Andres, Susanne; Appel, Klaus E; Lampen, Alfonso
2013-08-01
Great attention has been paid to chloropropanols like 3-monochloro-1,2-propanediol and the related substance glycidol due to their presence in food and concerns about their toxic potential as carcinogens. The other chloropropanols 2-monochloro-1,3-propanediol, 1,3-dichloro-2-propanol and 2,3-dichloro-1-propanol have been found in certain foods, but occurrence data are generally limited for these compounds. 1,3-dichloro-2-propanol has the most toxicological relevance showing clear carcinogenic effects in rats possibly via a genotoxic mechanism. The dietary exposure to 1,3-dichloro-2-propanol is quite low. Calculated "Margins of Exposure" values are above 10,000. It is concluded that the 1,3-dichloro-2-propanol exposure is of low concern for human health. The toxicology of 2,3-dichloro-1-propanol has not been adequately investigated. Its toxicological potential regarding hepatotoxic effects seems to be lower than that of 1,3-dichloro-2-propanol. Limited data show that 2,3-dichloro-1-propanol occurs only in trace amounts in food, indicating that exposure to 2,3-dichloro-1-propanol seems to be also of low concern for human health. The dietary 2-monochloro-1,3-propanediol burden appears to be lower than that of 3-monochloro-1,2-propanediol. An adequate risk assessment for 2-monochloro-1,3-propanediol cannot be performed due to limited data on the toxicology and occurrence in food. This article reviews the relevant information about the toxicology, occurrence and dietary exposure to the chloropropanols 2-monochloro-1,3-propanediol, 1,3-dichloro-2-propanol and 2,3-dichloro-1-propanol. Copyright © 2013 Elsevier Ltd. All rights reserved.
Thermodynamic properties and energy characteristics of water+1-propanol
NASA Astrophysics Data System (ADS)
Alhasov, A. B.; Bazaev, A. R.; Bazaev, E. A.; Osmanova, B. K.
2017-11-01
By using own precise experimental data on p,ρ,T,x- relations differential and integral thermodynamic properties of water+1-propanol homogeneous binary mixtures (0.2, 0.5, and 0.8 mole fractions of 1-propanol) were obtained in one phase (liquid, vapor) region, along coexistence curve phase, at critical and supercritical regions of parameters of state. These values were obtained in the regions of temperatures 373.15 - 673.15 K, densities 3 - 820 kg/m3 and pressures up to 50 MPa. It is found that shape of p,ρ,T,- dependences of water+1-propanol mixtures in investigated range of temperatures is the same with those of pure liquid, but the pressure of the mixture is higher than those of pure water or 1-propanol. The critical line of water+1-propanol binary mixtures as opposed to those of water+methanol and water+ethanol mixtures has convex shape. It is ascertained that using water+1-propanol mixture (0.2 mol.fraction of 1-propanol) instead of pure water allows to decrease lower limit of operating temperatures to 50 K, to increase effective coefficient of efficiency and partially unify thermal mechanical equipment of power plant. Our comparative energy analysis of cycles of steam-turbine plant on water and water+1- propanol mixtures, carried out at the same thermobaric conditionsand showed that thermal coefficient of efficiencyofcycle of steam-turbine plant onwater+1-propanol mixture (0.2 mol.fraction of 1-propanol) is higher than those of pure water.Thus and so we made a conclusion about usability of water+1-propanol mixture (0.2 mole fraction of 1-propanol) as a working substance of steam-turbine plant cycle.
Inert Reassessment Document for -n-Propanol - CAS No. 71-23-8
Overall, the major use of n-propanol is as a solvent. In terms of pesticides, n-propanol is used as an inert ingredient only; there are no registeredpesticide products containing n-propanol as an active ingredient.
Mechanistic insights into aqueous phase propanol dehydration in H-ZSM-5 zeolite
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mei, Donghai; Lercher, Johannes A.
Aqueous phase dehydration of 1-propanol over H-ZSM-5 zeolite was investigated using density functional theory (DFT) calculations. The water molecules in the zeolite pores prefer to aggregate via the hydrogen bonding network and be protonated at the Brønsted acidic sites (BAS). Two typical configurations, i.e., dispersed and clustered, of water molecules were identified by ab initio molecular dynamics simulation of the mimicking aqueous phase H-ZSM-5 zeolite unit cell with 20 water molecules per unit cell. DFT calculated Gibbs free energies suggest that the dimeric propanol-propanol, the propanol-water complex, and the trimeric propanol-propanol-water are formed at high propanol concentrations, which provide amore » kinetically feasible dehydration reaction channel of 1-propanol to propene. However, calculation results also indicate that the propanol dehydration via the unimolecular mechanism becomes kinetically discouraged due to the enhanced stability of the protonated dimeric propanol and the protonated water cluster acting as the BAS site for alcohol dehydration reaction. This work was supported by the US Department of Energy (DOE), Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences & Biosciences. Pacific Northwest National Laboratory (PNNL) is a multiprogram national laboratory operated for DOE by Battelle. Computing time was granted by the grand challenge of computational catalysis of the William R. Wiley Environmental Molecular Sciences Laboratory (EMSL). EMSL is a national scientific user facility located at Pacific Northwest National Laboratory (PNNL) and sponsored by DOE’s Office of Biological and Environmental Research.« less
40 CFR 721.10117 - Heteromonocyclo-beta-(2,4-dichlorophenyl) -1-propanol (generic).
Code of Federal Regulations, 2010 CFR
2010-07-01
...-dichlorophenyl) -1-propanol (generic). 721.10117 Section 721.10117 Protection of Environment ENVIRONMENTAL...-propanol (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as heteromonocyclo-beta-(2,4-dichlorophenyl) -1-propanol (PMN P-04-776) is...
