (Conria on reverse of necessary and oalntity by block number) #6 Simple analytical considerations suggest that for certain parameter regimes
1993-06-01
path is constantly changing , thus introducing short-term location variability into the propagation path. The tropospheric index-of-refraction profile...along the direct-ray propagation path is constantly changing , thus introducing short-term time variability, However, even if the platform were not...propagation path is constantly changing (because of a mobile transmitter or receiver) or the tropospheric index-of-refraction profile along the direct-ray
General circulation and thermal structure simulated by a Venus AGCM with a two-stream radiative code
NASA Astrophysics Data System (ADS)
Yamamoto, Masaru; Ikeda, Kohei; Takahashi, Masaaki
2016-10-01
Atmospheric general circulation model (AGCM) is expected to be a powerful tool for understanding Venus climate and atmospheric dynamics. At the present stage, however, the full-physics model is under development. Ikeda (2011) developed a two-stream radiative transfer code, which covers the solar to infrared radiative processes due to the gases and aerosol particles. The radiative code was applied to Venus AGCM (T21L52) at Atmosphere and Ocean Research Institute, Univ. Tokyo. We analyzed the results in a few Venus days simulation that was restarted after nudging zonal wind to a super-rotating state until the equilibrium. The simulated thermal structure has low-stability layer around 105 Pa at low latitudes, and the neutral stability extends from ˜105 Pa to the lower atmosphere at high latitudes. At the equatorial cloud top, the temperature lowers in the region between noon and evening terminator. For zonal and meridional winds, we can see difference between the zonal and day-side means. As was indicated in previous works, the day-side mean meridional wind speed mostly corresponds to the poleward component of the thermal tide and is much higher than the zonal mean. Toward understanding dynamical roles of waves in UV cloud tracking and brightness, we calculated the eddy heat and momentum fluxes averaged over the day-side hemisphere. The eddy heat and momentum fluxes are poleward in the poleward flank of the jet. In contrast, the fluxes are relatively weak and equatorward at low latitudes. The eddy momentum flux becomes equatorward in the dynamical situation that the simulated equatorial wind is weaker than the midlatitude jet. The sensitivity to the zonal flow used for the nudging will be also discussed in the model validation.
NASA Astrophysics Data System (ADS)
Schäfer, Sophia A. K.; Hogan, Robin J.; Klinger, Carolin; Chiu, J. Christine; Mayer, Bernhard
2016-07-01
Current weather and climate models neglect 3-D radiative transfer through cloud sides, which can change the cloud radiative effect (CRE) significantly. This two-part paper describes the development of the SPeedy Algorithm for Radiative TrAnsfer through CloUd Sides (SPARTACUS) to capture these effects efficiently in a two-stream radiation scheme for use in global models. The present paper concerns the longwave spectral region, where not much work has been done previously, although the limited previous work has suggested that radiative transfer through cloud sides increases the longwave surface CRE of shallow cumulus by around 30%. To assist the development of a longwave capability for SPARTACUS, we use a reference case of an isolated, isothermal, optically thick, cubic cloud in vacuum, for which 3-D effects increase CRE by exactly 200%. It is shown that for any cloud shape, the 3-D effect can be represented in SPARTACUS provided that correct account is made for (1) the effective zenith angle of diffuse radiation emitted from a cloud, (2) the spatial distribution of fluxes in the cloud, (3) cloud clustering that enhances the interception of emitted radiation by neighboring clouds, and (4) radiative smoothing leading to the effective cloud edge length being less than the measured value. We find empirically that the circumference of an ellipse fitted to a horizontal cross section through a cumulus cloud provides a good estimate of the radiatively effective cloud edge length, which provides some guidance to how cloud observations could be analyzed to extract their most important properties for radiation.
NASA Astrophysics Data System (ADS)
Dokumaci, Erkan
2014-10-01
The dispersion equation for the axisymmetric modes of viscothermal acoustic wave propagation in uniform hard-walled circular ducts containing a quiescent perfect gas is classical. This has been extended to cover the non-axisymmetric modes and real fluids in contemporary studies. The fundamental axisymmetric mode has been the subject of a large number of studies proposing approximate solutions and the characteristics of the propagation constants for narrow and wide ducts with or without mean flow is well understood. In contrast, there are only few publications on the higher order modes and the current knowledge about their propagation characteristics is rather poor. On the other hand, there is a void of papers in the literature on the effect of the mean flow on the quiescent modes of propagation. The present paper aims to contribute to the filling of these gaps to some extent. The classical theory is re-considered with a view to cover all modes of acoustic propagation in circular ducts carrying a real fluid moving axially with a uniform subsonic velocity. The analysis reveals a new branch of propagation constants for the axisymmetric modes, which appears to have escaped attention hitherto. The solution of the governing wave equation is expressed in a modal transfer matrix form in frequency domain and numerical results are presented to show the effects over wide ranges of frequency, viscosity and mean flow parameters on the propagation constants. The theoretical formulation allows for the duct walls to have finite impedance, but no numerical results are presented for lined ducts or ducts carrying a sheared mean flow.
Nonlinear stability of solar type 3 radio bursts. 1: Theory
NASA Technical Reports Server (NTRS)
Smith, R. A.; Goldstein, M. L.; Papadopoulos, K.
1978-01-01
A theory of the excitation of solar type 3 bursts is presented. Electrons initially unstable to the linear bump-in-tail instability are shown to rapidly amplify Langmuir waves to energy densities characteristic of strong turbulence. The three-dimensional equations which describe the strong coupling (wave-wave) interactions are derived. For parameters characteristic of the interplanetary medium the equations reduce to one dimension. In this case, the oscillating two stream instability (OTSI) is the dominant nonlinear instability, and is stablized through the production of nonlinear ion density fluctuations that efficiently scatter Langmuir waves out of resonance with the electron beam. An analytical model of the electron distribution function is also developed which is used to estimate the total energy losses suffered by the electron beam as it propagates from the solar corona to 1 A.U. and beyond.
NASA Astrophysics Data System (ADS)
Tateyama, Yoshitaka; Oyama, Norihisa; Ohno, Takahisa; Miyamoto, Yoshiyuki
2006-03-01
Mechanism of the ring-opening transformation in the photoexcited crystalline benzene is investigated on the femtosecond scale by a computational method based on the real-time propagation (RTP) time-dependent density functional theory (TDDFT). The excited-state dynamics of the benzene molecule is also examined not only for the distinction between the intrinsic properties of molecule and the intermolecular interaction but for the first validation using the vibration frequencies for the RTP-TDDFT approach. It is found that the vibration frequencies of the excited and ground states in the molecule are well reproduced. This demonstrates that the present method of time evolution using the Suzuki-Trotter-type split operator technique starting with the Franck-Condon state approximated by the occupation change of the Kohn-Sham orbitals is adequately accurate. For the crystalline benzene, we carried out the RTP-TDDFT simulations for two typical pressures. At both pressures, large swing of the C-H bonds and subsequent twist of the carbon ring occurs, leading to tetrahedral (sp3-like) C-H bonding. The ν4 and ν16 out-of-plane vibration modes of the benzene molecule are found mostly responsible for these motions, which is different from the mechanism proposed for the thermal ring-opening transformation occurring at higher pressure. Comparing the results between different pressures, we conclude that a certain increase of the intermolecular interaction is necessary to make seeds of the ring opening (e.g., radical site formation and breaking of the molecular character) even with the photoexcitation, while the hydrogen migration to fix them requires more free volume, which is consistent with the experimental observation that the transformation substantially proceeds on the decompression.
NASA Astrophysics Data System (ADS)
Urrutxua, H.; Sanjurjo-Rivo, M.; Peláez, J.
2013-12-01
In year 2000 a house-made orbital propagator was developed by the SDGUPM (former Grupo de Dinámica de Tethers) based in a set of redundant variables including Euler parameters. This propagator was called DROMO. and it was mainly used in numerical simulations of electrodynamic tethers. It was presented for the first time in the international meeting V Jornadas de Trabajo en Mecánica Celeste, held in Albarracín, Spain, in 2002 (see reference 1). The special perturbation method associated with DROMO can be consulted in the paper.2 In year 1975, Andre Deprit in reference 3 proposes a propagation scheme very similar to the one in which DROMO is based, by using the ideal frame concept of Hansen. The different approaches used in references 3 and 2 gave rise to a small controversy. In this paper we carried out a different deduction of the DROMO propagator, underlining its close relation with the Hansen ideal frame concept, and also the similarities and the differences with the theory carried out by Deprit in 3. Simultaneously we introduce some improvements in the formulation that leads to a more synthetic propagator.
Evaluation of the Two-stream Inversion Package (JRC-TIP) over the Hainich Forest FLUXNET site
NASA Astrophysics Data System (ADS)
Pinty, B.; Jung, M.; Kaminski, T.; Lavergne, T.; Mund, M.; Plummer, S.; Thomas, E.; Widlowski, J.-L.
2012-04-01
The Joint Research Centre Two-stream Inversion Package (JRC-TIP) makes use of the MODIS and MISR white sky albedo products to deliver consistent sets of information about the terrestrial environments. The baseline version of the JRC-TIP operates at a spatial resolution of 0.01degree and yields estimates of the Probability Distribution Functions (PDFs) of the effective canopy Leaf Area Index (LAI), the canopy background albedo, the vegetation scattering properties, as well as, the absorbed, reflected and transmitted fluxes of the vegetation canopy. In this contribution the evaluation efforts of the JRC-TIP products are extended to the deciduous forest site of Hainich (Germany) where multiannual datasets of in-situ estimates of canopy transmission - derived from LAI-2000 observations - are available. As a Fluxnet site, Hainich offers access to camera acquisitions from fixed locations in and above the canopy that are being used in phenological studies. These images qualitatively confirm the seasonal patterns of the effective LAI, canopy transmission and canopy absorption products (in the visible range of the solar spectrum) derived with the JRC-TIP. Making use of the LAI-2000 observations it is found that 3/4 of the JRC-TIP products lie within a +/- 0.15 interval around the in-situ estimates of canopy transmission and absorption. The largest discrepancies occur at the end of the senescence phase when the scattering properties of the vegetation (evidenced by the pictures) and the effective LAI (also derived from LAI-2000 measurements) are experiencing large simultaneous changes. It was also found that the seasonal pattern of vegetation scattering properties derived from MISR observations in the near-infrared varies together with the Excess Green index computed from the various channels of the camera data acquired at the top of the canopy. The approach adopted in the present study is cost-effective, rather simple but efficient to provide a first evaluation of the JRC
Light propagation through atomic vapours
NASA Astrophysics Data System (ADS)
Siddons, Paul
2014-05-01
This tutorial presents the theory necessary to model the propagation of light through an atomic vapour. The history of atom-light interaction theories is reviewed, and examples of resulting applications are provided. A numerical model is developed and results presented. Analytic solutions to the theory are found, based on approximations to the numerical work. These solutions are found to be in excellent agreement with experimental measurements.
NASA Astrophysics Data System (ADS)
Urrutxua, Hodei; Sanjurjo-Rivo, Manuel; Peláez, Jesús
2016-01-01
In the year 2000 an in-house orbital propagator called DROMO (Peláez et al. in Celest Mech Dyn Astron 97:131-150, 2007. doi: 10.1007/s10569-006-9056-3) was developed by the Space Dynamics Group of the Technical University of Madrid, based in a set of redundant variables including Euler-Rodrigues parameters. An original deduction of the DROMO propagator is carried out, underlining its close relation with the ideal frame concept introduced by Hansen (Abh der Math-Phys Cl der Kon Sachs Ges der Wissensch 5:41-218, 1857). Based on the very same concept, Deprit (J Res Natl Bur Stand Sect B Math Sci 79B(1-2):1-15, 1975) proposed a formulation for orbit propagation. In this paper, similarities and differences with the theory carried out by Deprit are analyzed. Simultaneously, some improvements are introduced in the formulation, that lead to a more synthetic and better performing propagator. Also, the long-term effect of the oblateness of the primary is studied in terms of DROMO variables, and new numerical results are presented to evaluate the performance of the method.
Propagating double layers in electronegative plasmas
Meige, A.; Plihon, N.; Hagelaar, G. J. M.; Boeuf, J.-P.; Chabert, P.; Boswell, R. W.
2007-05-15
Double layers have been observed to propagate from the source region to the diffusion chamber of a helicon-type reactor filled up with a low-pressure mixture of Ar/SF{sub 6} [N. Plihon et al., J. Appl. Phys. 98, 023306 (2005)]. In the present paper the most significant and new experimental results are reported. A fully self-consistent hybrid model in which the electron energy distribution function, the electron temperature, and the various source terms are calculated is developed to investigate these propagating double layers. The spontaneous formation of propagating double layers is only observed in the simulation for system in which the localized inductive heating is combined with small diameter chambers. The conditions of formation and the properties of the propagating double layers observed in the simulation are in good agreement with that of the experiment. By correlating the results of the experiment and the simulation, a formation mechanism compatible with ion two-stream instability is proposed.
Gauge engineering and propagators
NASA Astrophysics Data System (ADS)
Maas, Axel
2017-03-01
Beyond perturbation theory gauge-fixing becomes more involved due to the Gribov-Singer ambiguity: The appearance of additional gauge copies requires to define a procedure how to handle them. For the case of Landau gauge the structure and properties of these additional gauge copies will be investigated. Based on these properties gauge conditions are constructed to account for these gauge copies. The dependence of the propagators on the choice of these complete gauge-fixings will then be investigated using lattice gauge theory for Yang-Mills theory. It is found that the implications for the infrared, and to some extent mid-momentum behavior, can be substantial. In going beyond the Yang-Mills case it turns out that the influence of matter can generally not be neglected. This will be briefly discussed for various types of matter.
NASA Technical Reports Server (NTRS)
Pfaff, R. F.; Kelley, M. C.; Kudeki, E.; Fejer, B. G.; Baker, K. D.
1987-01-01
The results of electric field and plasma density measurements in the strongly driven daytime equatorial electrojet over Peru, made during the March 1983 Condor electrojet experiment from Punta Lobos, Peru, are discussed together with the rocket instrumentation used for the measurements and the pertinent payload dynamics. The overall characteristics of the irregularity layer observed in situ in the electrojet are described. Special consideration is given to the waves generated by the gradient drift instability (observed between 90 and 106.5 km) and to primary and secondary two-stream waves detected by the two probes on the topside between 103 and 111 km, where the electron current was considered to be strongest.
Safari, S.; Jazi, B.; Jahanbakht, S.
2016-08-15
In this work, two stream instability in a metallic waveguide with elliptical cross-section and with a hollow annular dielectric layer is studied for generation and amplification of THz electromagnetic waves. Dispersion relation of waves and their dependents to geometric dimensions and characteristics of the electron beam are analyzed. In continuation, the diagrams of growth rate for some operating frequencies are presented, so that effective factors on the growth rates, such as geometrical dimensions, dielectric constant of dielectric layer, accelerating voltage, and applied current intensity are analyzed. It is shown that while an electron beam is responsible for instability, another electron beam plays a stabilizing role.
NASA Astrophysics Data System (ADS)
Hirakawa, E. T.; Ezzedine, S. M.; Petersson, A.; Sjogreen, B.; Vorobiev, O.; Pitarka, A.; Antoun, T.; Walter, W. R.
2016-12-01
Motions from underground explosions are governed by non-linear hydrodynamic response of material. However, the numerical calculation of this non-linear constitutive behavior is computationally intensive in contrast to the elastic and acoustic linear wave propagation solvers. Here, we develop a hybrid modeling approach with one-way hydrodynamic-to-elastic coupling in three dimensions in order to propagate explosion generated ground motions from the non-linear near-source region to the far-field. Near source motions are computed using GEODYN-L, a Lagrangian hydrodynamics code for high-energy loading of earth materials. Motions on a dense grid of points sampled on two nested shells located beyond the non-linear damaged zone are saved, and then passed to SW4, an anelastic anisotropic fourth order finite difference code for seismic wave modeling. Our coupling strategy is based on the decomposition and uniqueness theorems where motions are introduced into SW4 as a boundary source and continue to propagate as elastic waves at a much lower computational cost than by using GEODYN-L to cover the entire near- and the far-field domain. The accuracy of the numerical calculations and the coupling strategy is demonstrated in cases with a purely elastic medium as well as non-linear medium. Our hybrid modeling approach is applied to SPE-4' and SPE-5 which are the most recent underground chemical explosions conducted at the Nevada National Security Site (NNSS) where the Source Physics Experiments (SPE) are performed. Our strategy by design is capable of incorporating complex non-linear effects near the source as well as volumetric and topographic material heterogeneity along the propagation path to receiver, and provides new prospects for modeling and understanding explosion generated seismic waveforms. This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. LLNL-ABS-698608.
Photon propagator for axion electrodynamics
Itin, Yakov
2007-10-15
The axion modified electrodynamics is usually used as a model for description of possible violation of Lorentz invariance in field theory. The low-energy manifestation of Lorentz violation can hopefully be observed in experiments with electromagnetic waves. It justifies the importance of studying how a small axion addition can modify the wave propagation. Although a constant axion does not contribute to the dispersion relation at all, even a slowly varying axion field destroys the light cone structure. In this paper, we study the wave propagation in the axion modified electrodynamics in the framework of the premetric approach. In addition to the modified dispersion relation, we derive the axion generalization of the photon propagator in Feynman and Landau gauge. Our consideration is free of the usual restriction to the constant gradient axion field. It is remarkable that the axion modified propagator is Hermitian. Consequently, the dissipation effects are absent even in the phenomenological model considered here.
Zhang, Ruili; Liu, Jian; Xiao, Jianyuan; Qin, Hong; Davidson, Ronald C.
2016-07-15
The two-stream instability is probably the most important elementary example of collective instabilities in plasma physics and beam-plasma systems. For a warm plasma with two charged particle species, the instability diagram of the two-stream instability based on a 1D warm-fluid model exhibits an interesting band structure that has not been explained. We show that the band structure for this instability is the consequence of the Hamiltonian nature of the warm two-fluid system. Interestingly, the Hamiltonian nature manifests as a complex G-Hamiltonian structure in wave-number space, which directly determines the instability diagram. Specifically, it is shown that the boundaries between the stable and unstable regions are locations for Krein collisions between eigenmodes with different Krein signatures. In terms of physics, this rigorously implies that the system is destabilized when a positive-action mode resonates with a negative-action mode, and that this is the only mechanism by which the system can be destabilized. It is anticipated that this physical mechanism of destabilization is valid for other collective instabilities in conservative systems in plasma physics, accelerator physics, and fluid dynamics systems, which admit infinite-dimensional Hamiltonian structures.
NASA Astrophysics Data System (ADS)
Baalrud, S. D.; Hegna, C. C.; Callen, J. D.
2009-10-01
Ion-ion streaming instabilities are excited in the presheath region of plasmas with multiple ion species if the ions are much colder than the electrons. Streaming instabilities onset when the relative fluid flow between ion species exceeds a critical speed, δVc, of order the ion thermal speeds. Using a generalized Lenard-Balescu theory that accounts for instability-enhanced collective responses [1], one is able to show the instabilities rapidly (within a few Debye lengths) enhance the collisional friction between ion species far beyond the contribution from Coulomb collisions alone. This strong frictional force determines the relative fluid speed between species. When this condition is combined with the Bohm criterion generalized for multiple ion species, the fluid speed of each ion species is determined at the sheath edge. For each species, this speed differs from the common ``system'' sound speed by a factor that depends on the species concentration and δVc.[4pt] [1] S.D. Baalrud, J.D. Callen, and C.C. Hegna, Phys. Plasmas 15, 092111 (2008).
Exact propagators in harmonic superspace
NASA Astrophysics Data System (ADS)
Kuzenko, Sergei M.
2004-10-01
Within the background field formulation in harmonic superspace for quantum N = 2 super-Yang-Mills theories, the propagators of the matter, gauge and ghost superfields possess a complicated dependence on the SU(2) harmonic variables via the background vector multiplet. This dependence is shown to simplify drastically in the case of an on-shell vector multiplet. For a covariantly constant background vector multiplet, we exactly compute all the propagators. In conjunction with the covariant multi-loop scheme developed in arxiv:hep-th/0302205, these results provide an efficient (manifestly N = 2 supersymmetric) technical setup for computing multi-loop quantum corrections to effective actions in N = 2 supersymmetric gauge theories, including the N = 4 super-Yang-Mills theory.
A Chebychev propagator for inhomogeneous Schroedinger equations
Ndong, Mamadou; Koch, Christiane P.; Tal-Ezer, Hillel; Kosloff, Ronnie
2009-03-28
A propagation scheme for time-dependent inhomogeneous Schroedinger equations is presented. Such equations occur in time dependent optimal control theory and in reactive scattering. A formal solution based on a polynomial expansion of the inhomogeneous term is derived. It is subjected to an approximation in terms of Chebychev polynomials. Different variants for the inhomogeneous propagator are demonstrated and applied to two examples from optimal control theory. Convergence behavior and numerical efficiency are analyzed.
NASA Astrophysics Data System (ADS)
Stachlewska, Iwona S.; Christoph, Ritter; Neuber, Roland
2005-10-01
The background aerosol conditions and the conditions contaminated with aerosol of antropogenic origin (Arctic haze) were investigated during two Arctic campaigns, the Arctic Study of Tropospheric Aerosols, Clouds and Radiation (ASTAR) in 2004 and Svalbard Experiment (SVALEX) in 2005, respectively. Results obtained by application of the two-stream inversion algorithm to the elastic lidar signals measured on two days representative for each campaign are presented. The calculations were done using signals obtained by the nadir-looking Airborne Mobile Aerosol Lidar (AMALi) probing lower troposphere from the AWI research aircraft Polar 2 overflying the stationary Koldewey Aerosol Raman Lidar (KARL) based at the AWI Koldewey Research Station in Ny Ålesund, Svalbard. The method allowed independent retrieval of extinction and backscatter coefficient profiles and lidar ratio profiles for each of the two days representative for both clean and polluted lower troposphere in Arctic.
NASA Astrophysics Data System (ADS)
Reyes-Ruiz, M.; Aceves, H.; Perez De Tejada, H. A.
2011-12-01
We study the linear development of the two-stream instability in a plasma consisting of cold ions, assumed at rest and taken to represent planetary ions, and a hot, streaming population of electrons, representing the solar wind. The stability of quasi-global perturbations is analyzed as a function of plasma density, temperature and streaming velocity, using a QR algorithm to compute the growth rate of eigenmodes of the coupled fluid equations of motion for both species. The sense of the cross-flow, viscous-like momentum transfer from the streaming plasma to ionospheric ions, is determined on the basis of an heuristic estimation following a Reynolds averaging procedure of the cross-flow momentum flux term in the equation of motion.
Mode couplings in a two-stream free-electron laser with a helical wiggler and an ion-channel guiding
Mohsenpour, Taghi Alirezaee, Hajar
2014-08-15
In this study, the method of perturbation has been applied to obtain the dispersion relation (DR) of a two-stream free-electron laser (FEL) with a helical wiggler and an ion-channel with all relativistic effects on waves. This DR has been solved numerically to find the unstable modes and their growth rate. Numerical solutions of DR show that the growth rate is considerably enhanced in comparison with single-stream free-electron laser. In group II orbits, with relatively large wiggler induced velocities, new couplings are found. The effect of the velocity difference of the two electron beams on the instabilities has also been investigated in this study. Moreover, the effect of the ion-channel density on the maximum growth rate of FEL resonance has been analyzed.
2014-09-30
1 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Shallow Water Propagation William L. Siegmann...mechanisms of propagation . OBJECTIVES (A) Treat propagation from narrowband and broadband sources over elastic and poro-elastic sediments, and...and other sediments on propagation , and specify for one class of muds the physical variations that affect geoacoustical properties. APPROACH
Vegetative propagation [Chapter 9
Tara Luna
2009-01-01
For the past 30 years, interest in the propagation of native plants has been growing. Many desirable and ecologically important species, however, are difficult or very time consuming to propagate by seeds. Thus, nursery growers may want to investigate how to propagate a species of interest by vegetative propagation. This can be done by combining classic horticultural...
Understanding tropscatter propagation
NASA Astrophysics Data System (ADS)
Reynolds, Joseph Henderson
Although troposcatter communications systems have shortcomings, this transmission scheme has found consistent use in several applications. Troposcatter propagation is discussed with emphasis on theory, characteristics, and prediction tools. Theoretical understanding of the troposcatter propagation mechanism is rooted in atmospheric phenomena, specifically--refractivity and turbulence. Two modes of transmission exist: incoherent scatter, if refractivity irregularities exist as turbulent blobs, and quasi-coherent scatter, if irregularities arrange themselves in layers. Frequency and meteorological parameters define the dominant mechanism. One can expect received signal levels to exhibit distance and frequency dependence; short and long-term fading; aperture-to-medium coupling loss; and diurnal, seasonal, climatic, and meteorological variations. Diversity techniques are indispensable in thwarting short-term fading. Atmospheric multipath is known to limit analog system bandwidths yet digital systems are prone to the related delay spread phenomenon which causes intersymbol interference. Adaptive processing is used to overcome this problem and can further improve digital performance through implicit diversity. Most troposcatter prediction methods are rooted in empirical expressions. Unfortunately, all the methods suffer shortcomings with reliance on surface refractivity and incorrect coupling loss calculations topping the list.
2007-03-01
wave spectrum and the adaptation of the Rytov method to the ocean by Munk and Zachariasen , the prediction of ocean acoustic fluctuations were on a...fluctuation spectrum had the GM (Garrett-Munk) form, they computed the intensity spectrum using the Rytov theory of Munk and Zachariasen (1976), and...1976), Kenneth M. Watson (1979), Fredrik Zachariasen (1976), B.J. Uscinski, T.E. Ewart (1998), John A. Colosi (2007), and many other researchers from
NASA Astrophysics Data System (ADS)
Garces, M. A.
2000-08-01
A theoretical solution is derived for the sound field in an arbitrarily layered viscous fluid moving with the non-negligible Mach number within a duct with elastic walls and varying cross-sectional area. The solution is applied to the interpretation of infrasonic and seismic signals preceding and accompanying volcanic eruptions, and can be used to study the acoustic response of various types of volcanic fluids, including magma-gas mixtures, ash-gas mixtures, and bubble-rich liquids. The acoustic field in a magma conduit can be propagated into the atmosphere through an open vent, and coupled into the ground through the displacement of the magma conduit walls. The theoretical solutions predict that fluids moving with the non-negligible Mach number will exhibit significant attenuation in the upstream direction, thereby reducing the quality factor of the conduit resonance. Thus, acoustic energy generated during an eruption may be preferentially radiated downstream, exacerbating the acoustic decoupling between the upper and lower parts of a stratified magma column. A source model for a repeated cavitation process is introduced as a possible excitation mechanism for tremor signals.
Prager, Stefan; Zech, Alexander; Wesolowski, Tomasz A; Dreuw, Andreas
2017-10-10
Implementation, benchmarking, and representative applications of the new FDE-ADC(3) method for describing environmental effects on excited states as a combination of frozen density embedding (FDE) and the algebraic-diagrammatic construction scheme for the polarization propagator of third order (ADC(3)) are presented. Results of FDE-ADC(3) calculations are validated with respect to supersystem calculations on test systems with varying molecule-environment interaction strengths from dispersion up to multiple hydrogen bonds. The overall deviation compared to the supersystem calculations is as small as 0.029 eV for excitation energies, which is even smaller than the intrinsic error of ADC(3). The dependence of the accuracy on the choice of method and functional for the calculation of the environment and the nonelectrostatic part of the system-environment interaction is evaluated. In three representative examples, the FDE-ADC method is applied to investigate larger systems and to analyze excited state properties using visualization of embedded densities and orbitals.
NASA Astrophysics Data System (ADS)
Barantsev, K. A.; Litvinov, A. N.; Popov, E. N.
2016-12-01
This work is devoted to generalization of the semi-classical theory of interaction of broadband laser radiation with the atomic gas at the room temperature in the cell in the case of the closed excitation contour. The atomic density matrix equations and spectrum and correlations transport equations have been derived for excitation by fluctuating field with Gaussian statistics. It is shown that the spatial oscillations of radiation intensity and atomic density matrix can be excited. It was found that such medium can serve as a filter of incoherent part of the radiation.
