Catalytic Partial Oxidation Reforming of JP8 AND S8
2007-06-01
separated from the gas mixtures. The membrane used is normally palladium . This membrane allows the hydrogen created to be used as fuel in the fuel cell...for a hydrocarbon such as propane, a catalyst with rhodium (Rh) supported on alumina has shown promising results. Pt and Ni catalysts have been
Clot, Eric; Eisenstein, Odile; Jones, William D.
2007-01-01
Density functional calculations with the B3PW91 functional have been carried out on the TpRh(CNMe) species [Tp = HB(pyrazolyl)3] as a model for Tp′Rh(CNCH2CMe3) [Tp′ = HB(3,5-dimethylpyrazolyl)3] in interaction with propane. Two σ complexes have been found as minima coordinated through either a methyl or a methylene CH bond, the former being more stable. The approach of the alkane to TpRh(CNMe) has been studied. Although no transition state could be located, study of this path reveals the key importance of the partial decoordination of one pyrazole ring. The full coordination of the alkane can only be achieved when the metal is essentially in a square pyramid coordination with one of the three pyrazole groups only weakly interacting with Rh. The main reaction of the methyl σ complex is oxidative addition, leading to the n-propyl hydride complex. In contrast, two reactions are found for the methylene σ complex: (i) oxidative addition to give the isopropyl complex and (ii) exchange between the secondary and primary CH bonds to convert the methylene complex of propane into a methyl complex of propane. This latter reaction has a much lower barrier than the oxidative addition at the methylene CH bond. The results account well for most of the experimental results obtained from kinetic studies. Steric factors are found to control the energy barriers between these various processes, disfavoring any process that brings the central carbon into close proximity to Rh. PMID:17412834
Selective bio-oxidation of propane to acetone using methane-oxidizing Methylomonas sp. DH-1.
Hur, Dong Hoon; Nguyen, Thu Thi; Kim, Donghyuk; Lee, Eun Yeol
2017-07-01
Propane is the major component of liquefied petroleum gas (LPG). Nowadays, the use of LPG is decreasing, and thus utilization of propane as a chemical feedstock is in need of development. An efficient biological conversion of propane to acetone using a methanotrophic whole cell as the biocatalyst was proposed and investigated. A bio-oxidation pathway of propane to acetone in Methylomonas sp. DH-1 was analyzed by gene expression profiling via RNA sequencing. Propane was oxidized to 2-propanol by particulate methane monooxygenase and subsequently to acetone by methanol dehydrogenases. Methylomonas sp. DH-1 was deficient in acetone-converting enzymes and thus accumulated acetone in the absence of any enzyme inhibition. The maximum accumulation, average productivity and specific productivity of acetone were 16.62 mM, 0.678 mM/h and 0.141 mmol/g cell/h, respectively, under the optimized conditions. Our study demonstrates a novel method for the bioconversion of propane to acetone using methanotrophs under mild reaction condition.
NASA Astrophysics Data System (ADS)
Mendes, Stephanie D.; Redmond, Molly C.; Voigritter, Karl; Perez, Christian; Scarlett, Rachel; Valentine, David L.
2015-03-01
Simple hydrocarbon gases containing two to four carbons (ethane, propane, and butane) are among the most abundant compounds present in petroleum reservoirs, and are introduced into the ocean through natural seepage and industrial discharge. Yet little is known about the bacterial consumption of these compounds in ocean waters. To assess the timing by which microbes metabolize these gases, we conducted a three-phase study that tested and applied a radiotracer-based method to quantify the oxidation rates of ethane, propane, and butane in fresh seawater samples. Phase 1 involved the synthesis of tritiated ethane, propane, and butane using Grignard reagents and tritiated water. Phase 2 was a systematic assessment of experimental conditions, wherein the indigenous microbial community was found to rapidly oxidize ethane, propane, and butane. Phase 3 was the application of this tritium method near the Coal Oil Point seeps, offshore California. Spatial and temporal patterns of ethane, propane, and butane oxidation down current from the hydrocarbon seeps demonstrated that >99% of these gases are metabolized within 1.3 days following initial exposure. The oxidation of ethane outpaced oxidation of propane and butane with patterns indicating the microbial community responded to these gases by rapid adaptation or growth. Methane oxidation responded the slowest in plume waters. Estimates based on the observed metabolic rates and carbon mass balance suggest that ethane, propane, and butane-consuming microorganisms may transiently account for a majority of the total microbial community in these impacted waters.
NASA Technical Reports Server (NTRS)
Wakelyn, N. T.; Jachimowski, C. J.; Wilson, C. H.
1978-01-01
A jet-stirred combustor, constructed of castable zirconia and with an Inconel injector, was used to study nitric oxide formation in propane-air combustion with residence times in the range from 3.2 to 3.3 msec and equivalence ratios varying from 0.7 to 1.4. Measurements were made of combustor operating temperature and of nitric oxide concentration. Maximum nitric oxide concentrations of the order of 55 ppm were found in the range of equivalence ratio from 1.0 to 1.1. A finite-rate chemical kinetic mechanism for propane combustion and nitric oxide formation was assembled by coupling an existing propane oxidation mechanism with the Zeldovich reactions and reactions of molecular nitrogen with hydrocarbon fragments. Analytical studies using this mechanism in a computer simulation of the experimental conditions revealed that the hydrocarbon-fragment-nitrogen reactions play a significant role in nitric oxide formation during fuel-rich combustion.
Novel Acetone Metabolism in a Propane-Utilizing Bacterium, Gordonia sp. Strain TY-5▿
Kotani, Tetsuya; Yurimoto, Hiroya; Kato, Nobuo; Sakai, Yasuyoshi
2007-01-01
In the propane-utilizing bacterium Gordonia sp. strain TY-5, propane was shown to be oxidized to 2-propanol and then further oxidized to acetone. In this study, the subsequent metabolism of acetone was studied. Acetone-induced proteins were found in extracts of cells induced by acetone, and a gene cluster designated acmAB was cloned on the basis of the N-terminal amino acid sequences of acetone-induced proteins. The acmA and acmB genes encode a Baeyer-Villiger monooxygenase (BVMO) and esterase, respectively. The BVMO encoded by acmA was purified from acetone-induced cells of Gordonia sp. strain TY-5 and characterized. The BVMO exhibited NADPH-dependent oxidation activity for linear ketones (C3 to C10) and cyclic ketones (C4 to C8). Escherichia coli expressing the acmA gene oxidized acetone to methyl acetate, and E. coli expressing the acmB gene hydrolyzed methyl acetate. Northern blot analyses revealed that polycistronic transcription of the acmAB gene cluster was induced by propane, 2-propanol, and acetone. These results indicate that the acmAB gene products play an important role in the metabolism of acetone derived from propane oxidation and clarify the propane metabolism pathway of strain TY-5 (propane → 2-propanol → acetone → methyl acetate → acetic acid + methanol). This paper provides the first evidence for BVMO-dependent acetone metabolism. PMID:17071761
NASA Astrophysics Data System (ADS)
Turakulova, A. O.; Kharlanov, A. N.; Levanov, A. V.; Isaikina, O. Ya.; Lunin, V. V.
2017-01-01
Ce0.46Zr0.54O2 solid solution prepared using a cellulose template was employed as a carrier for vanadium catalysts of the oxidative dehydrogenation of propane. The properties of VO x /Ce0.46Zr0.54O2 catalyst (5 wt % vanadium) are compared with the properties of the neat support. The carrier and catalyst are studied by means of BET, SEM, DTA, XRD, and Raman spectroscopy. It is shown that the CeVO4 phase responsible for the ODH process is formed upon interaction between vanadate ions and cerium ions on the surface of the solid solution. The catalytic properties of the catalyst and the support are studied in the propane oxidation reaction at temperatures of 450 and 500°C with pulse feeding of the reagent. It is found that the complete oxidation of propane occurs on the support with formation of CO2 and H2O. Three products (propene, CO2, and H2O) form in the presence of the vanadium catalyst. It is suggested that there are two types of catalytic centers on the catalyst's surface. It is concluded that the centers responsible for the complete oxidation of propane are concentrated mainly on the carrier, while the centers responsible for propane ODH are on the CeVO4.
High rates of anaerobic oxidation of methane, ethane and propane coupled to thiosulphate reduction.
Suarez-Zuluaga, Diego A; Weijma, Jan; Timmers, Peer H A; Buisman, Cees J N
2015-03-01
Anaerobic methane oxidation coupled to sulphate reduction and the use of ethane and propane as electron donors by sulphate-reducing bacteria represent new opportunities for the treatment of streams contaminated with sulphur oxyanions. However, growth of microbial sulphate-reducing populations with methane, propane or butane is extremely slow, which hampers research and development of bioprocesses based on these conversions. Thermodynamic calculations indicate that the growth rate with possible alternative terminal electron acceptors such as thiosulphate and elemental sulphur may be higher, which would facilitate future research. Here, we investigate the use of these electron acceptors for oxidation of methane, ethane and propane, with marine sediment as inoculum. Mixed marine sediments originating from Aarhus Bay (Denmark) and Eckernförde Bay (Germany) were cultivated anaerobically at a pH between 7.2 and 7.8 and a temperature of 15 °C in the presence of methane, ethane and propane and various sulphur electron acceptors. The sulphide production rates in the conditions with methane, ethane and propane with sulphate were respectively 2.3, 2.2 and 1.8 μmol S L(-1) day(-1). For sulphur, no reduction was demonstrated. For thiosulphate, the sulphide production rates were up to 50 times higher compared to those of sulphate, with 86.2, 90.7 and 108.1 μmol S L(-1) day(-1) for methane, ethane and propane respectively. This sulphide production was partly due to disproportionation, 50 % for ethane but only 7 and 14 % for methane and propane respectively. The oxidation of the alkanes in the presence of thiosulphate was confirmed by carbon dioxide production. This is, to our knowledge, the first report of thiosulphate use as electron acceptor with ethane and propane as electron donors. Additionally, these results indicate that thiosulphate is a promising electron acceptor to increase start-up rates for sulphate-reducing bioprocesses coupled to short-chain alkane oxidation.
Reaction of propane with the ordered NiO/Rh(1 1 1) studied by XPS and LEISS
NASA Astrophysics Data System (ADS)
Zhang, Hong; Wang, Wenyi; Chen, Mingshu; Wan, Huilin
2018-05-01
Nickel oxide has been reported to be an efficient catalyst for oxidative dehydrogenation of propane (ODP) to propene at low temperature. In this paper, ultrathin NiO films with various thickness were prepared on a Rh(1 1 1) surface and characterized by X-ray photoemission spectroscopy (XPS) and Low-energy ion scattering spectroscopy (LEISS). Results show that NiO forms a two-dimensional (2D) network with a O-Ni-O structure at submonolayer coverages, and a bulk-like NiO at multilayer coverages. The submonolayer NiO films are less stable than the thick ones when annealed in ultra-high vacuum (UHV) due to the strong interaction with the Rh substrate. Propane was dosed onto the model surfaces at different temperatures to investigate the activation of propane and reactivity of NiO films with propane. The reactions of propane with the thin and thick NiO films are significantly different. Propane activates on the O defect sites for the thick NiO films, whereas activation occurs on the interface of nickel oxide and substrate for the thin films with a higher activity.
Epoxidation of Short-Chain Alkenes by Resting-Cell Suspensions of Propane-Grown Bacteria
Hou, Ching T.; Patel, Ramesh; Laskin, Allen I.; Barnabe, Nancy; Barist, Irene
1983-01-01
Sixteen new cultures of propane-utilizing bacteria were isolated from lake water from Warinanco Park, Linden, N.J. and from lake and soil samples from Bayway Refinery, Linden, N.J. In addition, 19 known cultures obtained from culture collections were also found to be able to grow on propane as the sole carbon and energy source. In addition to their ability to oxidize n-alkanes, resting-cell suspensions of both new cultures and known cultures grown on propane oxidize short-chain alkenes to their corresponding 1,2-epoxides. Among the substrate alkenes, propylene was oxidized at the highest rate. In contrast to the case with methylotrophic bacteria, the product epoxides are further metabolized. Propane and other gaseous n-alkanes inhibit the epoxidation of propylene. The optimum conditions for in vivo epoxidation are described. Results from inhibition studies indicate that a propane monooxygenase system catalyzes both the epoxidation and hydroxylation reactions. Experiments with cell-free extracts show that both hydroxylation and epoxidation activities are located in the soluble fraction obtained after 80,000 × g centrifugation. PMID:16346338
DOE Office of Scientific and Technical Information (OSTI.GOV)
Silversmith, Geert; Poelman, Hilde; Poelman, Dirk
2007-02-02
A CuOx-CeOx/Al2O3 catalyst was studied with in-situ transmission Cu K XAS for the total oxidation of propane as model reaction for the catalytic elimination of volatile organic compounds. The local Cu structure was determined for the catalyst as such, after pre-oxidation and after reduction with propane. The catalyst as such has a local CuO structure. No structural effect was observed upon heating in He up to 600 deg. C or after pre-oxidation at 150 deg. C. A full reduction of the Cu2+ towards metallic Cu0 occurred, when propane was fed to the catalyst. The change in local Cu structure duringmore » propane reduction was followed with a time resolution of 1 min. The {chi}(k) scans appeared as linear combinations of start and end spectra, CuO and Cu structure, respectively. However, careful examination of the XANES edge spectra indicates the presence of a small amount of additional Cu1+ species.« less
Sharp, Jonathan O.; Sales, Christopher M.; LeBlanc, Justin C.; Liu, Jie; Wood, Thomas K.; Eltis, Lindsay D.; Mohn, William W.; Alvarez-Cohen, Lisa
2007-01-01
Rhodococci are common soil heterotrophs that possess diverse functional enzymatic activities with economic and ecological significance. In this study, the correlation between gene expression and biological removal of the water contaminant N-nitrosodimethylamine (NDMA) is explored. NDMA is a hydrophilic, potent carcinogen that has gained recent notoriety due to its environmental persistence and emergence as a widespread micropollutant in the subsurface environment. In this study, we demonstrate that Rhodococcus sp. strain RHA1 can constitutively degrade NDMA and that activity toward this compound is enhanced by approximately 500-fold after growth on propane. Transcriptomic analysis of RHA1 and reverse transcriptase quantitative PCR assays demonstrate that growth on propane elicits the upregulation of gene clusters associated with (i) the oxidation of propane and (ii) the oxidation of substituted benzenes. Deletion mutagenesis of prmA, the gene encoding the large hydroxylase component of propane monooxygenase, abolished both growth on propane and removal of NDMA. These results demonstrate that propane monooxygenase is responsible for NDMA degradation by RHA1 and explain the enhanced cometabolic degradation of NDMA in the presence of propane. PMID:17873074
Conversion of 1,2-Propylene Glycol on Rutile TiO2(110)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Long; Li, Zhenjun; Smith, R. Scott
2014-07-17
We have studied the reactions of 1,2-propylene glycol (1,2-PG), DOCH(CH3)CH2OD, on partially reduced, hydroxylated and oxidized TiO2(110) surfaces using temperature programmed desorption. On reduced TiO2(110), propylene, propanal, and acetone are identified as primary carbon-containing products. While the propylene formation channel dominates at low 1,2-PG coverages, all of the above-mentioned products are observed at high coverages. The carbon-containing products are accompanied by the formation of D2O and D2. The observation of only deuterated products shows that the source of hydrogen (D) is from the 1,2-PG hydroxyls. The role of bridging oxygen vacancy (VO) sites was further investigated by titrating them viamore » hydroxylation and oxidation. The results show that hydroxylation does not change the reactivity because the VO sites are regenerated at 500 K, which is a temperature lower than the 1,2-PG product formation temperature. In contrast, surface oxidation causes significant changes in the product distribution, with increased acetone and propanal formation and decreased propylene formation. Additionally D2 is completely eliminated as an observed product at the expense of D2O formation.« less
NASA Astrophysics Data System (ADS)
Dietrich, Ralph-Uwe; Oelze, Jana; Lindermeir, Andreas; Spitta, Christian; Steffen, Michael; Küster, Torben; Chen, Shaofei; Schlitzberger, Christian; Leithner, Reinhard
The transfer of high electrical efficiencies of solid oxide fuel cells (SOFC) into praxis requires appropriate system concepts. One option is the anode-offgas recycling (AOGR) approach, which is based on the integration of waste heat using the principle of a chemical heat pump. The AOGR concept allows a combined steam- and dry-reforming of hydrocarbon fuel using the fuel cell products steam and carbon dioxide. SOFC fuel gas of higher quantity and quality results. In combination with internal reuse of waste heat the system efficiency increases compared to the usual path of partial oxidation (POX). The demonstration of the AOGR concept with a 300 Wel-SOFC stack running on propane required: a combined reformer/burner-reactor operating in POX (start-up) and AOGR modus; a hotgas-injector for anode-offgas recycling to the reformer; a dynamic process model; a multi-variable process controller; full system operation for experimental proof of the efficiency gain. Experimental results proof an efficiency gain of 18 percentage points (η·POX = 23%, η·AOGR = 41%) under idealized lab conditions. Nevertheless, further improvements of injector performance, stack fuel utilization and additional reduction of reformer reformer O/C ratio and system pressure drop are required to bring this approach into self-sustaining operation.
Zhang, Zihao; Yang, Qiwei; Chen, Hao; ...
2017-10-13
In this paper, supported Cu–Ni bimetallic catalysts were synthesized and evaluated for the in situ hydrogenation and decarboxylation of oleic acid using methanol as a hydrogen donor. The supported Cu–Ni alloy exhibited a significant improvement in both activity and selectivity towards the production of heptadecane in comparison with monometallic Cu and Ni based catalysts. The formation of the Cu–Ni alloy is demonstrated by high-angle annular dark-field scanning transmission electron microscopy (HADDF-STEM), energy dispersive X-ray spectroscopy (EDS-mapping), X-ray diffraction (XRD) and temperature programmed reduction (TPR). A partially oxidized Cu in the Cu–Ni alloy is revealed by diffuse reflectance infrared Fourier transformmore » spectroscopy (DRIFTS) following CO adsorption and X-ray photoelectron spectroscopy (XPS). The temperature programmed desorption of ethylene and propane (ethylene/propane-TPD) suggested that the formation of the Cu–Ni alloy inhibited the cracking of C–C bonds compared to Ni, and remarkably increased the selectivity to heptadecane. The temperature programmed desorption of acetic acid (acetic acid-TPD) indicated that the bimetallic Cu–Ni alloy and Ni catalysts had a stronger adsorption of acetic acid than that of the Cu catalyst. Finally, the formation of the Cu–Ni alloy and a partially oxidized Cu facilitates the decarboxylation reaction and inhibits the cracking reaction of C–C bonds, leading to enhanced catalytic activity and selectivity.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Zihao; Yang, Qiwei; Chen, Hao
In this paper, supported Cu–Ni bimetallic catalysts were synthesized and evaluated for the in situ hydrogenation and decarboxylation of oleic acid using methanol as a hydrogen donor. The supported Cu–Ni alloy exhibited a significant improvement in both activity and selectivity towards the production of heptadecane in comparison with monometallic Cu and Ni based catalysts. The formation of the Cu–Ni alloy is demonstrated by high-angle annular dark-field scanning transmission electron microscopy (HADDF-STEM), energy dispersive X-ray spectroscopy (EDS-mapping), X-ray diffraction (XRD) and temperature programmed reduction (TPR). A partially oxidized Cu in the Cu–Ni alloy is revealed by diffuse reflectance infrared Fourier transformmore » spectroscopy (DRIFTS) following CO adsorption and X-ray photoelectron spectroscopy (XPS). The temperature programmed desorption of ethylene and propane (ethylene/propane-TPD) suggested that the formation of the Cu–Ni alloy inhibited the cracking of C–C bonds compared to Ni, and remarkably increased the selectivity to heptadecane. The temperature programmed desorption of acetic acid (acetic acid-TPD) indicated that the bimetallic Cu–Ni alloy and Ni catalysts had a stronger adsorption of acetic acid than that of the Cu catalyst. Finally, the formation of the Cu–Ni alloy and a partially oxidized Cu facilitates the decarboxylation reaction and inhibits the cracking reaction of C–C bonds, leading to enhanced catalytic activity and selectivity.« less
Hill, R.W.; Skinner, D.F. Jr.; Thorsness, C.B.
1983-05-26
A silane propane burner for an underground coal gasification process which is used to ignite the coal and to controllably retract the injection point by cutting the injection pipe. A narrow tube with a burner tip is positioned in the injection pipe through which an oxidant (oxygen or air) is flowed. A charge of silane followed by a supply of fuel, such as propane, is flowed through the tube. The silane spontaneously ignites on contact with oxygen and burns the propane fuel.
Hill, Richard W.; Skinner, Dewey F.; Thorsness, Charles B.
1985-01-01
A silane propane burner for an underground coal gasification process which is used to ignite the coal and to controllably retract the injection point by cutting the injection pipe. A narrow tube with a burner tip is positioned in the injection pipe through which an oxidant (oxygen or air) is flowed. A charge of silane followed by a supply of fuel, such as propane, is flowed through the tube. The silane spontaneously ignites on contact with oxygen and burns the propane fuel.
Redmond, Molly C.; Valentine, David L.; Sessions, Alex L.
2010-01-01
Marine hydrocarbon seeps supply oil and gas to microorganisms in sediments and overlying water. We used stable isotope probing (SIP) to identify aerobic bacteria oxidizing gaseous hydrocarbons in surface sediment from the Coal Oil Point seep field located offshore of Santa Barbara, California. After incubating sediment with 13C-labeled methane, ethane, or propane, we confirmed the incorporation of 13C into fatty acids and DNA. Terminal restriction fragment length polymorphism (T-RFLP) analysis and sequencing of the 16S rRNA and particulate methane monooxygenase (pmoA) genes in 13C-DNA revealed groups of microbes not previously thought to contribute to methane, ethane, or propane oxidation. First, 13C methane was primarily assimilated by Gammaproteobacteria species from the family Methylococcaceae, Gammaproteobacteria related to Methylophaga, and Betaproteobacteria from the family Methylophilaceae. Species of the latter two genera have not been previously shown to oxidize methane and may have been cross-feeding on methanol, but species of both genera were heavily labeled after just 3 days. pmoA sequences were affiliated with species of Methylococcaceae, but most were not closely related to cultured methanotrophs. Second, 13C ethane was consumed by members of a novel group of Methylococcaceae. Growth with ethane as the major carbon source has not previously been observed in members of the Methylococcaceae; a highly divergent pmoA-like gene detected in the 13C-labeled DNA may encode an ethane monooxygenase. Third, 13C propane was consumed by members of a group of unclassified Gammaproteobacteria species not previously linked to propane oxidation. This study identifies several bacterial lineages as participants in the oxidation of gaseous hydrocarbons in marine seeps and supports the idea of an alternate function for some pmoA-like genes. PMID:20675448
Redmond, Molly C; Valentine, David L; Sessions, Alex L
2010-10-01
Marine hydrocarbon seeps supply oil and gas to microorganisms in sediments and overlying water. We used stable isotope probing (SIP) to identify aerobic bacteria oxidizing gaseous hydrocarbons in surface sediment from the Coal Oil Point seep field located offshore of Santa Barbara, California. After incubating sediment with (13)C-labeled methane, ethane, or propane, we confirmed the incorporation of (13)C into fatty acids and DNA. Terminal restriction fragment length polymorphism (T-RFLP) analysis and sequencing of the 16S rRNA and particulate methane monooxygenase (pmoA) genes in (13)C-DNA revealed groups of microbes not previously thought to contribute to methane, ethane, or propane oxidation. First, (13)C methane was primarily assimilated by Gammaproteobacteria species from the family Methylococcaceae, Gammaproteobacteria related to Methylophaga, and Betaproteobacteria from the family Methylophilaceae. Species of the latter two genera have not been previously shown to oxidize methane and may have been cross-feeding on methanol, but species of both genera were heavily labeled after just 3 days. pmoA sequences were affiliated with species of Methylococcaceae, but most were not closely related to cultured methanotrophs. Second, (13)C ethane was consumed by members of a novel group of Methylococcaceae. Growth with ethane as the major carbon source has not previously been observed in members of the Methylococcaceae; a highly divergent pmoA-like gene detected in the (13)C-labeled DNA may encode an ethane monooxygenase. Third, (13)C propane was consumed by members of a group of unclassified Gammaproteobacteria species not previously linked to propane oxidation. This study identifies several bacterial lineages as participants in the oxidation of gaseous hydrocarbons in marine seeps and supports the idea of an alternate function for some pmoA-like genes.
Lopes Ferreira, Nicolas; Mathis, Hugues; Labbé, Diane; Monot, Frédéric; Greer, Charles W; Fayolle-Guichard, Françoise
2007-06-01
Mycobacterium austroafricanum IFP 2012, which grows on methyl tert-butyl ether (MTBE) and on tert-butyl alcohol (TBA), the main intermediate of MTBE degradation, also grows on a broad range of n-alkanes (C2 to C16). A single alkB gene copy, encoding a non-heme alkane monooxygenase, was partially amplified from the genome of this bacterium. Its expression was induced after growth on n-propane, n-hexane, n-hexadecane and on TBA but not after growth on LB. The capacity of other fast-growing mycobacteria to grow on n-alkanes (C1 to C16) and to degrade TBA after growth on n-alkanes was compared to that of M. austroafricanum IFP 2012. We studied M. austroafricanum IFP 2012 and IFP 2015 able to grow on MTBE, M. austroafricanum IFP 2173 able to grow on isooctane, Mycobacterium sp. IFP 2009 able to grow on ethyl tert-butyl ether (ETBE), M. vaccae JOB5 (M. austroaafricanum ATCC 29678) able to degrade MTBE and TBA and M. smegmatis mc2 155 with no known degradation capacity towards fuel oxygenates. The M. austroafricanum strains grew on a broad range of n-alkanes and three were able to degrade TBA after growth on propane, hexane and hexadecane. An alkB gene was partially amplified from the genome of all mycobacteria and a sequence comparison demonstrated a close relationship among the M. austroafricanum strains. This is the first report suggesting the involvement of an alkane hydroxylase in TBA oxidation, a key step during MTBE metabolism.
Yu, Lin; Sato, Katsutoshi; Toriyama, Takaaki; Yamamoto, Tomokazu; Matsumura, Syo; Nagaoka, Katsutoshi
2018-06-21
Solid oxide fuel cells (SOFCs) with liquefied petroleum gas (LPG) reduce CO 2 emissions due to their high-energy-conversion efficiency. Although SOFCs can convert LPG directly, coking occurs easily by decomposition of hydrocarbons, including C-C bonds on the electrode of fuel cell stacks. It is therefore necessary to develop an active steam pre-reforming catalyst that eliminates the hydrocarbons at low temperature, in which waste heat of SOFCs is used. Herein, we show that the crystal structure of the TiO 2 that anchors Rh particles is crucial for catalytic activity of Rh/TiO 2 catalysts for propane pre-reforming. Our experimental results revealed that strong metal support interaction (SMSI) induced during H 2 pre-reduction were optimized over Rh/TiO 2 with a rutile structure; this catalyst catalyzed the reaction much more effectively than conventional Rh/γ-Al 2 O 3 . In contrast, the SMSI was too strong for Rh/TiO 2 with an anatase structure, and the surface of the Rh particles was therefore covered mostly with partially reduced TiO 2 . The result was very low activity. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tian, Jinshu; Lin, Jinhan; Xu, Mingliang
Hexagonal boron nitride (h-BN) with high thermal conductivity is potentially an effective catalyst for highly exothermic propane oxidative dehydrogenation (ODH) reaction. Here, we report our experimental and theoretic studies of such a catalyst for propane ODH in a fixed-bed reactor. Based on the computational fluid dynamics calculation (CFD) results, the catalyst bed temperature increases by less than 1°C in the h-BN catalyst bed which is much smaller than that (8°C) in the VO x/γ-Al 2O 3 catalyst bed at a similar propane conversion (25%) using a micro-tubular reactor with a diameter of 6 mm. Even in an industrially relevant reactormore » with an inner diameter of 60 mm, a uniform temperature profile can still be maintained using the h-BN catalyst bed due to its excellent thermal conductivity as opposed to a temperature gradient of 47°C in the VO x/γ-Al 2O 3 catalyst bed. The results reported here provide useful information for potential application of h-BN catalyst in propane ODH.« less
Tian, Jinshu; Lin, Jinhan; Xu, Mingliang; ...
2018-04-17
Hexagonal boron nitride (h-BN) with high thermal conductivity is potentially an effective catalyst for highly exothermic propane oxidative dehydrogenation (ODH) reaction. Here, we report our experimental and theoretic studies of such a catalyst for propane ODH in a fixed-bed reactor. Based on the computational fluid dynamics calculation (CFD) results, the catalyst bed temperature increases by less than 1°C in the h-BN catalyst bed which is much smaller than that (8°C) in the VO x/γ-Al 2O 3 catalyst bed at a similar propane conversion (25%) using a micro-tubular reactor with a diameter of 6 mm. Even in an industrially relevant reactormore » with an inner diameter of 60 mm, a uniform temperature profile can still be maintained using the h-BN catalyst bed due to its excellent thermal conductivity as opposed to a temperature gradient of 47°C in the VO x/γ-Al 2O 3 catalyst bed. The results reported here provide useful information for potential application of h-BN catalyst in propane ODH.« less
Effect of fuel nitrogen and hydrogen content on emissions in hydrocarbon combustion
NASA Technical Reports Server (NTRS)
Bittker, D. A.; Wolfbrandt, G.
1981-01-01
How the emissions of nitrogen oxides and carbon monoxide are affected by: (1) the decreased hydrogen content and (2) the increased organic nitrogen content of coal derived fuels is investigated. Previous CRT experimental work in a two stage flame tube has shown the effectiveness of rich lean two stage combustion in reducing fuel nitrogen conversion to nitrogen oxides. Previous theoretical work gave preliminary indications that emissions trends from the flame tube experiment could be predicted by a two stage, well stirred reactor combustor model using a detailed chemical mechanism for propane oxidation and nitrogen oxide formation. Additional computations are reported and comparisons with experimental results for two additional fuels and a wide range of operating conditions are given. Fuels used in the modeling are pure propane, a propane toluene mixture and pure toluene. These give hydrogen contents 18, 11 and 9 percent by weight, respectively. Fuel bound nitrogen contents of 0.5 and 1.0 percent were used. Results are presented for oxides of nitrogen and also carbon monoxide concentrations as a function of primary equivalence ratio, hydrogen content and fuel bound nitrogen content.
Welz, Oliver; Burke, Michael P.; Antonov, Ivan O.; ...
2015-04-10
We studied low-temperature propane oxidation at P = 4 Torr and T = 530, 600, and 670 K by time-resolved multiplexed photoionization mass spectrometry (MPIMS), which probes the reactants, intermediates, and products with isomeric selectivity using tunable synchrotron vacuum UV ionizing radiation. The oxidation is initiated by pulsed laser photolysis of oxalyl chloride, (COCl) 2, at 248 nm, which rapidly generates a ~1:1 mixture of 1-propyl (n-propyl) and 2-propyl (i-propyl) radicals via the fast Cl + propane reaction. At all three temperatures, the major stable product species is propene, formed in the propyl + O 2 reactions by direct HOmore » 2 elimination from both n- and i-propyl peroxy radicals. The experimentally derived propene yields relative to the initial concentration of Cl atoms are (20 ± 4)% at 530 K, (55 ± 11)% at 600 K, and (86 ± 17)% at 670 K at a reaction time of 20 ms. The lower yield of propene at low temperature reflects substantial formation of propyl peroxy radicals, which do not completely decompose on the experimental time scale. In addition, C 3H 6O isomers methyloxirane, oxetane, acetone, and propanal are detected as minor products. Our measured yields of oxetane and methyloxirane, which are coproducts of OH radicals, suggest a revision of the OH formation pathways in models of low-temperature propane oxidation. The experimental results are modeled and interpreted using a multiscale informatics approach, presented in detail in a separate publication (Burke, M. P.; Goldsmith, C. F.; Klippenstein, S. J.; Welz, O.; Huang H.; Antonov I. O.; Savee J. D.; Osborn D. L.; Zádor, J.; Taatjes, C. A.; Sheps, L. Multiscale Informatics for Low-Temperature Propane Oxidation: Further Complexities in Studies of Complex Reactions. J. Phys. Chem A. 2015, DOI: 10.1021/acs.jpca.5b01003). Additionally, we found that the model predicts the time profiles and yields of the experimentally observed primary products well, and shows satisfactory agreement for products formed mostly via secondary radical–radical reactions.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Welz, Oliver; Burke, Michael P.; Antonov, Ivan O.
2015-07-16
We investigated the low-temperature oxidation of propane at 4 Torr and temperatures of 530, 600, and 670 K. The oxidation is initiated by pulsed laser photolysis of oxalyl chloride, (COCl)2, at 248 nm, which rapidly generates a ~1:1 mixture of 1-propyl (n-propyl) and 2-propyl (i-propyl) radicals via the fast Cl + propane reaction. Reactants, intermediates and products are probed with isomeric selectivity by time-resolved multiplexed photoionization mass spectrometry (MPIMS) with tunable synchrotron vacuum UV radiation as the ionization source. At all three temperatures, the major stable product species is propene, formed in the C3H7 + O2 reactions by direct HO2-eliminationmore » from both n- and i-propyl peroxy radicals. The experimentally derived propene yields relative to the initial concentration of Cl atoms are (20 ± 4)% at 530 K, (55 ± 11)% at 600 K, and (86 ± 17)% at 670 K at a reaction time of 20 ms. The lower yield of propene at low temperature reflects substantial formation of propyl peroxy radicals, which do not completely decompose on the experimental time scale. In addition, we detect the C3H6O isomers methyloxirane, oxetane, acetone and propanal as minor products. Our measured yields of oxetane and methyloxirane, which are co-products of OH radicals, suggest a revision of the OH formation pathways in models of low-temperature propane oxidation. The experimental results are modeled and interpreted using a multi-scale informatics approach that is presented in detail in a separate publication (Burke, M. P.; Goldsmith, C. F.; Klippenstein, S. J.; Welz, O.; Huang H.; Antonov I. O.; Savee J. D.; Osborn D. L.; Zádor, J.; Taatjes, C. A.; Sheps, L., Multi-Scale Informatics for Low-Temperature Propane Oxidation: Further Complexities in Studies of Complex Rections, submitted, 2015). The model predicts the time profiles and yields of the experimentally observed primary products well, and shows satisfactory agreement for products formed mostly via secondary radical-radical reactions.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bessette, Norman
The objective of this project provided with funds through the American Recovery and Reinvestment Act of 2009 (ARRA) was to demonstrate a Solid Oxide Fuel Cell (SOFC) generator capable of operation on propane fuel to improve efficiency and reduce emissions over commercially available portable generators. The key objectives can be summarized as: Development of two portable electrical generators in the 1-3kW range utilizing Solid Oxide Fuel Cells and propane fuel; The development and demonstration of a proof-of-concept electro-mechanical propane fuel interface that provides a user friendly capability for managing propane fuel; The deployment and use of the fuel cell portablemore » generators to power media production equipment over the course of several months at multiple NASCAR automobile racing events; The deployment and use of the fuel cell portable generators at scheduled events by first responders (police, fire) of the City of Folsom California; and Capturing data with regard to the systems’ ability to meet Department of Energy (DOE) Technical Targets and evaluating the ease of use and potential barriers to further adoption of the systems.« less
Ren, Zheng; Wu, Zili; Gao, Puxian; ...
2015-06-09
Low temperature propane oxidation has been achieved by Co 3O 4-based nano-array catalysts featuring low catalytic materials loading. The Ni doping into the Co 3O 4 lattice has led to enhanced reaction kinetics at low temperature by promoting the surface lattice oxygen activity. In situ DRIFTS investigation in tandem with isotopic oxygen exchange reveals that the propane oxidation proceeds via Mars-van Krevelen mechanism where surface lattice oxygen acts as the active site whereas O 2 in the reaction feed does not directly participate in CO 2 formation. The Ni doping promotes the formation of less stable carbonates on the surfacemore » to facilitate the CO 2 desorption. The thermal stability of Ni doped Co 3O 4 decreases with increased Ni concentration while catalytic activity increases. A balance between enhanced activity and compromised thermal stability shall be considered in the Ni doped Co 3O 4 nano-array catalysts for low temperature hydrocarbon oxidation. This study provides useful and timely guidance for rational catalyst design toward low temperature catalytic oxidation.« less
NASA Astrophysics Data System (ADS)
Li, Xiuyi; Wang, Pengzhao; Wang, Haoren; Li, Chunyi
2018-05-01
In this paper, the Co/Al2O3 catalyst was prepared by incipient wetness impregnation method, and different post treatment methods were used to promote its dehydrogenation properties. Interestingly, we found that Co/Al2O3 catalysts with different post treatment protocols exhibited totally different catalytic behaviors in propane dehydrogenation. Fresh catalyst showed an induction period and was highly active for pyrolysis and coking at 10-30 min of reaction. The pre-reduction led to complete pyrolysis and coking at the beginning of reaction. However, the re-oxidation treatment gave a high selectivity (∼93.0%) to propylene at the whole process. XRD, H2-TPR, XPS, TEM and hydrogen chemisorption investigations showed that the post treatment has a great impact on the state of cobalt species and the performance of propane dehydrogenation over Co/Al2O3 catalysts. Specifically, the poorly dispersed metal Co led to pyrolysis and coking, while highly dispersed metal Co were responsible for the dehydrogenation of propane. The large Co3O4 particles (DFresh = 33.68 nm) result in the large metal Co grains (DPre-reduced = 24.90 nm) after the reduction or reaction process. While during the re-oxidization process, the surface metal Co was re-oxidized in a mild environment and got re-dispersion (DRe-oxidized = 6.07 nm). And the surface cobalt oxides layer is more readily to be reduced to metal Co during the reaction thus leading to the shortened induction period.
Cellular Lipids of a Nocardia Grown on Propane and n-Butane
Davis, J. B.
1964-01-01
Lipid fractions of propane- and n-butane-grown nocardial cells each contain a chloroform-soluble, ether-insoluble polymer not observed previously in liquid n-alkane-grown cells. The polymer in propane-grown cells is poly-β-hydroxybutyrate. The polymer in n-butane-grown cells apparently contains unsaturation in the molecule, and is identified tentatively as a co-polymer of β-hydroxybutyric and β-hydroxybutenoic (specifically 3-hydroxy 2-butenoic) acids. The other major component of the lipid fraction consists of triglycerides containing principally palmitic and stearic acids. There seems to be little qualitative distinction in the glycerides of propane- or n-butane-grown cells. Oxidative assimilation of n-butane is described. PMID:14199017
Thermocatalytic Destruction of Gas-Phase Perchloroethylene Using Propane as a Hydrogen Source
Willinger, Marty; Rupp, Erik; Barbaris, Brian; Gao, Song; Arnolda, Robert; Betterton, Eric; Sáez, A. Eduardo
2009-01-01
The use of propane in combination with oxygen to promote the destruction of perchloroethylene (PCE) over a platinum (Pt)/rhodium (Rh) catalyst on a cerium/zirconium oxide washcoat supported on an alumina monolith was explored. Conversions of PCE were measured in a continuous flow reactor with residence times less than 0.5 s and temperatures ranging from 200 to 600°C. The presence of propane was shown to increase significantly the conversion of PCE over oxygen-only conditions. Conversions close to 100% were observed at temperatures lower than 450°C with 20% oxygen and 2% propane in the feed, which makes this process attractive from a practical standpoint. In the absence of oxygen, PCE conversion is even higher, but the catalyst suffers significant deactivation in less than an hour. Even though results show that oxygen competes with reactants for active sites on the catalyst, the long-term stability that oxygen confers to the catalyst makes the process an efficient alternative to PCE oxidation. A Langmuir-Hinshelwood competitive adsorption model is proposed to quantify PCE conversion. PMID:19217713
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen Miao, E-mail: chenmiao@sinochem.com; Zhejiang Chemical Industry Research Institute, Hangzhou 310023; Wu Jialing
2011-12-15
A practical two-stage reactive grinding-assisted pathway waste-free and cost-effective for the synthesis of NiMoO{sub 4} has been successfully developed. It was demonstrated that proper design in synthetic strategy for grinding plays a crucial role in determining the ultimate polymorph of NiMoO{sub 4}. Specifically, direct grinding (DG) of MoO{sub 3} and NiO rendered {alpha}-NiMoO{sub 4} after annealing, whereas sequential grinding (SG) of the two independently pre-ground oxides followed by annealing generated {beta}-NiMoO{sub 4} solid solution. Characterizations in terms of Raman and X-ray diffraction suggest the creation of {beta}-NiMoO{sub 4} precursor in the latter alternative is the key aspect for the formationmore » of {beta}-NiMoO{sub 4}. The DG-derived {alpha}-NiMoO{sub 4} tested by oxidative dehydrogenation of propane exhibited superior activity in contrast to its analog synthesized via conventional coprecipitation. It is suggested that the favorable chemical composition facilely obtained via grinding in contrast to that by coprecipitation was essential for achieving a more selective production of propylene. - Graphical Abstract: Grinding-assisted synthesis of NiMoO{sub 4} offers higher and more reproducible activities in contrast to coprecipitation for oxidative dehydrogenation of propane, and both {alpha}- and {beta}-NiMoO{sub 4} can be synthesized. Highlights: Black-Right-Pointing-Pointer NiMoO{sub 4} was prepared through grinding-assisted pathway. Black-Right-Pointing-Pointer Direct/sequential grinding rendered {alpha}-, {beta}-NiMoO{sub 4}, respectively. Black-Right-Pointing-Pointer Grinding-derived {alpha}-NiMoO{sub 4} showed high and reproducible activity for oxidative dehydrogenation of propane.« less
Fuel processing requirements and techniques for fuel cell propulsion power
NASA Astrophysics Data System (ADS)
Kumar, R.; Ahmed, S.; Yu, M.
Fuels for fuel cells in transportation systems are likely to be methanol, natural gas, hydrogen, propane, or ethanol. Fuels other than hydrogen will need to be reformed to hydrogen on-board the vehicle. The fuel reformer must meet stringent requirements for weight and volume, product quality, and transient operation. It must be compact and lightweight, must produce low levels of CO and other byproducts, and must have rapid start-up and good dynamic response. Catalytic steam reforming, catalytic or noncatalytic partial oxidation reforming, or some combination of these processes may be used. This paper discusses salient features of the different kinds of reformers and describes the catalysts and processes being examined for the oxidation reforming of methanol and the steam reforming of ethanol. Effective catalysts and reaction conditions for the former have been identified; promising catalysts and reaction conditions for the latter are being investigated.
Biotransformation of natural gas and oil compounds associated with marine oil discharges.
Brakstad, Odd Gunnar; Almås, Inger K; Krause, Daniel Franklin
2017-09-01
Field data from the Deepwater Horizon (DWH) oil spill in the Gulf of Mexico (GoM) suggested that oxidation of gas compounds stimulated biodegradation of oil compounds in the deep sea plume. We performed experiments with local seawater from a Norwegian fjord to examine if the presence of dissolved gas compounds (methane, ethane and propane) affected biodegradation of volatile oil compounds, and if oil compounds likewise affected gas compound oxidation. The results from the experiment showed comparable oil compound biotransformation rates in seawater at 5 °C between seawater with and without soluble gases. Gas oxidation was not affected by the presence of volatile oil compounds. Contrary to DWH deep sea plume data, propane oxidation was not faster than methane oxidation. These data may reflect variations between biodegradation of oil and gas in seawater environments with different history of oil and gas exposure. Copyright © 2017 Elsevier Ltd. All rights reserved.
Lwin, Soe; Diao, Weijian; Baroi, Chinmoy; ...
2017-04-08
The domestic fossil feedstock in recent years is shifting towards light hydrocarbons due to abundance of shale gas from hydraulic fracturing. This shift induces a need for greater flexibility in both new and existing processing plants to produce consumer products (polymers, paints, lubricants, etc.) from new feedstocks. The oxidative catalytic reactions operate at milder conditions than the processing of feedstocks through steam cracking. The conversion of light feedstocks (C3 and shorter hydrocarbons) to high value chemicals through highly selective catalysts in the presence of oxygen plays a crucial role in eliminating wastes, reducing greenhouse gas emissions and lowering market prices.more » Among all catalysts for light hydrocarbon processing through oxidation reactions, bulk mixed metal oxides such as MoVTe(Sb)NbO x catalysts are the most promising due to their performance under favorable reaction conditions (temperature, pressure, etc). Here, state-of-the-art in situ/operando techniques along with transient kinetics can revolutionize the development of catalysts by providing information about the nature of active sites, intermediates and kinetics under realistic industrial conditions. Only through detailed understanding of these catalyst behaviors can new synthesis methods be developed that will improve reactivity, selectivity and lifetimes of these catalysts. In this review, dynamic changes of this mixed oxide catalyst during the reaction (such as changes in surface composition, oxidation states, acidity, etc) are discussed mainly from knowledge and insights obtained from these in situ/operando approaches. The most common oxidation reactions driven by the MoVTeNbO x catalysts and studied under operando/in situ conditions to be discussed here are: (1) oxidative dehydrogenation of light alkanes (ethane and propane), (2) propane ammoxidation to acrylonitrile and (3) selective oxidation of propane to acrylic acid.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lwin, Soe; Diao, Weijian; Baroi, Chinmoy
The domestic fossil feedstock in recent years is shifting towards light hydrocarbons due to abundance of shale gas from hydraulic fracturing. This shift induces a need for greater flexibility in both new and existing processing plants to produce consumer products (polymers, paints, lubricants, etc.) from new feedstocks. The oxidative catalytic reactions operate at milder conditions than the processing of feedstocks through steam cracking. The conversion of light feedstocks (C3 and shorter hydrocarbons) to high value chemicals through highly selective catalysts in the presence of oxygen plays a crucial role in eliminating wastes, reducing greenhouse gas emissions and lowering market prices.more » Among all catalysts for light hydrocarbon processing through oxidation reactions, bulk mixed metal oxides such as MoVTe(Sb)NbO x catalysts are the most promising due to their performance under favorable reaction conditions (temperature, pressure, etc). Here, state-of-the-art in situ/operando techniques along with transient kinetics can revolutionize the development of catalysts by providing information about the nature of active sites, intermediates and kinetics under realistic industrial conditions. Only through detailed understanding of these catalyst behaviors can new synthesis methods be developed that will improve reactivity, selectivity and lifetimes of these catalysts. In this review, dynamic changes of this mixed oxide catalyst during the reaction (such as changes in surface composition, oxidation states, acidity, etc) are discussed mainly from knowledge and insights obtained from these in situ/operando approaches. The most common oxidation reactions driven by the MoVTeNbO x catalysts and studied under operando/in situ conditions to be discussed here are: (1) oxidative dehydrogenation of light alkanes (ethane and propane), (2) propane ammoxidation to acrylonitrile and (3) selective oxidation of propane to acrylic acid.« less
NASA Technical Reports Server (NTRS)
Napier, Mary E.; Stair, Peter C.
1992-01-01
Polymeric perfluoroalkylethers are being considered for use as lubricants in high temperature applications, but have been observed to catalytically decompose in the presence of metals. X-ray photoelectron spectroscopy (XPS) and temperature programmed desorption (TPD) were used to explore the decomposition of three model fluorinated ethers on clean polycrystalline iron surfaces and iron surfaces chemically modified with oxygen. Low temperature adsorption of the model fluorinated ethers on the clean, oxygen modified and oxidized iron surfaces was molecular. Thermally activated defluorination of the three model compounds was observed on the clean iron surface at remarkably low temperatures, 155 K and below, with formation of iron fluoride. Preferential C-F bond scission occurred at the terminal fluoromethoxy, CF3O, of perfluoro-1-methoxy-2-ethoxy ethane and perfluoro-1-methoxy-2-ethoxy propane and at CF3/CF2O of perfluoro-1,3-diethoxy propane. The reactivity of the clean iron toward perfluoroalkylether decomposition when compared to other metals is due to the strength of the iron fluoride bond and the strong electron donating ability of the metallic iron. Chemisorption of an oxygen overlayer lowered the reactivity of the iron surface to the adsorption and decomposition of the three model fluorinated ethers by blocking active sites on the metal surface. Incomplete coverage of the iron surface with chemisorbed oxygen results in a reaction which resembles the defluorination reaction observed on the clean iron surface. Perfluoro-1-methoxy-2-ethoxy ethane reacts on the oxidized iron surface at 138 K, through a Lewis acid assisted cleavage of the carbon oxygen bond, with preferential attack at the terminal fluoromethoxy, CF3O. The oxidized iron surface did not passivate, but became more reactive with time. Perfluoro-1-methoxy-2-ethoxy propane and perfluoro-1,3-diethoxy propane desorbed prior to the observation of decomposition on the oxidized iron surface.
NASA Technical Reports Server (NTRS)
Bittker, D. A.
1979-01-01
The effect of combustor operating conditions on the conversion of fuel-bound nitrogen (FBN) to nitrogen oxides NO sub x was analytically determined. The effect of FBN and of operating conditions on carbon monoxide (CO) formation was also studied. For these computations, the combustor was assumed to be a two stage, adiabatic, perfectly-stirred reactor. Propane-air was used as the combustible mixture and fuel-bound nitrogen was simulated by adding nitrogen atoms to the mixture. The oxidation of propane and formation of NO sub x and CO were modeled by a fifty-seven reaction chemical mechanism. The results for NO sub x and CO formation are given as functions of primary and secondary stage equivalence ratios and residence times.
NASA Astrophysics Data System (ADS)
Hamdy, Mohamed S.
2016-02-01
Siliceous TUD-1 mesoporous material was bi-functionalized by titanium dioxide nanoparticles and hexavalent chromium ions. The synthesis was carried out by one-pot procedure based on sol-gel technique. The photocatalytic performance of the prepared material was evaluated in the oxidation of propane under the illumination of ultraviolet light (wavelength = 360 nm) and monitored by in situ Fourier transform infrared spectroscopy. The photocatalytic activity of the prepared material exhibited an extra-ordinary activity than the reference samples that contain either hexavalent chromium ions or titanium dioxide nanoparticles only, confirming the true synergy between hexavalent chromium and tetravalent titanium ions of titanium dioxide nanoparticles.
Combining CO 2 reduction with propane oxidative dehydrogenation over bimetallic catalysts
Gomez, Elaine; Kattel, Shyam; Yan, Binhang; ...
2018-04-11
In this paper, the inherent variability and insufficiencies in the co-production of propylene from steam crackers has raised concerns regarding the global propylene production gap and has directed industry to develop more on-purpose propylene technologies. The oxidative dehydrogenation of propane by CO 2 (CO 2-ODHP) can potentially fill this gap while consuming a greenhouse gas. Non-precious FeNi and precious NiPt catalysts supported on CeO 2 have been identified as promising catalysts for CO 2-ODHP and dry reforming, respectively, in flow reactor studies conducted at 823 K. In-situ X-ray absorption spectroscopy measurements revealed the oxidation states of metals under reaction conditionsmore » and density functional theory calculations were utilized to identify the most favorable reaction pathways over the two types of catalysts.« less
On the role of organic adlayers in the anomalous water sorptivity of Lépine limestone.
Ioannou, Ioannis; Hoff, William D; Hall, Christopher
2004-11-01
Sorptivity data are reported for the capillary absorption of water, ethanol, propan-2-ol, and n-heptane by the calcitic limestone Lépine (Lavoux à grain). The data confirm that the water sorptivity is anomalously low, an indication of partial wetting by water. Results are expressed in terms of a wetting index. The water sorptivity increases after heat treatment and chemical oxidation by hydrogen peroxide bleaching, while the sorptivity with organic liquids is unchanged. These treatments, therefore, increase the water wetting index. The results provide strong evidence that the presence of a natural organic adlayer is responsible for the anomalously low water sorptivity of this particular limestone. This natural water repellency effect may be exploited in developing chemical treatments to modify the water transport properties of stone.
Lefort, I; Herreros, J M; Tsolakis, A
2014-02-18
The interactions between exhaust gas species and their effect (promotion or inhibition) on the light-off and activity of a diesel oxidation catalyst (DOC) for the removal of pollutants are studied, using actual engine exhaust gases from the combustion of diesel, alternative fuels (rapeseed methyl ester and gas-to-liquid fuel) and diesel/propane dual fuel combustion. The activity of the catalyst was recorded during a heating temperature ramp where carbon monoxide (CO) and hydrocarbon (HC) light-off curves were obtained. From the catalyst activity tests, it was found that the presence of species including CO, medium-heavy HC, alkenes, alkanes, and NOx and their concentration influence the catalyst ability to reduce CO and total HC emissions before release to the atmosphere. CO could inhibit itself and other species oxidation (e.g., light and medium-heavy hydrocarbons) while suffering from competitive adsorption with NO. Hydrocarbon species were also found to inhibit their own oxidation as well as CO through adsorption competition. On the other hand, NO2 was found to promote low temperature HC oxidation through its partial reduction, forming NO. The understanding of these exhaust species interactions within the DOC could aid the design of an efficient aftertreatment system for the removal of diesel exhaust pollutants.
Sanjeeva Gandhi, M; Mok, Young Sun
2014-12-01
In order to explore the effects of the shape of ZnO nanomaterials on the plasma-catalytic decomposition of butane and the distribution of byproducts, three types of ZnO nanomaterials (nanoparticles (NPs), nanorods (NRs) and nanowires (NWs)) were prepared and coated on multi-channel porous alumina ceramic membrane. The structures and morphologies of the nanomaterials were confirmed by X-ray diffraction method and scanning electron microscopy. The observed catalytic activity of ZnO in the oxidative decomposition of butane was strongly shape-dependent. It was found that the ZnO NWs exhibited higher catalytic activity than the other nanomaterials and could completely oxidize butane into carbon oxides (COx). When using the bare or ZnO NPs-coated ceramic membrane, several unwanted partial oxidation and decomposition products like acetaldehyde, acetylene, methane and propane were identified during the decomposition of butane. When the ZnO NWs- or ZnO NRs-coated membrane was used, however, the formation of such unwanted byproducts except methane was completely avoided, and full conversion into COx was achieved. Better carbon balance and COx selectivity were obtained with the ZnO NWs and NRs than with the NPs. Copyright © 2014 Elsevier Ltd. All rights reserved.
Chemical kinetic models for combustion of hydrocarbons and formation of nitric oxide
NASA Technical Reports Server (NTRS)
Jachimowski, C. J.; Wilson, C. H.
1980-01-01
The formation of nitrogen oxides NOx during combustion of methane, propane, and a jet fuel, JP-4, was investigated in a jet stirred combustor. The results of the experiments were interpreted using reaction models in which the nitric oxide (NO) forming reactions were coupled to the appropriate hydrocarbon combustion reaction mechanisms. Comparison between the experimental data and the model predictions reveals that the CH + N2 reaction process has a significant effect on NO formation especially in stoichiometric and fuel rich mixtures. Reaction models were assembled that predicted nitric oxide levels that were in reasonable agreement with the jet stirred combustor data and with data obtained from a high pressure (5.9 atm (0.6 MPa)), prevaporized, premixed, flame tube type combustor. The results also suggested that the behavior of hydrocarbon mixtures, like JP-4, may not be significantly different from that of pure hydrocarbons. Application of the propane combustion and nitric oxide formation model to the analysis of NOx emission data reported for various aircraft gas turbines showed the contribution of the various nitric oxide forming processes to the total NOx formed.
Redmond, Molly C; Valentine, David L
2012-12-11
Microbial communities present in the Gulf of Mexico rapidly responded to the Deepwater Horizon oil spill. In deep water plumes, these communities were initially dominated by members of Oceanospirillales, Colwellia, and Cycloclasticus. None of these groups were abundant in surface oil slick samples, and Colwellia was much more abundant in oil-degrading enrichment cultures incubated at 4 °C than at room temperature, suggesting that the colder temperatures at plume depth favored the development of these communities. These groups decreased in abundance after the well was capped in July, but the addition of hydrocarbons in laboratory incubations of deep waters from the Gulf of Mexico stimulated Colwellia's growth. Colwellia was the primary organism that incorporated (13)C from ethane and propane in stable isotope probing experiments, and given its abundance in environmental samples at the time that ethane and propane oxidation rates were high, it is likely that Colwellia was active in ethane and propane oxidation in situ. Colwellia also incorporated (13)C benzene, and Colwellia's abundance in crude oil enrichments without natural gas suggests that it has the ability to consume a wide range of hydrocarbon compounds or their degradation products. However, the fact that ethane and propane alone were capable of stimulating the growth of Colwellia, and to a lesser extent, Oceanospirillales, suggests that high natural gas content of this spill may have provided an advantage to these organisms.
1970-01-01
dlcarbide (Cr5C2) Heptachromium tricarbide (CrTCj) Chromium chlorides: CrCl2 CrClj Chromium dichloride (CrC^) Chromium trichloride (CrC...methane (see Propane) Dysprosia (see Dysprosium oxide) Dysprosium Dysprosium trichloride hexahydrate (DyClj-6HjO) Dysprosium oxide (DyjOj...Dysprosium sesquioxide (see Dysprosium oxide) Didysprosium trioxide (see Dysprosium oxide) Erbia (see Erbium oxide) Erbium Erbium trichloride
NASA Astrophysics Data System (ADS)
Wang, Haoren; Wang, Hui; Li, Xiuyi; Li, Chunyi
2017-06-01
Different with Wang et. al.'s study, we found that polymeric Si-O-Sn2+ rather than Ni-Sn alloy and metallic Sn are active species in silica-supported tin oxide catalysts for dehydrogenation of propane. The results showed that high surface area of mesoporous silica brought about high dispersion of tin oxide species, as a result, catalytic activity and stability were both improved. DRUV-vis, XPS, TPR and XRD studies of fresh and reduced catalysts indicated that the deactivation was related to the reduction of active species rather than the coke formation since active tin species cannot maintain its oxidation state at reaction conditions (high temperature and reducing atmosphere). The formed Ni3Sn2 alloy after reduction just functioned as promoter which accelerated the desorption of H2 and regeneration of active site. A synergy effect between active tin species and Ni3Sn2 alloy were observed.
Main-group compounds selectively oxidize mixtures of methane, ethane, and propane to alcohol esters.
Hashiguchi, Brian G; Konnick, Michael M; Bischof, Steven M; Gustafson, Samantha J; Devarajan, Deepa; Gunsalus, Niles; Ess, Daniel H; Periana, Roy A
2014-03-14
Much of the recent research on homogeneous alkane oxidation has focused on the use of transition metal catalysts. Here, we report that the electrophilic main-group cations thallium(III) and lead(IV) stoichiometrically oxidize methane, ethane, and propane, separately or as a one-pot mixture, to corresponding alcohol esters in trifluoroacetic acid solvent. Esters of methanol, ethanol, ethylene glycol, isopropanol, and propylene glycol are obtained with greater than 95% selectivity in concentrations up to 1.48 molar within 3 hours at 180°C. Experiment and theory support a mechanism involving electrophilic carbon-hydrogen bond activation to generate metal alkyl intermediates. We posit that the comparatively high reactivity of these d(10) main-group cations relative to transition metals stems from facile alkane coordination at vacant sites, enabled by the overall lability of the ligand sphere and the absence of ligand field stabilization energies in systems with filled d-orbitals.
Sharp, Jonathan O; Sales, Christopher M; Alvarez-Cohen, Lisa
2010-12-15
Propane-induced cometabolic degradation of n-nitrosodimethylamine (NDMA) by two propanotrophs is characterized through kinetic, gene presence, and expression studies. After growth on propane, resting cells of Rhodococcus sp. RR1 possessed a maximum transformation rate (v(max,n)) of 44 ± 5 µg NDMA (mg protein)(-1) h(-1); the rate for Mycobacterium vaccae (austroafricanum) JOB-5 was modestly lower with v(max,n) of 28 ± 3 µg NDMA (mg protein)(-1) h(-1). Both strains were capable of degrading environmentally relevant, trace quantities of NDMA to below the experimental limit of detection, calculated as 20 ng NDMA L(-1). However, a comparison of half saturation constants (K(s,n)) and NDMA degradation in the presence of propane revealed pronounced differences between the strains. The K(s,n) for strain RR1 was 36 ± 10 µg NDMA L(-1) while the propane concentration needed to inhibit NDMA rates by 50% (K(inh)) occurred at 7,700 µg propane L(-1) (R(2) = 0.9669). In contrast, strain JOB-5 had a markedly lower affinity for NDMA verses propane with a calculated K(s,n) of 2,200 ± 1,000 µg NDMA L(-1) and K(inh) of 120 µg propane L(-1) (R(2) = 0.9895). Genomic and transcriptional investigations indicated that the functional enzymes involved in NDMA degradation and propane metabolism are different for each strain. For Rhodococcus sp. RR1, a putative propane monooxygenase (PrMO) was identified and implicated in NDMA oxidation. In contrast, JOB-5 was not found to possess a PrMO homologue and two functionally analogous alkane monoxygenases (AlkMOs) were not induced by growth on propane. Differences between the PrMO in this Rhodococcus and the unidentified enzyme(s) in the Mycobacterium may explain differences in NDMA degradation and inhibition kinetics between these strains. © 2010 Wiley Periodicals, Inc.
Cool Flames in Propane-Oxygen Premixtures at Low and Intermediate Temperatures at Reduced-Gravity
NASA Technical Reports Server (NTRS)
Pearlman, Howard; Foster, Michael; Karabacak, Devrez
2003-01-01
The Cool Flame Experiment aims to address the role of diffusive transport on the structure and the stability of gas-phase, non-isothermal, hydrocarbon oxidation reactions, cool flames and auto-ignition fronts in an unstirred, static reactor. These reactions cannot be studied on Earth where natural convection due to self-heating during the course of slow reaction dominates diffusive transport and produces spatio-temporal variations in the thermal and thus species concentration profiles. On Earth, reactions with associated Rayleigh numbers (Ra) less than the critical Ra for onset of convection (Ra(sub cr) approx. 600) cannot be achieved in laboratory-scale vessels for conditions representative of nearly all low-temperature reactions. In fact, the Ra at 1g ranges from 10(exp 4) - 10(exp 5) (or larger), while at reduced-gravity, these values can be reduced two to six orders of magnitude (below Ra(sub cr)), depending on the reduced-gravity test facility. Currently, laboratory (1g) and NASA s KC-135 reduced-gravity (g) aircraft studies are being conducted in parallel with the development of a detailed chemical kinetic model that includes thermal and species diffusion. Select experiments have also been conducted at partial gravity (Martian, 0.3gearth) aboard the KC-135 aircraft. This paper discusses these preliminary results for propane-oxygen premixtures in the low to intermediate temperature range (310- 350 C) at reduced-gravity.
Dostert, Karl-Heinz; O'Brien, Casey P.; Mirabella, Francesca; Ivars-Barceló, Francisco
2016-01-01
Atomistic-level understanding of the interaction of α,β-unsaturated aldehydes and their derivatives with late transition metals is of fundamental importance for the rational design of new catalytic materials with the desired selectivity towards C 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 1111111111111111111111111111111111 1111111111111111111111111111111111 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 1111111111111111111111111111111111 1111111111111111111111111111111111 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 C vs. CO bond partial hydrogenation. In this study, we investigate the interaction of acrolein, and its partial hydrogenation products propanal and allyl alcohol, with Pd(111) as a prototypical system. A combination of infrared reflection–absorption spectroscopy (IRAS) and temperature programmed desorption (TPD) experiments was applied under well-defined ultrahigh vacuum (UHV) conditions to obtain detailed information on the adsorption geometries of acrolein, propanal, and allyl alcohol as a function of coverage. We compare the IR spectra obtained for multilayer coverages, reflecting the molecular structure of unperturbed molecules, with the spectra acquired for sub-monolayer coverages, at which the chemical bonds of the molecules are strongly distorted. Coverage-dependent IR spectra of acrolein on Pd(111) point to the strong changes in the adsorption geometry with increasing acrolein coverage. Acrolein adsorbs with the CC and CO bonds lying parallel to the surface in the low coverage regime and changes its geometry to a more upright orientation with increasing coverage. TPD studies indicate decomposition of the species adsorbed in the sub-monolayer regime upon heating. Similar strong coverage dependence of the IR spectra were found for propanal and allyl alcohol. For all investigated molecules a detailed assignment of vibrational bands is reported. PMID:27149902
Development of a Two-Stage Mars Ascent Vehicle Using In-Situ Propellant Production
NASA Technical Reports Server (NTRS)
Paxton, Laurel; Vaughan, David
2014-01-01
Mars Sample Return (MSR) and Mars In-Situ Resource Utilization (ISRU) present two main challenges for the advancement of Mars science. MSR would demonstrate Mars lift-off capability, while ISRU would test the ability to produce fuel and oxidizer using Martian resources, a crucial step for future human missions. A two-stage Mars Ascent Vehicle (MAV) concept was developed to support sample return as well as in-situ propellant production. The MAV would be powered by a solid rocket first stage and a LOX-propane second stage. A liquid second-stage provides higher orbit insertion reliability than a solid second stage as well as a degree of complexity eventually required for manned missions. Propane in particular offers comparable performance to methane without requiring cryogenic storage. The total MAV mass would be 119.9 kg to carry an 11 kg payload to orbit. The feasibility of in-situ fuel and oxidizer production was also examined. Two potential schemes were evaluated for production capability, size and power requirements. The schemes examined utilize CO2 and water as starting blocks to produce LOX and a propane blend. The infrastructure required to fuel and launch the MAV was also explored.