40 CFR 721.10117 - Heteromonocyclo-beta-(2,4-dichlorophenyl) -1-propanol (generic).
Code of Federal Regulations, 2011 CFR
2011-07-01
...-dichlorophenyl) -1-propanol (generic). 721.10117 Section 721.10117 Protection of Environment ENVIRONMENTAL...-propanol (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as heteromonocyclo-beta-(2,4-dichlorophenyl) -1-propanol (PMN P-04-776) is...
40 CFR 721.10042 - 2-Propanol, 1-[bis(2-hydroxyethyl)amino]-.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 30 2010-07-01 2010-07-01 false 2-Propanol, 1-[bis(2-hydroxyethyl... Specific Chemical Substances § 721.10042 2-Propanol, 1-[bis(2-hydroxyethyl)amino]-. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as 2-propanol, 1...
40 CFR 721.8175 - 1-Propanol, 3-mercapto-.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 30 2010-07-01 2010-07-01 false 1-Propanol, 3-mercapto-. 721.8175... Substances § 721.8175 1-Propanol, 3-mercapto-. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as 1-propanol, 3-mercapto (PMN P-85-433; CAS No. 19721-22-3...
40 CFR 721.525 - 1-propanol, 3-propoxy-.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 31 2011-07-01 2011-07-01 false 1-propanol, 3-propoxy-. 721.525... Substances § 721.525 1-propanol, 3-propoxy-. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as 1-propanol, 3-propoxy- (PMN P-00-0827; CAS No. 4161-22-2...
40 CFR 721.10042 - 2-Propanol, 1-[bis(2-hydroxyethyl)amino]-.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 31 2011-07-01 2011-07-01 false 2-Propanol, 1-[bis(2-hydroxyethyl... Specific Chemical Substances § 721.10042 2-Propanol, 1-[bis(2-hydroxyethyl)amino]-. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as 2-propanol, 1...
40 CFR 721.8175 - 1-Propanol, 3-mercapto-.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 31 2011-07-01 2011-07-01 false 1-Propanol, 3-mercapto-. 721.8175... Substances § 721.8175 1-Propanol, 3-mercapto-. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as 1-propanol, 3-mercapto (PMN P-85-433; CAS No. 19721-22-3...
40 CFR 721.8250 - 1-Propanol, 3,3′-oxybis[2,2-bis(bromomethyl)-.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 31 2011-07-01 2011-07-01 false 1-Propanol, 3,3â²-oxybis[2,2-bis... Specific Chemical Substances § 721.8250 1-Propanol, 3,3′-oxybis[2,2-bis(bromomethyl)-. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as 1-propanol...
40 CFR 721.8250 - 1-Propanol, 3,3′-oxybis[2,2-bis(bromomethyl)-.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 30 2010-07-01 2010-07-01 false 1-Propanol, 3,3â²-oxybis[2,2-bis... Specific Chemical Substances § 721.8250 1-Propanol, 3,3′-oxybis[2,2-bis(bromomethyl)-. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as 1-propanol...
Ether bond effects in quaternary ammonium and phosphonium ionic liquid-propanol solutions
NASA Astrophysics Data System (ADS)
Kishimura, Hiroaki; Kohki, Erica; Nakada, Ayumu; Tamatani, Kentaro; Abe, Hiroshi
2018-03-01
The liquid-liquid equilibria (LLE) of quaternary ammonium and phosphonium ionic liquid (IL)-propanol solutions were examined. The ILs contained cations with or without ether bonds; the anion in all the ILs was bis(trifluoromethanesulfonyl)imide (TFSI-). The cations without ether groups are tributylmethyl ammonium (N4441+), triethylpentyl phosphonium (P2225+), triethyloctyl phosphonium (P2228+), and tributylmethyl phosphonium (P4441+). The cations containing ether groups are N,N-diethyl-N-methyl-N-(2-methoxyethyl) ammonium, (N122(2O1)+), triethyl(methoxymethyl) phosphonium (P222(1O1)+), and triethyl(2-methoxyethyl) phosphonium, (P222(2O1)+). Propanol isomer effect was observed to affect the LLEs, reflecting the geometrical factors and hydrophobicities of 1-propanol and 2-propanol. According to Raman spectroscopy, the TFSI- anion conformers in the mixtures were altered in the presence of ether bonds in the cations. The universal quasichemical (UNIQUAC) interaction parameters are consistent with significant factors affecting IL-propanol solutions, such as the type of cation (ammonium or phosphonium), ether bonds, TFSI- conformers, and propanol isomer effects.