Shannon, R J; Tomlin, A S; Robertson, S H; Blitz, M A; Pilling, M J; Seakins, P W
2015-07-16
Statistical rate theory calculations, in particular formulations of the chemical master equation, are widely used to calculate rate coefficients of interest in combustion environments as a function of temperature and pressure. However, despite the increasing accuracy of electronic structure calculations, small uncertainties in the input parameters for these master equation models can lead to relatively large uncertainties in the calculated rate coefficients. Master equation input parameters may be constrained further by using experimental data and the relationship between experiment and theory warrants further investigation. In this work, the CH3OCH2 + O2 system, of relevance to the combustion of dimethyl ether (DME), is used as an example and the input parameters for master equation calculations on this system are refined through fitting to experimental data. Complementing these fitting calculations, global sensitivity analysis is used to explore which input parameters are constrained by which experimental conditions, and which parameters need to be further constrained to accurately predict key elementary rate coefficients. Finally, uncertainties in the calculated rate coefficients are obtained using both correlated and uncorrelated distributions of input parameters.
Wave propagation in modified gravity
NASA Astrophysics Data System (ADS)
Lindroos, Jan Ø.; Llinares, Claudio; Mota, David F.
2016-02-01
We investigate the propagation of scalar waves induced by matter sources in the context of scalar-tensor theories of gravity which include screening mechanisms for the scalar degree of freedom. The usual approach when studying these theories in the nonlinear regime of cosmological perturbations is based on the assumption that scalar waves travel at the speed of light. Within general relativity this approximation is valid and leads to no loss of accuracy in the estimation of observables. We find, however, that mass terms and nonlinearities in the equations of motion lead to propagation and dispersion velocities significantly different from the speed of light. As the group velocity is the one associated with the propagation of signals, a reduction of its value has direct impact on the behavior and dynamics of nonlinear structures within modified gravity theories with screening. For instance, the internal dynamics of galaxies and satellites submerged in large dark matter halos could be affected by the fact that the group velocity is smaller than the speed of light. It is therefore important, within such a framework, to take into account the fact that different parts of a galaxy will see changes in the environment at different times. A full nonstatic analysis may be necessary under those conditions.
Graviton propagator from background-independent quantum gravity.
Rovelli, Carlo
2006-10-13
We study the graviton propagator in Euclidean loop quantum gravity. We use spin foam, boundary-amplitude, and group-field-theory techniques. We compute a component of the propagator to first order, under some approximations, obtaining the correct large-distance behavior. This indicates a way for deriving conventional spacetime quantities from a background-independent theory.
Wave equations for pulse propagation
Shore, B.W.
1987-06-24
Theoretical discussions of the propagation of pulses of laser radiation through atomic or molecular vapor rely on a number of traditional approximations for idealizing the radiation and the molecules, and for quantifying their mutual interaction by various equations of propagation (for the radiation) and excitation (for the molecules). In treating short-pulse phenomena it is essential to consider coherent excitation phenomena of the sort that is manifest in Rabi oscillations of atomic or molecular populations. Such processes are not adequately treated by rate equations for excitation nor by rate equations for radiation. As part of a more comprehensive treatment of the coupled equations that describe propagation of short pulses, this memo presents background discussion of the equations that describe the field. This memo discusses the origin, in Maxwell's equations, of the wave equation used in the description of pulse propagation. It notes the separation into lamellar and solenoidal (or longitudinal and transverse) and positive and negative frequency parts. It mentions the possibility of separating the polarization field into linear and nonlinear parts, in order to define a susceptibility or index of refraction and, from these, a phase and group velocity. The memo discusses various ways of characterizing the polarization characteristics of plane waves, that is, of parameterizing a transverse unit vector, such as the Jones vector, the Stokes vector, and the Poincare sphere. It discusses the connection between macroscopically defined quantities, such as the intensity or, more generally, the Stokes parameters, and microscopic field amplitudes. The material presented here is a portion of a more extensive treatment of propagation to be presented separately. The equations presented here have been described in various books and articles. They are collected here as a summary and review of theory needed when treating pulse propagation.
2002-09-30
Electro - Optic Propagation Stephen Doss-Hammel SPAWARSYSCEN San Diego code 2858 49170 Propagation Path San Diego, CA 92152-7385 phone: (619...OBJECTIVES The electro - optical propagation objectives are: 1) The acquisition and analysis of mid-wave and long-wave infrared transmission and...elements to the electro - optical propagation model development. The first element is the design and execution of field experiments to generate useful
2003-09-30
Electro - Optic Propagation Stephen Doss-Hammel SPAWARSYSCEN San Diego code 2858 49170 Propagation Path San Diego, CA 92152-7385 phone: (619...scenarios to extend the capabilities of TAWS to surface and low altitude situations. OBJECTIVES The electro - optical propagation objectives are: 1...development of a new propagation assessment tool called EOSTAR ( Electro - Optical Signal Transmission and Ranging). The goal of the EOSTAR project is to
Fick's Law Assisted Propagation for Semisupervised Learning.
Gong, Chen; Tao, Dacheng; Fu, Keren; Yang, Jie
2015-09-01
How to propagate the label information from labeled examples to unlabeled examples is a critical problem for graph-based semisupervised learning. Many label propagation algorithms have been developed in recent years and have obtained promising performance on various applications. However, the eigenvalues of iteration matrices in these algorithms are usually distributed irregularly, which slow down the convergence rate and impair the learning performance. This paper proposes a novel label propagation method called Fick's law assisted propagation (FLAP). Unlike the existing algorithms that are directly derived from statistical learning, FLAP is deduced on the basis of the theory of Fick's First Law of Diffusion, which is widely known as the fundamental theory in fluid-spreading. We prove that FLAP will converge with linear rate and show that FLAP makes eigenvalues of the iteration matrix distributed regularly. Comprehensive experimental evaluations on synthetic and practical datasets reveal that FLAP obtains encouraging results in terms of both accuracy and efficiency.
Photon propagator in light-shell gauge
NASA Astrophysics Data System (ADS)
Georgi, Howard; Kestin, Greg; Sajjad, Aqil
2016-05-01
We derive the photon propagator in light-shell gauge (LSG) vμAμ=0 , where vμ=(1,r ^ ) μ . This gauge is an important ingredient of the light-shell effective theory—an effective theory for describing high energy jet processes on a 2-dimensional spherical shell expanding at the speed of light around the point of the initial collision producing the jets. Since LSG is a noncovariant gauge, we cannot calculate the LSG propagator by using the standard procedure for covariant gauges. We therefore employ a new technique for computing the propagator, which we hope may be of relevance in other gauges as well.
NASA Astrophysics Data System (ADS)
Marzadri, Alessandra; Dee, Martha M.; Tonina, Daniele; Tank, Jennifer L.; Bellin, Alberto
2016-04-01
Nitrous oxide (N2O) is a potent greenhouse gas responsible of stratospheric ozone destruction. Denitrification in stream ecosystems occurs within the benthic layer at the sediment-water interface and within subsurface environments such as the hyporheic zone and results in N2O production that could be eventually emitted to the atmosphere. Here, we quantify the role of benthic and hyporheic zones as sources of N2O gas and explore the dependence of emissions from stream morphology, flow hydraulics, land use and climate using a recently-developed fully analytical framework. Variations in N2O emissions within and among catchments of contrasting land use can be explained with a new denitrification Damköhler number (DaD) that accounts for denitrification processes within both benthic and hyporheic zones. For initial model development, we found a strong relationship between DaD and stream N2O emissions using field data collected from multiple headwater streams (i.e., LINXII project) from different biomes draining contrasting land use. We then tested its generality by comparing N2O emissions predicted with DaD to those measured using a synoptic sampling campaign in two stream networks draining contrasting land use: Manistee R (Michigan, USA) and Tippecanoe R (Indiana, USA). Our dimensionless analysis shows that the effect of land use disappears after making the emissions dimensionless with respect to the nitrogen load. Reliable predictions of N2O emissions at the stream network scale can be obtained from a limited amount of information, consisting in relatively easy to obtain biogeochemical and hydromorphological quantities.
Propagation Speed in Myelinated Nerve
Hardy, W. L.
1973-01-01
The Hodgkin-Huxley (H.H.) equations modified by Dodge for Rana pipiens myelinated nerve have been solved to determine how well the theory predicts the effects of changes of temperature and [Na+]0 on propagation. Conduction speed θ was found to have an approximately exponential dependence on temperature as was found experimentally, but the theoretical temperature coefficient (Q10) was low; 1.5 compared with the experimental finding of 2.95. θ was found to be a linear function of log ([Na+]0) in contrast to the experimental finding of a square root dependence on [Na+]0. θ is 50% greater at one-fourth normal [Na+]0 than the theory predicts. The difference between the theoretical θ([Na+]0) and the experimental θ([Na+]0) is probably due to an imprecisely known variation of parameters and not to a fundamental inadequacy of the theory. PMID:4542941
Cosmic Ray Propagation and Acceleration
NASA Technical Reports Server (NTRS)
Moskalenko, Igor V.
2003-01-01
Theoretical views on particle acceleration in astrophysical sources and propagation of cosmic rays (CR) depend very much on the quality of the data, which become increasingly accurate each year and therefore more constraining. On the other hand, direct measurements of CR are possible in only one location on the outskirts of the Milky Way and present only a snapshot of very dynamic processes. The theoretical papers presented during the conference offer exciting insights into the physics of cosmic accelerators and processes which underlie the measured abundances and spectra of CR species. This paper is based on a rapporteur talk given at the 28th International Cosmic Ray Conference held on July 31-August 7, 2003 at Tsukuba. It covers the sessions OG 1.3 Cosmic ray propagation, OG 1.4 Acceleration of cosmic rays, and a part of HE 1.2 Theory and simulations (including origins of the knee).
Linear and nonlinear acoustic wave propagation in the atmosphere
NASA Technical Reports Server (NTRS)
Hariharan, S. I.; Yu, Ping
1988-01-01
The investigation of the acoustic wave propagation theory and numerical implementation for the situation of an isothermal atmosphere is described. A one-dimensional model to validate an asymptotic theory and a 3-D situation to relate to a realistic situation are considered. In addition, nonlinear wave propagation and the numerical treatment are included. It is known that the gravitational effects play a crucial role in the low frequency acoustic wave propagation. They propagate large distances and, as such, the numerical treatment of those problems become difficult in terms of posing boundary conditions which are valid for all frequencies.
NASA Propagation Studies Website
NASA Technical Reports Server (NTRS)
Angkasa, Krisjani S.
1996-01-01
The NASA propagation studies objective is to enable the development of new commercial satellite communication systems and services by providing timely data and models about propagation of satellite radio signals through the intervening environment and to support NASA missions. In partnership with industry and academia, the program leverages unique NASA assets (currently Advanced Communications Technology Satellite) to obtain propagation data. The findings of the study are disseminated through referred journals, NASA reference publications, workshops, electronic media, and direct interface with industry.
Transport Theory for Propagation and Reverberation
2013-12-30
scattering, though comprising a relatively small fraction of the total energy, can significantly impact the reverberation level. The available...included with small -scale boundary roughness ignored. Even the simple expedient of using a loss at the boundary to approximately account for boundary...considered a point source or receiver, the contributions to reverberation arise from a circular annulus , and directional aspects of the wave field will not
Electromagnetic wave propagation characteristics in unimolecular reactions
NASA Astrophysics Data System (ADS)
Liu, Xingpeng; Huang, Kama
2016-01-01
Microwave-assisted chemical reactions have attracted interests because of their benefits for enhancement of reaction rates. However, the problems, such as hot spots and thermal runaway, limit the application of microwaves in the chemical industry. To study the characteristics of electromagnetic wave propagation in a chemical reaction is critical to solve the problems. The research on the characteristics of electromagnetic wave propagation in the unimolecular reaction that is a simple model reaction, can be generalized to the research in a chemical reaction. The approximate expressions of the attenuation and dispersion characteristics of electromagnetic wave propagation in the unimolecular reaction are derived by the nonlinear propagation theory. Specially, when the reaction rate is zero, the derived approximate expressions can be reduced to the formulas in low-loss dispersive media. Moreover, a 1D mold is used to validate the feasibility of the approximate expressions. The influences of the reaction rate and initial reactant concentration on the characteristics are obtained.
Error propagation in calculated ratios.
Holmes, Daniel T; Buhr, Kevin A
2007-06-01
Calculated quantities that combine results of multiple laboratory tests have become popular for screening, risk evaluation, and ongoing care in medicine. Many of these are ratios. In this paper, we address the specific issue of propagated random analytical error in calculated ratios. Standard error propagation theory is applied to develop an approximate formula for the mean, standard deviation (SD), and coefficient of variation (CV) of the ratio of two independent, normally distributed random variables. A method of mathematically modeling the problem by random simulations to validate these formulas is proposed and applied. Comparisons are made with the commonly quoted formula for the CV of a ratio. The approximation formula for the CV of a ratio R=X/Y of independent Gaussian random variables developed herein has an absolute percentage error less than 4% for CVs of less than 20% in Y. In contrast the commonly quoted formula has a percentage error of up to 16% for CVs of less than 20% in Y. The usual formula for the CV of a ratio functions well when the CV of the denominator is less than 10% but for larger CVs, the formula proposed here is more accurate. Random analytical error in calculated ratios may be larger than clinicians and laboratorians are aware. The magnitude of the propagated error needs to be considered when interpreting calculated ratios in the clinical laboratory, especially near medical decision limits where its effect may lead to erroneous conclusions.
NASA Technical Reports Server (NTRS)
Wakana, Hiromitsu
1991-01-01
L-band propagation measurements for land-mobile, maritime, and aeronautical satellite communications have been carried out by using the Japanese Engineering Test Satellite-Five (ETS-5) which was launched in Aug. 1987. This paper presents propagation characteristics for each of the mobile satellite communication channels.
Limitations in scatter propagation
NASA Astrophysics Data System (ADS)
Lampert, E. W.
1982-04-01
A short description of the main scatter propagation mechanisms is presented; troposcatter, meteor burst communication and chaff scatter. For these propagation modes, in particular for troposcatter, the important specific limitations discussed are: link budget and resulting hardware consequences, diversity, mobility, information transfer and intermodulation and intersymbol interference, frequency range and future extension in frequency range for troposcatter, and compatibility with other services (EMC).
NASA Propagation Information Center
NASA Technical Reports Server (NTRS)
Smith, Ernest K.; Flock, Warren L.
1989-01-01
The NASA Propagation Information Center became formally operational in July 1988. It is located in the Department of Electrical and Computer Engineering of the University of Colorado at Boulder. The Center is several things: a communications medium for the propagation with the outside world, a mechanism for internal communication within the program, and an aid to management.
Coherent structures for front propagation in fluids
NASA Astrophysics Data System (ADS)
Mitchell, Kevin; Mahoney, John
2014-03-01
Our goal is to characterize the nature of reacting flows by identifying important ``coherent'' structures. We follow the recent work by Haller, Beron-Vera, and Farazmand which formalized the notion of lagrangian coherent structures (LCSs) in fluid flows. In this theory, LCSs were derived from the Cauchy-Green strain tensor. We adapt this perspective to analogously define coherent structures in reacting flows. By this we mean a fluid flow with a reaction front propagating through it such that the propagation does not affect the underlying flow. A reaction front might be chemical (Belousov-Zhabotinsky, flame front, etc.) or some other type of front (electromagnetic, acoustic, etc.). While the recently developed theory of burning invariant manifolds (BIMs) describes barriers to front propagation in time-periodic flows, this current work provides an important complement by extending to the aperiodic setting. Funded by NSF Grant CMMI-1201236.
Three-Dimensional Gear Crack Propagation Studies
NASA Technical Reports Server (NTRS)
Lewicki, David G.; Sane, Ashok D.; Drago, Raymond J.; Wawrzynek, Paul A.
1998-01-01
Three-dimensional crack growth simulation was performed on a split-tooth gear design using boundary element modeling and linear elastic fracture mechanics. Initial cracks in the fillet of the teeth produced stress intensity factors of greater magnitude (and thus, greater crack growth rates) than those in the root or groove areas of the teeth. Crack growth simulation was performed on a case study to evaluate crack propagation paths. Tooth fracture was predicted from the crack growth simulation for an initial crack in the tooth fillet region. Tooth loads on the uncracked mesh of the split-tooth design were up to five times greater than those on the cracked mesh if equal deflections of the cracked and uncracked teeth were considered. Predicted crack shapes as well as crack propagation life are presented based on calculated stress intensity factors, mixed-mode crack propagation trajectory theories, and fatigue crack growth theories.
Millimeter wavelength propagation studies
NASA Technical Reports Server (NTRS)
Hodge, D. B.
1974-01-01
The investigations conducted for the Millimeter Wavelength Propagation Studies during the period December, 1966, to June 1974 are reported. These efforts included the preparation for the ATS-5 Millimeter Wavelength Propagation Experiment and the subsequent data acquisition and data analysis. The emphasis of the OSU participation in this experiment was placed on the determination of reliability improvement resulting from the use of space diversity on a millimeter wavelength earth-space communication link. Related measurements included the determination of the correlation between radiometric temperature and attenuation along the earth-space propagation path. Along with this experimental effort a theoretical model was developed for the prediction of attenuation statistics on single and spatially separated earth space propagation paths. A High Resolution Radar/Radiometer System and Low Resolution Radar System were developed and implemented for the study of intense rain cells in preparation for the ATS-6 Millimeter Wavelength Propagation Experiment.
Cosmic ray sources, acceleration and propagation
NASA Technical Reports Server (NTRS)
Ptuskin, V. S.
1986-01-01
A review is given of selected papers on the theory of cosmic ray (CR) propagation and acceleration. The high isotropy and a comparatively large age of galactic CR are explained by the effective interaction of relativistic particles with random and regular electromagnetic fields in interstellar medium. The kinetic theory of CR propagation in the Galaxy is formulated similarly to the elaborate theory of CR propagation in heliosphere. The substantial difference between these theories is explained by the necessity to take into account in some cases the collective effects due to a rather high density of relativisitc particles. In particular, the kinetic CR stream instability and the hydrodynamic Parker instability is studied. The interaction of relativistic particles with an ensemble of given weak random magnetic fields is calculated by perturbation theory. The theory of CR transfer is considered to be basically completed for this case. The main problem consists in poor information about the structure of the regular and the random galactic magnetic fields. An account is given of CR transfer in a turbulent medium.
Wave Propagation in Bimodular Geomaterials
NASA Astrophysics Data System (ADS)
Kuznetsova, Maria; Pasternak, Elena; Dyskin, Arcady; Pelinovsky, Efim
2016-04-01
Observations and laboratory experiments show that fragmented or layered geomaterials have the mechanical response dependent on the sign of the load. The most adequate model accounting for this effect is the theory of bimodular (bilinear) elasticity - a hyperelastic model with different elastic moduli for tension and compression. For most of geo- and structural materials (cohesionless soils, rocks, concrete, etc.) the difference between elastic moduli is such that their modulus in compression is considerably higher than that in tension. This feature has a profound effect on oscillations [1]; however, its effect on wave propagation has not been comprehensively investigated. It is believed that incorporation of bilinear elastic constitutive equations within theory of wave dynamics will bring a deeper insight to the study of mechanical behaviour of many geomaterials. The aim of this paper is to construct a mathematical model and develop analytical methods and numerical algorithms for analysing wave propagation in bimodular materials. Geophysical and exploration applications and applications in structural engineering are envisaged. The FEM modelling of wave propagation in a 1D semi-infinite bimodular material has been performed with the use of Marlow potential [2]. In the case of the initial load expressed by a harmonic pulse loading strong dependence on the pulse sign is observed: when tension is applied before compression, the phenomenon of disappearance of negative (compressive) strains takes place. References 1. Dyskin, A., Pasternak, E., & Pelinovsky, E. (2012). Periodic motions and resonances of impact oscillators. Journal of Sound and Vibration, 331(12), 2856-2873. 2. Marlow, R. S. (2008). A Second-Invariant Extension of the Marlow Model: Representing Tension and Compression Data Exactly. In ABAQUS Users' Conference.
Gear crack propagation investigations
NASA Technical Reports Server (NTRS)
Lewicki, David G.; Ballarini, Roberto
1996-01-01
Analytical and experimental studies were performed to investigate the effect of gear rim thickness on crack propagation life. The FRANC (FRacture ANalysis Code) computer program was used to simulate crack propagation. The FRANC program used principles of linear elastic fracture mechanics, finite element modeling, and a unique re-meshing scheme to determine crack tip stress distributions, estimate stress intensity factors, and model crack propagation. Various fatigue crack growth models were used to estimate crack propagation life based on the calculated stress intensity factors. Experimental tests were performed in a gear fatigue rig to validate predicted crack propagation results. Test gears were installed with special crack propagation gages in the tooth fillet region to measure bending fatigue crack growth. Good correlation between predicted and measured crack growth was achieved when the fatigue crack closure concept was introduced into the analysis. As the gear rim thickness decreased, the compressive cyclic stress in the gear tooth fillet region increased. This retarded crack growth and increased the number of crack propagation cycles to failure.
Gear Crack Propagation Investigation
NASA Technical Reports Server (NTRS)
1995-01-01
Reduced weight is a major design goal in aircraft power transmissions. Some gear designs incorporate thin rims to help meet this goal. Thin rims, however, may lead to bending fatigue cracks. These cracks may propagate through a gear tooth or into the gear rim. A crack that propagates through a tooth would probably not be catastrophic, and ample warning of a failure could be possible. On the other hand, a crack that propagates through the rim would be catastrophic. Such cracks could lead to disengagement of a rotor or propeller from an engine, loss of an aircraft, and fatalities. To help create and validate tools for the gear designer, the NASA Lewis Research Center performed in-house analytical and experimental studies to investigate the effect of rim thickness on gear-tooth crack propagation. Our goal was to determine whether cracks grew through gear teeth (benign failure mode) or through gear rims (catastrophic failure mode) for various rim thicknesses. In addition, we investigated the effect of rim thickness on crack propagation life. A finite-element-based computer program simulated gear-tooth crack propagation. The analysis used principles of linear elastic fracture mechanics, and quarter-point, triangular elements were used at the crack tip to represent the stress singularity. The program had an automated crack propagation option in which cracks were grown numerically via an automated remeshing scheme. Crack-tip stress-intensity factors were estimated to determine crack-propagation direction. Also, various fatigue crack growth models were used to estimate crack-propagation life. Experiments were performed in Lewis' Spur Gear Fatigue Rig to validate predicted crack propagation results. Gears with various backup ratios were tested to validate crack-path predictions. Also, test gears were installed with special crack-propagation gages in the tooth fillet region to measure bending-fatigue crack growth. From both predictions and tests, gears with backup ratios
Propagation of Environmental Noise
ERIC Educational Resources Information Center
Lyon, R. H.
1973-01-01
Solutions for environmental noise pollution lie in systematic study of many basic processes such as reflection, scattering, and spreading. Noise propagation processes should be identified in different situations and assessed for their relative importance. (PS)
Propagation of Environmental Noise
ERIC Educational Resources Information Center
Lyon, R. H.
1973-01-01
Solutions for environmental noise pollution lie in systematic study of many basic processes such as reflection, scattering, and spreading. Noise propagation processes should be identified in different situations and assessed for their relative importance. (PS)
Premixed flame propagation in vertical tubes
NASA Astrophysics Data System (ADS)
Kazakov, Kirill A.
2016-04-01
Analytical treatment of the premixed flame propagation in vertical tubes with smooth walls is given. Using the on-shell flame description, equations for a quasi-steady flame with a small but finite front thickness are obtained and solved numerically. It is found that near the limits of inflammability, solutions describing upward flame propagation come in pairs having close propagation speeds and that the effect of gravity is to reverse the burnt gas velocity profile generated by the flame. On the basis of these results, a theory of partial flame propagation driven by a strong gravitational field is developed. A complete explanation is given of the intricate observed behavior of limit flames, including dependence of the inflammability range on the size of the combustion domain, the large distances of partial flame propagation, and the progression of flame extinction. The role of the finite front-thickness effects is discussed in detail. Also, various mechanisms governing flame acceleration in smooth tubes are identified. Acceleration of methane-air flames in open tubes is shown to be a combined effect of the hydrostatic pressure difference produced by the ambient cold air and the difference of dynamic gas pressure at the tube ends. On the other hand, a strong spontaneous acceleration of the fast methane-oxygen flames at the initial stage of their evolution in open-closed tubes is conditioned by metastability of the quasi-steady propagation regimes. An extensive comparison of the obtained results with the experimental data is made.
Modeling Light Propagation in Luminescent Media
NASA Astrophysics Data System (ADS)
Sahin, Derya
This study presents physical, computational and analytical modeling approaches for light propagation in luminescent random media. Two different approaches are used, namely (i) a statistical approach: Monte-Carlo simulations for photon transport and (ii) a deterministic approach: radiative transport theory. Both approaches account accurately for the multiple absorption and reemission of light at different wavelengths and for anisotropic luminescence. The deterministic approach is a generalization of radiative transport theory for solving inelastic scattering problems in random media. We use the radiative transport theory to study light propagation in luminescent media. Based on this theory, we also study the optically thick medium. Using perturbation methods, a corrected diffusion approximation with asymptotically accurate boundary conditions and a boundary layer solution are derived. The accuracy and the efficacy of this approach is verified for a plane-parallel slab problem. In particular, we apply these two approaches (MC and radiative transport theory) to model light propagation in semiconductor-based luminescent solar concentrators (LSCs). The computational results for both approaches are compared with each other and found to agree. The results of this dissertation present practical and reliable techniques to use for solving forward/inverse inelastic scattering problems arising in various research areas such as optics, biomedical engineering, nuclear engineering, solar science and material science.
McCandless, Kathleen; Petersson, Anders; Nilsson, Stefan; Sjogreen, Bjorn
2007-01-08
WPP is a massively parallel, 3D, C++, finite-difference elastodynamic wave propagation code. Typical applications for wave propagation with WPP include: evaluation of seismic event scenarios and damage from earthquakes, non-destructive evaluation of materials, underground facility detection, oil and gas exploration, predicting the electro-magnetic fields in accelerators, and acoustic noise generation. For more information, see Users Manual [1].
Database for propagation models
NASA Technical Reports Server (NTRS)
Kantak, Anil V.
1991-01-01
A propagation researcher or a systems engineer who intends to use the results of a propagation experiment is generally faced with various database tasks such as the selection of the computer software, the hardware, and the writing of the programs to pass the data through the models of interest. This task is repeated every time a new experiment is conducted or the same experiment is carried out at a different location generating different data. Thus the users of this data have to spend a considerable portion of their time learning how to implement the computer hardware and the software towards the desired end. This situation may be facilitated considerably if an easily accessible propagation database is created that has all the accepted (standardized) propagation phenomena models approved by the propagation research community. Also, the handling of data will become easier for the user. Such a database construction can only stimulate the growth of the propagation research it if is available to all the researchers, so that the results of the experiment conducted by one researcher can be examined independently by another, without different hardware and software being used. The database may be made flexible so that the researchers need not be confined only to the contents of the database. Another way in which the database may help the researchers is by the fact that they will not have to document the software and hardware tools used in their research since the propagation research community will know the database already. The following sections show a possible database construction, as well as properties of the database for the propagation research.
NASA Propagation Studies Website
NASA Technical Reports Server (NTRS)
Angkasa, Krisjani S.
1996-01-01
This paper describes an Internet website which provides information to enable the development of new commerical satellite systems and services by providing timely data and models about the propagation of satellite radio signals. In partnership with industry and academia, the program leverages NASA assets, currently the Advanced Communications Technology Satellite (ACTS), to obtain propagation data. The findings of the study are disseminated through refereed journals, NASA reference publications, workshops, electronic media, and direct interface with industry.
Propagating torsion in the Einstein frame
NASA Astrophysics Data System (ADS)
Popławski, Nikodem J.
2006-11-01
The Einstein-Cartan-Saa theory of torsion modifies the spacetime volume element so that it is compatible with the connection. The condition of connection compatibility gives constraints on torsion, which are also necessary for the consistence of torsion, minimal coupling, and electromagnetic gauge invariance. To solve the problem of positivity of energy associated with the torsionic scalar, we reformulate this theory in the Einstein conformal frame. In the presence of the electromagnetic field, we obtain the Hojman-Rosenbaum-Ryan-Shepley theory of propagating torsion with a different factor in the torsionic kinetic term.
Elementary functions: propagation of partially coherent light.
Burvall, Anna; Smith, Arlene; Dainty, Christopher
2009-07-01
The theory of propagation of partially coherent light is well known, but performing numerical calculations still presents a difficulty because of the dimensionality of the problem. We propose using a recently introduced method based on the use of elementary functions [Wald et al. Proc. SPIE6040, 59621G (2005)] to reduce the integrals to two dimensions. We formalize the method, describe its inherent assumptions and approximations, and introduce a sampling criterion for adequate interpolation. We present an analysis of some special cases, such as the Gaussian Schell-model beam, and briefly discuss generalized numerical propagation of two-dimensional field distributions.
Radio propagation through solar and other extraterrestrial ionized media
NASA Technical Reports Server (NTRS)
Smith, E. K.; Edelson, R. E.