1994-07-01
Propane) Final Report Prepared by: J.A. Kosek A.B. LaConti C.C. Cropley ŕ 1:July 1994 U.S. ARMY RESEARCH OFFICE Contract No. DAAL03-92-C-001 1 GINER, INC...LaConti, C.C. Cropley 7. PERFORMING ORGANIZATION NAME(S) AND AORESS(E5 U. PERFORMING ORGANIZATION GINER, INC. REPORT NUMBER 14 Spring Street Waltham...SCIENTIFIC PERSONNEL A.B. LaConti and J.A. Kosek - Principal Investigators; C.C. Cropley , G. Wilson, J. Unger, S. McCatty, A. Griffith, and M. Hamdan
Kinetics of Hydrogen Oxidation Downstream of Lean Propane and Hydrogen Flames
NASA Technical Reports Server (NTRS)
Fine, Burton
1961-01-01
The decay of hydrogen was measured downstream of lean, flat, premixed hydrogen and propane-air flames seated on cooled porous burners. Experimental variables included temperature, pressure, initial equivalence ratio and diluent. Sampling of burned gas was done through uncooled quartz orifice probes, and the analysis was based on gas chromatography. An approximate treatment of the data in which diffusion was neglected led to the following rate expression for the zone downstream of hydrogen flames d[H (sub 2)] divided by (d times t) equals 1.7 times 10 (sup 10) [H (sub 2)] (sup 3) divided by (sub 2) [O (sub 2)]e (sup (-8100 divided by RT)) moles per liters per second. On the basis of a rate expression of this form, the specific rate constant for the reaction downstream of hydrogen flames was about three times as great as that determined downstream of propane flames. This result was explained on the basis of the existence of a steady state between hydrogen and carbon monoxide in the burned gas downstream of propane flames.
A two-dimensional study of ethane and propane oxidation in the troposphere
NASA Technical Reports Server (NTRS)
Kanakidou, M.; Valentin, K. M.; Crutzen, P. J.; Singh, H. B.
1991-01-01
The chemistry of ethane and propane is studied using a global two-dimensional 'zonally averaged' height- and latitude-dependent tropospheric model. The purpose of the study is to derive theoretical estimates of the seasonal and latitudinal distributions of a variety of intermediate organic compounds formed by the photochemical oxidation of C2H6 and C3H8. It is shown that C2H6 and C3H8 emitted at rates of 16 Tg C2H6/a and 23 Tg C3H8/a do not affect the overall photochemistry of the troposphere significantly. Major global effects on O3 and OH concentrations are suggested to be coming from the formation of peroxyacetyl nitrate by the interactions of NOx with other hydrocarbons with strong and spatially correlated anthropogenic or natural sources at the earth's surface. It is pointed out that attention should be given to organic nitrates produced by the oxidation of NMHC other than C2H6 and C3H8.
Reinelt, Sebastian; Steinke, Daniel
2014-01-01
Summary In this work we report the synthesis of thermo-, oxidation- and cyclodextrin- (CD) responsive end-group-functionalized polymers, based on N,N-diethylacrylamide (DEAAm). In a classical free-radical chain transfer polymerization, using thiol-functionalized 4-alkylphenols, namely 3-(4-(1,1-dimethylethan-1-yl)phenoxy)propane-1-thiol and 3-(4-(2,4,4-trimethylpentan-2-yl)phenoxy)propane-1-thiol, poly(N,N-diethylacrylamide) (PDEAAm) with well-defined hydrophobic end-groups is obtained. These end-group-functionalized polymers show different cloud point values, depending on the degree of polymerization and the presence of randomly methylated β-cyclodextrin (RAMEB-CD). Additionally, the influence of the oxidation of the incorporated thioether linkages on the cloud point is investigated. The resulting hydrophilic sulfoxides show higher cloud point values for the lower critical solution temperature (LCST). A high degree of functionalization is supported by 1H NMR-, SEC-, FTIR- and MALDI–TOF measurements. PMID:24778720
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Zhanyong; Peters, Aaron W.; Platero-Prats, Ana E.
Few-atom cobalt-oxide clusters, when dispersed on a Zr-based metal–organic framework (MOF) NU-1000, have previously been shown to be active for the oxidative dehydrogenation (ODH) of propane at low temperatures (< 230 °C), affording a selective and stable propene production catalyst. In our current work, a series of promoter ions with varying Lewis acidity, including Ni(II), Zn(II), Al(III), Ti(IV) and Mo(VI), are anchored as metal-oxide,hydroxide clusters to NU-1000 via SIM (solvothermal deposition within MOFs–specifically the nodes) followed by incorporation of Co(II) ions via vapor-phase AIM (atomic layer deposition (ALD) in MOFs). This process yields a series of NU-1000-supported bimetallic-oxo,hydroxo,aqua clusters. Usingmore » difference envelope density (DED) analyses, the spatial locations of the promoter ions and catalytic cobalt ions are determined. For all samples the SIM-anchored promoter ions are sited between pairs of Zr 6 nodes along the MOF c-axis (channel-aligned axis) whereas the location of the AIM-anchored cobalt ions varies depending on the identity of promoter metal ion. With Ni(II)-, Al(III)-, or Ti(IV)-containing clusters as promoters, the oxy-cobalt species are sited atop the promoter sites; with Mo(VI) they grow exclusively on the MOF nodes sites (hexa-Zr(IV)- oxo,hydroxo,aqua units); with Zn(II) they grow on both the node and promoter. The NU-1000- supported bimetallic-oxide clusters are active for propane ODH after thermal activation under O 2 to open a cobalt coordination site and to oxidize Co(II) to Co(III), as evidenced by operando Xray absorption spectroscopy at the Co K-edge. The cobalt component is exclusively responsible for the observed catalysis. In accord with the decreasing Lewis acidity of the promoter ion, catalytic activity increases in the order: Mo(VI)« less
Li, Zhanyong; Peters, Aaron W.; Platero-Prats, Ana E.; ...
2017-10-04
Few-atom cobalt-oxide clusters, when dispersed on a Zr-based metal–organic framework (MOF) NU-1000, have previously been shown to be active for the oxidative dehydrogenation (ODH) of propane at low temperatures (< 230 °C), affording a selective and stable propene production catalyst. In our current work, a series of promoter ions with varying Lewis acidity, including Ni(II), Zn(II), Al(III), Ti(IV) and Mo(VI), are anchored as metal-oxide,hydroxide clusters to NU-1000 via SIM (solvothermal deposition within MOFs–specifically the nodes) followed by incorporation of Co(II) ions via vapor-phase AIM (atomic layer deposition (ALD) in MOFs). This process yields a series of NU-1000-supported bimetallic-oxo,hydroxo,aqua clusters. Usingmore » difference envelope density (DED) analyses, the spatial locations of the promoter ions and catalytic cobalt ions are determined. For all samples the SIM-anchored promoter ions are sited between pairs of Zr 6 nodes along the MOF c-axis (channel-aligned axis) whereas the location of the AIM-anchored cobalt ions varies depending on the identity of promoter metal ion. With Ni(II)-, Al(III)-, or Ti(IV)-containing clusters as promoters, the oxy-cobalt species are sited atop the promoter sites; with Mo(VI) they grow exclusively on the MOF nodes sites (hexa-Zr(IV)- oxo,hydroxo,aqua units); with Zn(II) they grow on both the node and promoter. The NU-1000- supported bimetallic-oxide clusters are active for propane ODH after thermal activation under O 2 to open a cobalt coordination site and to oxidize Co(II) to Co(III), as evidenced by operando Xray absorption spectroscopy at the Co K-edge. The cobalt component is exclusively responsible for the observed catalysis. In accord with the decreasing Lewis acidity of the promoter ion, catalytic activity increases in the order: Mo(VI)« less
40 CFR 90.329 - Catalyst thermal stress test.
Code of Federal Regulations, 2010 CFR
2010-07-01
....3 Carbon Dioxide 3.8 Water Vapor 10 Sulfer dioxide 20 Oxides of nitrogen 280 Hydrogen 3500 Hydrocarbon* 4000 Nitrogen = Balance * Propylene/propane ratio = 2/1. (c) Phase 2 engines. The catalyst...
40 CFR 90.329 - Catalyst thermal stress test.
Code of Federal Regulations, 2014 CFR
2014-07-01
....3 Carbon Dioxide 3.8 Water Vapor 10 Sulfer dioxide 20 Oxides of nitrogen 280 Hydrogen 3500 Hydrocarbon* 4000 Nitrogen = Balance * Propylene/propane ratio = 2/1. (c) Phase 2 engines. The catalyst...
40 CFR 90.329 - Catalyst thermal stress test.
Code of Federal Regulations, 2011 CFR
2011-07-01
....3 Carbon Dioxide 3.8 Water Vapor 10 Sulfer dioxide 20 Oxides of nitrogen 280 Hydrogen 3500 Hydrocarbon* 4000 Nitrogen = Balance * Propylene/propane ratio = 2/1. (c) Phase 2 engines. The catalyst...
40 CFR 90.329 - Catalyst thermal stress test.
Code of Federal Regulations, 2012 CFR
2012-07-01
....3 Carbon Dioxide 3.8 Water Vapor 10 Sulfer dioxide 20 Oxides of nitrogen 280 Hydrogen 3500 Hydrocarbon* 4000 Nitrogen = Balance * Propylene/propane ratio = 2/1. (c) Phase 2 engines. The catalyst...
40 CFR 90.329 - Catalyst thermal stress test.
Code of Federal Regulations, 2013 CFR
2013-07-01
....3 Carbon Dioxide 3.8 Water Vapor 10 Sulfer dioxide 20 Oxides of nitrogen 280 Hydrogen 3500 Hydrocarbon* 4000 Nitrogen = Balance * Propylene/propane ratio = 2/1. (c) Phase 2 engines. The catalyst...
NASA Technical Reports Server (NTRS)
Ingebo, R. D.; Norgren, C. T.
1973-01-01
A combustor segment 0.457 meter (18 in.) long with a maximum cross section of 0.153 by 0.305 meter (6 by 12 in.) was operated at inlet-air temperatures of 590 and 700 K, inlet-air pressures of 4 and 10 atmospheres, and fuel-air ratios of 0.014 and 0.018 to determine the effect of primary-zone water injection on pollutants from burning either propane or ASTM A-1 fuel. At a simulated takeoff condition of 10 atmospheres and 700 K, multiple-orifice nozzles used to inject water at 1 percent of the airflow rate reduced nitrogen oxides 75 percent with propane and 65 percent with ASTM A-1 fuel. Although carbon monoxide and unburned hydrocarbons increased with water injection, they remained relatively low; and smoke numbers were well below the visibility limit.
The use of hydrazine as an alternate source of energy
NASA Technical Reports Server (NTRS)
Carvalho, J. A., Jr.; Bressan, C.; Ferreira, J. L.
1984-01-01
The potentials of using hydrazine as an alternative source of energy was studied. Three chemical reactions are considered: oxidation with air, oxidation with hydrogen peroxide, and thermocatalytic decomposition. Performance data of gasoline, ethylic alcohol, and propane are compared. An item about the NO(x) emissions by the various investigated reactions is included. Promising results are shown, mainly those regarding the available energy per unit volume of unburned gases (vaporized fuel and oxidizer).
Code of Federal Regulations, 2010 CFR
2010-07-01
... Chlorine T Dimethylamine F+T Ethane F Ethyl chloride F+T Ethylene F Ethylene oxide F+T Methyl-acetylene and propadiene (mixtures) F Methyl bromide F+T Methyl chloride F+T Propane F Propylene F Sulphur dioxide T Vinyl...
Code of Federal Regulations, 2011 CFR
2011-07-01
... Chlorine T Dimethylamine F+T Ethane F Ethyl chloride F+T Ethylene F Ethylene oxide F+T Methyl-acetylene and propadiene (mixtures) F Methyl bromide F+T Methyl chloride F+T Propane F Propylene F Sulphur dioxide T Vinyl...
Study of the Low Temperature Oxidation of Propane
Cord, Maximilien; Husson, Benoit; Huerta, Juan Carlos Lizardo; Herbinet, Olivier; Glaude, Pierre-Alexandre; Fournet, René; Sirjean, Baptiste; Battin-Leclerc, Frédérique; Ruiz-Lopez, Manuel; Wang, Zhandong; Xie, Mingfeng; Cheng, Zhanjun; Qi, Fei
2013-01-01
The low-temperature oxidation of propane was investigated using a jet-stirred reactor at atmospheric pressure and two methods of analysis: gas chromatography and synchrotron vacuum ultraviolet photoionization mass spectrometry (SVUV-PIMS) with direct sampling through a molecular jet. The second method allowed the identification of products, such as molecules with hydroperoxy functions, which are not stable enough to be detected by gas chromatography. Mole fractions of the reactants and reaction products were measured as a function of the temperature (530-730 K), with a particular attention to reaction products involved in the low temperature oxidation, such as cyclic ethers, aldehydes, alcohols, ketones, and hydroperoxides. A new model has been obtained from an automatically generated one, which was used as a starting point, with a large number of re-estimated thermochemical and kinetic data. The kinetic data of the most sensitive reactions, i.e., isomerizations of alkylperoxy radicals and the subsequent decompositions, have been calculated at the CBS-QB3 level of theory. The model allows a satisfactory prediction of the experimental data. A flow rate analysis has allowed highlighting the important reaction channels. PMID:23181456
Organic History and Ice-Rock Decoupling on Enceladus
NASA Astrophysics Data System (ADS)
Zolotov, M. Y.
2007-12-01
The Cassini detection of methane, propane and acetylene in the Enceladus plume, and condensed organic compounds (OC) on the south polar region imply an organic-bearing interior of the moon. At least a few wt. % of C is expected in rocks from which Enceladus accreted. By analogy with carbonaceous chondrites, the majority of accreted OC was in a polymer in which polyaromatic groups are linked by O-, N-, and S-bearing aliphatic units. If accreted, cometary-type materials also delivered CO2, CO(?), methanol, ethane, ethene, acetylene, and condensed OC. Subsequent water ice melting and hydrothermal processes driven by decay of short-lived radionuclides led to dissolution of CO, CO2 and methanol in water and transformations of the polymer and cometary OC. CO converted to formic acid, carbonate species, methanol and methane. Hydrous pyrolysis and oxidation of the polymer partially liberated aromatic molecules and led to the formation of O-bearing OC (carboxylic and amino acids, alcohols). Increase in temperature favored oxidation of OC to carbonate species and N2, and led to graphitization of the polymer. Despite net oxidation of OC driven by H2 escape, mineral- catalyzed Fisher-Tropsch like synthesis of hydrocarbons and methane occurred in H2-rich niches. As a result, an array of aromatic, aliphatic, and N-, O-, S-bearing OC, and methane was delivered into a primordial water ocean in hydrothermal fluids. Highly soluble OC (acids, alcohols) made multiple passes through hydrothermal systems causing further oxidation of OC in rocks and solutions. In contrast, hydrocarbons exolved from cold oceanic water and formed an organic layer below the ice shell. Subsequent cooling of ocean-entering fluids and ocean freezing from above led to further separation and accumulation of OC. Some OC was trapped in ice, and methane formed clathrates. After freezing of salt eutectic brines, the light oil (a solution/mixture of ethane, propane, butane, ethene, acetylene, methanol, toluene etc.) remained unfrozen and decoupled the ice shell from underlying salt deposits and rocks. Even after oil solidification, if it occurred, the organic layer had a lower viscosity than salts and ice. An uneven pressure and/or topography at the ice-salt boundary could have led to preferential oil (and salt?) accumulation below the south polar region. Throughout history (and today), the uneven oil-rich layer could have favored tidal motions and heat generation at the bottom of the ice shell.
Emission measurements for a lean premixed propane/air system at pressures up to 30 atmospheres
NASA Technical Reports Server (NTRS)
Roffe, G.; Venkataramani, K. S.
1978-01-01
The emissions of a lean premixed system of propane/air were measured in a flametube apparatus. Tests were conducted at inlet temperatures of 600K and 800K and pressures of 10 atm and 30 atm over a range of equivalence ratios. The data obtained were combined with previous data taken in the same apparatus to correlate nitrogen oxide emissions with operating conditions. Sampling probe design was found to have a pronounced effect on measured CO levels but did not influence measurements. The most effective probe tested was one which combined thermal and pressure quenching of the gas sample.
Introduction to Rocket Propulsion
1991-12-01
such as epoxies, MAPO (a trifunctional aziridinyl phosphine oxide), MT-4, various isocyanates, such a TDI, HDI, IPDI, and polyols such as trimethylol...propane (2) Burning rate catalysts, such as copper chromite (or chromate), ferrocene , and several less migratory derivatives of this organic iron
Li, Zhanyong; Peters, Aaron W.; Bernales, Varinia; ...
2016-11-30
Here, Zr-based metal–organic frameworks (MOFs) have been shown to be excellent catalyst supports in heterogeneous catalysis due to their exceptional stability. Additionally, their crystalline nature affords the opportunity for molecular level characterization of both the support and the catalytically active site, facilitating mechanistic investigations of the catalytic process. We describe herein the installation of Co(II) ions to the Zr 6 nodes of the mesoporous MOF, NU-1000, via two distinct routes, namely, solvothermal deposition in a MOF (SIM) and atomic layer deposition in a MOF (AIM), denoted as Co-SIM+NU-1000 and Co-AIM+NU-1000, respectively. The location of the deposited Co species in themore » two materials is determined via difference envelope density (DED) analysis. Upon activation in a flow of O 2 at 230 °C, both materials catalyze the oxidative dehydrogenation (ODH) of propane to propene under mild conditions. Catalytic activity as well as propene selectivity of these two catalysts, however, is different under the same experimental conditions due to differences in the Co species generated in these two materials upon activation as observed by in situ X-ray absorption spectroscopy. A potential reaction mechanism for the propane ODH process catalyzed by Co-SIM+NU-1000 is proposed, yielding a low activation energy barrier which is in accord with the observed catalytic activity at low temperature.« less
Microencapsulation of fish oil by spray granulation and fluid bed film coating.
Anwar, Sri Haryani; Weissbrodt, Jenny; Kunz, Benno
2010-08-01
The stability of microencapsulated fish oil prepared with 2 production processes, spray granulation (SG) and SG followed by film coating (SG-FC) using a fluid bed equipment, was investigated. In the 1st process, 3 types of fish oil used were based on the ratios of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) (10/50, 33/22, and 18/12). Each type was emulsified with soluble soybean polysaccharide (SSPS) and maltodextrin to produce 25% oil powders. In the 2nd process, 15% film coating of hydroxypropyl betacyclodextrin (HPBCD) was applied to the granules from the 1st process. The powder stability against oxidation was examined by measurement of peroxide values (PV) and headspace propanal after storage at room temperature and at 3 to 4 degrees C for 6 wk. Uncoated powder containing the lowest concentration of PUFA (18/12) was found to be stable during storage at room temperature with maximum PV of 3.98 +/- 0.001 meq/kg oil. The PV increased sharply for uncoated powder with higher concentration of omega-3 (in 33/22 and 10/50 fish oils) after 3 wk storage. The PVs were in agreement with the concentration of propanal, and these 2 parameters remained constant for most of the uncoated powders stored at low temperature. Unexpectedly, the outcomes showed that the coated powders had lower stability than uncoated powders as indicated by higher initial PVs; more hydroperoxides were detected as well as increasing propanal concentration. The investigation suggests that the film-coating by HPBCD ineffectively protected fish oil as the coating process might have induced further oxidation; however, SG is a good method for producing fish oil powder and to protect it from oxidation because of the "onion skin" structure of granules produced in this process.
NASA Technical Reports Server (NTRS)
Anderson, D. N.
1976-01-01
Thirty commercially produced monolith and pellet catalysts were tested as part of a screening process to select catalysts suitable for use in a gas turbine combustor. The catalysts were contained in a 1.8 centimeter diameter quartz tube and heated to temperatures varying between 300 and 1,200 K while a mixture of propane and air passed through the bed at space velocities of 44,000 to 70,000/hour. The amount of propane oxidized was measured as a function of catalyst temperature. Of the samples tested, the most effective catalysts proved to be noble metal catalysts on monolith substrates.
NASA Astrophysics Data System (ADS)
Zhou, Junhong; Zhang, Wei; Yang, Jun; Jiang, Benzheng; Chen, Weiming
2016-05-01
In order to explore the interaction mechanism between 2,2-Bis (ethylferrocenyl) propane (GFP) and ammonium perchlorate (AP) at low temperature (below 250 °C), all the possible intermolecular interactions between GFP and AP were calculated. The calculations were performed in single molecule, cluster and slab models. The calculation results show that the interactions between GFP and AP at low temperature mainly come from GFP:-H+ and GFP-NH4+ pair interactions. We speculate that the interaction mechanism between GFP and AP at low temperature is that GFP/H+ or GFP/NH4+ interactions cause GFP to be protonated, and then protonated GFP is to further oxidized.
Chemical kinetic modeling of propane oxidation behind shock waves
NASA Technical Reports Server (NTRS)
Mclain, A. G.; Jachimowski, C. J.
1977-01-01
The stoichiometric combustion of propane behind incident shock waves was studied experimentally and analytically over a temperature range from 1700 K to 2600 K and a pressure range from 1.2 to 1.9 atm. Measurements of the concentrations of carbon monoxide (CO) and carbon dioxide (CO2) and the product of the oxygen atom and carbon dioxide concentrations (O)(CO) were made after passage of the incident shock wave. A kinetic mechanism was developed which, when used in a computer program for a flowing, reacting gas behind an incident shock wave predicted experimentally measured results quite well. Ignition delay times from the literature were also predicted quite well. The kinetic mechanism consisted of 59 individual kinetic steps.
Aerobic Biodegradation of N-Nitrosodimethylamine by the Propanotroph Rhodococcus ruber ENV425▿
Fournier, Diane; Hawari, Jalal; Halasz, Annamaria; Streger, Sheryl H.; McClay, Kevin R.; Masuda, Hisako; Hatzinger, Paul B.
2009-01-01
The propanotroph Rhodococcus ruber ENV425 was observed to rapidly biodegrade N-nitrosodimethylamine (NDMA) after growth on propane, tryptic soy broth, or glucose. The key degradation intermediates were methylamine, nitric oxide, nitrite, nitrate, and formate. Small quantities of formaldehyde and dimethylamine were also detected. A denitrosation reaction, initiated by hydrogen atom abstraction from one of the two methyl groups, is hypothesized to result in the formation of n-methylformaldimine and nitric oxide, the former of which decomposes in water to methylamine and formaldehyde and the latter of which is then oxidized further to nitrite and then nitrate. Although the strain mineralized more than 60% of the carbon in [14C]NDMA to 14CO2, growth of strain ENV425 on NDMA as a sole carbon and energy source could not be confirmed. The bacterium was capable of utilizing NDMA, as well as the degradation intermediates methylamine and nitrate, as sources of nitrogen during growth on propane. In addition, ENV425 reduced environmentally relevant microgram/liter concentrations of NDMA to <2 ng/liter in batch cultures, suggesting that the bacterium may have applications for groundwater remediation. PMID:19542346
Short-chain alkane cycling in deep Gulf of Mexico cold-seep sediments
NASA Astrophysics Data System (ADS)
Sibert, R.; Joye, S. B.; Hunter, K.
2015-12-01
Mixtures of light hydrocarbon gases are common in deep Gulf of Mexico cold-seep sediments, and are typically dissolved in pore fluids, adsorbed to sediment particles, trapped in methane ice, or as free gas. The dominant component in these natural gas mixtures is usually methane (>80% C1), but ethane (C2) and propane (C3) are nearly always present in trace amounts (<1% total). The processes that control the concentration and isotopic signature of these gases in sediments are well explained for methane, but the controls for C2/C3 cycling are still a relative mystery. Methane production proceeds in deep anoxic sediments by either 1) thermocatalytic cracking of fossil organic matter, or 2) as a direct product of microbial metabolism, i.e. methanogenesis. In surface sediments, it appears that both microbial consumption and chemical deposition of methane (i.e. as methane clathrate) ensures that >95% of the methane produced at depth never reaches the water column. Production of C1 and C2 in deep-sea sediments has been historically attributed only to thermocatalytic processes, though limited data suggests production of C2/C3 compounds through the activity of archaea at depth. Furthermore, carbon isotopic data on ethane and propane from deep cores of Gulf of Mexico sediments suggest alkanogenesis at >3 m depth in the sediment column and alkane oxidation in uppermost oxidant-rich sediments. Additional studies have also isolated microorganisms capable of oxidizing ethane and propane in the laboratory, but field studies of microbial-driven dynamics of C2/C3 gases in cold-seep sediments are rare. Here, we present the results of a series of incubation experiments using sediment slurries culled from surface sediments from one of the most prolific natural oil and gas seeps in the Gulf of Mexico. Rates of alkane oxidation were measured under a variety of conditions to assess the surface-driven microbial controls on C2/C3 cycling in cold-seep environments. Such microbial processes are important in terms of the possible 'oxidative overprinting' of alkane isotopic signatures produced at depth, possibly obscuring typical microbial isotopic signals.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Patel, R.N.; Hou, C.T.; Laskin, A.I.
Cell suspensions of methane-utilizing bacteria grown on methane oxidized n-alkanes (propane, butane, pentane, hexane) to their corresponding methylketones (acetone, 2-butanone, 2-pentanone, 2-hexanone). The product methylketones accumulated extracellularly. The rate of production of methylketones varied with the organism used for oxidation; however, the average rate of acetone, 2-butanone, 2-pentanone, and 2-hexanone production was 1.2, 1.0, 0.15, and 0.025 ..mu..mol/h per 5.0 mg of protein in cell suspensions. Primary alcohols and aldehydes were also detected in low amounts as products of n-alkane (propane and butane) oxidation, but were rapidly metabolized further by cell suspensions. The optimal conditions for in vivo methylketone formationmore » from n-alkanes were compared in Methylococcus capsulatus (Texas strain), Methylosinus sp. (CRL-15), and Methylobacterium sp. (CRL-26). The rate of acetone and 2-butanone production was linear for the first 60 min of incubation and directly increased with cell concentration up to 10 mg of protein per ml for all three cultures tested. The optimal temperatures for the production of acetone and 2-butanone were 35/sup 0/C for Methylosinus trichosporium sp. (CRL-15) and Methylobacterium sp. (CRL-26) and 40/sup 0/C for Methylococcus capsulatus (Texas). Metal-chelating agents inhibited the production of methylketones, suggesting the involvement of a metal-containing enzymatic system in the oxidation of n-alkanes to the corresponding methylketones. The soluble crude extracts derived from methane-utilizing bacteria contained an oxidized nicotinamide adenine dinucleotide-dependent dehydrogenase which catalyzed the oxidation of secondary alcohols.« less
Catalytic propane dehydrogenation over In₂O₃–Ga₂O₃ mixed oxides
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tan, Shuai; Gil, Laura Briones; Subramanian, Nachal
2015-08-26
We have investigated the catalytic performance of novel In₂O₃–Ga₂O₃ mixed oxides synthesized by the alcoholic-coprecipitation method for propane dehydrogenation (PDH). Reactivity measurements reveal that the activities of In₂O₃–Ga₂O₃ catalysts are 1–3-fold (on an active metal basis) and 12–28-fold (on a surface area basis) higher than an In₂O₃–Al₂O₃ catalyst in terms of C₃H₈ conversion. The structure, composition, and surface properties of the In₂O₃–Ga₂O₃ catalysts are thoroughly characterized. NH₃-TPD shows that the binary oxide system generates more acid sites than the corresponding single-component catalysts. Raman spectroscopy suggests that catalysts that produce coke of a more graphitic nature suppress cracking reactions, leading tomore » higher C₃H₆ selectivity. Lower reaction temperature also leads to higher C₃H₆ selectivity by slowing down the rate of side reactions. XRD, XPS, and XANES measurements, strongly suggest that metallic indium and In₂O₃ clusters are formed on the catalyst surface during the reaction. The agglomeration of In₂O₃ domains and formation of a metallic indium phase are found to be irreversible under O₂ or H₂ treatment conditions used here, and may be responsible for loss of activity with increasing time on stream.« less
In-Situ Bioremediation of Solvent Saturated Soils Using Methane, Propane, and Butane-Oxidizers
2000-02-02
used as a degreasing agent, dry cleaning agent and solvent in various industries. It also can be found in household products such as spot cleaner...solvent widely used in various industries and can be found in many household products . 1,1,1-TCA is considered relatively highly soluble, therefore
Geochemical Tracers and Rates of Short-Chain Alkane Production in Gulf of Mexico Cold Seep Sediments
NASA Astrophysics Data System (ADS)
Sibert, R.; Bernard, B. B.; Brooks, J. M.; Hunter, K.; Joye, S. B.
2014-12-01
The organic-rich cold seep sediments in the deep Gulf of Mexico commonly contain mixtures of light hydrocarbon gases either dissolved in pore fluids, adsorbed to sediment particles, trapped in methane ice, or as free gas. The dominant component in these natural gas mixtures is typically methane (C1), but ethane (C2) and propane (C3) are nearly always present in trace or major amounts. The ratio of C1:C2:C3 varies but C2 and C3 are typically present at single digit percent levels, whereas methane usually dominates at >80%. Methane production proceeds by at least two well-studied mechanisms: either 1) by thermocatalytic cracking of fossil organic matter, or 2) as a direct product of microbial metabolism, methanogenesis. In contrast, ethane and propane production in deep-sea sediments has been historically attributed only to thermocatalytic processes. However, limited data suggests production of C2/C3 compounds through the activity of archaea. Such studies of microbial- driven dynamics of C2/C3 gases (i.e. 'alkanogenesis') in cold seep sediments are rare. Furthermore, the identities of potential substrates are poorly constrained and no attempt has been made to quantify production rates of C2/C3 gases. However, carbon isotopic data on ethane and propane from deep cores from the Gulf of Mexico suggest alkanogenesis at depth in the sediment column and alkane oxidation in uppermost oxidant-rich sediments. Here, we present the results of a series of incubation experiments using sediment slurries culled from GC600, one of the most prolific natural oil and gas seeps in the Gulf of Mexico. Rates of both alkane production and oxidation were measured under a variety of conditions to assess the net rates of alkane production and elucidate the driving microbiological mechanisms and controls on the central processes of >C1 alkane cycling in cold seep sediments. Microbial processes are important both in terms of alkane production and oxidation, raising many questions as to the biological production of these gases across the biosphere.
A comparative study of fungal and bacterial biofiltration treating a VOC mixture.
Estrada, José M; Hernández, Sergio; Muñoz, Raúl; Revah, Sergio
2013-04-15
Bacterial biofilters usually exhibit a high microbial diversity and robustness, while fungal biofilters have been claimed to better withstand low moisture contents and pH values, and to be more efficient coping with hydrophobic volatile organic compounds (VOCs). However, there are only few systematic evaluations of both biofiltration technologies. The present study compared fungal and bacterial biofiltration for the treatment of a VOC mixture (propanal, methyl isobutyl ketone-MIBK, toluene and hexanol) under the same operating conditions. Overall, fungal biofiltration supported lower elimination capacities than its bacterial counterpart (27.7 ± 8.9 vs 40.2 ± 5.4 gCm(-3) reactor h(-1)), which exhibited a final pressure drop 60% higher than that of the bacterial biofilter due to mycelial growth. The VOC mineralization ratio was also higher in the bacterial bed (≈ 63% vs ≈ 43%). However, the substrate biodegradation preference order was similar for both biofilters (propanal>hexanol>MIBK>toluene) with propanal partially inhibiting the consumption of the rest of the VOCs. Both systems supported an excellent robustness versus 24h VOC starvation episodes. The implementation of a fungal/bacterial coupled system did not significantly improve the VOC removal performance compared to the individual biofilter performances. Copyright © 2013 Elsevier B.V. All rights reserved.
SCATTERING OF SLOW NEUTRONS FROM PROPANE GAS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Strong, K.A.; Marshall, G.D.; Brugger, R.M.
1962-02-01
Measurements of the partial differential neutron scattering cross sections for room-temperature propane gas are reported. These measurements were made at incident energies of 0.0l01, 0.0254, 0.0736, and 0.102 ev at seven scattering angles between 16.3 and 84.7 deg using the Materials Testing Reactor phased chopper velocity selector. The data are convented to the scattering-law presentation and compared with three theoretical calculations: The ideal gas, using an effective mass obtained from an average of the mass tensors for the three types of H atoms in propane, gives poor agreement. The Krieger-Nelkin approximation, which includes the effect of zero-point vibrations, gives limitedmore » agreement for energy transfer less than 0.5 k/sub b/T at intermediate momentum transfers. At large momentum transfers where vibrational effects become important it underestimates the cross section. A modification of the Krieger- Nelkin theory that includes the effects of single-quantum transitions from the three lowest vibratlonal states gives better agreement. The discrepancies still present at large momentum and energy transfers are attributed to an uncertainty in the methylgroup barrier height for the three lowest energy modes, to the harmonlc oscillator approximation for these modes, and to the approximate molecular orientation averaging used in the calculation. (auth)« less
Neurock, Matthew; Tao, Zhiyuan; Chemburkar, Ashwin; Hibbitts, David D; Iglesia, Enrique
2017-04-28
Condensation and esterification are important catalytic routes in the conversion of polyols and oxygenates derived from biomass to fuels and chemical intermediates. Previous experimental studies show that alkanal, alkanol and hydrogen mixtures equilibrate over Cu/SiO 2 and form surface alkoxides and alkanals that subsequently promote condensation and esterification reactions. First-principle density functional theory (DFT) calculations were carried out herein to elucidate the elementary paths and the corresponding energetics for the interconversion of propanal + H 2 to propanol and the subsequent C-C and C-O bond formation paths involved in aldol condensation and esterification of these mixtures over model Cu surfaces. Propanal and hydrogen readily equilibrate with propanol via C-H and O-H addition steps to form surface propoxide intermediates and equilibrated propanal/propanol mixtures. Surface propoxides readily form via low energy paths involving a hydrogen addition to the electrophilic carbon center of the carbonyl of propanal or via a proton transfer from an adsorbed propanol to a vicinal propanal. The resulting propoxide withdraws electron density from the surface and behaves as a base catalyzing the activation of propanal and subsequent esterification and condensation reactions. These basic propoxides can readily abstract the acidic C α -H of propanal to produce the CH 3 CH (-) CH 2 O* enolate, thus initiating aldol condensation. The enolate can subsequently react with a second adsorbed propanal to form a C-C bond and a β-alkoxide alkanal intermediate. The β-alkoxide alkanal can subsequently undergo facile hydride transfer to form the 2-formyl-3-pentanone intermediate that decarbonylates to give the 3-pentanone product. Cu is unique in that it rapidly catalyzes the decarbonylation of the C 2n intermediates to form C 2n-1 3-pentanone as the major product with very small yields of C 2n products. This is likely due to the absence of Brønsted acid sites, present on metal oxide catalysts, that rapidly catalyze dehydration of the hemiacetal or hemiacetalate over decarbonylation. The basic surface propoxide that forms on Cu can also attack the carbonyl of a surface propanal to form propyl propionate. Theoretical results indicate that the rates for both aldol condensation and esterification are controlled by reactions between surface propoxide and propanal intermediates. In the condensation reaction, the alkoxide abstracts the weakly acidic hydrogen of the C α -H of the adsorbed alkanal to form the surface enolate whereas in the esterification reaction the alkoxide nucleophilically attacks the carbonyl group of a vicinal bound alkanal. As both condensation and esterification involve reactions between the same two species in the rate-limiting step, they result in the same rate expression which is consistent with experimental results. The theoretical results indicate that the barriers between condensation and esterification are within 3 kJ mol -1 of one another with esterification being slightly more favored. Experimental results also report small differences in the activation barriers but suggest that condensation is slightly preferred.
Alternative Fuels Data Center: Propane Fueling Stations
Fueling Station Locations by State More Propane Data | All Maps & Data Case Studies Michigan School Prisons Adopt Propane, Establish Fuel Savings for Years to Come More Propane Case Studies | All Case Studies Publications The Growing Presence of Propane in Pupil Transportation Costs Associated With Propane
Gas-phase advanced oxidation for effective, efficient in situ control of pollution.
Johnson, Matthew S; Nilsson, Elna J K; Svensson, Erik A; Langer, Sarka
2014-01-01
In this article, gas-phase advanced oxidation, a new method for pollution control building on the photo-oxidation and particle formation chemistry occurring in the atmosphere, is introduced and characterized. The process uses ozone and UV-C light to produce in situ radicals to oxidize pollution, generating particles that are removed by a filter; ozone is removed using a MnO2 honeycomb catalyst. This combination of in situ processes removes a wide range of pollutants with a comparatively low specific energy input. Two proof-of-concept devices were built to test and optimize the process. The laboratory prototype was built of standard ventilation duct and could treat up to 850 m(3)/h. A portable continuous-flow prototype built in an aluminum flight case was able to treat 46 m(3)/h. Removal efficiencies of >95% were observed for propane, cyclohexane, benzene, isoprene, aerosol particle mass, and ozone for concentrations in the range of 0.4-6 ppm and exposure times up to 0.5 min. The laboratory prototype generated a OH(•) concentration derived from propane reaction of (2.5 ± 0.3) × 10(10) cm(-3) at a specific energy input of 3 kJ/m(3), and the portable device generated (4.6 ± 0.4) × 10(9) cm(-3) at 10 kJ/m(3). Based on these results, in situ gas-phase advanced oxidation is a viable control strategy for most volatile organic compounds, specifically those with a OH(•) reaction rate higher than ca. 5 × 10(-13) cm(3)/s. Gas-phase advanced oxidation is able to remove compounds that react with OH and to control ozone and total particulate mass. Secondary pollution including formaldehyde and ultrafine particles might be generated, depending on the composition of the primary pollution.
Alternative Fuels Data Center: Propane Basics
released, the liquid propane vaporizes and turns into gas that is used in combustion. An odorant, ethyl petroleum gas (LPG) or propane autogas, propane is a cleaner-burning alternative fuel that's been used for decades to power light-, medium- and heavy-duty propane vehicles. Propane is a three-carbon alkane gas
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tsz-Keung, Cheung; d`Itri, J.L.; Lange, F.C.
1995-12-31
The primary goal of this project is to evaluate the potential value of solid superacid catalysts of the sulfated zirconia type for light hydrocarbon conversion. The key experiments catalytic testing of the performance of such catalysts in a flow reactor fed with streams containing, for example, n-butane or propane. Fe- and Mn-promoted sulfated zirconia was used to catalyze the conversion of n-butane at atmospheric pressure, 225-450{degrees}C, and n-butane partial pressures in the range of 0.0025-0.01 atm. At temperatures <225{degrees}C, these reactions were accompanied by cracking; at temperatures >350{degrees}C, cracking and isomerization occurred. Catalyst deactivation, resulting at least in part frommore » coke formation, was rapid. The primary cracking products were methane, ethane, ethylene, and propylene. The observation of these products along with an ethane/ethylene molar ratio of nearly 1 at 450{degrees}C is consistent with cracking occurring, at least in part, by the Haag-Dessau mechanism, whereby the strongly acidic catalyst protonates n-butane to give carbonium ions. The rate of methane formation from n-butane cracking catalyzed by Fe- and Mn-promoted sulfated zirconia at 450{degrees}C was about 3 x 10{sup -8} mol/(g of catalyst {center_dot}s). The observation of butanes, pentanes, and methane as products is consistent with Olah superacid chemistry, whereby propane is first protonated by a very strong acid to form a carbonium ion. The carbonium ion then decomposes into methane and an ethyl cation which undergoes oligocondensation reactions with propane to form higher molecular weight alkanes. The results are consistent with the identification of iron- and manganese-promoted sulfated zirconia as a superacid.« less
Ellipsometric surface analysis of wear tracks produced by different lubricants
NASA Technical Reports Server (NTRS)
Lauer, J. L.; Marxer, N.; Jones, W. R., Jr.
1985-01-01
A scanning ellipsometer with high spatial resolution was used to analyze wear tracks generated on M-50 surfaces operated in several lubricant formulations. These formulations included a pure ester base stock of trimethyol propane triheptanoate with additives of either benzotriazole (BTZ), dioctyldiphenylamine (DODPA), or tricresylphosphate (TCP). Results indicated that BTZ and TCP produced patchy oxide surface films consisting mainly of Fe304. DOPDA produced a much more uniform oxide film. These findings may explain the tendency of lubricant formulations containing TCP to scuff more readily than those containing only antioxidants.
NASA Astrophysics Data System (ADS)
Cai, W.; Lu, H.; Huang, X.
2016-12-01
In natural gas hydrates, some heavy hydrocarbons are always detected in addition to methane. However, it is still not well understood how the trace amount of heavy gas affect the hydrate properties. Intensive studies have been carried out to study the thermodynamic properties and structure types of mixed gases hydrates, but comparatively few investigations have been carried out on the cage occupancies of guest molecules in mixed gases hydrates. For understanding how trace amount of propane affects the formation of mixed methane-propane hydrates, X-ray diffraction, Raman spectroscopy, and gas chromatography were applied to the synthesized mixed methane-propane hydrate specimens, to get their structural characteristics (structure type, structural parameters, cage occupancy, etc.) and gas compositions. The mixed methane-propane hydrates were prepared by reacting fine ice powders with various gas mixtures of methane and propane. When the propane content was below 0.4%, the hydrates synthesized were found containing both sI methane hydrate and sII methane-propane hydrate; while the hydrates were found always sII when propane was over certain content. Detail studies about the cage occupancies of propane and methane in sII hydrate revealed that: 1) with the increase in propane content of methane-propane mixture, the occupancy of propane in large cage increased as accompanied with the decrease in methane occupancy in large cage, however the occupancy of methane in small cage didn't experience significant change; 2) temperature and pressure seemed no obvious influence on cage occupancy.
Matthias Kinne; Marzena Poraj-Kobielska; Rene Ullrich; Paula Nousiainen; Jussi Sipilä; Katrin Scheibner; Kenneth E. Hammel; Martin Hofrichter
2011-01-01
The extracellular aromatic peroxygenase of the agaric fungus Agrocybe aegerita catalyzed the H2O2-dependent cleavage of non-phenolic arylgiycerol-Ã-aryl ethers (Ã-O-4 ethers). For instance 1-(3,4-dimethoxyphenyl)-2-(2-methoxy-phenoxy)propane-1,3-diol, a recalcitrant dimeric lignin model compound that represents the major...
Loading Rates and Impacts of Substrate Delivery for Enhanced Anaerobic Bioremediation
2010-01-01
Naval Facilities Engineering Command/Engineering Services Center NDMA N-nitrosodimethylamine ORP oxidation reduction potential PCE...nitrosodimethylamine ( NDMA ) is used with propellants and is a carcinogen and emerging groundwater contaminant at a number of DoD and DOE facilities. NDMA may...demonstrating an alternative degradation process for NDMA using injection (biosparging) of propane gas and oxygen to stimulate degradation by 23
Catalytic conversion of light alkanes. Final report, January 1, 1990--October 31, 1994
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
During the course of the first three years of the Cooperative Agreement (Phase I-III), we uncovered a family of metal perhaloporphyrin complexes which had unprecedented activity for the selective air-oxidation of fight alkanes to alcohols. The reactivity of fight hydrocarbon substrates with air or oxygen was in the order: isobutane>propane>ethane>methane, in accord with their homolytic bond dissociation energies. Isobutane was so reactive that the proof-of concept stage of a process for producing tert-butyl alcohol from isobutane was begun (Phase V). It was proposed that as more active catalytic systems were developed (Phases IV, VI), propane, then ethane and finally methanemore » oxidations will move into this stage (Phases VII through IX). As of this writing, however, the program has been terminated during the later stages of Phases V and VI so that further work is not anticipated. We made excellent progress during 1994 in generating a class of less costly new materials which have the potential for high catalytic activity. New routes were developed for replacing costly perfluorophenyl groups in the meso-position of metalloporphyrin catalysts with far less expensive and lower molecular weight perfluoromethyl groups.« less
Alternative Fuels Data Center: Propane Benefits
Benefits to someone by E-mail Share Alternative Fuels Data Center: Propane Benefits on Facebook Tweet about Alternative Fuels Data Center: Propane Benefits on Twitter Bookmark Alternative Fuels Data Center: Propane Benefits on Google Bookmark Alternative Fuels Data Center: Propane Benefits on Delicious
Propane Education, Research, and Training The Propane Education and Research Act of 1996 established the Propane Education and Research Council (PERC) to develop programs education and training efforts to promote the use of propane as an alternative fuel. The Propane Education and Research
Price-skid boosts propane sales
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ellis, P.
1979-02-05
Lower propane costs have prompted industrial users to switch from natural gas, although dealers are cautioning that they are gambling on an unstable price competition. Analysis of price and use trends indicates that the propane market is growing where users have relied on the interstate gas market, which will be experiencing incremental price increases. Those buying propane on the spot market will get the best prices because the propane market is now glutted as a result of conservation and large gas supplies. A further drop in propane price is not anticipated because producers would lack incentive to extract propane frommore » higher-priced natural gas unless it becomes justified by demand for unleaded gas, of which propane is a by-product.« less
Maihom, Thana; Sawangphruk, Montree; Probst, Michael; Limtrakul, Jumras
2018-02-28
The aerobic epoxidation of propylene over the metal-organic framework Fe 3 (btc) 2 (btc = 1,3,5-benzentricarboxylate) as catalyst has been investigated by means of density functional calculations. The mechanisms of the reaction towards propylene oxide, carbonylic products (acetone and propanal) and a pi-allyl radical were investigated to assess the efficiency of Fe 3 (btc) 2 for the selective formation of propylene oxide. Propylene oxide and carbonylic products are formed on Fe 3 (btc) 2 by proceeding via propyleneoxy intermediates in the first step. Subsequently, the intermediates can then either be transformed to propylene oxide by way of ring closure of the intermediate or to the carbonylic compounds of propanal and acetone via 1,2-hydride shift. The results show that the formation of propylene oxide is favored over the formation of carbonylic products mainly due to the activation barriers being 2-3 times smaller. The activation barriers for the formation of the propyleneoxy intermediates on the Fe 3 (btc) 2 catalyst for the first and second reaction cycle are also lower than the barriers obtained for the formation of the pi-allyl radical that acts as the precursor to combustion products. On the basis of these computational results, we therefore expect a high catalytic selectivity of the Fe 3 (btc) 2 catalyst with respect to the formation of propylene oxide. We also compared the catalytic activities of Fe 3 (btc) 2 and Cu 3 (btc) 2 . The activation energy of the rate-determining step is almost 2 times lower for Fe 3 (btc) 2 than that for Cu 3 (btc) 2 , due to a larger charge transfer from the catalytic site to the O 2 molecule in the case of Fe 3 (btc) 2 .
Alternative Fuels Data Center: Propane Laws and Incentives
Propane Printable Version Share this resource Send a link to Alternative Fuels Data Center: Propane Laws and Incentives to someone by E-mail Share Alternative Fuels Data Center: Propane Laws and and Incentives on Digg Find More places to share Alternative Fuels Data Center: Propane Laws and
Adsorption of Natural Gas Mixtures in Nanoporos Carbon
NASA Astrophysics Data System (ADS)
Wexler, Carlos; Crawford-Goss, Ian; Lemke, Drew; Roth, Michael
Natural gas (NG) is promising fuel due to its smaller CO2 emissions per unit energy compared to other hydrocarbons. Storage via adsorption into carbon nanostructures permits the operation of storage tanks at significantly reduced pressures, resulting in cost savings, added safety and smaller loss of cargo volume. Since NG is mostly comprised of methane (87-99%), other components are often ignored, even though heavier species are likely to adsorb preferentially and possibly result in long-term performance issues. We performed Molecular Dynamics (MD) simulations to understand the behavior of heavier components of NG adsorbed into carbon nanostructures. We focused on mixtures involving methane, ethane and propane. We show that the heavier components have significant preferential adsorption, partially inhibiting the adsorption of methane, and resulting in its saturation at lower pressures. Under room temperature conditions, propane adsorbs quasi irrevesibly, though remaining mobile within the pores. We discuss the diffusion regime of all gases and address methods to remove the adsorbed heavier gases by thermal cycling the tank. American Chemical Society Petroleum Research Fund.
Zacharopoulou, Vasiliki; Vasiliadou, Efterpi S; Lemonidou, Angeliki A
2018-01-10
The one-step reaction of glycerol with hydrogen to form propene selectively is a particularly challenging catalytic pathway that has not yet been explored thoroughly. Molybdena-based catalysts are active and selective to C-O bond scission; propene is the only product in the gas phase under the standard reaction conditions, and further hydrogenation to propane is impeded. Within this context, this work focuses on the exploration of the reaction pathways and the investigation of various parameters that affect the catalytic performance, such as the role of hydrogen on the product distribution and the effect of the catalyst pretreatment step. Under a hydrogen atmosphere, propene is produced primarily via 2-propenol, whereas under an inert atmosphere propanal and glycerol dissociation products are formed mainly. The reaction most likely proceeds through a reverse Mars-van Krevelen mechanism as partially reduced Mo species drive the reaction to the formation of the desired product. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Evaporation Study of an Ionic Liquid with a Double-Charged Cation.
Chilingarov, Norbert S; Zhirov, Maksim S; Shmykova, Anna M; Martynova, Ekaterina A; Glukhov, Lev M; Chernikova, Elena A; Kustov, Leonid M; Markov, Vitaliy Yu; Ioutsi, Vitaliy A; Sidorov, Lev N
2018-05-07
The evaporation of a dicationic ionic liquid, 1,3-bis(3-methylimidazolium-1-yl)propane bis(trifluoromethanesulfonyl)amide ([C 3 (MIm) 2 2+ ][Tf 2 N - ] 2 ), was studied by Knudsen effusion mass spectrometry. Its evaporation is accompanied by a partial thermal decomposition producing monocationic ionic liquids, 1,3-dimethylimidazolium and 1-(2-propenyl)-3-methylimidazolium bis(trifluoromethanesulfonyl)amides, as volatile products. This decomposition does not affect the vaporization characteristics of [C 3 (MIm) 2 2+ ][Tf 2 N - ] 2 , which were established to be as follows. The vaporization enthalpy (550 K) is equal to (155.5 ± 3.2) kJ·mol -1 ; the saturated vapor pressure is described by the equation ln( p/Pa) = -(18699 ± 381)/( T/K) + (30.21 ± 0.82) in the range of 508-583 K. 1,3-Bis(3-methylimidazolium-1-yl)propane bis(trifluoromethanesulfonyl)amide is the first dicationic ionic liquid, the vaporization characteristics of which were determined with an acceptable accuracy.
Propane is a colorless and odorless flammable gas that can turn into liquid under very cold temperatures. This article discusses the harmful effects from breathing in or swallowing propane. Breathing in or swallowing propane can be ...
Microbial Oxidation of Natural Gas in a Plume Emanating from the Coal Oil Point Seep Field
NASA Astrophysics Data System (ADS)
Mendes, S. D.; Valentine, D. L.; Perez, C.; Scarlett, R.
2012-12-01
The hydrocarbon seep field at Coal Oil Point, off the coast of Santa Barbara, California, releases > 1010 g of thermogenic natural gas each year. Gases emitted from Coal Oil Point include methane, ethane, propane, and butane, which are atmospheric pollutants and greenhouse gases. Even though the seeps are at water depths of only 5-80 m, much of the gas dissolves and contributes to a plume that is transported by ocean currents. While hydrocarbons can support bacterial respiration, resulting in the removal of hydrocarbon gas from the plume, the time-scale for the bacterial respiratory response is unconstrained. To track hydrocarbon respiration 3H-ethane, propane, and butane were synthesized using Grignard reagents and tritiated water with yields of >70% and applied as tracers to samples up- and down-current from the seeps at Coal Oil Point. Validation experiments conducted in September 2011 aboard the R/V Atlantis show that 3H-labeled tracers are an order of magnitude more sensitive than previous methods using stable carbon isotopes (Valentine et. al 2010), making this technique preferable in natural systems. Application of the tracers concurrent with plume tracking in July-August 2012 show ethane, propane, and butane consumption are readily inducible on a timescale of days.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Burke, Michael P.; Goldsmith, C. Franklin; Klippenstein, Stephen J.
2015-07-16
We have developed a multi-scale approach (Burke, M. P.; Klippenstein, S. J.; Harding, L. B. Proc. Combust. Inst. 2013, 34, 547–555.) to kinetic model formulation that directly incorporates elementary kinetic theories as a means to provide reliable, physics-based extrapolation to unexplored conditions. Here, we extend and generalize the multi-scale modeling strategy to treat systems of considerable complexity – involving multi-well reactions, potentially missing reactions, non-statistical product branching ratios, and non-Boltzmann (i.e. non-thermal) reactant distributions. The methodology is demonstrated here for a subsystem of low-temperature propane oxidation, as a representative system for low-temperature fuel oxidation. A multi-scale model is assembled andmore » informed by a wide variety of targets that include ab initio calculations of molecular properties, rate constant measurements of isolated reactions, and complex systems measurements. Active model parameters are chosen to accommodate both “parametric” and “structural” uncertainties. Theoretical parameters (e.g. barrier heights) are included as active model parameters to account for parametric uncertainties in the theoretical treatment; experimental parameters (e.g. initial temperatures) are included to account for parametric uncertainties in the physical models of the experiments. RMG software is used to assess potential structural uncertainties due to missing reactions. Additionally, branching ratios among product channels are included as active model parameters to account for structural uncertainties related to difficulties in modeling sequences of multiple chemically activated steps. The approach is demonstrated here for interpreting time-resolved measurements of OH, HO2, n-propyl, i-propyl, propene, oxetane, and methyloxirane from photolysis-initiated low-temperature oxidation of propane at pressures from 4 to 60 Torr and temperatures from 300 to 700 K. In particular, the multi-scale informed model provides a consistent quantitative explanation of both ab initio calculations and time-resolved species measurements. The present results show that interpretations of OH measurements are significantly more complicated than previously thought – in addition to barrier heights for key transition states considered previously, OH profiles also depend on additional theoretical parameters for R + O2 reactions, secondary reactions, QOOH + O2 reactions, and treatment of non-Boltzmann reaction sequences. Extraction of physically rigorous information from those measurements may require more sophisticated treatment of all of those model aspects, as well as additional experimental data under more conditions, to discriminate among possible interpretations and ensure model reliability. Keywords: Optimization, Uncertainty quantification, Chemical mechanism, Low-Temperature Oxidation, Non-Boltzmann« less
Nanocrystal assembly for tandem catalysis
Yang, Peidong; Somorjai, Gabor; Yamada, Yusuke; Tsung, Chia-Kuang; Huang, Wenyu
2014-10-14
The present invention provides a nanocrystal tandem catalyst comprising at least two metal-metal oxide interfaces for the catalysis of sequential reactions. One embodiment utilizes a nanocrystal bilayer structure formed by assembling sub-10 nm platinum and cerium oxide nanocube monolayers on a silica substrate. The two distinct metal-metal oxide interfaces, CeO.sub.2--Pt and Pt--SiO.sub.2, can be used to catalyze two distinct sequential reactions. The CeO.sub.2--Pt interface catalyzed methanol decomposition to produce CO and H.sub.2, which were then subsequently used for ethylene hydroformylation catalyzed by the nearby Pt--SiO.sub.2 interface. Consequently, propanal was selectively produced on this nanocrystal bilayer tandem catalyst.
Properties of ZnO nanocrystals prepared by radiation method
NASA Astrophysics Data System (ADS)
Čuba, Václav; Gbur, Tomáš; Múčka, Viliam; Nikl, Martin; Kučerková, Romana; Pospíšil, Milan; Jakubec, Ivo
2010-01-01
Zinc oxide nanoparticles were prepared by irradiation of aqueous solutions containing zinc(II) ions, propan-2-ol, polyvinyl alcohol, and hydrogen peroxide. Zinc oxide was found in solid phase either directly after irradiation, or after additional heat treatment. Various physicochemical parameters, including scintillation properties of prepared materials, were studied. After decomposition of impurities and annealing of oxygen vacancies, the samples showed intensive emission in visible spectral range and well-shaped exciton luminescence at 390-400 nm. The best scintillating properties had zinc oxide prepared from aqueous solutions containing zinc formate as initial precursor and hydrogen peroxide. Size of the crystalline particles ranged from tens to hundreds nm, depending on type of irradiated solution and post-irradiation thermal treatment.
NASA Astrophysics Data System (ADS)
Septiani, Eka Lutfi; Widiyastuti, W.; Machmudah, Siti; Nurtono, Tantular; Winardi, Sugeng
2017-05-01
Diffusion flame spray drying has become promising method in nanoparticles synthesis giving several advantages and low operation cost. In order to scale up the process which needs high experimentation time and cost, Computational Fluid Dynamics (CFD) by Ansys Fluent 15.0 software has been used. Combustion characteristic in diffusion flame reactor may affects particle size distribution. This study aims to observe influence of fuel type to combustion characteristic in the reactor. Large Eddy Simulation (LES) and non-premixed combustion model are selected for the turbulence and combustion model respectively. Methane, propane, and LPG in 0.5 L/min were used as type of fuel. While the oxidizer is air with 200% excess of O2. Simulation result shown that the maximum temperature was obtained from propane-air combustion in 2268 K. However, the stable temperature contour was achieved by methane-air combustion.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-01-17
... GP in which AmeriGas proposed to acquire ETP's Heritage Propane business through the approximately $2..., Titan Energy Partner, L.P., and Titan Energy GP, L.L.C. ETP's Heritage Propane business includes Heritage Propane Express, an entity that is engaged in the business of preparing, filling, distributing and...
Oxidative degradation of alkylphenols by horseradish peroxidase.
Sakuyama, Hisae; Endo, Yasushi; Fujimoto, Kenshiro; Hatana, Yasuhiko
2003-01-01
Alkylphenols such as bisphenol A (2,2-bis(4-hydroxyphenyl)propane; BPA), p-nonylphenol (p-NP), and p-octylphenol (p-OP) that are known as endocrine disrupters were oxidized by horseradish (Armoracia rusticana) peroxidase (HRP) with H2O2. The optimal pHs for BPA, p-NP, and p-OP were 8.0, 7.0, and 5.0, respectively. The optimal temperature for BPA was 20 degrees C. Although BPA was rapidly degraded by HRP, its degradation depended on the concentration of HRP. Most of the oxidation products of BPA were polymers, although some 4-isopropenylphenol was produced. When male Japanese medaka (Oryzias latipes) were exposed to BPA, vitellogenin in the blood increased. However, no increased vitellogenin was observed in medaka exposed to HRP-oxidized BPA. The enzymatic oxidation of BPA using HRP was able to eliminate its estrogen-like activity.
Sad, María E; Neurock, Matthew; Iglesia, Enrique
2011-12-21
This study reports evidence for catalytic deoxygenation of alkanols, alkanals, and alkanediols on dispersed Cu clusters with minimal use of external H(2) and with the concurrent formation of new C-C and C-O bonds. These catalysts selectively remove O-atoms from these oxygenates as CO or CO(2) through decarbonylation or decarboxylation routes, respectively, that use C-atoms present within reactants or as H(2)O using H(2) added or formed in situ from CO/H(2)O mixtures via water-gas shift. Cu catalysts fully convert 1,3-propanediol to equilibrated propanol-propanal intermediates that subsequently form larger oxygenates via aldol-type condensation and esterification routes without detectable involvement of the oxide supports. Propanal-propanol-H(2) equilibration is mediated by their chemisorption and interconversion at surfaces via C-H and O-H activation and propoxide intermediates. The kinetic effects of H(2), propanal, and propanol pressures on turnover rates, taken together with measured selectivities and the established chemical events for base-catalyzed condensation and esterification reactions, indicate that both reactions involve kinetically relevant bimolecular steps in which propoxide species, acting as the base, abstract the α-hydrogen in adsorbed propanal (condensation) or attack the electrophilic C-atom at its carbonyl group (esterification). These weakly held basic alkoxides render Cu surfaces able to mediate C-C and C-O formation reactions typically catalyzed by basic sites inherent in the catalyst, instead of provided by coadsorbed organic moieties. Turnover rates for condensation and esterification reactions decrease with increasing Cu dispersion, because low-coordination corner and edge atoms prevalent on small clusters stabilize adsorbed intermediates and increase the activation barriers for the bimolecular kinetically relevant steps required for both reactions. © 2011 American Chemical Society
NASA Technical Reports Server (NTRS)
Nguyen, H. L.; Ying, S.-J.
1990-01-01
Jet-A spray combustion has been evaluated in gas turbine combustion with the use of propane chemical kinetics as the first approximation for the chemical reactions. Here, the numerical solutions are obtained by using the KIVA-2 computer code. The KIVA-2 code is the most developed of the available multidimensional combustion computer programs for application of the in-cylinder combustion dynamics of internal combustion engines. The released version of KIVA-2 assumes that 12 chemical species are present; the code uses an Arrhenius kinetic-controlled combustion model governed by a four-step global chemical reaction and six equilibrium reactions. Researchers efforts involve the addition of Jet-A thermophysical properties and the implementation of detailed reaction mechanisms for propane oxidation. Three different detailed reaction mechanism models are considered. The first model consists of 131 reactions and 45 species. This is considered as the full mechanism which is developed through the study of chemical kinetics of propane combustion in an enclosed chamber. The full mechanism is evaluated by comparing calculated ignition delay times with available shock tube data. However, these detailed reactions occupy too much computer memory and CPU time for the computation. Therefore, it only serves as a benchmark case by which to evaluate other simplified models. Two possible simplified models were tested in the existing computer code KIVA-2 for the same conditions as used with the full mechanism. One model is obtained through a sensitivity analysis using LSENS, the general kinetics and sensitivity analysis program code of D. A. Bittker and K. Radhakrishnan. This model consists of 45 chemical reactions and 27 species. The other model is based on the work published by C. K. Westbrook and F. L. Dryer.
Requena, J R; Fu, M X; Ahmed, M U; Jenkins, A J; Lyons, T J; Baynes, J W; Thorpe, S R
1997-01-01
Malondialdehyde (MDA) and 4-hydroxynonenal (HNE) are major end-products of oxidation of polyunsaturated fatty acids, and are frequently measured as indicators of lipid peroxidation and oxidative stress in vivo. MDA forms Schiff-base adducts with lysine residues and cross-links proteins in vitro; HNE also reacts with lysines, primarily via a Michael addition reaction. We have developed methods using NaBH4 reduction to stabilize these adducts to conditions used for acid hydrolysis of protein, and have prepared reduced forms of lysine-MDA [3-(N epsilon-lysino)propan-1-ol (LM)], the lysine-MDA-lysine iminopropene cross-link [1,3-di(N epsilon-lysino)propane (LML)] and lysine-HNE [3-(N epsilon-lysino)-4-hydroxynonan-l-ol (LHNE)]. Gas chromatography/MS assays have been developed for quantification of the reduced compounds in protein. RNase incubated with MDA or HNE was used as a model for quantification of the adducts by gas chromatography/MS. There was excellent agreement between measurement of MDA bound to RNase as LM and LML, and as thiobarbituric acid-MDA adducts measured by HPLC; these adducts accounted for 70-80% of total lysine loss during the reaction with MDA. LM and LML (0.002-0.12 mmol/ mol of lysine) were also found in freshly isolated low-density lipoprotein (LDL) from healthy subjects. LHNE was measured in RNase treated with HNE, but was not detectable in native LDL. LM, LML and LHNE increased in concert with the formation of conjugated dienes during the copper-catalysed oxidation of LDL, but accounted for modification of < 1% of lysine residues in oxidized LDL. These results are the first report of direct chemical measurement of MDA and HNE adducts to lysine residues in LDL. LM, LML and LHNE should be useful as biomarkers of lipid peroxidative modification of protein and of oxidative stress in vitro and in vivo. PMID:9078279
Smith, Christy A.; O'Reilly, Kirk T.; Hyman, Michael R.
