Viscosity of aqueous solutions of n-methyldiethanolamine and of diethanolamine
DOE Office of Scientific and Technical Information (OSTI.GOV)
Teng, T.T.; Maham, Y.; Hepler, L.G.
1994-04-01
Aqueous solutions of alkanolamines such as monoethanolamine (MEA), diethanolamine (DEA), N-methyldiethanolamine (MDEA), di-2-propanolamine (DIPA), and bis[2-(hydroxyamino)ethyl] ether (DGA) are good solvents for the removal of acid gases such as CO[sub 2] and H[sub 2]S from the gas streams of many processes in the natural gas, petroleum, ammonia synthesis, and some chemical industries. The viscosity of aqueous solutions of methyldiethanolamine (MDEA) and of diethanolamine (DEA) have been measured at five temperatures in the range 25--80 C throughout the whole concentration range. The viscosity has been correlated as a function of composition for use in industrial calculations.
LC for analysis of two sustained-release mixtures containing cough cold suppressant drugs.
El-Gindy, Alaa; Sallam, Shehab; Abdel-Salam, Randa A
2010-07-01
A liquid chromatographic method was applied for the analysis of two sustained-release mixtures containing dextromethorphane hydrobromide, carbinoxamine maleate with either phenylephrine hydrochloride in pharmaceutical capsules (Mix 1) or phenyl-propanolamine, methylparaben, and propylparaben, which bonds as a drug base to ion exchange resin in pharmaceutical syrup (Mix 2). The method was used for their simultaneous determination using a CN column with a mobile phase consisting of acetonitrile-12 mM ammonium acetate in the ratio of 60:40 (v/v, pH 6.0) for Mix 1 and 45:55 (v/v, pH 6.0) for Mix 2.
Hawthorne, Steven B; Kubátová, Alena; Gallagher, John R; Sorensen, James A; Miller, David J
2005-05-15
Soil and groundwater samples were collected at the site of a former chemical processing plant in areas impacted by accidental releases of MEA (monoethanolamine) and IPA (2-propanolamine or isopropanolamine). Although their use had ceased ca. 10 years before sample collection, soils collected at contamination sites had MEA concentrations ranging from ca. 400 to 3000 mg/kg and IPA concentrations from ca. 30 to 120 mg/kg. Even though alkanolamines are miscible in water, transport to groundwater was slow, apparently because they are present in soil as bound cations. Only one groundwater sample (near the most highly contaminated soil)from wells directly adjacentto and down-gradient from the contaminated soils had detectable MEA, and none had detectable IPA. However, ammonia was found in the soil samples collected in the MEA-contaminated areas (ca. 500-1400 mg/kg) and the groundwater (80-120 mg/L), as would be consistent with bacterial degradation of MEA to ammonia, followed by transport of ammonia into the groundwater. Counts for bacteria capable of using MEA or IPA as a sole carbon source were ca. 5 x 106 and 1 x 106 (respectively) per gram in uncontaminated site soil, but no such organisms were found in highly contaminated soils. Similarly, bacterial degradation of MEA in slurries of highly contaminated soils was slow, with ca. 8-20 days required for half of the initial concentrations of MEA to be degraded at 20 degrees C and 30-60 days at 10 degrees C. In contrast, bacterial degradation studies using uncontaminated site soils spiked with ca. 1300 mg/L either MEA or IPA showed very rapid degradation of both compounds,with more than 99% degradation occurring in less than 3 days with quantitative conversion to ammonia, followed by slower conversion to nitrite and nitrate. The results obtained in the site soils, the groundwater samples, and from the biodegradation studies demonstrate that MEA and IPA can persist for decades on soil at high (hundreds of mg/kg) concentrations without significant migration into groundwater, despite the fact that they are miscible in water. Since MEA and IPA exist primarily as cations at the pH of site soils, their persistence apparently results from strong binding to soil, as well as inhibition of natural bioremediation in highly contaminated field soils.
Ozawa, I; Saito, K; Sugita, K; Sato, K; Akiba, M; Sugo, T
2000-08-04
A porous hollow-fiber membrane capable of recovery of germanium from a liquid stream was prepared by radiation-induced graft polymerization of an epoxy-group-containing vinyl monomer, glycidyl methacrylate, and subsequent functionalization with 2,2'-iminodiethanol, di-2-propanolamine, N-methylglucamine, and 3-amino-1,2-propanediol. The functional group density was as high as 1.4 mol per kg of the resultant hollow fiber. The polymer chains containing functional groups surrounding the pores enabled a high-speed recovery of germanium during permeation of a germanium oxide (GeO2) solution through the pores of the hollow fiber. Because of a negligible diffusional mass-transfer resistance, germanium concentration changes with the effluent volume, i.e., breakthrough curves, overlapped irrespective of the residence time of the solution, which ranged from 0.37 to 3.7 s across the hollow fiber. After repeated use of adsorption and elution, the adsorption capacity did not deteriorate.