Ahlers, Stefan J; Bentrup, Ursula; Linke, David; Kondratenko, Evgenii V
2014-09-01
Multifunctional catalysts are developed for converting CO2 with C2H4 and H2 into propanol. Au nanoparticles (NP) supported on TiO2 are found to facilitate this reaction. The activity and selectivity strongly depend on NP size, which can be tuned by the method of Au deposition and by promoting with K. The promoter improves the selectivity to propanol. Under optimized reaction conditions (2 MPa, 473 K, and CO2/H2/C2H4=1:1:1), CO2 is continuously converted into propanol with a near-to-100% selectivity. Catalytic tests as well as mechanistic studies by in situ FTIR and temporal analysis of products with isotopic tracers allow the overall reaction scheme to be determined. Propanol is formed through a sequence of reactions starting with reverse water-gas shift to reduce CO2 to CO, which is further consumed in the hydroformylation of ethylene to propanal. The latter is finally hydrogenated to propanol, while propanol hydrogenation to propane is suppressed. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Abe, Hiroshi; Kohki, Erica; Nakada, Ayumu; Kishimura, Hiroaki
2017-07-01
In ionic liquids (ILs), the effects of a quaternary ammonium cation containing a hydroxyl group were investigated and compared with the effect of a standard quaternary ammonium cation. The cation possessing a hydroxyl group is choline, Chol+, and the anion is bis(trifluoromethylsulfonyl)imide, TFSI-. Crystal polymorphism of pure [Chol][TFSI] was observed upon both cooling and heating by simultaneous X-ray diffraction and differential scanning calorimetry measurements. In contrast, [N3111][TFSI] (N3111+: N-trimethyl-N-propylammonium), a standard IL, demonstrated simple crystallization upon cooling. By adding 1-propanol or 2-propanol, the phase behaviors of the [Chol][TFSI]-based and [N3111][TFSI]-based mixtures were clearly distinguished. By Raman spectroscopy, the TFSI- anion conformers in the liquid state were shown to vary according to the propanol concentration, propanol isomer, and type of cation. The anomalous behaviors of pure [Chol][TFSI] and its mixtures are derived from hydrogen bonding of the hydroxyl group of Chol+ cation coupled with the hydrophobicity and packing efficiency of propanol.
40 CFR 721.10062 - 2,5-Furandione, polymer with oxybis[propanol], benzoate.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 30 2010-07-01 2010-07-01 false 2,5-Furandione, polymer with oxybis... Specific Chemical Substances § 721.10062 2,5-Furandione, polymer with oxybis[propanol], benzoate. (a... 2,5-furandione, polymer with oxybis[propanol], benzoate (PMN P-04-627; CAS No. 103458-14-6) is...
40 CFR 721.10062 - 2,5-Furandione, polymer with oxybis[propanol], benzoate.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 31 2011-07-01 2011-07-01 false 2,5-Furandione, polymer with oxybis... Specific Chemical Substances § 721.10062 2,5-Furandione, polymer with oxybis[propanol], benzoate. (a... 2,5-furandione, polymer with oxybis[propanol], benzoate (PMN P-04-627; CAS No. 103458-14-6) is...
40 CFR 721.10062 - 2,5-Furandione, polymer with oxybis[propanol], benzoate.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 32 2012-07-01 2012-07-01 false 2,5-Furandione, polymer with oxybis... Specific Chemical Substances § 721.10062 2,5-Furandione, polymer with oxybis[propanol], benzoate. (a... 2,5-furandione, polymer with oxybis[propanol], benzoate (PMN P-04-627; CAS No. 103458-14-6) is...
40 CFR 721.10062 - 2,5-Furandione, polymer with oxybis[propanol], benzoate.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 31 2014-07-01 2014-07-01 false 2,5-Furandione, polymer with oxybis... Specific Chemical Substances § 721.10062 2,5-Furandione, polymer with oxybis[propanol], benzoate. (a... 2,5-furandione, polymer with oxybis[propanol], benzoate (PMN P-04-627; CAS No. 103458-14-6) is...
40 CFR 721.10062 - 2,5-Furandione, polymer with oxybis[propanol], benzoate.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 32 2013-07-01 2013-07-01 false 2,5-Furandione, polymer with oxybis... Specific Chemical Substances § 721.10062 2,5-Furandione, polymer with oxybis[propanol], benzoate. (a... 2,5-furandione, polymer with oxybis[propanol], benzoate (PMN P-04-627; CAS No. 103458-14-6) is...
Misawa, M; Inamura, Y; Hosaka, D; Yamamuro, O
2006-08-21
Quasielastic neutron scattering measurements have been made for 1-propanol-water mixtures in a range of alcohol concentration from 0.0 to 0.167 in mole fraction at 25 degrees C. Fraction alpha of water molecules hydrated to fractal surface of alcohol clusters in 1-propanol-water mixture was obtained as a function of alcohol concentration. Average hydration number N(ws) of 1-propanol molecule is derived from the value of alpha as a function of alcohol concentration. By extrapolating N(ws) to infinite dilution, we obtain values of 12-13 as hydration number of isolated 1-propanol molecule. A simple interpretation of structural origin of anomalous excess partial molar volume of water is proposed and as a result a simple equation for the excess partial molar volume is deduced in terms of alpha. Calculated values of the excess partial molar volumes of water and 1-propanol and the excess molar volume of the mixture are in good agreement with experimental values.
Schaffarczyk, Monika; Østdal, Henrik; Matheis, Olivia; Jekle, Mario; Koehler, Peter
2016-06-01
A microscale reconstitution baking test, using wheat flour defatted with 2-propanol at 20 °C, was established to determine the functional effects of lipids isolated from lipase-treated wheat dough. Proper selection of solvent and extraction temperature was of major importance to maintain the functionality of defatted flour. Dough and gluten from flour defatted with water-saturated 1-butanol (WSB; extracted at 20 °C) and 2-propanol (extracted at 75 °C) had inferior extensibility and loaf volume compared to control flour extracted with 2-propanol at 20 °C. Quantitation of gluten proteins showed that defatting with WSB (20 °C) or 2-propanol (75 °C) decreased the gliadin and increased the glutenin content. Possible reasons were thiol-disulfide interchange reactions, caused either by heat (2-propanol, 75 °C) or by the solvent WSB, which affected gluten proteins. Confocal laser scanning microscopy showed that regular, interconnected gluten structures were only present in dough from flour defatted with 2-propanol at 20 °C. Copyright © 2016 Elsevier Ltd. All rights reserved.