1980-01-01
The present S- and X-band communications needs in deep space are addressed to illustrate the aspects which are affected by propagation through extraterrestrial plasmas. The magnitude, critical threshold, and frequency dependence of some eight propagation effects for an S-band propagation path passing within 4 solar radii of the Sun are described. The theory and observation of propagation in extraterrestrial plasmas are discussed and the various plasma states along a near solar propagation path are illustrated. Classical magnetoionic theory (cold anisotropic plasma) is examined for its applicability to the path in question. The characteristics of the plasma states found along the path are summarized and the errors in some of the standard approximations are indicated. Models of extraterrestrial plasmas are included. Modeling the electron density in the solar corona and solar wind, is emphasized but some cursory information on the terrestrial planets plus Jupiters is included.
Propagation Characteristics of International Space Station Wireless Local Area Network
NASA Technical Reports Server (NTRS)
Sham, Catherine C.; Hwn, Shian U.; Loh, Yin-Chung
2005-01-01
This paper describes the application of the Uniform Geometrical Theory of Diffraction (UTD) for Space Station Wireless Local Area Networks (WLANs) indoor propagation characteristics analysis. The verification results indicate good correlation between UTD computed and measured signal strength. It is observed that the propagation characteristics are quite different in the Space Station modules as compared with those in the typical indoor WLANs environment, such as an office building. The existing indoor propagation models are not readily applicable to the Space Station module environment. The Space Station modules can be regarded as oversized imperfect waveguides. Two distinct propagation regions separated by a breakpoint exist. The propagation exhibits the guided wave characteristics. The propagation loss in the Space Station, thus, is much smaller than that in the typical office building. The path loss model developed in this paper is applicable for Space Station WLAN RF coverage and link performance analysis.
Quantum propagation across cosmological singularities
NASA Astrophysics Data System (ADS)
Gielen, Steffen; Turok, Neil
2017-05-01
The initial singularity is the most troubling feature of the standard cosmology, which quantum effects are hoped to resolve. In this paper, we study quantum cosmology with conformal (Weyl) invariant matter. We show that it is natural to extend the scale factor to negative values, allowing a large, collapsing universe to evolve across a quantum "bounce" into an expanding universe like ours. We compute the Feynman propagator for Friedmann-Robertson-Walker backgrounds exactly, identifying curious pathologies in the case of curved (open or closed) universes. We then include anisotropies, fixing the operator ordering of the quantum Hamiltonian by imposing covariance under field redefinitions and again finding exact solutions. We show how complex classical solutions allow one to circumvent the singularity while maintaining the validity of the semiclassical approximation. The simplest isotropic universes sit on a critical boundary, beyond which there is qualitatively different behavior, with potential for instability. Additional scalars improve the theory's stability. Finally, we study the semiclassical propagation of inhomogeneous perturbations about the flat, isotropic case, at linear and nonlinear order, showing that, at least at this level, there is no particle production across the bounce. These results form the basis for a promising new approach to quantum cosmology and the resolution of the big bang singularity.
Elevated temperature crack propagation
NASA Astrophysics Data System (ADS)
Orange, Thomas W.
1994-02-01
This paper is a summary of two NASA contracts on high temperature fatigue crack propagation in metals. The first evaluated the ability of fairly simple nonlinear fracture parameters to correlate crack propagation. Hastelloy-X specimens were tested under isothermal and thermomechanical cycling at temperatures up to 980 degrees C (1800 degrees F). The most successful correlating parameter was the crack tip opening displacement derived from the J-integral. The second evaluated the ability of several path-independent integrals to correlate crack propagation behavior. Inconel 718 specimens were tested under isothermal, thermomechanical, temperature gradient, and creep conditions at temperatures up to 650 degrees C (1200 degrees F). The integrals formulated by Blackburn and by Kishimoto correlated the data reasonably well under all test conditions.
Elevated temperature crack propagation
Orange, T.W.
1994-02-01
This paper is a summary of two NASA contracts on high temperature fatigue crack propagation in metals. The first evaluated the ability of fairly simple nonlinear fracture parameters to correlate crack propagation. Hastelloy-X specimens were tested under isothermal and thermomechanical cycling at temperatures up to 980 degrees C (1800 degrees F). The most successful correlating parameter was the crack tip opening displacement derived from the J-integral. The second evaluated the ability of several path-independent integrals to correlate crack propagation behavior. Inconel 718 specimens were tested under isothermal, thermomechanical, temperature gradient, and creep conditions at temperatures up to 650 degrees C (1200 degrees F). The integrals formulated by Blackburn and by Kishimoto correlated the data reasonably well under all test conditions.
Elevated Temperature Crack Propagation
NASA Technical Reports Server (NTRS)
Orange, Thomas W.
1994-01-01
This paper is a summary of two NASA contracts on high temperature fatigue crack propagation in metals. The first evaluated the ability of fairly simple nonlinear fracture parameters to correlate crack propagation. Hastelloy-X specimens were tested under isothermal and thermomechanical cycling at temperatures up to 980 degrees C (1800 degrees F). The most successful correlating parameter was the crack tip opening displacement derived from the J-integral. The second evaluated the ability of several path-independent integrals to correlate crack propagation behavior. Inconel 718 specimens were tested under isothermal, thermomechanical, temperature gradient, and creep conditions at temperatures up to 650 degrees C (1200 degrees F). The integrals formulated by Blackburn and by Kishimoto correlated the data reasonably well under all test conditions.
Critical sound propagation in mixtures
NASA Astrophysics Data System (ADS)
Folk, R.; Moser, G.
1998-01-01
We calculate critical effects in the sound propagation in mixtures near consolute or plait points within a non-asymptotic renormalization group theory and derive general expressions for the frequency-dependent sound velocity and sound attenuation. The critical non-asymptotic time scale in the sound mode in mixtures is set by an effective order parameter Onsager coefficient containing a dynamical parameter related to the enhancement of the thermal conductivity in the mixture, not considered so far. The differences in the critical behavior near the consolute and plait point are due to the different non-asymptotic behavior of the zero-frequency sound velocity. We compare our predictions for the sound velocity and sound absorption near the plait point in 3He-4He mixtures.
Prediction of nonlinear jet noise propagation
NASA Astrophysics Data System (ADS)
Gee, Kent L.
The role of nonlinearity in the propagation of noise radiated from high-performance jet aircraft has not been a well-understood phenomenon in the past. To address the problem of finite-amplitude noise propagation, a hybrid time-frequency domain model has been developed to numerically solve the generalized Mendousse-Burgers equation, which is a parabolic model equation that includes effects of quadratic nonlinearity, atmospheric absorption and dispersion, and geometrical spreading. The algorithm has been compared against analytical theory and numerical issues have been discussed. Three sets of experimental data have been used to evaluate the model: model-scale laboratory jet data, field data using a large loudspeaker, and static engine run-up measurements of the F/A-22 Raptor. Comparison of linearly- and nonlinearly-predicted spectra demonstrates that nonlinearity does, in fact, impact the noise propagation in all three sets of data. Additionally, the extensive comparison with the Raptor data shows that the model is successful in predicting the measured spectrum over multiple angles and engine conditions, demonstrating that the model captures much of the physics of the propagation, despite its current neglect of multipath interference and atmospheric refraction and turbulence effects. Two additional studies have been carried out in order to address fundamental questions relevant to the nonlinear propagation of jet noise: ''What is the impact of nonlinearity on perceived levels?" and ''At what point does the propagation become linear?" An investigation of the perceived impact of nonlinearity shows that there are only minor differences between nonlinear and linear predictions in calculations of power-based, single-number metrics, such as A-weighted overall sound pressure level. On the other hand, the actual perceived differences between nonlinear and linear waveforms are substantially greater and consequently do not correlate well with calculated metrics. This
Turbofan Duct Propagation Model
NASA Technical Reports Server (NTRS)
Lan, Justin H.; Posey, Joe W. (Technical Monitor)
2001-01-01
The CDUCT code utilizes a parabolic approximation to the convected Helmholtz equation in order to efficiently model acoustic propagation in acoustically treated, complex shaped ducts. The parabolic approximation solves one-way wave propagation with a marching method which neglects backwards reflected waves. The derivation of the parabolic approximation is presented. Several code validation cases are given. An acoustic lining design process for an example aft fan duct is discussed. It is noted that the method can efficiently model realistic three-dimension effects, acoustic lining, and flow within the computational capabilities of a typical computer workstation.
NASA Technical Reports Server (NTRS)
Conel, James E.; Vandenbosch, Jeannette; Grove, Cindy I.
1993-01-01
We used the Kubelka-Munk theory of diffuse spectral reflectance in layers to analyze influences of multiple chemical components in leaves. As opposed to empirical approaches to estimation of plant chemistry, the full spectral resolution of laboratory reflectance data was retained in an attempt to estimate lignin or other constituent concentrations from spectral band positions. A leaf water reflectance spectrum was derived from theoretical mixing rules, reflectance observations, and calculations from theory of intrinsic k- and s-functions. Residual reflectance bands were then isolated from spectra of fresh green leaves. These proved hard to interpret for composition in terms of simple two component mixtures such as lignin and cellulose. We next investigated spectral and dilution influences of other possible components (starch, protein). These components, among others, added to cellulose in hypothetical mixtures, produce band displacements similar to lignin, but will disguise by dilution the actual abundance of lignin present in a multicomponent system. This renders interpretation of band positions problematical. Knowledge of end-members and their spectra, and a more elaborate mixture analysis procedure may be called for. Good observational atmospheric and instrumental conditions and knowledge thereof are required for retrieval of expected subtle reflectance variations present in spectra of green vegetation.
On the theory of the type III burst exciter
NASA Technical Reports Server (NTRS)
Smith, R. A.; Goldstein, M. L.; Papadopoulos, K.
1976-01-01
In situ satellite observations of type III burst exciters at 1 AU show that the beam does not evolve into a plateau in velocity space, contrary to the prediction of quasilinear theory. The observations can be explained by a theory that includes mode coupling effects due to excitation of the parametric oscillating two-stream instability and its saturation by anomalous resistivity. The time evolution of the beam velocity distribution is included in the analysis.
Slow wave propagation in soft adhesive interfaces.
Viswanathan, Koushik; Sundaram, Narayan K; Chandrasekar, Srinivasan
2016-11-16
Stick-slip in sliding of soft adhesive surfaces has long been associated with the propagation of Schallamach waves, a type of slow surface wave. Recently it was demonstrated using in situ experiments that two other kinds of slow waves-separation pulses and slip pulses-also mediate stick-slip (Viswanathan et al., Soft Matter, 2016, 12, 5265-5275). While separation pulses, like Schallamach waves, involve local interface detachment, slip pulses are moving stress fronts with no detachment. Here, we present a theoretical analysis of the propagation of these three waves in a linear elastodynamics framework. Different boundary conditions apply depending on whether or not local interface detachment occurs. It is shown that the interface dynamics accompanying slow waves is governed by a system of integral equations. Closed-form analytical expressions are obtained for the interfacial pressure, shear stress, displacements and velocities. Separation pulses and Schallamach waves emerge naturally as wave solutions of the integral equations, with oppositely oriented directions of propagation. Wave propagation is found to be stable in the stress regime where linearized elasticity is a physically valid approximation. Interestingly, the analysis reveals that slow traveling wave solutions are not possible in a Coulomb friction framework for slip pulses. The theory provides a unified picture of stick-slip dynamics and slow wave propagation in adhesive contacts, consistent with experimental observations.
NASA Technical Reports Server (NTRS)
Nessel, James
2013-01-01
NASA Glenn Research Center has been involved in the characterization of atmospheric effects on space communications links operating at Ka-band and above for the past 20 years. This presentation reports out on the most recent activities of propagation characterization that NASA is currently involved in.
PROPER: Optical propagation routines
NASA Astrophysics Data System (ADS)
Krist, John E.
2014-05-01
PROPER simulates the propagation of light through an optical system using Fourier transform algorithms (Fresnel, angular spectrum methods). Distributed as IDL source code, it includes routines to create complex apertures, aberrated wavefronts, and deformable mirrors. It is especially useful for the simulation of high contrast imaging telescopes (extrasolar planet imagers like TPF).
2016-06-07
efficient performance of our propagation model for low frequency range-dependent problems in elastic media. A new PE solution [22] for gravity wave...21] J. Bruch, M. D. Collins, D. K. Dacol, J. F. Lingevitch, and W. L. Siegmann, “A parabolic equation for advected acousto- gravity waves,” (A
Propagation environments [Chapter 4
Douglass F. Jacobs; Thomas D. Landis; Tara Luna
2009-01-01
An understanding of all factors influencing plant growth in a nursery environment is needed for the successful growth and production of high-quality container plants. Propagation structures modify the atmospheric conditions of temperature, light, and relative humidity. Native plant nurseries are different from typical horticultural nurseries because plants must be...
NASA Astrophysics Data System (ADS)
Zhang, Yuzong; Kitai, Reizaburo; Narukage, Noriyuki; Matsumoto, Takuma; Ueno, Satoru; Shibata, Kazunari; Wang, Jingxiu
2011-06-01
With the Flare-Monitoring Telescope (FMT) and Solar Magnetic Activity Research Telescope (SMART) at Hida observatory of Kyoto University, 13 events of Moreton waves were captured at Hα center, Hα ±0.5 Å, and Hα ±0.8 Å wavebands since 1997. With such samples, we have studied the statistical properties of the propagation of Moreton waves. Moreton waves were all restricted in sectorial zones with a mean value of 92°. However, their accompanying EIT waves, observed simultaneously with SOHO/EIT at extreme-ultraviolet wavelength, were very isotropic with a quite extended scope of 193°. The average propagation speeds of the Moreton waves and the corresponding EIT waves were 664 km s-1 and 205 km s-1, respectively. Moreton waves propagated either under large-scale close magnetic flux loops, or firstly in the sectorial region where two sets of magnetic loops separated from each other and diverged, and then stopped before the open magnetic flux region. The location swept by Moreton waves had a relatively weak magnetic field as compared to the magnetic fields at their sidewalls. The ratio of the magnetic flux density between the sidewall and the path falls in the range of 1.4 to 3.7 at a height of 0.01 solar radii. Additionally, we roughly estimated the distribution of the fast magnetosonic speed between the propagating path and sidewalls in an event on 1997 November 3, and found a relatively low-fast magnetosonic speed in the path. We also found that the propagating direction of Moreton waves coincided with the direction of filament eruption in a few well-observed events. This favors an interpretation of the ``Piston'' model, although further studies are necessary for any definitive conclusion.
Propagation Of Sound In Curved Ducts
NASA Technical Reports Server (NTRS)
Rostafinski, Wojciech
1992-01-01
Monograph presents concise, comprehensive summary of knowledge of propagation of acoustic waves in ducts and pipes including bends. Pulls together information from Lord Rayleigh's book Theory Of Sound, published in 1878, and from 33 papers scattered throughout various scientific journals published between 1945 and 1989. Monograph useful to scientists and engineers interested in such diverse topics as musical instruments, air-conditioning ducts, and jet engines. Material not available in current texts.
Crack Propagation in Double-Base Propellants
1976-01-01
propagation tests were conducted on a composite modified double- base ( CMDB ) propellant with the use of center-cracked strip biaxial specimens...double-base ( CMDB ) propellant. He performed a stress analysis of small, precracked, subscale STV motors formulated in terms of stress intensity factors...assumed for Solithane 113. The present program was aimed at evaluating the Schapery theory when it was applied to a CMDB propellant under similar loading
Propagation peculiarities of mean field massive gravity
Deser, S.; Waldron, A.; Zahariade, G.
2015-07-28
Massive gravity (mGR) describes a dynamical “metric” on a fiducial, background one. We investigate fluctuations of the dynamics about mGR solutions, that is about its “mean field theory”. Analyzing mean field massive gravity (m¯GR) propagation characteristics is not only equivalent to studying those of the full non-linear theory, but also in direct correspondence with earlier analyses of charged higher spin systems, the oldest example being the charged, massive spin 3/2 Rarita–Schwinger (RS) theory. The fiducial and mGR mean field background metrics in the m¯GR model correspond to the RS Minkowski metric and external EM field. The common implications in bothmore » systems are that hyperbolicity holds only in a weak background-mean-field limit, immediately ruling both theories out as fundamental theories; a situation in stark contrast with general relativity (GR) which is at least a consistent classical theory. Moreover, even though both m¯GR and RS theories can still in principle be considered as predictive effective models in the weak regime, their lower helicities then exhibit superluminal behavior: lower helicity gravitons are superluminal as compared to photons propagating on either the fiducial or background metric. Thus our approach has uncovered a novel, dispersive, “crystal-like” phenomenon of differing helicities having differing propagation speeds. As a result, this applies both to m¯GR and mGR, and is a peculiar feature that is also problematic for consistent coupling to matter.« less
Wave propagation in laminated orthotropic circular cylindrical shells
NASA Technical Reports Server (NTRS)
Srinivas, S.
1976-01-01
An exact three-dimensional analysis of wave propagation in laminated orthotropic circular cylindrical-shells is developed. Numerical results are presented for three-ply shells, and for various axial wave lengths, circumferential wave numbers, and thicknesses. Results from a thin shell theory and a refined approximate theory are compared with the exact results.
A Database for Propagation Models
NASA Technical Reports Server (NTRS)
Kantak, Anil V.; Rucker, James
1997-01-01
The Propagation Models Database is designed to allow the scientists and experimenters in the propagation field to process their data through many known and accepted propagation models. The database is an Excel 5.0 based software that houses user-callable propagation models of propagation phenomena. It does not contain a database of propagation data generated out of the experiments. The database not only provides a powerful software tool to process the data generated by the experiments, but is also a time- and energy-saving tool for plotting results, generating tables and producing impressive and crisp hard copy for presentation and filing.
Shallow water sound propagation with surface waves.
Tindle, Chris T; Deane, Grant B
2005-05-01
The theory of wavefront modeling in underwater acoustics is extended to allow rapid range dependence of the boundaries such as occurs in shallow water with surface waves. The theory allows for multiple reflections at surface and bottom as well as focusing and defocusing due to reflection from surface waves. The phase and amplitude of the field are calculated directly and used to model pulse propagation in the time domain. Pulse waveforms are obtained directly for all wavefront arrivals including both insonified and shadow regions near caustics. Calculated waveforms agree well with a reference solution and data obtained in a near-shore shallow water experiment with surface waves over a sloping bottom.
The Effects of Sand Sediment Volume Heterogeneities on Sound Propagation and Scattering
2013-08-19
provides insight into e↵ects of the random medium on the sound propagation, it does not produce the linear attenuation observed in sand sediments. In...wave propagation in a random medium and later extended to poroelastic wave propagation8. While both of these approaches give the same results for the...inhomogeneous poroelastic medium. 1215 B. Perturbation theory applied to EDFM For propagation in a random medium described by the EDFM, we expand the e
Super-alfvenic propagation of cosmic rays: The role of streaming modes
NASA Technical Reports Server (NTRS)
Morrison, P. J.; Scott, J. S.; Holman, G. D.; Ionson, J. A.
1980-01-01
Numerous cosmic ray propagation and acceleration problems require knowledge of the propagation speed of relativistic particles through an ambient plasma. Previous calculations indicated that self-generated turbulence scatters relativistic particles and reduces their bulk streaming velocity to the Alfven speed. This result was incorporated into all currently prominent theories of cosmic ray acceleration and propagation. It is demonstrated that super-Alfvenic propagation is indeed possible for a wide range of physical parameters. This fact dramatically affects the predictions of these models.
Propagation properties of elliptical Gaussian beam in uniaxial crystals along the optical axis
NASA Astrophysics Data System (ADS)
Liu, Dajun; Wang, He; Wang, Yaochuan; Yin, Hongming
2015-10-01
Based on the paraxial vectorial theory of beams propagating in uniaxial anisotropic crystal, we have derived the analytical propagation equations of elliptical Gaussian beam in uniaxial crystal along the optical axis, and given the typical numerical example to illustrate our analytical results. It is found that the x-polarized Gaussian beams split into an ordinary beam and an extraordinary beam, which independently propagate along the optical axis, and the elliptical Gaussian beam loses its initial profile with the propagation distance increasing.
Propagating Instabilities in Solids
NASA Astrophysics Data System (ADS)
Kyriakides, Stelios
1998-03-01
Instability is one of the factors which limit the extent to which solids can be loaded or deformed and plays a pivotal role in the design of many structures. Such instabilities often result in localized deformation which precipitates catastrophic failure. Some materials have the capacity to recover their stiffness following a certain amount of localized deformation. This local recovery in stiffness arrests further local deformation and spreading of the instability to neighboring material becomes preferred. Under displacement controlled loading the propagation of the transition fronts can be achieved in a steady-state manner at a constant stress level known as the propagation stress. The stresses in the transition fronts joining the highly deformed zone to the intact material overcome the instability nucleation stresses and, as a result, the propagation stress is usually much lower than the stress required to nucleate the instability. The classical example of this class of material instabilities is L/"uders bands which tend to affect mild steels and other metals. Recent work has demonstrated that propagating instabilities occur in several other materials. Experimental and analytical results from four examples will be used to illustrate this point: First the evolution of L=FCders bands in mild steel strips will be revisited. The second example involves the evolution of stress induced phase transformations (austenite to martensite phases and the reverse) in a shape memory alloy under displacement controlled stretching. The third example is the crushing behavior of cellular materials such as honeycombs and foams made from metals and polymers. The fourth example involves the axial broadening/propagation of kink bands in aligned fiber/matrix composites under compression. The microstructure and, as a result, the micromechanisms governing the onset, localization, local arrest and propagation of instabilities in each of the four materials are vastly different. Despite this
NASA Technical Reports Server (NTRS)
Cook, R. K.
1969-01-01
The propagation of sound waves at infrasonic frequencies (oscillation periods 1.0 - 1000 seconds) in the atmosphere is being studied by a network of seven stations separated geographically by distances of the order of thousands of kilometers. The stations measure the following characteristics of infrasonic waves: (1) the amplitude and waveform of the incident sound pressure, (2) the direction of propagation of the wave, (3) the horizontal phase velocity, and (4) the distribution of sound wave energy at various frequencies of oscillation. Some infrasonic sources which were identified and studied include the aurora borealis, tornadoes, volcanos, gravity waves on the oceans, earthquakes, and atmospheric instability waves caused by winds at the tropopause. Waves of unknown origin seem to radiate from several geographical locations, including one in the Argentine.
Propagation of Tau aggregates.
Goedert, Michel; Spillantini, Maria Grazia
2017-05-30
Since 2009, evidence has accumulated to suggest that Tau aggregates form first in a small number of brain cells, from where they propagate to other regions, resulting in neurodegeneration and disease. Propagation of Tau aggregates is often called prion-like, which refers to the capacity of an assembled protein to induce the same abnormal conformation in a protein of the same kind, initiating a self-amplifying cascade. In addition, prion-like encompasses the release of protein aggregates from brain cells and their uptake by neighbouring cells. In mice, the intracerebral injection of Tau inclusions induced the ordered assembly of monomeric Tau, followed by its spreading to distant brain regions. Short fibrils constituted the major species of seed-competent Tau. The existence of several human Tauopathies with distinct fibril morphologies has led to the suggestion that different molecular conformers (or strains) of aggregated Tau exist.
Preventing Unofficial Information Propagation
NASA Astrophysics Data System (ADS)
Le, Zhengyi; Ouyang, Yi; Xu, Yurong; Ford, James; Makedon, Fillia
Digital copies are susceptible to theft and vulnerable to leakage, copying, or manipulation. When someone (or some group), who has stolen, leaked, copied, or manipulated digital documents propagates the documents over the Internet and/or distributes those through physical distribution channels many challenges arise which document holders must overcome in order to mitigate the impact to their privacy or business. This paper focuses on the propagation problem of digital credentials, which may contain sensitive information about a credential holder. Existing work such as access control policies and the Platform for Privacy Preferences (P3P) assumes that qualified or certified credential viewers are honest and reliable. The proposed approach in this paper uses short-lived credentials based on reverse forward secure signatures to remove this assumption and mitigate the damage caused by a dishonest or honest but compromised viewer.
1981-11-25
The analysis requires the full power (and some extensions) of the classical theory of singular integral equations. It should be remarked that (i) the... theory . In their work they derive a formal system of linear singular integral equations for the general solution of P1 I" However the highly nontrivial...O.D.E.’s of Painlev4 Type. * Discrete I.S.T. and Numerical Applications. • Long Time Asymptotic Solutions. • Applications of Hirota’s Bilinear Theory
Fluctuation-controlled front propagation
NASA Astrophysics Data System (ADS)
Ridgway, Douglas Thacher
1997-09-01
the symmetry of the absorbing state, but which is unsuccessful at capturing the behavior of diffusion-limited growth. In an effort to find a simpler model system, we turned to modelling fitness increases in evolution. The work was motivated by an experiment on vesicular stomatitis virus, a short (˜9600bp) single-stranded RNA virus. A highly bottlenecked viral population increases in fitness rapidly until a certain point, after which the fitness increases at a slower rate. This is well modeled by a constant population reproducing and mutating on a smooth fitness landscape. Mean field theory of this system displays the same infinite propagation velocity blowup as mean field diffusion-limited aggregation. However, we have been able to make progress on a number of fronts. One is solving systems of moment equations, where a hierarchy of moments is truncated arbitrarily at some level. Good results for front propagation velocity are found with just two moments, corresponding to inclusion of the basic finite population clustering effect ignored by mean field theory. In addition, for small mutation rates, most of the population will be entirely on a single site or two adjacent sites, and the density of these cases can be described and solved. (Abstract shortened by UMI.)
NASA Technical Reports Server (NTRS)
Helmken, Henry; Henning, Rudolf
1994-01-01
One of the key goals of the Florida Center is to obtain a maximum of useful information on propagation behavior unique to its subtropical weather and subtropical climate. Such weather data is of particular interest when it is (or has the potential to become) useful for developing and implementing techniques to compensate for adverse weather effects. Also discussed are data observations, current challenges, CDF's, sun movement, and diversity experiments.
2009-02-09
of parameters. Hence one expects that the solutions of the two equations , PES and NLS, are comparable. In Fig. 3 we plot the two solutions for...power saturated term, in the PES equation ) have stable soliton solutions or mode-locking evolution. In general the solitons are found to be unstable...literature. Generally speaking, the above lattice equations omitting nonlinear terms have solutions propagating along z direction, i.e., ψ(r, z) = e−iµzϕ(r
Transionospheric Propagation Code (TIPC)
Roussel-Dupre, R.; Kelley, T.A.
1990-10-01
The Transionospheric Propagation Code is a computer program developed at Los Alamos National Lab to perform certain tasks related to the detection of vhf signals following propagation through the ionosphere. The code is written in Fortran 77, runs interactively and was designed to be as machine independent as possible. A menu format in which the user is prompted to supply appropriate parameters for a given task has been adopted for the input while the output is primarily in the form of graphics. The user has the option of selecting from five basic tasks, namely transionospheric propagation, signal filtering, signal processing, DTOA study, and DTOA uncertainty study. For the first task a specified signal is convolved against the impulse response function of the ionosphere to obtain the transionospheric signal. The user is given a choice of four analytic forms for the input pulse or of supplying a tabular form. The option of adding Gaussian-distributed white noise of spectral noise to the input signal is also provided. The deterministic ionosphere is characterized to first order in terms of a total electron content (TEC) along the propagation path. In addition, a scattering model parameterized in terms of a frequency coherence bandwidth is also available. In the second task, detection is simulated by convolving a given filter response against the transionospheric signal. The user is given a choice of a wideband filter or a narrowband Gaussian filter. It is also possible to input a filter response. The third task provides for quadrature detection, envelope detection, and three different techniques for time-tagging the arrival of the transionospheric signal at specified receivers. The latter algorithms can be used to determine a TEC and thus take out the effects of the ionosphere to first order. Task four allows the user to construct a table of delta-times-of-arrival (DTOAs) vs TECs for a specified pair of receivers.
OPEX: (Olympus Propagation EXperiment)
NASA Technical Reports Server (NTRS)
Brussaard, Gert
1988-01-01
The Olympus-1 satellite carries four distinct payloads for experimental utilization and research in the field of satellite communications: (1) the Direct Broadcasting Service (DBS) payload; (2) the Specialized Services Payload; (3) the 20/30 GHz Advanced Communications Payload; and (4) the Propagation Payload. Experimental utilization of the first three payloads involves ground transmissions to the satellite and hence sharing of available satellite time among experimenters. This is coordinated through the Olympus Utilization Program.