Stephenson, Karin A; Wilson, Alan A; Meyer, Jeffrey H; Houle, Sylvain; Vasdev, Neil
2008-08-28
An efficient and general method has been developed for fluorine-18 labeling of beta-blockers that possess the propanolamine moiety. A new synthetically versatile intermediate, 3-(1-(benzyloxy)propan-2-yl)-2-oxooxazolidin-5-yl)methyl 4-methylbenzenesulfonate (13), was prepared and can be conjugated to any phenoxy core. To demonstrate the synthetic methodology, fluorinated derivatives of toliprolol were prepared, namely, [(18)F]-(2S and 2R)-1-(1-fluoropropan-2-ylamino)-3-(m-tolyloxy)propan-2-ol ((2S and 2R)-[(18)F]1). The radiosyntheses were accomplished in <1 h, with 20-24% (uncorrected for decay, n = 7) radiochemical yields, >96% radiochemical and >99% enantiomeric purities, with specific activities of 0.9-1.1 Ci/micromol (EOS). Ex vivo biodistribution studies with the radiotracers demonstrated excessively rapid washout that may limit their use for cerebral PET imaging.
Heat capacity of alkanolamine aqueous solutions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chiu, L.F.; Li, M.H.
1999-12-01
Heat capacities of monoethanoloamine, diglycolamine, diethanolamine, di-w propanolamine, triethanolamine, N-methyldiethanolamine, 2-amino-2-methyl-l-propanol, and 2-piperidineethanol aqueous solutions were measured from 30 to 80 C with a differential scanning calorimeter (DSC). The mole fractions of alkanolamines studied are 0.2, 0.4, 0.6, and 0.8. Heat capacities of N-methyldiethanolamine aqueous solutions have been measured to verify the validity of C{sub p} measurements for alkanolamine aqueous solutions. The estimated uncertainty of the measured heat capacities is {plus{underscore}minus}3%, including the effect of up to 5% impurities in a substance. An excess molar heat capacity expression using the Redlich-Kister equation for the composition dependence is used to representmore » the measured C{sub p} of alkanolamine aqueous solutions. For a total of 374 data points, the calculation results for eight alkanolamine solutions give the overall average absolute deviations of 11.9% and 0.29% for the excess molar heat capacity and the heat capacity, respectively. The heat capacities presented in this study are, in general, of sufficient accuracy for most engineering-design calculations. Solutions of alkanolamines are industrially important mixtures used in the natural gas industry, oil refineries, petroleum chemical plants, and synthetic ammonia plants for the removal of acidic components such as CO{sub 2} and H{sub 2}S from gas streams.« less
Aly, Fatma Ahmed; El-Enany, Nahed; Elmansi, Heba; Nabil, Amany
2017-10-05
The combination between cetirizine (CET), phenylpropanolamine (PPA) and nimesulide (NMS) under trade name Nemeriv Cp tablet is prescribed for nasal congestion, cold, sneezing, and allergy. Among all published methods for the three drugs; there is no reported method concerning estimation of CTZ, PPA and NMS simultaneously and this motivates us to develop new and simple methods for their assay in pure form and tablet preparations. Two new methodologies were described for the simultaneous quantification of cetirizine (CTZ), PPA and NMS. Spectrophotometric procedures relies on measuring the amplitudes of the third derivative curves at 238 nm for CTZ, 218 nm for PPA and 305 nm for NMS. The calibration graphs were rectilinear over the ranges of 8-90 µg/mL for CTZ, 20-100 µg/mL for PPA and 20-200 µg/mL for NMS respectively. Regarding the HPLC method; monolithic column (100 mm × 4.6 mm i.d) was used for the separation. The used mobile phase composed of 0.1 M phosphate buffer and methanol in the ratio of 40:60, v/v at pH 7.0. The analysis was performed using UV detector at 215 nm. Calibration curves showed the linearity over concentration ranges of 5-40, 10-100 and 10-120 µg/mL for CTZ, PPA and NMS. Application of the proposed methods to the laboratory prepared tablets was carried out successfully. The results were compared with those obtained from previously published methods and they were satisfactory. Graphical abstract Graphical abstract represents the chemical structures, representative chromatogram for the HPLC separation of a PPA, b NMS and c CTZ and third derivative absorption spectra of a PPA, b NMS and c CTZ for the spectrophotometric method.
Current concepts in the pharmacological management of obesity.