Thillainayagam, Muthukkumar; Venkatesan, Krishnamoorthy; Dipak, Rana; Subramani, Saravanan; Sethuramasamyraja, Balaji; Babu, Rajesh Kumar
2017-07-01
In the Indian agricultural sector, millions of diesel-driven pump-sets were used for irrigation purposes. These engines produce carcinogenic diesel particulates, toxic nitrogen oxides (NOx), and carbon monoxide (CO) emissions which threaten the livelihood of large population of farmers in India. The present study investigates the use of n-propanol, a less-explored high carbon bio-alcohol that can be produced by sustainable pathways from industrial and crop wastes that has an attractive opportunity for powering stationary diesel engines meant for irrigation and rural electrification. This study evaluates the use of n-propanol addition in fossil diesel by up to 30% by vol. and concurrently reports the effects of exhaust gas recirculation (EGR) on emissions of an agricultural DI diesel engine. Three blends PR10, PR20, and PR30 were prepared by mixing 10, 20, and 30% by vol. of n-propanol with fossil diesel. Results when compared to baseline diesel case indicated that smoke density reduced with increasing n-propanol fraction in the blends. PR10, PR20, and PR30 reduced smoke density by 13.33, 33.33, and 60%, respectively. NOx emissions increased with increasing n-propanol fraction in the blends. Later, three EGR rates (10, 20, and 30%) were employed. At any particular EGR rate, smoke density remained lower with increasing n-propanol content in the blends under increasing EGR rates. NOx reduced gradually with EGR. At 30% EGR, the blends PR10, PR20, and PR30 reduced NOx emissions by 43.04, 37.98, and 34.86%, respectively when compared to baseline diesel. CO emissions remained low but hydrocarbon (HC) emissions were high for n-propanol/diesel blends under EGR. Study confirmed that n-propanol could be used by up to 30% by vol. with diesel and the blends delivered lower soot density, NOx, and CO emissions under EGR.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 31 2011-07-01 2011-07-01 false 1,2-Propanediol, 3-(2-propenyloxy)-, bis(4-methylbenzene sulfonate); 2-propanol, 1-[2-[[(4-methylphenyl)sulfonyl] oxy]ethoxy]-3-(2...)-, bis(4-methylbenzene sulfonate); 2-propanol, 1-[2-[[(4-methylphenyl)sulfonyl] oxy]ethoxy]-3-(2...
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 30 2010-07-01 2010-07-01 false 1,2-Propanediol, 3-(2-propenyloxy)-, bis(4-methylbenzene sulfonate); 2-propanol, 1-[2-[[(4-methylphenyl)sulfonyl] oxy]ethoxy]-3-(2...)-, bis(4-methylbenzene sulfonate); 2-propanol, 1-[2-[[(4-methylphenyl)sulfonyl] oxy]ethoxy]-3-(2...
Kinetics and selectivity of 2-propanol conversion on oxidized anatase TiO{sub 2}
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rekoske, J.E.; Barteau, M.A.
1997-01-01
The steady-state kinetics of 2-propanol decomposition on oxidized anatase TiO{sub 2} have been determined at temperatures ranging from 448 to 598 K and 2-propanol partial pressures from 8.9 to 102.7 Torr. The effects of the addition of O{sub 2} and water to the carrier gas were also investigated. The steady-state reaction results primarily in the formation of a dehydration product, propylene, and a dehydrogenation product, acetone, with small amounts of carbon oxides also being observed. Depending on the reaction conditions, the selectivity to either propylene or acetone can range between 5 and 95%. The rate of dehydrogenation increases dramatically withmore » the addition of both O{sub 2} and water, while the dehydration rate is unaffected by their presence. Accordingly, the kinetics of 2-propanol decomposition were investigated using both air and an inert carrier. Using air as the carrier gas, the dehydration and dehydrogenation reactions were determined to be approximately one-half order with respect to 2-propanol partial pressure. The activation energies determined for the two processes are substantially different, 68 kJ mol{sup -1} for dehydrogenation and 130 kJ mol{sup -1} for dehydration, as evidenced by the strong temperature dependence of the decomposition selectivity. Using an inert carrier, the reaction kinetics depend in a complex fashion on the conversion of 2-propanol. The dependence on conversion was found to arise from the influence of water on the dehydrogenation kinetics. The presence of water, whether produced by 2-propanol dehydration or added independently, was found to increase the rate of 2-propanol dehydrogenation. 48 refs., 9 figs., 6 tabs.« less
Dehydration pathways of 1-propanol on HZSM-5 in the presence and absence of water
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhi, Yuchun; Shi, Hui; Mu, Linyu
The Brønsted acid-catalyzed gas-phase dehydration of 1-propanol (0.075-4 kPa) was studied on zeolite H-MFI (Si/Al = 26, containing minimal amounts of extraframework Al moieties) in the absence and presence of co-fed water (0-2.5 kPa) at 413-443 K. It is shown that propene can be formed from monomeric and dimeric adsorbed 1-propanol. The stronger adsorption of 1-propanol relative to water indicates that the reduced dehydration rates in the presence of water are not a consequence of the competitive adsorption between 1-propanol and water. Instead, the deleterious effect is related to the different extents of stabilization of adsorbed intermediates and the relevantmore » elimination/substitution transition states by water. Water stabilizes the adsorbed 1-propanol monomer significantly more than the elimination transition