2003-01-01
Pseudomonas mendocina KR-1 grew well on toluene, n-alkanes (C5 to C8), and 1° alcohols (C2 to C8) but not on other aromatics, gaseous n-alkanes (C1 to C4), isoalkanes (C4 to C6), 2° alcohols (C3 to C8), methyl tertiary butyl ether (MTBE), or tertiary butyl alcohol (TBA). Cells grown under carbon-limited conditions on n-alkanes in the presence of MTBE (42 μmol) oxidized up to 94% of the added MTBE to TBA. Less than 3% of the added MTBE was oxidized to TBA when cells were grown on either 1° alcohols, toluene, or dextrose in the presence of MTBE. Concentrated n-pentane-grown cells oxidized MTBE to TBA without a lag phase and without generating tertiary butyl formate (TBF) as an intermediate. Neither TBF nor TBA was consumed by n-pentane-grown cells, while formaldehyde, the expected C1 product of MTBE dealkylation, was rapidly consumed. Similar Ks values for MTBE were observed for cells grown on C5 to C8 n-alkanes (12.95 ± 2.04 mM), suggesting that the same enzyme oxidizes MTBE in cells grown on each n-alkane. All growth-supporting n-alkanes (C5 to C8) inhibited MTBE oxidation by resting n-pentane-grown cells. Propane (Ki = 53 μM) and n-butane (Ki = 16 μM) also inhibited MTBE oxidation, and both gases were also consumed by cells during growth on n-pentane. Cultures grown on C5 to C8 n-alkanes also exhibited up to twofold-higher levels of growth in the presence of propane or n-butane, whereas no growth stimulation was observed with methane, ethane, MTBE, TBA, or formaldehyde. The results are discussed in terms of their impacts on our understanding of MTBE biodegradation and cometabolism. PMID:14660389
Wang, Sibo; Ren, Zheng; Song, Wenqiao; ...
2015-04-24
Here, a hydrothermal strategy combined with colloidal deposition synthesis was successfully used to grow ZnO/perovskite (LaBO 3, B=Mn, Co, Ni) core-shell nanorod arrays within three dimensional (3-D) honeycomb cordierite substrates. A facile sonication assisted colloidal wash coating process is able to coat a uniformly dispersed perovskite nanoparticles onto the large scale ZnO nanorod arrays rooted on the channel surfaces of the 3D cordierite substrate achieved by hydrothermal synthesis. Compared to traditional wash-coated perovskite catalysts, an enhanced catalytic performance was observed for propane oxidation with 25°C lower light-off temperature than wash-coated perovskite catalyst of similar LaMnO 3 loading (4.3mg). Temperature programmedmore » reduction and desorption under H 2 and O 2 atmosphere, respectively, were used to study the reducibility and oxygen activity of these core-shell nanorod arrays based monolithic catalysts, revealing a catalytic activity sequence of LaCoO 3>LaMnO 3>La 2NiO 4 at the initial stage of catalytic reaction. The good dispersion and size control in La-based perovskite nanoparticles and their interfaces to ZnO nanorod arrays support may contribute to the enhancement of catalytic performance. Lastly, this work may provide a new type of Pt-group metals (PGM) free catalysts with improved catalytic performance for hydrocarbon oxidations at low temperatures.« less
ERIC Educational Resources Information Center
Brantner, Max
1984-01-01
Reports on a northern Illinois school bus fleet converted to propane fuel in 1981 and 1982. Includes tables showing, first, total annual fuel costs before and after conversion and, second, fuel efficiency for 16 buses using propane and three using gasoline. Notes precautions for propane use. (MCG)
Isentropic expansion and related thermodynamic properties of non-ionic amphiphile-water mixtures.
Reis, João Carlos R; Douhéret, Gérard; Davis, Michael I; Fjellanger, Inger Johanne; Høiland, Harald
2008-01-28
A concise thermodynamic formalism is developed for the molar isentropic thermal expansion, ES,m = ( partial differential Vm/ partial differential T)(Sm,x), and the ideal and excess quantities for the molar, apparent molar and partial molar isentropic expansions of binary liquid mixtures. Ultrasound speeds were determined by means of the pulse-echo-overlap method in aqueous mixtures of 2-methylpropan-2-ol at 298.15 K over the entire composition range. These data complement selected extensive literature data on density, isobaric heat capacity and ultrasound speed for 9 amphiphile (methanol, ethanol, propan-1-ol, propan-2-ol, 2-methylpropan-2-ol, ethane-1,2-diol, 2-methoxyethanol, 2-ethoxyethanol or 2-butoxyethanol)-water binary systems, which form the basis of tables listing molar and excess molar isobaric expansions and heat capacities, and molar and excess molar isentropic compressions and expansions at 298.15 K and at 65 fixed mole fractions spanning the entire composition range and fine-grained in the water-rich region. The dependence on composition of these 9 systems is graphically depicted for the excess molar isobaric and isentropic expansions and for the excess partial molar isobaric and isentropic expansions of the amphiphile. The analysis shows that isentropic thermal expansion properties give a much stronger response to amphiphile-water molecular interactions than do their isobaric counterparts. Depending on the pair property-system, the maximum excess molar isentropic value is generally twenty- to a hundred-fold greater than the corresponding maximum isobaric value, and occurs at a lower mole fraction of the amphiphile. Values at infinite dilution of the 9 amphiphiles in water are given for the excess partial molar isobaric heat capacity, isentropic compression, isobaric expansion and isentropic expansion. These values are interpreted in terms of the changes occurring when amphiphile molecules cluster into an oligomeric form. Present results are discussed from theoretical and experimental thermodynamic viewpoints. It is concluded that isentropic thermal expansion properties constitute a new distinct resource for revealing particular features and trends in complex mixing processes, and that analyses using these new properties compare favourably with conventional approaches.
Alternative Fuels Data Center: Propane Vehicle Availability
Availability to someone by E-mail Share Alternative Fuels Data Center: Propane Vehicle Availability on Facebook Tweet about Alternative Fuels Data Center: Propane Vehicle Availability on Twitter Bookmark Alternative Fuels Data Center: Propane Vehicle Availability on Google Bookmark Alternative Fuels
Alternative Fuels Data Center: Propane Vehicle Conversions
Conversions to someone by E-mail Share Alternative Fuels Data Center: Propane Vehicle Conversions on Facebook Tweet about Alternative Fuels Data Center: Propane Vehicle Conversions on Twitter Bookmark Alternative Fuels Data Center: Propane Vehicle Conversions on Google Bookmark Alternative Fuels
Chromium and Ruthenium-Doped Zinc Oxide Thin Films for Propane Sensing Applications
Gómez-Pozos, Heberto; González-Vidal, José Luis; Torres, Gonzalo Alberto; Rodríguez-Baez, Jorge; Maldonado, Arturo; de la Luz Olvera, María; Acosta, Dwight Roberto; Avendaño-Alejo, Maximino; Castañeda, Luis
2013-01-01
Chromium and ruthenium-doped zinc oxide (ZnO:Cr) and (ZnO:Ru) thin solid films were deposited on soda-lime glass substrates by the sol-gel dip-coating method. A 0.6 M solution of zinc acetate dihydrate dissolved in 2-methoxyethanol and monoethanolamine was used as basic solution. Chromium (III) acetylacetonate and Ruthenium (III) trichloride were used as doping sources. The Ru incorporation and its distribution profile into the films were proved by the SIMS technique. The morphology and structure of the films were studied by SEM microscopy and X-ray diffraction measurements, respectively. The SEM images show porous surfaces covered by small grains with different grain size, depending on the doping element, and the immersions number into the doping solutions. The sensing properties of ZnO:Cr and ZnO:Ru films in a propane (C3H8) atmosphere, as a function of the immersions number in the doping solution, have been studied in the present work. The highest sensitivity values were obtained for films doped from five immersions, 5.8 and 900, for ZnO:Cr and ZnO:Ru films, respectively. In order to evidence the catalytic effect of the chromium (Cr) and ruthenium (Ru), the sensing characteristics of undoped ZnO films are reported as well. PMID:23482091
Origins and trends in ethane and propane in the United Kingdom from 1993 to 2012
NASA Astrophysics Data System (ADS)
Derwent, R. G.; Field, R. A.; Dumitrean, P.; Murrells, T. P.; Telling, S. P.
2017-05-01
Continuous, high frequency in situ observations of ethane and propane began in the United Kingdom in 1993 and have continued through to the present day at a range of kerbside, urban background and rural locations. Whilst other monitored C2 - C8 hydrocarbons have shown dramatic declines in concentrations by close to or over an order of magnitude, ethane and propane levels have remained at or close to their 1993 values. Urban ethane sources appear to be dominated by natural gas leakage. Background levels of ethane associated with long range transport are rising. However, natural gas leakage is not the sole source of urban propane. Oil and gas operations lead to elevated propane levels in urban centres when important refinery operations are located nearby. Weekend versus weekday average diurnal curves for ethane and propane at an urban background site in London show the importance of natural gas leakage for both ethane and propane, and road traffic sources for propane. The road traffic source of propane was tentatively identified as arising from petrol-engined motor vehicle refuelling and showed a strong downwards trend at the long-running urban background and rural sites. The natural gas leakage source of ethane and propane in the observations exhibits an upwards trend whereas that in the UK emission inventory trends downwards. Also, inventory emissions for natural gas leakage appeared to be significantly underestimated compared with the observations. In addition, the observed ethane to propane ratio found here for natural gas leakage strongly disagreed with the inventory ratio.
Partial oxidation power plant with reheating and method thereof
Newby, Richard A.; Yang, Wen-Ching; Bannister, Ronald L.
1999-01-01
A system and method for generating power having an air compression/partial oxidation system, a turbine, and a primary combustion system. The air compression/partial oxidation system receives a first air stream and a fuel stream and produces a first partially oxidized fuel stream and a first compressed air stream therefrom. The turbine expands the first partially oxidized fuel stream while being cooled by the first compressed air stream to produce a heated air stream. The heated air stream is injected into the expanding first partially oxidized fuel stream, thereby reheating it in the turbine. A second partially oxidized fuel stream is emitted from the turbine. The primary combustion system receives said second partially oxidized fuel stream and a second air stream, combusts said second partially oxidized fuel stream, and produces rotating shaft power and an emission stream therefrom.
NASA Technical Reports Server (NTRS)
Hudson, R. L.; Loeffler, M. J.; Yocum, K. M.
2017-01-01
Propylene oxide was recently identified in the interstellar medium, but few laboratory results are available for this molecule to guide current and future investigations. To address this situation, here we report infrared spectra, absorption coefficients, and band strengths of solid propylene oxide along with the first measurement of its refractive index and a calculation of its density, all for the amorphous solid form of the compound. We present the first experimental results showing a low-temperature formation pathway for propylene oxide near 10 K in interstellar ice analogs. Connections are drawn between our new results and the interstellar molecules propanal and acetone, and predictions are made about several as yet unobserved vinyl alcohols and methylketene. Comparisons are given to earlier laboratory work and a few applications to interstellar and solar system astrochemistry are described.
NASA Astrophysics Data System (ADS)
Hudson, R. L.; Loeffler, M. J.; Yocum, K. M.
2017-02-01
Propylene oxide was recently identified in the interstellar medium, but few laboratory results are available for this molecule to guide current and future investigations. To address this situation, here we report infrared spectra, absorption coefficients, and band strengths of solid propylene oxide along with the first measurement of its refractive index and a calculation of its density, all for the amorphous solid form of the compound. We present the first experimental results showing a low-temperature formation pathway for propylene oxide near 10 K in interstellar ice analogs. Connections are drawn between our new results and the interstellar molecules propanal and acetone, and predictions are made about several as yet unobserved vinyl alcohols and methylketene. Comparisons are given to earlier laboratory work and a few applications to interstellar and solar system astrochemistry are described.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Begley, R.
1992-02-12
A minor feature of a Congressional energy bill is causing consternation for a number of propane-consuming chemical companies. The firms are fighting the bill`s inclusion of liquefied petroleum gas (LPG) on a list of alternative fuels that can be used to meet its urban fleet vehicles requirements. The firms fear that this added use would drive up the price of propane-an LPG-for homeowners, farmers, and themselves. Speaking for the Propane Consumers Coalition, a Dow Chemical spokesman says 7.7 million households use propane, as does agriculture, and current demand is such that December saw a 23-year low in US inventories. Themore » US depends on imports of propane, he says, and about half the propane sold in the US is derived from the refining of oil, much of which is also imported. Adding demand for vehicle fuel would drive up imports and process, the spokesman says, thereby damaging all users, including the petrochemical industry.« less
Partial oxidation power plant with reheating and method thereof
Newby, R.A.; Yang, W.C.; Bannister, R.L.
1999-08-10
A system and method are disclosed for generating power having an air compression/partial oxidation system, a turbine, and a primary combustion system. The air compression/partial oxidation system receives a first air stream and a fuel stream and produces a first partially oxidized fuel stream and a first compressed air stream therefrom. The turbine expands the first partially oxidized fuel stream while being cooled by the first compressed air stream to produce a heated air stream. The heated air stream is injected into the expanding first partially oxidized fuel stream, thereby reheating it in the turbine. A second partially oxidized fuel stream is emitted from the turbine. The primary combustion system receives said second partially oxidized fuel stream and a second air stream, combusts said second partially oxidized fuel stream, and produces rotating shaft power and an emission stream therefrom. 2 figs.
. . . While Others Conserve Cash by Converting from Gasoline to Propane.
ERIC Educational Resources Information Center
Rasmussen, Scott A.
1988-01-01
Since 1983, when the David Douglas Public Schools (Portland, Oregon) converted 30 buses to propane fuel, the district has saved $75,000 in fuel and maintenance costs. Propane is priced consistently lower than gasoline and burns cleaner. Since propane engines do not require a carburetor, there are fewer maintenance problems. (MLH)
Alternative Fuels Data Center: Propane Buses Save Money for Virginia
Schools Propane Buses Save Money for Virginia Schools to someone by E-mail Share Alternative Fuels Data Center: Propane Buses Save Money for Virginia Schools on Facebook Tweet about Alternative Fuels Data Center: Propane Buses Save Money for Virginia Schools on Twitter Bookmark Alternative Fuels
Alternative Fuels Data Center: Renzenberger Inc Saves Money With Propane
Vans Renzenberger Inc Saves Money With Propane Vans to someone by E-mail Share Alternative Fuels Data Center: Renzenberger Inc Saves Money With Propane Vans on Facebook Tweet about Alternative Fuels Data Center: Renzenberger Inc Saves Money With Propane Vans on Twitter Bookmark Alternative Fuels
Alternative Fuels Data Center: Propane Production and Distribution
produced from liquid components recovered during natural gas processing. These components include ethane & Incentives Propane Production and Distribution Propane is a by-product of natural gas processing distribution showing propane originating from three sources: 1) gas well and gas plant, 2) oil well and
Alternative Fuels Data Center: Michigan School Buses Get Rolling on Propane
Michigan School Buses Get Rolling on Propane to someone by E-mail Share Alternative Fuels Data Center: Michigan School Buses Get Rolling on Propane on Facebook Tweet about Alternative Fuels Data Center: Michigan School Buses Get Rolling on Propane on Twitter Bookmark Alternative Fuels Data Center
Microbial synthesis of propane by engineering valine pathway and aldehyde-deformylating oxygenase.
Zhang, Lei; Liang, Yajing; Wu, Wei; Tan, Xiaoming; Lu, Xuefeng
2016-01-01
Propane, a major component of liquid petroleum gas (LPG) derived from fossil fuels, has widespread applications in vehicles, cooking, and ambient heating. Given the concerns about fossil fuel depletion and carbon emission, exploiting alternative and renewable source of propane have become attractive. In this study, we report the construction of a novel propane biosynthetic pathway in Escherichia coli. We constructed an aldehyde reductases (ALR)-deprived E. coli strain BW25113(DE3) Δ13 via genetic engineering, which produced sufficient isobutyraldehyde precursors and finally achieved de novo synthesis of propane (91 μg/L) by assembling the engineered valine pathway and cyanobacterial aldehyde-deformylating oxygenase (ADO). Additionally, after extensive screening of ADO mutants generated by engineering the active center to accommodate branched-chain isobutyraldehyde, we identified two ADO mutants (I127G, I127G/A48G) which exhibited higher catalytic activity for isobutyraldehyde and improved propane productivity by three times (267 μg/L). The propane biosynthetic pathway constructed here through the engineered valine pathway can produce abundant isobutyraldehyde for ADO and overcome the low availability of precursors in propane production. Furthermore, the rational design aiming at the ADO active center illustrates the plasticity and catalytic potential of ADO. These results together highlight the potential for developing a microbial biomanufacturing platform for propane.
Improved Oxidation Resistance of 3-D Carbon/Carbon Composites
1994-01-14
extraction process (which might be the extraction of the flavoring agents from hops or decaffeination of coffee beans) to point out how the pressure dependent...SiC) were made by a process termed Supercritical Fluid Infiltration. A preceramic polymer, e.g., a polycarbosilane which can pyrolyze to form SiC, is...using supercritical propane (in a process termed increasing pressure profiling), and it was found that some of the low molecular weight fractions gave
NASA Astrophysics Data System (ADS)
Pasquiers, Stéphane; Blin-Simiand, Nicole; Magne, Lionel
2016-08-01
The kinetics of four volatile organic compounds (VOCs) (propene, propane, acetaldehyde, acetone) were studied in plasmas of atmospheric gases using a photo-triggered discharge (homogeneous plasma) or a dielectric barrier discharge (filamentary plasma). It was shown for the homogeneous plasma that quenchings of nitrogen metastable states, A3Ʃ+u and the group of singlets a' 1Ʃ-u, a 1Πg and w 1∆u, are important processes for the decomposition of such molecules. Recent measurements of the H2 concentration produced in the N2/C3H6 mixture emphasize that the hydrogen molecule can be an exit route for propene dissociation. It is also found that H2 and CO molecules are efficiently produced following the dissociation of CH3COCH3 and the subsequent chemical reactivity induced by radicals coming from acetone. Addition of oxygen to a N2/VOC mixture can change drastically the kinetics. However, the quenching processes of N2 metastables by the VOC are always present and compete with oxidation reactions for the conversion of the pollutant. At low temperature, oxidations by O or by OH are not always sufficiently effective to induce an increase of the molecule decomposition when oxygen is added to the mixture. In particular, the presence of O2 has a detrimental effect on the acetone removal. Also, as evidenced for acetaldehyde and propane, some kinetic analogies appear between filamentary and homogeneous plasmas. Contribution to the topical issue "6th Central European Symposium on Plasma Chemistry (CESPC-6)", edited by Nicolas Gherardi, Ester Marotta and Cristina Paradisi
Alternative Fuels Data Center: How Do Bi-fuel Propane Vehicles Work?
Vehicles Work? Bi-fuel propane vehicles typically use a spark-ignited internal combustion engine. A bi-fuel stored on board and the driver can switch between the fuels. The vehicle is equipped with fuel tanks Propane vehicle image Key Components of a Bi-fuel Propane Vehicle Battery: The battery provides
NASA Astrophysics Data System (ADS)
Jonusas, Mindaugas; Guillemin, Jean-Claude; Krim, Lahouari
2017-07-01
The knowledge of the H-addition reactions on unsaturated organic molecules bearing a triple or a double carbon-carbon bond such as propargyl or allyl alcohols and a CO functional group such as propynal, propenal or propanal may play an important role in the understanding of the chemical complexity of the interstellar medium. Why different aldehydes like methanal, ethanal, propynal and propanal are present in dense molecular clouds while the only alcohol detected in those cold regions is methanol? In addition, ethanol has only been detected in hot molecular cores. Are those saturated and unsaturated aldehyde and alcohol species chemically linked in molecular clouds through solid phase H-addition surface reactions or are they formed through different chemical routes? To answer such questions, we have investigated a hydrogenation study of saturated and unsaturated aldehydes and alcohols at 10 K. We prove through this experimental study that while pure unsaturated alcohol ices bombarded by H atoms lead to the formation of the corresponding fully or partially saturated alcohols, surface H-addition reactions on unsaturated aldehyde ices exclusively lead to the formation of fully saturated aldehyde. Such results show that in addition to a chemoselective reduction of C≡C and C=C bonds over the C=O group, there is no link between aldehydes and their corresponding alcohols in reactions involving H atoms in dense molecular clouds. Consequently, this could be one of the reasons why some aldehydes such as propanal are abundant in dense molecular clouds in contrast to the non-detection of alcohol species larger than methanol.
RMP Guidance for Propane Storage Facilities - Main Text
This document is intended as comprehensive Risk Management Program guidance for larger propane storage or distribution facilities who already comply with propane industry standards. Includes sample RMP, and release calculations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hudson, R. L.; Loeffler, M. J.; Yocum, K. M., E-mail: Reggie.Hudson@nasa.gov
Propylene oxide was recently identified in the interstellar medium, but few laboratory results are available for this molecule to guide current and future investigations. To address this situation, here we report infrared spectra, absorption coefficients, and band strengths of solid propylene oxide along with the first measurement of its refractive index and a calculation of its density, all for the amorphous solid form of the compound. We present the first experimental results showing a low-temperature formation pathway for propylene oxide near 10 K in interstellar ice analogs. Connections are drawn between our new results and the interstellar molecules propanal andmore » acetone, and predictions are made about several as yet unobserved vinyl alcohols and methylketene. Comparisons are given to earlier laboratory work and a few applications to interstellar and solar system astrochemistry are described.« less
Heterogeneous electrolyte (YSZ-Al 2O 3) based direct oxidation solid oxide fuel cell
NASA Astrophysics Data System (ADS)
Thokchom, J. S.; Xiao, H.; Rottmayer, M.; Reitz, T. L.; Kumar, B.
Bilayers comprised of dense and porous YSZ-Al 2O 3 (20 wt%) composite were tape cast, processed, and then fabricated into working solid oxide fuel cells (SOFCs). The porous part of the bilayer was converted into anode for direct oxidation of fuels by infiltrating CeO 2 and Cu. The cathode side of the bilayer was coated with an interlayer [YSZ-Al 2O 3 (20 wt%)]: LSM (1:1) and LSM as cathode. Several button cells were evaluated under hydrogen/air and propane/air atmospheres in intermediate temperature range and their performance data were analyzed. For the first time the feasibility of using YSZ-Al 2O 3 material for fabricating working SOFCs with high open circuit voltage (OCV) and power density is demonstrated. AC impedance spectroscopy and scanning electron microscopy (SEM) techniques were used to characterize the membrane and cell.
Propane - A Mid-Heating Season Assessment
2001-01-01
This report will analyze some of the factors leading up to the rapid increase in propane demand and subsequent deterioration in supply that propelled propane prices to record high levels during December and early January.
Evaluation of micron size carbon fibers released from burning graphite composites
NASA Technical Reports Server (NTRS)
Sussholz, B.
1980-01-01
Quantitative estimates were developed of micron carbon fibers released during the burning of graphite composites. Evidence was found of fibrillated particles which were the predominant source of the micron fiber data obtained from large pool fire tests. The fibrillation phenomena were attributed to fiber oxidation effects caused by the fire environment. Analysis of propane burn test records indicated that wind sources can cause considerable carbon fiber oxidation. Criteria estimates were determined for the number of micron carbon fibers released during an aircraft accident. An extreme case analysis indicated that the upper limit of the micron carbon fiber concentration level was only about half the permissible asbestos ceiling concentration level.
NASA Astrophysics Data System (ADS)
Sharma, Poonam; Chauhan, S.; Syal, V. K.; Chauhan, M. S.
2008-04-01
Partial molar volumes of the drugs Parvon Spas, Parvon Forte, Tramacip, and Parvodex in aqueous mixtures of methanol (MeOH), ethanol (EtOH), and propan-1-ol (1-PrOH) have been determined. The data have been evaluated using the Masson equation. The parameters, apparent molar volumes {(φ_v)}, partial molar volumes {(φ_v0)}, and S v values (experimental slopes) have been interpreted in terms of solute solvent interactions. In addition, these studies have also been extended to determine the effect of these drugs on the solvation behavior of an electrolyte (sodium chloride), a surfactant (sodium dodecyl sulfate), and a non-electrolyte (sucrose). It can be inferred from these studies that all drug cations can be regarded as structure makers/promoters due to hydrophobic hydration. Furthermore, the results are correlated to understand the solution behavior of drugs in aqueous-alcoholic systems, as a function of the nature of the alcohol and solutes.
Demonstration of a Fast, Precise Propane Measurement Using Infrared Spectroscopy
NASA Astrophysics Data System (ADS)
Zahniser, M. S.; Roscioli, J. R.; Nelson, D. D.; Herndon, S. C.
2016-12-01
Propane is one of the primary components of emissions from natural gas extraction and processing activities. In addition to being an air pollutant, its ratio to other hydrocarbons such as methane and ethane can serve as a "fingerprint" of a particular facility or process, aiding in identifying emission sources. Quantifying propane has typically required laboratory analysis of flask samples, resulting in low temporal resolution and making plume-based measurements infeasible. Here we demonstrate fast (1-second), high precision (<300 ppt) measurements of propane using high resolution mid-infrared spectroscopy at 2967 wavenumbers. In addition, we explore the impact of nearby water and ethane absorption lines on the accuracy and precision of the propane measurement. Finally, we discuss development of a dual-laser instrument capable of simultaneous measurements of methane, ethane, and propane (the C1-C3 compounds), all within a small spatial package that can be easily deployed aboard a mobile platform.
NASA Astrophysics Data System (ADS)
Piasecki, Alison; Sessions, Alex; Lawson, Michael; Ferreira, A. A.; Neto, E. V. Santos; Eiler, John M.
2016-09-01
Site-specific isotope ratio measurements potentially provide valuable information about the formation and degradation of complex molecules-information that is lost in conventional bulk isotopic measurements. Here we discuss the background and possible applications of such measurements, and present a technique for studying the site-specific carbon isotope composition of propane at natural abundance based on mass spectrometric analysis of the intact propane molecule and its fragment ions. We demonstrate the feasibility of this approach through measurements of mixtures of natural propane and propane synthesized with site-specific 13C enrichment, and we document the limits of precision of our technique. We show that mass balance calculations of the bulk δ13C of propane based on our site-specific measurements is generally consistent with independent constraints on bulk δ13C. We further demonstrate the accuracy of the technique, and illustrate one of its simpler applications by documenting the site-specific carbon isotope signature associated with gas phase diffusion of propane, confirming that our measurements conform to the predictions of the kinetic theory of gases. This method can be applied to propane samples of moderate size (tens of micromoles) isolated from natural gases. Thus, it provides a means of studying the site-specific stable isotope systematics of propane at natural isotope abundances on sample sizes that are readily recovered from many natural environments. This method may also serve as a model for future techniques that apply high-resolution mass spectrometry to study the site-specific isotopic distributions of larger organic molecules, with potential applications to biosynthesis, forensics and other geochemical subjects.
Alternative Fuels Data Center: How Do Propane Vehicles Work?
gasoline vehicles with spark-ignited internal combustion engines. There are two types of propane fuel -injection systems available: vapor and liquid injection. In both types, propane is stored as a liquid in a
NASA Astrophysics Data System (ADS)
Xie, H.; Ponton, C.; Kitchen, N.; Lloyd, M. K.; Lawson, M.; Formolo, M. J.; Eiler, J. M.
2016-12-01
Intramolecular isotope ordering can constrain temperatures of synthesis, mechanisms of formation, and/or source substrates of organic compounds. Here we explore site-specific hydrogen isotope variations of propane. Statistical thermodynamic models predict that at equilibrium methylene hydrogen (-CH2-) in propane will be 10's of per mil higher in D/H ratio than methyl hydrogen (-CH3) at geologically relevant temperatures, and that this difference is highly temperature dependent ( 0.5-1 ‰/°C). Chemical-kinetic controls on site-specific D/H in propane could constrain the mechanisms, conditions and extents of propane synthesis or destruction. We have developed a method for measuring the difference in D/H ratio between methylene and methyl hydrogen in propane by gas source mass spectrometry. The data were measured using the Thermo Fisher Double Focusing Sector high resolution mass spectrometer (DFS), and involve comparison of the D/H ratios of molecular ion (C3H8+) and the ethyl fragmental ion (C2H5+). We demonstrate the accuracy and precision of this method through analysis of D-labeled and independently analyzed propanes. In the exchange experiments, propane was heated (100-200 oC) either alone or in the presence of D-enriched water (δD=1,1419 ‰ SMOW), with or without one of several potentially catalytic substrates for hours to weeks. Propane was found to exchange hydrogen with water vigorously at 200 °C in the presence of metal catalysts. In the presence of Ni catalyst, methylene hydrogen exchanges 2.5 times faster than methyl hydrogen. Hydrogen exchange in the presence of Pd catalyst is more effective and can equilibrate hydrogen isotope distribution on propane on the order of 7 days. Isotopic exchange in the presence of natural materials have also been tested, but is only measurable in the methylene group at 200 °C. High catalytic activity of Pd permits attainment of a bracketed, time-invariant equilibrium state that we use to calibrate the site-specific thermometer; these experiments also provide a reference frame for reporting mass spectrometric data. Differential H-exchange rates of the two molecular sites in propane could be a new tool to constrain thermal history of sub-surface propane. Our experimental and mass spectrometric approaches should be generalizable to other hydrocarbon compounds.
A bioassay for the detection of perchlorate in the ppb range.
Heinnickel, Mark; Smith, Stephen C; Koo, Jonathan; O'Connor, Susan M; Coates, John D
2011-04-01
A bioassay for the determination of ppb (μg·L(-1)) concentrations of perchlorate has been developed and is described herein. The assay uses the enzyme perchlorate reductase (PR) from the perchlorate-reducing organism Dechloromonas agitata in purified and partially purified forms to detect perchlorate. The redox active dye phenazine methosulfate (PMS) is shown to efficiently shuttle electrons to PR from NADH. Perchlorate can be determined indirectly by monitoring NADH oxidization by PR. To lower the detection limit, we have shown that perchlorate can be concentrated on a solid-phase extraction (SPE) column that is pretreated with the cation decyltrimethylammonium bromide (DTAB). Perchlorate is eluted from these columns with a solution of 2 M NaCl and 200 mM morpholine propane sulfonic acid (MOPS, pH 12.5). By washing these columns with 15 mL of 2.5 mM DTAB and 15% acetone, contaminating ions, such as chlorate and nitrate, are removed without affecting the bioassay. Because of the effect of complex matrices on the SPE columns, the method of standard additions is used to analyze tap water and groundwater samples. The efficacy of the developed bioassay was demonstrated by analyzing samples from 2-17000 ppb in deionized lab water, tap water, and contaminated groundwater.
Thermoplastic polymides and composites therefrom
NASA Technical Reports Server (NTRS)
Harris, Frank W. (Inventor)
1994-01-01
A new class polyimide and polyimide precursors based on diaryl oxyalkylene diamines, such as 1,3-bis[4-aminophenoxy]-2,2-dimethyl propane, a process for their preparation and their use as the continuous phase for the manufacture of composites and composite laminates reinforced by reinforcing agents such as carbon fibers, Kevlar.TM., and other similar high strength reinforcing agents. The polyimides and molecular composites obtained from the diamines according to the invention show thermoplastic properties, excellent flex fatigue and fracture resistance, and excellent thermal and oxidative stability.
Extreme toxicity from combustion products of a fire-retarded polyurethane foam.
Petajan, J H; Voorhees, K J; Packham, S C; Baldwin, R C; Einhorn, I N; Grunnet, M L; Dinger, B G; Birky, M M
1975-02-28
The products from nonflaming combustion of wood and a trimethylol-propane-based rigid-urethane foam that was not fire-retarded produced elevated carboxyhemoglobin levels but no abnormal neurological effects. However, when this type of foam contained a reactive phosphate fire retardant, the combustion products caused grand mal seizures and death in rats. The toxic combustion product responsible for the seizures has been identified as 4-ethyl-1-phospha-2,6,7-trioxabicyclo(2.2.2.)octane-1-oxide.
Incorporation of alpha-tocopherol in marine lipid-based liposomes: in vitro and in vivo studies.
Nacka, F; Cansell, M; Méléard, P; Combe, N
2001-12-01
Liposomes made from a natural marine lipid extract and containing a high polyunsaturated n-3 fatty lipid ratio were envisaged as oral route vectors and a potential alpha-tocopherol supplement. The behavior of vesicles obtained by simple filtration and of giant vesicles prepared by electroformation was investigated in gastrointestinal-like conditions. The influence of alpha-tocopherol incorporation into liposomes was studied on both physical and chemical membrane stability. Propanal, as an oxidation product of n-3 polyunsaturated fatty acids, was quantified by static headspace gas chromatography when alpha-tocopherol incorporation into liposome ratios ranged from 0.01 to 12 mol%. Best oxidative stability was obtained for liposomes that contained 5 mol% alpha-tocopherol. Compared to the other formulas, propanal formation was reduced, and time of the oxidation induction phase was longer. Moreover, alpha-tocopherol induced both liposome structural modifications, evidenced by turbidity, and phospholipid chemical hydrolysis, quantified as the amount of lysophospholipids. This physicochemical liposome instability was even more pronounced in acid storage conditions, i.e., alpha-tocopherol incorporation into liposome membranes accelerated the structural rearrangements and increased the rate of phospholipid hydrolysis. In particular, giant vesicles incubated at pH 1.5 underwent complex irreversible shape transformations including invaginations. In parallel, the absorption rate of alpha-tocopherol was measured in lymph-cannulated rats when alpha-tocopherol was administrated, as liposome suspension or added to sardine oil, through a gastrostomy tube. Alpha-tocopherol recovery in lymph was increased by almost threefold, following liposome administration. This may be related to phospholipids that should favor alpha-tocopherol solubilization and to liposome instability in the case of a high amount of alpha-tocopherol in the membranes. A need to correlate results obtained from in vitro liposome behavior with in vivo lipid absorption was demonstrated by this study.
The Millimeter-Wave Spectrum of Propanal
NASA Astrophysics Data System (ADS)
Zingsheim, Oliver; Müller, Holger S. P.; Lewen, Frank; Schlemmer, Stephan
2017-06-01
The microwave spectrum of propanal, also known as propionaldehyde, CH_3CH_2CHO, has been investigated in the laboratory already since 1964^1 and has also been detected in space^2. Recently, propanal was detected with the Atacama Large Millimeter/submillimeter Array (ALMA), Protostellar Interferometric Line Survey (PILS)^3. The high sensitivity and resolution of ALMA indicated small discrepancies between observed and predicted rotational spectra of propanal. As higher accuracies are desired the spectrum of propanal was measured up to 500 GHz with the Cologne (Sub-)Millimeter spectrometer. Propanal has two stable conformers, syn and gauche, which differ mainly in the rotation of the aldehyd group with respect to the rigid C-atom framework of the molecule. We extensively studied both of them. The lower syn-conformer shows small splittings caused by the internal rotation of the methyl group, whereas the spectrum of gauche-propanal is complicated due to the tunneling rotation interaction from two stable degenerate conformers. Additionally, we analyzed vibrationally excited states. ^1 Butcher et al., J. Chem. Phys. 40 6 (1964) ^2 Hollis et al., Astrophys. J. 610 L21 (2004) ^3 Lykke et al., A&A 597 A53 (2017)
School Districts Move to the Head of the Class with Propane
DOE Office of Scientific and Technical Information (OSTI.GOV)
Propane has been a proven fuel for buses for decades. For the first time in 2007, Blue Bird rolled out a propane school bus using direct liquid injection, which was later followed by Thomas Built Buses and Navistar. Because this new technology is much more reliable than previous designs, it is essentially reintroducing propane buses to many school districts. During this same time period, vehicle emissions standards have tightened. To meet them, diesel engine manufacturers have added diesel particulate filters (DPF) and, more recently, selective catalytic reduction (SCR) systems. As an alternative to diesel buses with these systems, many schoolmore » districts have looked to other affordable, clean alternatives, and they've found that propane fits the bill.« less
Catalytic dehydration of biomass derived 1-propanol to propene over M-ZSM-5 (M = H, V, Cu, or Zn)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lepore, Andrew W.; Li, Zhenglong; Davison, Brian H.
Here, the impetus to explore biomass derived chemicals arises from a desire to enable renewable and sustainable commodity chemicals. To this end, we report catalytic production of propene, a building-block molecule, from 1-propanol. We found that zeolite catalysts are quite versatile and can produce propene at or below 230 C with high selectivity. Increasing the reaction temperature above 230 C shifted product selectivity towards C4+ hydrocarbons. Cu-ZSM-5 was found to exhibit a broader temperature window for high propene selectivity and could function at higher 1-propanol space velocities than H-ZSM-5. A series of experiments with 1-propan(ol-D) showed deuterium incorporation in themore » hydrocarbon product stream including propene suggesting that hydrocarbon pool type pathway might be operational concurrent with dehydration to produce C4+ hydrocarbons. Diffuse reflectance infra-red spectroscopy of 1-propanol and 1-propan(ol-D) over Cu-ZSM-5 in combination with deuterium labeling experiments suggest that deuterium incorporation occurs in two steps. Incorporation of deuterium occurs post dehydration via exchange with the partially deuterated catalyst surface.« less
Catalytic dehydration of biomass derived 1-propanol to propene over M-ZSM-5 (M = H, V, Cu, or Zn)
Lepore, Andrew W.; Li, Zhenglong; Davison, Brian H.; ...
2017-04-03
Here, the impetus to explore biomass derived chemicals arises from a desire to enable renewable and sustainable commodity chemicals. To this end, we report catalytic production of propene, a building-block molecule, from 1-propanol. We found that zeolite catalysts are quite versatile and can produce propene at or below 230 C with high selectivity. Increasing the reaction temperature above 230 C shifted product selectivity towards C4+ hydrocarbons. Cu-ZSM-5 was found to exhibit a broader temperature window for high propene selectivity and could function at higher 1-propanol space velocities than H-ZSM-5. A series of experiments with 1-propan(ol-D) showed deuterium incorporation in themore » hydrocarbon product stream including propene suggesting that hydrocarbon pool type pathway might be operational concurrent with dehydration to produce C4+ hydrocarbons. Diffuse reflectance infra-red spectroscopy of 1-propanol and 1-propan(ol-D) over Cu-ZSM-5 in combination with deuterium labeling experiments suggest that deuterium incorporation occurs in two steps. Incorporation of deuterium occurs post dehydration via exchange with the partially deuterated catalyst surface.« less
Booster propulsion/vehicle impact study
NASA Technical Reports Server (NTRS)
Weldon, Vincent; Dunn, Michael; Fink, Lawrence; Phillips, Dwight; Wetzel, Eric
1988-01-01
The use of hydrogen RP-1, propane, and methane as fuels for booster engines of launch vehicles is discussed. An automated procedure for integrated launch vehicle, engine sizing, and design optimization was used to define two stage and single stage concepts for minimum dry weight. The two stage vehicles were unmanned and used a flyback booster and partially reusable orbiter. The single stage designs were fully reusable, manned flyback vehicles. Comparisons of these vehicle designs, showing the effects of using different fuels, as well as sensitivity and trending data, are presented. In addition, the automated design technique utilized for the study is described.
Liquefied Petroleum Gas (Propane) Vehicle and Equipment Incentive - Propane Council of Texas fleets. New dedicated propane vehicles and aftermarket conversions are eligible for an incentive equal to the incremental cost, up to $7,500. Each fleet is limited to $20,000 in total incentive awards
Numerical simulation of turbulent stratified flame propagation in a closed vessel
NASA Astrophysics Data System (ADS)
Gruselle, Catherine; Lartigue, Ghislain; Pepiot, Perrine; Moureau, Vincent; D'Angelo, Yves
2012-11-01
Reducing pollutants emissions while keeping a high combustion efficiency and a low fuel consumption is an important challenge for both gas turbine (GT) and internal combustion engines (ICE). To fulfill these new constraints, stratified combustion may constitute an efficient strategy. A tabulated chemistry approach based on FPI combined to a low-Mach number method is applied in the analysis of a turbulent propane-air flame with equivalence ratio (ER) stratification, which has been studied experimentally by Balusamy [S. Balusamy, Ph.D Thesis, INSA-Rouen (2010)]. Flame topology, along with flame velocity statistics, are well reproduced in the simulation, even if time-history effects are not accounted for in the tabulated approach. However, these effects may become significant when exhaust gas recirculation (EGR) is introduced. To better quantify them, both ER and EGR-stratified two-dimensional flames are simulated using finite-rate chemistry and a semi-detailed mechanism for propane oxidation. The numerical implementation is first investigated in terms of efficiency and accuracy, with a focus on splitting errors. The resulting flames are then analyzed to investigate potential extensions of the FPI technique to EGR stratification.
Guillén-Bonilla, Héctor; Flores-Martínez, Martín; Rodríguez-Betancourtt, Verónica-María; Guillen-Bonilla, Alex; Reyes-Gómez, Juan; Gildo-Ortiz, Lorenzo; de la Luz Olvera Amador, María; Santoyo-Salazar, Jaime
2016-01-01
Bystromite (MgSb2O6) nanorods were prepared using a colloidal method in the presence of ethylenediamine, after a calcination step at 800 °C in static air. From X-ray powder diffraction analyses, a trirutile-type structure with lattice parameters a = 4.64 Å and c = 9.25 Å and space group P42/mnm was identified. Using scanning electron microscopy (SEM), microrods with sizes from 0.2 to 1.6 μm were observed. Transmission electron microscopy (TEM) analyses revealed that the nanorods had a length of ~86 nm and a diameter ~23.8 nm. The gas-sensing properties of these nanostructures were tested using pellets elaborated with powders of the MgSb2O6 oxide (calcined at 800 °C) at temperatures 23, 150, 200, 250 and 300 °C. The pellets were exposed to different concentrations of carbon monoxide (CO) and propane (C3H8) at these temperatures. The results showed that the MgSb2O6 nanorods possess excellent stability and high sensitivity in these atmospheres. PMID:26840318
Guillén-Bonilla, Héctor; Flores-Martínez, Martín; Rodríguez-Betancourtt, Verónica-María; Guillen-Bonilla, Alex; Reyes-Gómez, Juan; Gildo-Ortiz, Lorenzo; de la Luz Olvera Amador, María; Santoyo-Salazar, Jaime
2016-01-30
Bystromite (MgSb2O6) nanorods were prepared using a colloidal method in the presence of ethylenediamine, after a calcination step at 800 °C in static air. From X-ray powder diffraction analyses, a trirutile-type structure with lattice parameters a = 4.64 Å and c = 9.25 Å and space group P4₂/mnm was identified. Using scanning electron microscopy (SEM), microrods with sizes from 0.2 to 1.6 μm were observed. Transmission electron microscopy (TEM) analyses revealed that the nanorods had a length of ~86 nm and a diameter ~23.8 nm. The gas-sensing properties of these nanostructures were tested using pellets elaborated with powders of the MgSb2O6 oxide (calcined at 800 °C) at temperatures 23, 150, 200, 250 and 300 °C. The pellets were exposed to different concentrations of carbon monoxide (CO) and propane (C3H8) at these temperatures. The results showed that the MgSb2O6 nanorods possess excellent stability and high sensitivity in these atmospheres.
Photographic combustion characterization of LOX/hydrocarbon type propellants
NASA Technical Reports Server (NTRS)
Judd, D. C.
1979-01-01
Single element injectors and two fuels were tested with the aim of photographically characterizing observed combustion phenomena. The three injectors tested were the O-F-O triplet, the transverse like on like (TLOL), and the rectangular unlike doublet (RUD). The fuels tested were RP-1 and propane. The hot firings were conducted in a specifically constructed chamber fitted with quartz windows for photographically viewing the impingement spray field. All LOX/HC testing demonstrated coking with the RP-1 fuel leaving far more soot than the propane fuel. No fuel freezing or popping was experienced under the test conditions evaluated. Carbon particle emission and combustion light brilliance increased with Pc for both fuels although RP-1 was far more energetic in this respect. The RSS phenomena appear to be present in the high Pc tests as evidenced by striations in the spray pattern and by separate fuel rich and oxidizer rich areas. The RUD element was also tested as a fuel rich gas generator element by switching the propellant circuits. Excessive sooting occurred at this low mixture ratio (0.55), precluding photographic data.
The paper discusses a program to determine the performance of fluorinated ethers and fluorinated propanes in a compressor calorimeter. These chlorine free ethers and propanes are being considered as potential long-term replacements for CFC-11, -12, -114, and -115. A standard comp...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alikhanyan, A.I.; Kirillov-Ugryumov, V.G.; Kotenko, L.P.
1958-01-01
In consideration of the wide use of propane bubble cameras, investigations were made of the angular distribution of electrons from pi /sup +/ -- mu /sup +/--e/sup +/ decay in propane to determine the possibility of using propane in angular correlation measurements of processes simlar to mu --e decay. The scheme of the experiment made with a bubble chamber of (7.2 x 6.5 x 16)cm/ dmensions bombarded by a 175-Mev pi -meson beam from a phasotron is described. (R.V.J.)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gomez, Elaine; Kattel, Shyam; Yan, Binhang
In this paper, the inherent variability and insufficiencies in the co-production of propylene from steam crackers has raised concerns regarding the global propylene production gap and has directed industry to develop more on-purpose propylene technologies. The oxidative dehydrogenation of propane by CO 2 (CO 2-ODHP) can potentially fill this gap while consuming a greenhouse gas. Non-precious FeNi and precious NiPt catalysts supported on CeO 2 have been identified as promising catalysts for CO 2-ODHP and dry reforming, respectively, in flow reactor studies conducted at 823 K. In-situ X-ray absorption spectroscopy measurements revealed the oxidation states of metals under reaction conditionsmore » and density functional theory calculations were utilized to identify the most favorable reaction pathways over the two types of catalysts.« less
Rydosz, Artur; Szkudlarek, Aleksandra
2015-01-01
Cupric oxide (CuO) thin films are promising materials in gas sensor applications. The CuO-based gas sensors behaved as p-type semiconductors and can be used as part of an e-nose or smart sensor array for breath analysis. The authors present the investigation results on M-doped CuO-based (M = Ag, Au, Cr, Pd, Pt, Sb, Si) sensors working at various temperatures upon exposure to a low concentration of C3H8, which can be found in exhaled human breath, and it can be considered as a one of the biomarkers of several diseases. The films have been deposited in magnetron sputtering technology on low temperature cofired ceramics substrates. The results of the gas sensors’ response are also presented and discussed. The Cr:CuO-based structure, annealed at 400 °C for 4 h in air, showed the highest sensor response, of the order of 2.7 at an operation temperature of 250 °C. The response and recovery time(s) were 10 s and 24 s, respectively. The results show that the addition of M-dopants in the cupric oxide films effectively act as catalysts in propane sensors and improve the gas sensing properties. The films’ phase composition, microstructure and surface topography have been assessed by the X-ray diffraction (XRD), scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDX) methods. PMID:26287204
Site-Directed Synthesis of Cobalt Oxide Clusters in a Metal–Organic Framework
Peters, Aaron W.; Otake, Kenichi; Platero-Prats, Ana E.; ...
2018-04-19
Here, direct control over structure and location of catalytic species deposited on amorphous supports represents a formidable challenge in heterogeneous catalysis. In contrast, a structurally well-defined, crystalline metal–organic framework (MOF) can be rationally designed using post-synthetic techniques to allow for desired structural or locational changes of deposited metal ions. Herein, naphthalene dicarboxylate linkers are incorporated in the MOF, NU-1000, to block the small cavities where few-atom clusters of cobalt oxide preferentially grow, inducing catalyst deposition towards hither-to ill-favored grafting sites orientated toward NU-1000’s mesoporous channels. Despite the different cobalt oxide location, the resulting material is still an active propane oxidativemore » dehydrogenation catalyst at low temperature, reaching a turnover frequency of 0.68 ± 0.05 h –1 at 230 °C and confirming the utility of MOFs as crystalline supports to guide rational design of catalysts.« less
Site-Directed Synthesis of Cobalt Oxide Clusters in a Metal–Organic Framework
DOE Office of Scientific and Technical Information (OSTI.GOV)
Peters, Aaron W.; Otake, Kenichi; Platero-Prats, Ana E.
Here, direct control over structure and location of catalytic species deposited on amorphous supports represents a formidable challenge in heterogeneous catalysis. In contrast, a structurally well-defined, crystalline metal–organic framework (MOF) can be rationally designed using post-synthetic techniques to allow for desired structural or locational changes of deposited metal ions. Herein, naphthalene dicarboxylate linkers are incorporated in the MOF, NU-1000, to block the small cavities where few-atom clusters of cobalt oxide preferentially grow, inducing catalyst deposition towards hither-to ill-favored grafting sites orientated toward NU-1000’s mesoporous channels. Despite the different cobalt oxide location, the resulting material is still an active propane oxidativemore » dehydrogenation catalyst at low temperature, reaching a turnover frequency of 0.68 ± 0.05 h –1 at 230 °C and confirming the utility of MOFs as crystalline supports to guide rational design of catalysts.« less
Alternative Fuels Data Center: Alpha Baking Company Augments Its Fleet With
Propane Delivery Trucks Alpha Baking Company Augments Its Fleet With Propane Delivery Trucks to someone by E-mail Share Alternative Fuels Data Center: Alpha Baking Company Augments Its Fleet With Propane Delivery Trucks on Facebook Tweet about Alternative Fuels Data Center: Alpha Baking Company
Alternative Fuels Data Center: Alabama Prisons Adopt Propane, Establish
, Establish Fuel Savings for Years to Come on Facebook Tweet about Alternative Fuels Data Center: Alabama Prisons Adopt Propane, Establish Fuel Savings for Years to Come on Twitter Bookmark Alternative Fuels Data Center: Alabama Prisons Adopt Propane, Establish Fuel Savings for Years to Come on Google Bookmark
Research on propane leak detection system and device based on mid infrared laser
NASA Astrophysics Data System (ADS)
Jiang, Meng; Wang, Xuefeng; Wang, Junlong; Wang, Yizhao; Li, Pan; Feng, Qiaoling
2017-10-01
Propane is a key component of liquefied petroleum gas (LPG) and crude oil volatile. This issue summarizes the recent progress of propane detection technology. Meanwhile, base on the development trend, our latest progress is also provided. We demonstrated a mid infrared propane sensor system, which is based on wavelength modulation spectroscopy (WMS) technique with a CW interband cascade laser (ICL) emitting at 3370.4nm. The ICL laser scanned over a sharp feature in the broader spectrum of propane, and harmonic signals are obtained by lock-in amplifier for gas concentration deduction. The surrounding gas is extracted into the fine optical absorption cell through the pump to realize online detection. The absorption cell is designed in mid infrared windows range. An example experimental setup is shown. The second harmonic signals 2f and first harmonic signals1f are obtained. We present the sensor performance test data including dynamic precision and temperature stability. The propane detection sensor system and device is portable can carried on the mobile inspection vehicle platforms or intelligent robot inspection platform to realize the leakage monitoring of whole oil gas tank area.
A surface flow visualisation technique for use in cryogenic wind tunnels
NASA Technical Reports Server (NTRS)
Kell, D. M.
1978-01-01
A method of surface flow visualization for use in cryogenic wind tunnels is described which requires injection of a cryogenic liquid onto the model while the tunnel is running. This necessitates the use of a substance that remains liquid over a large range of cryogenic wind tunnel operating temperatures. It is found that propane (C3H8) is a suitable substance. Experiments are conducted in a subsonic cryogenic wind tunnel to assess the practical application of liquid propane flow visualization. The propane is stored in a chamber cooled by liquid nitrogen and when required is pumped through pipes to a gallery inside the model and then out onto the surface through small holes. To color the liquid a suspension of pigment particles is used. Propane is supplied to the cooled chamber in gaseous form from a standard liquefied gas cylinder. The sequence of events is illustrated on a propane temperature-entropy diagram. The use of liquefied propane for flow visualization in a cryogenic tunnel operating at pressures up to 40 atm appears to be feasible. Illustrative examples are provided.
Watkins, Avery L; Landis, Clark R
2010-08-04
Gas pressure influences the regioselectivity and enantioselectivity of aryl alkene hydroformylation as catalyzed by rhodium complexes of the BisDiazaphos ligand. Deuterioformylation of styrene at 80 degrees C results in extensive deuterium incorporation into the terminal position of the recovered styrene. This result establishes that rhodium hydride addition to form a branched alkyl rhodium occurs reversibly. The independent effect of carbon monoxide and hydrogen partial pressures on regioselectivity and enantioselectivity were measured. From 40 to 120 psi, both regioisomer (b:l) and enantiomer (R:S) ratios are proportional to the carbon monoxide partial pressure but approximately independent of the hydrogen pressure. The absolute rate for linear aldehyde formation was found to be inhibited by carbon monoxide pressure, whereas the rate for branched aldehyde formation is independent of CO pressure up to 80 psi; above 80 psi one observes the onset of inhibition. The carbon monoxide dependence of the rate and enantioselectivity for branched aldehyde indicates that the rate of production of (S)-2-phenyl propanal is inhibited by CO pressure, while the formation rate of the major enantiomer, (R)-2-phenyl propanal, is approximately independent of CO pressure. Hydroformylation of alpha-deuteriostyrene at 80 degrees C followed by conversion to (S)-2-benzyl-4-nitrobutanal reveals that 83% of the 2-phenylpropanal resulted from rhodium hydride addition to the re face of styrene, and 83% of the 3-phenylpropanal resulted from rhodium hydride addition to the si face of styrene. On the basis of these results, kinetic and steric/electronic models for the determination of regioselectivity and enantioselectivity are proposed.
Variation of the pressure limits of flame propagation with tube diameter for propane-air mixtures
NASA Technical Reports Server (NTRS)
Belles, Frank E; Simon, Dorothy M
1951-01-01
An investigation was made of the variation of the pressure limits of flame propagation with tube diameter for quiescent propane with tube diameter for quiescent propane-air mixtures. Pressure limits were measured in glass tubes of six different inside diameters, with a precise apparatus. Critical diameters for flame propagation were calculated and the effect of pressure was determined. The critical diameters depended on the pressure to the -0.97 power for stoichiometric mixtures. The pressure dependence decreased with decreasing propane concentration. Critical diameters were related to quenching distance, flame speeds, and minimum ignition energy.
Infrared absorption cross sections of propane broadened by hydrogen
NASA Astrophysics Data System (ADS)
Wong, A.; Hargreaves, R. J.; Billinghurst, B.; Bernath, P. F.
2017-09-01
Fourier transform infrared absorption cross-sections of pure propane (C3H8) and propane broadened with H2 have been calculated from transmittance spectra recorded at temperatures from 292 K to 205 K. Transmittance spectra were recorded at the Canadian Light Source (CLS) Far-Infrared beamline, utilizing both the synchrotron source and the internal glowbar source. The absorption cross-sections have been calibrated to Pacific Northwest National Laboratory (PNNL) reference cross-sections of propane and can be used to interpret astronomical observations of giant planets such as Jupiter and Saturn as well as exoplanets.
Liao, W; Chen, L; Yu, B; Lei, Z; Wu, X; Yang, J; Ren, J
2016-01-11
The protective effect of a polysaccharide from Dictyophora indusiata(DP1)against oxidative hemolysis was comprehensively evaluated. The 2, 2-azobis (2-amidino-propane) dihydrochloride (AAPH)-induced erythrocyte hemolysis assay showed that DP1 exhibited excellent anti-hemolytic activity(87.4% hemolysis suppression ratio at 20 nmol/mL). Also, the formation of conjugated diene induced by cupric chloride (CuCl2) in plasma was significantly inhibited by DP1. Besides, DP1 could effectively inhibit AAPH-induced overproduction of reactive oxygen species (81.5% inhibition at 20 nmol/mL) and alleviated the enhancement of intracellular antioxidant enzymes including superoxide dismutase(SOD), glutathione peroxidase (GPX) and catalase (CAT) activities. Also, the malondialdehyde (MDA) formation caused by oxidative stress was suppressed by 57.0% at DP1 concentration of 20 nmol/mL. Taken together, the possible intracellular antioxidant detoxifying mechanism of DP1 was probably via preserving the activities of the antioxidant enzymes (SOD, GPx and CAT) as well as inhibiting lipid peroxidation, and thus alleviated erythrocytes oxidation and plasma oxidation.
Giroux, Hélène J; Acteau, Geneviève; Sabik, Hassan; Britten, Michel
2008-07-23
The combined effect of dissolved gas composition and heat treatment on the oxidative degradation of a dairy beverage enriched with 2% linseed oil was studied. The dairy beverage was saturated with air, nitrogen, or a nitrogen/hydrogen mixture (4% hydrogen) before pasteurization or sterilization. Saturation with either nitrogen or a nitrogen/hydrogen mixture decreased the dissolved oxygen concentration in dairy beverages (Delta = 7.7 ppm), and the presence of hydrogen significantly reduced the redox potential (Delta = 287 mV). Heat treatments also reduced the oxygen content and redox potential, sterilization being more effective than pasteurization. Both pasteurization and sterilization induced the oxidative degradation of the beverages. On average, the propanal concentration increased by a factor of 2.3 after pasteurization and by a factor of 6.2 after sterilization. However, during storage, sterilized beverages resisted light-induced oxidation better than unheated or pasteurized beverages. Furthermore, saturation with nitrogen or a nitrogen/hydrogen mixture significantly reduced oxidative degradation and provided some protection against color changes during storage.
40 CFR 721.8145 - Propane,1,1,1,2,2,3,3-heptafluoro-3-methoxy-.
Code of Federal Regulations, 2010 CFR
2010-07-01
...) TOXIC SUBSTANCES CONTROL ACT SIGNIFICANT NEW USES OF CHEMICAL SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.8145 Propane,1,1,1,2,2,3,3-heptafluoro-3-methoxy-. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as propane,1...
NASA Technical Reports Server (NTRS)
Seshadri, K.; Rosner, D. E.
1985-01-01
An application of an optical polarization technique in a combustion environment is demonstrated by following, in real-time, growth rates of boric oxide condensate on heated platinum ribbons exposed to seeded propane-air combustion gases. The results obtained agree with the results of earlier interference measurements and also with theoretical chemical vapor deposition predictions. In comparison with the interference method, the polarization technique places less stringent requirements on surface quality, which may justify the added optical components needed for such measurements.
NASA Technical Reports Server (NTRS)
Masters, P. A.; Aukerman, C. A.
1982-01-01
A high pressure fuel coking testing apparatus was designed and developed and was used to evaluate thermal decomposition limits and carbon decomposition rates in heated copper tubes for hydrocarbon fuels. A commercial propane (90% grade) and chemically pure (CP) propane were tested. Heat transfer to supercritical propane was evaluated at 136 atm, bulk fluid velocities of 6 to 30 m/s, and tube wall temperatures in the range of 422 to 811 K. A forced convection heat transfer correlation developed in a previous test effort verified a prediction of most of the experimental data within a + or - 30% range, with good agreement for the CP propane data. No significant differences were apparent in the predictions derived from the correlation when the carbon resistance was included with the film resistance. A post-test scanning electron microprobe analysis indicated occurrences of migration and interdiffusion of copper into the carbon deposit.
Striegl, Robert G.
1988-01-01
The unsaturated zone is a medium that provides pneumatic communication for the movement of gases from wastes buried in landfills to the atmosphere, biota, and groundwater. Gases in unsaturated glacial and eolian deposits near a waste-disposal trench at the low-level radioactive-waste disposal site near Sheffield, Bureau County, Illinois, were identified, and the spatial and temporal distributions of the partial pressures of those gases were determined for the period January 1984 through January 1986. Methods for the collection and analyses of the gases are described, as are geologic and hydrologic characteristics of the unsaturated zone that affect gas transport. The identified gases, which are of natural and of waste origin, include nitrogen, oxygen, and argon, carbon dioxide, methane, propane, butane, tritiated water vapor, 14carbon dioxide, and 222 radon. Concentrations of methane and 14carbon dioxide originated at the waste, as shown by partial-pressure gradients of the gases; 14carbon dioxide partial pressures exceeded natural background partial pressures by factors greater than 1 million at some locations. Variations in partial pressures of oxygen and carbon dioxide were seasonal among piezometers because of increased root and soil-microbe respiration during summer. Variations in methane and 14carbon dioxide partial pressures were apparently related to discrete releases from waste sources at unpredictable intervals of time. No greater than background partial pressures for tritiated water vapor or 222 radon were measured. (USGS)
Alternative Fuels Data Center: Baton Rouge School District Adds Propane
Renzenberger Inc Saves Money With Propane Vans Feb. 1, 2014 Photo of a school bus Michigan Transports Students Vehicles June 8, 2012 Natural Gas School Buses Help Kansas City Save Money Nov. 12, 2011 Electric Trucks Alternative Fuels Oct. 16, 2010 Propane Buses Save Money for Virginia Schools Feb. 25, 2010 MedCorp Fuels
Alternative Fuels Data Center: Boston Public Schools Moves to Propane
Efficiency March 8, 2014 Renzenberger Inc Saves Money With Propane Vans Feb. 1, 2014 Photo of a school bus to Alternative Fuel Vehicles June 8, 2012 Natural Gas School Buses Help Kansas City Save Money Nov National Park Commits to Alternative Fuels Oct. 16, 2010 Propane Buses Save Money for Virginia Schools Feb
Alternative Fuels Data Center: Yellow Cab Converts Taxis to Propane in
electric car. College Students Engineer Efficient Vehicles in EcoCAR 2 Competition Aug. 2, 2014 Photo of a Columbus, OhioA> Yellow Cab Converts Taxis to Propane in Columbus, Ohio to someone by E-mail how Yellow Cab is overhauling their fleet in Columbus, Ohio, with propane power. For information about
NASA Technical Reports Server (NTRS)
Wear, J. D.; Jones, R. E.
1973-01-01
The performance of an annular turbojet combustor using natural-gas fuel is compared with that obtained using ASTM A-1 and propane fuels. Propane gas was used to simulate operation with vaporized kerosene fuels. The results obtained at severe operating conditions and altitude relight conditions show that natural gas is inferior to both ASTM A-1 and propane fuels. Combustion efficiencies were significantly lower and combustor pressures for relight were higher with natural-gas fuel than with the other fuels. The inferior performance of natural gas is shown to be caused by the chemical stability of the methane molecule.
Liquefied petroleum gas (LPG) poisoning: report of two cases and review of the literature.
Fukunaga, T; Yamamoto, H; Tanegashima, A; Yamamoto, Y; Nishi, K
1996-10-25
Two autopsy cases of men who died while connecting a liquefied petroleum gas (LPG) pipe are reported. Their blood concentrations of propane (the main content of LPG) were 0.12 and 3.40 mg/100 g, respectively. The cause of death after exposure of LPG has generally been considered to be asphyxia from hypoxia. The large differences in the blood propane levels found here and reported in the literature, however, suggest that direct toxic effects of propane poisoning may be the cause of death in some cases. Propane concentrations and the cause of death are reviewed and discussed.
Evaluation of various models of propane-powered mosquito traps.
Kline, Daniel L
2002-06-01
Large cage and field studies were conducted to determine the efficacy of various models of propane-powered mosquito traps. These traps utilized counterflow technology in conjunction with catalytic combustion to produce attractants (carbon dioxide, water vapor, and heat) and a thermoelectric generator that converted excess heat into electricity for stand-alone operation. The cage studies showed that large numbers of Aedes aegypti and Ochlerotatus taeniorhynchus were captured and that each progressive model resulted in increased trapping efficiency. In several field studies against natural populations of mosquitoes two different propane traps were compared against two other trap systems, the professional (PRO) and counterflow geometry (CFG) traps. In these studies the propane traps consistently caught more mosquitoes than the PRO trap and significantly fewer mosquitoes than the CFG traps. The difference in collection size between the CFG and propane traps was due mostly to Anopheles crucians. In spring 1997 the CFG trap captured 3.6X more An. crucians than the Portable Propane (PP) model and in spring 1998 it captured 6.3X more An. crucians than the Mosquito Magnet Beta-1 (MMB-1) trap. Both the PP and MMB-1 captured slightly more Culex spp. than the CFG trap.
Application of mixing-controlled combustion models to gas turbine combustors
NASA Technical Reports Server (NTRS)
Nguyen, Hung Lee
1990-01-01
Gas emissions were studied from a staged Rich Burn/Quick-Quench Mix/Lean Burn combustor were studied under test conditions encountered in High Speed Research engines. The combustor was modeled at conditions corresponding to different engine power settings, and the effect of primary dilution airflow split on emissions, flow field, flame size and shape, and combustion intensity, as well as mixing, was investigated. A mathematical model was developed from a two-equation model of turbulence, a quasi-global kinetics mechanism for the oxidation of propane, and the Zeldovich mechanism for nitric oxide formation. A mixing-controlled combustion model was used to account for turbulent mixing effects on the chemical reaction rate. This model assumes that the chemical reaction rate is much faster than the turbulent mixing rate.