Olympus propagation experiments
NASA Technical Reports Server (NTRS)
Arbesser-Rastburg, Bertram
1994-01-01
A summary of the activities of the OPEX (Olympus Propagation EXperimenters) group is given and some of the recent findings are presented. OLYMPUS, a telecommunication satellite owned by the European Space Agency, was launched on 12 June 1989. After the in-orbit tests were completed (in September 1989) the first propagation experiments started. Throughout 1990 the spacecraft functioned very well and a large number of experimenters received the beacon signals. On 29 May 1991 the spacecraft became inoperational after a major technical problem. With a series of complicated procedures OLYMPUS was recovered on 15 August 1991 - the first time in history that a civilian telecommunications satellite was brought back to service after losing power and telemetry. The propagation experiments were back on track. However, the recovery had used up so much fuel that the North-South station keeping had to be abandoned, which led to a natural increase of inclination at a rate of about 0.8 deg per year. On 10 October 1992 the second 30 GHz beacon tube failed, causing a loss of this beacon signal. The other two beacon frequencies continued to deliver a stable signal for more than two years. On 12 August 1993 the spacecraft experienced another problem with the altitude control, but this time there was not enough fuel left for a recovery maneuver and thus the mission came to an end.
High amplitude propagated contractions.
Bharucha, A E
2012-11-01
While most colonic motor activity is segmental and non-propulsive, colonic high amplitude propagated contractions (HAPC) can transfer colonic contents over long distances and often precede defecation. High amplitude propagated contractions occur spontaneously, in response to pharmacological agents or colonic distention. A subset of patients with slow transit constipation have fewer HAPC. In this issue of Neurogastroenterology and Motility, Rodriguez et al. report that anal relaxation during spontaneous and bisacodyl-induced HAPC exceeds anal relaxation during rectal distention in constipated children undergoing colonic manometry. Moreover, and consistent with a neural mechanism, anal relaxation often precedes arrival of HAPC in the left colon. High amplitude propagated contractions are also used to evaluate the motor response to a meal and pharmacological stimuli (e.g., bisacodyl, neostigmine) and to identify colonic inertia during colonic motility testing in chronic constipation. This editorial comprehensively reviews the characteristics, physiology and pharmacology of HAPC, their assessment by manometry, and relevance to constipation and diarrhea. © 2012 Blackwell Publishing Ltd.
Overview of Theory and Modeling in the Heavy Ion Fusion Virtual National Laboratory
Davidson, R. C.; Kaganovich, I. D.; Lee, W. W.; Qin, H.; Startsev, E. A.; Tzenov, S; Friedman, A; Barnard, J J; Cohen, R H; Grote, D P; Lund, S M; Sharp, W M; Henestroza, E; Lee, E P; Yu, S S; Vay, J -L; Welch, D R; Rose, D V; Olson, C L; Celata, C. M.
2003-04-09
This paper presents analytical and simulation studies of intense heavy ion beam propagation, including the injection, acceleration, transport and compression phases, and beam transport and focusing in background plasma in the target chamber. Analytical theory and simulations that support the High Current Experiment (HCX), the Neutralized Transport Experiment (NTX), and the advanced injector development program are being used to provide a basic understanding of the nonlinear beam dynamics and collective processes, and to develop design concepts for the next-step Integrated Beam Experiment (IBX), an Integrated Research Experiment (IRE), and a heavy ion fusion driver. Three-dimensional (3-D) nonlinear perturbative simulations have been applied to collective instabilities driven by beam temperature anisotropy and to two-stream interactions between the beam ions and any unwanted background electrons. Three-dimensional particle-in-cell simulations of the 2 MV Electrostatic Quadrupole (ESQ) injector have clarified the influence of pulse rise time. Analytical studies and simulations of the drift compression process have been carried out. Syntheses of a four-dimensional (4-D) particle distribution function from phase-space projections have been developed. And, studies of the generation and trapping of stray electrons in the beam self-fields have been performed. Particle-in-cell simulations, involving preformed plasma, are being used to study the influence of charge and current neutralization on the focusing of the ion beam in Neutralized Transport Experiment and in a fusion chamber.
Overview of theory and modeling in the Heavy Ion Fusion Virtual National Laboratory
Davidson, R.C.; Kaganovich, I.D.; Lee, W.W.; Qin, H.; Startsev, E.A.; Tzenov, S.; Friedman, A.; Barnard, J.J.; Cohen, R.H.; Grote, D.P.; Lund, S.M.; Sharp, W.M.; Celata, C.M.; de Hoon, M.; Henestroza, E.; Lee, E.P.; Yu, S.S.; Vay, J-L.; Welch, D.R.; Rose, D.V.; Olson, C.L.
2002-05-01
This paper presents analytical and simulation studies of intense heavy ion beam propagation, including the injection, acceleration, transport and compression phases, and beam transport and focusing in background plasma in the target chamber. Analytical theory and simulations that support the High Current Experiment (HCX), the Neutralized Transport Experiment (NTX), and the advanced injector development program, are being used to provide a basic understanding of the nonlinear beam dynamics and collective processes, and to develop design concepts for the next-step Integrated Beam Experiment (IBX), an Integrated Research Experiment (IRE), and a heavy ion fusion driver. 3-D nonlinear perturbative simulations have been applied to collective instabilities driven by beam temperature anisotropy, and to two-stream interactions between the beam ions and any unwanted background electrons; 3-D particle-in-cell simulations of the 2 MV Electrostatic Quadrupole (ESQ) injector have clarified the influence of pulse rise time; analytical studies and simulations of the drift compression process have been carried out; syntheses of a 4-D particle distribution function from phase-space projections have been developed; and studies of the generation and trapping of stray electrons in the beam self fields have been performed. Particle-in-cell simulations, involving pre-formed plasma, are being used to study the influence of charge and current neutralization on the focusing of the ion beam in NTX and in a fusion chamber.
Mixing of fermions and spectral representation of propagator
NASA Astrophysics Data System (ADS)
Kaloshin, A. E.; Lomov, V. P.
2016-03-01
We develop the spectral representation of propagator for n mixing fermion fields in the case of P-parity violation. The approach based on the eigenvalue problem for inverse matrix propagator makes possible to build the system of orthogonal projectors and to represent the matrix propagator as a sum of poles with positive and negative energies. The procedure of multiplicative renormalization in terms of spectral representation is investigated and the renormalization matrices are obtained in a closed form without the use of perturbation theory. Since in theory with P-parity violation the standard spin projectors do not commute with the dressed propagator, they should be modified. The developed approach allows us to build the modified (dressed) spin projectors for a single fermion and for a system of fermions.
On the propagation of acceleration waves in incompressible hyperelastic solids
NASA Astrophysics Data System (ADS)
Gültop, T.
2003-07-01
The conditions for the propagation of acceleration waves (sound waves) in incompressible elastic media undergoing finite deformation are investigated. The incompressible hyperelastic solid media is considered in accordance with the general constitutive theory of materials subject to internal mechanical constraints. The equation of motion of acceleration waves is obtained using the theory of singular surfaces. A general comparison is made between the magnitudes of the propagation speeds of waves in incompressible and unconstrained solid media by the use of Mandel's inequalities. The magnitudes of the speeds of propagation of acceleration waves in the incompressible hyperelastic material classes of neo-Hookean, Mooney-Rivlin, and St. Venant-Kirchhoff solids are determined. Comparisons are made of the specific results concerning the magnitudes of wave propagation speeds making use of the corresponding material parameters.
Acoustoelastic Lamb Wave Propagation in a Homogeneous, Isotropic Aluminum Plate
NASA Astrophysics Data System (ADS)
Gandhi, Navneet; Michaels, Jennifer E.; Lee, Sang Jun
2011-06-01
The effect of stress on Lamb wave propagation is relevant to both nondestructive evaluation and structural health monitoring because of changes in received signals due to both the associated strain and the acoustoelastic effect. A homogeneous plate that is initially isotropic becomes anisotropic under uniaxial stress, and dispersion of propagating waves becomes directionally dependent. The problem is similar to Lamb wave propagation in an anisotropic plate, except the fourth order tensor in the resulting wave equation does not have the same symmetry as that for the unstressed anisotropic plate, and the constitutive equation relating incremental stress to incremental strain is more complicated. Here we consider the theory of acoustoelastic Lamb wave propagation and show how dispersion curves shift anisotropically for an aluminum plate under uniaxial tension. Theoretical predictions of changes in phase velocity as a function of propagation direction are compared to experimental results for a single wave mode.
Acoustoelastic lamb wave propagation in a homogeneous, isotropic aluminum plate
Gandhi, Navneet; Michaels, Jennifer E.; Lee, Sang Jun
2011-06-23
The effect of stress on Lamb wave propagation is relevant to both nondestructive evaluation and structural health monitoring because of changes in received signals due to both the associated strain and the acoustoelastic effect. A homogeneous plate that is initially isotropic becomes anisotropic under uniaxial stress, and dispersion of propagating waves becomes directionally dependent. The problem is similar to Lamb wave propagation in an anisotropic plate, except the fourth order tensor in the resulting wave equation does not have the same symmetry as that for the unstressed anisotropic plate, and the constitutive equation relating incremental stress to incremental strain is more complicated. Here we consider the theory of acoustoelastic Lamb wave propagation and show how dispersion curves shift anisotropically for an aluminum plate under uniaxial tension. Theoretical predictions of changes in phase velocity as a function of propagation direction are compared to experimental results for a single wave mode.
Study of EM Signals Propagation Through Marine Atmospheric Boundary Layer
2002-09-30
transmision properties. REFERENCES Barrick, D.E., and Weber, B.L., ’On the nonlinear theory for gravity waves on the ocean’s surface. Part II...and Friehe C., 2000. Boundary-Layer Meteorology, 97, 293-307. Ishimaru, A. 1978, Wave propagation and scattering in random media . Academic Press...Irvine. Rytov, S. M., Y. A. Kravtsov, and V. I. Tatarskii: 1987, Principles of statistical radiophysics 4: Wave propagation through random media
Single cycle terahertz pulse propagation in water
NASA Astrophysics Data System (ADS)
Fox, Colleen J.
Single cycle electromagnetic pulses have been difficult to experimentally generate and to theoretically analyze. With the recent development of terahertz systems based on near infrared femtosecond lasers it has become possible to perform single cycle experiments using picosecond pulses. The work presented in this thesis lays the groundwork for the transition from investigations of ultrafast optical pulse propagation in water to similar work at terahertz frequencies. In this thesis a variety of terahertz generation and detection methods are reviewed. Two commercial terahertz spectroscopy systems are examined in detail, improved upon and put into use. The design of a sample holder for thin, variable thickness samples of water or other highly absorbing liquid is detailed and the constructed holder is utilized in preliminary pulse measurements over a range of paths lengths. How the measured terahertz pulses spectrally and temporally change as they propagate through water is analyzed and used to extract the complex refractive index and attenuation coefficient of the tested water. Current knowledge of the molecular behavior of water in the THz frequency range of 300 GHz to 3 THz is discussed and related to experimental results. This information is also used in the preliminary development of two models. One model examines the molecular energy levels in liquid water, their effect on the propagating pulse, and the potential for the formation of precursors. The other model is based on the double Debye theory and can compare the calculated and measured pulses after propagation in both the time and frequency domains.
Wave propagation in sandwich panels with a poroelastic core.
Liu, Hao; Finnveden, Svante; Barbagallo, Mathias; Arteaga, Ines Lopez
2014-05-01
Wave propagation in sandwich panels with a poroelastic core, which is modeled by Biot's theory, is investigated using the waveguide finite element method. A waveguide poroelastic element is developed based on a displacement-pressure weak form. The dispersion curves of the sandwich panel are first identified as propagating or evanescent waves by varying the damping in the panel, and wave characteristics are analyzed by examining their motions. The energy distributions are calculated to identify the dominant motions. Simplified analytical models are also devised to show the main physics of the corresponding waves. This wave propagation analysis provides insight into the vibro-acoustic behavior of sandwich panels lined with elastic porous materials.
Microwave Propagation Through Cultural Vegetation Canopies
NASA Astrophysics Data System (ADS)
Tavakoli, Ahad
The need to understand the interaction of microwaves with vegetation canopies has markedly increased in recent years. This is due to advances made in remote sensing science, microwave technology, and signal processing circuits. One class of the earth's vegetation cover is man-made canopies, such as agricultural fields, orchards, and artificial forests. Contrary to natural vegetation terrain, location, spacing, and density of plants in a man-made vegetation canopy are deterministic quantities. As a result, the semi-deterministic nature of cultural vegetation canopies violate the random assumption of the radiative transfer theory and leads to experimented results that are in variance with model calculations. Hence, an alternative approach is needed to model the interaction of microwaves with such canopies. This thesis examines the propagation behavior through a canopy of corn plants. The corn canopy was selected as a representative of cultural vegetation canopies that are planted in parallel rows with an approximately fixed spacing between adjacent plants. Several experimental measurements were conducted to determine the transmission properties of a corn canopy in the 1-10 GHz range. The measurements which included horizontal propagation through the canopy as well as propagation at oblique incidence, were performed for defoliated canopies and for canopies with leaves. Through experimental observations and model development, the propagation behavior was found to be strongly dependent on the wavelength and the path length. At a wavelength in the neighborhood of 20 cm, for example, it was found that scattering by the stalks was coherent in nature for waves propagating horizontally through the canopy, which necessitated the development of a coherent-field model that uses Bragg scattering to account for the observed interference pattern in the transmitted beam. As the wavelength is made shorter, the semi-random spacing between plants becomes significant relative to the
Temporal scaling in information propagation
NASA Astrophysics Data System (ADS)
Huang, Junming; Li, Chao; Wang, Wen-Qiang; Shen, Hua-Wei; Li, Guojie; Cheng, Xue-Qi
2014-06-01
For the study of information propagation, one fundamental problem is uncovering universal laws governing the dynamics of information propagation. This problem, from the microscopic perspective, is formulated as estimating the propagation probability that a piece of information propagates from one individual to another. Such a propagation probability generally depends on two major classes of factors: the intrinsic attractiveness of information and the interactions between individuals. Despite the fact that the temporal effect of attractiveness is widely studied, temporal laws underlying individual interactions remain unclear, causing inaccurate prediction of information propagation on evolving social networks. In this report, we empirically study the dynamics of information propagation, using the dataset from a population-scale social media website. We discover a temporal scaling in information propagation: the probability a message propagates between two individuals decays with the length of time latency since their latest interaction, obeying a power-law rule. Leveraging the scaling law, we further propose a temporal model to estimate future propagation probabilities between individuals, reducing the error rate of information propagation prediction from 6.7% to 2.6% and improving viral marketing with 9.7% incremental customers.
Temporal scaling in information propagation.
Huang, Junming; Li, Chao; Wang, Wen-Qiang; Shen, Hua-Wei; Li, Guojie; Cheng, Xue-Qi
2014-06-18
For the study of information propagation, one fundamental problem is uncovering universal laws governing the dynamics of information propagation. This problem, from the microscopic perspective, is formulated as estimating the propagation probability that a piece of information propagates from one individual to another. Such a propagation probability generally depends on two major classes of factors: the intrinsic attractiveness of information and the interactions between individuals. Despite the fact that the temporal effect of attractiveness is widely studied, temporal laws underlying individual interactions remain unclear, causing inaccurate prediction of information propagation on evolving social networks. In this report, we empirically study the dynamics of information propagation, using the dataset from a population-scale social media website. We discover a temporal scaling in information propagation: the probability a message propagates between two individuals decays with the length of time latency since their latest interaction, obeying a power-law rule. Leveraging the scaling law, we further propose a temporal model to estimate future propagation probabilities between individuals, reducing the error rate of information propagation prediction from 6.7% to 2.6% and improving viral marketing with 9.7% incremental customers.
Tropospheric propagation assessment
NASA Astrophysics Data System (ADS)
Anderson, K. D.; Richter, J. H.; Hitney, H. V.
1984-02-01
It is well known that microwave propagation in a marine environment frequently exhibits unexpected behavior. The deviation from 4/3 earth propagation calculations is due to the fact that the vertical refractivity distribution of the troposphere rarely follows the standard lapse rate of -39 N/km. Instead, the troposphere is generally composed of horizontally stratified layers of differing refractivity gradients. The most striking propagation anomalies result when a layer gradient is less than -157 N/km, forming a trapping layer. In the marine environment, there are two mechanisms which produce such layers. An elevated trapping layer is created by the advection of a warm, dry air mass over a cold, moist air mass producing either a surface-based or an elevated duct which may affect frequencies as low as 100 MHz. A very persistent surface trapping layer is due to water evaporation at the air-sea interface. This surface, or evaporation duct is generally thin, on the order of 10 m in vertical extent, and is an effective trapping mechanism for frequencies greater than 3 GHz. With the introduction of the Integrated Refraction Effects Prediction System (IREPS) into the US Navy, fleet units now have the capability to evaluate accurately the performance of their EM systems when the refractive environment is known. However, these units may have to plan for operations thousands of miles away under different refractivity conditions. To assist in planning, a worldwide upper air and surface climatology has been developed for use through the IREPS programs. The IREPS concept is reviewed and a description of the tropospheric ducting data base is presented.
Beam Propagation Experimental Study.
1982-03-01
30- -40- -50 I 0 100 200 300 Time (ns) Figure 2. FX-100 diode voltage and current. The gas- insulated coax was charged to 4.2 MV in order to produce...limit the usable gradient. The voltage standoff capability will be further limited by electron bombardment of the insulators , which may lead to flashover ...the low-pressure window for stable propagation has been inferred from measurements of the time delay for the beam arrival at a given axial position. 8
HIGH AMPLITUDE PROPAGATED CONTRACTIONS
Bharucha, Adil E.
2012-01-01
While most colonic motor activity is segmental and non-propulsive, colonic high amplitude propagated contractions (HAPC) can transfer colonic contents over long distances and often precede defecation. HAPC occur spontaneously, in response to pharmacological agents or colonic distention. In this issue of Neurogastroenterology and Motility, Rodriguez and colleagues report that anal relaxation during spontaneous and bisacodyl-induced HAPC exceeds anal relaxation during rectal distention in constipated children undergoing colonic manometry. Moreover, and consistent with a neural mechanism, anal relaxation often precedes arrival of HAPC in the left colon. This editorial comprehensively reviews the characteristics, physiology and pharmacology of HAPC, their assessment by manometry, and relevance to constipation and diarrhea. PMID:23057554
Transport with Feynman propagators
White, R.H.
1990-11-06
Richard Feynman's formulation of quantum electrodynamics suggests a Monte Carlo algorithm for calculating wave propagation. We call this the Sum Over All Paths (SOAP) method. The method is applied to calculate diffraction by double slits of finite width and by a reflection grating. Calculations of reflection by plane and parabolic mirrors of finite aperture and from several figured surfaces are shown. An application to a one-dimensional scattering problem is discussed. A variation of SOAP can be applied to the diffusion equation. 2 refs., 8 figs.
A review of crack propagation under unsteady loading
NASA Technical Reports Server (NTRS)
Bryan, H. H.; Ahuja, K. K.
1992-01-01
The theories and research current available on crack propagation under unsteady loadings, especially those of acoustic origin, are reviewed. Since the original theories on fatigue failure did not account for random loading conditions, modified theories which provide statistical methods for evaluating the random loading have emerged. The impact of acoustic fatigue in the aerospace industry, basic principles such as fatigue crack initiation and propagation and load interactions, and testing procedures are discussed. Attention is also given to metal and metal alloy structures, fiber-reinforced composites and nonmetallic structures, short crack growth, and the effects of temperature, moisture, and corrosion on structures. Suggestions for future research in this field are presented, namely, studies on the effect of 'snap-through' response and associated crack growth patterns, studies in microcrack and 'small crack'; propagation under unsteady loading conditions, and the development of an accurate analytical model to predict acceleration and retardation effects in fatigue crack growth under random loading conditions.
A review of crack propagation under unsteady loading
NASA Astrophysics Data System (ADS)
Bryan, H. H.; Ahuja, K. K.
The theories and research current available on crack propagation under unsteady loadings, especially those of acoustic origin, are reviewed. Since the original theories on fatigue failure did not account for random loading conditions, modified theories which provide statistical methods for evaluating the random loading have emerged. The impact of acoustic fatigue in the aerospace industry, basic principles such as fatigue crack initiation and propagation and load interactions, and testing procedures are discussed. Attention is also given to metal and metal alloy structures, fiber-reinforced composites and nonmetallic structures, short crack growth, and the effects of temperature, moisture, and corrosion on structures. Suggestions for future research in this field are presented, namely, studies on the effect of 'snap-through' response and associated crack growth patterns, studies in microcrack and 'small crack'; propagation under unsteady loading conditions, and the development of an accurate analytical model to predict acceleration and retardation effects in fatigue crack growth under random loading conditions.
A review of crack propagation under unsteady loading
NASA Technical Reports Server (NTRS)
Bryan, H. H.; Ahuja, K. K.
1992-01-01
The theories and research current available on crack propagation under unsteady loadings, especially those of acoustic origin, are reviewed. Since the original theories on fatigue failure did not account for random loading conditions, modified theories which provide statistical methods for evaluating the random loading have emerged. The impact of acoustic fatigue in the aerospace industry, basic principles such as fatigue crack initiation and propagation and load interactions, and testing procedures are discussed. Attention is also given to metal and metal alloy structures, fiber-reinforced composites and nonmetallic structures, short crack growth, and the effects of temperature, moisture, and corrosion on structures. Suggestions for future research in this field are presented, namely, studies on the effect of 'snap-through' response and associated crack growth patterns, studies in microcrack and 'small crack'; propagation under unsteady loading conditions, and the development of an accurate analytical model to predict acceleration and retardation effects in fatigue crack growth under random loading conditions.
Propagation in a waveguide with range-dependent seabed properties.
Holland, Charles W
2010-11-01
The ocean environment contains features affecting acoustic propagation that vary on a wide range of time and space scales. A significant body of work over recent decades has aimed at understanding the effects of water column spatial and temporal variability on acoustic propagation. Much less is understood about the impact of spatial variability of seabed properties on propagation, which is the focus of this study. Here, a simple, intuitive expression for propagation with range-dependent boundary properties and uniform water depth is derived. It is shown that incoherent range-dependent propagation depends upon the geometric mean of the seabed plane-wave reflection coefficient and the arithmetic mean of the cycle distance. Thus, only the spatial probability distributions (pdfs) of the sediment properties are required. Also, it is shown that the propagation over a range-dependent seabed tends to be controlled by the lossiest, not the hardest, sediments. Thus, range-dependence generally leads to higher propagation loss than would be expected, due for example to lossy sediment patches and/or nulls in the reflection coefficient. In a few instances, propagation over a range-dependent seabed can be calculated using range-independent sediment properties. The theory may be useful for other (non-oceanic) waveguides.
Desertification by front propagation?
Zelnik, Yuval R; Uecker, Hannes; Feudel, Ulrike; Meron, Ehud
2017-04-07
Understanding how desertification takes place in different ecosystems is an important step in attempting to forecast and prevent such transitions. Dryland ecosystems often exhibit patchy vegetation, which has been shown to be an important factor on the possible regime shifts that occur in arid regions in several model studies. In particular, both gradual shifts that occur by front propagation, and abrupt shifts where patches of vegetation vanish at once, are a possibility in dryland ecosystems due to their emergent spatial heterogeneity. However, recent theoretical work has suggested that the final step of desertification - the transition from spotted vegetation to bare soil - occurs only as an abrupt shift, but the generality of this result, and its underlying origin, remain unclear. We investigate two models that detail the dynamics of dryland vegetation using a markedly different functional structure, and find that in both models the final step of desertification can only be abrupt. Using a careful numerical analysis, we show that this behavior is associated with the disappearance of confined spot-pattern domains as stationary states, and identify the mathematical origin of this behavior. Our findings show that a gradual desertification to bare soil due to a front propagation process can not occur in these and similar models, and opens the question of whether these dynamics can take place in nature.
Bolt beam propagation analysis
NASA Astrophysics Data System (ADS)
Shokair, I. R.
BOLT (Beam on Laser Technology) is a rocket experiment to demonstrate electron beam propagation on a laser ionized plasma channel across the geomagnetic field in the ion focused regime (IFR). The beam parameters for BOLT are: beam current I(sub b) = 100 Amps, beam energy of 1--1.5 MeV (gamma =3-4), and a Gaussian beam and channel of radii r(sub b) = r(sub c) = 1.5 cm. The N+1 ionization scheme is used to ionize atomic oxygen in the upper atmosphere. This scheme utilizes 130 nm light plus three IR lasers to excite and then ionize atomic oxygen. The limiting factor for the channel strength is the energy of the 130 nm laser, which is assumed to be 1.6 mJ for BOLT. At a fixed laser energy and altitude (fixing the density of atomic oxygen), the range can be varied by adjusting the laser tuning, resulting in a neutralization fraction axial profile of the form: f(z) = f(sub 0) e(exp minus z)/R, where R is the range. In this paper we consider the propagation of the BOLT beam and calculate the range of the electron beam taking into account the fact that the erosion rates (magnetic and inductive) vary with beam length as the beam and channel dynamically respond to sausage and hose instabilities.
Sound propagation in elongated superfluid fermionic clouds
Capuzzi, P.; Vignolo, P.; Federici, F.; Tosi, M. P.
2006-02-15
We use hydrodynamic equations to study sound propagation in a superfluid Fermi gas at zero temperature inside a strongly elongated cigar-shaped trap, with main attention to the transition from the BCS to the unitary regime. First, we treat the role of the radial density profile in the limit of a cylindrical geometry and then evaluate numerically the effect of the axial confinement in a configuration in which a hole is present in the gas density at the center of the trap. We find that in a strongly elongated trap the speed of sound in both the BCS and the unitary regime differs by a factor {radical}(3/5) from that in a homogeneous three-dimensional superfluid. The predictions of the theory could be tested by measurements of sound-wave propagation in a setup such as that exploited by Andrews et al. [Phys. Rev. Lett. 79, 553 (1997)] for an atomic Bose-Einstein condensate.
Laser beam shaping profiles and propagation.
Shealy, David L; Hoffnagle, John A
2006-07-20
We consider four families of functions--the super-Gaussian, flattened Gaussian, Fermi-Dirac, and super-Lorentzian--that have been used to describe flattened irradiance profiles. We determine the shape and width parameters of the different distributions, when each flattened profile has the same radius and slope of the irradiance at its half-height point, and then we evaluate the implicit functional relationship between the shape and width parameters for matched profiles, which provides a quantitative way to compare profiles described by different families of functions. We conclude from an analysis of each profile with matched parameters using Kirchhoff-Fresnel diffraction theory and M2 analysis that the diffraction patterns as they propagate differ by small amounts, which may not be distinguished experimentally. Thus, beam shaping optics is designed to produce either of these four flattened output irradiance distributions with matched parameters will yield similar irradiance distributions as the beam propagates.
NASA Technical Reports Server (NTRS)
Bringi, V. N.; Chandrasekar, V.; Mueller, Eugene A.; Turk, Joseph; Beaver, John; Helmken, Henry F.; Henning, Rudy
1993-01-01
Papers on Ka-band propagation measurements using the ACTS propagation terminal and the Colorado State University CHILL multiparameter radar and on Space Communications Technology Center Florida Propagation Program are discussed. Topics covered include: microwave radiative transfer and propagation models; NASA propagation terminal status; ACTS channel characteristics; FAU receive only terminal; FAU terminal status; and propagation testbed.
Two-stream instability in convergent geometry
Gratton, F.T.; Gnavi, G.
1987-02-01
The problem of the instability of counterstreaming beams of charged particles is extended to cylindrical and spherical geometries. For well-focused configurations it can be solved by complex contour integral representations. The effects of the convergence of the flow and the density gradient along the trajectories of the particles are considered. The linear spectrum for the cylindrical case is obtained, together with the proof that the solution has finite energy and satisfies two physical matching conditions through the origin. The properties of the special functions which solve this problem are presented. Although the density of the ideally focused model diverges as 1/r at the origin, the growth rate of the instability, for a system of radius R, is given by ..omega../sup 2//sub p/R/V/sub 0/2xi/sub n/, where V/sub 0/ is the beam velocity, xi/sub n/ are the zeros of the Bessel function of zeroth order, and the plasma frequency ..omega../sub p/ is evaluated at one-half the average density of particles.
Cosmic ray propagation in interplanetary space
NASA Technical Reports Server (NTRS)
Voelk, H. J.