state, leading to a higher activation barrier and a greater entropy gain for the rate-limiting step, which eventually leads to propene. In a similar manner, an excess of 1-propanol stabilizes the adsorbed state of 1-propanol more than the elimination transition state. In comparison with the monomer-mediated pathway, adsorbed dimer and the relevant transition states for propene and ether formation are similarly, while less effectively, stabilized by intrazeolite water molecules. This work was supported by the US Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences, and Biosciences, and was performed in part using the Molecular Sciences Computing Facility (MSCF) in the William R. Wiley Environmental Molecular Sciences Laboratory, a DOE national scientific user facility sponsored by the DOE’s Office of Biological and Environmental Research and located and the Pacific Northwest National Laboratory (PNNL). PNNL is operated by Battelle for DOE.« less
Adsorption of 2-propanol on ice probed by ambient pressure X-ray photoelectron spectroscopy
Newberg, John T.; Bluhm, Hendrik
2015-08-18
The interaction of 2-propanol with ice was examined via ambient pressure X-ray photoelectron spectroscopy (APXPS), a surface sensitive technique that probes the adsorbed 2-propanol directly with submonolayer resolution. Isothermal uptake experiments were performed on vapor deposited ice at 227 K in the presence of the equilibrium water vapor pressure of 0.05 Torr and 2-propanol partial pressures ranging from 5 × 10 -5 to 2 × 10 -3 Torr. The C 1s APXPS spectra of adsorbed 2-propanol showed two characteristic peaks associated with the C OH alcohol group and C Me methyl groups in a 1 : 2 ratio, respectively. Coveragemore » increased with 2-propanol partial pressure and followed first order Langmuir kinetics with a Langmuir constant of K = 6.3 × 10 3 Torr -1. The 1 : 2 ratio of C OH : C Me remained constant with increasing coverage, indicating there is no chemical reaction upon adsorption. The observed Langmuir kinetics using APXPS is consistent with previous observations of other small chain alcohols via indirect adsorption methods using, e.g., Knudsen cell and coated wall flow tube reactors.« less
NASA Astrophysics Data System (ADS)
Rodríguez Palomino, L. A.; Dawidowski, J.; Márquez Damián, J. I.; Cuello, G. J.; Romanelli, G.; Krzystyniak, M.
2017-10-01
This work presents the total cross sections of a set of normal and deuterated alcohols (hydrogenous 1- and 2-propanol and n-butanol, 1-propanol(OD) and fully deuterated 2-propanol and n-butanol), measured at spectrometer VESUVIO (ISIS spallation neutron source, United Kingdom). Granada's Synthetic Model was applied to describe those systems and a satisfactory agreement with the measured total cross section was achieved in the range of energies from 10-3 to 100 eV. The input parameters of the model were determined from the essential features of the vibrational spectra of the atoms that compose the systems, which were studied using Molecular Dynamics.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nelson, Nicholas C.; Boote, Brett W.; Naik, Pranjali
Ceria (CeO 2) and sodium-modified ceria (Ce-Na) were prepared through combustion synthesis. Palladium was deposited onto the supports (Pd/CeO 2 and Pd/Ce-Na) and their activity for the aqueous-phase transfer hydrogenation of phenol using 2-propanol under liquid flow conditions was studied. Pd/Ce-Na showed a marked increase (6×) in transfer hydrogenation activity over Pd/CeO 2. Material characterization indicated that water-stable sodium species were not doped into the ceria lattice, but rather existed as subsurface carbonates. Modification of ceria by sodium provided more adsorption and redox active sites (i.e. defects) for 2-propanol dehydrogenation. This effect was an intrinsic property of the Ce-Na supportmore » and independent of Pd. The redox sites active for 2-propanol dehydrogenation were thermodynamically equivalent on both supports/catalysts. At high phenol concentrations, the reaction was limited by 2-propanol adsorption. Furthermore, the difference in catalytic activity was attributed to the different numbers of 2-propanol adsorption and redox active sites on each catalyst.« less
Nelson, Nicholas C.; Boote, Brett W.; Naik, Pranjali; ...
2017-01-17
Ceria (CeO 2) and sodium-modified ceria (Ce-Na) were prepared through combustion synthesis. Palladium was deposited onto the supports (Pd/CeO 2 and Pd/Ce-Na) and their activity for the aqueous-phase transfer hydrogenation of phenol using 2-propanol under liquid flow conditions was studied. Pd/Ce-Na showed a marked increase (6×) in transfer hydrogenation activity over Pd/CeO 2. Material characterization indicated that water-stable sodium species were not doped into the ceria lattice, but rather existed as subsurface carbonates. Modification of ceria by sodium provided more adsorption and redox active sites (i.e. defects) for 2-propanol dehydrogenation. This effect was an intrinsic property of the Ce-Na supportmore » and independent of Pd. The redox sites active for 2-propanol dehydrogenation were thermodynamically equivalent on both supports/catalysts. At high phenol concentrations, the reaction was limited by 2-propanol adsorption. Furthermore, the difference in catalytic activity was attributed to the different numbers of 2-propanol adsorption and redox active sites on each catalyst.« less
Metabolic effects of feeding ethanol or propanol to postpartum transition Holstein cows.