NASA Astrophysics Data System (ADS)
Liu, Yangqing; Wang, Kai; Hou, Wei; Shan, Wanjian; Li, Jing; Zhou, Yu; Wang, Jun
2018-01-01
Multi-functional mesoporous poly(ionic liquid) (MPIL) containing pyridine-based ionic liquid (IL) moieties and adjacent double sbnd COOH groups was synthesized through the free radical copolymerization of IL monomer N-propane sulfonate-4-vinylpyridine, maleic anhydride and divinylbenzene. Palladium(II) species were anchored on this MPIL support, affording the first efficient heterogeneous catalyst for the oxidative coupling of benzene to biphenyl under atmospheric oxygen at low temperature. The biphenyl yield of 15.0% (selectivity: 98.5%, turnover number: 62) was even higher than the one over the homogeneous counterpart palladium acetate. The catalyst can be facilely separated and reused. The IL moiety in the polymeric framework endowed the formation of immobilized palladium(II) species with high electrophilicity, which responds to the high performance.
Effect of fuel vapor concentrations on combustor emissions and performance
NASA Technical Reports Server (NTRS)
Norgren, C. T.; Ingebo, R. D.
1973-01-01
Effects of fuel vaporization on the exhaust emission levels of oxides of nitrogen, carbon monoxide, total hydrocarbons, and smoke number were obtained in an experimental turbojet combustor segment. Two different fuel injectors were used in which liquid ASTM A-1 jet fuel and vapor propane fuel were independently controlled to simulate varying degrees of vaporization. Tests were conducted over a range of inlet-air temperatures from 478 to 700 K, pressures from 4 to 20 atm, and combustor reference velocities from 15.3 to 27.4 m/sec. Converting from liquid to complete vapor fuel resulted in oxides of nitrogen reductions of as much as 22 percent and smoke number reductions up to 51 percent. Supplement data are also presented on flame emissivity, flame temperature, and primary-zone liner wall temperatures.
NASA Astrophysics Data System (ADS)
Adams, M. M.; Joye, S. B.; Hoarfrost, A.; Girguis, P. R.
2012-12-01
Global geochemical analyses suggest that C2-C4 short chain alkanes are a common component of the utilizable carbon pool in deep-sea sediments worldwide and have been found in diverse ecosystems. From a thermodynamic standpoint, the anaerobic microbial oxidation of these aliphatic hydrocarbons is more energetically yielding than the anaerobic oxidation of methane (AOM). Therefore, the preferential degradation of these hydrocarbons may compete with AOM for the use of oxidants such as sulfate, or other potential oxidants. Such processes could influence the fate of methane in the deep-sea. Sulfate-reducing bacteria (SRB) from hydrocarbon seep sediments of the Gulf of Mexico and Guaymas Basin have previously been enriched that anaerobically oxidize short chain alkanes to generate CO2 with the preferential utilization of 12C-enriched alkanes (Kniemeyer et al. 2007). Different temperature regimens along with multiple substrates were tested and a pure culture (deemed BuS5) was isolated from mesophilic enrichments with propane or n-butane as the sole carbon source. Through comparative sequence analysis, strain BuS5 was determined to cluster with the metabolically diverse Desulfosarcina / Desulfococcus cluster, which also contains the SRB found in consortia with anaerobic, methane-oxidizing archaea in seep sediments. Enrichments from a terrestrial, low temperature sulfidic hydrocarbon seep also corroborated that propane degradation occurred with most bacterial phylotypes surveyed belonging to the Deltaproteobacteria, particularly Desulfobacteraceae (Savage et al. 2011). To date, no microbes capable of ethane oxidation or anaerobic C2-C4 alkane oxidation at thermophilic temperature have been isolated. The sediment-covered, hydrothermal vent systems found at Middle Valley (Juan de Fuca Ridge, eastern Pacific Ocean) are a prime environment for investigating mesophilic to thermophilic anaerobic oxidation of short-chain alkanes, given the elevated temperatures and dissolved hydrocarbon species characteristic of these metalliferous sediments. These systems are also characterized by sharp physicochemical gradients that have been shown to have a pronounced effect on microbial ecology and activity. Sediments were collected from a Middle Valley field with relatively high concentrations of short-chain alkanes and incubated in anaerobic batch reactors with each individual alkane (C1, C2, C3 and C4, respectively) at a range of temperatures (25, 55 and 75 °C) to mimic environmental physico-chemical conditions in a closed system. Stable carbon isotope ratios and radiotracer incubations provide clear evidence for C2-C4 alkane oxidation in the sediments over time. Upon identifying sediments with anaerobic alkane oxidation activity, microbial communities were screened via 16S rRNA pyrosequencing, and key phylotypes were then quantified using both molecular and microscopic methods. There were shifts in overall community composition and putative alkane-oxidizing phylotypes after the incubation period with the alkane substrates. These are the first evidence to date indicating that anaerobic C2-C4 alkane oxidation occurs across a broad range of temperatures in metalliferous sediments.
Brockmann, D; Morgenroth, E
2010-03-01
In practice, partial nitrification to nitrite in biofilms has been achieved with a range of different operating conditions, but mechanisms resulting in reliable partial nitrification in biofilms are not well understood. In this study, mathematical biofilm modeling combined with Monte Carlo filtering was used to evaluate operating conditions that (1) lead to outcompetition of nitrite oxidizers from the biofilm, and (2) allow to maintain partial nitrification during long-term operation. Competition for oxygen was found to be the main mechanism for displacing nitrite oxidizers from the biofilm, and preventing re-growth of nitrite oxidizers in the long-term. To maintain partial nitrification in the model, a larger oxygen affinity (i.e., smaller half saturation constant) for ammonium oxidizers compared to nitrite oxidizers was required, while the difference in maximum growth rate was not important for competition under steady state conditions. Thus, mechanisms for washout of nitrite oxidizing bacteria from biofilms are different from suspended cultures where the difference in maximum growth rate is a key mechanism. Inhibition of nitrite oxidizers by free ammonia was not required to outcompete nitrite oxidizers from the biofilm, and to maintain partial nitrification to nitrite. But inhibition by free ammonia resulted in faster washout of nitrite oxidizers. Copyright 2009 Elsevier Ltd. All rights reserved.
Rohwedder, J J R; Pasquini, C; Fortes, P R; Raimundo, I M; Wilk, A; Mizaikoff, B
2014-07-21
A miniaturised gas analyser is described and evaluated based on the use of a substrate-integrated hollow waveguide (iHWG) coupled to a microsized near-infrared spectrophotometer comprising a linear variable filter and an array of InGaAs detectors. This gas sensing system was applied to analyse surrogate samples of natural fuel gas containing methane, ethane, propane and butane, quantified by using multivariate regression models based on partial least square (PLS) algorithms and Savitzky-Golay 1(st) derivative data preprocessing. The external validation of the obtained models reveals root mean square errors of prediction of 0.37, 0.36, 0.67 and 0.37% (v/v), for methane, ethane, propane and butane, respectively. The developed sensing system provides particularly rapid response times upon composition changes of the gaseous sample (approximately 2 s) due the minute volume of the iHWG-based measurement cell. The sensing system developed in this study is fully portable with a hand-held sized analyser footprint, and thus ideally suited for field analysis. Last but not least, the obtained results corroborate the potential of NIR-iHWG analysers for monitoring the quality of natural gas and petrochemical gaseous products.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oliveira, P.G. Pries de; Eon, J.G.; Volta, J.C.
1992-09-01
Vanadium oxides were immobilized by grafting VOCl{sub 3} on AlNbO oxides calcined between 500 and 750 C. Chemical analysis, XPS, and STEM measurements suggest an incomplete but homogeneous stoichiometric reaction between superficial hydroxyl groups and vanadyl oxychloride. By FTIR studies, it is observed that the interaction involves preferentially basic hydroxyl groups bonded to aluminium cations. UV-visible spectra show that mainly V{sup 5+} is present at the solid surface. Corresponding spectra are compatible with tetrahedral symmetry, in agreement with a previous {sup 51}V NMR investigation. The acido-basic properties of the catalyst were tested by isopropanol decomposition and compared with the correspondingmore » supports. It has been observed that basicity is higher for VO{sub x} grafted on AlBnO oxide calcined at high temperature and corresponding to the AlNbO{sub 4} structure. VO{sub x} grafted on AlNbO oxides calcined at intermediate temperatures and corresponding to a AlNbO disorganized structure present a good selectivity for the oxidative dehydrogenation of propane into propene. It has been observed that, for both reactions, the turnover number increases with the temperature of calcination of the catalysts. The reactivity of the aluminium niobiate support.« less
Zhou, Jinglin; Hu, Huimin; Huang, Renhuan
2018-03-01
Orthodontically induced external apical root resorption (OIEARR) is one of the most severe complications of orthodontic treatment, which is hard to diagnose at early stage by merely radiographic examination. This study aimed to identify salivary metabolic products using unbiased metabolic profiling in order to discover biomarkers that may indicate OIEARR. Unstimulated saliva samples were analyzed from 19 healthy orthodontic patients with EARR (n=8) and non-EARR (n=11). Metabolite profiling was performed using 1 H Nuclear Magnetic Resonance (NMR) spectroscopy. A total of 187 metabolites were found in saliva samples. With supervised partial least squares discriminant analysis and regression analysis, samples from 2 groups were well separated, attributed by a series of metabolites of interest, including butyrate, propane-1,2-diol, α-linolenic acid (Ala), α-glucose, urea, fumarate, formate, guanosine, purine, etc. Indicating the increased inflammatory responses in the periodontal tissues possibly associated with energy metabolism and oxidative stress. The effective separation capacity of 1 H NMR based metabolomics suggested potential feasibility of clinical application in monitoring periodontal and apical condition in orthodontic patients during treatment and make early diagnosis of OIEARR. Metabolites detected in this study need further validation to identify exact biomarkers of OIEARR. Saliva biomarkers may assist in diagnosis and monitoring of this disease. Copyright © 2018 Elsevier B.V. All rights reserved.
Alternative Fuels Data Center: Glacier-Waterton Park Powers Buses With
Photo of a truck Natural Gas Fuels School Buses and Refuse Trucks in Tulsa, Oklahoma Feb. 18, 2017 Photo of buses Baton Rouge School District Adds Propane Buses to Its Fleet Dec. 23, 2016 photo of a truck Buses to Its Fleet Nov. 11, 2016 photo of a propane school bus Propane Powers School Buses in Tuscaloosa
Serpentinization processes: Influence of silica
NASA Astrophysics Data System (ADS)
Huang, R.; Sun, W.; Ding, X.; Song, M.; Zhan, W.
2016-12-01
Serpentinization systems are highly enriched in molecular hydrogen (H2) and hydrocarbons (e.g. methane, ethane and propane). The production of hydrocarbons results from reactions between H2 and oxidized carbon (carbon dioxide and carbon monoxide), which possibly contribute to climate changes during early history of the Earth. However, the influence of silica on the production of H2 and hydrocarbons was poorly constrained. We performed experiments at 311-500 °C and 3.0 kbar using mechanical mixtures of silica and olivine in ratios ranging from 0 to 40%. Molecular hydrogen (H2), methane, ethane and propane were formed, which were analyzed by gas chromatography. It was found that silica largely decreased H2 production. Without any silica, olivine serpentinization produced 94.5 mmol/kg H2 after 20 days of reaction time. By contrast, with the presence of 20% silica, H2 concentrations decreased largely, 8.5 mmol/kg. However, the influence of silica on the production of hydrocarbons is negligible. Moreover, with the addition of 20%-40% silica, the major hydrous minerals are talc, which was quantified according to an established standard curve calibrated by infrared spectroscopy analyses. It shows that silica greatly enhances olivine hydration, especially at 500 °C. Without any addition of silica, reaction extents were <5% at 17 days during olivine serpentinization at 500 °C and 3.0 kbar. By contrast, with the presence of 50% silica, olivine was completely transformed to talc within 9 days. This study indicates that silica impedes the oxidation of ferrous iron into ferric iron, and that rates of olivine hydration in natural geological settings are much faster with silica supply.
Effect of temperature and pressure on the dynamics of nanoconfined propane
NASA Astrophysics Data System (ADS)
Gautam, Siddharth; Liu, Tingting; Rother, Gernot; Jalarvo, Niina; Mamontov, Eugene; Welch, Susan; Cole, David
2014-04-01
We report the effect of temperature and pressure on the dynamical properties of propane confined in nanoporous silica aerogel studied using quasielastic neutron scattering (QENS). Our results demonstrate that the effect of a change in the pressure dominates over the effect of temperature variation on the dynamics of propane nano-confined in silica aerogel. At low pressures, most of the propane molecules are strongly bound to the pore walls, only a small fraction is mobile. As the pressure is increased, the fraction of mobile molecules increases. A change in the mechanism of motion, from continuous diffusion at low pressures to jump diffusion at higher pressures has also been observed.
Ahmed, Shabbir; Papadias, Dionissios D.; Lee, Sheldon H.D.; Ahluwalia, Rajesh K.
2014-08-26
The invention provides a method for reforming fuel, the method comprising contacting the fuel to an oxidation catalyst so as to partially oxidize the fuel and generate heat; warming incoming fuel with the heat while simultaneously warming a reforming catalyst with the heat; and reacting the partially oxidized fuel with steam using the reforming catalyst.
NASA Astrophysics Data System (ADS)
Harit, Tarik; Abouloifa, Houssam; Tillard, Monique; Eddike, Driss; Asehraou, Abdeslam; Malek, Fouad
2018-07-01
The synthesis of new bipyrazolic ligands functionalized by carboxyl groups, namely 3-Bis(3‧-carboxyl-5‧-methyl-l'-pyrazolyl) propan-2-ol (L1) and 1,3-Bis(3‧-carboxyl-5‧-methyl-l '-pyrazolyl),2-methyl propane (L2) is reported. Their corresponding [C13H15CuN4O5] (CuL1) and [C14H16CuN4O4] (CuL2) copper (II) complexes are also elaborated and characterized by elemental analysis, FTIR an UV-visible spectroscopy. The crystal structure of the CuL1 complex confirms that copper atom is 4-coordinated, in a distorted square planar geometry within the molecule, and achieves its coordination through weak intermolecular interactions leading to two dimensional slabs. This geometry is in agreement with UV-visible results which also evidence that structure of complexes are affected in DMSO in contrast to methanol. No antibacterial activity against all the tested bacterial strains has been found for the Cu (II) complexes. By contrast, CuL1 is characterized with good catalytic properties in the air-oxidation of catechol substrate to quinone.
Gnayfeed, M H; Daood, H G; Illés, V; Biacs, P A
2001-06-01
Ground paprika (Capsicum annuum L.) was extracted with supercritical carbon dioxide (SC-CO(2)) and subcritical propane at different conditions of pressure and temperature to estimate the yield and variation in carotenoid, tocopherol, and capsaicinoid contents and composition. The yield of paprika extract was found to be affected by the extraction conditions with SC-CO(2) but fairly constant at different conditions with subcritical propane. The maximum yields of oleoresin were 7.9 and 8.1% of ground paprika by SC-CO(2) and subcritical propane, respectively. The quantitative distribution of carotenoids, tocopherols, and capsaicinoids between paprika extract and powder was influenced by extraction conditions. SC-CO(2) was inefficient in the extraction of diesters of xanthophylls even at 400 bar and 55 degrees C, whereas tocopherols and capsaicinoids were easy to extract at these conditions. Under mild conditions subcritical propane was superior to SC-CO(2) in the extraction of carotenoids and tocopherols but less efficient in the extraction of capsaicinoids.
NASA Astrophysics Data System (ADS)
Dalsøren, Stig B.; Myhre, Gunnar; Hodnebrog, Øivind; Myhre, Cathrine Lund; Stohl, Andreas; Pisso, Ignacio; Schwietzke, Stefan; Höglund-Isaksson, Lena; Helmig, Detlev; Reimann, Stefan; Sauvage, Stéphane; Schmidbauer, Norbert; Read, Katie A.; Carpenter, Lucy J.; Lewis, Alastair C.; Punjabi, Shalini; Wallasch, Markus
2018-03-01
Ethane and propane are the most abundant non-methane hydrocarbons in the atmosphere. However, their emissions, atmospheric distribution, and trends in their atmospheric concentrations are insufficiently understood. Atmospheric model simulations using standard community emission inventories do not reproduce available measurements in the Northern Hemisphere. Here, we show that observations of pre-industrial and present-day ethane and propane can be reproduced in simulations with a detailed atmospheric chemistry transport model, provided that natural geologic emissions are taken into account and anthropogenic fossil fuel emissions are assumed to be two to three times higher than is indicated in current inventories. Accounting for these enhanced ethane and propane emissions results in simulated surface ozone concentrations that are 5-13% higher than previously assumed in some polluted regions in Asia. The improved correspondence with observed ethane and propane in model simulations with greater emissions suggests that the level of fossil (geologic + fossil fuel) methane emissions in current inventories may need re-evaluation.
Walczuk, Imko; Eertmans, Frank; Rossel, Bart; Cegielska, Agnieszka; Stockfleth, Eggert; Antunes, Andre; Adriaens, Els
2018-06-01
Cutaneous warts are common skin lesions, caused by human papillomavirus. For years, liquid nitrogen is the cryogen of choice for wart treatment. Alternatively, several cryogenic devices for home treatment are commercially available. The present trial assessed efficacy and safety of a novel nitrous oxide-based cryogenic device for home use (EndWarts Freeze ® in Europe, Compound W ® Nitro-Freeze in the USA). This investigator-blinded, controlled, randomized study compared the nitrous oxide device (test product) with a dimethylether propane-based product (Wartner ® ; comparator 1). Subjects with common or plantar warts (50/50 ratio) were randomized into two groups (n = 58, test product; n = 40, comparator 1). Sequentially, an extra treatment arm (n = 40) was added to compare with a dimethylether-based product with metal nib (Wortie ® ; comparator 2). Main objective implied comparison of the percentage cured subjects after one to maximum three treatments. Efficacy and safety was evaluated by a blinded investigator. After a maximum of three applications, a significantly (p = 0.001) higher cure rate of 70.7% (Intention-to-Treat analysis) was observed with test product versus 46.2% (comparator 1) and 47.5% (comparator 2). Almost three times more subjects were cured after 1 test product application (29.3%), versus comparator 1 (10.4%) and comparator 2 (12.5%). Reported side effects were transient and typical of cryotherapy. All treatments were well-tolerated. The superior cure rates for the test product versus two comparators can be explained by its design. Combination of nitrous oxide (cooling agent), the specific activation method (holding the liquid coolant in the cap), and skin-conforming polyurethane foam, results in higher cooling efficiency (- 80 °C) and more effective wart freezing. This trial demonstrated that the nitrous oxide device is a safe, user-friendly and effective wart treatment for home use, comparing favourably to dimethylether (propane) devices with higher freezing temperature, regardless of the applicator type. Oystershell Laboratories. Clinicaltrials.gov identifier, NCT03129373.
NASA Astrophysics Data System (ADS)
Pickett, Derek Kyle
Due to an increased interest in sustainable energy, biodiesel has become much more widely used in the last several years. Glycerin, one major waste component in biodiesel production, can be converted into a hydrogen rich synthesis gas to be used in an engine generator to recover energy from the biodiesel production process. This thesis contains information detailing the production, testing, and analysis of a unique synthesis generator rig at the University of Kansas. Chapter 2 gives a complete background of all major components, as well as how they are operated. In addition to component descriptions, methods for operating the system on pure propane, reformed propane, reformed glycerin along with the methodology of data acquisition is described. This chapter will serve as a complete operating manual for future students to continue research on the project. Chapter 3 details the literature review that was completed to better understand fuel reforming of propane and glycerin. This chapter also describes the numerical model produced to estimate the species produced during reformation activities. The model was applied to propane reformation in a proof of concept and calibration test before moving to glycerin reformation and its subsequent combustion. Chapter 4 first describes the efforts to apply the numerical model to glycerin using the calibration tools from propane reformation. It then discusses catalytic material preparation and glycerin reformation tests. Gas chromatography analysis of the reformer effluent was completed to compare to theoretical values from the numerical model. Finally, combustion of reformed glycerin was completed for power generation. Tests were completed to compare emissions from syngas combustion and propane combustion.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Polk, A. C.; Gibson, C. M.; Shoemaker, N. T.
2013-05-24
This paper presents experimental analyses of the ignition delay (ID) behavior for diesel-ignited propane and diesel-ignited methane dual fuel combustion. Two sets of experiments were performed at a constant speed (1800 rev/min) using a 4-cylinder direct injection diesel engine with the stock ECU and a wastegated turbocharger. First, the effects of fuel-air equivalence ratios (© pilot ¼ 0.2-0.6 and © overall ¼ 0.2-0.9) on IDs were quantified. Second, the effects of gaseous fuel percent energy substitution (PES) and brake mean effective pressure (BMEP) (from 2.5 to 10 bar) on IDs were investigated. With constant © pilot (> 0.5), increasing ©more » overall with propane initially decreased ID but eventually led to premature propane autoignition; however, the corresponding effects with methane were relatively minor. Cyclic variations in the start of combustion (SOC) increased with increasing © overall (at constant © pilot), more significantly for propane than for methane. With increasing PES at constant BMEP, the ID showed a nonlinear (initially increasing and later decreasing) trend at low BMEPs for propane but a linearly decreasing trend at high BMEPs. For methane, increasing PES only increased IDs at all BMEPs. At low BMEPs, increasing PES led to significantly higher cyclic SOC variations and SOC advancement for both propane and methane. Finally, the engine ignition delay (EID) was also shown to be a useful metric to understand the influence of ID on dual fuel combustion.« less
Evaluation of Both Free Radical Scavenging Capacity and Antioxidative Damage Effect of Polydatin.
Jin, Ju; Li, Yan; Zhang, Xiuli; Chen, Tongsheng; Wang, Yifei; Wang, Zhiping
Cellular damage such as oxidation and lipid peroxidation, and DNA damage induced by free-radicals like reactive oxygen species, has been implicated in several diseases. Radicals generated by 2,2-azobis (2-amidino-propane) dihydrochloride (AAPH) are similar to physiologically active ones. In this study we found that polydatin, a resveratrol natural precursor derived from many sources, has the capacity of free radical scavenging and antioxidative damage. Using free radical scavenging assays, the IC50 values of polydatin were 19.25 and 5.29 μg/ml with the DPPH and the ABTS assay, respectively, and 0.125 mg ferrous sulfate/1 mg polydatin with the FRAP assay. With the AAPH-induced oxidative injury cell model assay, polydatin showed a strong protective effect against the human liver tumor HepG2 cell oxidative stress damage. These results indicate that the antioxidant properties of polydatin have great potential for use as an alternative to more toxic synthetic antioxidants as an additive in food, cosmetics and pharmaceutical preparations for the treatment of oxidative diseases.
The route of liquid precursor to ZnO nanoparticles in premixed combustion spray pyrolysis
NASA Astrophysics Data System (ADS)
Widiyastuti, W.; Machmudah, Siti; Nurtono, Tantular; Winardi, Sugeng
2018-04-01
Zinc oxide nanoparticles had been successfully synthesized by premixed combustion spray pyrolysis. Zinc acetate was dissolved in distilled water was selected as a liquid precursor. Zinc nitrate was also used for comparison the effect of precursor type on the generated particles morphology and the crystallinity. The premixed combustion reaction used liquefied petroleum gas (LPG) mainly consisting of butane and propane as a fuel and compressed air used as an oxidizer. The liquid precursor was atomized using a custom two fluid nozzle to generate droplets. Then, the droplets were sprayed by the flow of air as a carrier gas into the premixed combustion reactor. The zinc precursor was decomposed to zinc oxide due to the high temperature as a result of combustion reaction inside the reactor resulting in nanoparticles formation. The particle size decreased with the increase of the fuel flow rate. In addition, it can be found that at the same flow rate of fuel, the particle size of zinc oxide synthesized using zinc nitrate is larger than that of the use of zinc acetate as a precursor.
School Districts Move to the Head of the Class with Propane
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
School districts across the country are under pressure to reduce their cost of operations and ensure their budgets are spent wisely. School bus fleets operate more than 675,000 buses in the United States, and many school districts have found the answer to their budget woes in the form of propane, or liquefied petroleum gas (LPG). Propane is a reliable, domestic fuel, and it's used in approximately 2% of school buses nationwide.
NASA Astrophysics Data System (ADS)
McCarthy, James A.
The field of heterogeneous catalysis has advanced largely through the understanding of structure-function relationships, and novel support materials constitute one possible strategy to further this knowledge through the determination of support effects. To this end, the synthesis, characterization, and reactivity of a new catalytic system are reported herein. Vanadium oxide supported on SrTiO3 (VOx/STO) was prepared by atomic layer deposition, and its activity was investigated in various oxidative dehydrogenation (ODH) reactions. In cyclohexane and propane ODH experiments at 500 °C, selectivity toward COx was found to decrease with greater VOx density and minimal STO surface exposure. This indicates that the support itself is an effective total oxidation catalyst, which complicates VOx performance measurements. In the propane studies, VOx/STO achieved lower turnover frequency (TOF) and propylene yield compared to conventional supported VO x materials. The lower activity of VOx/STO catalysts was correlated with their VOx species being less easily reducible, as determined by temperature-programmed reduction (TPR). The suppressed reducibility is attributed to the stronger surface basicity of STO, which is induced by the presence of relatively electropositive Sr2+ within the perovskite lattice. Studies of cyclohexene ODH at 300 °C were conducted to minimize intrinsic conversion from the supports. The VOx/STO catalysts were mostly found to be less active than VOx/TiO2 and VOx/Al 2O3, in accordance with reducibility measurements. However, one sample containing 0.75% vanadium on STO was particularly active, achieving a TOF greater than 0.01 s-1, while maintaining almost 90% dehydrogenation selectivity. In general, VOx/STO materials were found to be more selective for 1,3-cyclohexadiene compared to traditional catalysts. Other titanates of the form A2+TiO3 were also investigated as supports, and the reducibility of VOx was found to trend with the electronegativity of the A-site cation and the basicity of the titanate. When applied to cyclohexene ODH however, no discernable relationship between reducibility and TOF could be observed, implying that other factors play a major role in this reaction. Through this work, a deeper understanding has been developed concerning the impact of titanate supports on VOx redox and catalytic properties. These findings demonstrate the ability of novel support materials to reveal new insights into structure-function relationships.
The effects of battlefield contaminants on PEMFC performance
NASA Astrophysics Data System (ADS)
Moore, Jon M.; Adcock, Paul L.; Lakeman, J. Barry; Mepsted, Gary O.
The effects of contaminants on the performance of an air breathing proton exchange membrane fuel cell (PEMFC) were investigated, by introduction into oxidant air fed to the fuel cell. The impact of the common pollutants sulphur dioxide, nitrogen dioxide, carbon monoxide, propane and benzene and the chemical warfare agents, sarin, sulphur mustard, cyanogen chloride (CNCl) and hydrogen cyanide (HCN) were assessed. At the concentrations studied, the common contaminants had either no effect on performance or caused a reversible depression. The chemical warfare agents all seriously compromised the performance of the fuel cells in an irreversible manner.
Catalytic conversion of light alkanes, Phase 3. Topical report, January 1990--December 1992
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
The mission of this work is to devise a new catalyst which can be used in the first simple, economic process to convert the light alkanes in natural gas to an alcohol-rich oxygenated product which can either be used as an environmentally friendly, high-performance liquid fuel, or a precursor to a liquid hydrocarbon transportation fuel. The authors have entered the proof-of-concept stage for converting isobutane to tert butyl alcohol in a practical process and are preparing to enter proof-of-concept of a propane to isopropyl alcohol process in the near future. Methane and ethane are more refractory and thus more difficultmore » to oxidize than the C{sub 3} and C{sub 4} hydrocarbons. Nonetheless, advances made in this area indicate that further research progress could achieve the goal of their direct conversion to alcohols. Progress in Phase 3 catalytic vapor phase methane and ethane oxidation over metals in regular oxidic lattices are the subject of this topical report.« less
Mangadlao, Joey Dacula; Cao, Pengfei; Choi, Diana; Advincula, Rigoberto C
2017-07-26
The photoreduction of graphene oxide (GO) using ketyl radicals is demonstrated for the first time. The use of photochemical reduction through ketyl radicals generated by I-2959 or (1-[4-(2-hydroxyethoxy)phenyl]-2-hydroxy-2-methyl-1-propan-1-one) is interesting because it affords spatial and temporal control of the reduction process. Graphene-metal nanoparticle hybrids of Ag, Au, and Pd were also photochemically fabricated in a one-pot procedure. Comprehensive spectroscopic and imaging techniques were carried out to fully characterize the materials. The nanoparticle hybrids showed promising action for the catalytic degradation of model environmental pollutants, namely, 4-nitrophenol, Rose Bengal, and Methyl Orange. The process described can be extended to polymer nanocomposites that can be photopatterned and could be potentially extended to fabricating plastic electronic devices.
NASA Astrophysics Data System (ADS)
Zhang, Weidong; Pan, Feng; Li, Jinjun; Wang, Zhen; Ding, Wei; Qin, Yi; Wu, Feng
2018-06-01
Silica-supported highly dispersed cobalt oxides prepared by adsorption are likely to be poorly reducible Co-phyllosilicates or CoO species. Here we report the synthesis of silica-supported monodispersed spinel nano-Co3O4 catalysts by inner-sphere complexation using CoIII ammine hydroxo complexes as precursors. The precursors were facilely prepared by stirring ammoniacal CoII solutions exposed to air. The cobalt loadings (up to 188 mg/g) and particle sizes (3-10 nm) were tailored by successive complexation-calcination cycles. Such catalysts showed significantly superior reducibility and catalytic activity in complete propane oxidation in comparison to supported Co-phyllosilicates and CoO. A further development of this synthesis process may provide a variety of cobalt-based catalysts for important catalytic applications.
Ahmed, Shabbir; Papadias, Dionissios D.; Lee, Sheldon H. D.; Ahluwalia, Rajesh K.
2013-01-08
The invention provides a fuel processor comprising a linear flow structure having an upstream portion and a downstream portion; a first catalyst supported at the upstream portion; and a second catalyst supported at the downstream portion, wherein the first catalyst is in fluid communication with the second catalyst. Also provided is a method for reforming fuel, the method comprising contacting the fuel to an oxidation catalyst so as to partially oxidize the fuel and generate heat; warming incoming fuel with the heat while simultaneously warming a reforming catalyst with the heat; and reacting the partially oxidized fuel with steam using the reforming catalyst.
Gautam, Siddharth; Le, Thu; Striolo, Alberto; Cole, David
2017-12-13
Molecular motion under confinement has important implications for a variety of applications including gas recovery and catalysis. Propane confined in mesoporous silica aerogel as studied using quasielastic neutron scattering (QENS) showed anomalous pressure dependence in its diffusion coefficient (J. Phys. Chem. C, 2015, 119, 18188). Molecular dynamics (MD) simulations are often employed to complement the information obtained from QENS experiments. Here, we report an MD simulation study to probe the anomalous pressure dependence of propane diffusion in silica aerogel. Comparison is attempted based on the self-diffusion coefficients and on the time scales of the decay of the simulated intermediate scattering functions. While the self-diffusion coefficients obtained from the simulated mean squared displacement profiles do not exhibit the anomalous pressure dependence observed in the experiments, the time scales of the decay of the intermediate scattering functions calculated from the simulation data match the corresponding quantities obtained in the QENS experiment and thus confirm the anomalous pressure dependence of the diffusion coefficient. The origin of the anomaly in pressure dependence lies in the presence of an adsorbed layer of propane molecules that seems to dominate the confined propane dynamics at low pressure, thereby lowering the diffusion coefficient. Further, time scales for rotational motion obtained from the simulations explain the absence of rotational contribution to the QENS spectra in the experiments. In particular, the rotational motion of the simulated propane molecules is found to exhibit large angular jumps at lower pressure. The present MD simulation work thus reveals important new insights into the origin of anomalous pressure dependence of propane diffusivity in silica mesopores and supplements the information obtained experimentally by QENS data.
Performance and emissions of a catalytic reactor with propane, diesel, and Jet A fuels
NASA Technical Reports Server (NTRS)
Anderson, D. N.
1977-01-01
Tests were made to determine the performance and emissions of a catalytic reactor operated with propane, No. 2 diesel, and Jet A fuels. A 12-cm diameter and 16-cm long catalytic reactor using a proprietary noble metal catalyst was operated at an inlet temperature of 800 K, a pressure of 300,000 Pa and reference velocities of 10 to 15 m/s. No significant differences between the performance of the three fuels were observed when 98.5 percent purity propane was used. The combustion efficiency for 99.8-percent purity propane tested later was significantly lower, however. The diesel fuel contained 135 ppm of bound nitrogen and consequently produced the highest NOx emissions of the three fuels. As much as 85 percent of the bound nitrogen was converted to NOx. Steady-state emissions goals based on half the most stringent proposed automotive standards were met when the reactor was operated at an adiabatic combustion temperature higher than 1350 K with all fuels except the 99.8-percent purity propane. With that fuel, a minimum temperature of 1480 K was required.
NASA Astrophysics Data System (ADS)
Al-Zareer, Maan; Dincer, Ibrahim; Rosen, Marc A.
2017-09-01
A thermal management system is necessary to control the operating temperature of the lithium ion batteries in battery packs for electrical and hybrid electrical vehicles. This paper proposes a new battery thermal management system based on one type of phase change material for the battery packs in hybrid electrical vehicles and develops a three dimensional electrochemical thermal model. The temperature distributions of the batteries are investigated under various operating conditions for comparative evaluations. The proposed system boils liquid propane to remove the heat generated by the batteries, and the propane vapor is used to cool the part of the battery that is not covered with liquid propane. The effect on the thermal behavior of the battery pack of the height of the liquid propane inside the battery pack, relative to the height of the battery, is analyzed. The results show that the propane based thermal management system provides good cooling control of the temperature of the batteries under high and continuous charge and discharge cycles at 7.5C.
NASA Astrophysics Data System (ADS)
Dudzińska, Agnieszka; Żyła, Mieczysław; Cygankiewicz, Janusz
2013-09-01
In this paper results of investigations of sorption of hard coal samples collected from the extracted coal seams of Polish coal mines are presented. As sorbate propane was used. Examinations were carried out in the temperature of 298 K by means of volumetric assessment with the use of apparatus ASAP 2010 of Micromeritics. On the basis of conducted examinations it has been found out that the amount of sorbed propane depend on a type of coal, its metamorphism grade, content of oxygen element, moisture and porosity of these coals. The greatest amounts of propane are sorbed by low carbonized, high-porosity coals of high content of oxygen and moisture. Sorption of relatively high amounts of propane by these coals (ca. 10 cm3/g) is a result of the influence of polar surface of coals with molecules of propane and good availability of internal microporous structure of these coals for molecules of examined sorbate. Medium and high carbonized coals sorb insignificant amounts of propane. These coals have compact structure and non-polar character of their surface, their internal porous structure is to a minor degree available for propane molecules in conditions of carried out research. Sorption of propane in this case, takes place mainly in surface pores and on the surface of coals. Moreover, measurements of desorption isotherms of propane showing irreversible character of sorption were made. Desorption isotherms do not come together with sorption isotherms forming open hysteresis loop. Amounts of non-desorbing propane remaining in the coal depend on the type of examined coal. W pracy przedstawiono wyniki badań sorpcji próbek węgli kamiennych pobranych z eksploatowanych pokładów węglowych polskich kopalń. Jako sorbat zastosowano propan. Badania przeprowadzono w temperaturze 298 K metodą objętościową z wykorzystaniem aparatu ASAP 2010 firmy Micromeritics. Na podstawie przeprowadzonych badań stwierdzono, że ilości sorbowanego propanu są zależne od rodzaju węgla, jego stopnia metamorfizmu, zawartości pierwiastka tlenu, wilgoci i porowatości tych węgli. Największe ilości propanu sorbują węgle niskouwęglone, wysokoporowate o dużej zawartości tlenu i wilgoci. Sorpcja stosunkowo dużych ilości propanu tych węgli (ok. 10 cm3/g) jest wynikiem oddziaływania polarnej powierzchni węgli z cząsteczkami propanu oraz dobrej dostępności wewnętrznej mikroporowatej struktury tych węgli dla cząsteczek badanego sorbatu. Węgle średnio i wysokouwęglone sorbują niewielkie ilości propanu. Węgle te mają zwartą budowę oraz niepolarny charakter powierzchni, ich wewnętrzna struktura porowata jest w niewielkim stopniu dostępna dla cząsteczek propanu w warunkach przeprowadzanych badań. Sorpcja propanu w tym przypadku zachodzi głównie w powierzchniowych porach i na powierzchni węgli. Przeprowadzono również pomiary izoterm desorpcji propanu wykazując nieodwracalny charakter sorpcji. Izotermy desorpcji nie zbiegają się z izotermami sorpcji tworząc otwartą pętlę histerezy. Pozostające w węglu ilości nie desorbującego się propanu są zależne od rodzaju badanego węgla.
Detailed and reduced chemical-kinetic descriptions for hydrocarbon combustion
NASA Astrophysics Data System (ADS)
Petrova, Maria V.
Numerical and theoretical studies of autoignition processes of fuels such as propane are in need of realistic simplified chemical-kinetic descriptions that retain the essential features of the detailed descriptions. These descriptions should be computationally feasible and cost-effective. Such descriptions are useful for investigating ignition processes that occur, for example, in homogeneous-charge compression-ignition engines, for studying the structures and dynamics of detonations and in fields such as multi-dimensional Computational Fluid Dynamics (CFD). Reduced chemistry has previously been developed successfully for a number of other hydrocarbon fuels, however, propane has not been considered in this manner. This work focuses on the fuels of propane, as well propene, allene and propyne, for several reasons. The ignition properties of propane resemble those of other higher hydrocarbons but are different from those of the lower hydrocarbons (e.g. ethylene and acetylene). Propane, therefore, may be the smallest hydrocarbon that is representative of higher hydrocarbons in ignition and detonation processes. Since the overall activation energy and ignition times for propane are similar to those of other higher hydrocarbons, including liquid fuels that are suitable for many applications, propane has been used as a model fuel for several numerical and experimental studies. The reason for studying elementary chemistry of propene and C3H4 (allene or propyne) is that during the combustion process, propane breaks down to propene and C3H4 before proceeding to products. Similarly, propene combustion includes C3H4 chemistry. In studying propane combustion, it is therefore necessary to understand the underlying combustion chemistry of propene as well as C3H 4. The first part of this thesis focuses on obtaining and testing a detailed chemical-kinetic description for autoignition of propane, propene and C 3H4, by comparing predictions obtained with this detailed mechanism against numerous experimental data available from shock-tube studies and flame-speed measurements. To keep the detailed mechanism small, attention is restricted to pressures below about 100 atm, temperatures above about 1000 K and equivalence ratios less than about 3. Based on this detailed chemistry description, short (or skeletal) mechanisms are then obtained for each of the three fuels by eliminating reactions that are unimportant for the autoignition process under conditions presented above. This was achieved by utilizing tools such as sensitivity and reaction pathway analyses. Two distinct methodologies were then used in order to obtain a reduced mechanism for autoignition from the short mechanisms. A Systematic Reduction approach is first taken that involves introducing steady-state approximations to as many species as analytically possible. To avoid resorting to numerical methods, the analysis for obtaining ignition times for heptane, presented by Peters and co-workers is followed in order to obtain a rough estimate for an expression of propane ignition time. The results from this expression are then compared to the ignition times obtained computationally with the detailed mechanism. The second method is an Empirical Approach in which chemistry is not derived formally, but rather postulated empirically on the basis of experimental, computational and theoretical observations. As a result, generalized reduced mechanisms are proposed for autoignition of propane, propene and C3H 4. Expressions for ignition times obtained via this empirical approach are compared to the computational results obtained from the detailed mechanism.
Propane Vehicle and Mower Incentive - Louisiana Liquefied Petroleum Gas Commission Propane vehicle . Each recipient is limited to four incentive awards, up to $5,000, per year. Recipients must participate
2016-06-01
Hydrolysis of Soil Contaminants (Chlorinated Propanes and Explosives) En vi ro nm en ta l L ab or at or y Victor F. Medina, Scott A. Waisner, Charles...Using Dilute Ammonia Gas-Induced Alkaline Hydrolysis of Soil Contaminants (Chlorinated Propanes and Explosives) Victor F. Medina, Scott A. Waisner...hydrolysis. This project explored the use of ammonia gas to raise soil pH in order to stimulate alkaline hydrolysis. When ammonia gas dissolves in water
Mono-, di-, and tri- tert-butyl ethers of glycerol . A molecular spectroscopic study
NASA Astrophysics Data System (ADS)
Jamróz, Małgorzata E.; Jarosz, Małgorzata; Witowska-Jarosz, Janina; Bednarek, Elżbieta; Tęcza, Witold; Jamróz, Michał H.; Dobrowolski, Jan Cz.; Kijeński, Jacek
2007-07-01
MS, NMR, IR and Raman molecular spectroscopy techniques were applied to characterize 3- tert-butoxy-propane-1,2-diol, 1,3-di- tert-butoxy-propan-2-ol, and 1,2,3-tri- tert-butoxy-propane. These ethers are the main products of glycerol etherification reaction and are excellent oxygen additives for diesel fuel. Computational DFT/ B3LYP/6-31G ** studies were performed to support and rationalize both vibrational spectroscopy analysis and the isomer ratio.
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1999-09-01
This report explains the explosion/BLEVE that took place on April 9, 1998, at the Herrig Brothers Feather Creek Farm, located in Albert City, Iowa. Two volunteer fire fighters were killed and seven other emergency response personnel were injured. Safety issues covered in the report include protection of propane storage tanks and piping, state regulatory oversight of such installations, and fire fighter response to propane storage tank fires.
Polavarapu, Sudheera; Oliver, Christine M; Ajlouni, Said; Augustin, Mary Ann
2012-01-11
The influence of EDTA on lipid oxidation in sugar beet pectin-stabilized oil-in-water emulsions (pH 6, 15% oil, wet basis), prepared from fish oil (FO) and fish oil-extra virgin olive oil (FO-EVOO) (1:1 w/w), as well as the spray-dried microcapsules (50% oil, dry basis) prepared from these emulsions, was investigated. Under accelerated conditions (80 °C, 5 bar oxygen pressure) the oxidative stability was significantly (P < 0.05) higher for FO and FO-EVOO formulated with EDTA, in comparison to corresponding emulsions and spray-dried microcapsules formulated without EDTA. The EDTA effect was greater in emulsions than in spray-dried microcapsules, with the greatest protective effect obtained in FO-EVOO emulsions. EDTA enhanced the oxidative stability of the spray-dried microcapsules during ambient storage (~25 °C, a(w) = 0.5), as demonstrated by their lower concentration of headspace volatile oxidation products, propanal and hexanal. These results show that the addition of EDTA is an effective strategy to maximize the oxidative stability of both FO emulsions and spray-dried microcapsules in which sugar beet pectin is used as the encapsulant material.
Heating Oil and Propane Update
2017-01-01
Weekly residential, wholesale, and spot prices; and production, demand, and stocks of heating fuels. (Weekly heating oil and propane prices are only collected during the heating season which extends from October through March.)
Oxidation Behavior of Carbon Fiber-Reinforced Composites
NASA Technical Reports Server (NTRS)
Sullivan, Roy M.
2008-01-01
OXIMAP is a numerical (FEA-based) solution tool capable of calculating the carbon fiber and fiber coating oxidation patterns within any arbitrarily shaped carbon silicon carbide composite structure as a function of time, temperature, and the environmental oxygen partial pressure. The mathematical formulation is derived from the mechanics of the flow of ideal gases through a chemically reacting, porous solid. The result of the formulation is a set of two coupled, non-linear differential equations written in terms of the oxidant and oxide partial pressures. The differential equations are solved simultaneously to obtain the partial vapor pressures of the oxidant and oxides as a function of the spatial location and time. The local rate of carbon oxidation is determined at each time step using the map of the local oxidant partial vapor pressure along with the Arrhenius rate equation. The non-linear differential equations are cast into matrix equations by applying the Bubnov-Galerkin weighted residual finite element method, allowing for the solution of the differential equations numerically.
Holloway, Lauren R.; Clough, Andrew J.; Li, Jessica Y.; Tao, Emily L.; Tao, Fu-Ming; Li, Lijuan
2014-01-01
Recent discoveries involving the roles of nitric oxide in humans have stimulated intense interest in transition metal nitrosyl complexes. A series of dinitrosyl iron complexes with the formula [(DPPX)Fe(NO)2], {DPPX = 1,2-bis(diphenylphosphino)benzene (1), 1,3-bis(diphenylphosphino)propane (2), and cis-1,2-bis(diphenylphosphino)ethylene (3)} has been prepared and characterized through a combination of FT-IR, NMR, UV-vis, X-ray crystallography, and electrochemical techniques. Infrared spectroscopy showed NO shifts to the region of 1723 and 1674 cm−1 for complexes 1 and 3, and 1708 and 1660 cm−1 for 2, indicating that ligand 2 acts as a stronger σ–donor. The X-ray crystallographic data showed that 1 and 3 possess the rare repulso conformation while 2 has the attracto conformation. CV studies on compounds 1, 2 and 3 display two quasi-reversible oxidations with the E°1/2 values at 0.101 and 0.186 V, 0.121 and 0.184 V, and 0.019 and 0.342 V, respectively. The larger ΔE value for compound 2 compared with that of 1 and 3 is attributed to the lack of π-bonds between the two phosphorus atoms. Theoretical calculations using density functional theory were carried out on the synthesized compounds and model compounds and the results are consistent with the experimental data. The calculated HOMO-LUMO gaps for compounds 1, 2 and 3 are 3.736, 4.060, and 3.669 eV, respectively, which supports the stronger back-donation for compound 2 than that of compounds 1 and 3. PMID:24860235
Propane and Natural Gas Safety The Railroad Commission of Texas regulates the safety of the natural gas and propane industries. (Reference Texas Statutes, Natural Resources Code 113.011 and 116.011
2. View of Liquified Propane Air Plant (New), former Exhaust ...
2. View of Liquified Propane Air Plant (New), former Exhaust and Compressor Building and former Purifying Plant in background. - Concord Gas Light Company, South Main Street, Concord, Merrimack County, NH
Characterization of Emissions from Liquid Fuel and Propane Open Burns.
Aurell, Johanna; Hubble, David; Gullett, Brian K; Holder, Amara; Washburn, Ephraim; Tabor, Dennis
2017-11-07
The effect of accidental fires are simulated to understand the response of items such as vehicles, fuel tanks, and military ordnance and to remediate the effects through re-design of the items or changes in operational procedures. The comparative combustion emissions of using jet propellant (JP-5) liquid fuel pools or a propane manifold grid to simulate the effects of accidental fires was investigated. A helium-filled tethered aerostat was used to maneuver an instrument package into the open fire plumes to measure CO, CO 2 , fine particulate matter (PM 2.5 ), polycyclic aromatic hydrocarbons (PAHs), volatile organic compounds (VOCs), and elemental/organic/total carbon (EC/OC/TC). The results showed that all emissions except CO 2 were significantly higher from JP-5 burns than from propane. The major portion of the PM mass from fires of both fuels was less than 1 μm in diameter and differed in carbon content. The PM 2.5 emission factor from JP-5 burns (129 ± 23 g/kg Fuel c ) was approximately 150 times higher than the PM 2.5 emission factor from propane burns (0.89 ± 0.21 g/kg Fuel c ). The PAH emissions as well as some VOCs were more than one hundred times higher for the JP-5 burns than the propane burns. Using the propane test method to study flammability responses, the environmental impact of PM 2.5 , PAHs, and VOCs would be reduced by 2300, 700, and 100 times per test, respectively.
Barskiy, Danila A.; Salnikov, Oleg G.; Romanov, Alexey S.; Feldman, Matthew A.; Coffey, Aaron M.; Kovtunov, Kirill V.; Koptyug, Igor V.; Chekmenev, Eduard Y.
2017-01-01
When parahydrogen reacts with propylene in low magnetic fields (e.g., 0.05 T), the reaction product propane develops an overpopulation of pseudo-singlet nuclear spin states. We studied how the spin-lock induced crossing (SLIC) technique can be used to convert these pseudo-singlet spin states of hyperpolarized gaseous propane into observable magnetization and to detect 1H NMR signal directly at 0.05 T. The theoretical simulation and experimental study of the NMR signal dependence on B1 power (SLIC amplitude) exhibits a well-resolved dispersion, which is induced by the spin-spin couplings in the eight-proton spin system of propane. We also measured the exponential decay time constants (TLLSS or TS) of these pseudo-singlet long-lived spin states (LLSS) by varying the time between hyperpolarized propane production and SLIC detection. We have found that, on average, TS is approximately 3 times longer than the corresponding T1 value under the same conditions in the range of pressures studied (up to 7.6 atm). Moreover, TS may exceed 13 seconds at pressures above 7 atm in the gas phase. These results are in agreement with the previous reports, and they corroborate a great potential of long-lived hyperpolarized propane as an inhalable gaseous contrast agent for lung imaging and as a molecular tracer to study porous media using low-field NMR and MRI. PMID:28152435
NASA Astrophysics Data System (ADS)
Barskiy, Danila A.; Salnikov, Oleg G.; Romanov, Alexey S.; Feldman, Matthew A.; Coffey, Aaron M.; Kovtunov, Kirill V.; Koptyug, Igor V.; Chekmenev, Eduard Y.
2017-03-01
When parahydrogen reacts with propylene in low magnetic fields (e.g., 0.05 T), the reaction product propane develops an overpopulation of pseudo-singlet nuclear spin states. We studied how the Spin-Lock Induced Crossing (SLIC) technique can be used to convert these pseudo-singlet spin states of hyperpolarized gaseous propane into observable magnetization and to detect 1H NMR signal directly at 0.05 T. The theoretical simulation and experimental study of the NMR signal dependence on B1 power (SLIC amplitude) exhibits a well-resolved dispersion, which is induced by the spin-spin couplings in the eight-proton spin system of propane. We also measured the exponential decay time constants (TLLSS or TS) of these pseudo-singlet long-lived spin states (LLSS) by varying the time between hyperpolarized propane production and SLIC detection. We have found that, on average, TS is approximately 3 times longer than the corresponding T1 value under the same conditions in the range of pressures studied (up to 7.6 atm). Moreover, TS may exceed 13 s at pressures above 7 atm in the gas phase. These results are in agreement with the previous reports, and they corroborate a great potential of long-lived hyperpolarized propane as an inhalable gaseous contrast agent for lung imaging and as a molecular tracer to study porous media using low-field NMR and MRI.
Case Study - Propane School Bus Fleets
DOE Office of Scientific and Technical Information (OSTI.GOV)
Laughlin, M; Burnham, A.
As part of the U.S. Department of Energy’s (DOE’s) effort to deploy transportation technologies that reduce U.S. dependence on imported petroleum, this study examines five school districts, one in Virginia and four in Texas, successful use of propane school buses. These school districts used school buses equipped with the newly developed liquid propane injection system that improves vehicle performance. Some of the school districts in this study saved nearly 50% on a cost per mile basis for fuel and maintenance relative to diesel. Using Argonne National Laboratory’s Alternative Fuel Life-Cycle Environmental and Economic Transportation (AFLEET) Tool developed for the DOE’smore » Clean Cities program to help Clean Cities stakeholders estimate petroleum use, greenhouse gas (GHG) emissions, air pollutant emissions and cost of ownership of light-duty and heavy-duty vehicles, the results showed payback period ranges from 3—8 years, recouping the incremental cost of the vehicles and infrastructure. Overall, fuel economy for these propane vehicles is close to that of displaced diesel vehicles, on an energy-equivalent basis. In addition, the 110 propane buses examined demonstrated petroleum displacement, 212,000 diesel gallon equivalents per year, and GHG benefits of 770 tons per year.« less
NASA Technical Reports Server (NTRS)
Berlad, Abraham L
1954-01-01
Flame quenching by a variable-width rectangular-slot burner as a function of pressure for various propane-oxygen-nitrogen mixtures was investigated. It was found that for cold gas temperatures of 27 degrees C, pressures of 0.1 ro 1.0 atmosphere, and volumetric oxygen reactions of the oxidant of 0.17, 0.21, 0.30, 0.50, and 0.70, the relation between pressure p and quenching distance d is approximately given by d (unity) p (superscript -r) with r = 1, for equivalence ratios approximately equal to one. The quenching equation of Simon and Belles was tested. For equivalence ratios less than or equal to unity, this equation may by used, together with one empirical constant, to predict the observed quenching distance within 4.2 percent. The equation in it's present form does not appear to be suitable for values of the equivalence ratio greater than unity. A quantitative theoretical investigation has also been made of the error implicit in the assumption that flame quenching by plane parallel plates of infinite extent is equivalent to that of a rectangular burner. A curve is presented which relates the magnitude of this error to the length-to-width ratio of the rectangular burner.
Modular and selective biosynthesis of gasoline-range alkanes.
Sheppard, Micah J; Kunjapur, Aditya M; Prather, Kristala L J
2016-01-01
Typical renewable liquid fuel alternatives to gasoline are not entirely compatible with current infrastructure. We have engineered Escherichia coli to selectively produce alkanes found in gasoline (propane, butane, pentane, heptane, and nonane) from renewable substrates such as glucose or glycerol. Our modular pathway framework achieves carbon-chain extension by two different mechanisms. A fatty acid synthesis route is used to generate longer chains heptane and nonane, while a more energy efficient alternative, reverse-β-oxidation, is used for synthesis of propane, butane, and pentane. We demonstrate that both upstream (thiolase) and intermediate (thioesterase) reactions can act as control points for chain-length specificity. Specific free fatty acids are subsequently converted to alkanes using a broad-specificity carboxylic acid reductase and a cyanobacterial aldehyde decarbonylase (AD). The selectivity obtained by different module pairings provides a foundation for tuning alkane product distribution for desired fuel properties. Alternate ADs that have greater activity on shorter substrates improve observed alkane titer. However, even in an engineered host strain that significantly reduces endogenous conversion of aldehyde intermediates to alcohol byproducts, AD activity is observed to be limiting for all chain lengths. Given these insights, we discuss guiding principles for pathway selection and potential opportunities for pathway improvement. Copyright © 2015 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.
Compressed Natural Gas (CNG) and Propane Tax Retail sales for CNG and liquefied petroleum gas (propane) used to operate vehicles are subject to a modified tax based on energy content. CNG is taxed per
Alternative Fuels Data Center: Propane Vehicles
dedicated and bi-fuel vehicles is also comparable. Extra storage tanks can increase range, but the tank size propane or gasoline vehicles have. Likewise, larger storage tanks can increase range, but the additional
Short-Term Energy Outlook Model Documentation: Regional Residential Propane Price Model
2009-01-01
The regional residential propane price module of the Short-Term Energy Outlook (STEO) model is designed to provide residential retail price forecasts for the 4 Census regions: Northeast, South, Midwest, and West.
Particles of spilled oil-absorbing carbon in contact with water
Muradov, Nazim [Melbourne, FL
2011-03-29
Hydrogen generator coupled to or integrated with a fuel cell for portable power applications. Hydrogen is produced via thermocatalytic decomposition (cracking, pyrolysis) of hydrocarbon fuels in oxidant-free environment. The apparatus can utilize a variety of hydrocarbon fuels, including natural gas, propane, gasoline, kerosene, diesel fuel, crude oil (including sulfurous fuels). The hydrogen-rich gas produced is free of carbon oxides or other reactive impurities, so it could be directly fed to any type of a fuel cell. The catalysts for hydrogen production in the apparatus are carbon-based or metal-based materials and doped, if necessary, with a sulfur-capturing agent. Additionally disclosed are two novel processes for the production of two types of carbon filaments, and a novel filamentous carbon product. Carbon particles with surface filaments having a hydrophobic property of oil film absorption, compositions of matter containing those particles, and a system for using the carbon particles for cleaning oil spills.
Filamentous carbon particles for cleaning oil spills and method of production
Muradov, Nazim
2010-04-06
A compact hydrogen generator is coupled to or integrated with a fuel cell for portable power applications. Hydrogen is produced via thermocatalytic decomposition (cracking, pyrolysis) of hydrocarbon fuels in oxidant-free environment. The apparatus can utilize a variety of hydrocarbon fuels, including natural gas, propane, gasoline, kerosene, diesel fuel, crude oil (including sulfurous fuels). The hydrogen-rich gas produced is free of carbon oxides or other reactive impurities, so it could be directly fed to any type of a fuel cell. The catalysts for hydrogen production in the apparatus are carbon-based or metal-based materials and doped, if necessary, with a sulfur-capturing agent. Additionally disclosed are two novel processes for the production of two types of carbon filaments, and a novel filamentous carbon product. The hydrogen generator can be conveniently integrated with high temperature fuel cells to produce an efficient and self-contained source of electrical power.
Design and evaluation of combustors for reducing aircraft engine pollution
NASA Technical Reports Server (NTRS)
Jones, R. E.; Grobman, J.
1973-01-01
Efforts in reducing exhaust emissions from turbine engines are reported. Various techniques employed and the results of testing are briefly described and referenced for detail. The experimental approaches taken to reduce oxides of nitrogen emissions include the use of: (1) multizone combustors incorporating reduced dwell times, (2) fuel-air premixing, (3) air atomization, (4) fuel prevaporization, and (5) gaseous fuel. Since emissions of unburned hydrocarbons and carbon monoxide are caused by poor combustion efficiency at engine idle, the studies of fuel staging in multizone combustors and air assist fuel nozzles have indicated that large reductions in these emissions can be achieved. Also, the effect of inlet-air humidity on oxides of nitrogen was studied as well as the very effective technique of direct water injection. The emission characteristics of natural gas and propane fuels were measured and compared with those of ASTM-Al kerosene fuel.
Design and evaluation of combustors for reducing aircraft engine pollution.
NASA Technical Reports Server (NTRS)
Jones, R. E.; Grobman, J.
1973-01-01
This report summarizes some of the NASA Lewis Research Center's recent efforts in reducing exhaust emissions from turbine engines. Various techniques employed and the results of testing are briefly described and referenced for detail. The experimental approaches taken to reduce oxides of nitrogen emissions include the use of: multizone combustors incorporating reduced dwell time, fuel-air premixing, air atomization, fuel prevaporization and gaseous fuel. Since emissions of unburned hydrocarbons and carbon monoxide are caused by poor combustion efficiency at engine idle, the studies of fuel staging in multizone combustors and air assist fuel nozzles have indicated that large reductions in these emissions can be achieved. Also, the effect of inlet-air humidity on oxides of nitrogen was studied as well as the very effective technique of direct water injection. The emission characteristics of natural gas and propane fuels were measured and compared with those of ASTM-Al kerosene fuel.
Zirconia-molybdenum disilicide composites
Petrovic, John J.; Honnell, Richard E.
1991-01-01
Compositions of matter comprised of molybdenum disilicide and zirconium oxide in one of three forms: pure, partially stabilized, or fully stabilized and methods of making the compositions. The stabilized zirconia is crystallographically stabilized by mixing it with yttrium oxide, calcium oxide, cerium oxide, or magnesium oxide and it may be partially stabilized or fully stabilized depending on the amount of stabilizing agent in the mixture.
Methanol partial oxidation reformer
Ahmed, Shabbir; Kumar, Romesh; Krumpelt, Michael
1999-01-01
A partial oxidation reformer comprising a longitudinally extending chamber having a methanol, water and an air inlet and an outlet. An igniter mechanism is near the inlets for igniting a mixture of methanol and air, while a partial oxidation catalyst in the chamber is spaced from the inlets and converts methanol and oxygen to carbon dioxide and hydrogen. Controlling the oxygen to methanol mole ratio provides continuous slightly exothermic partial oxidation reactions of methanol and air producing hydrogen gas. The liquid is preferably injected in droplets having diameters less than 100 micrometers. The reformer is useful in a propulsion system for a vehicle which supplies a hydrogen-containing gas to the negative electrode of a fuel cell.
Methanol partial oxidation reformer
Ahmed, S.; Kumar, R.; Krumpelt, M.
1999-08-17
A partial oxidation reformer is described comprising a longitudinally extending chamber having a methanol, water and an air inlet and an outlet. An igniter mechanism is near the inlets for igniting a mixture of methanol and air, while a partial oxidation catalyst in the chamber is spaced from the inlets and converts methanol and oxygen to carbon dioxide and hydrogen. Controlling the oxygen to methanol mole ratio provides continuous slightly exothermic partial oxidation reactions of methanol and air producing hydrogen gas. The liquid is preferably injected in droplets having diameters less than 100 micrometers. The reformer is useful in a propulsion system for a vehicle which supplies a hydrogen-containing gas to the negative electrode of a fuel cell. 7 figs.
Methanol partial oxidation reformer
Ahmed, S.; Kumar, R.; Krumpelt, M.
1999-08-24
A partial oxidation reformer is described comprising a longitudinally extending chamber having a methanol, water and an air inlet and an outlet. An igniter mechanism is near the inlets for igniting a mixture of methanol and air, while a partial oxidation catalyst in the chamber is spaced from the inlets and converts methanol and oxygen to carbon dioxide and hydrogen. Controlling the oxygen to methanol mole ratio provides continuous slightly exothermic partial oxidation reactions of methanol and air producing hydrogen gas. The liquid is preferably injected in droplets having diameters less than 100 micrometers. The reformer is useful in a propulsion system for a vehicle which supplies a hydrogen-containing gas to the negative electrode of a fuel cell. 7 figs.
Methanol partial oxidation reformer
Ahmed, Shabbir; Kumar, Romesh; Krumpelt, Michael
2001-01-01
A partial oxidation reformer comprising a longitudinally extending chamber having a methanol, water and an air inlet and an outlet. An igniter mechanism is near the inlets for igniting a mixture of methanol and air, while a partial oxidation catalyst in the chamber is spaced from the inlets and converts methanol and oxygen to carbon dioxide and hydrogen. Controlling the oxygen to methanol mole ratio provides continuous slightly exothermic partial oxidation reactions of methanol and air producing hydrogen gas. The liquid is preferably injected in droplets having diameters less than 100 micrometers. The reformer is useful in a propulsion system for a vehicle which supplies a hydrogen-containing gas to the negative electrode of a fuel cell.
High energy, low temperature gelled bi-propellant formulation
NASA Technical Reports Server (NTRS)
Di Salvo, Roberto (Inventor)
2011-01-01
The present invention is a bi-propellant system comprising a gelled liquid propane (GLP) fuel and a gelled MON-30 (70% N.sub.2O.sub.4+30% NO) oxidizer. The bi-propellant system is particularly well-suited for outer planet missions greater than 3 AU from the sun and also functions in earth and near earth environments. Additives such as powders of boron, carbon, lithium, and/or aluminum can be added to the fuel component to improve performance or enhance hypergolicity. The gelling agent can be silicon dioxide, clay, carbon, or organic or inorganic polymers. The bi-propellant system may be, but need not be, hypergolic.
Alternative Fuels Data Center: Propane Vans Keep Kansas City Transportation
anxiety. More recently, the company has been exploring dedicated-propane vehicles in Kansas City to ensure technologies and petroleum-use reduction strategies, then deployed bi-fuel vans; currently exploring dedicated
Compressed Natural Gas (CNG) and Propane Tax CNG and propane used in motor vehicles is subject to a state motor fuel tax rate of $0.26 per gasoline gallon equivalent (GGE). For taxation purposes, one GGE
Alternative Fuels Data Center: Propane Fueling Station Locations
petroleum gas (propane) fueling stations near an address or ZIP code or along a route in the United States Location Map a Route Laws & Incentives Search Federal State Key Legislation Data & Tools Widgets
NASA Astrophysics Data System (ADS)
Farwell, D. A.; Svenson, A. J.; Ramsier, R. D.
2001-04-01
We present our recent efforts to design, construct, and test a gas turbine, or jet, engine. Our design utilizes a turbocharger and ignition system from an automobile, and a flame tube/reaction chamber unit fabricated by hand from stainless steel. Once the engine is running, it is completely self-sustaining as long as there is a fuel supply, which in our case is propane. Air is forced into the intake where it is compressed and then injected into the combustion chamber where it is mixed with propane. The spark plugs ignite the air-propane mixture which burns to produce thrust at the exhaust. We have performed operational tests under different environmental conditions and with several turbochargers. We are currently working on adding a lubrication system to the engine, and will discuss our plan to experiment with the reaction chamber and flame tube design in an effort to improve performance and efficiency. *Corresponding author: rex@uakron.edu
Number 2 heating oil/propane program. Final report, 1991/92
DOE Office of Scientific and Technical Information (OSTI.GOV)
McBrien, J.