1975-01-01
The validity of the test-particle picture, the approximation of static fields, and the spatial-diffusion approximation are discussed in a general way before specific technical assumptions are introduced. It is argued that the spatial-diffusion equation for the intensity per unit energy has a much wider range of applicability than the kinetic (Fokker-Planck) equation it is derived from. This gives strong weight to the phenomenological propagation theory. The general success (and possible failure at small energies) of the phenomenological theory for the modulation of galactic cosmic rays and solar events is described. Apparent effects such as the 'free boundary' are given disproportionate weight since they establish the connection with the detailed plasma physics of the solar wind. Greatest attention is paid to the pitch-angle diffusion theory. A general theory is presented which removes the well-known secularities of the quasi-linear approximation. The possible breakdown of any pitch-angle diffusion theory at very small energies is perhaps connected with the observed 'turn up' of the spectrum at low energies. A first attempt to derive the spatial dependence of the diffusion coefficient in the solar cavity, using such a divergence free scattering theory, is described and compared with recent observations out to 5 AU.
Retroelements: propagation and adaptation.
Hull, R; Covey, S N
1995-01-01
Retroelements are genetic entities that exist in both DNA and RNA forms generated by cyclic alternation of transcription and reverse transcription. They have in common a genetic core (the gag-pol core), encoding conserved functions of a structural protein and a replicase. These are supplemented with a variety of cis-acting nucleic acid sequences controlling transcription and reverse transcription. Most retroelements have additional genes with regulatory or adaptive roles, both within the cell and for movement between cells and organisms. These features reflect the variety of mechanisms that have developed to ensure propagation of the elements and their ability to adapt to specific niches in their hosts with which they co-evolve.
ACTS mobile propagation campaign
NASA Technical Reports Server (NTRS)
Goldhirsh, Julius; Vogel, Wolfhard J.; Torrence, Geoffrey W.
1994-01-01
Preliminary results are presented for three propagation measurement campaigns involving a mobile receiving laboratory and 20 GHz transmissions from the Advanced Communications Technology Satellite (ACTS). Four 1994 campaigns were executed during weekly periods in and around Austin, Texas in February and May, in Central Maryland during March, and in Fairbanks, Alaska and environs in June. Measurements tested the following effects at 20 GHz: (1) attenuation due to roadside trees with and without foliage, (2) multipath effects for scenarios in which line-of-sight paths were unshadowed, (3) fades due to terrain and roadside obstacles, (4) fades due to structures in urban environs, (5) single tree attenuation, and (6) effects of fading at low elevation angles (8 deg in Fairbanks, Alaska) and high elevation angles (55 deg in Austin, Texas). Results presented here cover sampled measurements in Austin, Texas for foliage and non-foliage cases and in Central Maryland for non-foliage runs.
Propagation Terminal Design and Measurements
NASA Technical Reports Server (NTRS)
Nessel, James
2015-01-01
The NASA propagation terminal has been designed and developed by the Glenn Research Center and is presently deployed at over 5 NASA and partner ground stations worldwide collecting information on the effects of the atmosphere on Ka-band and millimeter wave communications links. This lecture provides an overview of the fundamentals and requirements of the measurement of atmospheric propagation effects and, specifically, the types of hardware and digital signal processing techniques employed by current state-of-the-art propagation terminal systems.
Interferometric Propagation Delay
NASA Technical Reports Server (NTRS)
Goldstein, Richard
1999-01-01
Radar interferometry based on (near) exact repeat passes has lately been used by many groups of scientists, worldwide, to achieve state of the art measurements of topography, glacier and ice stream motion, earthquake displacements, oil field subsidence, lava flows, crop-induced surface decorrelation, and other effects. Variations of tropospheric and ionospheric propagation delays limit the accuracy of all such measurements. We are investigating the extent of this limitation, using data from the Shuttle radar flight, SIR-C, which is sensitive to the troposphere, and the Earth Resources Satellites, ERS-1/2, which are sensitive to both the troposphere and the ionosphere. We are presently gathering statistics of the delay variations over selected, diverse areas to determine the best accuracy possible for repeat track interferometry. The phases of an interferogram depend on both the topography of the scene and variations in propagation delay. The delay variations can be caused by movement of elements in the scene, by changes in tropospheric water vapor and by changes of the charge concentrations in the ionosphere. We plan to separate these causes by using the data from a third satellite visit (three-pass interferometry). The figure gives the geometry of the three-pass observations. The page of the figure is taken to be perpendicular to the spacecraft orbits. The three observational locations are marked on the figure, giving baselines B-12 and B-13, separated by the angle alpha. These parameters are almost constant over the whole scene. However, each pixel has an individual look angle, theta, which is related to the topography, rho is the slant range. A possible spurious time delay is shown. Additional information is contained in the original.
Interferometric Propagation Delay
NASA Technical Reports Server (NTRS)
Goldstein, Richard
1999-01-01
Radar interferometry based on (near) exact repeat passes has lately been used by many groups of scientists, worldwide, to achieve state of the art measurements of topography, glacier and ice stream motion, earthquake displacements, oil field subsidence, lava flows, crop-induced surface decorrelation, and other effects. Variations of tropospheric and ionospheric propagation delays limit the accuracy of all such measurements. We are investigating the extent of this limitation, using data from the Shuttle radar flight, SIR-C, which is sensitive to the troposphere, and the Earth Resources Satellites, ERS-1/2, which are sensitive to both the troposphere and the ionosphere. We are presently gathering statistics of the delay variations over selected, diverse areas to determine the best accuracy possible for repeat track interferometry. The phases of an interferogram depend on both the topography of the scene and variations in propagation delay. The delay variations can be caused by movement of elements in the scene, by changes in tropospheric water vapor and by changes of the charge concentrations in the ionosphere. We plan to separate these causes by using the data from a third satellite visit (three-pass interferometry). The figure gives the geometry of the three-pass observations. The page of the figure is taken to be perpendicular to the spacecraft orbits. The three observational locations are marked on the figure, giving baselines B-12 and B-13, separated by the angle alpha. These parameters are almost constant over the whole scene. However, each pixel has an individual look angle, theta, which is related to the topography, rho is the slant range. A possible spurious time delay is shown. Additional information is contained in the original.
Three-Dimensional Gear Crack Propagation Studied
NASA Technical Reports Server (NTRS)
Lewicki, David G.
1999-01-01
Gears used in current helicopters and turboprops are designed for light weight, high margins of safety, and high reliability. However, unexpected gear failures may occur even with adequate tooth design. To design an extremely safe system, the designer must ask and address the question, "What happens when a failure occurs?" With gear-tooth bending fatigue, tooth or rim fractures may occur. A crack that propagates through a rim will be catastrophic, leading to disengagement of the rotor or propeller, loss of an aircraft, and possible fatalities. This failure mode should be avoided. A crack that propagates through a tooth may or may not be catastrophic, depending on the design and operating conditions. Also, early warning of this failure mode may be possible because of advances in modern diagnostic systems. One concept proposed to address bending fatigue fracture from a safety aspect is a splittooth gear design. The prime objective of this design would be to control crack propagation in a desired direction such that at least half of the tooth would remain operational should a bending failure occur. A study at the NASA Lewis Research Center analytically validated the crack-propagation failsafe characteristics of a split-tooth gear. It used a specially developed three-dimensional crack analysis program that was based on boundary element modeling and principles of linear elastic fracture mechanics. Crack shapes as well as the crack-propagation life were predicted on the basis of the calculated stress intensity factors, mixed-mode crack-propagation trajectory theories, and fatigue crack-growth theories. The preceding figures show the effect of the location of initial cracks on crack propagation. Initial cracks in the fillet of the teeth produced stress intensity factors of greater magnitude (and thus, greater crack growth rates) than those in the root or groove areas of the teeth. Crack growth was simulated in a case study to evaluate crack-propagation paths. Tooth
Approximate Bruechner orbitals in electron propagator calculations
Ortiz, J.V.
1999-12-01
Orbitals and ground-state correlation amplitudes from the so-called Brueckner doubles approximation of coupled-cluster theory provide a useful reference state for electron propagator calculations. An operator manifold with hold, particle, two-hole-one-particle and two-particle-one-hole components is chosen. The resulting approximation, third-order algebraic diagrammatic construction [2ph-TDA, ADC (3)] and 3+ methods. The enhanced versatility of this approximation is demonstrated through calculations on valence ionization energies, core ionization energies, electron detachment energies of anions, and on a molecule with partial biradical character, ozone.
Nonlinear Gamow vectors in nonlocal optical propagation
NASA Astrophysics Data System (ADS)
Braidotti, M. C.; Gentilini, S.; Marcucci, G.; DelRe, E.; Conti, C.
2016-03-01
Shock waves dominate in a wide variety of fields in physics dealing with nonlinear phenomena, nevertheless the description of their evolution is not resolved for the entire dynamics. Here we propose an analytical method based on Gamow vectors, which belong to irreversible quantum mechanics. We theoretically and experimentally show the appearance of these decaying states during shock evolution allowing to describe the whole wave propagation. These results open new ways to the control of extreme nonlinear regimes such as supercontinuum generation or in the analogies of fundamental physical theories.
Propagation of Evidence Through Fuzzy Rules
1993-09-01
range. Bonissone does not use the MPG used in the TV formulation; instead, the detachment operator is employed to propagate the confidence bounds ...of an S-norm is the maximum function. Thus, the lower bound on the confidence of the conclusion is vL(b) = T(suff, vL(a)) and the upper bound is...method is Piero Bonissone (references 5-7). Bounds on the premise are generated from the data using possibility theory. This interval method also can
Energy model for rumor propagation on social networks
NASA Astrophysics Data System (ADS)
Han, Shuo; Zhuang, Fuzhen; He, Qing; Shi, Zhongzhi; Ao, Xiang
2014-01-01
With the development of social networks, the impact of rumor propagation on human lives is more and more significant. Due to the change of propagation mode, traditional rumor propagation models designed for word-of-mouth process may not be suitable for describing the rumor spreading on social networks. To overcome this shortcoming, we carefully analyze the mechanisms of rumor propagation and the topological properties of large-scale social networks, then propose a novel model based on the physical theory. In this model, heat energy calculation formula and Metropolis rule are introduced to formalize this problem and the amount of heat energy is used to measure a rumor’s impact on a network. Finally, we conduct track experiments to show the evolution of rumor propagation, make comparison experiments to contrast the proposed model with the traditional models, and perform simulation experiments to study the dynamics of rumor spreading. The experiments show that (1) the rumor propagation simulated by our model goes through three stages: rapid growth, fluctuant persistence and slow decline; (2) individuals could spread a rumor repeatedly, which leads to the rumor’s resurgence; (3) rumor propagation is greatly influenced by a rumor’s attraction, the initial rumormonger and the sending probability.
Nonlinear guided wave propagation in prestressed plates.
Pau, Annamaria; Lanza di Scalea, Francesco
2015-03-01
The measurement of stress in a structure presents considerable interest in many fields of engineering. In this paper, the diagnostic potential of nonlinear elastic guided waves in a prestressed plate is investigated. To do so, an analytical model is formulated accounting for different aspects involved in the phenomenon. The fact that the initial strains can be finite is considered using the Green Lagrange strain tensor, and initial and final configurations are not merged, as it would be assumed in the infinitesimal strain theory. Moreover, an appropriate third-order expression of the strain energy of the hyperelastic body is adopted to account for the material nonlinearities. The model obtained enables to investigate both the linearized case, which gives the variation of phase and group velocity as a function of the initial stress, and the nonlinear case, involving second-harmonic generation as a function of the initial state of stress. The analysis is limited to Rayleigh-Lamb waves propagating in a plate. Three cases of initial prestress are considered, including prestress in the direction of the wave propagation, prestress orthogonal to the direction of wave propagation, and plane isotropic stress.
Wave propagation in anisotropic layered composites
NASA Astrophysics Data System (ADS)
Braga, Arthur Martins Barbosa
1990-08-01
The propagation of harmonic waves in laminated anisotropic composites is investigated. The analysis is carried out within the framework of the linear theory of elasticity. Two basic geometries are considered, namely, layered half-spaces and infinite laminated plates. The method employed in the description of the wave motion in the anisotropic composites is based on Stroh's sextic matrix formalism for anisotropic elasticity. An extension of this formalism to periodic media, in conjunction with Floquet's theorem, is applied when the layers are disposed periodically. The 'in vacuo' free motions of laminated composites are investigated. Particular attention is paid to Rayleigh and Rayleigh-Lamb wave propagation in layered media. The dynamic interaction of laminated composites with a surrounding acoustic fluid is also investigated. The concept of surface impedance tensor is introduced. It is shown that, for harmonic motions, this rank-two tensor completely characterizes the solid surface in contact with the fluid. An algorithm for the numerical computation of the surface impedance tensor of anisotropic layered composites is presented. This algorithm is numerically stable for a wide range of frequencies. Special attention is paid to the subsonic Sholte-Gogoladze-like wave, which propagates unattenuated along the planar fluid/solid interface.
Successive MJO propagation in MERRA-2 reanalysis
NASA Astrophysics Data System (ADS)
Powell, Scott W.
2017-05-01
Composite circumnavigating Madden-Julian oscillation (MJO) events in Version 2 of the NASA Modern Era Reanalysis for Research and Applications (MERRA-2) reanalysis propagate as convectively coupled Kelvin waves over the Western Hemisphere and moisture waves like that described by Adames and Kim (2016) over the warm pool. Estimated zonally variable phase speeds of coupled Kelvin waves in the tropics are calculated by determining the "effective static stability" experienced by the wave. The wave is structured similarly to a classically derived deep tropospheric Kelvin wave, and its phase speed is up to 33 m s-1 or 40 m s-1 over the central/eastern Pacific or Atlantic/equatorial Africa, respectively, during boreal winter. Theoretically, estimated phase speeds of convectively coupled Kelvin waves over the tropical warm pool are greater than 15 m s-1, much faster than the propagation of the reanalyzed MJO. A complete theory for MJO propagation around the globe must allow both coupled Kelvin waves and moisture waves.
Sound propagation and absorption in foam - A distributed parameter model.
NASA Technical Reports Server (NTRS)
Manson, L.; Lieberman, S.
1971-01-01
Liquid-base foams are highly effective sound absorbers. A better understanding of the mechanisms of sound absorption in foams was sought by exploration of a mathematical model of bubble pulsation and coupling and the development of a distributed-parameter mechanical analog. A solution by electric-circuit analogy was thus obtained and transmission-line theory was used to relate the physical properties of the foams to the characteristic impedance and propagation constants of the analog transmission line. Comparison of measured physical properties of the foam with values obtained from measured acoustic impedance and propagation constants and the transmission-line theory showed good agreement. We may therefore conclude that the sound propagation and absorption mechanisms in foam are accurately described by the resonant response of individual bubbles coupled to neighboring bubbles.
Cosmic-ray Propagation and Interactions in the Galaxy
Strong, Andrew W.; Moskalenko, Igor V.; Ptuskin, Vladimir S.; /Troitsk, IZMIRAN
2007-01-22
We survey the theory and experimental tests for the propagation of cosmic rays in the Galaxy up to energies of 10{sup 15} eV. A guide to the previous reviews and essential literature is given, followed by an exposition of basic principles. The basic ideas of cosmic-ray propagation are described, and the physical origin of its processes are explained. The various techniques for computing the observational consequences of the theory are described and contrasted. These include analytical and numerical techniques. We present the comparison of models with data including direct and indirect--especially gamma-ray--observations, and indicate what we can learn about cosmic-ray propagation. Some particular important topics including electrons and antiparticles are chosen for discussion.
Sound propagation and absorption in foam - A distributed parameter model.
NASA Technical Reports Server (NTRS)
Manson, L.; Lieberman, S.
1971-01-01
Liquid-base foams are highly effective sound absorbers. A better understanding of the mechanisms of sound absorption in foams was sought by exploration of a mathematical model of bubble pulsation and coupling and the development of a distributed-parameter mechanical analog. A solution by electric-circuit analogy was thus obtained and transmission-line theory was used to relate the physical properties of the foams to the characteristic impedance and propagation constants of the analog transmission line. Comparison of measured physical properties of the foam with values obtained from measured acoustic impedance and propagation constants and the transmission-line theory showed good agreement. We may therefore conclude that the sound propagation and absorption mechanisms in foam are accurately described by the resonant response of individual bubbles coupled to neighboring bubbles.
NASA Astrophysics Data System (ADS)
San-Juan, Juan Félix; Pérez, Iván; San-Martín, Montserrat; Vergara, Eliseo P.
2017-08-01
Two-Line Elements (TLEs) continue to be the sole public source of orbiter observations. The accuracy of TLE propagations through the Simplified General Perturbations-4 (SGP4) software decreases dramatically as the propagation horizon increases, and thus the period of validity of TLEs is very limited. As a result, TLEs are gradually becoming insufficient for the growing demands of Space Situational Awareness (SSA). We propose a technique, based on the hybrid propagation methodology, aimed at extending TLE validity with minimal changes to the current TLE-SGP4 system in a non-intrusive way. It requires that the institution in possession of the osculating elements distributes hybrid TLEs, HTLEs, which encapsulate the standard TLE and the model of its propagation error. The validity extension can be accomplished when the end user processes HTLEs through the hybrid SGP4 propagator, HSGP4, which comprises the standard SGP4 and an error corrector.
Join-Graph Propagation Algorithms
Mateescu, Robert; Kask, Kalev; Gogate, Vibhav; Dechter, Rina
2010-01-01
The paper investigates parameterized approximate message-passing schemes that are based on bounded inference and are inspired by Pearl's belief propagation algorithm (BP). We start with the bounded inference mini-clustering algorithm and then move to the iterative scheme called Iterative Join-Graph Propagation (IJGP), that combines both iteration and bounded inference. Algorithm IJGP belongs to the class of Generalized Belief Propagation algorithms, a framework that allowed connections with approximate algorithms from statistical physics and is shown empirically to surpass the performance of mini-clustering and belief propagation, as well as a number of other state-of-the-art algorithms on several classes of networks. We also provide insight into the accuracy of iterative BP and IJGP by relating these algorithms to well known classes of constraint propagation schemes. PMID:20740057
Modeling UHF Radio Propagation in Buildings.
NASA Astrophysics Data System (ADS)
Honcharenko, Walter
The potential implementation of wireless Radio Local Area Networks and Personal Communication Services inside buildings requires a thorough understanding of signal propagation within buildings. This work describes a study leading to a theoretical understanding of wave propagation phenomenon inside buildings. Covered first is propagation in the clear space between the floor and ceiling, which is modeled using Kirchoff -Huygens diffraction theory. This along with ray tracing techniques are used to develop a model to predict signal coverage inside buildings. Simulations were conducted on a hotel building, two office buildings, and a university building to which measurements of CW signals were compared, with good agreement. Propagation to other floors was studied to determine the signal strength as a function of the number of floors separating transmitter and receiver. Diffraction paths and through the floor paths which carry significant power to the receivers were examined. Comparisons were made to measurements in a hotel building and an office building, in which agreements were excellent. As originally developed for Cellular Mobile Radio (CMR) systems, the sector average is obtained from the spatial average of the received signal as the mobile traverses a path of 20 or so wavelengths. This approach has also been applied indoors with the assumption that a unique average could be obtained by moving either end of the radio link. However, unlike in the CMR environment, inside buildings both ends of the radio link are in a rich multipath environment. It is shown both theoretically and experimentally that moving both ends of the link is required to achieve a unique average. Accurate modeling of the short pulse response of a signal within a building will provide insight for determining the hardware necessary for high speed data transmission and recovery, and a model for determining the impulse response is developed in detail. Lastly, the propagation characteristics of
Modeling turbulent flame propagation
Ashurst, W.T.
1994-08-01
Laser diagnostics and flow simulation techniques axe now providing information that if available fifty years ago, would have allowed Damkoehler to show how turbulence generates flame area. In the absence of this information, many turbulent flame speed models have been created, most based on Kolmogorov concepts which ignore the turbulence vortical structure, Over the last twenty years, the vorticity structure in mixing layers and jets has been shown to determine the entrainment and mixing behavior and these effects need to be duplicated by combustion models. Turbulence simulations reveal the intense vorticity structure as filaments and simulations of passive flamelet propagation show how this vorticity Creates flame area and defines the shape of the expected chemical reaction surface. Understanding how volume expansion interacts with flow structure should improve experimental methods for determining turbulent flame speed. Since the last decade has given us such powerful new tools to create and see turbulent combustion microscopic behavior, it seems that a solution of turbulent combustion within the next decade would not be surprising in the hindsight of 2004.
Kocia, Lucas; Heller, Eric J
2015-09-28
We offer a more formal justification for the successes of our recently communicated "directed Heller-Herman-Kluk-Kay" (DHK) time propagator by examining its performance in one-dimensional bound systems which exhibit at least quasi-periodic motion. DHK is distinguished by its single one-dimensional integral--a vast simplification over the usual 2N-dimensional integral in full Heller-Herman-Kluk-Kay (for an N-dimensional system). We find that DHK accurately captures particular coherent state autocorrelations when its single integral is chosen to lie along these states' fastest growing manifold, as long as it is not perpendicular to their action gradient. Moreover, the larger the action gradient, the better DHK will perform. We numerically examine DHK's accuracy in a one-dimensional quartic oscillator and illustrate that these conditions are frequently satisfied such that the method performs well. This lends some explanation for why DHK frequently seems to work so well and suggests that it may be applicable to systems exhibiting quite strong anharmonicity.
NASA Astrophysics Data System (ADS)
Kocia, Lucas; Heller, Eric J.
2015-09-01
We offer a more formal justification for the successes of our recently communicated "directed Heller-Herman-Kluk-Kay" (DHK) time propagator by examining its performance in one-dimensional bound systems which exhibit at least quasi-periodic motion. DHK is distinguished by its single one-dimensional integral—a vast simplification over the usual 2N-dimensional integral in full Heller-Herman-Kluk-Kay (for an N-dimensional system). We find that DHK accurately captures particular coherent state autocorrelations when its single integral is chosen to lie along these states' fastest growing manifold, as long as it is not perpendicular to their action gradient. Moreover, the larger the action gradient, the better DHK will perform. We numerically examine DHK's accuracy in a one-dimensional quartic oscillator and illustrate that these conditions are frequently satisfied such that the method performs well. This lends some explanation for why DHK frequently seems to work so well and suggests that it may be applicable to systems exhibiting quite strong anharmonicity.
Seismic wave propagation modeling
Jones, E.M.; Olsen, K.B.
1998-12-31
This is the final report of a one-year, Laboratory Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). A hybrid, finite-difference technique was developed for modeling nonlinear soil amplification from three-dimensional, finite-fault radiation patters for earthquakes in arbitrary earth models. The method was applied to the 17 January 1994 Northridge earthquake. Particle velocities were computed on a plane at 5-km depth, immediately above the causative fault. Time-series of the strike-perpendicular, lateral velocities then were propagated vertically in a soil column typical of the San Fernando Valley. Suitable material models were adapted from a suite used to model ground motions at the US Nevada Test Site. The effects of nonlinearity reduced relative spectral amplitudes by about 40% at frequencies above 1.5 Hz but only by 10% at lower frequencies. Runs made with source-depth amplitudes increased by a factor of two showed relative amplitudes above 1.5 Hz reduced by a total of 70% above 1.5 Hz and 20% at lower frequencies. Runs made with elastic-plastic material models showed similar behavior to runs made with Masing-Rule models.
Radial propagation of geodesic acoustic modes
Hager, Robert; Hallatschek, Klaus
2009-07-15
The GAM group velocity is estimated from the ratio of the radial free energy flux to the total free energy applying gyrokinetic and two-fluid theory. This method is much more robust than approaches that calculate the group velocity directly and can be generalized to include additional physics, e.g., magnetic geometry. The results are verified with the gyrokinetic code GYRO[J. Candy and R. E. Waltz, J. Comput. Phys. 186, 545 (2003)], the two-fluid code NLET[K. Hallatschek and A. Zeiler, Phys. Plasmas 7, 2554 (2000)], and analytical calculations. GAM propagation must be kept in mind when discussing the windows of GAM activity observed experimentally and the match between linear theory and experimental GAM frequencies.
Pulse propagation in the tapered wiggler
NASA Astrophysics Data System (ADS)
Al-Abawi, H.; McIver, J. K.; Moore, G. T.; Scully, M. O.
Theory and preliminary numerical calculations are presented for coherent optical and electron pulse propagation in a free-electron laser with a tapered wiggler. Since only trapped electrons contribute significantly to the laser radiation, it is possible to define generalized 'slow' space-time coordinates in terms of which the electron pulse envelope may be considered constant. The theory is outlined first for the helical wiggler and then is developed for an arbitrary quasiperiodic wiggler, using a more rigorous 'multiple-scaling' approach. In the latter case a modified definition of the electron phase angle is required, and optical harmonic generation is predicted. The numerical calculations show that substantial energy extraction is achievable, but that the optical pulse rapidly breaks up into a series of spikes in the time domain. Surprisingly, the optical spectrum remains quite smooth in appearance.
Quantum propagation in single mode fiber
NASA Technical Reports Server (NTRS)
Joneckis, Lance G.; Shapiro, Jeffrey H.
1994-01-01
This paper presents a theory for quantum light propagation in a single-mode fiber which includes the effects of the Kerr nonlinearity, group-velocity dispersion, and linear loss. The theory reproduces the results of classical self-phase modulation, quantum four-wave mixing, and classical solution physics, within their respective regions of validity. It demonstrates the crucial role played by the Kerr-effect material time constant, in limiting the quantum phase shifts caused by the broadband zero-point fluctuations that accompany any quantized input field. Operator moment equations - approximated, numerically, via a terminated cumulant expansion - are used to obtain results for homodyne-measurement noise spectra when dispersion is negligible. More complicated forms of these equations can be used to incorporate dispersion into the noise calculations.
Spectral Analysis of Sound Propagation in Stratified Fluids.
1980-04-01
Kodaira, K., The eigenvalue problem for ordinary differential equations of the second order and Heisenberg’s theory of S- matrices , Amer. J. Math. 71...Transient electromagnetic wave propagation in a r dielectric waveguide, Istituto Nazionale di Alta Matematica , 4 Symposia Mathematica XVIII, 239-277
Wave propagation downstream of a high power helicon in a dipolelike magnetic field
Prager, James; Winglee, Robert; Roberson, B. Race; Ziemba, Timothy
2010-01-15
The wave propagating downstream of a high power helicon source in a diverging magnetic field was investigated experimentally. The magnetic field of the wave has been measured both axially and radially. The three-dimensional structure of the propagating wave is observed and its wavelength and phase velocity are determined. The measurements are compared to predictions from helicon theory and that of a freely propagating whistler wave. The implications of this work on the helicon as a thruster are also discussed.
Mantle viscosity beneath the Galapagos 95.5 deg W propagating rift
NASA Technical Reports Server (NTRS)
Schubert, G.; Hey, R. N.
1986-01-01
Detailed geophysical surveys in the vicinity of the Galapagos 95.5 deg W propagating rift tip establish the opening history of the rift and its velocity of propagation. These data together with a theory for mantle upwelling into slowly widening lithospheric cracks constrain the viscosity of the asthenosphere beneath the propagating rift to be less than about 10 to the 17th to 10 to the 18th Pa s.
High-current fast electron beam propagation in a dielectric target.
Klimo, Ondrej; Tikhonchuk, V T; Debayle, A
2007-01-01
Recent experiments demonstrate an efficient transformation of high intensity laser pulse into a relativistic electron beam with a very high current density exceeding 10(12) A cm(-2). The propagation of such a beam inside the target is possible if its current is neutralized. This phenomenon is not well understood, especially in dielectric targets. In this paper, we study the propagation of high current density electron beam in a plastic target using a particle-in-cell simulation code. The code includes both ionization of the plastic and collisions of newborn electrons. The numerical results are compared with a relatively simple analytical model and a reasonable agreement is found. The temporal evolution of the beam velocity distribution, the spatial density profile, and the propagation velocity of the ionization front are analyzed and their dependencies on the beam density and energy are discussed. The beam energy losses are mainly due to the target ionization induced by the self-generated electric field and the return current. For the highest beam density, a two-stream instability is observed to develop in the plasma behind the ionization front and it contributes to the beam energy losses.
Particle-in-cell simulations of electron beam propagation in the magnetospheric plasma environment
NASA Astrophysics Data System (ADS)
Powis, A. T.; Kaganovich, I.; Johnson, J.; Sanchez, E. R.