Raun, B M L; Kristensen, N B
2011-05-01
Eight lactating Holstein cows implanted with a ruminal cannula and permanent indwelling catheters in major splanchnic blood vessels were used to investigate metabolism of propanol and ethanol in the postpartum transition period. Cows were randomly allocated to 1 of 4 treatments in a randomized design with a 2 by 2 factorial arrangement of treatments. Factor 1 was 2.6g of calcium carbonate/kg of dry matter (DM) versus 1.5 g of 2-hydroxy-4-(methylthio)-butanoic acid isopropyl ester/kg of DM. Factor 2 was supplementation with 14 g of propanol/kg of DM (propanol treatment; PT) versus 14 g of ethanol/kg of DM (ethanol treatment; ET). Only factor 2 data are presented in the present paper. Treatments were administered in silage-based total mixed rations and cows were fed the experimental total mixed ration from the day of parturition. Daily rations were fed in 3 equally sized portions at 8-h intervals. Eight hourly sets of ruminal fluid, arterial, and hepatic portal and hepatic vein samples were collected at day -15 ± 5, 4, 15, and 29 relative to parturition. Dry matter intake and milk yield increased with days in milk (DIM), but were not affected by treatment. From prepartum to 4 DIM ruminal concentrations of propanol and ethanol increased with PT and ET, respectively. Postpartum, alcohol intake increased 49% in PT and 34% in ET from 4 to 29 d in milk, respectively. Ruminal concentrations of the alcohols remained unaffected by DIM. Treatments did not affect total ruminal volatile fatty acid concentrations, but the molar proportion of acetate increased in ET and the molar proportion of propionate increased in PT compared with the contrasting treatment. Propanol treatment decreased milk fat content at 15 to 29 DIM compared with ET. The net portal release of propanol and ethanol increased with increasing ruminal concentration of the respective alcohol. The portal release of alcohol accounted for 43 to 85% of ingested propanol and 36 to 57% of ingested ethanol. Hepatic uptake of propanol and ethanol equaled the net portal flux and no effect of treatment was detected for net splanchnic release of propanol and ethanol. In conclusion, ruminal metabolism is a major component of alcohol metabolism in dairy cows. The postpartum transition dairy cow has sufficient metabolic capacity to cope with high dietary concentrations of primary alcohols even when alcohol intake is abruptly increased at the day of calving. Alcohol intake affects milk fat content and alcohol composition of silage might be important to improve predictions of milk composition. Copyright © 2011 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Density and viscosity of aqueous blends of N-methyldiethanolamine and 2-amino-2-methyl-1-propanol
DOE Office of Scientific and Technical Information (OSTI.GOV)
Welsh, L.M.; Davis, R.A.
Aqueous solutions of alkanolamines such as N-methyldiethanolamine (MDEA) and 2-amino-2-methyl-1-propanol (AMP) have application in acid gas treatment for the removal of acid gases such as carbon dioxide and hydrogen sulfide. The density and kinematic viscosity of aqueous blends of N-methyldiethanolamine and 2-amino-2-methyl-1-propanol were determined from experiments within the temperature range 10--60 C. The composition of the alkanolamines in water ranged from 5% to 50% by mass.
Jo, Wan-Kuen
2013-01-18
This study examined the photocatalytic oxidation of gas-phase trichloroethylene (TCE) and 2-propanol, at indoor levels, over titanium dioxide (TiO₂) irradiated with light-emitting diodes (LED) under different operational conditions. TiO₂ powder baked at 450 °C exhibited the highest photocatalytic decomposition efficiency (PDE) for TCE, while all photocatalysts baked at different temperatures showed similar PDEs for 2-propanol. The average PDEs of TCE over a three hour period were four, four, five, and 51% for TiO₂ powders baked at 150, 250, 350, and 450 °C, respectively. The average PDEs of 2-propanol were 95, 97, 98, and 96% for TiO₂ powders baked at 150, 250, 350, and 450 °C, respectively. The ratio of anatase at 2θ = 25.2° to rutile at 2θ = 27.4° was lowest for the TiO₂ powder baked at 450 °C. Although the LED-irradiated TiO₂ system revealed lower PDEs of TCE and 2-propanol when compared to those of the eight watt, black-light lamp-irradiated TiO₂ system, the results for the PDEs normalized to the energy consumption were reversed. Other operational parameters, such as relative humidity, input concentrations, flow rate, and feeding type were also found to influence the photocatalytic performance of the UV LED-irradiated TiO₂ system when applied to the cleaning of TCE and 2-propanol at indoor air levels.
Control over the color transition behavior of polydiacetylene vesicles using different alcohols.
Pattanatornchai, Thanutpon; Charoenthai, Nipaphat; Wacharasindhu, Sumrit; Sukwattanasinitt, Mongkol; Traiphol, Rakchart
2013-02-01
In this contribution, we investigate the color transition behavior of polydiacetylene (PDA) vesicles upon exposure to different chemical stimuli. A series of linear and branched alcohols are used as model additives, allowing systematic control of their molecular shape and polarity. The PDA vesicles are fabricated by using three monomers, 10,12-pentacosadiynoic acid (PCDA), 10,12-tricosadyinoic acid (TCDA), and N-(2-amino ethyl)pentacosa-10,12-dyinamide (AEPCDA). When a series of linear alcohols is used, the longer alcohol length causes color transition of all PDA vesicles. In this system, the penetration of linear alcohols into the inner layer of PDA vesicles is dictated by their polarity. The change of -OH position within the alcohol molecule also affects the degree of penetration. It requires a higher amount of the 2-propanol to induce color transitions of the PDAs compared to that of the 1-propanol. The addition of methyl branches into the hydrophobic tail of alcohols causes an increase in steric effect, which hinders the penetration as well. When the 2,2-dimethyl-1-propanol is used as a stimulus, the color transition of PDAs occurs at much higher alcohol concentration compared to 2-methyl-1-butanol, 3-methyl-1-butanol, and 1-pentanol. The variation of PDA structures also affects their ability to interact with the alcohols. The modified head group of poly(AEPCDA) promotes the ability to distinguish between 1-propanol and 2-propanol or 1-propanol and ethanol. Copyright © 2012 Elsevier Inc. All rights reserved.
Identification of two conformationally trapped n-propanol-water dimers in a supersonic expansion
NASA Astrophysics Data System (ADS)
Mead, Griffin J.; Alonso, Elena R.; Finneran, Ian A.; Carroll, P. Brandon; Blake, Geoffrey A.