1992-06-01
During the 1991--92 heating season, the Massachusetts Division of Energy Resources (DOER) participated in a joint data collection program between several state energy offices and the federal Department of Energy`s (DOE) Energy Information Administration (EIA). The purpose of the program was to collect and monitor retail and wholesale heating oil and propane prices and inventories from October, 1991 through March, 1992. This final report begins with an overview of the unique events which had an impact on the reporting period. Next, the report summarizes the results from the residential heating oil and propane price surveys conducted by DOER over themore » 1991--1992 heating season. The report also incorporates the wholesale heating oil and propane prices and inventories collected by the EIA and distributed to the states. Finally, the report outlines DOER`s use of the data and responses to the events which unfolded during the 1991--1992 heating season.« less
Alternative Fuels Data Center: Illinois Transportation Data for Alternative
Version More Illinois Videos on YouTube Video thumbnail for Alpha Baking Company Augments Its Fleet With Propane Delivery Trucks Alpha Baking Company Augments Its Fleet With Propane Delivery Trucks Nov. 2, 2013
Federal Register 2010, 2011, 2012, 2013, 2014
2010-03-24
... Education and Research Council (PERC), in conjunction with the cumulative effects of market changes and... the Secretary of Energy a report examining whether operation of the Council, in conjunction with the...
Methane, Ethane, and Propane Sensor for Real-time Leak Detection and Diagnostics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Roscioli, Joseph R.; Herndon, Scott; Nelson, David D.
2017-03-24
The Phase I effort demonstrated the technical viability of a fast, sensitive, mobile hydrocarbon monitor. The instrument will enable the oil and gas industry, researchers, and regulators to rapidly identify and chemically profile leaks from facilities. This capability will allow operators to quickly narrow down and mitigate probable leaking equipment, minimizing product loss and penalties due to regulatory non-compliance. During the initial development phase, we demonstrated operation of a prototype monitor that is capable of measuring methane, ethane, and propane at sub-part-per-billion sensitivities in 1 second, using direct absorption infrared spectroscopy. To our knowledge, this is the first instrument capablemore » of fast propane measurements at atmospheric concentrations. In addition, the electrical requirements of the monitor have been reduced from the 1,200 W typical of a spectrometer, to <500 W, making it capable of being powered by a passenger vehicle, and easily deployed by the industry. The prototype monitor leverages recent advances in laser technology, using high-efficiency interband cascade lasers to access the 3 μm region of the mid-infrared, where the methane, ethane, and propane absorptions are strongest. Combined with established spectrometer technology, we have achieved precisions below 200 ppt for each compound. This allows the monitor to measure fast plumes from oil and gas facilities, as well as ambient background concentrations (typical ambient levels are 2 ppm, 1.5 ppb, and 0.7 ppb for methane, ethane and propane, respectively). Increases in instrument operating pressure were studied in order to allow for a smaller 125 W pump to be used, and passive cooling was explored to reduce the cooling load by almost 90% relative to active (refrigerated) cooling. In addition, the simulated infrared absorption profiles of ethane and propane were modified to minimize crosstalk between species, achieving <1% crosstalk between ethane and propane. Finally, a monitor was designed based upon the commercial compact mini-spectrometer capable of dual-laser operation. We intend to build and test this during phase II. Multiple opportunities for improvement were also identified. First, the reported ethane and propane concentrations are susceptible to external acceleration acting upon the instrument. During phase II we will address this “motion-sickness”. Second, significant software development will be needed operate the monitor at 1 second resolution in real time, and provide rapid, actionable data to a driver or passenger.« less
NASA Astrophysics Data System (ADS)
Kwon, Hyuk Taek
Propylene/propane separation is one of the most challenging separations, currently achieved by energy-intensive cryogenic distillation. Despite the great potentials for energy-efficient membrane-based propylene/propane separation processes, no commercial membranes are available due to the limitations (i.e., low selectivity) of current polymeric materials. Zeolitic imidazolate frameworks (ZIFs) are promising membrane materials primarily due to their well-defined ultra-micropores with controllable surface chemistry along with their relatively high thermal/chemical stabilities. In particular, ZIF-8 with the effective aperture size of ~ 4.0 A has been shown very promising for propylene/propane separation. Despite the extensive research on ZIF-8 membranes, only a few of ZIF-8 membranes have displayed good propylene/propane separation performances presumably due to the challenges of controlling the microstructures of polycrystalline membranes. Since the membrane microstructures are greatly influenced by processing techniques, it is critically important to develop new techniques. In this dissertation, three state-of-the-art ZIF membrane synthesis techniques are developed. The first is a one-step in-situ synthesis technique based on the concept of counter diffusion. The technique enabled us to obtain highly propylene selective ZIF-8 membranes in less than a couple of hours with exceptional mechanical strength. Most importantly, due to the nature of the counter-diffusion concept, the new method offered unique opportunities such as healing defective membranes (i.e., poorly-intergrown) as well as significantly reducing the consumption of costly ligands and organic solvents. The second is a microwave-assisted seeding technique. Using this new seeding technique, we were able to prepare seeded supports with a high packing density in a couple of minutes, which subsequently grown into highly propylene-selective ZIF-8 membranes with an average propylene/propane selectivity of ~40. The last is a heteroepitaxial growth technique. The first well-intergrown membranes of ZIF-67 (Co-substituted ZIF-8) by heteroepitaxially growing ZIF-67 on ZIF-8 seed layers were reported. The ZIF-67 membranes exhibited impressively high propylene/propane separation capabilities. The presence of a methanol co-solvent in the growth solution was critically important to reproducibly prepare high quality ZIF-67 membranes. Furthermore, when the tertiary growth of ZIF-8 layers was applied to the ZIF-67 membranes, the membranes exhibited unprecedentedly high propylene/propane separation factors of ~ 200 possibly due to enhanced grain boundary structure.
Oxidation of C/SiC Composites at Reduced Oxygen Partial Pressures
NASA Technical Reports Server (NTRS)
Opila, E. J.; Serra, J. L.
2007-01-01
T-300 carbon fibers and T-300 carbon fiber reinforced silicon carbide composites (C/SiC) were oxidized in flowing reduced oxygen partial pressure environments at a total pressure of one atmosphere (0.5 atm O2, 0.05 atm O2 and 0.005 atm O2, balance argon). Experiments were conducted at four temperatures (816deg, 1149deg, 1343deg, and 1538 C). The oxidation kinetics were monitored using thermogravimetric analysis. T-300 fibers were oxidized to completion for times between 0.6 and 90 h. Results indicated that fiber oxidation kinetics were gas phase diffusion controlled. Oxidation rates had an oxygen partial pressure dependence with a power law exponent close to one. In addition, oxidation rates were only weakly dependent on temperature. The C/SiC coupon oxidation kinetics showed some variability, attributed to differences in the number and width of cracks in the SiC seal coat. In general, weight losses were observed indicating oxidation of the carbon fibers dominated the oxidation behavior. Low temperatures and high oxygen pressures resulted in the most rapid consumption of the carbon fibers. At higher temperatures, the lower oxidation rates were primarily attributed to crack closure due to SiC thermal expansion, rather than oxidation of SiC since these reduced rates were observed even at the lowest oxygen partial pressures where SiC oxidation is minimal.
Oxygen partial pressure sensor
Dees, D.W.
1994-09-06
A method for detecting oxygen partial pressure and an oxygen partial pressure sensor are provided. The method for measuring oxygen partial pressure includes contacting oxygen to a solid oxide electrolyte and measuring the subsequent change in electrical conductivity of the solid oxide electrolyte. A solid oxide electrolyte is utilized that contacts both a porous electrode and a nonporous electrode. The electrical conductivity of the solid oxide electrolyte is affected when oxygen from an exhaust stream permeates through the porous electrode to establish an equilibrium of oxygen anions in the electrolyte, thereby displacing electrons throughout the electrolyte to form an electron gradient. By adapting the two electrodes to sense a voltage potential between them, the change in electrolyte conductivity due to oxygen presence can be measured. 1 fig.
Oxygen partial pressure sensor
Dees, Dennis W.
1994-01-01
A method for detecting oxygen partial pressure and an oxygen partial pressure sensor are provided. The method for measuring oxygen partial pressure includes contacting oxygen to a solid oxide electrolyte and measuring the subsequent change in electrical conductivity of the solid oxide electrolyte. A solid oxide electrolyte is utilized that contacts both a porous electrode and a nonporous electrode. The electrical conductivity of the solid oxide electrolyte is affected when oxygen from an exhaust stream permeates through the porous electrode to establish an equilibrium of oxygen anions in the electrolyte, thereby displacing electrons throughout the electrolyte to form an electron gradient. By adapting the two electrodes to sense a voltage potential between them, the change in electrolyte conductivity due to oxygen presence can be measured.
Redox Chemistry of Gold(I) Phosphine Thiolates: Sulfur-Based Oxidation
Jiang, Tong; Wei, Gang; Turmel, Cristopher; Bruce, Alice E.
1994-01-01
The redox chemistry of mononuclear and dinuclear gold(I) phosphine arylthiolate complexes was recently investigated by using electrochemical, chemical, and photochemical techniques. We now report the redox chemistry of dinuclear gold(I) phosphine complexes containing aliphatic dithiolate ligands. These molecules differ from previously studied gold(I) phosphine thiolate complexes in that they are cyclic and contain aliphatic thiolates. Cyclic voltammetry experiments of Au2 (LL)(pdt) [pdt = propanedithiol; LL = 1,2-bis(diphenylphosphino)-ethane (dppe), 1,3-bis(diphenylphosphino)propane (dppp), 1,4-bis(diphenylphosphino)butane (dppb), 1,5-bis(diphenylphosphino)pentane (dpppn)] in 0.1 M TBAH/CH3CN or CH2Cl2 solutions at 50 to 500 mV/sec using glassy carbon or platinum electrodes, show two irreversible anodic processes at ca. +0.6 and +1.1 V (vs. SCE). Bulk electrolyses at +0.9 V and +1.4 V result in n values of 0.95 and 3.7, respectively. Chemical oxidation of Au2(dppp)(pdt) using one equivalent of Br2 (2 oxidizing equivalents) yields 1,2-dithiolane and Au2(dppp)Br2. The reactivity seen upon mild oxidation ≤ +1.0 V is consistent with formal oxidation of a thiolate ligand, followed by a fast chemical reaction that results in cleavage of a second gold-sulfur bond. Oxidation at higher potentials (≥ +1.3 V) is consistent with oxidation of gold(I) to gold(III). Structural and electrochemical differences between gold(I) aromatic and aliphatic thiolate oxidation processes are discussed. PMID:18476260
An experimental and numerical study of gas jet diffusion flames enveloped by a cascade of venturis
NASA Astrophysics Data System (ADS)
Qubbaj, Ala Rafat
1999-06-01
A new technique to control carbon monoxide, nitric oxide, and soot emissions of a propane diffusion flame by modifying the air infusion rate into the flame was developed. In this study, the effectiveness of the ``venturi-cascading'' technique was experimentally as well numerically investigated. Propane jet diffusion flames at three burner-exit Reynolds numbers ( 3600, 5100 and 6500) corresponding to burner-rim-attached, undergoing transition from attached to lifted, and fully-lifted configurations were examined with several sets of venturis of different sizes and spacing arrangements. Temperature, and the concentrations of carbon dioxide, oxygen, carbon monoxide and nitric oxide in the exhaust products were measured before and after the modification, and optimal conditions to minimize pollutant emissions were obtained. The optimal value of venturi throat/burner-exit diameter ratio (D/d) was 32 +/- 3, which corresponded to an approximate clearance of 5 +/- 2 mm between the venturi throat and the burning jet width at the mid-flame height. The venturi-cascading technique at its optimal conditions resulted in a decrease of 87% and 33% in CO and NO emission indices along with a 24% decrease in soot emission from a propane jet flame, compared to the baseline condition (same flame without venturis). The reduction of NO without increasing CO was the main attraction of this technique. The temperature and composition measurements, at the optimal conditions, showed that, in the near-burner region, the venturi-cascaded flame had lower temperature and CO2 concentration by an average of 5% and 7%, respectively, than the baseline flame. However, in the mid-flame and far-burner regions, it has higher temperature by 13% and 12%, and higher CO2 concentration by 16% and 13%, in average values, respectively. Laser Induced Fluorescence (LIF) measurements, in the near-burner region of the venturi-cascaded flame, indicated an average decrease of 18%, 24% and 12% in OH, CH and CN radical species, respectively, along with 11% drop in soot precursors (PAR), from their baseline values. The thermal and composition fields of the baseline and venturi-cascaded flames were numerically simulated using CFD-ACE+, an advanced computational environment software package. The CO and NO concentrations were determined through CFD-POST, a post processing utility program for CFD-ACE+. The final simulated results were compared with the experimental data. Good agreement was found in the near-burner region. (Abstract shortened by UMI.)
PROPANE BUBBLE CHAMBER (in Italian)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Loria, A.; Mittner, P.; Scotoni, I.
1959-03-01
A propane bubble chamber of about two liters volume is described: details concerning the membrane expansion mechanism, the structure of the windows and the illuminating system are given. Some features of the use of it, recently made at the CERN synchrocyclotron, are indicated. (auth)
40 CFR 721.8140 - Substituted propane (generic).
Code of Federal Regulations, 2010 CFR
2010-07-01
....8140 Section 721.8140 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) TOXIC SUBSTANCES CONTROL ACT SIGNIFICANT NEW USES OF CHEMICAL SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.8140 Substituted propane (generic). (a) Chemical substance and significant new uses subject...
Alternative Fuels Data Center: Clean Cities Helps the National Mall Cut
Transit Efficiency March 8, 2014 Renzenberger Inc Saves Money With Propane Vans Feb. 1, 2014 Photo of a Yellowstone National Park Commits to Alternative Fuels Oct. 16, 2010 Propane Buses Save Money for Virginia
PHYSICAL PROPERTIES OF FLUORINATED PROPANE AND BUTANE DERIVATIVES AS ALTERNATIVE REFRIGERANTS
Physical property measurements are presented for 24 fluorinated propane and butane derivatives and one fluorinated ether. These measurements include melting point, boiling point, vapor pressure below the boiling point, heat of vaporization at the boiling point, critical propertie...
IDENTITY OF THE PINK-PIGMENTED METHANOL-OXIDIZING BACTERIA AS VIBRIO EXTORQUENS
Stocks, Peter K.; McCleskey, C. S.
1964-01-01
Stocks, Peter K. (Louisiana State University, Baton Rouge), and C. S. McCleskey. Identity of the pink-pigmented methanol-oxidizing bacteria as Vibrio extorquens. J. Bacteriol. 88:1065–1070. 1964.—Pink-pigmented bacteria isolated from enrichment cultures of methane oxidizers were found to possess similar morphological, cultural, and physiological characteristics. All the strains utilized methanol, formate, oxalate, succinate, glycerol, and benzene as sole carbon sources; methanol, formate, and glycerol afforded best growth. Most strains utilized fructose and ribose; other carbohydrates tested were not available as carbon and energy sources. There was strain variation in the use of hexane, heptane, n-propanol, n-butanol, acetate, and propionate. Methane, ethane, n-propane, and n-butane were not utilized. Our isolates, and Pseudomonas methanica of Harrington and Kallio (not the methane-dependent P. methanica of Dworkin and Foster), Pseudomonas AM1 of Peele and Quayle, Pseudomonas PRL-W4 of Kaneda and Roxburgh, and Protaminobacter ruber den Dooren de Jong are nearly identical with Vibrio extorquens (Bassalik) Bhat and Barker, and should be considered the same species. Images PMID:14219020
IDENTITY OF THE PINK-PIGMENTED METHANOL-OXIDIZING BACTERIA AS VIBRIO EXTORQUENS.
STOCKS, P K; MCCLESKEY, C S
1964-10-01
Stocks, Peter K. (Louisiana State University, Baton Rouge), and C. S. McCleskey. Identity of the pink-pigmented methanol-oxidizing bacteria as Vibrio extorquens. J. Bacteriol. 88:1065-1070. 1964.-Pink-pigmented bacteria isolated from enrichment cultures of methane oxidizers were found to possess similar morphological, cultural, and physiological characteristics. All the strains utilized methanol, formate, oxalate, succinate, glycerol, and benzene as sole carbon sources; methanol, formate, and glycerol afforded best growth. Most strains utilized fructose and ribose; other carbohydrates tested were not available as carbon and energy sources. There was strain variation in the use of hexane, heptane, n-propanol, n-butanol, acetate, and propionate. Methane, ethane, n-propane, and n-butane were not utilized. Our isolates, and Pseudomonas methanica of Harrington and Kallio (not the methane-dependent P. methanica of Dworkin and Foster), Pseudomonas AM1 of Peele and Quayle, Pseudomonas PRL-W4 of Kaneda and Roxburgh, and Protaminobacter ruber den Dooren de Jong are nearly identical with Vibrio extorquens (Bassalik) Bhat and Barker, and should be considered the same species.
Jaekel, Ulrike; Musat, Niculina; Adam, Birgit; Kuypers, Marcel; Grundmann, Olav; Musat, Florin
2013-05-01
The short-chain, non-methane hydrocarbons propane and butane can contribute significantly to the carbon and sulfur cycles in marine environments affected by oil or natural gas seepage. In the present study, we enriched and identified novel propane and butane-degrading sulfate reducers from marine oil and gas cold seeps in the Gulf of Mexico and Hydrate Ridge. The enrichment cultures obtained were able to degrade simultaneously propane and butane, but not other gaseous alkanes. They were cold-adapted, showing highest sulfate-reduction rates between 16 and 20 °C. Analysis of 16S rRNA gene libraries, followed by whole-cell hybridizations with sequence-specific oligonucleotide probes showed that each enrichment culture was dominated by a unique phylotype affiliated with the Desulfosarcina-Desulfococcus cluster within the Deltaproteobacteria. These phylotypes formed a distinct phylogenetic cluster of propane and butane degraders, including sequences from environments associated with hydrocarbon seeps. Incubations with (13)C-labeled substrates, hybridizations with sequence-specific probes and nanoSIMS analyses showed that cells of the dominant phylotypes were the first to become enriched in (13)C, demonstrating that they were directly involved in hydrocarbon degradation. Furthermore, using the nanoSIMS data, carbon assimilation rates were calculated for the dominant cells in each enrichment culture.
Propane and butane emission sources to ambient air of Mexico City metropolitan area.
Jaimes, L; Sandoval, J
2002-04-22
Samples of volatile organic compounds (VOCs) were collected in a smog chamber in order to determine whether automotive exhausts or LP Gas emissions play a greater role in the source of propane and butane, which affect ozone formation and other pollutants in the ambient air of the Mexico City metropolitan area (MCMA). These samples were collected in April 1995 during mornings and evenings. The testing methodology used for measuring exhaust emission were FTP or EPA-74 tests, and SHED type tests were also conducted in order to evaluate evaporative emissions. The finding from analysis of the VOCs collected in the morning demonstrate that in the atmosphere, propane concentrations are higher than that of butane but the reverse in evaporative and exhaust emissions, with the concentration of propane lower than that of butane. Our conclusion is that most of C3 and C4 in the ambient air comes from LP gas and not vehicle exhaust or evaporative emission, due to the higher levels of propane than butane in its formulation. The analysis of VOCs also indicates that although the conversion (in the smog chamber) of alkanes is low during the day, due to the high initial concentration, their contribution in the reaction mechanism to produce ozone can be appreciable.
Thermo-kinetic instabilities in model reactors. Examples in experimental tests
NASA Astrophysics Data System (ADS)
Lavadera, Marco Lubrano; Sorrentino, Giancarlo; Sabia, Pino; de Joannon, Mara; Cavaliere, Antonio; Ragucci, Raffaele
2017-11-01
The use of advanced combustion technologies (such as MILD, LTC, etc.) is among the most promising methods to reduce emission of pollutants. For such technologies, working temperatures are enough low to boost the formation of several classes of pollutants, such as NOx and soot. To access this temperature range, a significant dilution as well as preheating of reactants is required. Such conditions are usually achieved by a strong recirculation of exhaust gases that simultaneously dilute and pre-heat the fresh reactants. These peculiar operative conditions also imply strong fuel flexibility, thus allowing the use of low calorific value (LCV) energy carriers with high efficiency. However, the intersection of low combustion temperatures and highly diluted mixtures with intense pre-heating alters the evolution of the combustion process with respect to traditional flames, leading to features such as the susceptibility to oscillations, which are undesirable during combustion. Therefore, an effective use of advanced combustion technologies requires a thorough analysis of the combustion kinetic characteristics in order to identify optimal operating conditions and control strategies with high efficiency and low pollutant emissions. The present work experimentally and numerically characterized the ignition and oxidation processes of methane and propane, highly diluted in nitrogen, at atmospheric pressure, in a Plug Flow Reactor and a Perfectly Stirred Reactor under a wide range of operating conditions involving temperatures, mixture compositions and dilution levels. The attention was focused particularly on the chemistry of oscillatory phenomena and multistage ignitions. The global behavior of these systems can be qualitatively and partially quantitatively modeled using the detailed kinetic models available in the literature. Results suggested that, for diluted conditions and lower adiabatic flame temperatures, the competition among several pathways, i.e. intermediate- and high-temperature branching, branching and recombination channels, oxidation and recombination/pyrolysis pathways, is enhanced, thus permitting the onset of phenomena that are generally hidden during conventional combustion processes.
NASA Astrophysics Data System (ADS)
Meng, Xiang-Ping; Shi, Fan; Li, Hai-Jie; Yin, Li-De; Wang, Yi-Fei; Wang, Zhi-ping; Chen, Tong-sheng
2016-10-01
Cellular damage induced by free-radicals like reactive oxygen species has been implicated in several diseases. 2, 2-azobis(2-amidino-propane) dihydrochloride(AAPH) generates two potent ROS capable of inducing lipid peroxidation: alkoxy radical(RO-) and peroxy radical (ROO-). These radicals are similar to those that are physiologically active and thus might initiate a cascade of intracellular toxic events leading to oxidation, lipid peroxidation, DNA damage and subsequent cell death. Hence naturally anti-oxidant play a vital role in combating these conditions. In this study, polydatin loaded nanostructured lipid carriers (Pol-NLC) was prepared by hot melting and then high pressure homogenization technique. The effects of Pol-NLC on free radical scavenging and anti-oxidative capacity is investigated. The particle size and zeta potential of Pol-NLC were 113.9 +/- 1.1 nm and -16.3 1 +/- 0.27 mV, respectively. By free radical scavenging assays, the IC50 value of Pol-NLC were 28.71, 9.83 μg/mL with DPPH, ABTS assay respectively, and 0.143 mg ferrous sulfate/1 mg Pol-NLC with FRAP assay. These results indicated that the antioxidant properties of Pol-NLC hold great potential used as an alternative to more toxic synthetic anti-oxidants as an additive in food, cosmetic and pharmaceutical preparations for the oxidative diseases treatment.
THERMODYNAMIC EVALUATION OF FLUORINATED ETHERS, ETHANES, AND PROPANES AS ALTERNATIVE REFRIGERANTS
The visuals, part of a thermodynamic evaluation of fluorinated ethers, ethanes, and propanes as alternative refrigerants, are a useful tool in comparing new chemicals to existing refrigerants in vapor compression cycles. hey present the required suction superheat and the performa...
Ahn, Joon Ho; Kwan, Tiffany; Chandran, Kartik
2011-04-01
The goal of this study was to compare the microbial ecology, gene expression, biokinetics, and N2O emissions from a lab-scale bioreactor operated sequentially in full-nitrification and partial-nitrification modes. Based on sequencing of 16S rRNA and ammonia monooxygenase subunit A (amoA) genes, ammonia oxidizing bacteria (AOB) populations during full- and partial-nitrification modes were distinct from one another. The concentrations of AOB (XAOB) and their respiration rates during full- and partial-nitrification modes were statistically similar, whereas the concentrations of nitrite oxidizing bacteria (XNOB) and their respiration rates declined significantly after the switch from full- to partial-nitrification. The transition from full-nitrification to partial nitrification resulted in a protracted transient spike of nitrous oxide (N2O) and nitric oxide (NO) emissions, which later stabilized. The trends in N2O and NO emissions correlated well with trends in the expression of nirK and norB genes that code for the production of these gases in AOB. Both the transient and stabilized N2O and NO emissions during partial nitrification were statistically higher than those during steady-state full-nitrification. Based on these results, partial nitrification strategies for biological nitrogen removal, although attractive for their reduced operating costs and energy demand, may need to be optimized against the higher carbon foot-print attributed to their N2O emissions.
Oxidation of C/SiC Composites at Reduced Oxygen Partial Pressures
NASA Technical Reports Server (NTRS)
Opila, Elizabeth J.; Serra, Jessica
2009-01-01
Carbon-fiber reinforced SiC (C/SiC) composites are proposed for leading edge applications of hypersonic vehicles due to the superior strength of carbon fibers at high temperatures (greater than 1500 C). However, the vulnerability of the carbon fibers in C/SiC to oxidation over a wide range of temperatures remains a problem. Previous oxidation studies of C/SiC have mainly been conducted in air or oxygen, so that the oxidation behavior of C/SiC at reduced oxygen partial pressures of the hypersonic flight regime are less well understood. In this study, both carbon fibers and C/SiC composites were oxidized over a wide range of temperatures and oxygen partial pressures to facilitate the understanding and modeling of C/SiC oxidation kinetics for hypersonic flight conditions.
Alternative Fuels Data Center: Kansas Transportation Data for Alternative
Renzenberger Inc Saves Money With Propane Vans Renzenberger Inc Saves Money With Propane Vans Feb. 1, 2014 Save Money Natural Gas School Buses Help Kansas City Save Money Nov. 12, 2011 https://www.youtube.com
Fernandes, Ciro E F; Scapinello, Jaqueline; Bohn, Aline; Boligon, Aline A; Athayde, Margareth L; Magro, Jacir Dall; Palliga, Marshall; Oliveira, J Vladimir; Tres, Marcus V
2017-01-01
Traditionally, Ilex paraguariensis leaves are consumed in tea form or as typical drinks like mate and terere, while the fruits are discarded processing and has no commercial value. The aim of this work to evaluate phytochemical properties, total phenolic compounds, antioxidant and antimicrobial activity of extracts of Ilex paraguariensis fruits obtained from supercritical CO 2 and compressed propane extraction. The extraction with compressed propane yielded 2.72 wt%, whereas with supercritical CO 2 1.51 wt% was obtained. The compound extracted in larger amount by the two extraction solvents was caffeine, 163.28 and 54.17 mg/g by supercritical CO 2 and pressurized propane, respectively. The antioxidant activity was more pronounced for the supercritical CO 2 extract, with no difference found in terms of minimum inhibitory concentration for Staphylococcus aureus for the two extracts and better results observed for Escherichia coli when using supercritical CO 2 .
An experimental study of adsorption interference in binary mixtures flowing through activated carbon
NASA Technical Reports Server (NTRS)
Madey, R.; Photinos, P. J.
1983-01-01
The isothermal transmission through activated carbon adsorber beds at 25 C of acetaldehyde-propane and acetylene-ethane mixtures in a helium carrier gas was measured. The inlet concentration of each component was in the range between 10 ppm and 500 ppm. The constant inlet volumetric flow rate was controlled at 200 cc (STP)/min in the acetaldehyde-propane experiments and at 50 cc (STP)/min in the acetaldehyde-ethane experiments. Comparison of experimental results with the corresponding single-component experiments under similar conditions reveals interference phenomena between the components of the mixtures as evidenced by changes in both the adsorption capacity and the dispersion number. Propane was found to displace acetaldehyde from the adsorbed state. The outlet concentration profiles of propane in the binary mixtures tend to become more diffuse than the corresponding concentration profiles of the one-component experiments. Similar features were observed with mixtures of acetylene and ethane; however, the displacement of acetylene by ethane is less pronounced.
Millimeter and submillimeter wave spectroscopy of propanal
NASA Astrophysics Data System (ADS)
Zingsheim, Oliver; Müller, Holger S. P.; Lewen, Frank; Jørgensen, Jes K.; Schlemmer, Stephan
2017-12-01
The rotational spectra of the two stable conformers syn- and gauche-propanal (CH3CH2CHO) were studied in the millimeter and submillimeter wave regions from 75 to 500 GHz with the Cologne (Sub-)Millimeter wave Spectrometer. Furthermore, the first excited states associated with the aldehyde torsion and with the methyl torsion, respectively, of the syn-conformer were analyzed. The newly obtained spectroscopic parameters yield better predictions, thus fulfill sensitivity and resolution requirements in new astronomical observations in order to unambiguously assign pure rotational transitions of propanal. This is demonstrated on a radio astronomical spectrum from the Atacama Large Millimeter/submillimeter Array Protostellar Interferometric Line Survey (ALMA-PILS). In particular, an accurate description of observed splittings, caused by internal rotation of the methyl group in the syn-conformer and by tunneling rotation interaction from two stable degenerate gauche-conformers, is reported. The rotational spectrum of propanal is of additional interest because of its two large amplitude motions pertaining to the methyl and the aldehyde group, respectively.
Van Wyngarden, A L; Pérez-Montaño, S; Bui, J V H; Li, E S W; Nelson, T E; Ha, K T; Leong, L; Iraci, L T
Particles in the upper troposphere and lower stratosphere (UT/LS) consist mostly of concentrated sulfuric acid (40-80 wt %) in water. However, airborne measurements have shown that these particles also contain a significant fraction of organic compounds of unknown chemical composition. Acid-catalyzed reactions of carbonyl species are believed to be responsible for significant transfer of gas phase organic species into tropospheric aerosols and are potentially more important at the high acidities characteristic of UT/LS particles. In this study, experiments combining sulfuric acid (H 2 SO 4 ) with propanal and with mixtures of propanal with glyoxal and/or methylglyoxal at acidities typical of UT/LS aerosols produced highly colored surface films (and solutions) that may have implications for aerosol properties. In order to identify the chemical processes responsible for the formation of the surface films, attenuated total reflectance-Fourier transform infrared (ATR-FTIR) and 1 H nuclear magnetic resonance (NMR) spectroscopies were used to analyze the chemical composition of the films. Films formed from propanal were a complex mixture of aldol condensation products, acetals and propanal itself. The major aldol condensation products were the dimer (2-methyl-2-pentenal) and 1,3,5-trimethylbenzene that was formed by cyclization of the linear aldol condensation trimer. Additionally, the strong visible absorption of the films indicates that higher-order aldol condensation products must also be present as minor species. The major acetal species were 2,4,6-triethyl-1,3,5-trioxane and longer-chain linear polyacetals which are likely to separate from the aqueous phase. Films formed on mixtures of propanal with glyoxal and/or methylglyoxal also showed evidence of products of cross-reactions. Since cross-reactions would be more likely than self-reactions under atmospheric conditions, similar reactions of aldehydes like propanal with common aerosol organic species like glyoxal and methylglyoxal have the potential to produce significant organic aerosol mass and therefore could potentially impact chemical, optical and/or cloud-forming properties of aerosols, especially if the products partition to the aerosol surface.
Van Wyngarden, A. L.; Pérez-Montaño, S.; Bui, J. V. H.; Li, E. S. W.; Nelson, T. E.; Ha, K. T.; Leong, L.; Iraci, L. T.
2016-01-01
Particles in the upper troposphere and lower stratosphere (UT/LS) consist mostly of concentrated sulfuric acid (40–80 wt %) in water. However, airborne measurements have shown that these particles also contain a significant fraction of organic compounds of unknown chemical composition. Acid-catalyzed reactions of carbonyl species are believed to be responsible for significant transfer of gas phase organic species into tropospheric aerosols and are potentially more important at the high acidities characteristic of UT/LS particles. In this study, experiments combining sulfuric acid (H2SO4) with propanal and with mixtures of propanal with glyoxal and/or methylglyoxal at acidities typical of UT/LS aerosols produced highly colored surface films (and solutions) that may have implications for aerosol properties. In order to identify the chemical processes responsible for the formation of the surface films, attenuated total reflectance–Fourier transform infrared (ATR-FTIR) and 1H nuclear magnetic resonance (NMR) spectroscopies were used to analyze the chemical composition of the films. Films formed from propanal were a complex mixture of aldol condensation products, acetals and propanal itself. The major aldol condensation products were the dimer (2-methyl-2-pentenal) and 1,3,5-trimethylbenzene that was formed by cyclization of the linear aldol condensation trimer. Additionally, the strong visible absorption of the films indicates that higher-order aldol condensation products must also be present as minor species. The major acetal species were 2,4,6-triethyl-1,3,5-trioxane and longer-chain linear polyacetals which are likely to separate from the aqueous phase. Films formed on mixtures of propanal with glyoxal and/or methylglyoxal also showed evidence of products of cross-reactions. Since cross-reactions would be more likely than self-reactions under atmospheric conditions, similar reactions of aldehydes like propanal with common aerosol organic species like glyoxal and methylglyoxal have the potential to produce significant organic aerosol mass and therefore could potentially impact chemical, optical and/or cloud-forming properties of aerosols, especially if the products partition to the aerosol surface. PMID:27212937
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xiaofei Guan; Peter A. Zink; Uday B. Pal
2012-01-01
Pure magnesium (Mg) is recycled from 19g of partially oxidized 50.5wt.% Mg-Aluminum (Al) alloy. During the refining process, potentiodynamic scans (PDS) were performed to determine the electrorefining potential for magnesium. The PDS show that the electrorefining potential increases over time as the magnesium content inside the Mg-Al scrap decreases. Up to 100% percent of magnesium is refined from the Mg-Al scrap by a novel refining process of dissolving magnesium and its oxide into a flux followed by vapor phase removal of dissolved magnesium and subsequently condensing the magnesium vapor. The solid oxide membrane (SOM) electrolysis process is employed in themore » refining system to enable additional recycling of magnesium from magnesium oxide (MgO) in the partially oxidized Mg-Al scrap. The combination of the refining and SOM processes yields 7.4g of pure magnesium.« less
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Propane. 184.1655 Section 184.1655 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION (CONTINUED) DIRECT FOOD SUBSTANCES AFFIRMED AS GENERALLY RECOGNIZED AS SAFE Listing of Specific...
Characterization of Emissions from Liquid Fuel and Propane Open Burns
The comparative combustion emissions of using jet propellant (JP-5) liquid fuel pools or a propane manifold grid to simulate the effects of accidental fires was investigated. A helium-filled tethered aerostat was used to maneuver an instrument package into the open fire plumes ...
Alternative Fuels Data Center: Virginia Transportation Data for Alternative
://www.youtube.com/embed/1S7JJHQpc1w Video thumbnail for Propane Buses Save Money for Virginia Schools Propane Buses Save Money for Virginia Schools Feb. 25, 2010 https://www.youtube.com/embed/enxaQ_QooWE Chart Data
), propane, electricity, and renewable diesel. For taxation purposes, one GGE of CNG is equal to 5.66 pounds (lbs.), one DGE of LNG is equal to 6.06 lbs., one GGE of propane is equal to 1.35 gallons, and one GGE
Natural Gas and Propane Vehicle Grant Program The Tennessee Department of Environment and Conservation's Office of Energy Programs administers the Natural Gas and Propane Vehicle Grant Program (Program and must intend to operate vehicles in Tennessee for a minimum of six years. Grant applications are
The retention characteristics of 25 propane-based bromofluorocarbon, chlorocarbon, chlorofluorocarbon, and fluorocarbon fluids have been studied as a function of temperature on a stationary phase consisting of a 5% (m/m) coating of a low-molecular-mass polymer of hexafluoropropyl...
NASA Astrophysics Data System (ADS)
Wusnah; Bindar, Y.; Yunardi; Nur, F. M.; Syam, A. M.
2018-03-01
This paper presents results the process of combustion propane using computational fluid dynamics (CFD) to simulate the turbulent non-premixed flame under the influences of crosswinds and the ratio of fuel (propane) to steam, S. Configuration, discretization and boundary conditions of the flame are described using GambitTM software and integrated with FluentTM software for calculations of flow and reactive fields. This work focuses on the influence of various crosswind speeds (0–10 m/s) and values of S (0.14–2.35) while the velocity of fuel issued from the nozzle was kept constant at 20 m/s. A turbulence model, k-ɛ standard and combustion model, Eddy Dissipation model were employed for the calculation of velocity and temperature fields, respectively. The results are displayed in the form of predictive terrain profile of the propane flame at different crosswind speeds. The results of the propane flame profile demonstrated that the crosswind significantly affect the structure velocity and position of the flame which was off-center moving towards the direction of crosswind, eventually affect the temperature along the flame. As the values of S is increasing, the flame contour temperature decreases, until the flame was extinguished at S equals to 2.35. The combustion efficiency for a variety of crosswind speeds decreases with increasing values of S.
Medrano, José-Antonio; Julián, Ignacio; Herguido, Javier; Menéndez, Miguel
2013-01-01
Several reactor configurations have been tested for catalytic propane dehydrogenation employing Pt-Sn/MgAl2O4 as a catalyst. Pd-Ag alloy membranes coupled to the multifunctional Two-Zone Fluidized Bed Reactor (TZFBR) provide an improvement in propane conversion by hydrogen removal from the reaction bed through the inorganic membrane in addition to in situ catalyst regeneration. Twofold process intensification is thereby achieved when compared to the use of traditional fluidized bed reactors (FBR), where coke formation and thermodynamic equilibrium represent important process limitations. Experiments were carried out at 500–575 °C and with catalyst mass to molar flow of fed propane ratios between 15.1 and 35.2 g min mmol−1, employing three different reactor configurations: FBR, TZFBR and TZFBR + Membrane (TZFBR + MB). The results in the FBR showed catalyst deactivation, which was faster at high temperatures. In contrast, by employing the TZFBR with the optimum regenerative agent flow (diluted oxygen), the process activity was sustained throughout the time on stream. The TZFBR + MB showed promising results in catalytic propane dehydrogenation, displacing the reaction towards higher propylene production and giving the best results among the different reactor configurations studied. Furthermore, the results obtained in this study were better than those reported on conventional reactors. PMID:24958620
NASA Astrophysics Data System (ADS)
Li, W. S.; Lu, D. S.; Luo, J. L.; Chuang, K. T.
A proton exchange membrane fuel cell for chemicals and energy co-generation was set up with hydrocarbons ethane, propane and butane as fuels, and the electrochemical performance of the cell was studied by using linear potential sweep, alternating current impedance and gas chromatography. The cell performance can be improved to a great extent by increasing the platinum load in the catalyst, by treating the membrane with phosphoric acid and by elevating temperature. The improvement of cell performance by the increase of platinum load is ascribed to the increase of reaction sites for hydrocarbon oxidation, that by phosphoric acid treatment to the increase of proton conductivity in Nafion membrane, and that by elevating temperature to the improvement in thermodynamic as well as kinetic aspects. Only a small fraction of the hydrocarbon is converted to carbon dioxide in this cell during its power generation. The current efficiency is 5% for the conversion of ethane to carbon dioxide in the ethane/oxygen fuel cell with 20% carbon-supported platinum as catalyst and phosphoric acid-treated membrane as proton exchange membrane at 0.2 V, 80 °C and ambient pressure. The reaction activity of hydrocarbons at the anode is in the order of propane, butane and ethane. The possible chemicals produced from the cell were hydrocarbons with more than six carbons, which are inactive at the anode under cell conditions.
Catalysis in high-temperature fuel cells.
Föger, K; Ahmed, K
2005-02-17
Catalysis plays a critical role in solid oxide fuel cell systems. The electrochemical reactions within the cell--oxygen dissociation on the cathode and electrochemical fuel combustion on the anode--are catalytic reactions. The fuels used in high-temperature fuel cells, for example, natural gas, propane, or liquid hydrocarbons, need to be preprocessed to a form suitable for conversion on the anode-sulfur removal and pre-reforming. The unconverted fuel (economic fuel utilization around 85%) is commonly combusted using a catalytic burner. Ceramic Fuel Cells Ltd. has developed anodes that in addition to having electrochemical activity also are reactive for internal steam reforming of methane. This can simplify fuel preprocessing, but its main advantage is thermal management of the fuel cell stack by endothermic heat removal. Using this approach, the objective of fuel preprocessing is to produce a methane-rich fuel stream but with all higher hydrocarbons removed. Sulfur removal can be achieved by absorption or hydro-desulfurization (HDS). Depending on the system configuration, hydrogen is also required for start-up and shutdown. Reactor operating parameters are strongly tied to fuel cell operational regimes, thus often limiting optimization of the catalytic reactors. In this paper we discuss operation of an authothermal reforming reactor for hydrogen generation for HDS and start-up/shutdown, and development of a pre-reformer for converting propane to a methane-rich fuel stream.
Bio-Oil Separation and Stabilization by Near-Critical Propane Fractionation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ginosar, Daniel M.; Petkovic, Lucia M.; Agblevor, Foster A.
Bio-oils produced by thermal process are promising sources of sustainable, low greenhouse gas alternative fuels. These thermal processes are also well suited to decentralized energy production due to low capital and operating costs. Algae feedstocks for bio-oil production are of particular interest, due in part to their high-energy growth yields. Further, algae can be grown in non-arable areas in fresh, brackish, salt water, or even waste water. Unfortunately, bio-oils produced by thermal processes present significant stability challenges. These oils have complex chemical compositions, are viscous, reactive, and thermally unstable. Further, the components within the oils are difficult to separate bymore » fractional distillation. By far, the most effective separation and stabilization method has been solvent extraction. However, liquid phase extraction processes pose two main obstacles to commercialization; they require a significant amount of energy to remove and recover the solvent from the product, and they have a propensity for the solvent to become contaminated with minerals from the char and ash present in the original bio-oil. Separation and fractionation of thermally produced bio-oils using supercritical fluids (SCF) offers the advantages of liquid solvent extraction while drastically reducing energy demands and the predisposition to carry over solids into the extracted phase. SCFs are dense fluids with liquid-like solvent properties and gas-like transport properties. Further, SCF density and solvent strength can be tuned with minor adjustments in pressure, co-solvent addition, or gas anti-solvent addition. Catalytic pyrolysis oils were produced from Scenedesmus dimorphus algae using a fluid catalytic cracking catalyst. Bio-oil produced from catalytic fast pyrolysis (CFP) was separated using critical fluids. Propane extraction was performed at 65 °C at a fluid reduced pressure of 2.0 (85 bar) using an eight to one solvent to feed ratio by weight. Extraction of catalytic fast pyrolysis oil with near critical propane produced an oil extract that was physically and chemically different from and more stable than the original oil. The propane extract displayed lower viscosity and lower average molecular weight. The species present in the propane extract were likely the less polar that would be expected from using a non-polar solvent (propane). Carbonyl containing species in the extract were likely ketones and esters. The raffinate contained a higher amnount of OH bonded species along with the more polar more polar acids, amides, and alcohols. The higher concentration of nitrogen in the raffinate may confirm the presence of amides. Viscosity of the propane extract increased only half as much as that of the CFP bio-oil. Further, In situ NMR aging studies showed that the propane extract was more stable than the raw oil. In conclusion, propane extraction is a promising method to decrease the nitrogen content of bio-oils and to improve the stability of bio-oils obtained by the catalytic pyrolysis of algae based biomass.« less
Wells, Jonathan; Kilburn, Matthew R; Shaw, Jeremy A; Bartlett, Carole A; Harvey, Alan R; Dunlop, Sarah A; Fitzgerald, Melinda
2012-03-01
CNS injury is often localized but can be followed by more widespread secondary degenerative events that usually result in greater functional loss. Using a partial transection model in rat optic nerve (ON). we recently demonstrated in vivo increases in the oxidative stress-associated enzyme MnSOD 5 min after injury. However, mechanisms by which early oxidative stress spreads remain unclear. In the present study, we assessed ion distributions, additional oxidative stress indicators, and ion channel immunoreactivity in ON in the first 24 hr after partial transection. Using nanoscale secondary ion mass spectroscopy (NanoSIMS), we demonstrate changes in the distribution pattern of Ca ions following partial ON transection. Regions of elevated Ca ions in normal ON in vivo rapidly decrease following partial ON transection, but there is an increasingly punctate distribution at 5 min and 24 hr after injury. We also show rapid decreases in catalase activity and later increases in immunoreactivity of the advanced glycation end product carboxymethyl lysine in astrocytes. Increased oxidative stress in astrocytes is accompanied by significantly increased immunoreactivity of the AMPA receptor subunit GluR1 and aquaporin 4 (AQP4). Taken together, the results indicate that Ca ion changes and oxidative stress are early events following partial ON injury that are associated with changes in GluR1 AMPA receptor subunits and altered ionic balance resulting from increased AQP4. Copyright © 2011 Wiley Periodicals, Inc.
Ignition, Burning, and Extinction of a Strained Fuel Strip
NASA Technical Reports Server (NTRS)
Selerland, T.; Karagozian, A. R.
1996-01-01
Flame structure and ignition and extinction processes associated with a strained fuel strip are explored numerically using detailed transport and complex kinetics for a propane-air reaction. Ignition modes are identified that are similar to those predicted by one-step activation energy asymptotics, i.e., modes in which diffusion flames can ignite as independent or dependent interfaces, and modes in which single premixed or partially premixed flames ignite. These ignition modes are found to be dependent on critical combinations of strain rate, fuel strip thickness, and initial reactant temperatures. Extinction in this configuration is seen to occur due to fuel consumption by adjacent flames, although viscosity is seen to have the effect of delaying extinction by reducing the effective strain rate and velocity field experienced by the flames.
Nitrogen expander cycles for large capacity liquefaction of natural gas
NASA Astrophysics Data System (ADS)
Chang, Ho-Myung; Park, Jae Hoon; Gwak, Kyung Hyun; Choe, Kun Hyung
2014-01-01
Thermodynamic study is performed on nitrogen expander cycles for large capacity liquefaction of natural gas. In order to substantially increase the capacity, a Brayton refrigeration cycle with nitrogen expander was recently added to the cold end of the reputable propane pre-cooled mixed-refrigerant (C3-MR) process. Similar modifications with a nitrogen expander cycle are extensively investigated on a variety of cycle configurations. The existing and modified cycles are simulated with commercial process software (Aspen HYSYS) based on selected specifications. The results are compared in terms of thermodynamic efficiency, liquefaction capacity, and estimated size of heat exchangers. The combination of C3-MR with partial regeneration and pre-cooling of nitrogen expander cycle is recommended to have a great potential for high efficiency and large capacity.
Short-Term Outlook for Hydrocarbon Gas Liquids
2016-01-01
U.S. liquid fuels production increased from 7.43 million barrels per day (b/d) in 2008 to 13.75 million b/d in 2015. However, the Short-Term Energy Outlook (STEO) expects liquid fuels production to decline to 12.99 million b/d in 2017, mainly as a result of prolonged low oil prices. The liquid fuels production forecast reflects a 1.24 million b/d decline in crude oil production by 2017 that is partially offset by a 450,000 b/d increase in the production of hydrocarbon gas liquids (HGL)—a group of products including ethane, propane, butane (normal and isobutane), natural gasoline, and refinery olefins. This analysis will discuss the outlook for each of these four HGL streams and related infrastructure projects through 2017.
Rigid palm oil-based polyurethane foam reinforced with diamine-modified montmorillonite nanoclay
NASA Astrophysics Data System (ADS)
Haziq Dzulkifli, Mohd; Yazid Yahya, Mohd; Majid, Rohah A.
2017-05-01
This paper presents work on organically-modified montmorillonite (MMT) nanoclay embedded in rigid palm oil-based polyurethane (PU) foam. MMT was modified with organic surfactant diamino propane (DAP). PU foam was fabricated in closed mold, and the amount of DAP-MMT was varied in each foam formulation. The obtained foam was tested for its microstructure and morphology. Appearance of peaks from infra-red spectra corresponding to N-H, C=O, and C-N confirms the formation of PU networks. Scanning electron microscopy (SEM) revealed fine, closed-cellular structure at low clay loading; increasing DAP-MMT content induced larger cell sizes with blowholes. X-ray diffraction (XRD) indicates fully-exfoliated clays at 1 wt. % and partial-exfoliation at 3 wt. % clay loading, suggesting clumping of clays as DAP-MMT content increased.
Alternative Fuels Data Center: Minnesota School District Finds Cost
Savings, Cold-Weather Reliability with Propane Buses Minnesota School District Finds Cost Center: Minnesota School District Finds Cost Savings, Cold-Weather Reliability with Propane Buses on Facebook Tweet about Alternative Fuels Data Center: Minnesota School District Finds Cost Savings, Cold
Alternative Fuels Data Center: Mesa Unified School District Reaps Economic
and Environmental Benefits with Propane Buses Mesa Unified School District Reaps Economic and School District Reaps Economic and Environmental Benefits with Propane Buses on Facebook Tweet about Alternative Fuels Data Center: Mesa Unified School District Reaps Economic and Environmental Benefits with
40 CFR 721.533 - Propane, 1,1,1,3,3-pentachloro-.
Code of Federal Regulations, 2010 CFR
2010-07-01
....533 Section 721.533 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) TOXIC SUBSTANCES CONTROL ACT SIGNIFICANT NEW USES OF CHEMICAL SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.533 Propane, 1,1,1,3,3-pentachloro-. (a) Chemical substance and significant new uses subject...
Analysis of U.S. Propane Markets Winter 1996-97, An
1997-01-01
This study constitutes an examination of propane supply, demand, and price developments and trends. The Energy Information Administration's approach focused on identifying the underlying reasons for the tight supply/demand balance in the fall of 1996, and on examining the potential for a recurrence of these events next year.
Zeolitic imidazolate frameworks for kinetic separation of propane and propene
Li, Jing; Li, Kunhao; Olson, David H.
2014-08-05
Zeolitic Imidazolate Frameworks (ZIFs) characterized by organic ligands consisting of imidazole ligands that are either essentially all 2-chloroimidazole ligands or essentially all 2-bromoimidazole ligands are disclosed. Methods for separating propane and propene with the ZIFs of the present invention, as well as other ZIFs, are also disclosed.
2011-03-01
traps for the consumer market , which utilize the combustion of propane to produce carbon dioxide (CO2) and other attractants. While these...Z. Abramsky, B.P. Kotler , R.S. Ostfeld, I.Yarom, and A.Warburg. 2003a. Anthropogenic disturbances enhance occurrence of cutaneous
A Model for the Oxidation of Carbon Silicon Carbide Composite Structures
NASA Technical Reports Server (NTRS)
Sullivan, Roy M.
2004-01-01
A mathematical theory and an accompanying numerical scheme have been developed for predicting the oxidation behavior of carbon silicon carbide (C/SiC) composite structures. The theory is derived from the mechanics of the flow of ideal gases through a porous solid. The result of the theoretical formulation is a set of two coupled nonlinear differential equations written in terms of the oxidant and oxide partial pressures. The differential equations are solved simultaneously to obtain the partial vapor pressures of the oxidant and oxides as a function of the spatial location and time. The local rate of carbon oxidation is determined using the map of the local oxidant partial vapor pressure along with the Arrhenius rate equation. The nonlinear differential equations are cast into matrix equations by applying the Bubnov-Galerkin weighted residual method, allowing for the solution of the differential equations numerically. The numerical method is demonstrated by utilizing the method to model the carbon oxidation and weight loss behavior of C/SiC specimens during thermogravimetric experiments. The numerical method is used to study the physics of carbon oxidation in carbon silicon carbide composites.
Hydrogen generator, via catalytic partial oxidation of methane for fuel cells
NASA Astrophysics Data System (ADS)
Recupero, Vincenzo; Pino, Lidia; Di Leonardo, Raffaele; Lagana', Massimo; Maggio, Gaetano
It is well known that the most acknowledged process for generation of hydrogen for fuel cells is based upon the steam reforming of methane or natural gas. A valid alternative could be a process based on partial oxidation of methane, since the process is mildly exothermic and therefore not energy intensive. Consequently, great interest is expected from conversion of methane into syngas, if an autothermal, low energy intensive, compact and reliable process could be developed. This paper covers the activities, performed by the CNR Institute of Transformation and Storage of Energy (CNR-TAE), on theoretical and experimental studies for a compact hydrogen generator, via catalytic selective partial oxidation of methane, integrated with second generation fuel cells (EC-JOU2 contract). In particular, the project focuses the attention on methane partial oxidation via heterogeneous selective catalysts, in order to: demonstrate the basic catalytic selective partial oxidation of methane (CSPOM) technology in a subscale prototype, equivalent to a nominal output of 5 kWe; develop the CSPOM technology for its application in electric energy production by means of fuel cells; assess, by a balance of plant analysis, and a techno-economic evaluation, the potential benefits of the CSPOM for different categories of fuel cells.
NASA Astrophysics Data System (ADS)
Zhao, Zhenwei
To help understand the fuel oxidation process in practical combustion environments, laminar flame speeds and high temperature chemical kinetic models were studied for several practical fuels and "surrogate" fuels, such as propane, dimethyl ether (DME), and primary reference fuel (PRF) mixtures, gasoline and n-decane. The PIV system developed for the present work is described. The general principles for PIV measurements are outlined and the specific considerations are also reported. Laminar flame speeds were determined for propane/air over a range of equivalence ratios at initial temperature of 298 K, 500 K and 650 K and atmospheric pressure. Several data sets for propane/air laminar flame speeds with N 2 dilution are also reported. These results are compared to the literature data collected at the same conditions. The propane flame speed is also numerically calculated with a detailed kinetic model and multi component diffusion, including Soret effects. This thesis also presents experimentally determined laminar flame speeds for primary reference fuel (PRF) mixtures of n-heptane/iso-octane and real gasoline fuel at different initial temperature and at atmospheric pressure. Nitrogen dilution effects on the laminar flame speed are also studied for selected equivalence ratios at the same conditions. A minimization of detailed kinetic model for PRF mixtures on laminar flame speed conditions was performed and the measured flame speeds were compared with numerical predictions using this model. The measured laminar flame speeds of n-decane/air mixtures at 500 K and at atmospheric pressure with and without dilution were determined. The measured flame speeds are significantly different that those predicted using existing published kinetic models, including a model validated previously against high temperature data from flow reactor, jet-stirred reactor, shock tube ignition delay, and burner stabilized flame experiments. A significant update of this model is described which continues to predict the earlier validation experiments as well as the newly acquired laminar flame speed data and other recently published shock tube ignition delay measurements. A high temperature decomposition and oxidation model based on a hierarchical nature of reacting systems to reflect the new development in the small molecule and radical kinetics and thermochemistry and to evaluate recent measurements of DME laminar flame speeds is developed. The, thermal decomposition of DME was studied theoretically by using the RRKM/master equation approach and the high temperature model was then compared with the literature experimental data. The new model predicts well high temperature flow reactor data, high temperature shock tube ignition delays, and the species profiles from the burner-stabilized flames. Predictions of laminar flame speed and jet-stirred reactor data also reasonably agree with the available experimental data. The remaining uncertainties that need to be addressed for further model improvement will also be discussed. This thesis also presents a novel temperature-dependent feature sensitivity analysis methodology for combustion modeling. The obtained information is demonstrated to be of critical relevance in optimizing complex reaction schemes against multiple experimental targets. Applications of the presented approach are not limited to sensitivities with respect to reaction rate coefficients; the method can also be used to investigate any temperature-dependent property of interest (such as binary diffusion coefficients). This application is also demonstrated in this thesis.
NASA Astrophysics Data System (ADS)
Redmond, M. C.; Sorgen, A. A.; Chan, E. W.; Kessler, J. D.
2016-12-01
Microbial methane oxidation at natural gas seeps plays an important role in reducing the amount of this greenhouse gas that reaches the atmosphere, but questions remain about the factors that control methane oxidation rates and organisms responsible. We collected water samples from methane seeps on the U.S. Atlantic Margin (Hudson Canyon) and the Gulf of Mexico and tracked aerobic methane oxidation with high resolution measurements of methane, carbon dioxide, and oxygen concentrations, stable isotopic changes in methane and carbon dioxide, trace metals and nutrients in ten replicate mesocosms from each site. At several time points, we collected DNA for 16S rRNA gene and metagenomic sequencing. Hudson Canyon seep mesocosm communities were dominated by methanotrophs from the family Methylococcaceae (>75% of 16S rRNA gene sequences in all samples). Methylococcaceae were also present in the Gulf of Mexico mesocosms, but were much less abundant (<50% of 16S rRNA gene sequences) and methane was consumed less rapidly than in the Hudson Canyon mesocosms. The Hudson Canyon seeps emit only methane, whereas the Gulf of Mexico seeps also emit ethane, propane, and other hydrocarbons. Consistent with this differing geochemistry, hydrocarbon degraders such as Colwellia and Cycloclasticus were also abundant in the Gulf of Mexico mesocosms, as were genes for the oxidation of longer chain alkanes and aromatic compounds.
Soot Oxidation in Hydrocarbon/Air Diffusion Flames at Atmospheric Pressure. Appendix K
NASA Technical Reports Server (NTRS)
Xu, F.; El-Leathy, A. M.; Faeth, G. M.; Urban, D. L. (Technical Monitor); Yuan, Z.-G. (Technical Monitor)
2001-01-01
Soot oxidation was studied experimentally in laminar hydrocarbon/air diffusion flames at atmospheric pressure. Measurements were carried out along the axes of round jets burning in coflowing air considering acetylene, ethylene, propylene and propane as fuels. Measurements were limited to the initial stages of soot oxidation (carbon consumption less than 70%) where soot oxidation mainly occurs at the surface of primary soot particles. The following properties were measured as a function of distance above the burner exit: soot concentrations by deconvoluted laser extinction, soot temperatures by deconvoluted multiline emission, soot structure by thermophoretic sampling and analysis using Transmission Electron Microscopy (TEM), concentrations of stable major gas species (N2, H2O, H2, O2, CO, CO2, CH4, C2H2,C2H4, C2H6, C3H6, and C3H8) by sampling and gas chromatography, concentrations of some radical species (H, OH, O) by the deconvoluted Li/LiOH atomic absorption technique and flow velocities by laser velocimetry. It was found that soot surface oxidation rates are not particularly affected by fuel type for laminar diffusion flames and are described reasonably well by the OH surface oxidation mechanism with a collision efficiency of 0.10, (standard deviation of 0.07) with no significant effect of fuel type in this behavior; these findings are in good agreement with the classical laminar premixed flame measurements of Neoh et al. Finally, direct rates of surface oxidation by O2 were small compared to OH oxidation for present conditions, based on estimated O2 oxidation rates due to Nagle and Strickland-Constable (1962), because soot oxidation was completed near the flame sheet where O2 concentrations were less than 1.2% by volume.
Soot Oxidation in Laminar Hydrocarbon/Air Diffusion Flames at Atmospheric Pressure. Appendix D
NASA Technical Reports Server (NTRS)
Xu, F.; El-Leathy, A. M.; Faeth, G. M.
2000-01-01
Soot oxidation was studied experimentally in laminar hydrocarbon/air diffusion flames at atmospheric pressure. Measurements were carried out along the axes of round jets burning in coflowing air considering acetylene, ethylene, proplyene and propane as fuels. Measurements were limited to the initial stages of soot oxidation (carbon consumption less than 70%) where soot oxidation mainly occurs at the surface of primary soot particles. The following properties were measured as a function of distance above the burner exit: soot concentrations by deconvoluted laser extinction, soot temperatures by deconvoluted multiline emission, soot structure by thermophoretic sampling and analysis using Transmission Electron Microscopy (TEM), concentrations of stable major gas species (N2, H2O, H2, 02, CO, CO2, CH4, C2H2, C2H4, C2H6, C3H6, and C3H8) by sampling and gas chromatography, concentrations of some radical species (H, OH, O) by the deconvoluted Li/LiOH atomic absorption technique and flow velocities by laser velocimetry. It was found that soot surface oxidation rates are not particularly affected by fuel type for laminar diffusion flames and are described reasonably well by the OH surface oxidation mechanism with a collision efficiency of 0.10, (standard deviation of 0.07) with no significant effect of fuel type in this behavior; these findings are in good agreement with the classical laminar premixed flame measurements of Neoh et al. Finally, direct rates of surface oxidation by O2 were small compared to OH oxidation for present conditions, based on estimated O2 oxidation rates due to Nagle and Strickland-Constable, because soot oxidation was completed near the flame sheet where O2 concentrations were less than 1.2% by volume.
Method to obtain carbon nano-onions by pyrolisys of propane
NASA Astrophysics Data System (ADS)
Garcia-Martin, Tomas; Rincon-Arevalo, Pedro; Campos-Martin, Gemma
2013-11-01
We present a new and simple method for carbon nano-onions (CNOs) production which is based on the pyrolysis of Propane. CNOs are originated in a laminar premixed Propane/Oxygen flame of approximately 1.8 of stoichiometric coefficient. The stream of gasses resulting from the combustion drives the carbon particles towards the aluminium surface on which nano-onions are deposited and collected. The structure and size of the deposited carbon onion on the metal wall are characterized by High Resolution Transmission Electron Microscopy technique (HRTEM). The experimental images show the presence of two different types of CNOs. The first particles have diameters in the range of 18-25 nm and the second ones around 10 nm.
Code of Federal Regulations, 2010 CFR
2010-07-01
... (Continued) FEDERAL MANAGEMENT REGULATION REAL PROPERTY 74-FACILITY MANAGEMENT Facility Management Parking... 41 Public Contracts and Property Management 3 2010-07-01 2010-07-01 false Are privately owned vehicles converted for propane carburetion permitted in underground parking facilities? 102-74.280 Section...
Alternative Fuels Data Center: Alternative Fuels Help Ensure America's
key players from the start. For example, a strategic partnership with Black Bear Solar Institute led is replacing its fleet vehicles with efficient and alternative fuel vehicles. For example, in recent deploying seven propane mowers, thanks to a donation from the Propane Education & Research Council (PERC
Alternative Fuels Data Center: Propane Vehicle Emissions
compared to conventional gasoline and diesel fuel. When used as a vehicle fuel, propane can offer life , processing, manufacturing, distribution, use, and disposal or recycling. When comparing fuels, a life cycle GREET model estimates the life cycle petroleum use and GHG emissions for multiple fuels. When this model
THE HEAT CAPACITY OF FLUORINATED PROPANE AND BUTANE DERIVATIVES BY DIFFERENTIAL SCANNING CALORIMETRY
The paper gives results of the measurement (to 3% accuracy) of the constant-pressure liquid-phase heat capacities of 21 hydrogen-containing fluorinated propane and butane derivatives and one fluorinated ether (CF3OCF2H) with boiling points ranging from -34.6 to 76.7 C, using diff...
APMP.QM-K111—propane in nitrogen
NASA Astrophysics Data System (ADS)
Lin, Tsai-Yin; Liu, Hsin-Wang; Huang, Chiung-Kun; Kang, Namgoo; Bae, Hyun Kil; Woo, Jin Chun; Bi, Zhe; Zhou, Zeyi; Sinweeruthai, Ratirat; Wongjuk, Arnuttachai; Li, Hou; Beng Keat, Teo; Hui, Liu; Wu, Thomas; Hock Ann, Chua; Smeulders, Damian; Briton McCallum, John; Tendai Satumba, Raymond; Shimosaka, Takuya; Matsumoto, Nobuhiro; Kadir, Haslina Abdul; Fauzi Ahmad, Mohamad; Nasir, Noor Hidaya Abdul; Nishino, Tomoe; Akima, Dai; Uehara, Shinji
2018-01-01
This document describes the result of a key comparison for propane in nitrogen. The nominal amount-of-substance fraction of propane is 1000 μmol/mol. The comparison aimed to assess the measurement capability of participants in gas analysis. Nine NMIs or DIs participated in the comparison. CERI participated in a key comparison CCQM-K111—propane in nitrogen, and coordinated this key comparison. Therefore, every participants' results of this comparison are linking to the CCQM-K111. Gravimetric values of the samples were used as key comparison reference values (KCRVs). Measured values of eight participants were within +/- 0.25 % of the KCRVs. Many participants reported purity or impurity analysis of materials. These results are also able to assess the participants' capability of the analysis. Main text To reach the main text of this paper, click on Final Report. Note that this text is that which appears in Appendix B of the BIPM key comparison database kcdb.bipm.org/. The final report has been peer-reviewed and approved for publication by the CCQM, according to the provisions of the CIPM Mutual Recognition Arrangement (CIPM MRA).
Gas Phase UTE MRI of Propane and Propene
Kovtunov, Kirill V.; Romanov, Alexey S.; Salnikov, Oleg G.; Barskiy, Danila A.; Chekmenev, Eduard Y.; Koptyug, Igor V.