2016-12-01
New accelerator technologies have made it possible to produce a light-weight compact electron beam accelerator able to be installed on a small to medium sized satellite for applications of mapping the magnetisphere. We present a particle-in-cell (PIC) study of electron beam propagation in the magnetospheric environment. Two-stream and fillamentation instabilities, as well as generation of whistler waves can potentially disrupt beam propagation in the plasma environment [1,2]. We compare results of the PIC simulations with previous analytical estimates for the threshold of instabilities. [1] "Whistler Wave Excitation and Effects of Self-Focusing on Ion Beam Propagation through a Background Plasma along a Solenoidal Magnetic Field", M. Dorf, I. Kaganovich, E. Startsev, and R. C. Davidson, Physics of Plasmas 17, 023103 (2010). [2] "Survey of Collective Instabilities and Beam-Plasma Interactions in Intense Heavy Ion Beams", R. C. Davidson, M. A. Dorf, I. D. Kaganovich, H. Qin, A. B. Sefkow, E. A. Startsev, D. R. Welch, D. V. Rose, and S. M. Lund, Nuclear Instruments and Methods in Physics Research A 606, 11 (2009).
NA
2002-03-04
The purpose of this Analysis and Model Report (AMR) supporting the Site Recommendation/License Application (SR/LA) for the Yucca Mountain Project is the development of elementary analyses of the interactions of a hypothetical dike with a repository drift (i.e., tunnel) and with the drift contents at the potential Yucca Mountain repository. This effort is intended to support the analysis of disruptive events for Total System Performance Assessment (TSPA). This AMR supports the Process Model Report (PMR) on disruptive events (CRWMS M&O 2000a). This purpose is documented in the development plan (DP) ''Coordinate Modeling of Dike Propagation Near Drifts Consequences for TSPA-SR/LA'' (CRWMS M&O 2000b). Evaluation of that Development Plan and the work to be conducted to prepare Interim Change Notice (ICN) 1 of this report, which now includes the design option of ''Open'' drifts, indicated that no revision to that DP was needed. These analyses are intended to provide reasonable bounds for a number of expected effects: (1) Temperature changes to the waste package from exposure to magma; (2) The gas flow available to degrade waste containers during the intrusion; (3) Movement of the waste package as it is displaced by the gas, pyroclasts and magma from the intruding dike (the number of packages damaged); (4) Movement of the backfill (Backfill is treated here as a design option); (5) The nature of the mechanics of the dike/drift interaction. These analyses serve two objectives: to provide preliminary analyses needed to support evaluation of the consequences of an intrusive event and to provide a basis for addressing some of the concerns of the Nuclear Regulatory Commission (NRC) expressed in the Igneous Activity Issue Resolution Status Report.
NASA Technical Reports Server (NTRS)
Chudnovsky, A.
1984-01-01
A damage parameter is introduced in addition to conventional parameters of continuum mechanics and consider a crack surrounded by an array of microdefects within the continuum mechanics framework. A system consisting of the main crack and surrounding damage is called crack layer (CL). Crack layer propagation is an irreversible process. The general framework of the thermodynamics of irreversible processes are employed to identify the driving forces (causes) and to derive the constitutive equation of CL propagation, that is, the relationship between the rates of the crack growth and damage dissemination from one side and the conjugated thermodynamic forces from another. The proposed law of CL propagation is in good agreement with the experimental data on fatigue CL propagation in various materials. The theory also elaborates material toughness characterization.
Theoretical analysis of microwave propagation
NASA Astrophysics Data System (ADS)
Parl, S.; Malaga, A.
1984-04-01
This report documents a comprehensive investigation of microwave propagation. The structure of line-of-sight multipath is determined and the impact on practical diversity is discussed. A new model of diffraction propagation for multiple rounded obstacles is developed. A troposcatter model valid at microwave frequencies is described. New results for the power impulse response, and the delay spread and Doppler spread are developed. A 2-component model separating large and small scale scatter effects is proposed. The prediction techniques for diffraction and troposcatter have been implemented in a computer program intended as a tool to analyze propagation experiments.
Laser Propagation in Uranium Hexafluoride
NASA Astrophysics Data System (ADS)
Chu, Danny
1990-01-01
Several researchers have simulated the laser pulse propagation through simple N-level systems; but, for UF _6 models, large CPU time and memory is required. In an attempt to efficiently yet accurately characterize laser pulse propagation through a UF _6 molecule, a model of UF_6 is created and analyzed by adiabatic excitation. A minimax numerical method is developed to solve the time -dependent Schrodinger equation and then applied to the study of laser excitation of UF_6 using various Gaussian pulses. The process of laser isotope separation is also discussed. The results from the laser excitation of UF_6 are used to simulate laser propagation through ^{235} UF_6.
Propagating plasmons on silver nanowires
NASA Astrophysics Data System (ADS)
He, Weidong; Wei, Hong; Li, Zhipeng; Huang, Yingzhou; Fang, Yurui; Li, Ping; Xu, Hongxing
2010-08-01
Chemically synthesized Ag nanowires (NWs) can serve as waveguides to support propagating surface plasmons (SPs). By using the propagating SPs on Ag NWs, the surface-enhanced Raman scattering of molecules, located in the nanowire-nanoparticle junction a few microns away from the laser spot on one end of the NW, was excited. The propagating SPs can excite the excitons in quantum dots, and in reverse, the decay of excitons can generate SPs. The direction and polarization of the light emitted through the Ag NW waveguide. The emission polarization depends strongly on the shape of the NW terminals. In branched NW structures, the SPs can be switched between the main NW and the branch NW, by tuning the incident polarization. The light of different wavelength can also be controlled to propagate along different ways. Thus, the branched NW structure can serve as controllable plasmonic router and multiplexer.
Review of aircraft noise propagation
NASA Technical Reports Server (NTRS)
Putnam, T. W.
1975-01-01
The current state of knowledge about the propagation of aircraft noise was reviewed. The literature on the subject is surveyed and methods for predicting the most important and best understood propagation effects are presented. Available empirical data are examined and the data's general validity is assessed. The methods used to determine the loss of acoustic energy due to uniform spherical spreading, absorption in a homogeneous atmosphere, and absorption due to ground cover are presented. A procedure for determining ground induced absorption as a function of elevation angle between source and receiver is recommended. Other factors that affect propagation, such as refraction and scattering due to turbulence, which were found to be less important for predicting the propagation of aircraft noise, are also evaluated.
Reconstruction of nonlinear wave propagation
Fleischer, Jason W; Barsi, Christopher; Wan, Wenjie
2013-04-23
Disclosed are systems and methods for characterizing a nonlinear propagation environment by numerically propagating a measured output waveform resulting from a known input waveform. The numerical propagation reconstructs the input waveform, and in the process, the nonlinear environment is characterized. In certain embodiments, knowledge of the characterized nonlinear environment facilitates determination of an unknown input based on a measured output. Similarly, knowledge of the characterized nonlinear environment also facilitates formation of a desired output based on a configurable input. In both situations, the input thus characterized and the output thus obtained include features that would normally be lost in linear propagations. Such features can include evanescent waves and peripheral waves, such that an image thus obtained are inherently wide-angle, farfield form of microscopy.
A database for propagation models
NASA Technical Reports Server (NTRS)
Kantak, Anil V.; Suwitra, Krisjani S.
1992-01-01
In June 1991, a paper at the fifteenth NASA Propagation Experimenters Meeting (NAPEX 15) was presented outlining the development of a database for propagation models. The database is designed to allow the scientists and experimenters in the propagation field to process their data through any known and accepted propagation model. The architecture of the database also incorporates the possibility of changing the standard models in the database to fit the scientist's or the experimenter's needs. The database not only provides powerful software to process the data generated by the experiments, but is also a time- and energy-saving tool for plotting results, generating tables, and producing impressive and crisp hard copy for presentation and filing.
Propagation Limitations in Remote Sensing.
Contents: Multi-sensors and systems in remote sensing ; Radar sensing systems over land; Remote sensing techniques in oceanography; Influence of...propagation media and background; Infrared techniques in remote sensing ; Photography in remote sensing ; Analytical studies in remote sensing .
Renormalization of the frozen Gaussian approximation to the quantum propagator.
Tatchen, Jörg; Pollak, Eli; Tao, Guohua; Miller, William H
2011-04-07
The frozen Gaussian approximation to the quantum propagator may be a viable method for obtaining "on the fly" quantum dynamical information on systems with many degrees of freedom. However, it has two severe limitations, it rapidly loses normalization and one needs to know the Gaussian averaged potential, hence it is not a purely local theory in the force field. These limitations are in principle remedied by using the Herman-Kluk (HK) form for the semiclassical propagator. The HK propagator approximately conserves unitarity for relatively long times and depends only locally on the bare potential and its second derivatives. However, the HK propagator involves a much more expensive computation due to the need for evaluating the monodromy matrix elements. In this paper, we (a) derive a new formula for the normalization integral based on a prefactor free HK propagator which is amenable to "on the fly" computations; (b) show that a frozen Gaussian version of the normalization integral is not readily computable "on the fly"; (c) provide a new insight into how the HK prefactor leads to approximate unitarity; and (d) how one may construct a prefactor free approximation which combines the advantages of the frozen Gaussian and the HK propagators. The theoretical developments are backed by numerical examples on a Morse oscillator and a quartic double well potential.
Photon propagation function: spectral analysis of its asymptotic form.
Schwinger, J
1974-08-01
The physical attitudes of source theory, displacing those of renormalized, perturbative, operator field theory, are used in a simple discussion of the asymptotic behavior of the photon propagation function. A guiding principle is the elementary consistency requirement that, under circumstances where a physical parameter cannot be accurately measured, no sensitivity to its precise value can enter the description of those circumstances. The mathematical tool is the spectral representation of the propagation function, supplemented by an equivalent phase representation. The Gell-Mann-Low equation is recovered, but with their function now interpreted physically as the spectral weight function. A crude inequality is established for the latter, which helps in interpolating between the initial rising behavior and the ultimate zero at infinite mass. There is a brief discussion of the aggressive source theory viewpoint that denies the existence of a "bare charge".
Electromagnetic Propagation in Multimode Optical Fibers, Excited by Sources of Finite Bandwidth.
1980-08-15
2 treatment generalizes that of Marcuse , since it is ap- plicable to the propagation of a polychromatic signal, a However, it is hardly necessary to...situations. ’D. Marcuse , Theory of Dielectric Optical Waveguides (Aca- demic, New York, 1974). The general case of time-dependent propagation of 2S. D...in the linear Syst. Tech. J. 50,843-859 (1971). dependence of pulse dispersion on the traveled length. 2see, also, D. Marcuse , Theory of Dielectric
Propagating rifts on midocean ridges
NASA Astrophysics Data System (ADS)
Hey, Richard; Duennebier, Frederick K.; Morgan, W. Jason
1980-07-01
Spreading center jumps identified west of the Galapagos Islands near 95°W occur in a pattern consistent with the propagating rift hypothesis. A new rift is gradually breaking through the Cocos plate. Each successive jump is slightly longer than the preceding jump. The new spreading center grows at a new azimuth toward the west as the old one dies. The jumps are a manifestation of rift propagation. We extend the analysis of propagating rifts to the case of continuous propagation and predict patterns of magnetic anomalies and bathymetry consistent with the observed patterns. In particular, we correctly predict the trends of fossil spreading centers and V patterns of magnetic anomaly offsets required by the propagating rift hypothesis. Similar V patterns have been observed on many other spreading centers and have been interpreted in various ways. The propagating rift hypothesis appears to offer a simple explanation, consistent with rigid plate tectonics, for each of these patterns. This hypothesis may also have important implications for continental rifting.
Semiclassical propagation of Wigner functions
Dittrich, T.; Gomez, E. A.; Pachon, L. A.
2010-06-07
We present a comprehensive study of semiclassical phase-space propagation in the Wigner representation, emphasizing numerical applications, in particular as an initial-value representation. Two semiclassical approximation schemes are discussed. The propagator of the Wigner function based on van Vleck's approximation replaces the Liouville propagator by a quantum spot with an oscillatory pattern reflecting the interference between pairs of classical trajectories. Employing phase-space path integration instead, caustics in the quantum spot are resolved in terms of Airy functions. We apply both to two benchmark models of nonlinear molecular potentials, the Morse oscillator and the quartic double well, to test them in standard tasks such as computing autocorrelation functions and propagating coherent states. The performance of semiclassical Wigner propagation is very good even in the presence of marked quantum effects, e.g., in coherent tunneling and in propagating Schroedinger cat states, and of classical chaos in four-dimensional phase space. We suggest options for an effective numerical implementation of our method and for integrating it in Monte-Carlo-Metropolis algorithms suitable for high-dimensional systems.
Influence of Plasma Pressure Fluctuation on RF Wave Propagation
NASA Astrophysics Data System (ADS)
Liu, Zhiwei; Bao, Weimin; Li, Xiaoping; Liu, Donglin; Zhou, Hui
2016-02-01
Pressure fluctuations in the plasma sheath from spacecraft reentry affect radio-frequency (RF) wave propagation. The influence of these fluctuations on wave propagation and wave properties is studied using methods derived by synthesizing the compressible turbulent flow theory, plasma theory, and electromagnetic wave theory. We study these influences on wave propagation at GPS and Ka frequencies during typical reentry by adopting stratified modeling. We analyzed the variations in reflection and transmission properties induced by pressure fluctuations. Our results show that, at the GPS frequency, if the waves are not totally reflected then the pressure fluctuations can remarkably affect reflection, transmission, and absorption properties. In extreme situations, the fluctuations can even cause blackout. At the Ka frequency, the influences are obvious when the waves are not totally transmitted. The influences are more pronounced at the GPS frequency than at the Ka frequency. This suggests that the latter can mitigate blackout by reducing both the reflection and the absorption of waves, as well as the influences of plasma fluctuations on wave propagation. Given that communication links with the reentry vehicles are susceptible to plasma pressure fluctuations, the influences on link budgets should be taken into consideration. supported by the National Basic Research Program of China (No. 2014CB340205) and National Natural Science Foundation of China (No. 61301173)
Ultra-Intense Laser Pulse Propagation in Gas and Plasma
Antonsen, T. M.
2004-10-26
It is proposed here to continue their program in the development of theories and models capable of describing the varied phenomena expected to influence the propagation of ultra-intense, ultra-short laser pulses with particular emphasis on guided propagation. This program builds upon expertise already developed over the years through collaborations with the NSF funded experimental effort lead by Professor Howard Milchberg here at Maryland, and in addition the research group at the Ecole Polytechnique in France. As in the past, close coupling between theory and experiment will continue. The main effort of the proposed research will center on the development of computational models and analytic theories of intense laser pulse propagation and guiding structures. In particular, they will use their simulation code WAKE to study propagation in plasma channels, in dielectric capillaries and in gases where self focusing is important. At present this code simulates the two-dimensional propagation (radial coordinate, axial coordinate and time) of short pulses in gas/plasma media. The plasma is treated either as an ensemble of particles which respond to the ponderomotive force of the laser and the self consistent electric and magnetic fields created in the wake of pulse or as a fluid. the plasma particle motion is treated kinetically and relativistically allowing for study of intense pulses that result in complete cavitation of the plasma. The gas is treated as a nonlinear medium with rate equations describing the various stages of ionization. A number of important physics issues will be addressed during the program. These include (1) studies of propagation in plasma channels, (2) investigation of plasma channel nonuniformities caused by parametric excitation of channel modes, (3) propagation in dielectric capillaries including harmonic generation and ionization scattering, (4) self guided propagation in gas, (5) studies of the ionization scattering instability recently
Spherical Wave Propagation in a Nonlinear Elastic Medium
Korneev, Valeri A.
2009-07-01
Nonlinear propagation of spherical waves generated by a point-pressure source is considered for the cases of monochromatic and impulse primary waveforms. The nonlinear five-constant elastic theory advanced by Murnaghan is used where general equations of motion are put in the form of vector operators, which are independent of the coordinate system choice. The ratio of the nonlinear field component to the primary wave in the far field is proportional to ln(r) where r is a propagation distance. Near-field components of the primary field do not contribute to the far field of nonlinear component.
Near-field observation of light propagation in nanocoax waveguides.
Merlo, Juan M; Ye, Fan; Rizal, Binod; Burns, Michael J; Naughton, Michael J
2014-06-16
We report the observation of propagating modes of visible and near infrared light in nanoscale coaxial (metal-dielectric-metal) structures, using near-field scanning optical microscopy. Together with numerical calculations, we show that the propagated modes have different nature depending on the excitation wavelength, i.e., plasmonic TE11 and TE21 modes in the near infrared and photonic TE31, TE41 and TM11 modes in the visible. Far field transmission out of the nanocoaxes is dominated by the superposition of Fabry-Perot cavity modes resonating in the structures, consistent with theory. Such coaxial optical waveguides may be useful for future nanoscale photonic systems.
Instability versus equilibrium propagation of a laser beam in plasma.
Lushnikov, Pavel M; Rose, Harvey A
2004-06-25
We obtain, for the first time, an analytic theory of the forward stimulated Brillouin scattering instability of a spatially and temporally incoherent laser beam that controls the transition between statistical equilibrium and nonequilibrium (unstable) self-focusing regimes of beam propagation. The stability boundary may be used as a comprehensive guide for inertial confinement fusion designs. Well into the stable regime, an analytic expression for the angular diffusion coefficient is obtained, which provides an essential correction to a geometric optic approximation for beam propagation.
Propagation of intense laser pulses in strongly magnetized plasmas
Yang, X. H. Ge, Z. Y.; Xu, B. B.; Zhuo, H. B.; Ma, Y. Y.; Shao, F. Q.; Yu, W.; Xu, H.; Yu, M. Y.; Borghesi, M.
2015-06-01
Propagation of intense circularly polarized laser pulses in strongly magnetized inhomogeneous plasmas is investigated. It is shown that a left-hand circularly polarized laser pulse propagating up the density gradient of the plasma along the magnetic field is reflected at the left-cutoff density. However, a right-hand circularly polarized laser can penetrate up the density gradient deep into the plasma without cutoff or resonance and turbulently heat the electrons trapped in its wake. Results from particle-in-cell simulations are in good agreement with that from the theory.
Downward-Propagating Temperature Anomalies in the Preconditioned Polar Stratosphere.
NASA Astrophysics Data System (ADS)
Zhou, Shuntai; Miller, Alvin J.; Wang, Julian; Angell, James K.
2002-04-01
Dynamical links of the Northern Hemisphere stratosphere and troposphere are studied, with an emphasis on whether stratospheric changes have a direct effect on tropospheric weather and climate. In particular, downward propagation of stratospheric anomalies of polar temperature in the winter-spring season is examined based upon 22 years of NCEP-NCAR reanalysis data. It is found that the polar stratosphere is sometimes preconditioned, which allows a warm anomaly to propagate from the upper stratosphere to the troposphere, and sometimes it prohibits downward propagation. The Arctic Oscillation (AO) is more clearly seen in the former case. To understand what dynamical conditions dictate the stratospheric property of downward propagation, the upper-stratospheric warming episodes with very large anomalies (such as stratospheric sudden warming) are selected and divided into two categories according to their downward-propagating features. Eliassen-Palm (E-P) diagnostics and wave propagation theories are used to examine the characteristics of wave-mean flow interactions in the two different categories. It is found that in the propagating case the initial wave forcing is very large and the polar westerly wind is reversed. As a result, dynamically induced anomalies propagate down as the critical line descends. A positive feedback is that the dramatic change in zonal wind alters the refractive index in a way favorable for continuous poleward transport of wave energy. The second pulse of wave flux conducts polar warm anomalies farther down. Consequently, the upper-tropospheric circulations are changed, in particular, the subtropical North Atlantic jet stream shifts to the south by 5 degrees of latitude, and the alignment of the jet stream becomes more zonal, which is similar to the negative phase of the North Atlantic Oscillation (NAO).
Anti-plane transverse waves propagation in nanoscale periodic layered piezoelectric structures.
Chen, A-Li; Yan, Dong-Jia; Wang, Yue-Sheng; Zhang, Chuanzeng
2016-02-01
In this paper, anti-plane transverse wave propagation in nanoscale periodic layered piezoelectric structures is studied. The localization factor is introduced to characterize the wave propagation behavior. The transfer matrix method based on the nonlocal piezoelectricity continuum theory is used to calculate the localization factor. Additionally, the stiffness matrix method is applied to compute the wave transmission spectra. A cut-off frequency is found, beyond which the elastic waves cannot propagate through the periodic structure. The size effect or the influence of the ratio of the internal to external characteristic lengths on the cut-off frequency and the wave propagation behavior are investigated and discussed.
Space station internal propagation
NASA Technical Reports Server (NTRS)
Richie, J. E.
1991-01-01
The Space Station Freedom (SSF) is planned with a wireless communication system in place for the transmission of information between crew members on board. The clarity of transmission is paramount to an effective system of communication. A short overview is presented of the system including the requirements of interest, and a statement of the problem. The theory used to solve the problem is explored. The results given are for the experiments performed on a mockup of the proposed structure at NASA-Marshall. The requirements on the signal level are that there is a 45 dB signal to noise ratio from end to end, and that coverage over 99 pct. of the volume be maintained. The Rice probability distribution function, a simple extension of the Rayleigh distribution, is used to estimate the field strength inside a volume, where a significant line of sight from the transmitter to the receiver exists. For the SSF, this distribution will correspond to the summation of a coherent line of sight path between the transmitter and the receiver and an incoherent portion. The incoherent portion is the sum of reflections from the walls and the equipment inside the SSF. The Rice distribution was found to be the optimal distribution from the results.
Reading Hertz's Own Dipole Theory
ERIC Educational Resources Information Center
Anicin, B. A.
2008-01-01
It is well known that the discoverer of radio waves, Heinrich Hertz, was the first man to apply Maxwell's electrodynamic theory to a problem in radio wave propagation. In this paper, we scrutinize his near-field lines of force using computers and his theory. In one of his four figures, a feature was found which was not to be obtained by…
Reading Hertz's Own Dipole Theory
ERIC Educational Resources Information Center
Anicin, B. A.
2008-01-01
It is well known that the discoverer of radio waves, Heinrich Hertz, was the first man to apply Maxwell's electrodynamic theory to a problem in radio wave propagation. In this paper, we scrutinize his near-field lines of force using computers and his theory. In one of his four figures, a feature was found which was not to be obtained by…
Nonlinear theory of a plasma Cherenkov maser
Choi, J.S.; Heo, E.G.; Choi, D.I.
1995-12-31
The nonlinear saturation state in a plasma Cherenkov maser (PCM) propagating the intense relativistic electron beam through a circular waveguide partially filled with a dense annular plasma, is analyzed from the nonlinear formulation based on the cold fluid-Maxwell equations. We obtain the nonlinear efficiency and the final operation frequency under consideration of the effects of the beam current, the beam energy and the slow wave structure. We show that the saturation mechanism of a PCM instablity is a close correspondence in that of the relativistic two stream instability by the coherent trapping of electrons in a single most-ustable wave. And the optimal conditions in PCM operation are also obtained from performing our nonliear analysis together with computer simulations.
Simulations of Seismic Wave Propagation on Mars
NASA Astrophysics Data System (ADS)
Bozdağ, Ebru; Ruan, Youyi; Metthez, Nathan; Khan, Amir; Leng, Kuangdai; van Driel, Martin; Wieczorek, Mark; Rivoldini, Attilio; Larmat, Carène S.; Giardini, Domenico; Tromp, Jeroen; Lognonné, Philippe; Banerdt, Bruce W.
2017-03-01
We present global and regional synthetic seismograms computed for 1D and 3D Mars models based on the spectral-element method. For global simulations, we implemented a radially-symmetric Mars model with a 110 km thick crust (Sohl and Spohn in J. Geophys. Res., Planets 102(E1):1613-1635, 1997). For this 1D model, we successfully benchmarked the 3D seismic wave propagation solver SPECFEM3D_GLOBE (Komatitsch and Tromp in Geophys. J. Int. 149(2):390-412, 2002a; 150(1):303-318, 2002b) against the 2D axisymmetric wave propagation solver AxiSEM (Nissen-Meyer et al. in Solid Earth 5(1):425-445, 2014) at periods down to 10 s. We also present higher-resolution body-wave simulations with AxiSEM down to 1 s in a model with a more complex 1D crust, revealing wave propagation effects that would have been difficult to interpret based on ray theory. For 3D global simulations based on SPECFEM3D_GLOBE, we superimposed 3D crustal thickness variations capturing the distinct crustal dichotomy between Mars' northern and southern hemispheres, as well as topography, ellipticity, gravity, and rotation. The global simulations clearly indicate that the 3D crust speeds up body waves compared to the reference 1D model, whereas it significantly changes surface waveforms and their dispersive character depending on its thickness. We also perform regional simulations with the solver SES3D (Fichtner et al. Geophys. J. Int. 179:1703-1725, 2009) based on 3D crustal models derived from surface composition, thereby addressing the effects of various distinct crustal features down to 2 s. The regional simulations confirm the strong effects of crustal variations on waveforms. We conclude that the numerical tools are ready for examining more scenarios, including various other seismic models and sources.
Turbulent flame propagation in partially premixed flames
NASA Technical Reports Server (NTRS)
Poinsot, T.; Veynante, D.; Trouve, A.; Ruetsch, G.
1996-01-01
the fuel flow rate and thereby modulating the equivalence ratio (Bloxsidge et al. 1987). Models of partially premixed combustion would be extremely useful in addressing all these questions related to practical systems. Unfortunately, the lack of a fundamental understanding regarding partially premixed combustion has resulted in an absence of models which accurately capture the complex nature of these flames. Previous work on partially premixed combustion has focused primarily on laminar triple flames. Triple flames correspond to an extreme case where fuel and oxidizer are initially totally separated (Veynante et al. 1994 and Ruetsch et al. 1995). These flames have a nontrivial propagation speed and are believed to be a key element in the stabilization process of jet diffusion flames. Different theories have also been proposed in the literature to describe a turbulent flame propagating in a mixture with variable equivalence ratio (Muller et al. 1994), but few validations are available. The objective of the present study is to provide basic information on the effects of partial premixing in turbulent combustion. In the following, we use direct numerical simulations to study laminar and turbulent flame propagation with variable equivalence ratio.
User needs for propagation data
NASA Technical Reports Server (NTRS)
Sullivan, Thomas M.
1993-01-01
New and refined models of radio signal propagation phenomena are needed to support studies of evolving satellite services and systems. Taking an engineering perspective, applications for propagation measurements and models in the context of various types of analyses that are of ongoing interest are reviewed. Problems that were encountered in the signal propagation aspects of these analyses are reviewed, and potential solutions to these problems are discussed. The focus is on propagation measurements and models needed to support design and performance analyses of systems in the Mobile-Satellite Service (MSS) operating in the 1-3 GHz range. These systems may use geostationary or non-geostationary satellites and Frequency Division Multiple Access (FDMA), Time Division Multiple Access Digital (TDMA), or Code Division Multiple Access (CDMA) techniques. Many of the propagation issues raised in relation to MSS are also pertinent to other services such as broadcasting-satellite (sound) at 2310-2360 MHz. In particular, services involving mobile terminals or terminals with low gain antennas are of concern.
The geometry of propagating rifts
NASA Astrophysics Data System (ADS)
McKenzie, Dan
1986-03-01
The kinematics of two different processes are investigated, both of which have been described as rift propagation. Courtillot uses this term to describe the change from distributed to localised extension which occurs during the early development of an ocean basin. The term localisation is instead used here to describe this process, to distinguish it from Hey's type of propagation. Localisation generally leads to rotation of the direction of magnetisation. To Hey propagation means the extension of a rift into the undeformed plate beyond a transform fault. Detail surveys of the Galapagos rift have shown that the propagating and failing rifts are not connected by a single transform fault, but by a zone which is undergoing shear. The principal deformation is simple shear, and the kinematics of this deformation are investigated in some detail. The strike of most of the lineations observed in the area can be produced by such deformation. The mode of extension on the propagating rift appears to be localised for some periods but to be distributed for others. Neither simple kinematic arguments nor stretching of the lithosphere with conservation of crust can account for the observed variations in water depth.
Pressure wave propagation studies for oscillating cascades
NASA Technical Reports Server (NTRS)
Huff, Dennis L.
1992-01-01
The unsteady flowfield around an oscillating cascade of flat plates is studied using a time marching Euler code. Exact solutions based on linear theory serve as model problems to study pressure wave propagation in the numerical solution. The importance of using proper unsteady boundary conditions, grid resolution, and time step is demonstrated. Results show that an approximate non-reflecting boundary condition based on linear theory does a good job of minimizing reflections from the inflow and outflow boundaries and allows the placement of the boundaries to be closer than cases using reflective boundary conditions. Stretching the boundary to dampen the unsteady waves is another way to minimize reflections. Grid clustering near the plates does a better job of capturing the unsteady flowfield than cases using uniform grids as long as the CFL number is less than one for a sufficient portion of the grid. Results for various stagger angles and oscillation frequencies show good agreement with linear theory as long as the grid is properly resolved.
Pressure wave propagation studies for oscillating cascades
NASA Technical Reports Server (NTRS)
Huff, Dennis L.