2017-05-01
Two conformers of the n-propanol-water dimer have been observed in a supersonic expansion using chirped-pulse Fourier-transform microwave (CPFTMW) spectroscopy. Structural assignments reveal the n-propanol sub-unit is conformationally trapped, with its methyl group in both Gauche and Trans orientations. Despite different carbon backbone conformations, both dimers display the same water-donor/alcohol-acceptor hydrogen bonding motif. This work builds upon other reported alcohol-water dimers and upon previous work detailing the trapping of small molecules into multiple structural minima in rare gas supersonic expansions.
Wenzel, A; Kornum, F; Knudsen, MR; Lau, E Frandsen
2013-01-01
Objectives: To assess (1) antimicrobial efficiency of wiping intraoral phosphor plates with alcohol tissues based on ethanol or 2-propanol alcohols after contamination with Candida albicans and Streptococcus oralis, (2) a concept for autodisinfection with ultraviolet light of the transport ramp in a scanner for phosphor plates and (3) the impact of wiping with alcohol tissues on durability of the plate. Methods: Suspensions of C. albicans and S. oralis were prepared in concentrations of 109 and 105 organisms per ml, and Digora (Digora® Optime Imaging Plate, size 2; Soredex, PalaDEx Group Brenntag Nordic A/S, Hellerup, Denmark) and Vista (VistaScan® Imaging Plate PLUS, size 2; Dürr Dental AG, Bietigheim-Bissingen, Germany) plates were contaminated. The plates were wiped with ethanol or 2-propanol disinfectant tissues and imprints obtained on agar. Number of microbial colonies after culturing was recorded. The scanner ramp was contaminated with C. albicans or S. oralis, respectively, the ultraviolet light (UV light) disinfection in the scanner was activated and the number of colonies after culturing was recorded. Plates from each system were sequentially wiped (5–60 times) with ethanol and 2-propanol, exposed and scanned. 48 images from each system were scored blind: 1 = no artefact, 2 = small artefacts and 3 = severe artefacts. Results: Ethanol eliminated C. albicans and S. oralis in high and low concentrations from both types of plates, whereas 2-propanol did not eliminate all micro-organisms at high concentrations. The UV light eliminated all micro-organisms from the ramp. Ethanol degraded the plates to a larger extent than did 2-propanol. Images from Vista plates showed severe artefacts after wiping with ethanol; those from Digora plates did not. Conclusions: Ethanol eliminated all micro-organisms but degraded phosphor plates, whereas 2-propanol did not eliminate all micro-organisms and still degraded plates from Vista but not from Digora. PMID:23420856
Wenzel, A; Kornum, F; Knudsen, Mr; Lau, E Frandsen
2013-01-01
To assess (1) antimicrobial efficiency of wiping intraoral phosphor plates with alcohol tissues based on ethanol or 2-propanol alcohols after contamination with Candida albicans and Streptococcus oralis, (2) a concept for autodisinfection with ultraviolet light of the transport ramp in a scanner for phosphor plates and (3) the impact of wiping with alcohol tissues on durability of the plate. Suspensions of C. albicans and S. oralis were prepared in concentrations of 10(9) and 10(5) organisms per ml, and Digora (Digora(®) Optime Imaging Plate, size 2; Soredex, PalaDEx Group Brenntag Nordic A/S, Hellerup, Denmark) and Vista (VistaScan(®) Imaging Plate PLUS, size 2; Dürr Dental AG, Bietigheim-Bissingen, Germany) plates were contaminated. The plates were wiped with ethanol or 2-propanol disinfectant tissues and imprints obtained on agar. Number of microbial colonies after culturing was recorded. The scanner ramp was contaminated with C. albicans or S. oralis, respectively, the ultraviolet light (UV light) disinfection in the scanner was activated and the number of colonies after culturing was recorded. Plates from each system were sequentially wiped (5-60 times) with ethanol and 2-propanol, exposed and scanned. 48 images from each system were scored blind: 1 = no artefact, 2 = small artefacts and 3 = severe artefacts. Ethanol eliminated C. albicans and S. oralis in high and low concentrations from both types of plates, whereas 2-propanol did not eliminate all micro-organisms at high concentrations. The UV light eliminated all micro-organisms from the ramp. Ethanol degraded the plates to a larger extent than did 2-propanol. Images from Vista plates showed severe artefacts after wiping with ethanol; those from Digora plates did not. Ethanol eliminated all micro-organisms but degraded phosphor plates, whereas 2-propanol did not eliminate all micro-organisms and still degraded plates from Vista but not from Digora.
Obruca, Stanislav; Marova, Ivana; Snajdar, Ondrej; Mravcova, Ludmila; Svoboda, Zdenek
2010-12-01
Waste rapeseed oil is a useful substrate for polyhydroxyalkanoates (PHA) production employing Cupriavidus necator H16. In fed-batch mode, we obtained biomass and PHA yields of 138 and 105 g l(-1), respectively. Yield coefficient and volumetric productivity were 0.83 g PHA per g oil and 1.46 g l(-1) h(-1), respectively. Propanol at 1% (v/v) enhanced both PHA and biomass formation significantly and, furthermore, resulted in incorporation of 3-hydroxyvalerate units into PHA structure. Thus, propanol can be used as an effective precursor of 3-hydroxyvalarete for production of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) copolymer. During the fed-batch cultivation, propanol concentration was maintained at 1% which resulted in 8% content of 3-hydroxyvalerate in copolymer.
Structural, thermodynamic, and kinetic aspects of the trimorphism of hydrocortisone.