2016-01-01
1H MRI of gases can potentially enable functional lung imaging to probe gas ventilation and other functions. In this work, 1H MR images of hyperpolarized and thermally polarized propane gas were obtained using UTE (ultrashort echo time) pulse sequence. A 2D image of thermally polarized propane gas with ~0.9×0.9 mm2 spatial resolution was obtained in less than 2 seconds, demonstrating that even non-hyperpolarized hydrocarbon gases can be successfully utilized for conventional proton MRI. The experiments were also performed with hyperpolarized propane gas and demonstrated acquisition of high-resolution multi-slice FLASH 2D images in ca. 510 s and non slice-selective 2D UTE MRI images in ca. 2 s. The UTE approach adopted in this study can be potentially used for medical lung imaging. Furthermore, the possibility to combine UTE with selective suppression of 1H signals from one of the two gases in a mixture is demonstrated in this MRI study. The latter can be useful for visualizing industrially important processes where several gases may be present, e.g., gas-solid catalytic reactions. PMID:27478870
Manche, Monique; Foligné, Benoît; Sauty, Mathieu; Platel, Anne; Vercauteren, Eric; Rauwel, Gaétan; Catoire, Sophie; Ficheux, Hervé; Criquelion, Jacques; Nesslany, Fabrice
2017-10-01
Hand hygiene plays a key role in nosocomial infection prevention. To achieve users' adherence, products' dermal tolerance is essential. We aimed at making a comparative assessment of skin irritation and phototoxicity of the 3 alcohols commonly used in alcohol-based hand rubs (Ethanol, Propan-2-ol, Propan-1-ol) at 60, 70, 80 or 85% w/w in water or with co-formulates (hydrating, emollient and skin protective agents). In vitro validated OECD methods 439 and 432 were used. For irritation, EpiSkin™ Small Model was the chosen Reconstructed Human Epidermis (RhE). For phototoxicity, co-formulates alone or in mixture with and without alcohol were tested using BALB/c 3T3 cell cultures. Whilst Ethanol and Propan-2-ol could not be differentiated and displayed good skin tolerance profiles, Propan-1-ol based products lead to significant viability impairments of RhE at 60, 70 or 80% and at 60% in the presence of co-formulates. However, these results could not be reproduced in another RhE model. Taking also into account bibliographic data on Propan-1-ol, this suggests that our results are probably related to a lack of specificity of the used RhE. Therefore, it can be relevant in case of significant results to use two different RhE models before performing any classification and/or performing any complementary tests. Copyright © 2017 Elsevier Ltd. All rights reserved.
Booster propulsion/vehicle impact study, 2
NASA Technical Reports Server (NTRS)
Johnson, P.; Satterthwaite, S.; Carson, C.; Schnackel, J.
1988-01-01
This is the final report in a study examining the impact of launch vehicles for various boost propulsion design options. These options included: differing boost phase engines using different combinations of fuels and coolants to include RP-1, methane, propane (subcooled and normal boiling point), and hydrogen; variable and high mixture ratio hydrogen engines; translating nozzles on boost phase engines; and cross feeding propellants from the booster to second stage. Vehicles examined included a fully reusable two stage cargo vehicle and a single stage to orbit vehicle. The use of subcooled propane as a fuel generated vehicles with the lowest total vehicle dry mass. Engines with hydrogen cooling generated only slight mass reductions from the reference, all-hydrogen vehicle. Cross feeding propellants generated the most significant mass reductions from the reference two stage vehicle. The use of high mixture ratio or variable mixture ratio hydrogen engines in the boost phase of flight resulted in vehicles with total dry mass 20 percent greater than the reference hydrogen vehicle. Translating nozzles for boost phase engines generated a heavier vehicle. Also examined were the design impacts on the vehicle and ground support subsystems when subcooled propane is used as a fuel. The most significant cost difference between facilities to handle normal boiling point versus subcooled propane is 5 million dollars. Vehicle cost differences were negligible. A significant technical challenge exists for properly conditioning the vehicle propellant on the ground and in flight when subcooled propane is used as fuel.
Rahimi, Mehran; van der Meer, Jan-Ytzen; Geertsema, Edzard M; Poelarends, Gerrit J
2017-07-18
The enzyme 4-oxalocrotonate tautomerase (4-OT) from Pseudomonas putida mt-2 takes part in a catabolic pathway for aromatic hydrocarbons, where it catalyzes the conversion of 2hydroxyhexa-2,4-dienedioate into 2-oxohexa-3-enedioate. This tautomerase can also promiscuously catalyze carbon-carbon bond-forming reactions, including various types of aldol reactions, by using its amino-terminal proline as a key catalytic residue. Here, we used systematic mutagenesis to identify two hotspots in 4-OT (Met45 and Phe50) at which single mutations give marked improvements in aldolase activity for the self-condensation of propanal. Activity screening of a focused library in which these two hotspots were varied led to the discovery of a 4-OT variant (M45Y/F50V) with strongly enhanced aldolase activity in the self-condensation of linear aliphatic aldehydes, such as acetaldehyde, propanal, and butanal, to yield α,β-unsaturated aldehydes. With both propanal and benzaldehyde, this double mutant, unlike the previously constructed single mutant F50A, mainly catalyzes the self-condensation of propanal rather than the cross-condensation of propanal and benzaldehyde, thus indicating that it indeed has altered substrate specificity. This variant could serve as a template to create new biocatalysts that lack dehydration activity and possess further enhanced aldolase activity, thus enabling the efficient enzymatic self-coupling of aliphatic aldehydes. © 2017 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Parks, II, James E; Ponnusamy, Senthil
2006-01-01
Lean NOx trap catalysis has demonstrated the ability to reduce NOx emissions from lean natural gas reciprocating engines by >90%. The technology operates in a cyclic fashion where NOx is trapped on the catalyst during lean operation and released and reduced to N2 under rich exhaust conditions; the rich cleansing operation of the cycle is referred to as "regeneration" since the catalyst is reactivated for more NOx trapping after NOx purge. Creating the rich exhaust conditions for regeneration can be accomplished by catalytic partial oxidation of methane in the exhaust system. Furthermore, catalytic reforming of partial oxidation exhaust can enablemore » increased quantities of H2 which is an excellent reductant for lean NOx trap regeneration. It is critical to maintain clean and efficient partial oxidation and reforming processes to keep the lean NOx trap functioning properly and to reduce extra fuel consumption from the regeneration process. Although most exhaust constituents do not impede partial oxidation and reforming, some exhaust constituents may negatively affect the catalysts and result in loss of catalytic efficiency. Of particular concern are common catalyst poisons sulfur, zinc, and phosphorous. These poisons form in the exhaust through combustion of fuel and oil, and although they are present at low concentrations, they can accumulate to significant levels over the life of an engine system. In the work presented here, the effects of sulfur on the partial oxidation and reforming catalytic processes were studied to determine any durability limitations on the production of reductants for lean NOx trap catalyst regeneration.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guan, Xiaofei; Zink, Peter; Pal, Uday
2012-03-11
Pure magnesium (Mg) is recycled from 19g of partially oxidized 50.5wt.%Mg-Aluminum (Al) alloy. During the refining process, potentiodynamic scans (PDS) were performed to determine the electrorefining potential for magnesium. The PDS show that the electrorefining potential increases over time as the Mg content inside the Mg-Al scrap decreases. Up to 100% percent of magnesium is refined from the Mg-Al scrap by a novel refining process of dissolving magnesium and its oxide into a flux followed by vapor phase removal of dissolved magnesium and subsequently condensing the magnesium vapors in a separate condenser. The solid oxide membrane (SOM) electrolysis process ismore » employed in the refining system to enable additional recycling of magnesium from magnesium oxide (MgO) in the partially oxidized Mg-Al scrap. The combination of the refining and SOM processes yields 7.4g of pure magnesium; could not collect and weigh all of the magnesium recovered.« less
Position-specific 13C distributions within propane from experiments and natural gas samples
NASA Astrophysics Data System (ADS)
Piasecki, Alison; Sessions, Alex; Lawson, Michael; Ferreira, A. A.; Santos Neto, E. V.; Ellis, Geoffrey S.; Lewan, Michael D.; Eiler, John M.
2018-01-01
Site-specific carbon isotope measurements of organic compounds potentially recover information that is lost in a conventional, 'bulk' isotopic analysis. Such measurements are useful because isotopically fractionating processes may have distinct effects at different molecular sites, and thermodynamically equilibrated populations of molecules tend to concentrate heavy isotopes in one molecular site versus another. Most recent studies of site-specific 13C in organics use specialized Nuclear Magnetic Resonance (NMR) techniques or complex chemical degradations prior to mass spectrometric measurements. Herein we present the first application of a new mass spectrometric technique that reconstructs the site-specific carbon isotope composition of propane based on measurements of the 13C/12C ratios of two or more fragment ions that sample different proportions of the terminal and central carbon sites. We apply this method to propane from laboratory experiments and natural gas samples to explore the relationships between site-specific carbon isotope composition, full-molecular δ13C, thermal maturity, and variation in organic matter precursors. Our goal is to advance the understanding of the sources and histories of short-chain alkanes within geologic systems. Our findings suggest that propane varies in its site-specific carbon isotope structure, which is correlated with increasing thermal maturity, first increasing in terminal position δ13C and then increasing in both center and terminal position δ13C. This pattern is observed in both experimental and natural samples, and is plausibly explained by a combination of site-specific, temperature-dependent isotope effects associated with conversion of different precursor molecules (kerogen, bitumen, and/or oil) to propane, differences in site-specific isotopic contents of those precursors, and possibly distillation of reactive components of those precursors with increasing maturity. We hypothesize that the largest changes in site-specific isotopic content of propane occur when bitumen and/or oil replace kerogen as the dominant precursors. If correct, this phenomenon could have significant utility for understanding gas generation in thermogenic petroleum systems.
Position-specific 13C distributions within propane from experiments and natural gas samples
Piasecki, Alison; Sessions, Alex L.; Lawson, Michael; Ferreira, A.A.; Santos Neto, E. V.; Ellis, Geoffrey S.; Lewan, Michael; Eilers, J.M.
2018-01-01
Site-specific carbon isotope measurements of organic compounds potentially recover information that is lost in a conventional, ‘bulk’ isotopic analysis. Such measurements are useful because isotopically fractionating processes may have distinct effects at different molecular sites, and thermodynamically equilibrated populations of molecules tend to concentrate heavy isotopes in one molecular site versus another. Most recent studies of site-specific 13C in organics use specialized Nuclear Magnetic Resonance (NMR) techniques or complex chemical degradations prior to mass spectrometric measurements. Herein we present the first application of a new mass spectrometric technique that reconstructs the site-specific carbon isotope composition of propane based on measurements of the 13C/12C ratios of two or more fragment ions that sample different proportions of the terminal and central carbon sites. We apply this method to propane from laboratory experiments and natural gas samples to explore the relationships between site-specific carbon isotope composition, full-molecular δ13C, thermal maturity, and variation in organic matter precursors. Our goal is to advance the understanding of the sources and histories of short-chain alkanes within geologic systems. Our findings suggest that propane varies in its site-specific carbon isotope structure, which is correlated with increasing thermal maturity, first increasing in terminal position δ13C and then increasing in both center and terminal position δ13C. This pattern is observed in both experimental and natural samples, and is plausibly explained by a combination of site-specific, temperature-dependent isotope effects associated with conversion of different precursor molecules (kerogen, bitumen, and/or oil) to propane, differences in site-specific isotopic contents of those precursors, and possibly distillation of reactive components of those precursors with increasing maturity. We hypothesize that the largest changes in site-specific isotopic content of propane occur when bitumen and/or oil replace kerogen as the dominant precursors. If correct, this phenomenon could have significant utility for understanding gas generation in thermogenic petroleum systems.
Yadav, Mahipal; Liotta, Charles L; Krishnamurthy, Ramanarayanan
2018-02-02
Regioselective oxidation of unprotected and partially protected oligosaccharides is a much sought-after goal. Herein, we report a notable improvement in the efficiency of TEMPO-catalyzed oxidation by modulating the temperature of the reaction. Mono-, di-, and tri-saccharides are oxidized regioselectively in yields of 75 to 92%. The present method is simple to implement and is also applicable for selective oxidations of other mono- and poly-hydroxy compounds including unprotected and partially protected nucleosides. Copyright © 2018 Elsevier Ltd. All rights reserved.
Cho, Dae Won; Parthasarathi, Ramakrishnan; Pimentel, Adam S; Maestas, Gabriel D; Park, Hea Jung; Yoon, Ung Chan; Dunaway-Mariano, Debra; Gnanakaran, S; Langan, Paul; Mariano, Patrick S
2010-10-01
Features of the oxidative cleavage reactions of diastereomers of dimeric lignin model compounds, which are models of the major types of structural units found in the lignin backbone, were examined. Cation radicals of these substances were generated by using SET-sensitized photochemical and Ce(IV) and lignin peroxidase promoted oxidative processes, and the nature and kinetics of their C-C bond cleavage reactions were determined. The results show that significant differences exist between the rates of cation radical C1-C2 bond cleavage reactions of 1,2-diaryl-(β-1) and 1-aryl-2-aryloxy-(β-O-4) propan-1,3-diol structural units found in lignins. Specifically, under all conditions C1-C2 bond cleavage reactions of cation radicals of the β-1 models take place more rapidly than those of the β-O-4 counterparts. The results of DFT calculations on cation radicals of the model compounds show that the C1-C2 bond dissociation energies of the β-1 lignin model compounds are significantly lower than those of the β-O-4 models, providing clear evidence for the source of the rate differences.
NASA Technical Reports Server (NTRS)
Bittker, D. A.
1980-01-01
The influence of ground-based gas turbine combustor operating conditions and fuel-bound nitrogen (FBN) found in coal-derived liquid fuels on the formation of nitrogen oxides and carbon monoxide is investigated. Analytical predictions of NOx and CO concentrations are obtained for a two-stage, adiabatic, perfectly-stirred reactor operating on a propane-air mixture, with primary equivalence ratios from 0.5 to 1.7, secondary equivalence ratios of 0.5 or 0.7, primary stage residence times from 12 to 20 msec, secondary stage residence times of 1, 2 and 3 msec and fuel nitrogen contents of 0.5, 1.0 and 2.0 wt %. Minimum nitrogen oxide but maximum carbon monoxide formation is obtained at primary zone equivalence ratios between 1.4 and 1.5, with percentage conversion of FBN to NOx decreasing with increased fuel nitrogen content. Additional secondary dilution is observed to reduce final pollutant concentrations, with NOx concentration independent of secondary residence time and CO decreasing with secondary residence time; primary zone residence time is not observed to affect final NOx and CO concentrations significantly. Finally, comparison of computed results with experimental values shows a good semiquantitative agreement.
Teng, Minmin; Wang, Hongtao; Li, Fengting; Zhang, Bingru
2011-03-01
Mesoporous polyvinylpyrrolidone (PVP)/SiO(2) composite nanofiber membranes functionalized with thioether groups have been fabricated by a combination method of sol-gel process and electrospinning. The precursor sol was synthesized by one-step co-condensation of tetraethyl orthosilicate (TEOS) and 1,4-bis(triethoxysilyl)propane tetrasulfide (BTESPTS, (CH(3)CH(2)O)(3)Si(CH(2))(3)S-S-S-S(CH(2))(3)Si-(OCH(2)CH(3))(3)), with the triblock copolymer poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) (P123, EO(20)PO(70)EO(20)) as template. After the addition of PVP, nanofiber membranes were prepared by electrospinning. The membranes were characterized by scanning electron microscopy (SEM), high-resolution transmission electron microscopy (HRTEM) images, X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FT-IR), N(2) adsorption-desorption isotherms, and an Elementar Vario EL analyzer. The composites were used as highly selective adsorbents for Hg(2+) due to the modification with thioether groups (-S-), and were conveniently separated from the waste water. The composite could be regenerated through acidification. Copyright © 2010 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Leonte, M.; Kessler, J. D.; Socolofsky, S. A.
2016-02-01
One of the largest carbon reservoirs on the planet is stored as methane (CH4) in and below the seafloor. However, a large discrepancy exists between estimated fluxes of CH4 into the water column and CH4 fluxes from the sea surface to the atmosphere, suggesting that a significant fraction of CH4 released from seafloor seeps is dissolved and potentially removed through microbial oxidation. Here we present data investigating the fate of CH4 released from the Sleeping Dragon seep site in the Gulf of Mexico. The bubble plume was followed from the seafloor until it fully dissolved using a remotely operated vehicle (ROV). Water samples were collected by the ROV at different depths as well as lateral transects through the bubble plume. These samples were analyzed for dissolved concentrations of methane, ethane, propane, and butane as well as the 13C isotopic ratio of methane. Furthermore, seep bubbles from the seafloor were also collected and analyzed for the same properties. Based on these chemical data, the rate of CH4 emission from the seafloor, oxidation in the water column, and dissolution are investigated.
Emission characteristics of a premix combustor fueled with a simulated partial-oxidation product gas
NASA Technical Reports Server (NTRS)
Clayton, R. M.
1979-01-01
A two-stage gas turbine combustor concept employing a very fuel-rich partial oxidation stage is being explored for broadening the combustion margin between ultralow emissions and the lean stability limit. Combustion and emission results are presented for a series of experiments where a simulated partial oxidation product gas was used in a premix combustor operated with inlet air state conditions typical of cruise power for high-performance aviation engines (12 atm and 850 F). Ultralow NOx, CO, and HC emissions and an extended lean burning limit were achieved simultaneously.
Case Study - Propane Bakery Delivery Step Vans
DOE Office of Scientific and Technical Information (OSTI.GOV)
Laughlin, M.; Burnham, A.
2016-04-01
A switch to propane from diesel by a major Midwest bakery fleet showed promising results, including a significant displacement of petroleum, a drop in greenhouse gases and a fuel cost savings of seven cents per mile, according to a study recently completed by the U.S. Department of Energy's Argonne National Laboratory for the Clean Cities program.
Matthias Kinne; Marzena Poraj-Kobielska; Elisabet Aranda; Rene Ullrich; Kenneth E. Hammel; Katrin Scheibner; Martin Hofrichter
2009-01-01
An extracellular peroxygenase of Agrocybe aegerita catalyzed the H2O2-dependent hydroxylation of the multi-function beta-adrenergic blocker propranolol (1-naphthalen-1-yloxy-3-(propan-2-ylamino)-propan-2-ol) and the non-steroidal anti-inflammatory drug diclofenac (2-[2-[(2,6-dichloro-phenyl)amino]phenyl]acetic acid) to give...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-03-18
... electricity, natural gas, No. 2 heating oil, propane, and kerosene. DATES: The representative average unit... after-tax costs for electricity, natural gas, No. 2 heating oil, and propane are based on simulations... million Btu As required by test Type of energy \\1\\ In commonly used terms procedure Electricity $33.70 11...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-03-10
... electricity, natural gas, No. 2 heating oil, propane, and kerosene. DATES: The representative average unit... after-tax costs for electricity, natural gas, No. 2 heating oil, and propane are based on simulations... million As required by Type of energy Btu \\1\\ In commonly used terms test procedure Electricity $34.14 11...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-04-26
... electricity, natural gas, No. 2 heating oil, propane, and kerosene. DATES: The representative average unit... unit after-tax costs for electricity, natural gas, No. 2 heating oil, and propane are based on...\\ In commonly used terms As required by test procedure Electricity $34.70 11.84[cent]/kWh 2 3...
Alternative Fuels Data Center: Propane Buses Shuttle Visitors in Maine
Florida Feb. 15, 2014 Renzenberger Inc Saves Money With Propane Vans Feb. 1, 2014 Photo of an electric School Buses Help Kansas City Save Money Nov. 12, 2011 Metropolitan Utilities District Fuels Vehicles Relies on Natural Gas Fueling Stations July 1, 2010 Hybrid Electric Shuttle Buses Offer Free Rides in
Alternative Fuels Data Center: Hydrogen Powers Fuel Cell Vehicles in
. 15, 2014 Renzenberger Inc Saves Money With Propane Vans Feb. 1, 2014 Photo of an electric vehicle at Natural Gas School Buses Help Kansas City Save Money Nov. 12, 2011 Metropolitan Utilities District Fuels Gas Street Sweepers Improve Air Quality in New York March 11, 2010 Propane Buses Save Money for
Alternative Fuels Data Center: Metropolitan Utilities District Fuels
Go Electric in Florida Feb. 15, 2014 Renzenberger Inc Saves Money With Propane Vans Feb. 1, 2014 Help Kansas City Save Money Nov. 12, 2011 Electric Trucks Deliver at Kansas City Schools Sept. 17, 2011 Quality in New York March 11, 2010 Propane Buses Save Money for Virginia Schools Feb. 25, 2010 Michigan
Alternative Fuels Data Center: Michigan Converts Vehicles to Propane,
, Reducing Emissions Learn how Detroit reduces emissions and saves money by converting vehicles to run on , 2014 Renzenberger Inc Saves Money With Propane Vans Feb. 1, 2014 Photo of an electric vehicle at a Natural Gas Fueling Stations July 1, 2010 Hybrid Electric Shuttle Buses Offer Free Rides in Maryland June
Alternative Fuels Data Center: South Florida Fleet Fuels with Propane
Alternative Fuel Use and Public Transit Efficiency March 8, 2014 Renzenberger Inc Saves Money With Propane Electric Vehicles March 31, 2012 Natural Gas School Buses Help Kansas City Save Money Nov. 12, 2011 Free Rides in Maryland June 18, 2010 Fisher Coachworks Develops Plug-In Electric Bus in Michigan June 3
Alternative Fuels Data Center: Virginia Converts Vehicles to Propane in
. 15, 2014 Renzenberger Inc Saves Money With Propane Vans Feb. 1, 2014 Photo of an electric vehicle at School Buses Help Kansas City Save Money Nov. 12, 2011 Metropolitan Utilities District Fuels Vehicles Electric Shuttle Buses Offer Free Rides in Maryland June 18, 2010 Texas Taxis Go Hybrid May 6, 2010
USDA-ARS?s Scientific Manuscript database
Traps used for mosquitoes can possibly used to capture phlebotomine sand flies as well, but little testing has been done. Traps powered by propane could be extremely useful because most produce their own carbon dioxide (CO2), which can increase the number of sand flies captured. Scientists at the US...
Code of Federal Regulations, 2012 CFR
2012-07-01
... rolling average, dry basis, corrected to 7 percent oxygen, and reported as propane; (6) Hydrochloric acid... hydrochloric acid equivalents, dry basis and corrected to 7 percent oxygen; and (7) Particulate matter in... average, dry basis, corrected to 7 percent oxygen, and reported as propane; (6) Hydrochloric acid and...
Code of Federal Regulations, 2010 CFR
2010-07-01
... rolling average, dry basis, corrected to 7 percent oxygen, and reported as propane; (6) Hydrochloric acid... hydrochloric acid equivalents, dry basis and corrected to 7 percent oxygen; and (7) Particulate matter in... average, dry basis, corrected to 7 percent oxygen, and reported as propane; (6) Hydrochloric acid and...
Code of Federal Regulations, 2013 CFR
2013-07-01
... as propane; (6) Hydrochloric acid and chlorine gas in excess of 77 parts per million by volume, combined emissions, expressed as hydrochloric acid equivalents, dry basis and corrected to 7 percent oxygen... basis, corrected to 7 percent oxygen, and reported as propane; (6) Hydrochloric acid and chlorine gas in...
Code of Federal Regulations, 2011 CFR
2011-07-01
... rolling average, dry basis, corrected to 7 percent oxygen, and reported as propane; (6) Hydrochloric acid... hydrochloric acid equivalents, dry basis and corrected to 7 percent oxygen; and (7) Particulate matter in... average, dry basis, corrected to 7 percent oxygen, and reported as propane; (6) Hydrochloric acid and...
Code of Federal Regulations, 2014 CFR
2014-07-01
... as propane; (6) Hydrochloric acid and chlorine gas in excess of 77 parts per million by volume, combined emissions, expressed as hydrochloric acid equivalents, dry basis and corrected to 7 percent oxygen... basis, corrected to 7 percent oxygen, and reported as propane; (6) Hydrochloric acid and chlorine gas in...
Code of Federal Regulations, 2010 CFR
2010-07-01
... GREENHOUSE GAS REPORTING Suppliers of Natural Gas and Natural Gas Liquids § 98.408 Definitions. All terms...) Natural Gas 1.027 MMBtu/Mscf 53.02 Propane 3.836 MMBtu/bbl 63.02 Normal butane 4.326 MMBtu/bbl 64.93... Unit Default CO2 emission value(MT CO2/Unit) Natural Gas Mscf 0.054452 Propane Barrel 0.241745 Normal...
NASA Astrophysics Data System (ADS)
Bredikhin, Alexander A.; Gubaidullin, Aidar T.; Bredikhina, Zemfira A.; Fayzullin, Robert R.; Samigullina, Aida I.; Zakharychev, Dmitry V.
2013-08-01
Valuable precursors of popular chiral drugs propranolol and pindolol, 3-(1-naphthyloxy)-propane-1,2-diol 3 and 3-(4-indolyloxy)-propane-1,2-diol 4 were investigated by IR spectroscopy, DSC, and X-ray diffraction methods. Both compounds, crystallizing from enantiopure feed material, form "guaifenesin-like" crystal packing in which the classic H-bonded bilayers, framed in both sides by hydrophobic fragments of the molecules, acts as the basic crystal-forming motif. Diol 4 prone to spontaneous resolution and conserves its packing pattern crystallizing from racemate. Under the same conditions, diol 3 forms weakly stable solid racemic compound. Some reasons for such a behavior are identified and discussed.
NASA Astrophysics Data System (ADS)
Kida, Masato; Jin, Yusuke; Watanabe, Mizuho; Murayama, Tetsuro; Nagao, Jiro
2017-09-01
In this report, we describe the dissociation behavior of gas hydrate grains pressed at 1 and 6 MPa. Certain simple gas hydrates in powder form show anomalous preservation phenomenon under their thermodynamic unstable condition. Investigation of simple hydrates of methane, ethane, and propane reveals that high pressure applied to the gas hydrate particles enhances their preservation effects. Application of high pressure increases the dissociation temperature of methane hydrate and has a restrictive effect against the dissociation of ethane and propane hydrate grains. These improvements of gas hydrate preservation by increasing pressure to the initial gas hydrate particles imply that appropriate pressure applied to gas hydrate particles enhances gas hydrate preservation effects.
NASA Astrophysics Data System (ADS)
Gilman, J.; Lerner, B. M.; Warneke, C.; Graus, M.; Lui, R.; Koss, A.; Yuan, B.; Murphy, S. M.; Alvarez, S. L.; Lefer, B. L.; Min, K. E.; Brown, S. S.; Roberts, J. M.; Osthoff, H. D.; Hatch, C. D.; Peischl, J.; Ryerson, T. B.; De Gouw, J. A.
2014-12-01
According to the U.S. Energy and Information Administration (EIA), domestic production of natural gas from shale formations is currently at the highest levels in U.S. history. Shale gas production may also result in the production of natural gas plant liquids (NGPLs) such as ethane and propane as well as natural gas condensate composed of a complex mixture of non-methane hydrocarbons containing more than ~5 carbon atoms (e.g., hexane, cyclohexane, and benzene). The amounts of natural gas liquids and condensate produced depends on the particular reservoir. The source signature of primary emissions of hydrocarbons to the atmosphere within each shale play will therefore depend on the composition of the raw natural gas as well as the industrial processes and equipment used to extract, separate, store, and transport the raw materials. Characterizing the primary emissions of VOCs from natural gas production is critical to assessing the local and regional atmospheric impacts such as the photochemical formation of ozone and secondary formation of organic aerosol. This study utilizes ground-based measurements of a full suite of volatile organic compounds (VOCs) in two western U.S. basins, the Uintah (2012-2014 winter measurements only) and Denver-Julesburg (winter 2011 and summer 2012), and airborne measurements over the Haynesville, Fayetteville, and Marcellus shale basins (summer 2013). By comparing the observed VOC to propane enhancement ratios, we show that each basin has a unique VOC source signature associated with oil and natural gas operations. Of the shale basins studied, the Uintah basin had the largest overall VOC to propane enhancement ratios while the Marcellus had the lowest. For the western basins, we will compare the composition of oxygenated VOCs produced from photochemical oxidation of VOC precursors and contrast the oxygenated VOC mixture to a "typical" summertime urban VOC mixture. The relative roles of alkanes, alkenes, aromatics, and cycloalkanes as precursors for C2-C6 aldehydes and ketones, and C3-C4 alkyl nitrates will be investigated.
NASA Astrophysics Data System (ADS)
Biennier, Ludovic; Bourgalais, Jeremy; Benidar, Abdessamad; Le Picard, Sebastien
2016-06-01
Hydrocarbons formed in Titan's cold atmosphere, starting with ethane C2H6, ethylene C2H4, acetylene C2H2, propane C3H8,... up to benzene C6H6, play some role in aerosol production, cloud processes, rain generation and Titan's lakes formation. We have started to study in the laboratory the kinetics of the first steps of condensation of these hydrocarbons. Rate coefficients are very sensitive to the description of the potential interaction surfaces of the molecules involved. Combined theoretical and experimental studies at the molecular level of the homogenous nucleation of various small molecules should improve greatly our fundamental understanding. This knowledge will serve as a model for studying more complex nucleation processes actually taking places in planetary atmospheres. Here we present the first experimental kinetic study of the dimerization of two small hydrocarbons: ethane C2H6 and propane C3H8. We have performed experiments to identify the temperature and partial densities ranges over which small hydrocarbon clusters form in saturated uniform supersonic flows. Using our unique reactor based on a Laval nozzle expansions, the kinetics of the formation has also been investigated down to 23 K. The chemical species present in the reactor are probed by a time of flight mass spectrometer equipped with an electron gun for soft ionization of the neutral reagents and products. This work aims at putting some constraints on the role of small hydrocarbon condensation in the formation of haze particles in the dense atmosphere of Titan.
Reforming of fuel inside fuel cell generator
Grimble, Ralph E.
1988-01-01
Disclosed is an improved method of reforming a gaseous reformable fuel within a solid oxide fuel cell generator, wherein the solid oxide fuel cell generator has a plurality of individual fuel cells in a refractory container, the fuel cells generating a partially spent fuel stream and a partially spent oxidant stream. The partially spent fuel stream is divided into two streams, spent fuel stream I and spent fuel stream II. Spent fuel stream I is burned with the partially spent oxidant stream inside the refractory container to produce an exhaust stream. The exhaust stream is divided into two streams, exhaust stream I and exhaust stream II, and exhaust stream I is vented. Exhaust stream II is mixed with spent fuel stream II to form a recycle stream. The recycle stream is mixed with the gaseous reformable fuel within the refractory container to form a fuel stream which is supplied to the fuel cells. Also disclosed is an improved apparatus which permits the reforming of a reformable gaseous fuel within such a solid oxide fuel cell generator. The apparatus comprises a mixing chamber within the refractory container, means for diverting a portion of the partially spent fuel stream to the mixing chamber, means for diverting a portion of exhaust gas to the mixing chamber where it is mixed with the portion of the partially spent fuel stream to form a recycle stream, means for injecting the reformable gaseous fuel into the recycle stream, and means for circulating the recycle stream back to the fuel cells.
Reforming of fuel inside fuel cell generator
Grimble, R.E.
1988-03-08
Disclosed is an improved method of reforming a gaseous reformable fuel within a solid oxide fuel cell generator, wherein the solid oxide fuel cell generator has a plurality of individual fuel cells in a refractory container, the fuel cells generating a partially spent fuel stream and a partially spent oxidant stream. The partially spent fuel stream is divided into two streams, spent fuel stream 1 and spent fuel stream 2. Spent fuel stream 1 is burned with the partially spent oxidant stream inside the refractory container to produce an exhaust stream. The exhaust stream is divided into two streams, exhaust stream 1 and exhaust stream 2, and exhaust stream 1 is vented. Exhaust stream 2 is mixed with spent fuel stream 2 to form a recycle stream. The recycle stream is mixed with the gaseous reformable fuel within the refractory container to form a fuel stream which is supplied to the fuel cells. Also disclosed is an improved apparatus which permits the reforming of a reformable gaseous fuel within such a solid oxide fuel cell generator. The apparatus comprises a mixing chamber within the refractory container, means for diverting a portion of the partially spent fuel stream to the mixing chamber, means for diverting a portion of exhaust gas to the mixing chamber where it is mixed with the portion of the partially spent fuel stream to form a recycle stream, means for injecting the reformable gaseous fuel into the recycle stream, and means for circulating the recycle stream back to the fuel cells. 1 fig.
Thermodynamic design of natural gas liquefaction cycles for offshore application
NASA Astrophysics Data System (ADS)
Chang, Ho-Myung; Lim, Hye Su; Choe, Kun Hyung
2014-09-01
A thermodynamic study is carried out for natural gas liquefaction cycles applicable to offshore floating plants, as partial efforts of an ongoing governmental project in Korea. For offshore liquefaction, the most suitable cycle may be different from the on-land LNG processes under operation, because compactness and simple operation are important as well as thermodynamic efficiency. As a turbine-based cycle, closed Claude cycle is proposed to use NG (natural gas) itself as refrigerant. The optimal condition for NG Claude cycle is determined with a process simulator (Aspen HYSYS), and the results are compared with fully-developed C3-MR (propane pre-cooled mixed refrigerant) JT cycles and various N2 (nitrogen) Brayton cycles in terms of efficiency and compactness. The newly proposed NG Claude cycle could be a good candidate for offshore LNG processes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, J.; Lai, W.H.; Chung, K.
2008-08-15
Two sets of experiments were performed to achieve a strong overdriven state in a weaker mixture by propagating an overdriven detonation wave via a deflagration-to-detonation transition (DDT) process. First, preliminary experiments with a propane/oxygen mixture were used to evaluate the attenuation of the overdriven detonation wave in the DDT process. Next, experiments were performed wherein a propane/oxygen mixture was separated from a propane/air mixture by a thin diaphragm to observe the transmission of an overdriven detonation wave. Based on the characteristic relations, a simple wave intersection model was used to calculate the state of the transmitted detonation wave. The resultsmore » showed that a rarefaction effect must be included to ensure that there is no overestimate of the post-transmission wave properties when the incident detonation wave is overdriven. The strength of the incident overdriven detonation wave plays an important role in the wave transmission process. The experimental results showed that a transmitted overdriven detonation wave occurs instantaneously with a strong incident overdriven detonation wave. The near-CJ state of the incident wave leads to a transmitted shock wave, and then the transition to the overdriven detonation wave occurs downstream. The attenuation process for the overdriven detonation wave decaying to a near-CJ state occurs in all tests. After the attenuation process, an unstable detonation wave was observed in most tests. This may be attributed to the increase in the cell width in the attenuation process that exceeds the detonability cell width limit. (author)« less
Natural Gas and Propane Tax Effective January 1, 2019, propane, compressed natural gas (CNG), and liquefied natural gas (LNG) will be subject to an excise tax at a rate of $0.04 per gasoline gallon equivalent (GGE), plus a $0.01 ninth-cent fuel tax, a $0.01 local option fuel tax, and an additional variable
Federal Register 2010, 2011, 2012, 2013, 2014
2013-03-22
... electricity, natural gas, No. 2 heating oil, propane, and kerosene. DATES: The representative average unit... for electricity, natural gas, No. 2 heating oil, and propane are based on simulations used to produce... required by test procedure Electricity $35.46 12.1[cent]/kWh 2 3..... $0.121/kWh Natural Gas 10.87 $1.087...
Aerobic microorganism for the degradation of chlorinated aliphatic hydrocarbons
Fliermans, Carl B.
1989-01-01
A chlorinated aliphatic hydrocarbon-degrading microorganism, having American Type Culture Collection accession numbers ATCC 53570 and 53571, in a biologically pure culture aseptically collected from a deep subsurface habitat and enhanced, mineralizes trichloroethylene and tetrachloroethylene to HCl, H.sub.2 O and Co.sub.2 under aerobic conditions stimulated by methane, acetate, methanol, tryptone-yeast extract, propane and propane-methane.
Alternative Fuels Data Center: Rio Rico Fire District Turns Grease Into
Renzenberger Inc Saves Money With Propane Vans Feb. 1, 2014 Photo of a school bus Michigan Transports Students March 31, 2012 Natural Gas School Buses Help Kansas City Save Money Nov. 12, 2011 Electric Trucks Natural Gas Street Sweepers Improve Air Quality in New York March 11, 2010 Propane Buses Save Money for
Alternative Fuels Data Center: Propane Powers School Buses in Tuscaloosa,
Efficiency March 8, 2014 Renzenberger Inc Saves Money With Propane Vans Feb. 1, 2014 Photo of a school bus and Plug-In Electric Vehicles March 31, 2012 Natural Gas School Buses Help Kansas City Save Money Nov Electric Shuttle Buses Offer Free Rides in Maryland June 18, 2010 Electric Trolley Boosts Business in
Alternative Fuels Data Center: Tennessee Reduces Pollution With Propane
Money With Propane Vans Feb. 1, 2014 Photo of an electric vehicle at a charging station Companies Power Natural Gas School Buses Help Kansas City Save Money Nov. 12, 2011 Electric Trucks Deliver at Kansas City Free Rides in Maryland June 18, 2010 Fisher Coachworks Develops Plug-In Electric Bus in Michigan June 3
Alternative Fuels Data Center: MedCorp Fuels Emergency Vehicles With
. College Students Engineer Efficient Vehicles in EcoCAR 2 Competition Aug. 2, 2014 Photo of a police Propane in OhioA> MedCorp Fuels Emergency Vehicles With Propane in Ohio to someone by E-mail Television Related Videos Photo of a car Hydrogen Powers Fuel Cell Vehicles in California Nov. 18, 2017 Photo
Code of Federal Regulations, 2010 CFR
2010-07-01
... monitoring system), dry basis, corrected to 7 percent oxygen, and reported as propane; (6) Hydrochloric acid... hydrochloric acid equivalents, dry basis and corrected to 7 percent oxygen; and (7) Particulate matter in... oxygen, and reported as propane; (6) Hydrochloric acid and chlorine gas in excess of 21 parts per million...
Code of Federal Regulations, 2011 CFR
2011-07-01
... monitoring system), dry basis, corrected to 7 percent oxygen, and reported as propane; (6) Hydrochloric acid... hydrochloric acid equivalents, dry basis and corrected to 7 percent oxygen; and (7) Particulate matter in... oxygen, and reported as propane; (6) Hydrochloric acid and chlorine gas in excess of 21 parts per million...
Code of Federal Regulations, 2012 CFR
2012-07-01
... monitoring system), dry basis, corrected to 7 percent oxygen, and reported as propane; (6) Hydrochloric acid... hydrochloric acid equivalents, dry basis and corrected to 7 percent oxygen; and (7) Particulate matter in... oxygen, and reported as propane; (6) Hydrochloric acid and chlorine gas in excess of 21 parts per million...
Alternative Fuels Data Center: Propane Buses Help Minnesota Schools Carve
information about this project, contact Twin Cities Clean Cities Coalition. Download QuickTime Video QuickTime videos provided by Clean Cities TV and FuelEconomy.gov. MotorWeek - Television's Original Automotive Propane Aug. 22, 2015 A photo of two national parks buses parked in front of Redwood trees. Clean Cities
Alternative Fuels Data Center: School Buses Go Green in Virginia
Gloucester County Public Schools put five Blue Bird propane school buses on the road. Funds from EPA and VDEQ October 2009 to November 2010, the five buses saved almost $7,000 in fuel and maintenance costs and could see, touch, and ride propane buses. And now, Gloucester's success is helping to make the case for
Dantas, Hebertty V; Barbosa, Mayara F; Nascimento, Elaine C L; Moreira, Pablo N T; Galvão, Roberto K H; Araújo, Mário C U
2013-03-15
This paper proposes a NIR spectrometric method for screening analysis of liquefied petroleum gas (LPG) samples. The proposed method is aimed at discriminating samples with low and high propane content, which can be useful for the adjustment of burn settings in industrial applications. A gas flow system was developed to introduce the LPG sample into a NIR flow cell at constant pressure. In addition, a gas chromatographer was employed to determine the propane content of the sample for reference purposes. The results of a principal component analysis, as well as a classification study using SIMCA (soft independent modeling of class analogies), revealed that the samples can be successfully discriminated with respect to propane content by using the NIR spectrum in the range 8100-8800 cm(-1). In addition, by using SPA-LDA (linear discriminant analysis with variables selected by the successive projections algorithm), it was found that perfect discrimination can also be achieved by using only two wavenumbers (8215 and 8324 cm(-1)). This finding may be of value for the design of a dedicated, low-cost instrument for routine analyses. Copyright © 2012 Elsevier B.V. All rights reserved.
de Oliveira Kuhn, Graciele; Rosa, Clarissa Dalla; Silva, Marceli Fernandes; Treichel, Helen; de Oliveira, Débora; Oliveira, J Vladimir
2013-02-01
Commercial inulinase from Aspergillus niger was immobilized in montmorillonite and then treated in pressurized propane and liquefied petroleum gas (LPG). Firstly, the effects of system pressure, exposure time, and depressurization rate, using propane and LPG, on enzymatic activity were evaluated through central composite design 2³. Residual activities of 145.1 and 148.5% were observed for LPG (30 bar, 6 h, and depressurization rate of 20 bar min⁻¹) and propane (270 bar, 1 h, and depressurization rate of 100 bar min⁻¹), respectively. The catalysts treated at these conditions in both fluids were then used for the production of fructooligosaccharides (FOS) using sucrose and inulin as substrates in aqueous and organic systems. The main objective of this step was to evaluate the yield and productivity in FOS, using alternatives for enhancing enzyme activity by means of pressurized fluids and also using low-cost supports for enzyme immobilization, aiming at obtaining a stable biocatalyst to be used for synthesis reactions. Yields of 18% were achieved using sucrose as substrate in aqueous medium, showing the potential of this procedure, hence suggesting a further optimization step to increase the process yield.
NASA Astrophysics Data System (ADS)
Bhatia, Pramod; Singh, Ravinder
2017-06-01
Diffusion flames are the most common type of flame which we see in our daily life such as candle flame and match-stick flame. Also, they are the most used flames in practical combustion system such as industrial burner (coal fired, gas fired or oil fired), diesel engines, gas turbines, and solid fuel rockets. In the present study, steady-state global chemistry calculations for 24 different flames were performed using an axisymmetric computational fluid dynamics code (UNICORN). Computation involved simulations of inverse and normal diffusion flames of propane in earth and microgravity condition with varying oxidizer compositions (21, 30, 50, 100 % O2, by mole, in N2). 2 cases were compared with the experimental result for validating the computational model. These flames were stabilized on a 5.5 mm diameter burner with 10 mm of burner length. The effect of oxygen enrichment and variation in gravity (earth gravity and microgravity) on shape and size of diffusion flames, flame temperature, flame velocity have been studied from the computational result obtained. Oxygen enrichment resulted in significant increase in flame temperature for both types of diffusion flames. Also, oxygen enrichment and gravity variation have significant effect on the flame configuration of normal diffusion flames in comparison with inverse diffusion flames. Microgravity normal diffusion flames are spherical in shape and much wider in comparison to earth gravity normal diffusion flames. In inverse diffusion flames, microgravity flames were wider than earth gravity flames. However, microgravity inverse flames were not spherical in shape.
Effect of oxygen partial pressure on oxidation of Mo-metal
NASA Astrophysics Data System (ADS)
Sharma, Rabindar Kumar; Kumar, Prabhat; Singh, Megha; Gopal, Pawar; Reddy, G. B.
2018-05-01
This report explains the effect of oxygen partial pressure (PO2 ) on oxidation of Mo-metal in oxygen plasma. XRD results indulge that oxide layers formed on Mo-surfaces at different oxygen partial pressures have two different oxide phases (i.e. orthorhombic MoO3 and monoclinic Mo8O23). Intense XRD peaks at high pressure (i.e. 2.0×10-1 Torr) points out the formation of thick oxide layer on Mo-surface due to presence of large oxygen species in chamber and less oxide volatilization. Whereas, at low PO2 (6.5×10-2 and 7.5×10-2 Torr.) the reduced peak strength is owing to high oxide volatilization rate. SEM micrographs and thickness measurements also support XRD results and confirm that the optimum -2value of PO2 to deposited thicker and uniform oxide film on glass substrate is 7.5×10-2 Torr through plasma assistedoxidation process. Further to study the compositional properties, EDX of the sample M2 (the best sample) is carried out, which confirms that the stoichiometric ratio is less than 3 (i.e. 2.88). Less stoichiometric ratio again confirms the presence of sub oxides in oxide layers on Mo metal as evidenced by XRD results. All the observed results are well in consonance with each other.
Biological formation of ethane and propane in the deep marine subsurface.
Hinrichs, Kai-Uwe; Hayes, John M; Bach, Wolfgang; Spivack, Arthur J; Hmelo, Laura R; Holm, Nils G; Johnson, Carl G; Sylva, Sean P
2006-10-03
Concentrations and isotopic compositions of ethane and propane in cold, deeply buried sediments from the southeastern Pacific are best explained by microbial production of these gases in situ. Reduction of acetate to ethane provides one feasible mechanism. Propane is enriched in (13)C relative to ethane. The amount is consistent with derivation of the third C from inorganic carbon dissolved in sedimentary pore waters. At typical sedimentary conditions, the reactions yield free energy sufficient for growth. Relationships with competing processes are governed mainly by the abundance of H(2). Production of C(2) and C(3) hydrocarbons in this way provides a sink for acetate and hydrogen but upsets the general belief that hydrocarbons larger than methane derive only from thermal degradation of fossil organic material.
Biological formation of ethane and propane in the deep marine subsurface
Hinrichs, Kai-Uwe; Hayes, John M.; Bach, Wolfgang; Spivack, Arthur J.; Hmelo, Laura R.; Holm, Nils G.; Johnson, Carl G.; Sylva, Sean P.
2006-01-01
Concentrations and isotopic compositions of ethane and propane in cold, deeply buried sediments from the southeastern Pacific are best explained by microbial production of these gases in situ. Reduction of acetate to ethane provides one feasible mechanism. Propane is enriched in 13C relative to ethane. The amount is consistent with derivation of the third C from inorganic carbon dissolved in sedimentary pore waters. At typical sedimentary conditions, the reactions yield free energy sufficient for growth. Relationships with competing processes are governed mainly by the abundance of H2. Production of C2 and C3 hydrocarbons in this way provides a sink for acetate and hydrogen but upsets the general belief that hydrocarbons larger than methane derive only from thermal degradation of fossil organic material. PMID:16990430
Kinetics of hydrogen peroxide decomposition by catalase: hydroxylic solvent effects.
Raducan, Adina; Cantemir, Anca Ruxandra; Puiu, Mihaela; Oancea, Dumitru
2012-11-01
The effect of water-alcohol (methanol, ethanol, propan-1-ol, propan-2-ol, ethane-1,2-diol and propane-1,2,3-triol) binary mixtures on the kinetics of hydrogen peroxide decomposition in the presence of bovine liver catalase is investigated. In all solvents, the activity of catalase is smaller than in water. The results are discussed on the basis of a simple kinetic model. The kinetic constants for product formation through enzyme-substrate complex decomposition and for inactivation of catalase are estimated. The organic solvents are characterized by several physical properties: dielectric constant (D), hydrophobicity (log P), concentration of hydroxyl groups ([OH]), polarizability (α), Kamlet-Taft parameter (β) and Kosower parameter (Z). The relationships between the initial rate, kinetic constants and medium properties are analyzed by linear and multiple linear regression.
Site-Specific Carbon Isotopes in Organics
NASA Astrophysics Data System (ADS)
Piasecki, A.; Eiler, J. M.
2012-12-01
Natural organic molecules exhibit a wide range of internal site-specific isotope variation (i.e., molecules with same isotopic substitution type but different site). Such variations are generally unconstrained by bulk isotopic measurements. If known, site-specific variations might constrain temperatures of equilibrium, mechanisms of formation or consumption reactions, and possibly other details. For example, lipids can exhibit carbon isotope differences of up to 30‰ between adjacent carbon sites as a result of fractionations arising during decarboxylation of pyruvate and other steps in lipid biosynthesis(1). We present a method for site-specific carbon isotope analysis of propane, based on high-resolution, multi-collector gas source mass spectrometry, using a novel prototype instrument - the Thermo MAT 253 Ultra. This machine has an inlet system and electron bombardment ion source resembling those in conventional stable isotope gas source mass spectrometers, and the energy filter, magnet, and detector array resembling those in multi-collector ICPMS and TIMS. The detector array has 7 detector positions, 6 of which are movable, and each of which can collect ions with either a faraday cup (read through amplifiers ranging from 107-1012 ohms) or an SEM. High mass resolving power (up to 27,000, MRP = M/dM definition) is achieved through a narrow entrance slit, adjustable from 250 to 5 μm. Such resolution can cleanly separate isobaric interferences between isotopologues of organic molecules having the same cardinal mass (e.g., 13CH3 and 12CH2D). We use this technology to analyze the isotopologues and fragments of propane, and use such data to solve for the site-specific carbon isotope fractionation. By measuring isotopologues of both the one-carbon (13CH3) and the two-carbon (13C12CH4) fragment ion, we can solve for both bulk δ13C and the difference in δ13C between the terminal and central carbon position. We tested this method by analyzing mixtures between natural propane and labeled propane (13CH3-12CH2-12CH3). Results are consistent with the expected relative fractionations between the two fragments, indicating limited 'scrambling' of carbon positions of less than 2% in the source. The limits of precision of this method are currently ~0.5 ‰, sufficient to resolve known or suspected position-specific isotope effects in propane. We have explored the expected temperature-dependent equilibrium isotopic distributions of propane using density functional theory and quantum mechanical models of vibrational isotope effects. These models predict the homogeneous isotope exchange equilibria among the various isotopologues of propane, which include several of a wide range of effects that should be measurable by our methods. At 300 K we predict that the central carbon site is 15‰ higher in δ13C and 95 ‰ higher in δD than the terminal carbon site; similarly the molecule containing both a 13C and D in the central site is enriched by ~120 ‰ relative to a random isotopic distribution at 300 K. These predictions present targets for future experimental and empirical studies of the temperature dependence of isotopic ordering in propane. More generally, the methods we are developing for the study of intramolecular isotopic distributions in propane will serve as a model for future study of similar effects in other organic compounds. [1]DeNiro, Epstein (1977) Science Volume 197, 261-263.
Stable, Ultra-Low Residence Time Partial Oxidation
Schmidt, Lanny D.; Hickman, Daniel A.
1997-07-15
A process for the catalytic partial oxidation of methane in gas phase at very short residence time (800,000 to 12,000,000 hr.sup.-1) by contacting a gas stream containing methane and oxygen with a metal supported catalyst, such as platinum deposited on a ceramic monolith.
NASA Technical Reports Server (NTRS)
Xu, F.; El-Leathy, A. M.; Kim, C. H.; Faeth, G. M.; Yuan, Z.-G. (Technical Monitor); Urban, D. L. (Technical Monitor); Yuan, Z.-G. (Technical Monitor)
2003-01-01
Soot surface oxidation was studied experimentally in laminar hydrocarbon/air diffusion flames at atmospheric pressure. Measurements were carried out along the axes of round fuel jets burning in coflowing dry air considering acetylene-nitrogen, ethylene, propyiene-nitrogen, propane and acetylene-benzene-nitrogen in the fuel stream. Measurements were limited to the initial stages of soot oxidation (carbon consumption less than 70%) where soot oxidation occurs at the surface of primary soot particles. The following properties were measured as a function of distance above the burner exit: soot concentrations by deconvoluted laser extinction, soot temperatures by deconvoluted multiline emission, soot structure by thermophoretic sampling and analysis using Transmission Electron Microscopy (TEM), concentrations of major stable gas species (N2, H2O, H2, O2, CO, CO2, CH4, C2H2, C2H6, C3H6, C3H8, and C6H6) by sampling and gas chromatography, concentrations of some radical species (H, OH, O) by deconvoluted Li/LiOH atomic absorption and flow velocities by laser velocimetry. For present test conditions, it was found that soot surface oxidation rates were not affected by fuel type, that direct rates of soot surface oxidation by O2 estimated from Nagle and Strickland-Constable (1962) were small compared to observed soot surface oxidation rates because soot surface oxidation was completed near the flame sheet where O2 concentrations were less than 3% by volume, and that soot surface oxidation rates were described by the OH soot surface oxidation mechanism with a collision efficiency of 0.14 and an uncertainty (95% confidence) of +/- 0.04 when allowing for direct soot surface oxidation by O2, which is in reasonably good agreement with earlier observations of soot surface oxidation rates in both premixed and diffusion flames at atmospheric pressure.
Partial oxidation of alkanes by dioxiranes formed in situ at low temperature.
Yacob, Sara; Caulfield, Michael J; Barckholtz, Timothy A
2018-01-13
Partial oxidation catalysts capable of efficiently operating at low temperatures may limit the over-oxidation of alkane substrates and thereby improve selectivity. This work focuses on examining alkane oxidation using completely metal-free organocatalysts, dioxiranes. The dioxiranes employed here are synthesized by oxidation of a ketone using a terminal oxidant, such as hydrogen peroxide. Our work generates the dioxirane in situ , so that the process can be catalytic with respect to the ketone. To date, we have demonstrated selective partial oxidation of adamantane using ketone catalysts resulting in yields upwards of 60% towards 1-adamantanol with greater than 99% selectivity. Furthermore, we have demonstrated that changing the electrophilic character of the ketone R groups to contain more electron-donating ligands facilitates the dioxirane ring formation and improves overall oxidation yields. Isotopic labelling studies using H 2 18 O 2 show the preferential incorporation of an 18 O label into the parent ketone, providing evidence for a dioxirane intermediate formed in situ The isotopic labelling studies, along with solvent effect studies, suggest the formation of peracetic acid as a reactive intermediate.This article is part of a discussion meeting issue 'Providing sustainable catalytic solutions for a rapidly changing world'. © 2017 The Author(s).
NASA Astrophysics Data System (ADS)
Jin, Ju; Shi, Fan; Li, Qiu-wen; Li, Pei-shan; Chen, Tong-sheng; Wang, Yi-fei; Wang, Zhi-ping
2016-03-01
Cellular damage induced by free-radicals like reactive oxygen species has been implicated in several diseases. 2, 2-azobis(2-amidino-propane) dihydrochloride(AAPH) generates two potent ROS capable of inducing lipid peroxidation: alkoxy radical(RO-) and peroxy radical(ROO-). These radicals are similar to those that are physiologically active and thus might initiate a cascade of intracellular toxic events leading to oxidation, lipid peroxidation, DNA damage and subsequent cell death. Hence naturally anti-oxidant play a vital role in combating these conditions. In this study, resveratrol loaded nanostructured lipid carriers (Res-NLC) was prepared by hot melting and then high pressure homogenization technique. The effects of Res-NLC on free radical scavenging capacity and antioxidative damage is investigated. The particle size and zeta potential of Res-NLC were 139.3 ± 1.7 nm and -11.21 ± 0.41 mV, respectively. By free radical scavenging assays, the IC50 value of Res-NLC were 19.25, 5.29 μg/mL with DPPH, ABTS assay respectively, and 0.161 mg ferrous sulfate/1 mg Res-NLC with FRAP assay; and by AAPH-induced oxidative injury cell model assay, Res-NLC showed the strong protective effect against the human liver tumor HepG2 cell oxidative stress damage. These results indicated that the antioxidant properties of Res-NLC hold great potential used as an alternative to more toxic synthetic antioxidants as an additive in food, cosmetic and pharmaceutical preparations for the oxidative diseases treatment.
Combined fuel and air staged power generation system
Rabovitser, Iosif K; Pratapas, John M; Boulanov, Dmitri
2014-05-27
A method and apparatus for generation of electric power employing fuel and air staging in which a first stage gas turbine and a second stage partial oxidation gas turbine power operated in parallel. A first portion of fuel and oxidant are provided to the first stage gas turbine which generates a first portion of electric power and a hot oxidant. A second portion of fuel and oxidant are provided to the second stage partial oxidation gas turbine which generates a second portion of electric power and a hot syngas. The hot oxidant and the hot syngas are provided to a bottoming cycle employing a fuel-fired boiler by which a third portion of electric power is generated.
1978-06-01
in metal form, and not as an oxide , as with conventional HC compositions. "That verified the fact that the aluminum did not take part in the chemical...the melting of the protective oxide layer on the aluminum particle with an attendant increase in surface reaction rate leading to ignition. Oxide ...detonation 5 aluminum BrF5 partial detonation 6 propylene oxide ClF3 partial detonation 621 041 IR! Each teat used about 5 kg of fuel, about 400 g
Ferromagnetic phase in partially oxidized FeMn films
NASA Astrophysics Data System (ADS)
Svalov, A. V.; Savin, P. A.; Lepalovskij, V. N.; Vas'kovskiy, V. O.; Larrañaga, A.; Kurlyandskaya, G. V.
2018-04-01
The structure, magnetic and magnetoresistive properties of ferromagnetic phase in partially oxidized FeMn films was studied. The oxidation was performed by annealing of the samples under atmospheric pressure in a gas mixture (nitrogen with 0.5% oxygen) at the temperature of 300 °C. The resulting ferromagnetic phase was isotropic in the film plane. The value of the anisotropic magnetoresistance was similar to the value of the anisotropic magnetoresistance usually observed in films of pure iron. The oxidation of antiferromagnetic FeMn films resulted in the appearance of an exchange bias.
Comprehensive kinetic model for the low-temperature oxidation of hydrocarbons
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gaffuri, P.; Faravelli, T.; Ranzi, E.
1997-05-01
The oxidation chemistry in the low- and intermediate-temperature regimes (600--900 K) is important and plays a significant role in the overall combustion process. Autoignition in diesel engines as well as end-gas autoignition and knock phenomena in s.i. engines are initiated at these low temperatures. The low-temperature oxidation chemistry of linear and branched alkanes is discussed with the aim of unifying their complex behavior in various experimental systems using a single detailed kinetic model. New experimental data, obtained in a pressurized flow reactor, as well as in batch- and jet-stirred reactors, are useful for a better definition of the region ofmore » cool flames and negative temperature coefficient (NTC) for pure hydrocarbons from propane up to isooctane. Thermochemical oscillations and the NTC region of the reaction rate of the low-temperature oxidation of n-heptane and isooctane in a jet-stirred flow reactor are reproduced quite well by the model, not only in a qualitative way but in terms of the experimental frequencies and intensities of cool flames. Very good agreement is also observed for fuel conversion and intermediate-species formation. Irrespective of the experimental system, the same critical reaction steps always control these phenomena. The results contribute to the definition of a limited set of fundamental kinetic parameters that should be easily extended to model heavier alkanes.« less
Fe-Based Nano-Materials in Catalysis
Konstantopoulos, Christos
2018-01-01
The role of iron in view of its further utilization in chemical processes is presented, based on current knowledge of its properties. The addition of iron to a catalyst provides redox functionality, enhancing its resistance to carbon deposition. FeOx species can be formed in the presence of an oxidizing agent, such as CO2, H2O or O2, during reaction, which can further react via a redox mechanism with the carbon deposits. This can be exploited in the synthesis of active and stable catalysts for several processes, such as syngas and chemicals production, catalytic oxidation in exhaust converters, etc. Iron is considered an important promoter or co-catalyst, due to its high availability and low toxicity that can enhance the overall catalytic performance. However, its operation is more subtle and diverse than first sight reveals. Hence, iron and its oxides start to become a hot topic for more scientists and their findings are most promising. The scope of this article is to provide a review on iron/iron-oxide containing catalytic systems, including experimental and theoretical evidence, highlighting their properties mainly in view of syngas production, chemical looping, methane decomposition for carbon nanotubes production and propane dehydrogenation, over the last decade. The main focus goes to Fe-containing nano-alloys and specifically to the Fe–Ni nano-alloy, which is a very versatile material. PMID:29772842
Alternative Fuels Data Center: Florida Schools First in State to Power up
Indian River County School District became the first in the state to adopt propane-powered school buses Oil Powers Biodiesel Vehicles in Vermont March 4, 2017 Photo of a truck Natural Gas Fuels School Buses Natural Gas Jan. 14, 2017 Photo of buses Baton Rouge School District Adds Propane Buses to Its Fleet Dec
The partial oxidation of cyclohexane to cyclohexanol and cyclohexanone on UV irradiated titanium dioxide films in the presence of molecular oxygen at ambient temperatures and pressures was studied. Three different coating methodologies (dip coating using titanium isopropoxide an...
Method of fabricating a monolithic solid oxide fuel cell
Minh, N.Q.; Horne, C.R.
1994-03-01
In a two-step densifying process of making a monolithic solid oxide fuel cell, a limited number of anode-electrolyte-cathode cells separated by an interconnect layer are formed and partially densified. Subsequently, the partially densified cells are stacked and further densified to form a monolithic array. 10 figures.
Method of fabricating a monolithic solid oxide fuel cell
Minh, Nguyen Q.; Horne, Craig R.
1994-01-01
In a two-step densifying process of making a monolithic solid oxide fuel cell, a limited number of anode-electrolyte-cathode cells separated by an interconnect layer are formed and partially densified. Subsequently, the partially densified cells are stacked and further densified to form a monolithic array.
Hatzinger, Paul B; Streger, Sheryl H; Begley, James F
2015-01-01
1,2-Dibromoethane (ethylene dibromide; EDB) is a probable human carcinogen that was previously used as both a soil fumigant and a scavenger in leaded gasoline. EDB has been observed to persist in soils and groundwater, particularly under oxic conditions. The objective of this study was to evaluate options to enhance the aerobic degradation of EDB in groundwater, with a particular focus on possible in situ remediation strategies. Propane gas and ethane gas were observed to significantly stimulate the biodegradation of EDB in microcosms constructed with aquifer solids and groundwater from the FS-12 EDB plume at Joint Base Cape Cod (Cape Cod, MA), but only after inorganic nutrients were added. Ethene gas was also effective, but rates were appreciably slower than for ethane and propane. EDB was reduced to <0.02 μg/L, the Massachusetts state Maximum Contaminant Level (MCL), in microcosms that received ethane gas and inorganic nutrients. An enrichment culture (BE-3R) that grew on ethane or propane gas but not EDB was obtained from the site materials. The degradation of EDB by this culture was inhibited by acetylene gas, suggesting that degradation is catalyzed by a monooxygenase enzyme. The BE-3R culture was also observed to biodegrade 1,2-dichloroethane (DCA), a compound commonly used in conjunction with EDB as a lead scavenger in gasoline. The data suggest that addition of ethane or propane gas with inorganic nutrients may be a viable option to enhance degradation of EDB in groundwater aquifers to below current state or federal MCL values. Copyright © 2014 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sun, Pingping; Siddiqi, Georges; Vining, William C.
Catalysts for the dehydrogenation of light alkanes were prepared by dispersing Pt on the surface of a calcined hydrotalcite-like support containing indium, Mg(In)(Al)O. Upon reduction in H{sub 2} at temperatures above 673 K, bimetallic particles of PtIn are observed by TEM, which have an average diameter of 1 nm. Analysis of Pt LIII-edge extended X-ray absorption fine structure (EXAFS) data shows that the In content of the bimetallic particles increases with increasing bulk In/Pt ratio and reduction temperature. Pt LIII-edge X-ray absorption near edge structure (XANES) indicates that an increasing donation of electronic charge from In to Pt occurs withmore » increasing In content in the PtIn particles. The activity and selectivity of the Pt/Mg(In)(Al)O catalysts for ethane and propane dehydrogenation reactions are strongly dependent on the bulk In/Pt ratio. For both reactants, maximum activity was achieved for a bulk In/Pt ratio of 0.48, and at this In/Pt ratio, the selectivity to alkene was nearly 100%. Coke deposition was observed after catalyst use for either ethane or propane dehydrogenation, and it was observed that the alloying of Pt with In greatly reduced the amount of coke deposited. Characterization of the deposit by Raman spectroscopy indicates that the coke is present as highly disordered graphite particles <30 nm in diameter. While the amount of coke deposited during ethane and propane dehydrogenation are comparable, the effects on activity are dependent on reactant composition. Coke deposition had no effect on ethane dehydrogenation activity, but caused a loss in propane dehydrogenation activity. This difference is attributed to the greater ease with which coke produced on the surface of PtIn nanoparticles migrates to the support during ethane dehydrogenation versus propane dehydrogenation.« less
Ni, Y.; Ma, Q.; Ellis, G.S.; Dai, J.; Katz, B.; Zhang, S.; Tang, Y.