1992-01-01
The unsteady flow field around an oscillating cascade of flat plates is studied using a time marching Euler code. Exact solutions based on linear theory serve as model problems to study pressure wave propagation in the numerical solution. The importance of using proper unsteady boundary conditions, grid resolution, and time step is demonstrated. Results show that an approximate non-reflecting boundary condition based on linear theory does a good job of minimizing reflections from the inflow and outflow boundaries and allows the placement of the boundaries to be closer than cases using reflective boundary conditions. Stretching the boundary to dampen the unsteady waves is another way to minimize reflections. Grid clustering near the plates does a better job of capturing the unsteady flow field than cases using uniform grids as long as the CFL number is less than one for a sufficient portion of the grid. Results for various stagger angles and oscillation frequencies show good agreement with linear theory as long as the grid is properly resolved.
Pressure wave propagation studies for oscillating cascades
NASA Technical Reports Server (NTRS)
Huff, Dennis L.
1992-01-01
The unsteady flowfield around an oscillating cascade of flat plates is studied using a time marching Euler code. Exact solutions based on linear theory serve as model problems to study pressure wave propagation in the numerical solution. The importance of using proper unsteady boundary conditions, grid resolution, and time step is demonstrated. Results show that an approximate non-reflecting boundary condition based on linear theory does a good job of minimizing reflections from the inflow and outflow boundaries and allows the placement of the boundaries to be closer than cases using reflective boundary conditions. Stretching the boundary to dampen the unsteady waves is another way to minimize reflections. Grid clustering near the plates does a better job of capturing the unsteady flowfield than cases using uniform grids as long as the CFL number is less than one for a sufficient portion of the grid. Results for various stagger angles and oscillation frequencies show good agreement with linear theory as long as the grid is properly resolved.
Vortex Rossby wave propagation in baroclinic tropical cyclone-like vortices
NASA Astrophysics Data System (ADS)
Gao, Cen; Zhu, Ping
2016-12-01
This study extends the vortex Rossby wave (VRW) propagation theory into baroclinic tropical cyclone-like vortices. Dispersion relation, group velocities, and stagnation radius/height of propagating wave packets in baroclinic conditions are derived using the Wenzel-Kramers-Brillouin approximation. It is found that the VRW dispersion relation in baroclinic vortices in isentropic coordinates has the same mathematical form as that in barotropic vortices in pseudoheight coordinates. However, baroclinicity causes the vertical wave number to increase as wave packets propagate upward, resulting in different wave propagation features from those in barotropic vortices. The stagnation radius and level are constrained by a "critical" surface where the initial central angular phase velocity equals the angular velocity of the vortex. Depending on the specific structure of vortex basic-state baroclinicity and positions where asymmetries are located, the excited waves can either be trapped vertically and behave like those in barotropic conditions or effectively propagate upward but with their radial propagation largely suppressed.
Silent flocks: constraints on signal propagation across biological groups.
Cavagna, Andrea; Giardina, Irene; Grigera, Tomas S; Jelic, Asja; Levine, Dov; Ramaswamy, Sriram; Viale, Massimiliano
2015-05-29
Experiments find coherent information transfer through biological groups on length and time scales distinctly below those on which asymptotically correct hydrodynamic theories apply. We present here a new continuum theory of collective motion coupling the velocity and density fields of Toner and Tu to the inertial spin field recently introduced to describe information propagation in natural flocks of birds. The long-wavelength limit of the new equations reproduces the Toner-Tu theory, while at shorter wavelengths (or, equivalently, smaller damping), spin fluctuations dominate over density fluctuations, and second-sound propagation of the kind observed in real flocks emerges. We study the dispersion relation of the new theory and find that when the speed of second sound is large, a gap in momentum space sharply separates first- from second-sound modes. This gap implies the existence of silent flocks, namely, of medium-sized systems across which information cannot propagate in a linear and underdamped way, either under the form of orientational fluctuations or under that of density fluctuations, making it hard for the group to achieve coordination.
Silent Flocks: Constraints on Signal Propagation Across Biological Groups
NASA Astrophysics Data System (ADS)
Cavagna, Andrea; Giardina, Irene; Grigera, Tomas S.; Jelic, Asja; Levine, Dov; Ramaswamy, Sriram; Viale, Massimiliano
2015-05-01
Experiments find coherent information transfer through biological groups on length and time scales distinctly below those on which asymptotically correct hydrodynamic theories apply. We present here a new continuum theory of collective motion coupling the velocity and density fields of Toner and Tu to the inertial spin field recently introduced to describe information propagation in natural flocks of birds. The long-wavelength limit of the new equations reproduces the Toner-Tu theory, while at shorter wavelengths (or, equivalently, smaller damping), spin fluctuations dominate over density fluctuations, and second-sound propagation of the kind observed in real flocks emerges. We study the dispersion relation of the new theory and find that when the speed of second sound is large, a gap in momentum space sharply separates first- from second-sound modes. This gap implies the existence of silent flocks, namely, of medium-sized systems across which information cannot propagate in a linear and underdamped way, either under the form of orientational fluctuations or under that of density fluctuations, making it hard for the group to achieve coordination.
Chiral Loops and Ghost States in the Quenched Scalar Propagator
W. Bardeen; A. Duncan; E. Eichten; N. Isgur; H. Thacker
2001-06-01
The scalar, isovector meson propagator is analyzed in quenched QCD, using the MQA pole-shifting ansatz to study the chiral limit. In addition to the expected short-range exponential falloff characteristic of a heavy scalar meson, the propagator also exhibits a longer-range, negative metric contribution which becomes pronounced for smaller quark masses. We show that this is a quenched chiral loop effect associated with the anomalous structure of the eta' propagator in quenched QCD. Both the time dependence and the quark mass dependence of this effect are well-described by a chiral loop diagram corresponding to an eta'-pi intermediate state, which is light and effectively of negative norm in the quenched approximation. The relevant parameters of the effective Lagrangian describing the scalar sector of the quenched theory are determined.
From propagators to glueballs in the Gribov-Zwanziger framework
Vandersickel, Nele; Dudal, David; Oliveira, Orlando; Sorella, Silvio P.
2011-05-23
Over the last years, lattice calculations in pure Yang-Mills gauge theory seem to have come more or less to a consensus. The ghost propagator is not enhanced and the gluon propagator is positivity violating, infrared suppressed and non-vanishing at zero momentum. From an analytical point of view, several groups are agreeing with these results. Among them, the refined Gribov-Zwanziger (RGZ) framework also accommodates for these results. The question which rises next is, if our models hold the right form for the propagators, how to extract information on the real physical observables, i.e. the glueballs? How do the operators which represent glueballs look like? We review the current status of this matter within the RGZ framework.
Anomalous propagation of Omega VLF waves near the geomagnetic equator
NASA Astrophysics Data System (ADS)
Ohtani, A.; Kikuchi, T.; Nozaki, K.; Kurihara, N.; Kuratani, Y.; Ohse, M.
1983-09-01
Omega HAIKU, REUNION, and LIBERIA signals were received and anomalous propagation characteristics were obtained near the geomagnetic equator. Short-period fluctuations were found in the phase of the HAIKU 10.2 kHz signal in November 1979 and in the phase and amplitude of the HAIKU 13.6 kHz signal in November 1981. These cyclic fluctuations are in close correlation with the phase cycle slippings, which occur most frequently when the receiver is located at 6 S geomagnetic latitude. On the basis of anisotropic waveguide mode theory indicating much less attenuation in WE propagation than in EW propagation at the geomagnetic equator, it is concluded that the short-period fluctuations in the phase and amplitude are due to interference between the short-path and the long-path signals.
The propagation potential. An axonal response with implications for scalp-recorded EEG.
Rudell, A P; Fox, S E
1991-09-01
An electrophysiological response of axons, referred to as the "propagation potential," was investigated. The propagation potential is a sustained voltage that lasts as long as an action potential propagates between two widely spaced electrodes. The sign of the potential depends on the direction of action potential propagation. The electrode towards which the action potential is propagating is positive with respect to the electrode from which it is receding. For normal frog sciatic nerves the magnitude of the propagation potential was 17% of the peak of the extracellular action potential; TEA increased it to 32%. For normal earthworm median or lateral giant fibers it was 30%. A ripple pattern on the propagation potential was attributed to variation in resistance along the length of the worm. Cooling increased the duration of the propagation potential and attenuated the higher frequency components of the ripple pattern. Differential records from two widely spaced intracellular microelectrodes in the same axon differed from the propagation potential. The amplitude of the plateau relative to the peak was smaller, it decreased as the action potential propagated from one electrode site to the other, and the potential did not return to zero as rapidly as for extracellular records. When propagation was blocked by heat, the propagation potential slowly decayed. There was no ripple pattern during the decay. In a volume conductor, electrodes contacting the worm did not show the typical propagation potential, but electrodes located a few centimeters away from the worm did. Simple core-conductor models based on classical action potential theory did not reproduce the propagation potential. More complex, modified core-conductor models were needed to accurately simulate it. The results suggest that long, slowly conducting fibers can contribute to the scalp-recorded EEG.
Local constants of motion imply information propagation
NASA Astrophysics Data System (ADS)
Friesdorf, M.; Werner, A. H.; Goihl, M.; Eisert, J.; Brown, W.
2015-11-01
Interacting quantum many-body systems are expected to thermalize, in the sense that the evolution of local expectation values approaches a stationary value resembling a thermal ensemble. This intuition is notably contradicted in systems exhibiting many-body localisation (MBL). In stark contrast to the non-interacting case of Anderson localisation, the entanglement of states grows without limit over time, albeit slowly. In this work, we establish a novel link between quantum information theory and notions of condensed matter physics, capturing this phenomenon in the Heisenberg picture. We show that the mere existence of local constants of motion, often taken as the defining property of MBL, together with a generic spectrum of the Hamiltonian, is already sufficient to rigorously prove information propagation: these systems can be used to send a classical bit over arbitrary distances, in that the impact of a local perturbation can be detected arbitrarily far away. This counterintuitive result is compatible with and further corroborates the intuition of a slow entanglement growth following global quenches in MBL systems. We perform a detailed perturbation analysis of quasi-local constants of motion and also show that they indeed can be used to construct efficient spectral tensor networks, as recently suggested. Our results provide a detailed and at the same time model-independent picture of information propagation in MBL systems.
Noise Propagation in Region Of Interest Measurements
Hansen, Michael S.; Inati, Souheil J.; Kellman, Peter
2014-01-01
Purpose The purpose of this work was to develop and validate a technique for predicting the standard deviation associated with thermal noise propagation in region of interest measurements. Theory and Methods Standard methods for error propagation estimation were used to derive equations for the standard deviations of linear combinations of complex, magnitude, or phase pixel values. The equations were applied to common imaging scenarios where the image pixels were correlated due to anisotropic pixel resolutions and parallel imaging. All standard deviation estimates were evaluated efficiently using only vector-vector multiplications and Fourier transforms. The estimated standard deviations were compared to standard deviations obtained using repeated experiments and pseudo replica reconstructions. Results The proposed method was able to predict region of interest standard deviations in all the tested analysis scenarios. Positive and negative noise correlations caused by different parallel imaging aliasing point spread functions were accurately predicted and the method predicted the confidence intervals of time-intensity curves for in vivo cardiac perfusion measurements. Conclusions An intuitive technique for region of interest confidence intervals was developed and validated using phantom experiments and in vivo data. PMID:24634307
Pati, Pratap Kumar; Kaur, Navtej; Sharma, Madhu; Ahuja, Paramvir Singh
2010-01-01
In vitro propagation of rose is an important tool for rapid multiplication and development of new cultivars with desirable traits. However, successful in vitro propagation requires an understanding of specific requirements and precise manipulation of various factors. Efficient protocols for different stages of micropropagation using apical buds or nodal segments are currently available. Recently, new challenges for refinements of protocols for high rate of shoot multiplication and development of cost effective methods has gained importance. Significance of the liquid static culture for shoot proliferation and root induction for rose has also gained prominence. Other distinct approaches of in vitro propagation include organogenesis and embryogenesis. These approaches are important for the successful implementation of various biotechnological techniques used for rose improvement programmes. Types of explants, media and optimization of conditions are major factors for successful regeneration of rose.
Wave propagation in ballistic gelatine.
Naarayan, Srinivasan S; Subhash, Ghatu
2017-04-01
Wave propagation characteristics in long cylindrical specimens of ballistic gelatine have been investigated using a high speed digital camera and hyper elastic constitutive models. The induced transient deformation is modelled with strain rate dependent Mooney-Rivlin parameters which are determined by modelling the stress-strain response of gelatine at a range of strain rates. The varying velocity of wave propagation through the gelatine cylinder is derived as a function of prestress or stretch in the gelatine specimen. A finite element analysis is conducted using the above constitutive model by suitably defining the impulse imparted by the polymer bar into the gelatine specimen. The model results are found to capture the experimentally observed wave propagation characteristics in gelatine effectively. Copyright © 2017 Elsevier Ltd. All rights reserved.
Sound propagation in bubbly liquids: A review
NASA Astrophysics Data System (ADS)
Temkin, S.
1989-04-01
This report considers the propagation of plane sound waves in a liquid containing a homogeneous distribution of small, nondiffusing gas bubbles. We have concentrated on the basic theories of Wood and Kennard for phase speed in equilibrium conditions, and at finite frequencies, respectively. A derivation of phase speed from first principles indicates the Wood's equation is an accurate approximation for dilute mixtures of gas bubbles in a liquid. The conditions under which Wood's equation does not apply are discussed based on the analytic expressions obtained from the fundamental derivation. Kennard's equation is based on assumptions which have not been critically examined, particularly in regard to the compressibility model on which is based, and on the frequency dependence of the relevant damping coefficients.
Feynman propagator for spin foam quantum gravity.
Oriti, Daniele
2005-03-25
We link the notion causality with the orientation of the spin foam 2-complex. We show that all current spin foam models are orientation independent. Using the technology of evolution kernels for quantum fields on Lie groups, we construct a generalized version of spin foam models, introducing an extra proper time variable. We prove that different ranges of integration for this variable lead to different classes of spin foam models: the usual ones, interpreted as the quantum gravity analogue of the Hadamard function of quantum field theory (QFT) or as inner products between quantum gravity states; and a new class of causal models, the quantum gravity analogue of the Feynman propagator in QFT, nontrivial function of the orientation data, and implying a notion of "timeless ordering".
Photon Propagation in Slowly Varying Electromagnetic Fields
NASA Astrophysics Data System (ADS)
Karbstein, F.
2017-03-01
Effective theory of soft photons in slowly varying electromagnetic background fields is studied at one-loop order in QED. This is of relevance for the study of all-optical signatures of quantum vacuum nonlinearity in realistic electromagnetic background fields as provided by high-intensity lasers. The central result derived in this article is a new analytical expression for the photon polarization tensor in two linearly polarized counterpropagating pulsed Gaussian laser beams. Treating the peak field strengths of both laser beams as free parameters, this field configuration can be considered as interpolating between the limiting cases of a purely right- or left-moving laser beam (if one of the peak field strengths is set equal to zero) and the standing-wave type scenario with two counter-propagating beams of equal strength.
Dynamical Realism and Uncertainty Propagation
NASA Astrophysics Data System (ADS)
Park, Inkwan
In recent years, Space Situational Awareness (SSA) has become increasingly important as the number of tracked Resident Space Objects (RSOs) continues their growth. One of the most significant technical discussions in SSA is how to propagate state uncertainty in a consistent way with the highly nonlinear dynamical environment. In order to keep pace with this situation, various methods have been proposed to propagate uncertainty accurately by capturing the nonlinearity of the dynamical system. We notice that all of the methods commonly focus on a way to describe the dynamical system as precisely as possible based on a mathematical perspective. This study proposes a new perspective based on understanding dynamics of the evolution of uncertainty itself. We expect that profound insights of the dynamical system could present the possibility to develop a new method for accurate uncertainty propagation. These approaches are naturally concluded in goals of the study. At first, we investigate the most dominant factors in the evolution of uncertainty to realize the dynamical system more rigorously. Second, we aim at developing the new method based on the first investigation enabling orbit uncertainty propagation efficiently while maintaining accuracy. We eliminate the short-period variations from the dynamical system, called a simplified dynamical system (SDS), to investigate the most dominant factors. In order to achieve this goal, the Lie transformation method is introduced since this transformation can define the solutions for each variation separately. From the first investigation, we conclude that the secular variations, including the long-period variations, are dominant for the propagation of uncertainty, i.e., short-period variations are negligible. Then, we develop the new method by combining the SDS and the higher-order nonlinear expansion method, called state transition tensors (STTs). The new method retains advantages of the SDS and the STTs and propagates
SU(3) Landau gauge gluon and ghost propagators using the logarithmic lattice gluon field definition
Ilgenfritz, Ernst-Michael; Menz, Christoph; Mueller-Preussker, Michael; Schiller, Arwed; Sternbeck, Andre
2011-03-01
We study the Landau gauge gluon and ghost propagators of SU(3) gauge theory, employing the logarithmic definition for the lattice gluon fields and implementing the corresponding form of the Faddeev-Popov matrix. This is necessary in order to consistently compare lattice data for the bare propagators with that of higher-loop numerical stochastic perturbation theory. In this paper we provide such a comparison, and introduce what is needed for an efficient lattice study. When comparing our data for the logarithmic definition to that of the standard lattice Landau gauge we clearly see the propagators to be multiplicatively related. The data of the associated ghost-gluon coupling matches up almost completely. For the explored lattice spacings and sizes discretization artifacts, finite size, and Gribov-copy effects are small. At weak coupling and large momentum, the bare propagators and the ghost-gluon coupling are seen to be approached by those of higher-order numerical stochastic perturbation theory.
NASA Propagation Program Status and Propagation Needs of Satcom Industry
NASA Technical Reports Server (NTRS)
Golshan, Nassar
1996-01-01
The program objective is to enable the development of new commercial satellite systems and services and to support NASA's programs by providing timely data and models about propagation of satellite radio signals though the intervening environment. Provisions include new services, higher frequencies, higher data rates, different environments (mobile, indoors, fixed), and different orbits (geostationary, low earth orbit).
Gap soliton propagation in optical fiber gratings
NASA Astrophysics Data System (ADS)
Mohideen, U.; Slusher, R. E.; Mizrahi, V.; Erdogan, T.; Kuwata-Gonokami, M.; Lemaire, P. J.; Sipe, J. E.; Martijn de Sterke, C.; Broderick, Neil G. R.
1995-08-01
Intense optical pulse propagation in a GeO2 -doped silica glass fiber grating results in nonlinear pulse propagation velocities and increased transmission at wavelengths where the grating reflects light in the linear limit. These nonlinear pulse propagation effects are predicted by numerical simulations of gap soliton propagation. The large linear refractive-index variations used for the fiber gratings in these experiments permit the propagation of gap solitons in short lengths of fiber.
Free-field propagation of high intensity noise
NASA Technical Reports Server (NTRS)
Welz, Joseph P.; Mcdaniel, Oliver H.
1990-01-01
Observed spectral data from supersonic jet aircraft are known to contain much more high frequency energy than can be explained by linear acoustic propagation theory. It is believed that the high frequency energy is an effect of nonlinear distortion due to the extremely high acoustic levels generated by the jet engines. The objective, to measure acoustic waveform distortion for spherically diverging high intensity noise, was reached by using an electropneumatic acoustic source capable of generating sound pressure levels in the range of 140 to 160 decibels (re 20 micro Pa). The noise spectrum was shaped to represent the spectra generated by jet engines. Two microphones were used to capture the acoustic pressure waveform at different points along the propagation path in order to provide a direct measure of the waveform distortion as well as spectral distortion. A secondary objective was to determine that the observed distortion is an acoustic effect. To do this an existing computer prediction code that deals with nonlinear acoustic propagation was used on data representative of the measured data. The results clearly demonstrate that high intensity jet noise does shift the energy in the spectrum to the higher frequencies along the propagation path. In addition, the data from the computer model are in good agreement with the measurements, thus demonstrating that the waveform distortion can be accounted for with nonlinear acoustic theory.
Sonic Boom Propagation Codes Validated by Flight Test
NASA Technical Reports Server (NTRS)
Poling, Hugh W.
1996-01-01
The sonic boom propagation codes reviewed in this study, SHOCKN and ZEPHYRUS, implement current theory on air absorption using different computational concepts. Review of the codes with a realistic atmosphere model confirm the agreement of propagation results reported by others for idealized propagation conditions. ZEPHYRUS offers greater flexibility in propagation conditions and is thus preferred for practical aircraft analysis. The ZEPHYRUS code was used to propagate sonic boom waveforms measured approximately 1000 feet away from an SR-71 aircraft flying at Mach 1.25 to 5000 feet away. These extrapolated signatures were compared to measurements at 5000 feet. Pressure values of the significant shocks (bow, canopy, inlet and tail) in the waveforms are consistent between extrapolation and measurement. Of particular interest is that four (independent) measurements taken under the aircraft centerline converge to the same extrapolated result despite differences in measurement conditions. Agreement between extrapolated and measured signature duration is prevented by measured duration of the 5000 foot signatures either much longer or shorter than would be expected. The duration anomalies may be due to signature probing not sufficiently parallel to the aircraft flight direction.
Local effects of gravity wave propagation and saturation
NASA Technical Reports Server (NTRS)
Fritts, D. C.
1985-01-01
In recent years, gravity waves were recognized to play a major role in the dynamics of the middle atmosphere. Perhaps the major effect of such motions are the reversal of the vertical shear of the mean zonal wind and the occurrence of a large turbulent diffusivity in the mesosphere due to gravity wave saturation. Yet, despite the importance of these gravity wave effects, the processes and the consequences of gravity wave propagation and saturation are only beginning to be understood in detail. The linear saturation theory predicts drag and turbulent diffusion due to saturating wave motion. This theory, however, fails to address a number of issues that are certain to be important for gravity wave propagation and saturation in the middle atmosphere. These issues, including wave transience, wave superposition, local convective adjustment, and nonlinearity, are discussed.
Microwave Propagation in Dielectric Fluids.
ERIC Educational Resources Information Center
Lonc, W. P.
1980-01-01
Describes an undergraduate experiment designed to verify quantitatively the effect of a dielectric fluid's dielectric constant on the observed wavelength of microwave radiation propagating through the fluid. The fluid used is castor oil, and results agree with the expected behavior within 5 percent. (Author/CS)
Microwave Propagation in Dielectric Fluids.
ERIC Educational Resources Information Center
Lonc, W. P.
1980-01-01
Describes an undergraduate experiment designed to verify quantitatively the effect of a dielectric fluid's dielectric constant on the observed wavelength of microwave radiation propagating through the fluid. The fluid used is castor oil, and results agree with the expected behavior within 5 percent. (Author/CS)
Endochronic theory of dynamic viscoplasticity
Lin, H.C.
1983-06-01
This report summarizes the work completed on a project concerned with engineering models in dyanmic plasticity. The concept of the endochronic theory of viscoplasticity and its subsequent improvement are discussed briefly. Applications and extensions of the theory to various dynamic problems are presented. In particular, the strain-rate effect in the improved endochronic theory and its application to wave propagation problems are discussed. Comparing the numerical results with other calculations and experimental data, it appears that endochronic theory provides a promising representation of realistic material behavior. At the same time endochronic theory is often numerically more efficient than other formulations.
Coulomb-Gauge Gluon Propagator and the Gribov Formula
Burgio, G.; Quandt, M.; Reinhardt, H.
2009-01-23
We analyze the lattice SU(2) Yang-Mills theory in the Coulomb gauge. We show that the static gluon propagator is multiplicative renormalizable and takes the simple form D(|p-vector|){sup -1}={radical}(|p-vector|{sup 2}+M{sup 4}/|p-vector|{sup 2}), proposed by Gribov through heuristic arguments many years ago. We find M=0.88(1) GeV{approx_equal}2{radical}({sigma})
Analysis of wave propagation in periodic 3D waveguides
NASA Astrophysics Data System (ADS)
Schaal, Christoph; Bischoff, Stefan; Gaul, Lothar
2013-11-01
Structural Health Monitoring (SHM) is a growing research field in the realm of civil engineering. SHM concepts are implemented using integrated sensors and actuators to evaluate the state of a structure. Within this work, wave-based techniques are addressed. Dispersion effects for propagating waves in waveguides of different materials are analyzed for various different cross-sections. Since analytical theory is limited, a general approach based on the Waveguide Finite Element Method is applied. Numerical results are verified experimentally.
Nonlinear Effects in Long Range Underwater Acoustic Propagation
1985-11-01
John Willlam Strutt ) (1896). The Theorw of So*d, 2d and revised ed. (Dover Publications, Inc., New York, 1945). Rogers, Peter H. (1977). "Weak-Shock... Williams (1974), this level Is within the amplitude limits of weak-shock theory. Pestorius (1973) developed a computer based version of the weak-shock...linear geometrical acoustics developed in this fashion. Rayleigh (1 896,S 289) examined the problem of acoustic propagation in a windy atmosphere
Antiplane shear wave propagation in fiber-reinforced composites.
Kim, Jin-Yeon
2003-05-01
A self-consistent method for analyzing antiplane shear wave propagation in two-dimensional inhomogeneous media is presented. For applications in the high-frequency range, the self-consistent condition for the effective medium is solved being supplemented with the theory of quasidynamic effective density. Comparisons with other theoretical calculations and experimental data for fiber-reinforced composites demonstrate the merits of using the present method.
Two views of cosmic ray propagation in the solar system
NASA Technical Reports Server (NTRS)
Barouch, E.
1974-01-01
Diffusion and scatter free cosmic ray propagation theories are discussed in terms of the quality of their alternate viewpoints. A hypothetical model of conditions in interplantary space is described which aids in the comparison. A plot of the intensity of the interplanetary magnetic field over a long period is presented, and the association of these regions with high velocity streams is shown to support the scatter free viewpoint.
The quark propagator in QCD and G2 QCD
NASA Astrophysics Data System (ADS)
Contant, Romain; Huber, Markus Q.
2017-03-01
QCD-like theories provide testing grounds for truncations of functional equations at non-zero density, since comparisons with lattice results are possible due to the absence of the sign problem. As a first step towards such a comparison, we determine for QCD and G2 QCD the chiral and confinement/deconfinement transitions from the quark propagator Dyson-Schwinger equation at zero chemical potential by calculating the chiral and dual chiral condensates, respectively.
Acoustic Bloch Wave Propagation in a Periodic Waveguide
1991-07-24
electrical conductivity. In the quantum theory, the electron is represented by De Broglie/ Schr ~ dinger matter waves which propagate in an electrical conductor...waveguide loaded with a periodic array of rigid spheres. They based their approach on the Webster horn equation and compared the results of a strained...governing equations , we simply use the dissi- pative equations in the limit as the heat conductivity and viscosity approach zero. In such a limit the
NASA Astrophysics Data System (ADS)
Yang, Song; Deng, Kaiqiang; Ting, Mingfang; Hu, Chundi
2015-12-01
Early theoretical analyses indicated that the tropics and extratropics are relatively independent due to the existence of critical latitudes. However, considerable observational evidence has shown that a clear dynamical link exists between the tropics and midlatitudes. To better understand such atmospheric teleconnection, several theories of wave energy propagation are reviewed in this paper: (1) great circle theory, which reveals the characteristics of Rossby waves propagating in the spherical atmosphere; (2) westerly duct theory, which suggests a "corridor" through which the midlatitude disturbances in one hemisphere can propagate into the other hemisphere; (3) energy accumulation-wave emanation theory, which proposes processes through which tropical disturbances can affect the atmospheric motion in higher latitudes; (4) equatorial wave expansion theory, which further explains the physical mechanisms involved in the interaction between the tropics and extratropics; and (5) meridional basic flow theory, which argues that stationary waves can propagate across the tropical easterlies under certain conditions. In addition, the progress made in diagnosing wave-flow interaction, particularly for Rossby waves, inertial-gravity waves, and Kelvin waves, is also reviewed. The meridional propagation of atmospheric energy exhibits significant annual and interannual variations, closely related to ENSO and variation in the westerly jets and tropical upper-tropospheric troughs, amongst others.
Feynman propagator for a free scalar field on a causal set.
Johnston, Steven
2009-10-30
The Feynman propagator for a free bosonic scalar field on the discrete spacetime of a causal set is presented. The formalism includes scalar field operators and a vacuum state which define a scalar quantum field theory on a causal set. This work can be viewed as a novel regularization of quantum field theory based on a Lorentz invariant discretization of spacetime.