Carek, P J; Dickerson, L M
1999-06-01
The pharmacological management of obesity has gained increasing attention as new weight loss treatments are approved and a significant proportion of the public strives to lose weight. Obesity is associated with a high mortality rate, multiple chronic medical conditions, and carries an enormous financial burden. Obesity is a multifactorial condition, most often due to an imbalance in energy intake and expenditure. Despite the greater focus on management of obesity, weight loss remains a difficult goal to achieve. Obesity is a chronic medical condition that may require long term treatment, therefore the risks and benefits of all pharmacological agents must be carefully considered. Noradrenergic appetite suppressants (ie. phenyl-propanolamine, phentermine) result in weight loss but stimulatory effects limit their use. The serotonergic agents (fenfluramine, dexfenfluramine) were effective weight loss drugs, but were voluntarily withdrawn from the US market last year because of cardiovascular and pulmonary complications. The combination noradrenergic/serotonergic agent sibutramine is indicated for the management of obesity, particularly in the presence of other cardiovascular risk factors. Modest weight loss is achieved with sibutramine, although weight gain is significant after discontinuation. In addition, long term safety data are not yet available. The thermogenic combination of ephedrine plus caffeine is minimally effective, and adverse effects are usually transient. Other thermogenic agents, such as beta3-agonists, are still under investigation. Agents may alter digestion through lipase inhibition (orlistat) or fat substitution (olestra). Orlistat decreases systemic absorption of dietary fat, decreasing body weight and cholesterol. Olestra is a fat substitute that has been incorporated into snack foods. Olestra substitution for dietary fat has not been studied as a weight loss strategy, although olestra has no caloric value and may be beneficial. The use of orlistat and olestra may be limited by gastrointestinal adverse effects. Finally, the manipulation of leptin and neuropeptide Y are under investigation for the treatment of obesity. Pharmacological agents should be used as an aid to a structured diet and exercise regimen in the treatment of obesity. Weight loss agents may result in initial weight loss, but sustained weight loss is not always achieved even with continuation of treatment. The effect of weight loss obtained while using pharmacotherapeutic agents on morbidity and mortality has not been established. Therefore, diet and exercise should be the focus of any weight loss programme. There is a continued need for safe and effective pharmacotherapeutic agents for the treatment of obesity.
Sama, Farasha; Dhara, Ashish Kumar; Akhtar, Muhammad Nadeem; Chen, Yan-Cong; Tong, Ming-Liang; Ansari, Istikhar A; Raizada, Mukul; Ahmad, Musheer; Shahid, M; Siddiqi, Zafar A
2017-08-14
Herein, the coordination chemistry of a series of Cu(ii) complexes of various aminoalcohol and benzoate ligands was explored. The pH-dependent reactions of copper(ii) salts with propanolamine (Hpa), N-methyl diethanolamine (H 2 mdea), triethanolamine (H 3 tea), and n butyl-diethanolamine (H 2 budea) were carried out in the presence of various benzoates (benzoic acid, 2-hydroxy benzoic acid, 4-hydroxy benzoic acid, 3-methoxy benzoic acid, and 4-methoxy benzoic acid). The resulting complexes [Cu 2 (pa) 2 (benzoate) 2 ] (1), [Cu 2 (pa) 2 (3-methoxybenzoate) 2 ] (2), [Cu 2 (pa) 2 (4-methoxybenzoate) 2 ] (3), [Cu 2 (H 2 tea) 2 (benzoate) 2 ]·2H 2 O (4), [Cu 2 (H 2 tea) 2 (2-hydroxybenzoate) 2 ]·2H 2 O (5), [Cu 2 (H 3 tea) 2 (4-hydroxybenzoate) 2 ][Cu(Htea) 2 ]·2H 2 O (6), [Cu(H 2 mdea) 2 ][benzoate] 2 (7), [Cu(H 2 mdea) 2 ][4-methoxybenzoate] 2 (8), [Cu(H 2 bdea) 2 ][2-hydroxybenzoate] 2 (9), [Cu 2 (benzoate) 4 (benzoic acid) 2 ] (10), [Cu 2 (4-methoxybenzoate) 4 (CH 3 CN) 2 ]·4CH 3 CN (11) and [Cu 3 (H 2 tea) 2 (benzoate) 2 (NO 3 ) 2 ] (12) were formed as mono-, di- or trinuclear entities depending upon the pH conditions of the reaction. The complexes were characterized employing spectral, magnetic, single-crystal X-ray and DFT/TDDFT studies. 7 and 8 exhibited emission peaks at 510 and 460 nm, respectively, in the solid-state photoluminescence (PL) spectra. The temperature variable magnetic properties of 1-12 revealed the presence of antiferromagnetic (in 1-3 and 7-11) or ferromagnetic interactions (in 4-6 and 12) with Curie constants C = 0.24 (7), 0.28 (8) or 0.35 cm 3 K mol -1 (9) and Weiss constants θ = -0.34 (7), -0.32 (8) or -0.40 (9) K for the mononuclear complexes. The dinuclear complexes demonstrated J values of -89.2(2) (1), -71.1(3) (2), -59.6(1) (3), 98(1) (4), 79.1(2) (5), -85.4(2) (10) and -89.5(2) (11) cm -1 . Strong ferromagnetic interactions were observed in the case of 6 (J = 172(3) cm -1 and zJ' = 2.3(2) cm -1 ), which were comparable with those of 12 (J 12 = 197(2) cm -1 , J 13 = -9.3(3) cm -1 ). A correlation exists between the Cu-O-Cu angle and magnetic coupling in di- and trinuclear Cu(ii) complexes. Moreover, 4-6 were active catalysts for the oxidation of 3,5-DTBC to 3,5-DTBQ and showed catecholase activity in the order 4 > 5 > 6 (K cat = 943 (4), 698 (5) and 553 h -1 (6)). This order can be rationalized in terms of the electron density on the ligand, which neutralizes the effective positive charge on Cu(ii), thus forming the less or more stable intermediate. The order of catecholase activity and the electronic spectral properties of 4-6 were also investigated by DFT and TDDFT studies, respectively.