2011-01-01
Based on quantum chemistry calculations for normal octane homolytic cracking, a kinetic hydrogen isotope fractionation model for methane, ethane, and propane formation is proposed. The activation energy differences between D-substitute and non-substituted methane, ethane, and propane are 318.6, 281.7, and 280.2cal/mol, respectively. In order to determine the effect of the entropy contribution for hydrogen isotopic substitution, a transition state for ethane bond rupture was determined based on density function theory (DFT) calculations. The kinetic isotope effect (KIE) associated with bond rupture in D and H substituted ethane results in a frequency factor ratio of 1.07. Based on the proposed mathematical model of hydrogen isotope fractionation, one can potentially quantify natural gas thermal maturity from measured hydrogen isotope values. Calculated gas maturity values determined by the proposed mathematical model using ??D values in ethane from several basins in the world are in close agreement with similar predictions based on the ??13C composition of ethane. However, gas maturity values calculated from field data of methane and propane using both hydrogen and carbon kinetic isotopic models do not agree as closely. It is possible that ??D values in methane may be affected by microbial mixing and that propane values might be more susceptible to hydrogen exchange with water or to analytical errors. Although the model used in this study is quite preliminary, the results demonstrate that kinetic isotope fractionation effects in hydrogen may be useful in quantitative models of natural gas generation, and that ??D values in ethane might be more suitable for modeling than comparable values in methane and propane. ?? 2011 Elsevier Ltd.
Uluata, Sibel; McClements, D Julian; Decker, Eric A
2015-10-28
The food industry is interested in the utilization of nanoemulsions stabilized by natural emulsifiers, but little research has been conducted to determine the oxidative stability of such emulsions. In this study, two natural (lecithin and quillaja saponin) and two synthetic (Tween 80 and sodium dodecyl sulfate) surfactants were used to fabricate omega-3 nanoemulsion using high pressure homogenization (microfluidization). Initially, all the nanoemulsions contained small (d from 45 to 89 nm) and anionic (ζ-potential from -8 to -65 mV) lipid droplets (pH 7). The effect of pH, ionic strength, and temperature on the physical stability of the nanoemulsion system was examined. Nanoemulsion stabilized with Tween 80, quillaja saponin, or sodium dodecyl sulfate (SDS) exhibited no major changes in particle size or visible creaming in the pH range of 3 to 8. All nanoemulsions were relatively stable to salt addition (0 to 500 mM NaCl, pH 7.0). Nanoemulsions stabilized with SDS and quillaja saponin were stable to heating (30 to 90 °C). The impact of surfactant type on lipid oxidation was determined in the presence and absence of the singlet oxygen photosensitizers, riboflavin, and rose bengal. Riboflavin and rose bengal accelerated lipid oxidation when compare to samples without photosensitizers. Lipid hydroperoxide formation followed the order Tween 80 > SDS > lecithin > quillaja saponin, and propanal formation followed the order lecithin > Tween 80 > SDS > quillaja saponin at 37 °C for autoxidation. The same order of oxidative stability was observed in the presence of photosensitized oxidation promoted by riboflavin. Quillaja saponin consistently produced the most oxidatively stable emulsions, which could be due to its high free radical scavenging capacity.
Conversion of 1,3-Propylene Glycol on Rutile TiO2(110)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Long; Li, Zhenjun; Smith, R. Scott
2014-10-09
The adsorption of 1,3-propylene glycol (1,3-PG) on partially reduced TiO2(110) and its conversion to products have been studied by a combination of molecular beam dosing and temperature programmed desorption (TPD). When the Ti surface sites are saturated by 1,3-PG, ~80% of the molecules undergo further reactions to yield products that are liberated during the TPD ramp. In contrast to ethylene glycol (EG) and 1,2- propylene glycol (1,2-PG) that yield only alkenes and water at very low coverages (< 0.05 ML), two additional products, HCHO and C2H4, along with propylene (CH3CHCH2) and water are observed for 1,3-PG. Identical TPD line shapesmore » and desorption yields for HCHO and C2H4 suggest that these products result from C-C bond cleavage and are coupled. At higher 1,3-PG coverages (> 0.1 ML), propanal (CH3CH2CHO) and two additional products, 1-propanol (CH3CH2CH2OH) and acrolein (CH2CHCHO), are observed. The desorption of 1-propanol is found to be coupled with the desorption of acrolein, suggesting that these products are formed by the disproportionation of two 1,3-PG molecules. The coverage dependent TPD results further show that propylene formation dominates at low coverages (< 0.3 ML), while the decomposition and disproportionation channels increase rapidly at higher coverages and reach yields comparable to that of propylene at the 1,3-PG saturation coverage of 0.5 ML. The observed surface chemistry clearly shows how the molecular structure of glycols influences their reaction pathways on oxide surfaces.« less
Alternative Fuels Data Center: Propane Rolls on as Reliable Fleet Fuel
AddThis.com... March 6, 2015 Propane Rolls on as Reliable Fleet Fuel " If we can save the district money alternative fuels program for our buses as a way to save money and clean up the air and environment for our can save the district money and prevent pollution for our kids' sake in the process, I don't see a
Nanocrystalline films for gas-reactive applications
Eastman, Jeffrey A.; Thompson, Loren J.
2004-02-17
A gas sensor for detection of oxidizing and reducing gases, including O.sub.2, CO.sub.2, CO, and H.sub.2, monitors the partial pressure of a gas to be detected by measuring the temperature rise of an oxide-thin-film-coated metallic line in response to an applied electrical current. For a fixed input power, the temperature rise of the metallic line is inversely proportional to the thermal conductivity of the oxide coating. The oxide coating contains multi-valent cation species that change their valence, and hence the oxygen stoichiometry of the coating, in response to changes in the partial pressure of the detected gas. Since the thermal conductivity of the coating is dependent on its oxygen stoichiometry, the temperature rise of the metallic line depends on the partial pressure of the detected gas. Nanocrystalline (<100 nm grain size) oxide coatings yield faster sensor response times than conventional larger-grained coatings due to faster oxygen diffusion along grain boundaries rather than through grain interiors.
Method and apparatus for converting hydrocarbon fuel into hydrogen gas and carbon dioxide
Clawson, Lawrence G.; Mitchell, William L.; Bentley, Jeffrey M.; Thijssen, Johannes H.J.
2000-01-01
An apparatus and a method are disclosed for converting hydrocarbon fuel or an alcohol into hydrogen gas and carbon dioxide. The apparatus includes a first vessel having a partial oxidation reaction zone and a separate steam reforming reaction zone that is distinct from the partial oxidation reaction zone. The first vessel has a first vessel inlet at the partial oxidation reaction zone and a first vessel outlet at the steam reforming zone. The reformer also includes a helical tube extending about the first vessel. The helical tube has a first end connected to an oxygen-containing source and a second end connected to the first vessel at the partial oxidation reaction zone. Oxygen gas from an oxygen-containing source can be directed through the helical tube to the first vessel. A second vessel having a second vessel inlet and second vessel outlet is annularly disposed about the first vessel. The helical tube is disposed between the first vessel and the second vessel and gases from the first vessel can be directed through second vessel.
Method for generating hydrogen for fuel cells
Ahmed, Shabbir; Lee, Sheldon H. D.; Carter, John David; Krumpelt, Michael
2004-03-30
A method of producing a H.sub.2 rich gas stream includes supplying an O.sub.2 rich gas, steam, and fuel to an inner reforming zone of a fuel processor that includes a partial oxidation catalyst and a steam reforming catalyst or a combined partial oxidation and stream reforming catalyst. The method also includes contacting the O.sub.2 rich gas, steam, and fuel with the partial oxidation catalyst and the steam reforming catalyst or the combined partial oxidation and stream reforming catalyst in the inner reforming zone to generate a hot reformate stream. The method still further includes cooling the hot reformate stream in a cooling zone to produce a cooled reformate stream. Additionally, the method includes removing sulfur-containing compounds from the cooled reformate stream by contacting the cooled reformate stream with a sulfur removal agent. The method still further includes contacting the cooled reformate stream with a catalyst that converts water and carbon monoxide to carbon dioxide and H.sub.2 in a water-gas-shift zone to produce a final reformate stream in the fuel processor.
Fuel processor and method for generating hydrogen for fuel cells
Ahmed, Shabbir [Naperville, IL; Lee, Sheldon H. D. [Willowbrook, IL; Carter, John David [Bolingbrook, IL; Krumpelt, Michael [Naperville, IL; Myers, Deborah J [Lisle, IL
2009-07-21
A method of producing a H.sub.2 rich gas stream includes supplying an O.sub.2 rich gas, steam, and fuel to an inner reforming zone of a fuel processor that includes a partial oxidation catalyst and a steam reforming catalyst or a combined partial oxidation and stream reforming catalyst. The method also includes contacting the O.sub.2 rich gas, steam, and fuel with the partial oxidation catalyst and the steam reforming catalyst or the combined partial oxidation and stream reforming catalyst in the inner reforming zone to generate a hot reformate stream. The method still further includes cooling the hot reformate stream in a cooling zone to produce a cooled reformate stream. Additionally, the method includes removing sulfur-containing compounds from the cooled reformate stream by contacting the cooled reformate stream with a sulfur removal agent. The method still further includes contacting the cooled reformate stream with a catalyst that converts water and carbon monoxide to carbon dioxide and H.sub.2 in a water-gas-shift zone to produce a final reformate stream in the fuel processor.
High temperature durable catalyst development
NASA Technical Reports Server (NTRS)
Snow, G. C.; Tong, H.
1981-01-01
A program has been carried out to develop a catalytic reactor capable of operation in environments representative of those anticipated for advanced automotive gas turbine engines. A reactor consisting of a graded cell honeycomb support with a combination of noble metal and metal oxide catalyst coatings was built and successfully operated for 1000 hr. At an air preheat temperature of 740 K and a propane/air ratio of 0.028 by mass, the adiabatic flame temperature was held at about 1700 K. The graded cell monolithic reaction measured 5 cm in diameter by 10.2 cm in length and was operated at a reference velocity of 14.0 m/s at 1 atm. Measured NOx levels remained below 5 ppm, while unburned hydrocarbon concentrations registered near zero and carbon monoxide levels were nominally below 20 ppm.
Alcohol-free alkoxide process for containing nuclear waste
Pope, James M.; Lahoda, Edward J.
1984-01-01
Disclosed is a method of containing nuclear waste. A composition is first prepared of about 25 to about 80%, calculated as SiO.sub.2, of a partially hydrolyzed silicon compound, up to about 30%, calculated as metal oxide, of a partially hydrolyzed aluminum or calcium compound, about 5 to about 20%, calculated as metal oxide, of a partially hydrolyzed boron or calcium compound, about 3 to about 25%, calculated as metal oxide, of a partially hydrolyzed sodium, potassium or lithium compound, an alcohol in a weight ratio to hydrolyzed alkoxide of about 1.5 to about 3% and sufficient water to remove at least 99% of the alcohol as an azeotrope. The azeotrope is boiled off and up to about 40%, based on solids in the product, of the nuclear waste, is mixed into the composition. The mixture is evaporated to about 25 to about 45% solids and is melted and cooled.
Thin film oxygen partial pressure sensor
NASA Technical Reports Server (NTRS)
Wortman, J. J.; Harrison, J. W.; Honbarrier, H. L.; Yen, J.
1972-01-01
The development is described of a laboratory model oxygen partial pressure sensor using a sputtered zinc oxide thin film. The film is operated at about 400 C through the use of a miniature silicon bar. Because of the unique resistance versus temperature relation of the silicon bar, control of the operational temperature is achieved by controlling the resistance. A circuit for accomplishing this is described. The response of sputtered zinc oxide films of various thicknesses to oxygen, nitrogen, argon, carbon dioxide, and water vapor caused a change in the film resistance. Over a large range, film conductance varied approximately as the square root of the oxygen partial pressure. The presence of water vapor in the gas stream caused a shift in the film conductance at a given oxygen partial pressure. A theoretical model is presented to explain the characteristic features of the zinc oxide response to oxygen.
NASA Technical Reports Server (NTRS)
Schefer, R. W.; Sawyer, R. F.
1976-01-01
An opposed reacting jet combustor (ORJ) was tested at a pressure of 1 atmosphere. A premixed propane/air stream was stabilized by a counterflowing jet of the same reactants. The resulting intensely mixed zone of partially reacted combustion products produced stable combustion at equivalence ratios as low as 0.45. Measurements are presented for main stream velocities of 7.74 and 13.6 m/sec with an opposed jet velocity of 96 m/sec, inlet air temperatures from 300 to 600 K, and equivalence ratios from 0.45 to 0.625. Fuel lean premixed combustion was an effective method of achieving low NOx emissions and high combustion efficiencies simultaneously. Under conditions promoting lower flame temperature, NO2 constituted up to 100 percent of the total NOx. At higher temperatures this percentage decreased to a minimum of 50 percent.
Metal-supported solid oxide fuel cells operated in direct-flame configuration
Tucker, Michael C.; Ying, Andrew S.
2017-08-19
Metal-supported solid oxide fuel cells (MS-SOFC) with infiltrated catalysts on both anode and cathode side are operated in direct-flame configuration, with a propane flame impinging on the anode. Placing thermal insulation on the cathode dramatically increases cell temperature and performance. The optimum burner-to-cell gap height is a strong function of flame conditions. Cell performance at the optimum gap is determined within the region of stable non-coking conditions, with equivalence ratio from 1 to 1.9 and flow velocity from 100 to 300 cm s -1. In this region, performance is most strongly correlated to flow velocity and open circuit voltage. Themore » highest peak power density achieved is 633 mW cm -2 at 833°C, for equivalence ratio of 1.8 and flow velocity of 300 cm s -1. The cell starts to produce power within 10 s of being placed in the flame, and displays stable performance over 10 extremely rapid thermal cycles. The cell provides stable performance for >20 h of semi-continuous operation.« less
Gas phase oxidation downstream of a catalytic combustor
NASA Technical Reports Server (NTRS)
Tien, J. S.; Anderson, D. N.
1979-01-01
Effect of the length available for gas-phase reactions downstream of the catalytic reactor on the emission of CO and unburned hydrocarbons was investigated. A premixed, prevaporized propane/air feed to a 12/cm/diameter catalytic/reactor test section was used. The catalytic reactor was made of four 2.5 cm long monolithic catalyst elements. Four water cooled gas sampling probes were located at positions between 0 and 22 cm downstream of the catalytic reactor. Measurements of unburned hydrocarbon, CO, and CO2 were made. Tests were performed with an inlet air temperature of 800 K, a reference velocity of 10 m/s, pressures of 3 and 600,000 Pa, and fuel air equivalence ratios of 0.14 to 0.24. For very lean mixtures, hydrocarbon emissions were high and CO continued to be formed downstream of the catalytic reactor. At the highest equivalence ratios tested, hydrocarbon levels were much lower and CO was oxidized to CO2 in the gas phase downstream. To achieve acceptable emissions, a downstream region several times longer than the catalytic reactor could be required.
NASA Technical Reports Server (NTRS)
Perry, Jay L.; Frederick, Kenneth R.; Scott, Joseph P.; Reinermann, Dana N.
2011-01-01
Photocatalytic oxidation (PCO) is a maturing process technology that shows potential for spacecraft life support system application. Incorporating PCO into a spacecraft cabin atmosphere revitalization system requires an understanding of basic performance, particularly with regard to partial oxidation product production. Four PCO reactor design concepts have been evaluated for their effectiveness for mineralizing key trace volatile organic com-pounds (VOC) typically observed in crewed spacecraft cabin atmospheres. Mineralization efficiency and selectivity for partial oxidation products are compared for the reactor design concepts. The role of PCO in a spacecraft s life support system architecture is discussed.
Mao, Hui; Liang, Jiachen; Ji, Chunguang; Zhang, Haifeng; Pei, Qi; Zhang, Yuyang; Zhang, Yu; Hisaeda, Yoshio; Song, Xi-Ming
2016-08-01
Poly(3-(1-vinylimidazolium-3-yl)propane-1-sulfonate) (PVIPS), a novel kind of poly(zwitterionic liquids) (PZILs) containing both imidazolium cation and sulfonate anion, was successfully modified on the surface of polypyrrole/graphene oxide nanosheets (PPy/GO) by covalent bonding. The obtained novel PZILs functionalized PPy/GO nanosheets (PVIPS/PPy/GO) modified glassy carbon electrode (GCE) presented the excellent electrochemical catalytic activity towards dopamine (DA) with high stability, sensitivity, selectivity and wide linear range (40-1220nM), especially having a lower detection limit (17.3nM). The excellent analytical performance is attributed to the strongly negative charges on the surface of modified GCE in aqueous solution, which is different from conventional poly(ionic liquids) modified GCE. DA cations could be quickly enriched on the electrode surface by electrostatic interaction in solution due to the existence of SO3(-) groups with negative charge at the end of pendant groups in zwitterionic PVIPS, resulting in a change of the electrons transmission mode in the oxidation of DA, that is, from a typical diffusion-controlled process at conventional poly(1-vinyl-3-ethylimidazole bromide) (PVEIB)/PPy/GO modified GCE to a typical surface-controlled process. Copyright © 2016 Elsevier B.V. All rights reserved.
Experiments on Diffusion Flame Structure of a Laminar Vortex Ring
NASA Technical Reports Server (NTRS)
Chen, Shin-Juh; Dahm, Werner J. A.
1999-01-01
The study of flame-vortex interactions provides one of the means to better understand turbulent combustion, and allows for canonical configurations that contain the fundamental elements found in turbulent flames, These include concentrated vorticity, entrainment and mixing, strain and nonequilibrium phenomena, diffusion and differential diffusion, partial premixing and diluent effects, and heat release effects. In flame- vortex configurations, these fundamental elements can be studied under more controlled conditions than is possible in direct investigations of turbulent flames. Since the paper of Marble, the problem of the flame-vortex interaction has received considerable attention theoretically, numerically and experimentally. Several configurations exist for study of the premixed flame/vortex ring interaction but more limited results have been obtained to date for the diffusion flame/vortex ring case. The setup of Chen and Dahm, which is conceptually similar to that of Karagozian and Manda and Karagozian, Suganuma and Strom where the ring is composed of fuel and air and combustion begins during the ring formation process, is used in the current study. However, it is essential to conduct the experiments in microgravity to remove the asymmetries caused by buoyancy and thus obtain highly symmetric and repeatable interactions. In previous studies it was found that the flame structure of the vortex ring was similar to that obtained analytically by Karagozian and Manda. Dilution of propane with nitrogen led mainly to a reduction in flame luminosities, flame burnout times were affected by both fuel volumes and amount of dilution, and a simple model of the burnout times was developed. In this paper, a discussion on reacting ring displacement and flame burnout time will be given, and the flame structures of vortex rings containing ethane and air will be compared to those of propane reacting in air.
Association of lipids with milk α- and β-caseins.
Bourassa, P; Bekale, L; Tajmir-Riahi, H A
2014-09-01
We report the molecular interaction and the binding sites of cholesterol (CHOL), 1,2-dioleoyl-3-trimethylammonium-propane (DOTAP), dioctadecyldimethyl-ammoniumbromide (DDAB), and dioleoylphosphatidylethanolamine (DOPE) with milk α- and β-caseins in aquous solution at physiological conditions. Fourier transform infrared (FTIR), fluorescence spectroscopic methods and molecular modeling were used to determine the binding sites of lipid-protein complexes and the effect of lipid interaction on the stability and conformation of α- and β-caseins. Structural analysis showed that lipids bind casein via mainly hydrophobic contact with association constants of KCHOL-α-casein=1.0 (±0.1)×10(4) M(-1), KDOPE-α-casein=5.0 (±0.07)×10(3) M(-1), KDDAB-α-casein=2.0 (±0.06)×10(4) M(-1), KDOTAP-α-casein=1.5 (±0.6)×10(4) M(-1), KCHOL-β-casein=1.0 (±0.3)×10(4) M(-1), KDOPE-β-casein=1.5 (±0.06)×10(3) M(-1), KDDAB-β-casein=1.7 (±0.3)×10(4) M(-1) and KDOTAP-β-casein=2.1 (±0.5)×10(4) M(-1). The average number of binding sites occupied by lipid molecules on protein (n) were from 0.7 to 1.1. Docking showed different binding sites for α- and β-caseins toward lipid complexation with the free binding energies from -10 to -13 kcal/mol. Casein conformation was altered by lipid interaction with a reduction of α-helix and β-sheet and an increase of random coil and turn structure suggesting a partial protein unfolding. Cascasein; CHOLcholesterol; DOTAP1,2-dioleoyl-3-trimethylammonium-propane; DDABdioctadecyldimethylammonium bromide; DOPEdioleoylphosphatidylethanolamine; FTIRFourier transform infrared spectroscopy; CDcircular dichroism. Copyright © 2014 Elsevier B.V. All rights reserved.
Fuel cell system for transportation applications
Kumar, Romesh; Ahmed, Shabbir; Krumpelt, Michael; Myles, Kevin M.
1993-01-01
A propulsion system for a vehicle having pairs of front and rear wheels and a fuel tank. An electrically driven motor having an output shaft operatively connected to at least one of said pair of wheels is connected to a fuel cell having a positive electrode and a negative electrode separated by an electrolyte for producing dc power to operate the motor. A partial oxidation reformer is connected both to the fuel tank and to the fuel cell receives hydrogen-containing fuel from the fuel tank and water and air and for partially oxidizing and reforming the fuel with water and air in the presence of an oxidizing catalyst and a reforming catalyst to produce a hydrogen-containing gas. The hydrogen-containing gas is sent from the partial oxidation reformer to the fuel cell negative electrode while air is transported to the fuel cell positive electrode to produce dc power for operating the electric motor.
Fuel cell system for transportation applications
Kumar, R.; Ahmed, S.; Krumpelt, M.; Myles, K.M.
1993-09-28
A propulsion system is described for a vehicle having pairs of front and rear wheels and a fuel tank. An electrically driven motor having an output shaft operatively connected to at least one of said pair of wheels is connected to a fuel cell having a positive electrode and a negative electrode separated by an electrolyte for producing dc power to operate the motor. A partial oxidation reformer is connected both to the fuel tank and to the fuel cell and receives hydrogen-containing fuel from the fuel tank and uses water and air for partially oxidizing and reforming the fuel in the presence of an oxidizing catalyst and a reforming catalyst to produce a hydrogen-containing gas. The hydrogen-containing gas is sent from the partial oxidation reformer to the fuel cell negative electrode while air is transported to the fuel cell positive electrode to produce dc power for operating the electric motor. 3 figures.
Effects of elliptical burner geometry on partially premixed gas jet flames in quiescent surroundings
NASA Astrophysics Data System (ADS)
Baird, Benjamin
This study is the investigation of the effect of elliptical nozzle burner geometry and partial premixing, both 'passive control' methods, on a hydrogen/hydrocarbon flame. Both laminar and turbulent flames for circular, 3:1, and 4:1 aspect ratio (AR) elliptical burners are considered. The amount of air mixed with the fuel is varied from fuel-lean premixed flames to fuel-rich partially premixed flames. The work includes measurements of flame stability, global pollutant emissions, flame radiation, and flame structure for the differing burner types and fuel conditions. Special emphasis is placed on the near-burner region. Experimentally, both conventional (IR absorption, chemiluminecent, and polarographic emission analysis,) and advanced (laser induced fluorescence, planar laser induced fluorescence, Laser Doppler Velocimetry (LDV), Rayleigh scattering) diagnostic techniques are used. Numerically, simulations of 3-dimensional laminar and turbulent reacting flow are conducted. These simulations are run with reduced chemical kinetics and with a Reynolds Stress Model (RSM) for the turbulence modeling. It was found that the laminar flames were similar in appearance and overall flame length for the 3:1 AR elliptical and the circular burner. The laminar 4:1 AR elliptical burner flame split into two sub-flames along the burner major axis. This splitting had the effect of greatly shortening the 4:1 AR elliptical burner flame to have an overall flame length about half of that of the circular and 3:1 AR elliptical burner flames. The length of all three burners flames increased with increasing burner exit equivalence ratio. The blowout velocity for the three burners increased with increase in hydrogen mass fraction of the hydrogen/propane fuel mixture. For the rich premixed flames, the circular burner was the most stable, the 3:1 AR elliptical burner, was the least stable, and the 4:1 AR elliptical burner was intermediate to the two other burners. This order of stability was due to two reasons. The elliptical burners have enhanced turbulence generation that lowers their stability when compared to the circular burner. The 4:1 AR elliptical burner had greater stability due to a greater velocity decay rate and wider OH reaction zones particularly in the region between the two jets. The 3:1 AR elliptical and circular burners produced similar carbon monoxide and nitric oxide emission indexes over the range of equivalence ratios of 0.55 to 4.0, for laminar flames. (Abstract shortened by UMI.)
A Model for the Oxidation of C/SiC Composite Structures
NASA Technical Reports Server (NTRS)
Sullivan, Roy M.
2003-01-01
A mathematical theory and an accompanying numerical scheme have been developed for predicting the oxidation behavior of C/SiC composite structures. The theory is derived from the mechanics of the flow of ideal gases through a porous solid. Within the mathematical formulation, two diffusion mechanisms are possible: (1) the relative diffusion of one species with respect to the mixture, which is concentration gradient driven and (2) the diffusion associated with the average velocity of the gas mixture, which is total gas pressure gradient driven. The result of the theoretical formulation is a set of two coupled nonlinear differential equations written in terms of the oxidant and oxide partial pressures. The differential equations must be solved simultaneously to obtain the partial vapor pressures of the oxidant and oxides as a function of space and time. The local rate of carbon oxidation is determined as a function of space and time using the map of the local oxidant partial vapor pressure along with the Arrhenius rate equation. The nonlinear differential equations are cast into matrix equations by applying the Bubnov-Galerkin weighted residual method, allowing for the solution of the differential equations numerically. The end result is a numerical scheme capable of determining the variation of the local carbon oxidation rates as a function of space and time for any arbitrary C/SiC composite structures.
Correlation of smoke development in room tests with cone calorimeter data for wood products
Mark A. Dietenberger; Ondrej Grexa
2000-01-01
A direct proportionality has been found between the smoke extinction area (SEA) for smoke of room linings and the SEA as measured in the cone calorimeter (ISO5660). The room test scenario (ISO9705) considered was the propane ignition burner at the corner with a 100/300 kW program and the specimen lined on the walls only. The mixing of smoke from propane and lining...
Fuel Cell Power Plants Renewable and Waste Fuels
2011-01-13
of FuelCell Energy, Inc. Fuels Resources for DFC • Natural Gas and LNG • Propane • Biogas (by Anaerobicnaerobic Digestion) - Municipal Waste...FUEL RESOURCES z NATURAL GAS z PROPANE z DFC H2 (50-60%) z ETHANOL zWASTE METHANE z BIOGAS z COAL GAS Diversity of Fuels plus High Efficiency...trademarks (®) of FuelCell Energy, Inc. DFC Advantages for Biogas • More power for given amount of biogas : Higher efficiency than
NASA Astrophysics Data System (ADS)
He, Xuechao; Sun, Jinhua; Yuen, K. K.; Ding, Yibin; Chen, Sining
2008-11-01
Experiments of flame propagation in a small, closed rectangular duct with a 90° bend were performed for a propane-air mixture. The high speed camera and Schlieren techniques were used to record images of flame propagation process in the combustion pipe. Meanwhile, the fine thermocouples and ion current probes were applied to measure the temperature distribution and reaction intensity of combustion. The characteristics of propane-air flame and its microstructure were analyzed in detail by the experimental results. In the test, the special tulip flame formation was observed. Around the bend, the flame tip proceeded more quickly at the lower side with the flame front elongated toward the axial direction. And transition to turbulent flame occurred. It was suggested that fluctuations of velocity, ion current and temperature were mainly due to the comprehensive effects of multi-wave and the intense of turbulent combustion.
NASA Astrophysics Data System (ADS)
Elwina; Yunardi; Bindar, Yazid
2018-04-01
this paper presents results obtained from the application of a computational fluid dynamics (CFD) code Fluent 6.3 to modelling of temperature in propane flames with and without air preheat. The study focuses to investigate the effect of air preheat temperature on the temperature of the flame. A standard k-ε model and Eddy Dissipation model are utilized to represent the flow field and combustion of the flame being investigated, respectively. The results of calculations are compared with experimental data of propane flame taken from literature. The results of the study show that a combination of the standard k-ε turbulence model and eddy dissipation model is capable of producing reasonable predictions of temperature, particularly in axial profile of all three flames. Both experimental works and numerical simulation showed that increasing the temperature of the combustion air significantly increases the flame temperature.
Hydrogen Safety Issues Compared to Safety Issues with Methane and Propane
NASA Astrophysics Data System (ADS)
Green, M. A.
2006-04-01
The hydrogen economy is not possible if the safety standards currently applied to liquid hydrogen and hydrogen gas by many laboratories are applied to devices that use either liquid or gaseous hydrogen. Methane and propane are commonly used by ordinary people without the special training. This report asks, "How is hydrogen different from flammable gasses that are commonly being used all over the world?" This report compares the properties of hydrogen, methane and propane and how these properties may relate to safety when they are used in both the liquid and gaseous state. Through such an analysis, sensible safety standards for the large-scale (or even small-scale) use of liquid and gaseous hydrogen systems can be developed. This paper is meant to promote discussion of issues related to hydrogen safety so that engineers designing equipment can factor sensible safety standards into their designs.
Sprawling nursery unveils propane backup for natural gas boilers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1991-02-01
First, take the most authoritative policy- making body in the pervasive problem area of Southern California air pollution (South Coast Air Quality Management District - SCAQMD). Then apply that organization's recently- enacted regulation prohibiting the use of diesel fuel in boilers to a well-known commercial establishment. The result is an alternative fuel story, that's too engaging to overlook. Monrovia Nursery, a 65-year-old, 500-acre wholesale growing facility in Azusa, Calif., has installed two 200-hp Dixon boilers, a 14 MMBtuh Sam Dick Industries vaporizer, and six 1150-gal. tanks on the property for the use of propane as a backup fuel. While themore » nursery ordinarily uses natural gas for water heating, there are times during the winter when the supply may be curtailed or interrupted. It is then that propane would be used to heat water to keep more than 1200 varieties of plants growing as they should.« less
Hydrogen Safety Issues Compared to Safety Issues with Methane andPropane
DOE Office of Scientific and Technical Information (OSTI.GOV)
Green, Michael A.
The hydrogen economy is not possible if the safety standards currently applied to liquid hydrogen and hydrogen gas by many laboratories are applied to devices that use either liquid or gaseous hydrogen. Methane and propane are commonly used by ordinary people without the special training. This report asks, 'How is hydrogen different from flammable gasses that are commonly being used all over the world?' This report compares the properties of hydrogen, methane and propane and how these properties may relate to safety when they are used in both the liquid and gaseous state. Through such an analysis, sensible safety standardsmore » for the large-scale (or even small-scale) use of liquid and gaseous hydrogen systems can be developed. This paper is meant to promote discussion of issues related to hydrogen safety so that engineers designing equipment can factor sensible safety standards into their designs.« less
Two cases of acute propane/butane poisoning in prison.
Rossi, Riccardo; Suadoni, Fabio; Pieroni, Ludovica; De-Giorgio, Fabio; Lancia, Massimo
2012-05-01
Hydrocarbon inhalation is seldom chosen as a means to commit suicide. This practice is exclusively a prerogative of the prison population; it is, however, only exceptionally found in this environment. The two cases of lethal inhalation of propane/butane gas observed by us over a very short time occurred in this context. Toxicologic analyses were performed by means of gas chromatography (head space) and revealed a propane/butane mixture in all specimens (heart blood, bile, and urine) except vitreous humor. Although fatal arrhythmia posthydrocarbon gas abuse is well known, the concentrations of the two hydrocarbons were sufficient to induce death by asphyxiation and were distributed (fairly) homogeneously in all biological fluids and organs examined, a parameter permitting one to assume that death occurred within a relatively short period of time. The absence of finding in vitreous humor and the trace amount in urine suggests that both men died very quickly. © 2011 American Academy of Forensic Sciences.
Krumpelt, Michael; Ahmed, Shabbir; Kumar, Romesh; Doshi, Rajiv
2000-01-01
A two-part catalyst comprising a dehydrogenation portion and an oxide-ion conducting portion. The dehydrogenation portion is a group VIII metal and the oxide-ion conducting portion is selected from a ceramic oxide crystallizing in the fluorite or perovskite structure. There is also disclosed a method of forming a hydrogen rich gas from a source of hydrocarbon fuel in which the hydrocarbon fuel contacts a two-part catalyst comprising a dehydrogenation portion and an oxide-ion conducting portion at a temperature not less than about 400.degree. C. for a time sufficient to generate the hydrogen rich gas while maintaining CO content less than about 5 volume percent. There is also disclosed a method of forming partially oxidized hydrocarbons from ethanes in which ethane gas contacts a two-part catalyst comprising a dehydrogenation portion and an oxide-ion conducting portion for a time and at a temperature sufficient to form an oxide.
Thin film devices used as oxygen partial pressure sensors
NASA Technical Reports Server (NTRS)
Canady, K. S.; Wortman, J. J.
1970-01-01
Electrical conductivity of zinc oxide films to be used in an oxygen partial pressure sensor is measured as a function of temperature, oxygen partial pressure, and other atmospheric constituents. Time response following partial pressure changes is studied as a function of temperature and environmental changes.
Nitrous oxide emissions from one-step partial nitritation/anammox processes.
Yang, Jingjing; Trela, Jozef; Plaza, Elzbieta
2016-12-01
Measurements of nitrous oxide were made at pilot- and full-scale plants to evaluate greenhouse gas emissions from one-step partial nitritation/anammox processes applied in moving bed biofilm reactors treating reject water. It was found that 0.51-1.29% and 0.35-1.33% of the total nitrogen loads in the pilot- and full-scale reactor, respectively, were emitted as nitrous oxide. Between 80 and 90% of nitrous oxide emissions were in gaseous form and the rest amount was found in the reactor effluent; over 90% of nitrous oxide emissions occurred in the aerated period and less than 8% in the non-aerated period in the full-scale study. Nitrous oxide productions/consumptions were closely related to aeration and the nitrogen loads applied in the system.
NASA Technical Reports Server (NTRS)
Alvin, Mary Anne (Inventor); Bachovchin, Dennis (Inventor); Smeltzer, Eugene E. (Inventor); Lippert, Thomas E. (Inventor); Bruck, Gerald J. (Inventor)
2010-01-01
A catalytic combustor (14) includes a first catalytic stage (30), a second catalytic stage (40), and an oxidation completion stage (49). The first catalytic stage receives an oxidizer (e.g., 20) and a fuel (26) and discharges a partially oxidized fuel/oxidizer mixture (36). The second catalytic stage receives the partially oxidized fuel/oxidizer mixture and further oxidizes the mixture. The second catalytic stage may include a passageway (47) for conducting a bypass portion (46) of the mixture past a catalyst (e.g., 41) disposed therein. The second catalytic stage may have an outlet temperature elevated sufficiently to complete oxidation of the mixture without using a separate ignition source. The oxidation completion stage is disposed downstream of the second catalytic stage and may recombine the bypass portion with a catalyst exposed portion (48) of the mixture and complete oxidation of the mixture. The second catalytic stage may also include a reticulated foam support (50), a honeycomb support, a tube support or a plate support.
NASA Astrophysics Data System (ADS)
Plummer, R. E.; Pohlman, J. W.; Coffin, R. B.
2005-12-01
A system has been developed to measure the stable carbon isotope (δ13C) composition of dissolved methane, ethane, and propane from natural sediment samples with headspace concentrations as low as 1 ppm using a modified Thermo Electron Trace gas chromatograph (GC) connected to a Finnigan Delta Plus XP isotope ratio mass spectrometer (IRMS). A cryofocusing inlet was connected to the GC which allows 0.02- to 15.0-ml injections into a 10-ml min-1 He carrier stream. Analytes from the variable-volume injection are focused into a small section of fused silica capillary, which is either empty or packed with Poraplot-Q, depending on the analyte(s) of interest. The analytes are then rapidly desorbed (100°C) onto the GC column (1.8 ml min-1), where they undergo separation, combustion and IRMS detection. The sensitivity of the IRMS was improved by the addition of high resistivity amplifiers so that measurements can be obtained with as little as 7-ng of carbon. The analytical precision (2σ) is less than 0.5‰ for methane analysis and less than 1‰ for ethane and propane analyses. The gases are standardized by tank CO2 which has been referenced to the NIST RM 8560 natural gas standard. The samples require no pretreatment, and can be analyzed rapidly (20 samples/day) and with minimal instrument training. Using this system, we have obtained complete stable carbon isotope ethane profiles from sediment cores from microbial and thermogenic gas hydrate regions on the Northern Cascadia Margin. We were able to differentiate the relative thermal and microbial contributions of the gases; and furthermore, we obtained clear evidence for ethanogenesis and ethane oxidation at depths similar to those where methanogenesis and anaerobic methane oxidation (AOM), respectively, occurred. This system will be utilized to analyze headspace and hydrate gas samples from IODP Leg 311. These data will allow us to fully characterize the thermogenic contributions and trace hydrocarbon biogeochemical cycling of hydrocarbons along the Expedition 311 margin-perpendicular transect.
Dissolved gasesous hydrocarbons in shallow groundwater of Lower Saxony, Germany - Revisited 2016
NASA Astrophysics Data System (ADS)
Schloemer, Stefan; Illing, Christian J.; Blumenberg, Martin; Oest, Johanna; Elbracht, Jörg
2017-04-01
Many concerns arise within the public and government/political institutions over potential groundwater contamination from deep drilling operations. For this reason we initiated a baseline study in 2014 on the distribution of dissolved methane, ethane and propane in shallow groundwater ( 1000 groundwater wells, Schloemer et al., 2016) of Lower Saxony, which includes the major petroleum and natural gas provinces in Germany. We observed a variation of dissolved methane concentration over 7 orders of magnitude (20 nl/l to 60 ml/l [v/v]). Methane delta13C compositions ranged from -110‰ to +25‰ vs VPDB, narrowly clustering around -70‰ at high concentrations but being increasingly more variable at lower concentrations (-40‰ to -80‰)). Most of the data are clearly indicative for methanogenic processes, samples unusually enriched in delta13C can best be explained by secondary methane oxidation. Although some general regional trend can be observed, results are highly variable within short lateral distances or within different aquifers/filter depths. Frequently ethane (27% of samples, median 50nl/l) and occasionally propane (8%, median 23nl/l) has been detected. Lacking the carbon isotope composition of these homologues and thus solely based on the extremely low concentrations and atypical ethane/propane ratios, these have been tentatively interpreted as ubiquitous microbial background. From the original 2014 sample set around 100 wells have been selected for consecutive testing through 2015. In spring 2016 a total number of 1100 wells have been sampled, 700 of which had already been part of the initial study, providing us with the unique opportunity to assess long term variations. The overall comparison of these 700 samples revealed only small relative variations in methane concentrations (mostly < ± 25%), although higher variations are common at concentrations less than 1 µl/l. Correspondingly the carbon isotopic composition of paired samples is quite stable (± 2‰)) for most of the samples ( 60%) but large discrepancies can be observed at low absolute concentrations (> ± 5‰ in 25% of samples). Minor variations could be related to uncertainties in laboratory analysis (± 10% in concentration, ± 0.5‰ delta13C). To which extent the small number of sampled groundwater with unusually high variations are indeed a result of a naturally occurring process (rapidly changing conditions or anthropogenic influence) is currently under investigation. However, applying different sampling conditions/procedures (i.e. different pumps, flow rates) had to be accepted during the course of the project and might be a reason as well. In any case our preliminary results point toward the necessity of repeated sampling (particularly in shallow unconfined aquifers) to account for possible natural variations and of strictly consistent sampling protocols when analyzing "non-conservative" dissolved gases. Reference Schloemer, S., Elbracht, J., Blumenberg, M. and Illing, C.J., 2016. Distribution and origin of dissolved methane, ethane and propane in shallow groundwater of Lower Saxony, Germany. Applied Geochemistry, 67: 118-132.
Rhoderick, George C
2007-04-01
New US federal low-level automobile emission requirements, for example zero-level-emission vehicle (ZLEV), for hydrocarbons and other species, have resulted in the need by manufacturers for new certified reference materials. The new emission requirement for hydrocarbons requires the use, by automobile manufacturing testing facilities, of a 100 nmol mol(-1) propane in air gas standard. Emission-measurement instruments are required, by federal law, to be calibrated with National Institute of Standards and Technology (NIST) traceable reference materials. Because a NIST standard reference material (SRM) containing 100 nmol mol(-1) propane was not available, the US Environmental Protection Agency (EPA) and the Automobile Industry/Government Emissions Research Consortium (AIGER) requested that NIST develop such an SRM. A cylinder lot of 30 gas mixtures containing 100 nmol mol(-1) propane in air was prepared in 6-L aluminium gas cylinders by a specialty gas company and delivered to the Gas Metrology Group at NIST. Another mixture, contained in a 30-L aluminium cylinder and included in the lot, was used as a lot standard (LS). Using gas chromatography with flame-ionization detection all 30 samples were compared to the LS to obtain the average of six peak-area ratios to the LS for each sample with standard deviations of <0.31%. The average sample-to-LS ratio determinations resulted in a range of 0.9828 to 0.9888, a spread of 0.0060, which corresponds to a relative standard deviation of 0.15% of the average for all 30 samples. NIST developed its first set of five propane in air primary gravimetric standards covering a concentration range 91 to 103 nmol mol(-1) with relative uncertainties of 0.15%. This new suite of propane gravimetric standards was used to analyze and assign a concentration value to the SRM LS. On the basis of these data each SRM sample was individually certified, furnishing the desired relative expanded uncertainty of +/-0.5%. Because automobile companies use total hydrocarbons to make their measurements, it was also vital to assign a methane concentration to the SRM samples. Some of the SRM samples were analyzed and found to contain 1.2 nmol mol(-1) methane. Twenty-five of the samples were certified and released as SRM 2765.
Frankel, E N; Tappel, A L
1991-06-01
An improved headspace capillary gas chromatographic (GC) method was developed to measure the oxidative susceptibility of human red blood cell (RBC) membranes. This method analyzed volatile peroxidation products of both n-6 (hexanal and pentane) and n-3 (propanal) polyunsaturated fatty acids. Oxidative susceptibility tests were standardized by incubating in a sealed 10-mL headspace bottle 0.25 or 1 mL of human RBC membrane in 40 mM phosphate buffer for 1 hr at 37 degrees C with a mixture of Fe++, ascorbic acid and H2O2. Sodium dodecyl sulfate increased significantly the amount of hexanal measured by headspace GC. By this standard headspace method, in one series of red blood cell membranes (RBCM) samples a four-fold variation in oxidative susceptibility was observed in RBCM from blood freshly drawn from six healthy subjects. In another series of RBCM samples a sixteen-fold variation in oxidative susceptibility was noted in frozen RBCM from blood freshly drawn from five healthy subjects. Correlation between hexanal formation and polyunsaturated fatty acids (PUFA) depletion provided good evidence that under these standard conditions hexanal is exclusively derived from the oxidation of arachidonic acid. Hydroperoxides of arachidonic acid are more readily formed and decomposed than those of linoleic acid in the presence of Fe++, ascorbic acid and H2O2 to produce hexanal as the main product that can be readily analyzed by headspace GC. This method may provide a useful tool to study susceptibility toward lipid peroxidative damage in human RBC membranes.
Hernández Anzaldo, Samuel; Arroyo Abad, Uriel; León García, Armando; Ramírez Rosales, Daniel; Zamorano Ulloa, Rafael; Reyes Ortega, Yasmi
2016-06-27
The spectroscopic and kinetic characterization of two intermediates from the H₂O₂ oxidation of three dimethyl ester [(proto), (meso), (deuteroporphyrinato) (picdien)]Fe(III) complexes ([FePPPic], [FeMPPic] and [FeDPPic], respectively) pinch-porphyrin peroxidase enzyme models, with s = 5/2 and 3/2 Fe(III) quantum mixed spin (qms) ground states is described herein. The kinetic study by UV/Vis at λmax = 465 nm showed two different types of kinetics during the oxidation process in the guaiacol test for peroxidases (1-3 + guaiacol + H₂O₂ → oxidation guaiacol products). The first intermediate was observed during the first 24 s of the reaction. When the reaction conditions were changed to higher concentration of pinch-porphyrins and hydrogen peroxide only one type of kinetics was observed. Next, the reaction was performed only between pinch-porphyrins-Fe(III) and H₂O₂, resulting in only two types of kinetics that were developed during the first 0-4 s. After this time a self-oxidation process was observed. Our hypotheses state that the formation of the π-cation radicals, reaction intermediates of the pinch-porphyrin-Fe(III) family with the ligand picdien [N,N'-bis-pyridin-2-ylmethyl-propane-1,3-diamine], occurred with unique kinetics that are different from the overall process and was involved in the oxidation pathway. UV-Vis, ¹H-NMR and ESR spectra confirmed the formation of such intermediates. The results in this paper highlight the link between different spectroscopic techniques that positively depict the kinetic traits of artificial compounds with enzyme-like activity.
NASA Technical Reports Server (NTRS)
Cooper, L. P.
1981-01-01
An analysis was conducted of the effect of flameholding devices on the precombustion fuel-air characteristics and on oxides of nitrogen (NOx) emissions for combustion of premixed partially vaporized mixtures. The analysis includes the interrelationships of flameholder droplet collection efficiency, reatomization efficiency and blockage, and the initial droplet size distribution and accounts for the contribution of droplet combustion in partially vaporized mixtures to NOx emissions. Application of the analytical procedures is illustrated and parametric predictions of NOx emissions are presented.
Katsuda, Marly S; McClements, D J; Miglioranza, Lucia H S; Decker, Eric A
2008-07-23
The oxidation of fatty acids can be inhibited by engineering the surface of oil-in-water emulsion droplets to decrease interactions between aqueous phase prooxidants and lipids. The objective of this research was to evaluate whether emulsions stabilized by a multilayer emulsifier systems consisting of beta-lactoglobulin and citrus or sugar beet pectin could produce fish oil-in-water emulsions that had good physical and oxidative stability. Sugar beet pectin was compared to citrus pectin because the sugar beet pectin contains the known antioxidant, ferulic acid. A primary Menhaden oil-in-water emulsion was prepared with beta-lactoglobulin upon which the pectins were electrostatically deposited at pH 3.5. Emulsions prepared with 1% oil, 0.05% beta-lactoglobulin, and 0.06% pectins were physically stable for up to 16 days. As determined by monitoring lipid hydroperoxide and headspace propanal formation, emulsions prepared with the multilayer system of beta-lactoglobulin and citrus pectin were more stable than emulsions stabilized with beta-lactoglobulin alone. Emulsions prepared with the multilayer system of beta-lactoglobulin and sugar beet pectin were less stable than emulsions stabilized with beta-lactoglobulin alone despite the presence of ferulic acid in the sugar beet pectin. The lower oxidative stability of the emulsions with the sugar beet pectin could be due to its higher iron and copper concentrations which would produce oxidative stress that would overcome the antioxidant capacity of ferulic acid. These data suggest that the oxidative stability of oil-in-water emulsions containing omega-3 fatty acids could be improved by the use of multilayer emulsion systems containing pectins with low metal concentrations.
Furuya, Toshiki; Hirose, Satomi; Osanai, Hisashi; Semba, Hisashi; Kino, Kuniki
2011-01-01
Mycobacterium goodii strain 12523 is an actinomycete that is able to oxidize phenol regioselectively at the para position to produce hydroquinone. In this study, we investigated the genes responsible for this unique regioselective oxidation. On the basis of the fact that the oxidation activity of M. goodii strain 12523 toward phenol is induced in the presence of acetone, we first identified acetone-induced proteins in this microorganism by two-dimensional electrophoretic analysis. The N-terminal amino acid sequence of one of these acetone-induced proteins shares 100% identity with that of the protein encoded by the open reading frame Msmeg_1971 in Mycobacterium smegmatis strain mc2155, whose genome sequence has been determined. Since Msmeg_1971, Msmeg_1972, Msmeg_1973, and Msmeg_1974 constitute a putative binuclear iron monooxygenase gene cluster, we cloned this gene cluster of M. smegmatis strain mc2155 and its homologous gene cluster found in M. goodii strain 12523. Sequence analysis of these binuclear iron monooxygenase gene clusters revealed the presence of four genes designated mimABCD, which encode an oxygenase large subunit, a reductase, an oxygenase small subunit, and a coupling protein, respectively. When the mimA gene (Msmeg_1971) of M. smegmatis strain mc2155, which was also found to be able to oxidize phenol to hydroquinone, was deleted, this mutant lost the oxidation ability. This ability was restored by introduction of the mimA gene of M. smegmatis strain mc2155 or of M. goodii strain 12523 into this mutant. Interestingly, we found that these gene clusters also play essential roles in propane and acetone metabolism in these mycobacteria. PMID:21183637
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, G.; Su, D.; Frenkel, A. I.
Direct ethanol fuel cell (DEFC) is a promising technology for generating electricity via the electro-oxidation of liquid ethanol. Its implementation requires the development of anode catalysts capable of producing CO 2 and yielding 12-electron transfer through breaking C-C bond of ethanol. Here we presented comprehensive studies of electro-kinetics of the CO 2 generation on Pt/Rh/Sn ternary catalysts. Our studies showed that, for the first time, the tri–phase PtRhOx- SnO 2 catalysts with a partially oxidized Pt and Rh core and a SnO 2 shell, validated by X-ray absorption analyses and scanning transmission electron microscope-electron energy loss spectroscopy line scan, coincidedmore » with a 2.5-fold increase in the CO 2 generation rate towards ethanol oxidation reaction, compared with the bi-phase PtRh-SnO 2 catalysts with a metallic PtRh alloy core and commercial Pt. These studies provided insight on the design of a new genre of electro-catalysts with a partially oxidized noble metal.« less
Oxidation of SiC Fiber-Reinforced SiC Matrix Composites with a BN Interphase
NASA Technical Reports Server (NTRS)
Opila, Elizabeth; Boyd, Meredith K.
2010-01-01
SiC-fiber reinforced SiC matrix composites with a BN interphase were oxidized in reduced oxygen partial pressures of oxygen to simulate the environment for hypersonic vehicle leading edge applications. The constituent fibers as well as composite coupons were oxidized in oxygen partial pressures ranging from 1000 ppm O2 to 5% O2 balance argon. Exposure temperatures ranged from 816 C to 1353 C (1500 F to 2450 F). The oxidation kinetics of the coated fibers were monitored by thermogravimetric analysis (TGA). An initial rapid transient weight gain was observed followed by parabolic kinetics. Possible mechanisms for the transient oxidation are discussed. One edge of the composite coupon seal coat was ground off to simulate damage to the composite which allowed oxygen ingress to the interior of the composite. Oxidation kinetics of the coupons were characterized by scanning electron microscopy since the weight changes were minimal. It was found that sealing of the coupon edge by silica formation occurred. Differences in the amount and morphology of the sealing silica as a function of time, temperature and oxygen partial pressure are discussed. Implications for use of these materials for hypersonic vehicle leading edge materials are summarized.
Yang, G.; Su, D.; Frenkel, A. I.; ...
2016-09-04
Direct ethanol fuel cell (DEFC) is a promising technology for generating electricity via the electro-oxidation of liquid ethanol. Its implementation requires the development of anode catalysts capable of producing CO 2 and yielding 12-electron transfer through breaking C-C bond of ethanol. Here we presented comprehensive studies of electro-kinetics of the CO 2 generation on Pt/Rh/Sn ternary catalysts. Our studies showed that, for the first time, the tri–phase PtRhOx- SnO 2 catalysts with a partially oxidized Pt and Rh core and a SnO 2 shell, validated by X-ray absorption analyses and scanning transmission electron microscope-electron energy loss spectroscopy line scan, coincidedmore » with a 2.5-fold increase in the CO 2 generation rate towards ethanol oxidation reaction, compared with the bi-phase PtRh-SnO 2 catalysts with a metallic PtRh alloy core and commercial Pt. These studies provided insight on the design of a new genre of electro-catalysts with a partially oxidized noble metal.« less
Fluorescent temperature sensor
Baker, Gary A [Los Alamos, NM; Baker, Sheila N [Los Alamos, NM; McCleskey, T Mark [Los Alamos, NM
2009-03-03
The present invention is a fluorescent temperature sensor or optical thermometer. The sensor includes a solution of 1,3-bis(1-pyrenyl)propane within a 1-butyl-1-1-methylpyrrolidinium bis(trifluoromethylsulfonyl)imide ionic liquid solvent. The 1,3-bis(1-pyrenyl)propane remains unassociated when in the ground state while in solution. When subjected to UV light, an excited state is produced that exists in equilibrium with an excimer. The position of the equilibrium between the two excited states is temperature dependent.
Contact allergy to epoxy (meth)acrylates.
Aalto-Korte, Kristiina; Jungewelter, Soile; Henriks-Eckerman, Maj-Len; Kuuliala, Outi; Jolanki, Riitta
2009-07-01
Contact allergy to epoxy (meth)acrylates, 2,2-bis[4-(2-hydroxy-3-methacryloxypropoxy) phenyl]propane (bis-GMA), 2,2-bis[4-(2-hydroxy-3-acryloxypropoxy)phenyl]-propane (bis-GA), 2,2-bis[4-(methacryl-oxyethoxy)phenyl] propane (bis-EMA), 2,2-bis[4-(methacryloxy)phenyl]-propane (bis-MA), and glycidyl methacrylate (GMA) is often manifested together with contact allergy to diglycidyl ether of bisphenol A (DGEBA) epoxy resin. To analyse patterns of concomitant allergic reactions to the five epoxy (meth)acrylates in relation to exposure. We reviewed the 1994-2008 patch test files at the Finnish Institute of Occupational Health (FIOH) for reactions to the five epoxy (meth)acrylates, and examined the patients' medical records for exposure. Twenty-four patients had an allergic reaction to at least one of the studied epoxy (meth)acrylates, but specific exposure was found only in five patients: two bis-GMA allergies from dental products, two bis-GA allergies from UV-curable printing inks, and one bis-GA allergy from an anaerobic glue. Only 25% of the patients were negative to DGEBA epoxy resin. The great majority of allergic patch test reactions to bis-GMA, bis-GA, GMA and bis-EMA were not associated with specific exposure, and cross-allergy to DGEBA epoxy resin remained a probable explanation. However, independent reactions to bis-GA indicated specific exposure. Anaerobic sealants may induce sensitization not only to aliphatic (meth)acrylates but also to aromatic bis-GA.
Deposit formation and heat transfer in hydrocarbon rocket fuels
NASA Technical Reports Server (NTRS)
Giovanetti, A. J.; Spadaccini, L. J.; Szetela, E. J.
1983-01-01
An experimental research program was undertaken to investigate the thermal stability and heat transfer characteristics of several hydrocarbon fuels under conditions that simulate high-pressure, rocket engine cooling systems. The rates of carbon deposition in heated copper and nickel-plated copper tubes were determined for RP-1, propane, and natural gas using a continuous flow test apparatus which permitted independent variation and evaluation of the effect on deposit formation of wall temperature, fuel pressure, and fuel velocity. In addition, the effects of fuel additives and contaminants, cryogenic fuel temperatures, and extended duration testing with intermittent operation were examined. Parametric tests to map the thermal stability characteristics of RP-1, commercial-grade propane, and natural gas were conducted at pressures of 6.9 to 13.8 MPa, bulk fuel velocities of 30 to 90 m/s, and tube wall temperatures in the range of 230 to 810 K. Also, tests were run in which propane and natural gas fuels were chilled to 230 and 160 K, respectively. Corrosion of the copper tube surface was detected for all fuels tested. Plating the inside of the copper tubes with nickel reduced deposit formation and eliminated tube corrosion in most cases. The lowest rates of carbon deposition were obtained for natural gas, and the highest rates were obtained for propane. For all fuels tested, the forced-convection heat transfer film coefficients were satisfactorily correlated using a Nusselt-Reynolds-Prandtl number equation.
Photodissociation dynamics of propanal and isobutanal: The Norrish Type I pathway
NASA Astrophysics Data System (ADS)
Harrison, Aaron W.; Kable, Scott H.
2018-04-01
The Norrish Type I photodissociation of two aliphatic aldehydes, propanal and isobutanal, has been investigated using velocity-map imaging. The HCO photoproduct of this reaction was probed using a 1+1 resonance-enhanced multiphoton ionization scheme via the 3p2Π Rydberg state. The velocity map images of HCO+ were collected across a range of photolysis energies for both species from 30 500 to 33 000 cm-1 (λ = 312-327 nm). The corresponding translational energy distributions show that the majority of the available energy goes into the translational motion of the products (55%-68%) with this fraction increasing as the T1 barrier is approached. Analysis of the translational energy distributions was also used to determine the aldehyde α C-C bond dissociation energies which were found to be 339.8 ± 2.5 and 331.2 ± 2.5 kJ/mol for propanal and isobutanal, respectively. These values were also found to be in good agreement with the computed dissociation energies using G4 and CCSD(T)/aug-cc-pVTZ//M062X/aug-cc-pVTZ levels of theory. Furthermore, these dissociation energies, combined with the known ΔfH (0 K) of the reaction products, provided the ΔfH (0 K) of propanal and isobutanal which were calculated to be -167.3 ± 2.5 and -184.0 ± 2.5 kJ/mol, respectively.
Maity, Niladri; Barman, Samir; Callens, Emmanuel; ...
2015-11-30
The well-defined single-site silica-supported tungsten complex [(Si–O–)W(Me) 5], 1, is an excellent precatalyst for alkane metathesis. The unique structure of 1 allows the synthesis of unprecedented tungsten hydrido methyl surface complexes via a controlled hydrogenolysis. Specifically, in the presence of molecular hydrogen, 1 is quickly transformed at -78 °C into a partially alkylated tungsten hydride, 4, as characterized by 1H solid-state NMR and IR spectroscopies. Species 4, upon warming to 150 °C, displays the highest catalytic activity for propane metathesis yet reported. DFT calculations using model systems support the formation of [(Si–O–)WH 3(Me) 2], as the predominant species at -78more » °C following several elementary steps of hydrogen addition (by σ-bond metathesis or α-hydrogen transfer). Rearrangement of 4 occuring between -78 °C and room temperature leads to the formation of an unique methylidene tungsten hydride [(Si–O–)WH 3(CH 2)], as determined by solid-state 1H and 13C NMR spectroscopies and supported by DFT. Thus for the first time, a coordination sphere that incorporates both carbene and hydride functionalities has been observed.« less
Molybdenum Nitrogenase Catalyzes the Reduction and Coupling of CO to Form Hydrocarbons*♦
Yang, Zhi-Yong; Dean, Dennis R.; Seefeldt, Lance C.
2011-01-01
The molybdenum-dependent nitrogenase catalyzes the multi-electron reduction of protons and N2 to yield H2 and 2NH3. It also catalyzes the reduction of a number of non-physiological doubly and triply bonded small molecules (e.g. C2H2, N2O). Carbon monoxide (CO) is not reduced by the wild-type molybdenum nitrogenase but instead inhibits the reduction of all substrates catalyzed by nitrogenase except protons. Here, we report that when the nitrogenase MoFe protein α-Val70 residue is substituted by alanine or glycine, the resulting variant proteins will catalyze the reduction and coupling of CO to form methane (CH4), ethane (C2H6), ethylene (C2H4), propene (C3H6), and propane (C3H8). The rates and ratios of hydrocarbon production from CO can be adjusted by changing the flux of electrons through nitrogenase, by substitution of other amino acids located near the FeMo-cofactor, or by changing the partial pressure of CO. Increasing the partial pressure of CO shifted the product ratio in favor of the longer chain alkanes and alkenes. The implications of these findings in understanding the nitrogenase mechanism and the relationship to Fischer-Tropsch production of hydrocarbons from CO are discussed. PMID:21454640
Transformations of C2-C4 alcohols on the surface of a copper catalyst
NASA Astrophysics Data System (ADS)
Magaeva, A. A.; Lyamina, G. V.; Sudakova, N. N.; Shilyaeva, L. P.; Vodyankina, O. V.
2007-10-01
The interaction of monoatomic alcohols C2-C4 with the surface of a copper catalyst preliminarily oxidized under various conditions was studied by the temperature-programmed reaction method to determine the detailed mechanism of partial oxidation. The conditions of oxygen preadsorption on the surface of copper for the preparation of the desired products were determined. The selective formation of carbonyl compounds was shown to occur at the boundary between reduced and oxidized copper surface regions. The role played by Cu2O was the deep oxidation of alcohols to CO2. Alcohols with branched hydrocarbon structures experienced parallel partial oxidation and dehydrogenation, which was related to the high stability of intermediate keto-type compounds.
Electrochemical components employing polysiloxane-derived binders
Delnick, Frank M.
2013-06-11
A processed polysiloxane resin binder for use in electrochemical components and the method for fabricating components with the binder. The binder comprises processed polysiloxane resin that is partially oxidized and retains some of its methyl groups following partial oxidation. The binder is suitable for use in electrodes of various types, separators in electrochemical devices, primary lithium batteries, electrolytic capacitors, electrochemical capacitors, fuel cells and sensors.
Catalytic performance of V2O5-MoO3/γ-Al2O3 catalysts for partial oxidation of n-hexane1
NASA Astrophysics Data System (ADS)
Mahmoudian, R.; Khodadadi, Z.; Mahdavi, Vahid; Salehi, Mohammed
2016-01-01
In the current study, a series of V2O5-MoO3 catalyst supported on γ-Al2O3 with various V2O5 and MoO3 loadings was prepared by wet impregnation technique. The characterization of prepared catalysts includes BET surface area, powder X-ray diffraction (XRD), and oxygen chemisorptions. The partial oxidation of n-hexane by air over V2O5-MoO3/γ-Al2O3 catalysts was carried out under flow condition in a fixed bed glass reactor. The effect of V2O5 loading, temperature, MoO3 loading, and n-hexane LHSV on the n-hexane conversion and the product selectivity were investigated. The partial oxygenated products of n-hexane oxidation were ethanol, acetic anhydride, acetic acid, and acetaldehyde. The 10% V2O5-1%MoO3/γ-Al2O3 was found in most active and selective catalyst during partial oxidation of n-hexane. The results indicated that by increasing the temperature, the n-hexane conversion increases as well, although the selectivity of the products passes through a maximum by increasing the temperature.
Ruminal and intermediary metabolism of propylene glycol in lactating Holstein cows.
Kristensen, N B; Raun, B M L
2007-10-01
Four lactating Holstein cows fitted with ruminal cannulas and permanent indwelling catheters in the mesenteric artery, mesenteric vein, hepatic portal vein, and hepatic vein were used in a cross-over design to study the metabolism of propylene glycol (PG). Each cow received 2 treatments: control (no infusion) and infusion of 650 g of PG into the rumen at the time of the morning feeding. Propylene glycol was infused on the day of sampling only. Samples of arterial, portal, and hepatic blood as well as ruminal fluid were obtained at 0.5 h before feeding and at 0.5, 1.5, 2.5, 3.5, 5, 7, 9, and 11 h after feeding. Infusion of PG did not affect ruminal pH or the total concentration of ruminal volatile fatty acids, but did decrease the molar proportion of ruminal acetate. The ruminal concentrations of PG, propanol, and propanal as well as the molar proportion of propionate increased with PG infusion. The plasma concentrations of PG, ethanol, propanol, propanal, glucose, L-lactate, propionate, and insulin increased with PG and the plasma concentrations of acetate and beta-hydroxybutyrate decreased. The net portal flux of PG, propanol, and propanal increased with PG. The hepatic uptake of PG was equivalent to 19% of the intraruminal dose. When cows were dosed with PG, the hepatic extraction of PG was between 0 and 10% depending on the plasma concentration of PG, explaining the slow decrease in arterial PG. The increased net hepatic flux of L-lactate with PG could account for the entire hepatic uptake of PG, which suggests that the primary hepatic pathway for PG is oxidation to l-lactate. The hepatic uptake of propanol increased with PG, but no effects of PG on the net hepatic and net splanchnic flux of glucose were observed. Despite no effect of PG on net portal flux and net hepatic flux of propionate, the net splanchnic flux of propionate increased and the data suggest that propionate produced from hepatic metabolism of propanol is partly released to the blood. The data suggest that PG affects metabolism of the cows by 2 modes of action: 1) increased supply of l-lactate and propionate to gluconeogenesis and 2) insulin resistance of peripheral tissues induced by increased concentrations of PG and propanol as well as a decreased ratio of ketogenic to glucogenic metabolites in arterial blood plasma.