Multiscale rotational mechanism of fracture propagation in geomaterials
NASA Astrophysics Data System (ADS)
Dyskin, Arcady; Pasternak, Elena; Esin, Maxim
2015-10-01
We consider rotational mechanism of macrocrack propagation based on breakage of the bonds between mutually rotating grains. The mechanism is multiscale with the macroscopic scale corresponding to the macrocrack, the next, smaller scale corresponding to the grain rotations and the smallest scale corresponding to the microcracks formed in the bonds whose propagation causes the bond breakage. The bond breakage is initiated by their bending or twisting caused by the corresponding moments. The sign of the moments only affects the side of the bond where the microfracturing starts. The independence of the microfracturing of the sign of the moment stresses provides a unified way of describing such apparently different types of fractures as tensile (Mode I) cracks, compaction bands (Mode I anticracks) and shear bands (Mode II and III). Modelling of this mechanism is based on the Cosserat theory. The bending/twisting moments are controlled by the corresponding components of moment stress. In the cases, when the Cosserat characteristic lengths are comparable with the grain sizes, the Cosserat theory is reduced to the couple-stress theory. It is found that the stress exhibits the square root singularity that coincides with the conventional ones, while the moment stress has singularity of the power -3/2. The J-integral, however, reflects only stress singularities, while the moment stress singularities do not contribute to the energy release rate. Subsequently, the energy criterion of macrofracture propagation can be based on the conventional J-integral and is not affected by the strong moment stress singularity.
BOOK REVIEW: Kinetic theory of plasma waves, homogeneous plasmas
NASA Astrophysics Data System (ADS)
Porkolab, Miklos
1998-11-01
from the BBGKY hierarchy. This is a somewhat unusual chapter in a book on plasma waves, but I welcome it since it demonstrates the author's desire to be complete and rigorous in justifying the use of the collisionless Vlasov equation for `high frequency' wave propagation phenomena. Incidentally, it is interesting that while the author derives the Fokker-Planck equation at great length, it is used only to derive the fluid and MHD equations, but not for estimating Coulomb collisional damping of specific waves in later chapters. Chapter 4 gives the derivation of the hot plasma dielectric tensor. There is an extensive and excellent discussion of the relativistic formulation of the dielectric tensor, which is of fundamental importance to practising fusion physicists (for example) involved in ECR heating of high temperature plasmas. Various temperature limits are taken in Chapters 5, 6 and 7, and the author discusses the infinite number of waves in the cold plasma limit (Chapter 5), in the hot plasma limit (Chapter 6) and in the electrostatic limit (Chapter 7). In my opinion, these chapters represent the `meat' of the book. Chapter 7 includes a detailed treatment of electrostatic waves in a hot plasma, including Bernstein waves and their damping at high harmonics. This is a difficult topic, and the extensive treatment presented here is hard to find in other texts. The author also includes a discussion of two stream instabilities here, together with the Nyquist-Penrose criterion for instability. Chapter 8 discusses linear wave-particle interactions, including damping of electromagnetic waves, RF current drive and RF heating. Chapter 9 is called `Collisionless Stochasticity' and institutes an introduction to the subject as well as applications to the heating of ions by high harmonic, lower hybrid waves. Chapter 10 is another key part of the book, on the quasilinear theory of heating and current drive. It deals with the practical aspects of RF heating and current drive in
Effects of high subsonic flow on sound propagation in a variable-area duct
NASA Technical Reports Server (NTRS)
Callegari, A. J.; Myers, M. K.
1976-01-01
The propagation of sound in a converging-diverging duct containing a quasi-one-dimensional steady flow with a high subsonic throat Mach number was studied. The behavior of linearized acoustic theory at the throat of the duct was shown to be singular. This singularity implies that linearized acoustic theory is invalid. The explicit singular behavior was determined and used to sketch the development (by the method of matched asymptotic expansions) of a nonlinear theory for sound propagation in a sonic throat region.
Loran-C Signal Analysis Propagation Model Evaluation.
1979-07-01
Recipient’s Caoesi No. Propagation Model Evaluation de i e t tcnuth accout forbth teKenndeth mpchwartn mh eveoPed b 9. P a, ou- n ts f,0e ==tori...is currently used for Loran-C chart preparation. 3. Wait’s Multisegment Spherical Earth (MULSEG) - an extension of the classical theory to account for...pre- dictions are described. Limitations of the current theory with recom- mendations for further research are also discussed. An example of predicted
Classical hallmarks of macroscopic quantum wave function propagation
NASA Astrophysics Data System (ADS)
Feagin, James M.; Briggs, John S.
2017-08-01
The precise connection between quantum wave functions and the underlying classical trajectories often is presented rather vaguely by practitioners of quantum mechanics. Here we demonstrate, with simple examples, that the imaging theorem (IT) based on the semiclassical propagator provides a precise connection. Wave functions are preserved out to macroscopic distances but the variables, position and momentum of these functions describe classical trajectories. We show that the IT, based on an overtly time-dependent picture, provides a strategy alternative to standard scattering theory with which to compare experimental results to theory.
Acoustic Propagation Modeling in Shallow Water Using Ray Theory
1989-02-21
aid in Eq. (2 76) for the transmission case. Note that Eqs. (6--13) and (6 14) d , not constitute all approximation because pf = J . As before, we tiind...the saddle point(s) as the’ valuc(s) of 0 for which J ’(0) vanishes. The field is then evaluate( d by either the saddle point approximation or by...No. 27 (1948). [16 D . C. Stickler, "Normal-mode program with both the discrete and branch line contributions," J . Acoust. Soc. Am. 57, 856-861 (1975
NASA Astrophysics Data System (ADS)
Ma, Songhua; Jiang, Zhaoliang; Liu, Wenping; Huang, Chuanzhen
2017-05-01
Design changes are unavoidable during mechanical product development; whereas the avalanche propagation of design change imposes severely negative impacts on the design cycle. To improve the validity of the change propagation prediction, a mathematical programming model is presented to predict the change propagation impact quantitatively. As the foundation of change propagation prediction, a design change analysis model(DCAM) is built in the form of design property network. In DCAM, the connections of the design properties are identified as the design specification, which conform to the small-world network theory. To quantify the change propagation impact, change propagation intensity(CPI) is defined as a quantitative and much more objective assessment metric. According to the characteristics of DCAM, CPI is defined and indicated by four assessment factors: propagation likelihood, node degree, long-chain linkage, and design margin. Furthermore, the optimal change propagation path is searched with the evolutionary ant colony optimization(ACO) algorithm, which corresponds to the minimized maximum of accumulated CPI. In practice, the change impact of a gear box is successfully analyzed. The proposed change propagation prediction method is verified to be efficient and effective, which could provide different results according to various the initial changes.
NASA Astrophysics Data System (ADS)
Ma, Songhua; Jiang, Zhaoliang; Liu, Wenping; Huang, Chuanzhen
2017-03-01
Design changes are unavoidable during mechanical product development; whereas the avalanche propagation of design change imposes severely negative impacts on the design cycle. To improve the validity of the change propagation prediction, a mathematical programming model is presented to predict the change propagation impact quantitatively. As the foundation of change propagation prediction, a design change analysis model(DCAM) is built in the form of design property network. In DCAM, the connections of the design properties are identified as the design specification, which conform to the small-world network theory. To quantify the change propagation impact, change propagation intensity(CPI) is defined as a quantitative and much more objective assessment metric. According to the characteristics of DCAM, CPI is defined and indicated by four assessment factors: propagation likelihood, node degree, long-chain linkage, and design margin. Furthermore, the optimal change propagation path is searched with the evolutionary ant colony optimization(ACO) algorithm, which corresponds to the minimized maximum of accumulated CPI. In practice, the change impact of a gear box is successfully analyzed. The proposed change propagation prediction method is verified to be efficient and effective, which could provide different results according to various the initial changes.
Fracture propagation, pipe deformation study
Aloe, A.; Di Candia, A.; Bramante, M.
1983-04-15
Shear fracture propagation has become an important research subject connected with design aspects of gas pipelines. Difficulties involved in predicting safe service conditions from pure theoretical studies require 1:1 scale experiments. Through these tests, semiempirical design criteria was formulated where the minimum level of material quality, indicated by Charpy V energy in the ductile range, is determined as a function of pipe geometry and hoop stress. Disagreements exist among these criteria. Different arrest energy predictions at high hoop stresses and different effects ascribed to the thickness have called for further research in the field. Some interesting indications were obtained about shape and size of the plastic zone ahead of the propagating crack. Burst tests have been conducted and are discussed.
Sound propagation in choked ducts
NASA Technical Reports Server (NTRS)
Hersh, A. S.; Liu, C. Y.
1976-01-01
The linearized equations describing the propagation of sound in variable area ducts containing flow are shown to be singular when the duct mean flow is sonic. The singularity is removed when previously ignored nonlinear terms are retained. The results of a numerical study, for the case of plane waves propagating in a one-dimensional converging-diverging duct, show that the sound field is adequately described by the linearized equations only when the axial mean flow Mach number at the duct throat M sub th 0.6. For M sub th 0.6, the numerical results showed that acoustic energy flux was not conserved. An attempt was made to extend the study to include the nonlinear behavior of the sound field. Meaningful results were not obtained due, primarily, to numerical difficulties.
Atmospheric propagation of THz radiation.
Wanke, Michael Clement; Mangan, Michael A.; Foltynowicz, Robert J.
2005-11-01
In this investigation, we conduct a literature study of the best experimental and theoretical data available for thin and thick atmospheres on THz radiation propagation from 0.1 to 10 THz. We determined that for thick atmospheres no data exists beyond 450 GHz. For thin atmospheres data exists from 0.35 to 1.2 THz. We were successful in using FASE code with the HITRAN database to simulate the THz transmission spectrum for Mauna Kea from 0.1 to 2 THz. Lastly, we successfully measured the THz transmission spectra of laboratory atmospheres at relative humidities of 18 and 27%. In general, we found that an increase in the water content of the atmosphere led to a decrease in the THz transmission. We identified two potential windows in an Albuquerque atmosphere for THz propagation which were the regions from 1.2 to 1.4 THz and 1.4 to 1.6 THz.
Propagation failure in excitable media
Hagberg, A.; Meron, E.
1998-01-01
We study a mechanism of pulse propagation failure in excitable media where stable traveling pulse solutions appear via a subcritical pitchfork bifurcation. The bifurcation plays a key role in that mechanism. Small perturbations, externally applied or from internal instabilities, may cause pulse propagation failure (wave breakup) provided the system is close enough to the bifurcation point. We derive relations showing how the pitchfork bifurcation is unfolded by weak curvature or advective field perturbations and use them to demonstrate wave breakup. We suggest that the recent observations of wave breakup in the Belousov-Zhabotinsky reaction induced by either an electric field [J.J. Taboada {ital et al.}. Chaos {bold 4}, 519 (1994)] or a transverse instability [M. Markus, G. Kloss, and I. Kusch, Nature (London) {bold 371}, 402 (1994)] are manifestations of this mechanism. {copyright} {ital 1998} {ital The American Physical Society}
Quality of spatial entanglement propagation
NASA Astrophysics Data System (ADS)
Reichert, Matthew; Sun, Xiaohang; Fleischer, Jason W.
2017-06-01
We explore, both experimentally and theoretically, the propagation dynamics of spatially entangled photon pairs (biphotons). Characterization of entanglement is done via the Schmidt number, which is a universal measurement of the degree of entanglement directly related to the nonseparability of the state into its subsystems. We develop expressions for the terms of the Schmidt number that depend on the amplitude and phase of the commonly used double-Gaussian approximation for the biphoton wave function, and demonstrate migration of entanglement between amplitude and phase upon propagation. We then extend this analysis to incorporate both phase curvature in the pump beam and higher spatial frequency content of more realistic non-Gaussian wave functions. Specifically, we generalize the classical beam quality parameter M2 to the biphotons, allowing the description of more information-rich beams and more complex dynamics. Agreement is found with experimental measurements using direct imaging and Fourier optics.
Wakefield Propagation in Plasma Channels
NASA Astrophysics Data System (ADS)
Geddes, Cameron; Leemans, Wim; Esarey, Eric; Shadwick, Brad; Wurtele, Johnathan
2000-10-01
Characteristics of laser wakefields propagating in plasma channels have been studied at the l'OASIS laser facility at LBNL. Plasma channels are formed in gas jets using the ignitor-heater method[1], allowing control of channel geometry and profile. The channels are characterized by longitudinal and transverse interferometry, giving both radial and longitudinal profiles of the channel. High intensity (>5E17 W/cm^2, 50fs) pulses at 800nm are guided in these channels and are used to create plasma wakes in the channel. Laser propagation in the channel is characterized by output mode images and energies, and the wakes are profiled by longitudinal spectral interferometry. Measurements of channel and wake profiles, and studies of wake dependence on channel parameters will be presented. [1]P.Volfbeyn, E.Esarey, W.P. Leemans, Phys Plasmas 6, 2269 (1999)
GOES dynamic propagation of attitude
NASA Technical Reports Server (NTRS)
Markley, F. Landis; Seidewitz, ED; Chu, Don; Rowe, John N.
1988-01-01
The spacecraft in the next series of Geostationary Operational Environmental Satellites (GOES-Next) are Earth pointing and have 5-year mission lifetimes. Because gyros can be depended on only for a few years of continuous use, they will be turned off during routine operations. This means attitude must, at times, be determined without benefit of gyros and, often, using only Earth sensor data. To minimize the interruption caused by dumping angular momentum, these spacecraft have been designed to reduce the environmental torque acting on them and incorporate an adjustable solar trim tab for fine adjustment. A new support requirement for GOES-Next is that of setting the solar trim tab. Optimizing its setting requires an estimate of the unbalanced torque on the spacecraft. These two requirements, determining attitude without gyros and estimating the external torque, are addressed by replacing or supplementing the gyro propagation with a dynamic one, that is, one that integrates the rigid body equations of motion. By processing quarter-orbit or longer batches, this approach takes advantage of roll-yaw coupling to observe attitude completely without Sun sensor data. Telemetered momentum wheel speeds are used as observations of the unbalanced external torques. GOES-Next provides a unique opportunity to study dynamic attitude propagation. The geosynchronous altitude and adjustable trim tab minimize the external torque and its uncertainty, making long-term dynamic propagation feasible. This paper presents the equations for dynamic propagation, an analysis of the environmental torques, and an estimate of the accuracies obtainable with the proposed method.
A database for propagation models
NASA Technical Reports Server (NTRS)
Kantak, Anil V.; Suwitra, Krisjani; Le, Chuong
1995-01-01
A database of various propagation phenomena models that can be used by telecommunications systems engineers to obtain parameter values for systems design is presented. This is an easy-to-use tool and is currently available for either a PC using Excel software under Windows environment or a Macintosh using Excel software for Macintosh. All the steps necessary to use the software are easy and many times self explanatory.
A database for propagation models
NASA Technical Reports Server (NTRS)
Kantak, Anil V.; Suwitra, Krisjani; Le, Choung
1994-01-01
A database of various propagation phenomena models that can be used by telecommunications systems engineers to obtain parameter values for systems design is presented. This is an easy-to-use tool and is currently available for either a PC using Excel software under Windows environment or a Macintosh using Excel software for Macintosh. All the steps necessary to use the software are easy and many times self-explanatory; however, a sample run of the CCIR rain attenuation model is presented.
UHF Radiowave Propagation through Forests
1982-09-01
sde It nece sary and Identify b block number) " A model for UHF radiowave propagation thzough a forest of tree trunks, branches, and leaves is...all having prescribed location and orientation statistics. Tree trunks are modelled as infinitely-long, circular, lossy-di- electric cylinders...results. An anisotropic half-space model of the forest is developed based upon the effective dyadic susceptibility and the direct-, reflected-, and
Interprocedural Analysis with Lazy Propagation
NASA Astrophysics Data System (ADS)
Jensen, Simon Holm; Møller, Anders; Thiemann, Peter
We propose lazy propagation as a technique for flow- and context-sensitive interprocedural analysis of programs with objects and first-class functions where transfer functions may not be distributive. The technique is described formally as a systematic modification of a variant of the monotone framework and its theoretical properties are shown. It is implemented in a type analysis tool for JavaScript where it results in a significant improvement in performance.
Premixed Turbulent Flame Propagation in Microgravity
NASA Technical Reports Server (NTRS)
Menon, S.; Disseau, M.; Chakravarthy, V. K.; Jagoda, J.
1997-01-01
Papers included address the following topics: (1) Turbulent premixed flame propagation in microgravity; (2) The effect of gravity on turbulent premixed flame propagation - a preliminary cold flow study; and (3) Characteristics of a subgrid model for turbulent premixed combustion.
Turbofan Acoustic Propagation and Radiation
NASA Technical Reports Server (NTRS)
Eversman, Walter
2000-01-01
This document describes progress in the development of finite element codes for the prediction of near and far field acoustic radiation from the inlet and aft fan ducts of turbofan engines. The report consists of nine papers which have appeared in archival journals and conference proceedings, or are presently in review for publication. Topics included are: 1. Aft Fan Duct Acoustic Radiation; 2. Mapped Infinite Wave Envelope Elements for Acoustic Radiation in a Uniformly Moving Medium; 3. A Reflection Free Boundary Condition for Propagation in Uniform Flow Using Mapped Infinite Wave Envelope Elements; 4. A Numerical Comparison Between Multiple-Scales and FEM Solution for Sound Propagation in Lined Flow Ducts; 5. Acoustic Propagation at High Frequencies in Ducts; 6. The Boundary Condition at an Impedance Wall in a Nonuniform Duct with Potential Flow; 7. A Reverse Flow Theorem and Acoustic Reciprocity in Compressible Potential Flows; 8. Reciprocity and Acoustics Power in One Dimensional Compressible Potential Flows; and 9. Numerical Experiments on Acoustic Reciprocity in Compressible Potential Flows.
Jet propagation through energetic materials
Pincosy, P; Poulsen, P
2004-01-08
In applications where jets propagate through energetic materials, they have been observed to become sufficiently perturbed to reduce their ability to effectively penetrate subsequent material. Analytical calculations of the jet Bernoulli flow provides an estimate of the onset and extent of such perturbations. Although two-dimensional calculations show the back-flow interaction pressure pulses, the symmetry dictates that the flow remains axial. In three dimensions the same pressure impulses can be asymmetrical if the jet is asymmetrical. The 3D calculations thus show parts of the jet having a significant component of radial velocity. On the average the downstream effects of this radial flow can be estimated and calculated by a 2D code by applying a symmetrical radial component to the jet at the appropriate position as the jet propagates through the energetic material. We have calculated the 3D propagation of a radio graphed TOW2 jet with measured variations in straightness and diameter. The resultant three-dimensional perturbations on the jet result in radial flow, which eventually tears apart the coherent jet flow. This calculated jet is compared with jet radiographs after passage through the energetic material for various material thickness and plate thicknesses. We noted that confinement due to a bounding metal plate on the energetic material extends the pressure duration and extent of the perturbation.
Transequatorial Propagation and Depletion Precursors
NASA Astrophysics Data System (ADS)
Miller, E. S.; Bust, G. S.; Kaeppler, S. R.; Frissell, N. A.; Paxton, L. J.
2014-12-01
The bottomside equatorial ionosphere in the afternoon and evening sector frequently evolves rapidly from smoothly stratified to violently unstable with large wedges of depleted plasma growing through to the topside on timescales of a few tens of minutes. These depletions have numerous practical impacts on radio propagation, including amplitude scintillation, field-aligned irregularity scatter, HF blackouts, and long-distance transequatorial propagation at frequencies above the MUF. Practical impacts notwithstanding, the pathways and conditions under which depletions form remain a topic of vigorous inquiry some 80 years after their first report. Structuring of the pre-sunset ionosphere---morphology of the equatorial anomalies and long-wavelength undulations of the isodensity contours on the bottomside---are likely to hold some clues to conditions that are conducive to depletion formation. The Conjugate Depletion Experiment is an upcoming transequatorial forward-scatter HF/VHF experiment to investigate pre-sunset undulations and their connection with depletion formation. We will present initial results from the Conjugate Depletion Experiment, as well as a companion analysis of a massive HF propagation data set.
Sound Propagation in the Atmosphere
NASA Astrophysics Data System (ADS)
Attenborough, Keith
Propagation of sound close to the ground outdoors involves geometric spreading, air absorption, interaction with the ground, barriers, vegetation and refraction associated with wind and temperature gradients. After a brief survey of historical aspects of the study of outdoor sound and its applications, this chapter details the physical principles associated with various propagation effects, reviews data that demonstrate them and methods for predicting them. The discussion is concerned primarily with the relatively short ranges and spectra of interest when predicting and assessing community noise rather than the frequencies and long ranges of concern, for example, in infrasonic global monitoring or used for remote sensing of the atmosphere. Specific phenomena that are discussed include spreading losses, atmospheric absorption, diffraction by barriers and buildings, interaction of sound with the ground (ground waves, surface waves, ground impedance associated with porosity and roughness, and elasticity effects), propagation through crops, shrubs and trees, wind and temperature gradient effects, shadow zones and incoherence due to atmospheric turbulence. The chapter concludes by suggesting a few areas that require further research.
Fatigue and Mechanical Damage Propagation in Automotive PEM Fuel Cells
NASA Astrophysics Data System (ADS)
Banan, Roshanak
Polymer electrolyte membrane (PEM) fuel cells are generally exposed to high magnitude road-induced vibrations and impact loads, frequent humidity-temperature loading cycles, and freeze/thaw stresses when employed in automotive applications. The resultant mechanical stresses can play a significant role in the evolution of mechanical defects in the membrane electrode assembly (MEA). The focus of this research is to investigate fatigue challenges due to humidity-temperature (hygrothermal) cycles and vibrations and their effects on damage evolution in PEM fuel cells. To achieve this goal, this thesis is divided into three parts that provide insight into damage propagation in the MEA under i) hygrothermal cycles, ii) external applied vibrations, and iii) a combination of both to simulate realistic automotive conditions. A finite element damage model based on cohesive zone theory was developed to simulate the propagation of micro-scale defects (cracks and delaminations) in the MEA under fuel cell operating conditions. It was found that the micro-defects can propagate to critical states under start-up and shut-down cycles, prior to reaching the desired lifespan of the fuel cell. The simultaneous presence of hygrothermal cycles and vibrations severely intensified damage propagation and resulted in considerably large defects within 75% of the fuel cell life expectancy. However, the order of generated damage was found to be larger under hygrothermal cycles than vibrations. Under hygrothermal cycles, membrane crack propagation was more severe compared to delamination propagation. Conversely, the degrading influence of vibrations was more significant on delaminations. The presence of an anode/cathode channel offset under the combined loadings lead to a 2.5-fold increase in the delamination length compared to the aligned-channel case. The developed model can be used to investigate the damage behaviour of current materials employed in fuel cells as well as to evaluate the
Calculations of precursor propagation in dispersive dielectrics.
Bacon, Larry Donald
2003-08-01
The present study is a numerical investigation of the propagation of electromagnetic transients in dispersive media. It considers propagation in water using Debye and composite Rocard-Powles-Lorentz models for the complex permittivity. The study addresses this question: For practical transmitted spectra, does precursor propagation provide any features that can be used to advantage over conventional signal propagation in models of dispersive media of interest? A companion experimental study is currently in progress that will attempt to measure the effects studied here.
Molecular dynamics approach to dissipative relativistic hydrodynamics: Propagation of fluctuations
NASA Astrophysics Data System (ADS)
Shahsavar, Leila; Ghodrat, Malihe; Montakhab, Afshin
2016-12-01
Relativistic generalization of hydrodynamic theory has attracted much attention from a theoretical point of view. However, it has many important practical applications in high energy as well as astrophysical contexts. Despite various attempts to formulate relativistic hydrodynamics, no definitive consensus has been achieved. In this work, we propose to test the predictions of four types of first-order hydrodynamic theories for nonperfect fluids in the light of numerically exact molecular dynamics simulations of a fully relativistic particle system in the low density regime. In this regard, we study the propagation of density, velocity, and heat fluctuations in a wide range of temperatures using extensive simulations and compare them to the corresponding analytic expressions we obtain for each of the proposed theories. As expected, in the low temperature classical regime all theories give the same results, consistent with the numerics. In the high temperature extremely relativistic regime, not all considered theories are distinguishable from one another. However, in the intermediate regime, a meaningful distinction exists in the predictions of various theories considered here. We find that the predictions of the recent formulation due to Tsumura, Kunihiro, and Ohnishi are more consistent with our numerical results than the traditional theories: the Meixner, modified Eckart, and modified Marle-Stewart theories.
Simulations of Seismic Wave Propagation on Mars
Bozdağ, Ebru; Ruan, Youyi; Metthez, Nathan; ...
2017-03-23
In this paper, we present global and regional synthetic seismograms computed for 1D and 3D Mars models based on the spectral-element method. For global simulations, we implemented a radially-symmetric Mars model with a 110 km thick crust (Sohl and Spohn in J. Geophys. Res., Planets 102(E1):1613–1635, 1997). For this 1D model, we successfully benchmarked the 3D seismic wave propagation solver SPECFEM3D_GLOBE (Komatitsch and Tromp in Geophys. J. Int. 149(2):390–412, 2002a; 150(1):303–318, 2002b) against the 2D axisymmetric wave propagation solver AxiSEM (Nissen-Meyer et al. in Solid Earth 5(1):425–445, 2014) at periods down to 10 s. We also present higher-resolution body-wave simulationsmore » with AxiSEM down to 1 s in a model with a more complex 1D crust, revealing wave propagation effects that would have been difficult to interpret based on ray theory. For 3D global simulations based on SPECFEM3D_GLOBE, we superimposed 3D crustal thickness variations capturing the distinct crustal dichotomy between Mars’ northern and southern hemispheres, as well as topography, ellipticity, gravity, and rotation. The global simulations clearly indicate that the 3D crust speeds up body waves compared to the reference 1D model, whereas it significantly changes surface waveforms and their dispersive character depending on its thickness. We also perform regional simulations with the solver SES3D (Fichtner et al. Geophys. J. Int. 179:1703–1725, 2009) based on 3D crustal models derived from surface composition, thereby addressing the effects of various distinct crustal features down to 2 s. The regional simulations confirm the strong effects of crustal variations on waveforms. Finally, we conclude that the numerical tools are ready for examining more scenarios, including various other seismic models and sources.« less
49 CFR 195.111 - Fracture propagation.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 49 Transportation 3 2011-10-01 2011-10-01 false Fracture propagation. 195.111 Section 195.111... PIPELINE Design Requirements § 195.111 Fracture propagation. A carbon dioxide pipeline system must be designed to mitigate the effects of fracture propagation. ...
49 CFR 195.111 - Fracture propagation.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 49 Transportation 3 2010-10-01 2010-10-01 false Fracture propagation. 195.111 Section 195.111... PIPELINE Design Requirements § 195.111 Fracture propagation. A carbon dioxide pipeline system must be designed to mitigate the effects of fracture propagation. [Amdt. 195-45, 56 FR 26926, June 12, 1991] ...
Japanese propagation experiments with ETS-5
NASA Technical Reports Server (NTRS)
Ikegami, Tetsushi
1989-01-01
Propagation experiments for maritime, aeronautical, and land mobile satellite communications were performed using Engineering Test Satellite-Five (ETS-5). The propagation experiments are one of major mission of Experimental Mobile Satellite System (EMSS) which is aimed for establishing basic technology for future general mobile satellite communication systems. A brief introduction is presented for the experimental results on propagation problems of ETS-5/EMSS.
49 CFR 195.111 - Fracture propagation.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 49 Transportation 3 2014-10-01 2014-10-01 false Fracture propagation. 195.111 Section 195.111... PIPELINE Design Requirements § 195.111 Fracture propagation. A carbon dioxide pipeline system must be designed to mitigate the effects of fracture propagation....
49 CFR 195.111 - Fracture propagation.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 49 Transportation 3 2012-10-01 2012-10-01 false Fracture propagation. 195.111 Section 195.111... PIPELINE Design Requirements § 195.111 Fracture propagation. A carbon dioxide pipeline system must be designed to mitigate the effects of fracture propagation....
49 CFR 195.111 - Fracture propagation.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 49 Transportation 3 2013-10-01 2013-10-01 false Fracture propagation. 195.111 Section 195.111... PIPELINE Design Requirements § 195.111 Fracture propagation. A carbon dioxide pipeline system must be designed to mitigate the effects of fracture propagation....
Axisymmetric Propagation of a Spherical N Wave in a Cylindrical Tube.
1981-05-04
higher spark energies (>0.1 J) the shapes of the meas- ured waveforms are altered by finite amplitude effects, and the simple linear theory is no longer...and a se- quence of pulses representing reflections from the tube wall. Linear theory is used to explain the amplitude and phase of waveforms measured...RDE.GA 6-13-80 8 substantially from those predicted by linear theory . The discrepancies are attributed to nonlinear propagation distortion. B