Exhaust Emissions from Gasoline- and LPG-Powered Vehicles Operating at the Altitude of Mexico City.
Gamas, Erick D; Diaz, Luis; Rodriguez, René; López-Salinas, E; Schifter, Isaac; Ontiveros, Luis
1999-10-01
Unburned hydrocarbons (HCs), carbon monoxide (CO), and oxides of nitrogen (NO x ) are the compounds regulated as pollutants by an environmental standard in the Metropolitan Area of Mexico City (MAMC). The main fuel used in vehicular transportation is gasoline, and the use of liquefied petroleum gas (LPG) is now an alternative as low emission technology to decrease the environmental impact of transportation operations. The environmental impact of commercial gasoline consumption in the Valley of Mexico was estimated by on-road and FTP-75 testing of three formulations of gasoline (one leaded [octane 81] and two unleaded [one octane 87 and one octane 93]). A fleet of 30 vehicles was used: 10 were chosen that had pre-1990 technology, while 12 were 1991-1996 vehicles equipped with fuel injection, catalytic converters, and air/ fuel ratio control technology. The remaining eight vehicles were high-performance new model vehicles (1995-1996) equipped with the newest technology available for pollution control. Fifteen vehicles in the fleet were also tested for the effect of changing from leaded to unleaded gasoline. Three different LPG formulations were tested using three vehicles representative of the LPG-powered fleet in the MAMC. Two gasoline-to-LPG conversion certified commercial systems were evaluated following the BAR-90 and the HOT-505 procedures. Emissions corresponding to the high-octane (premium) gasoline showed a 15% higher contribution to HCs with a 6% lower reactivity than the 87 octane gasoline; the HCs in the exhaust for premium gasoline are mainly isoparaffins. When the vehicles were tested on the road at high speeds, an average 3% increase in mileage was obtained when vehicles were switched from leaded to unleaded gasoline, while a 5% increase in mileage was observed when vehicles were switched from 87 octane to premium gasoline. The tests of LPG formulations indicated that a change in composition from 60% vol of propane to 85.5% vol reduces levels of HCs and CO emissions; such is not the case for the NO x emissions. The higher the concentration of propane, the higher the levels of NO x that reached values above the maximum limits set by the environmental standard. A value of 70% vol of propane in the LPG mixture, with variations no greater than 4%, seems to be the best method for reducing pollutant emissions in Mexico City.
NASA Astrophysics Data System (ADS)
Finch, Kenneth
2013-01-01
Pyrolysis oil, or bio-oil, is one of the most promising methods to upgrade a variety of biomass to transportation fuels. Moving toward a more "green" catalytic process requires heterogeneous catalysis over homogeneous catalysis to avoid extraction solvent waste. Nanoscale catalysts are showing great promise due to their high surface area and unusual surfaces. Base catalyzed condensation reactions occur much quicker than acid catalyzed condensation reactions. However, MgO is slightly soluble in water and is susceptible to degradation by acidic environments, similar to those found in fast-pyrolysis oil. Magnesium oxide (111) has a highly active Lewis base surface, which can catalyze Claisen-Schmidt condensation reactions in the organic phase. It has been shown previously that carbon coating a catalyst, such as a metal oxide, provides integrity while leaving the catalytic activity intact. Here, carbon-coated MgO(111) will be discussed with regards to synthesis, characterization and application to bio-oil upgrading through model compounds. Raman spectroscopy and HR-TEM are used to characterize the thickness and carbon-bonding environment of the carbon coating. Propanal self-condensation reactions have been conducted in the aqueous phase with varying amounts of acetic acid present. Quantitative analysis by gas chromatography was completed to determine the catalytic activity of CC-MgO(111). ICP-OES analysis has been conducted to measure the magnesium concentration in the product solution and give insight into the leaching of the catalyst into the reaction solution.
Hatch, J.R.; Leventhal, M.S.
1997-01-01
A process of early diagenetic partial oxidation of organic matter and sulfides has altered the chemical composition of the Middle Pennsylvanian Excello Shale Member of the Fort Scott Limestone and equivalents in the northern Midcontinent region. This process was identified by comparison of organic carbon contents, Rock-Eval hydrogen indices, organic carbon ??13C and element compositions of core and surface mine samples of the Excello Shale Member with analyses of three other underlying and overlying organic-matter-rich marine shales (offshore shale lithofacies) from southern Iowa, northern Missouri, eastern Kansas and northeastern Oklahoma. The end product of the partial oxidation process is shale with relatively low contents of hydrogen-poor, C13-enriched organic matter, lower contents of sulfur and sulfide-forming elements, and relatively unchanged contents of phosphorus and many trace elements (e.g. Cr, Ni, and V). However, because of lower organic carbon contents, element/organic carbon ratios are greatly increased. The partial oxidation process apparently took place during subaerial exposure of the overlying marine carbonate member (Blackjack Creek Member of the Fort Scott Limestone) following a marine regression when meteoric waters percolated down to the level of the Excello muds allowing oxidation of organic matter and sulfides. This hypothesis is supported by earlier workers, who have identified meteoric carbonate cements within, and soil horizons at the top of the Blackjack Creek Member. The period of oxidation is constrained in that organic matter and sulfides in the Little Osage Shale Member of the Fort Scott Limestone and equivalents (immediately overlying the Blackjack Creek Member) appear unaltered. Similar alteration of other shales in the Middle and Upper Pennsylvanian sections may be local to regional in extent and would depend on the extent and duration of the marine regression and be influenced by local variations in permeability and topography. The partial oxidation process has likely led to a redistribution of sulfur and sulfide-forming elements into other organic-rich lithologies in the section. The altered/oxidized shales are nongenerative with respect to hydrocarbon generation.
Partially Premixed Flame (PPF) Research for Fire Safety
NASA Technical Reports Server (NTRS)
Puri, Ishwar K.; Aggarwal, Suresh K.; Lock, Andrew J.; Hegde, Uday
2004-01-01
Incipient fires typically occur after the partial premixing of fuel and oxidizer. The mixing of product species into the fuel/oxidizer mixture influences flame stabilization and fire spread. Therefore, it is important to characterize the impact of different levels of fuel/oxidizer/product mixing on flame stabilization, liftoff and extinguishment under different gravity conditions. With regard to fire protection, the agent concentration required to achieve flame suppression is an important consideration. The initial stage of an unwanted fire in a microgravity environment will depend on the level of partial premixing and the local conditions such as air currents generated by the fire itself and any forced ventilation (that influence agent and product mixing into the fire). The motivation of our investigation is to characterize these impacts in a systematic and fundamental manner.
A Experimental Study of the Growth of Laser Spark and Electric Spark Ignited Flame Kernels.
NASA Astrophysics Data System (ADS)
Ho, Chi Ming
1995-01-01
Better ignition sources are constantly in demand for enhancing the spark ignition in practical applications such as automotive and liquid rocket engines. In response to this practical challenge, the present experimental study was conducted with the major objective to obtain a better understanding on how spark formation and hence spark characteristics affect the flame kernel growth. Two laser sparks and one electric spark were studied in air, propane-air, propane -air-nitrogen, methane-air, and methane-oxygen mixtures that were initially at ambient pressure and temperature. The growth of the kernels was monitored by imaging the kernels with shadowgraph systems, and by imaging the planar laser -induced fluorescence of the hydroxyl radicals inside the kernels. Characteristic dimensions and kernel structures were obtained from these images. Since different energy transfer mechanisms are involved in the formation of a laser spark as compared to that of an electric spark; a laser spark is insensitive to changes in mixture ratio and mixture type, while an electric spark is sensitive to changes in both. The detailed structures of the kernels in air and propane-air mixtures primarily depend on the spark characteristics. But the combustion heat released rapidly in methane-oxygen mixtures significantly modifies the kernel structure. Uneven spark energy distribution causes remarkably asymmetric kernel structure. The breakdown energy of a spark creates a blast wave that shows good agreement with the numerical point blast solution, and a succeeding complex spark-induced flow that agrees reasonably well with a simple puff model. The transient growth rates of the propane-air, propane-air -nitrogen, and methane-air flame kernels can be interpreted in terms of spark effects, flame stretch, and preferential diffusion. For a given mixture, a spark with higher breakdown energy produces a greater and longer-lasting enhancing effect on the kernel growth rate. By comparing the growth rates of the appropriate mixtures, the positive and negative effects of preferential diffusion and flame stretch on the developing flame are clearly demonstrated.
Adlhart, Christian; Uggerud, Einar
2007-01-01
Rates for the dihydrogen elimination of methane, ethane, and propane with cationic platinum clusters, Pt(n) (+) (1
Sunlight Controls Water Column Processing of Carbon in Arctic Freshwaters
NASA Astrophysics Data System (ADS)
Cory, R. M.; Ward, C. P.; Crump, B. C.; Kling, G. W.
2014-12-01
Carbon (C) in thawing permafrost soils may have global impacts on climate change, yet controls on its processing and fate are poorly understood. The dominant fate of dissolved organic C (DOC) released from soils to inland waters is either complete oxidation to CO2 or partial oxidation and river export to oceans. Both processes are most often attributed to bacterial respiration, but we recently showed that photochemical oxidation exceeds rates of respiration and accounts for 70-95% of total DOC processed in the water column of arctic lakes and rivers. While the overall dominance of photochemical processing in streams and lakes remained, the fate of DOC varied consistently by water type. In small streams DOC was mainly mineralized by sunlight to CO2, while in lakes the main fate of DOC was partial photo-oxidation. Large rivers were intermediate between these end members, and photo-mineralization to CO2 was about equal to or less than partial photo-oxidation. We suggest this pattern is a result of light-exposure history, where DOC leached from soils into headwater streams has little prior light exposure and is labile to complete photo-oxidation, but as light exposure increases moving downstream and into lakes with longer residence times the DOC photo-lability declines. Thus as easily photo-mineralized moieties are removed, DOC fate shifts toward partial photo-oxidation and downstream export in rivers and lakes. At the basin scale, photochemical processing of DOC is about one third of the total CO2 released from surface waters, and is thus an important, newly measured component of the Arctic C budget. We also suggest that these photochemical transformations of DOC will occur in any shallow surface water, and could be important for better understanding inland water carbon cycling.
Shimada, T; Yamazaki, H; Oda, Y; Hiratsuka, A; Watabe, T; Guengerich, F P
1996-01-01
A newly developed tester Salmonella typhimurium NM5004 strain was constructed by introducing a plasmid containing both rat GSH S-transferase (GST) 5-5 cDNA and the umuC"lacZ operon into the host strain Salmonella typhimurium TA1535 and used to examine whether or not GST modified the genotoxic activities of several dihaloalkanes and other compounds. Twenty-nine chemicals that were suggested to be conjugated by GST were compared with regard to their abilities to induce umu gene expression and cause cytotoxicity responses in both the NM5004 strain and the original tester strain (S. typhimurium TA1535/pSK1002, which is devoid of GST activity toward 1,2-epoxy-3-(4'-nitrophenoxy)propane). Ten chemicals--1,2-dibromoethane,N-(2,3-epoxypropyl)phthalimide, 1,3-dichloroacetone, CH2I2, 1,2-epoxy-3-phenoxypropane, 2,3-epoxypropyl p-methoxyphenyl ether, 1-bromo-2-chloroethane, 1-bromo-2,3-dichloropropane, CH2BrCl, and CH2Br2--were found to enhance induction of umu gene expression in the NM5004 strain as compared with the TA1535/pSK1002 strain. 1,2-Epoxy-3-(4'-nitrophenoxy)propane and 2,3-dibromo-1-chloropropane were inactivated by GST 5-5 in the NM5004 tester strain, although these chemicals were cytotoxic in both tester strains. Roles of GST 5-5 were also examined for the inactivation of reactive metabolites of several procarcinogens that were formed through oxidation by liver microsomes of polychlorinated biphenyl-treated rats. The results suggest that reactive metabolites (possibly epoxides) of aflatoxin B1, sterigmatocystin, 1,2-dihydro-1,2-dihydroxy-6-aminochrysene, and (+)- and (-)-enantiomers of 7,8-dihydroxy-7,8-dihydrobenzo[a]pyrene could be trapped as inactivated GSH conjugates in the NM5004 strain. High-performance liquid chromatographic analysis suggested that exo-aflatoxin B1-8,9-oxide--GSH conjugate was formed during the oxidation of aflatoxin B1 by rat and human liver microsomes in the presence of GSH and several GST enzymes including purified rat theta class GST Yrs-Yrs and rat liver GST (a mixture of alpha and mu class enzymes). Thus, the present results support the view that the theta class rat GST 5-5 enzyme participates in the activation and inactivation of potential environmental carcinogenic chemicals. This newly developed NM5004 tester strain is of use in the elucidation of roles of GST 5-5 in transformations.
NASA Astrophysics Data System (ADS)
Tong, H.; Snow, G. C.; Chu, E. K.; Chang, R. L. S.; Angwin, M. J.; Pessagno, S. L.
1981-09-01
Durable catalytic reactors for advanced gas turbine engines were developed. Objectives were: to evaluate furnace aging as a cost effective catalytic reactor screening test, measure reactor degradation as a function of furnace aging, demonstrate 1,000 hours of combustion durability, and define a catalytic reactor system with a high probability of successful integration into an automotive gas turbine engine. Fourteen different catalytic reactor concepts were evaluated, leading to the selection of one for a durability combustion test with diesel fuel for combustion conditions. Eight additional catalytic reactors were evaluated and one of these was successfully combustion tested on propane fuel. This durability reactor used graded cell honeycombs and a combination of noble metal and metal oxide catalysts. The reactor was catalytically active and structurally sound at the end of the durability test.
Performance of a catalytic reactor at simulated gas turbine combustor operating conditions
NASA Technical Reports Server (NTRS)
Anderson, D. N.; Tacina, R. R.; Mroz, T. S.
1975-01-01
The performance of a catalytic reactor 12 cm in diameter and 17 cm long was evaluated at simulated gas turbine combustor operating conditions using premixed propane and air. Inlet temperatures of 600 and 800 K, pressures of 3 and 6 atm, and reference velocities of 9 to 30 m/s were tested. Data were taken for equivalence ratios as high as 0.43. The operating range was limited on the low-temperature side by very poor efficiency; the minimum exit temperature for good performance ranged from 1400 to 1600 K depending on inlet conditions. As exit temperatures were raised above this minimum, emissions of unburned hydrocarbons decreased, carbon monoxide emissions became generally less than 1 g CO/kg fuel, and nitrogen oxides were less than about 0.1 g NO2/kg fuel.
NASA Astrophysics Data System (ADS)
Luo, Geng-Geng; Zhu, Rui-Min; He, Wei-Jun; Li, Ming-Zhi; Zhao, Qing-Hua; Li, Dong-Xu; Dai, Jing-Cao
2012-08-01
Flexible azelaic acid (H2aze) and 1,3-bis(4-pyridyl)propane) (bpp) react ultrasonically with silver(I) oxide, generating a new metal-organic framework [Ag2(bpp)2(aze)·7H2O·CH3OH]n (1) that forms a 3D supramolecular structure through H-bonding interactions between solvent molecules and carboxylate O atoms with void spaces. Two kinds of solvent clusters, discrete cyclic (CH3OH)2(H2O)8 heterodecameric and acyclic water trimeric clusters occupy the channels in the structure. Furthermore, 1 exhibits strong photoluminescence maximized at 500 nm upon 350 nm excitation at room temperature, of which CIE chromaticity ordinate (x = 0.28, y = 0.44) is close to that of edge of green component.
Premixing quality and flame stability: A theoretical and experimental study
NASA Technical Reports Server (NTRS)
Radhakrishnan, K.; Heywood, J. B.; Tabaczynski, R. J.
1979-01-01
Models for predicting flame ignition and blowout in a combustor primary zone are presented. A correlation for the blowoff velocity of premixed turbulent flames is developed using the basic quantities of turbulent flow, and the laminar flame speed. A statistical model employing a Monte Carlo calculation procedure is developed to account for nonuniformities in a combustor primary zone. An overall kinetic rate equation is used to describe the fuel oxidation process. The model is used to predict the lean ignition and blow out limits of premixed turbulent flames; the effects of mixture nonuniformity on the lean ignition limit are explored using an assumed distribution of fuel-air ratios. Data on the effects of variations in inlet temperature, reference velocity and mixture uniformity on the lean ignition and blowout limits of gaseous propane-air flames are presented.
NASA Technical Reports Server (NTRS)
Tong, H.; Snow, G. C.; Chu, E. K.; Chang, R. L. S.; Angwin, M. J.; Pessagno, S. L.
1981-01-01
Durable catalytic reactors for advanced gas turbine engines were developed. Objectives were: to evaluate furnace aging as a cost effective catalytic reactor screening test, measure reactor degradation as a function of furnace aging, demonstrate 1,000 hours of combustion durability, and define a catalytic reactor system with a high probability of successful integration into an automotive gas turbine engine. Fourteen different catalytic reactor concepts were evaluated, leading to the selection of one for a durability combustion test with diesel fuel for combustion conditions. Eight additional catalytic reactors were evaluated and one of these was successfully combustion tested on propane fuel. This durability reactor used graded cell honeycombs and a combination of noble metal and metal oxide catalysts. The reactor was catalytically active and structurally sound at the end of the durability test.
NASA Astrophysics Data System (ADS)
Winters, C.; Eckert, Z.; Yin, Z.; Frederickson, K.; Adamovich, I. V.
2018-01-01
This work presents the results of number density measurements of metastable Ar atoms and ground state H atoms in diluted mixtures of H2 and O2 with Ar, as well as ground state O atoms in diluted H2-O2-Ar, CH4-O2-Ar, C3H8-O2-Ar, and C2H4-O2-Ar mixtures excited by a repetitive nanosecond pulse discharge. The measurements have been made in a nanosecond pulse, double dielectric barrier discharge plasma sustained in a flow reactor between two plane electrodes encapsulated within dielectric material, at an initial temperature of 500 K and pressures ranging from 300 Torr to 700 Torr. Metastable Ar atom number density distribution in the afterglow is measured by tunable diode laser absorption spectroscopy, and used to characterize plasma uniformity. Temperature rise in the reacting flow is measured by Rayleigh scattering. H atom and O atom number densities are measured by two-photon absorption laser induced fluorescence. The results are compared with kinetic model predictions, showing good agreement, with the exception of extremely lean mixtures. O atoms and H atoms in the plasma are produced mainly during quenching of electronically excited Ar atoms generated by electron impact. In H2-Ar and O2-Ar mixtures, the atoms decay by three-body recombination. In H2-O2-Ar, CH4-O2-Ar, and C3H8-O2-Ar mixtures, O atoms decay in a reaction with OH, generated during H atom reaction with HO2, with the latter produced by three-body H atom recombination with O2. The net process of O atom decay is O + H → OH, such that the decay rate is controlled by the amount of H atoms produced in the discharge. In extra lean mixtures of propane and ethylene with O2-Ar the model underpredicts the O atom decay rate. At these conditions, when fuel is completely oxidized by the end of the discharge burst, the net process of O atom decay, O + O → O2, becomes nearly independent of H atom number density. Lack of agreement with the data at these conditions is likely due to diffusion of H atoms from the partially oxidized regions near the side walls of the reactor into the plasma. Although significant fractions of hydrogen and hydrocarbon fuels are oxidized by O atoms produced in the plasma, chain branching remains a minor effect at these relatively low temperature conditions.
2017-02-01
wind turbines . The following questions focus on determining how a local population uses the available electrical network, and what aspects of normal...panels, wind turbines , propane tanks, or gas tanks visible in pictures? • Direct Observation – What equipment is used to generate power? • Local...the grid may not be a high priority. Data Collection: • Remote Sensing – Are solar panels, wind turbines , propane tanks, or gas tanks visible in
Sattler, Jesper J H B; Gonzalez-Jimenez, Ines D; Luo, Lin; Stears, Brien A; Malek, Andrzej; Barton, David G; Kilos, Beata A; Kaminsky, Mark P; Verhoeven, Tiny W G M; Koers, Eline J; Baldus, Marc; Weckhuysen, Bert M
2014-01-01
A novel catalyst material for the selective dehydrogenation of propane is presented. The catalyst consists of 1000 ppm Pt, 3 wt % Ga, and 0.25 wt % K supported on alumina. We observed a synergy between Ga and Pt, resulting in a highly active and stable catalyst. Additionally, we propose a bifunctional active phase, in which coordinately unsaturated Ga3+ species are the active species and where Pt functions as a promoter. PMID:24989975
Severe Sunburn After a Hot Air Balloon Ride: A Case Report and Literature Review.
Ozturk, Sinan; Karagoz, Huseyin
2015-01-01
Hot air balloon tours are very popular among travelers worldwide. Preventable burn injuries associated with hot air balloon rides have been reported during crashes into power lines, in propane burner explosions, and following contact with the propane burner tanks. We present a case of severe repeated sunburn, which poses another risk of preventable injury during hot air balloon rides, and briefly discuss the injury epidemiology of hot air balloon rides. © 2015 International Society of Travel Medicine.
Tourrette, T.Z.L.; Burnett, D.S.; Bacon, C.R.
1991-01-01
Crystal-liquid partitioning in Fe-Ti oxides and zircon was studied in partially melted granodiorite blocks ejected during the climactic eruption of Mt. Mazama (Crater Lake), Oregon. The blocks, which contain up to 33% rhyolite glass (75 wt% SiO2), are interpreted to be portions of the magma chamber walls that were torn off during eruption. The glass is clear and well homogenized for all measured elements except Zr. Results for Fe-Ti oxides give DUoxide/liq ??? 0.1. Partitioning of Mg, Mn, Al, Si, V, and Cr in Fe-Ti oxides indicates that grains surrounded by glass are moderately well equilibrated with the melt for many of the minor elements, while those that are inclusions in relict plagioclase are not. Uranium and ytterbium inhomogeneities in zircons indicate that the zircons have only partially equilibrated with the melt and that uranium appears to have been diffusing out of the zircons faster than the zircons were dissolving. Minimum U, Y, and P concentrations in zircons give maximum DUzrc/liq = 13,DYzrc/liq = 23, and DPzrc/liq = 1, but these are considerably lower than reported by other workers for U and Y. Based on our measurements and given their low abundances in most rocks, Fe-Ti oxides probably do not play a major role in U-Th fractionation during partial melting. The partial melts were undersaturated with zircon and apatite, but both phases are present in our samples. This demonstrates an actual case of non-equilibrium source retention of accessory phases, which in general could be an important trace-element fractionation mechanism. Our results do not support the hypothesis that liquid structure is the dominant factor controlling trace-element partitioning in high-silica rhyolites. Rough calculations based on Zr gradients in the glass indicate that the samples could have been partially molten for 800 to 8000 years. ?? 1991.
A Theoretical Study of Methanol Oxidation on RuO 2(110): Bridging the Pressure Gap
DOE Office of Scientific and Technical Information (OSTI.GOV)
Latimer, Allegra A.; Abild-Pedersen, Frank; Norskov, Jens K.
Partial oxidation catalysis is often fraught with selectivity problems, largely because there is a tendency of oxidation products to be more reactive than the starting material. One industrial process that has successfully overcome this problem is partial oxidation of methanol to formaldehyde. This process has become a global success, with an annual production of 30 million tons. Although ruthenium catalysts have not shown activity as high as the current molybdena or silver-based industrial standards, the study of ruthenium systems has the potential to elucidate which catalyst properties facilitate the desired partial oxidation reaction as opposed to deep combustion due tomore » a pressure-dependent selectivity “switch” that has been observed in ruthenium-based catalysts. In this work, we find that we are able to successfully rationalize this “pressure gap” using near-ab initio steady-state microkinetic modeling on RuO 2(110). We obtain molecular desorption prefactors from experiment and determine all other energetics using density functional theory. We show that, under ambient pressure conditions, formaldehyde production is favored on RuO 2(110), whereas under ultrahigh vacuum pressure conditions, full combustion to CO 2 takes place. We glean from our model several insights regarding how coverage effects, oxygen activity, and rate-determining steps influence selectivity and activity. As a result, we believe the understanding gained in this work might advise and inspire the greater partial oxidation community and be applied to other catalytic processes which have not yet found industrial success.« less
A Theoretical Study of Methanol Oxidation on RuO 2(110): Bridging the Pressure Gap
Latimer, Allegra A.; Abild-Pedersen, Frank; Norskov, Jens K.
2017-05-26
Partial oxidation catalysis is often fraught with selectivity problems, largely because there is a tendency of oxidation products to be more reactive than the starting material. One industrial process that has successfully overcome this problem is partial oxidation of methanol to formaldehyde. This process has become a global success, with an annual production of 30 million tons. Although ruthenium catalysts have not shown activity as high as the current molybdena or silver-based industrial standards, the study of ruthenium systems has the potential to elucidate which catalyst properties facilitate the desired partial oxidation reaction as opposed to deep combustion due tomore » a pressure-dependent selectivity “switch” that has been observed in ruthenium-based catalysts. In this work, we find that we are able to successfully rationalize this “pressure gap” using near-ab initio steady-state microkinetic modeling on RuO 2(110). We obtain molecular desorption prefactors from experiment and determine all other energetics using density functional theory. We show that, under ambient pressure conditions, formaldehyde production is favored on RuO 2(110), whereas under ultrahigh vacuum pressure conditions, full combustion to CO 2 takes place. We glean from our model several insights regarding how coverage effects, oxygen activity, and rate-determining steps influence selectivity and activity. As a result, we believe the understanding gained in this work might advise and inspire the greater partial oxidation community and be applied to other catalytic processes which have not yet found industrial success.« less
Catalytic oxidation of light alkanes in presence of a base
Bhinde, Manoj V.; Bierl, Thomas W.
1998-01-01
The presence of a base in the reaction mixture in a metal-ligand catalyzed partial oxidation of alkanes results in sustained catalyst activity, and in greater percent conversion as compared with oxidation in the absence of base, while maintaining satisfactory selectivity for the desired oxidation, for example the oxidation of isobutane to isobutanol.
Sulfur control in ion-conducting membrane systems
Stein, VanEric Edward; Richards, Robin Edward; Brengel, David Douglas; Carolan, Michael Francis
2003-08-05
A method for controlling the sulfur dioxide partial pressure in a pressurized, heated, oxygen-containing gas mixture which is contacted with an ion-conducting metallic oxide membrane which permeates oxygen ions. The sulfur dioxide partial pressure in the oxygen-depleted non-permeate gas from the membrane module is maintained below a critical sulfur dioxide partial pressure, p.sub.SO2 *, to protect the membrane material from reacting with sulfur dioxide and reducing the oxygen flux of the membrane. Each ion-conducting metallic oxide material has a characteristic critical sulfur dioxide partial pressure which is useful in determining the required level of sulfur removal from the feed gas and/or from the fuel gas used in a direct-fired feed gas heater.
Stephenson, Karin A; Wilson, Alan A; Meyer, Jeffrey H; Houle, Sylvain; Vasdev, Neil
2008-08-28
An efficient and general method has been developed for fluorine-18 labeling of beta-blockers that possess the propanolamine moiety. A new synthetically versatile intermediate, 3-(1-(benzyloxy)propan-2-yl)-2-oxooxazolidin-5-yl)methyl 4-methylbenzenesulfonate (13), was prepared and can be conjugated to any phenoxy core. To demonstrate the synthetic methodology, fluorinated derivatives of toliprolol were prepared, namely, [(18)F]-(2S and 2R)-1-(1-fluoropropan-2-ylamino)-3-(m-tolyloxy)propan-2-ol ((2S and 2R)-[(18)F]1). The radiosyntheses were accomplished in <1 h, with 20-24% (uncorrected for decay, n = 7) radiochemical yields, >96% radiochemical and >99% enantiomeric purities, with specific activities of 0.9-1.1 Ci/micromol (EOS). Ex vivo biodistribution studies with the radiotracers demonstrated excessively rapid washout that may limit their use for cerebral PET imaging.
Winter fuels report, week ending November 12, 1993
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1993-11-18
The Winter Fuels Report is intended to provide concise, timely information to the industry, the press, policymakers, consumers, analysts, and State and local governments on the following topics: Distillate fuel oil net production, imports and stocks on a US level and for all Petroleum Administration for Defense Districts (PADD) and product supplied on a US level; propane net production, imports and stocks on a US level and for PADD`s I, II, and III; natural gas supply and disposition and underground storage for the US and consumption for all PADD`S; as well as selected National average prices; residential and wholesale pricingmore » data for heating oil and propane for those States participating in the joint Energy Information Administration (EIA)/State Heating Oil and Propane Program; crude oil and petroleum price comparisons for the US and selected cities; and a 6--10 Day, 30-Day, and 90-Day outlook for temperature and precipitation and US total heating degree-days by city.« less
Influence of propane additives on the detonation characteristics of H2-air mixtures
NASA Astrophysics Data System (ADS)
Cheng, Guanbing; Bauer, Pascal; Zitoun, Ratiba
2014-03-01
Hydrogen is more and more considered as a potential fuel for propulsion applications. However, due to its low ignition energy and wide flammability limits, H2-air mixtures raise a concern in terms of safety. This aspect can be partly solved by adding an alkane to these mixtures, which plays the role of an inhibitor. The present paper provides data on such binary fuel-air mixtures where various amounts of propane are added to hydrogen. The behavior of the corresponding mixtures, in terms of detonation characteristics and other fundamental properties, such as the cell size of the detonation front and induction delay, are presented and discussed for a series of equivalence ratios and propane addition. The experimental detonation velocity is in good agreement with calculated theoretical Chapman-Jouguet values. Based on soot tracks records, the cell size λ is measured, whereas the induction length L i is derived from data using a GRI-Mech kinetic mechanism. These data allow providing a value of the coefficient K = λ/L i .
LPG Dependence after a Suicide Attempt
Aldemir, Ebru; Akyel, Betül; Altıntoprak, A. Ender; Aydın, Rezzan; Coşkunol, Hakan
2015-01-01
Inhalant abuse is a problem that is getting more common all around the world. The increase in prevalence of inhalant abuse escalates morbidity and mortality rates. About 22% of people using inhalant have died at their first attempt. Particularly propane, butane, or propane-butane mixture has highest mortality rates. Sudden sniffing death syndrome, cardiomyopathy, central nervous system toxicity, hematological abnormalities, kidney toxicity, and hepatocellular toxicities are the major complications of inhalant abuse. Herein we present a patient with inhalant use disorder. At the age of 19, after a stressful life event he had unsuccessfully tried to suicide by inhaling LPG (liquefied petroleum gas, a mixture of butane and propane gases). After he realized that he had hallucinations and felt better during the inhalation, he started to abuse it. He was addicted to LPG for 10 years at the time of admission. Besides being dangerous for the society security, this intense level of LPG inhalation (12 liters a day) not giving any physical harm makes this case interesting. PMID:25664196
Selective deoxygenation of aldehydes and alcohols on molybdenum carbide (Mo2C) surfaces
NASA Astrophysics Data System (ADS)
Xiong, Ke; Yu, Weiting; Chen, Jingguang G.
2014-12-01
The selective deoxygenation of aldehydes and alcohols without cleaving the Csbnd C bond is crucial for upgrading bio-oil and other biomass-derived molecules to useful fuels and chemicals. In this work, propanal, 1-propanol, furfural and furfuryl alcohol were selected as probe molecules to study the deoxygenation of aldehydes and alcohols on molybdenum carbide (Mo2C) prepared over a Mo(1 1 0) surface. The reaction pathways were investigated using temperature programmed desorption (TPD) and high resolution electron energy loss spectroscopy (HREELS). The deoxygenation of propanal and 1-propanol went through a similar intermediate (propoxide or η2(C,O)-propanal) to produce propene. The deoxygenation of furfural and furfuryl alcohol produced a surface intermediate similar to adsorbed 2-methylfuran. The comparison of these results revealed the promising deoxygenation performance of Mo2C, as well as the effect of the furan ring on the selective deoxygenation of the Cdbnd O and Csbnd OH bonds.
Effect of an alternating electric field on the polluting emission from propane flame.
NASA Astrophysics Data System (ADS)
Ukradiga, I.; Turlajs, D.; Purmals, M.; Barmina, I.; Zake, M.
2001-12-01
The experimental investigations of the AC field effect on the propane combustion and processes that cause the formation of polluting emissions (NO_x, CO, CO_2) are performed. The AC-enhanced variations of the temperature and composition of polluting emissions are studied for the fuel-rich and fuel-lean conditions of the flame core. The results show that the AC field-enhanced mixing of the fuel-rich core with the surrounding air coflow enhances the propane combustion with increase in the mass fraction of NO_x and CO_2 in the products. The reverse field effect on the composition of polluting emissions is observed under the fuel-lean conditions in the flame core. The field-enhanced CO_2 destruction is registered when the applied voltage increase. The destruction of CO_2 leads to a correlating increase in the mass fraction of CO in the products and enhances the process of NO_x formation within the limit of the fuel lean and low temperature combustion. Figs 11, Refs 18.
NASA Technical Reports Server (NTRS)
Agrawal, P. C.; Ramsey, B. D.
1988-01-01
An experimental investigation of propane and six other quench gases was carried out in argon-filled proportional counters. The objective of the study was to find the best gas mixture for optimizing the gas gain and the energy resolution as well as to understand the role of the ionization potential of quench gases in determining these parameters. It was found that the best gas gains and energy resolutions are obtained with propane, ethane, and isobutane in that order. The ionization potentials of these three lie below the argon metastable potentials and have the lowest value of resonance defect compared to the other quench gases. The better results obtained with these mixtures can be explained by an increased ionization yield resulting from the Penning effect. Propylene and trans-2-butene give inferior performance compared to the above three gases. Methane and carbon dioxide, the most commonly used quench gases in the argon-filled detectors, provide the worst results.
Morán-Lázaro, Juan Pablo; Guillen-López, Erwin Said; López-Urias, Florentino; Muñoz-Sandoval, Emilio; Blanco-Alonso, Oscar; Guillén-Bonilla, Héctor; Guillén-Bonilla, Alex; Rodríguez-Betancourtt, Verónica María; Sanchez-Tizapa, Marciano; Olvera-Amador, María de la Luz
2018-02-27
Spinel-type ZnMn₂O₄ nanoparticles were synthesized via a simple and inexpensive microwave-assisted colloidal route. Structural studies by X-ray diffraction showed that a spinel crystal phase of ZnMn₂O₄ was obtained at a calcination temperature of 500 °C, which was confirmed by Raman and UV-vis characterizations. Spinel-type ZnMn₂O₄ nanoparticles with a size of 41 nm were identified by transmission electron microscopy. Pellet-type sensors were fabricated using ZnMn₂O₄ nanoparticles as sensing material. Sensing measurements were performed by exposing the sensor to different concentrations of propane or carbon monoxide at temperatures in the range from 100 to 300 °C. Measurements performed at an operating temperature of 300 °C revealed a good response to 500 ppm of propane and 300 ppm of carbon monoxide. Hence, ZnMn₂O₄ nanoparticles possess a promising potential in the gas sensors field.
Combustion performance and heat transfer characterization of LOX/hydrocarbon type propellants
NASA Technical Reports Server (NTRS)
Michel, R. W.
1983-01-01
An evaluation liquid oxygen (LOX) and various hydrocarbon fuels as low cost alternative propellants suitable for future space transportation system applications was done. The emphasis was directed toward low earth orbit maneuvering engine and reaction control engine systems. The feasibility of regeneratively cooling an orbit maneuvering thruster was analytically determined over a range of operating conditions from 100 to 1000 psia chamber pressure and 1000 to 10,000-1bF thrust, and specific design points were analyzed in detail for propane, methane, RP-1, ammonia, and ethanol; similar design point studies were performed for a film-cooled reaction control thruster. Heat transfer characteristics of propane were experimentally evaluated in heated tube tests. Forced convection heat transfer coefficients were determined. Seventy-seven hot firing tests were conducted with LOX/propane and LOX/ethanol, for a total duration of nearly 1400 seconds, using both heat sink and water-cooled calorimetric chambers. Combustion performance and stability and gas-side heat transfer characteristics were evaluated.
Enhanced Hydrate Nucleation Near the Limit of Stability.
Jimenez-Angeles, Felipe; Firoozabadi, Abbas
2015-03-30
Clathrate hydrates are crystalline structures composed of small guest molecules trapped into cages formed by hydrogen-bonded water molecules. In hydrate nucleation, water and the guest molecules may stay in a metastable fluid mixture for a long period. Metastability is broken if the concentration of the guest is above certain limit. We perform molecular dynamics (MD) simulations of supersaturated water-propane solutions close to the limit of stability. We show that hydrate nucleation can be very fast in a very narrow range of composition at moderate temperatures. Propane density fluctuations near the fluid-fluid demixing are coupled with crystallization producing en- hanced nucleation rates. This is the first report of propane-hydrate nucleation by MD simulations. We observe motifs of the crystalline structure II in line with experiments and new hydrate cages not reported in the literature. Our study relates nucleation to the fluid-fluid spinodal decomposition and demonstration that the enhanced nucleation phenomenon is more general than short range attractive interactions as suggested in nucleation of proteins.
NASA Technical Reports Server (NTRS)
Dugger, Gordon L
1952-01-01
Flame speeds based on the outer edge of the shadow cast by the laminar Bunsen cone were determined as functions of composition for methane-air mixtures at initial mixture temperatures ranging from -132 degrees to 342 degrees c and for propane-air and ethylene-air mixtures at initial mixture temperatures ranging from -73 degrees to 344 degrees c. The data showed that maximum flame speed increased with temperature at an increasing rate. The percentage change in flame speed with change in initial temperature for the three fuels followed the decreasing order, methane, propane, and ethylene. Empirical equations were determined for maximum flame speed as a function of initial temperature over the temperature range covered for each fuel. The observed effect of temperature on flame speed for each of the fuels was reasonably well predicted by either the thermal theory as presented by Semenov or the square-root law of Tanford and Pease.
LPG Dependence after a Suicide Attempt.
Aldemir, Ebru; Akyel, Betül; Altıntoprak, A Ender; Aydın, Rezzan; Coşkunol, Hakan
2015-01-01
Inhalant abuse is a problem that is getting more common all around the world. The increase in prevalence of inhalant abuse escalates morbidity and mortality rates. About 22% of people using inhalant have died at their first attempt. Particularly propane, butane, or propane-butane mixture has highest mortality rates. Sudden sniffing death syndrome, cardiomyopathy, central nervous system toxicity, hematological abnormalities, kidney toxicity, and hepatocellular toxicities are the major complications of inhalant abuse. Herein we present a patient with inhalant use disorder. At the age of 19, after a stressful life event he had unsuccessfully tried to suicide by inhaling LPG (liquefied petroleum gas, a mixture of butane and propane gases). After he realized that he had hallucinations and felt better during the inhalation, he started to abuse it. He was addicted to LPG for 10 years at the time of admission. Besides being dangerous for the society security, this intense level of LPG inhalation (12 liters a day) not giving any physical harm makes this case interesting.
NASA Astrophysics Data System (ADS)
Jung, Heon; Yoon, Wang Lai; Lee, Hotae; Park, Jong Soo; Shin, Jang Sik; La, Howon; Lee, Jong Dae
A palladium-washcoated metallic monolith catalyst is applied to the partial oxidation of methane to syngas. This catalyst is highly active at a gas hourly space velocity (GHSV) of 100,000 h -1. The compact partial oxidation (POX) reactor equipped with both 96 cc of the metallic monolith catalyst and an electrically-heated catalyst (EHC) has a start-up time of less than 1.5 min and a syngas generation capacity of 9.5 Nm 3 h -1. The POX reaction is sustained without the need for an external heater. With the stand-alone POX reactor, the methane conversion can be increased either by preheating the reactant mixture heat-exchanged with the product gas, or by supplying a larger amount of oxygen than is necessary for the reaction stoichiometry.
Selective Oxidation and Reactive Wetting during Galvanizing of a CMnAl TRIP-Assisted Steel
NASA Astrophysics Data System (ADS)
Bellhouse, E. M.; McDermid, J. R.
2011-09-01
A transformation induced plasticity (TRIP)-assisted steel with 0.2 pct C, 1.5 pct Mn, and 1.5 pct Al was successfully galvanized using a thermal cycle previously shown to produce an excellent combination of strength and ductility. The steel surface chemistry and oxide morphology were determined as a function of process atmosphere oxygen partial pressure. For the 220 K (-53 °C) dew point (dp) + 20 pct H2 atmosphere, the oxide morphology was a mixture of films and nodules. For the 243 K (-30 °C) dp + 5 pct H2 atmosphere, nodules of MnO were found primarily at grain boundaries. For the 278 K (+5 °C) dp + 5 pct H2 atmosphere, nodules of metallic Fe were found on the surface as a result of alloy element internal oxidation. The steel surface chemistry and oxide morphology were then related to the reactive wetting behavior during continuous hot dip galvanizing. Good wetting was obtained using the two lower oxygen partial pressure process atmospheres [220 K dp and 243 K dp (-53 °C dp and -30 °C dp)]. An increase in the number of bare spots was observed when using the higher oxygen partial pressure process atmosphere (+5 °C dp) due to the increased thickness of localized oxide films.
Kline, Daniel L; Müller, Günter C; Hogsette, Jerome A
2011-03-01
In this study, we evaluated the efficacy of eleven commercial models of propane combustion traps for catching male and female Phlebotomus papatasi. The traps differed in physical appearance, amount of carbon dioxide produced and released, type and location of capturing device, and the method by which the trap suction fans were powered. The traps tested were the Mosquito Magnet™(MM)-Pro, MM-Liberty, MM-Liberty Plus, MM-Defender, SkeeterVac®(SV)-35, SV-27, Mosquito Deleto™(MD)-2200, MD-2500, MT150-Power Trap, and two models of The Guardian Mosquito Traps (MK-01 and MK-12). All trap models except the SV-35, the SV-27, the MD-2500, and the MK-12 attracted significantly more females than males. The SV-35 was the most efficient trap, catching significantly more females than all the other models. The MD-2200 and MK-12 models were the least effective in catching either female or male sand flies. These data indicate that several models of propane combustion traps might be suitable substitutes for either CO(2) -baited or unbaited light traps for adult sand fly surveillance tools. One advantageous feature is the traps' ability to remain operational 24/7 for ca. 20 days on a single tank of propane. Additionally, the models that produce their own electricity to power the trap's fans have an important logistical advantage in field operations over light traps, which require daily battery exchange and charging. © 2011 The Society for Vector Ecology.
Bouche, Marie-Paule L A; Lambert, Willy E; Van Bocxlaer, Jan F P; Piette, Michel H; De Leenheer, André P
2002-01-01
This report describes a fully elaborated and validated method for quantitation of the hydrocarbons n-propane, iso-butane, and n-butane in blood samples. The newly developed analytical procedure is suitable for both emergency cases and forensic medicine investigations. Its practical applicability is illustrated with a forensic blood sample after acute inhalative intoxication with lighter fluid; case history and toxicological findings are included. Identification and quantitation of the analytes were performed using static headspace extraction combined with gas chromatography-mass spectrometry. In order to reconcile the large gas volumes injected (0.5 mL) with the narrowbore capillary column and thus achieve preconcentration, cold trapping on a Tenax sorbent followed by flash desorption was applied. Adequate retention and separation were achieved isothermally at 35 degrees C on a thick-film capillary column. Sample preparation was kept to a strict minimum and involved simply adding 2.5 microL of a liquid solution of 1,1,2-trichlorotrifluoroethane in t-butyl-methylether as an internal standard to aliquots of blood in a capped vial. Standards were created by volumetric dilution departing from a gravimetrically prepared calibration gas mixture composed of 0.3% of n-propane, 0.7% of iso-butane, and 0.8% of n-butane in nitrogen. In the forensic blood sample, the following concentrations were measured: 90.0 microg/L for n-propane, 246 microg/L for iso-butane, and 846 microg/L for n-butane.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Getsoian, Andrew "Bean"; Das, Ujjal; Camacho-Bunquin, Jeffrey
Gallium-modified zeolites are known catalysts for the dehydrogenation of alkanes, reactivity that finds industrial application in the aromatization of light alkanes by Ga-ZSM5. While the role of gallium cations in alkane activation is well known, the oxidation state and coordination environment of gallium under reaction conditions has been the subject of debate. Edge shifts in Ga K-edge XANES spectra acquired under reaction conditions have long been interpreted as evidence for reduction of Ga(III) to Ga(I). However, a change in oxidation state is not the only factor that can give rise to a change in the XANES spectrum. In order tomore » better understand the XANES spectra of working catalysts, we have synthesized a series of molecular model compounds and grafted surface organometallic Ga species and compared their XANES spectra to those of gallium-based catalysts acquired under reducing conditions. We demonstrate that changes in the identity and number of gallium nearest neighbors can give rise to changes in XANES spectra similar to those attributed in literature to changes in oxidation state. Specifically, spectral features previously attributed to Ga(I) may be equally well interpreted as evidence for low-coordinate Ga(III) alkyl or hydride species. Furthermore, these findings apply both to gallium-impregnated zeolite catalysts and to silica-supported single site gallium catalysts, the latter of which is found to be active and selective for dehydrogenation of propane and hydrogenation of propylene.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Getsoian, Andrew “Bean”; Das, Ujjal; Camacho-Bunquin, Jeffrey
Gallium-modified zeolites are known catalysts for the dehydrogenation of alkanes, reactivity that finds industrial application in the aromatization of light alkanes by Ga-ZSM5. While the role of gallium cations in alkane activation is well known, the oxidation state and coordination environment of gallium under reaction conditions has been the subject of debate. Edge shifts in Ga K-edge XANES spectra acquired under reaction conditions have long been interpreted as evidence for reduction of Ga(III) to Ga(I). However, a change in oxidation state is not the only factor that can give rise to a change in the XANES spectrum. In order tomore » better understand the XANES spectra of working catalysts, we have synthesized a series of molecular model compounds and grafted surface organometallic Ga species and compared their XANES spectra to those of gallium-based catalysts acquired under reducing conditions. We demonstrate that changes in the identity and number of gallium nearest neighbors can give rise to changes in XANES spectra similar to those attributed in literature to changes in oxidation state. Specifically, spectral features previously attributed to Ga(I) may be equally well interpreted as evidence for low-coordinate Ga(III) alkyl or hydride species. These findings apply both to gallium-impregnated zeolite catalysts and to silica-supported single site gallium catalysts, the latter of which is found to be active and selective for dehydrogenation of propane and hydrogenation of propylene.« less
Ong, Wei-Yi; Farooqui, Tahira; Kokotos, George; Farooqui, Akhlaq A
2015-06-17
Phospholipases A2 (PLA2) are a diverse group of enzymes that hydrolyze membrane phospholipids into arachidonic acid and lysophospholipids. Arachidonic acid is metabolized to eicosanoids (prostaglandins, leukotrienes, thromboxanes), and lysophospholipids are converted to platelet-activating factors. These lipid mediators play critical roles in the initiation, maintenance, and modulation of neuroinflammation and oxidative stress. Neurological disorders including excitotoxicity; traumatic nerve and brain injury; cerebral ischemia; Alzheimer's disease; Parkinson's disease; multiple sclerosis; experimental allergic encephalitis; pain; depression; bipolar disorder; schizophrenia; and autism are characterized by oxidative stress, inflammatory reactions, alterations in phospholipid metabolism, accumulation of lipid peroxides, and increased activities of brain phospholipase A2 isoforms. Several old and new synthetic inhibitors of PLA2, including fatty acid trifluoromethyl ketones; methyl arachidonyl fluorophosphonate; bromoenol lactone; indole-based inhibitors; pyrrolidine-based inhibitors; amide inhibitors, 2-oxoamides; 1,3-disubstituted propan-2-ones and polyfluoroalkyl ketones as well as phytochemical based PLA2 inhibitors including curcumin, Ginkgo biloba and Centella asiatica extracts have been discovered and used for the treatment of neurological disorders in cell culture and animal model systems. The purpose of this review is to summarize information on selective and potent synthetic inhibitors of PLA2 as well as several PLA2 inhibitors from plants, for treatment of oxidative stress and neuroinflammation associated with the pathogenesis of neurological disorders.
Complete and Partial Photo-oxidation of Dissolved Organic Matter Draining Permafrost Soils.
Ward, Collin P; Cory, Rose M
2016-04-05
Photochemical degradation of dissolved organic matter (DOM) to carbon dioxide (CO2) and partially oxidized compounds is an important component of the carbon cycle in the Arctic. Thawing permafrost soils will change the chemical composition of DOM exported to arctic surface waters, but the molecular controls on DOM photodegradation remain poorly understood, making it difficult to predict how inputs of thawing permafrost DOM may alter its photodegradation. To address this knowledge gap, we quantified the susceptibility of DOM draining the shallow organic mat and the deeper permafrost layer of arctic soils to complete and partial photo-oxidation and investigated changes in the chemical composition of each DOM source following sunlight exposure. Permafrost and organic mat DOM had similar lability to photomineralization despite substantial differences in initial chemical composition. Concurrent losses of carboxyl moieties and shifts in chemical composition during photodegradation indicated that photodecarboxylation could account for 40-90% of DOM photomineralized to CO2. Permafrost DOM had a higher susceptibility to partial photo-oxidation compared to organic mat DOM, potentially due to a lower abundance of phenolic moieties with antioxidant properties. These results suggest that photodegradation will likely continue to be an important control on DOM fate in arctic freshwaters as the climate warms and permafrost soils thaw.
Rongsayamanont, Chaiwat; Limpiyakorn, Tawan; Khan, Eakalak
2014-07-01
An entrapment of nitrifiers into gel matrix is employed as a tool to fulfill partial nitrification under non-limiting dissolved oxygen (DO) concentrations in bulk solutions. This study aims to clarify which of these two attributes, inoculum type and DO concentration in bulk solutions, is the decisive factor for partial nitrification in an entrapped-cell based system. Four polyvinyl alcohol entrapped inocula were prepared to have different proportions of nitrite-oxidizing bacteria (NOB) and nitrite-oxidizing activity. At a DO concentration of 3 mg l(-1), the number of active NOB cells in an inoculum was the decisive factor for partial nitrification enhancement. However, when the DO concentration was reduced to 2 mg l(-1), all entrapped cell inocula showed similar degrees of partial nitrification. The results suggested that with the lower bulk DO concentration, the preparation of entrapped cell inocula is not useful as the DO level becomes the decisive factor for achieving partial nitrification. Copyright © 2014 Elsevier Ltd. All rights reserved.
Max, M; Kuhlen, R; Falter, F; Reyle-Hahn, M; Dembinski, R; Rossaint, R
2000-04-01
Partial liquid ventilation, positive end-expiratory pressure (PEEP) and inhaled nitric oxide (NO) can improve ventilation/perfusion mismatch in acute lung injury (ALI). The aim of the present study was to compare gas exchange and hemodynamics in experimental ALI during gaseous and partial liquid ventilation at two different levels of PEEP, with and without the inhalation of nitric oxide. Seven pigs (24+/-2 kg BW) were surfactant-depleted by repeated lung lavage with saline. Gas exchange and hemodynamic parameters were assessed in all animals during gaseous and subsequent partial liquid ventilation at two levels of PEEP (5 and 15 cmH2O) and intermittent inhalation of 10 ppm NO. Arterial oxygenation increased significantly with a simultaneous decrease in cardiac output when PEEP 15 cmH2O was applied during gaseous and partial liquid ventilation. All other hemodynamic parameters revealed no relevant changes. Inhalation of NO and instillation of perfluorocarbon had no additive effects on pulmonary gas exchange when compared to PEEP 15 cmH2O alone. In experimental lung injury, improvements in gas exchange are most distinct during mechanical ventilation with PEEP 15 cmH2O without significantly impairing hemodynamics. Partial liquid ventilation and inhaled NO did not cause an additive increase of PaO2.
Catalytic oxidation of light alkanes in presence of a base
Bhinde, M.V.; Bierl, T.W.
1998-03-03
The presence of a base in the reaction mixture in a metal-ligand catalyzed partial oxidation of alkanes results in sustained catalyst activity, and in greater percent conversion as compared with oxidation in the absence of base, while maintaining satisfactory selectivity for the desired oxidation, for example the oxidation of isobutane to isobutanol. 1 fig.
Preparation of polyol esters based on vegetable and animal fats.
Gryglewicz, S; Piechocki, W; Gryglewicz, G
2003-03-01
The possibility of using some natural fats: rapeseed oil, olive oil and lard, as starting material for the preparation of neopentyl glycol (NPG) and trimethylol propane (TMP) esters is reported. The syntheses of final products were performed by alcoholysis of fatty acid methyl esters, obtained from natural fats studied, with the appropriate polyhydric alcohol using calcium methoxide as a catalyst. The basic physicochemical properties of the NPG and TMP esters synthesized were the following: viscosity at 40 degrees C in the range of 13.5-37.6 cSt, pour point between -10.5 and -17.5 degrees C and very high viscosity indices, higher than 200. Generally, the esters of neopentyl alcohols were characterized by higher stability in thermo-oxidative conditions in comparison to native triglycerides. Due to the low content of polyunsaturated acids, the olive oil based esters showed the highest thermo-oxidative resistance. Also, methyl esters of fatty acids of lard would constitute a good raw material for the synthesis of lubricating oils, provided that their saturated acids content was lowered. This permits synthesis of NPG and TMP esters with a lower pour point (below -10 degrees C) than natural lard (+33 degrees C).
Using a Floating-Gate MOS Transistor as a Transducer in a MEMS Gas Sensing System
Barranca, Mario Alfredo Reyes; Mendoza-Acevedo, Salvador; Flores-Nava, Luis M.; Avila-García, Alejandro; Vazquez-Acosta, E. N.; Moreno-Cadenas, José Antonio; Casados-Cruz, Gaspar
2010-01-01
Floating-gate MOS transistors have been widely used in diverse analog and digital applications. One of these is as a charge sensitive device in sensors for pH measurement in solutions or using gates with metals like Pd or Pt for hydrogen sensing. Efforts are being made to monolithically integrate sensors together with controlling and signal processing electronics using standard technologies. This can be achieved with the demonstrated compatibility between available CMOS technology and MEMS technology. In this paper an in-depth analysis is done regarding the reliability of floating-gate MOS transistors when charge produced by a chemical reaction between metallic oxide thin films with either reducing or oxidizing gases is present. These chemical reactions need temperatures around 200 °C or higher to take place, so thermal insulation of the sensing area must be assured for appropriate operation of the electronics at room temperature. The operation principle of the proposal here presented is confirmed by connecting the gate of a conventional MOS transistor in series with a Fe2O3 layer. It is shown that an electrochemical potential is present on the ferrite layer when reacting with propane. PMID:22163478
Ljubuncic, Predrag; Portnaya, Irina; Cogan, Uri; Azaizeh, Hassan; Bomzon, Arieh
2005-10-03
The medicinal use of extracts prepared from plant parts of the genus Crataegus dates back to ancient times. Furthermore, it has been proposed that its antioxidant constituents account for its beneficial therapeutic effects. A decoction of leaves and unripe fruits from Crataegus aronia syn. azarolus (L) (Rosaceae), the indigenous Israeli hawthorn, is used to treat cardiovascular diseases, cancer, diabetes and sexual weakness in Arab traditional medicine. Because laboratory data on the bioactivity of extracts prepared from the indigenous Israeli hawthorn is lacking, we evaluated the antioxidant and cytotoxic potentials of an extract prepared from leaves and unripe fruits in a variety of cell and cell-free in vitro assays. The antioxidant assays measured: (a) its ability to inhibit (i) oxidation of beta-carotene, (ii) 2,2'-azobis(2-amidino-propan) dihydrochloride (AAPH)-induced plasma oxidation and (iii) iron-induced lipid peroxidation in rat liver homogenates; (b) its ability to scavenge the superoxide (O2-) radical; (c) its effects on the enzyme xanthine oxidase (XO) activity; (d) its effect on the redox state of glutathione (GSH) in cultured Hep G2 cells. In addition, we also evaluated the effects of the extract on cell membrane integrity and mitochondrial respiration in cultured Hep G2 cells. Water-soluble extracts inhibited (1) oxidation of beta-carotene, (2) AAPH-induced plasma oxidation and (3) Fe(2+)-induced lipid peroxidation in rat liver homogenates. In addition, the extract (4) is an efficient scavenger of the O2- (5) increases intracellular GSH levels and (6) is not cytotoxic. Accordingly, we propose that the therapeutic benefit of Crataegus aronia can be, at least in part, attributed to its effective inhibition of oxidative processes, efficient scavenging of O2- and possible increasing GSH biosynthesis.
NASA Astrophysics Data System (ADS)
Bramlette, Richard B.
In the 1950s, Eugene Gluhareff built the first working "pressure jet" engine, a variation on the classical ramjet engine with a pressurized inlet system relying on sonic tuning which allowed operation at subsonic speeds. The engine was an unqualified success. Unfortunately, after decades of sales and research, Gluhareff passed away leaving behind no significant published studies of the engine or detailed analysis of its operation. The design was at serious risk of being lost to history. This dissertation is intended to address that risk by studying a novel subscale modification of Gluhareff's original design operating on the same principles. Included is a background of related engine and how the pressure jet is distinct. The preliminary sizing of a pressure jet using closed-form expressions is then discussed followed by a review of propane oxidation modeling, how it integrates into the Computational Fluid Dynamics (CFD) solver, and the modeling of the pressure jet engine cycle with CFD. The simulation was matched to experimental data recorded on a purpose-built test stand recording chamber pressure, exhaust speed (via a Pitot/static system), temperatures, and thrust force. The engine CFD simulation produced a wide range of qualitative results that matched the experimental data well and suggested strong recirculation flows through the engine confirming suspicions about how the engine operates. Engine operating frequency between CFD and experiment also showed good agreement and appeared to be driven by the "Kadenacy Effect." The research effort lastly opens the door for further study of the engine cycle, the use of pressurized intakes to produce static thrust in a ramjet engine, the Gluhareff pressure jet's original geometry, and a wide array of potential applications. A roadmap of further study and applications is detailed including a modeling and testing of larger engines.
Ortiz-Quiñonez, José-Luis; Zumeta-Dubé, Inti; Díaz, David; Nava-Etzana, Noel; Cruz-Zaragoza, Epifanio; Santiago-Jacinto, Patricia
2017-03-20
Interest in nanostructured partially substituted bismuth oxides has been increasing over the last years. Research on new synthesis methods, properties, and possible uses for these oxides is needed. The objective of this paper is to synthesize β-Bi 2 O 3 , β-Bi 2 O 3 :Eu 3+ , β-Bi 2 O 3 :Mn 4+ , Bi 12 Bi 0.8 O 19.2 , Bi 12 Bi 0.8 O 19.2 /Li + , Bi 12 MnO 20 , and Bi 12 SiO 20 nanoparticles and to investigate their structural, spectroscopic, and optical changes. Some of the causes that generated their properties are also discussed. These materials are important because the doping or partial substitution of bismuth oxide with these cations (Eu 3+ , Mn 4+ , and Si 4+ ) modifies some properties such as optical absorption, reactivity toward CO 2 , among others. X-ray diffraction (in powders), high-resolution transmission electron microscopy, Fourier transform infrared (FTIR), resonance Raman scattering, diffuse reflectance, and solid-state magic-angle-spinning 29 Si NMR were used for the characterization of the synthesized materials. We found that partial substitution of yellow Bi 12 Bi 0.8 O 19.2 with Mn 4+ and Si 4+ changed the color to green and whitish, respectively. New bands in the Raman scattering and FTIR spectra of these oxides are deeply discussed. Raman scattering spectroscopy was a valuable and reliable technique to detect the Eu 3+ and Mn 4+ cations as dopants in the bismuth oxides. The 29 Si chemical shift (δ) in Bi 12 SiO 20 was -78.16 ppm, whereas in SiO 2 , it was around -110 ppm. This considerable shift in Bi 12 SiO 20 occurred because of an increased shielding of the Si nucleus in the Si(O) 4 tetrahedron. This shielding was provided by the low-electronegativity and highly polarizable Bi cations. The isovalent doping of β-Bi 2 O 3 nanoparticles with Eu 3+ enhanced their thermal stability over 400 °C. Variation in the optical absorption and reactivity toward the acidic CO 2 molecule of the partially substituted bismuth oxides was explained on the basis of the optical basicity and ionic-covalent parameter concepts. Some possible uses for the synthesized oxides are suggested.
NASA Astrophysics Data System (ADS)
Carnes, Corrie Leigh
The goal of this research was to synthesize, characterize and study the chemical properties of nanocrystalline metal oxides. Nanocrystalline (NC) ZnO, CuO, NiO, Al2O3, and the binary Al2O 3/MgO and ZnO/CuO were prepared through modified sol gel methods. These NC metal oxides were studied in comparison to the commercial (CM) metal oxides. The samples were characterized by XRD, TGA, FTIR, BET, and TEM. The NC samples were all accompanied by a significant increase in surface area and decrease in crystallite size. Several chemical reactions were studied to compare the NC samples to the CM samples. One of the reactions involved a high temperature reaction between carbon tetrachloride and the oxide to form carbon dioxide and the corresponding metal chloride. A similar high temperature reaction was conducted between the metal oxide and hydrogen sulfide to form water and the corresponding metal sulfide. A room temperature gas phase adsorption was studied where SO2 was adsorbed onto the oxide. A liquid phase adsorption conducted at room temperature was the destructive adsorption of paraoxon (a toxic insecticide). In all reactions the NC samples exhibited greater activity, destroying or adsorbing a larger amount of the toxins compared to the CM samples. To better study surface area effects catalytic reactions were also studied. The catalysis of methanol was studied over the nanocrystalline ZnO, CuO, NiO, and ZnO/CuO samples in comparison to their commercial counterparts. In most cases the NC samples proved to be more active catalysts, having higher percent conversions and turnover numbers. A second catalytic reaction was also studied, this reaction was investigated to look at the support effects. The catalysis of cyclopropane to propane was studied over Pt and Co catalysts. These catalysts were supported onto NC and CM alumina by impregnation. By observing differences in the catalytic behavior, support effects have become apparent.
Böhme, Ulrike; Barth, Benjamin; Paula, Carolin; Kuhnt, Andreas; Schwieger, Wilhelm; Mundstock, Alexander; Caro, Jürgen; Hartmann, Martin
2013-07-09
Two types of metal-organic frameworks (MOFs) have been synthesized and evaluated in the separation of C2 and C3 olefins and paraffins. Whereas Co2(dhtp) (=Co-CPO-27 = Co-MOF-74) and Mg2(dhtp) show an adsorption selectivity for the olefins ethene and propene over the paraffins ethane and propane, the zeolitic imidazolate framework ZIF-8 behaves in the opposite way and preferentially adsorbs the alkane. Consequently, in breakthrough experiments, the olefins or paraffins, respectively, can be separated.
An adaptive self-healing ionic liquid nanocomposite membrane for olefin-paraffin separations.
Pitsch, Fee; Krull, Florian F; Agel, Friederike; Schulz, Peter; Wasserscheid, Peter; Melin, Thomas; Wessling, Matthias
2012-08-16
An adaptive self-healing ionic liquid nanocomposite membrane comprising a multi-layer support structure hosting the ionic salt [Ag](+) [Tf(2) N](-) is used for the separation of the olefin propylene and the paraffin propane. The ionic salt renders liquid like upon complexation with propylene, resulting in facilitated transport of propylene over propane at benchmark-setting selectivity and permeance levels. The contacting with acetylene causes the ionic salt to liquefy without showing evidence of forming explosive silver acetylide. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Method for measuring surface temperature
Baker, Gary A [Los Alamos, NM; Baker, Sheila N [Los Alamos, NM; McCleskey, T Mark [Los Alamos, NM
2009-07-28
The present invention relates to a method for measuring a surface temperature using is a fluorescent temperature sensor or optical thermometer. The sensor includes a solution of 1,3-bis(1-pyrenyl)propane within a 1-butyl-1-1-methyl pyrrolidinium bis(trifluoromethylsulfonyl)imide ionic liquid solvent. The 1,3-bis(1-pyrenyl)propane remains unassociated when in the ground state while in solution. When subjected to UV light, an excited state is produced that exists in equilibrium with an excimer. The position of the equilibrium between the two excited states is temperature dependent.
An Investigation of Slurry Fuel Combustion.
1981-01-01
tit Lil’ sitas wtae f).4 mm ap.art. w w =Q L-1~ rAn Li w > 0 0- - q The propane gas flow rate was metered withi a Matlieson Model 604 rotameter and...controlled by a Harris Model 2515 pressure regulator with an output capacity of 0-0.69 MPa. The flow rate of the iydrog’en gas was metered with a...propane 3nd hydrogen flows were calibrated with a Precision Scientific Companv wet-test meter (2.83 ml/rev). The fuel drops were mounted with a