Suitchmezian, Viktor; Jess, Inke; Näther, Christian
2008-10-01
Hydrocortisone was investigated for polymorphism and pseudopolymorphism and three different polymorphic modifications (I-III) and one 2-propanol solvate were found. Forms I and III crystallize in the orthorhombic space group P2(1)2(1)2(1), whereas form II and the 2-propanol solvate crystallize monoclinic in space group P2(1). In all the modifications the molecules are connected by intermolecular O--H...O hydrogen bonding. In the 2-propanol solvate, channels are formed in which the solvent molecules are embedded. Solvent-mediated conversion experiments reveal that the commercially available form I represents the thermodynamically most stable modification at room temperature, whereas forms II and III are metastable. On heating, form III transforms into form II in an endothermic reaction, which shows that an enantiotropic relationship exists between these forms. Form I exhibits the highest melting point and the highest heat of fusion and thus represents the thermodynamically most stable form over the whole temperature range. DSC measurements indicate that form I behaves monotropic to forms II and III. Desolvation of the 2-propanol solvate at higher temperatures results in a transformation into form II, whereas the removal of 2-propanol at room temperature and in vacuum reduced pressure leads to the formation of form III. (c) 2008 Wiley-Liss, Inc. and the American Pharmacists Association
Dettenkofer, M; Jonas, D; Wiechmann, C; Rossner, R; Frank, U; Zentner, J; Daschner, F D
2002-10-01
We investigated the efficacy of two commercially available, alcohol-based antiseptic solutions in decontaminating the insertion site of central lines. One solution contained the bispyridine octenidine dihydrochloride. Inpatients receiving either a central venous catheter (CVC) or a peripherally inserted central catheter (PICC) were alternately assigned to different skin disinfection regimens at the insertion site: (A) 0.1% octendine dihydrochloride with 30% 1-propanol and 45% 2-propanol, (B) 74% ethanol with 10% 2-propanol. Quantitative skin cultures were obtained from the insertion site at predetermined intervals. A total of 60 patients received 12 CVCs and 47 PICCs (no significant difference with respect to gender, age and catheter type). In total, 90 cultures were assessed in each group. The median colony-forming unit (cfu) counts per 24 cm(2) (group A vs B) were 2,270 vs 2,950 before, 20 vs 40 following and 860 vs 1,210 24 h after catheter insertion, respectively. A statistically significant difference in the efficacy of skin decontamination was seen between groups in culture set (3) and in the difference between culture sets (2) and (3) (Wilcoxon rank sum test). Octenidine/propanol appears to be more effective than alcohol (ethanol/propanol) alone in reducing microflora of the skin at the PICC/CVC insertion site over a 24-h period.
40 CFR 721.525 - 1-propanol, 3-propoxy-.
Code of Federal Regulations, 2010 CFR
2010-07-01
... Section 721.525 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) TOXIC SUBSTANCES CONTROL ACT SIGNIFICANT NEW USES OF CHEMICAL SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.525 1-propanol, 3-propoxy-. (a) Chemical substance and significant new uses subject to...
Presterl, Elisabeth; Suchomel, Miranda; Eder, Michaela; Reichmann, Sonja; Lassnigg, Andrea; Graninger, Wolfgang; Rotter, Manfred
2007-08-01
To test the effects of several biocides [N-propanol, a commercially available propanol/ethanol/chlorhexidine mixture, polyvinylpyrolidone (povidone-iodine) and hydrogen peroxide] on established biofilms of Staphylococcus epidermidis isolated from patients with cardiac implant infections and catheter-related bacteraemia. Biofilms were grown in microtitre plates for 24 h, dyed and stained with Crystal Violet. The mean optical density (OD) and the OD ratio (ODr=OD of the treated biofilm/OD of the untreated biofilm) were used for quantification. Biofilms were incubated with 60% (v/v) N-propanol, the mixture of propanol/ethanol/chlorhexidine, hydrogen peroxide at three concentrations (0.5%, 3% and 5%, v/v) and povidone-iodine for 1, 5, 15, 30 and 60 min. Unstained biofilms were sonicated and plated on Columbia agar for time-kill curves. S. epidermidis skin isolates from healthy volunteers were used as controls. Biofilm ODs of the clinical S. epidermidis isolates and the isolates from the healthy volunteers were significantly different (1.17+/-0.512 versus 0.559+/-0.095, respectively; mean+/-SD) (P<0.01). No viable S. epidermidis was detected in biofilms treated with the alcohols, N-propanol or the propanol/ethanol/chlorhexidine mixture. Incubation with povidone-iodine and hydrogen peroxide 3% and 5% led to a log reduction of the viable cells of >5 after incubation for 5 min, however, up to 10(3) viable cells were detected in four isolates after 30 min of incubation with povidone-iodine. S. epidermidis obtained from infected implants forms thicker biofilms than that of healthy volunteers. Hydrogen peroxide, at a concentration of 3% and 5%, and alcohols rapidly eradicate S. epidermidis biofilms, whereas povidone-iodine is less effective.
NASA Astrophysics Data System (ADS)
Badelin, V. G.; Smirnov, V. I.
2018-07-01
The enthalpies of dissolution of N-methylglycine in water + ethanol, water + (1-propanol) and water + (2-propanol) are determined via calorimetry at an alcohol concentration of x 2 = 0-0.25 mole fraction. The standard values of enthalpies of dissolution (Δ_{sol}H°) and transfer (Δ_{tr}H°) of N-methylglycine from water to solution are calculated. The effect the structure and properties of N-methylglycine and the composition of a water-alcohol mixture have on N-methylglycine's enthalpy characteristics is examined. The enthalpy coefficients of pair interactions ( h xy ) between N-methylglycine and alcohol molecules are calculated. They have positive values and grow in the series ethanol (EtOH) < 1-propanol (1-PrOH), < 2-propanol (2-PrOH). A comparative analysis is performed of the enthalpy characteristics of dissolution and transfer of N-methylglycine and the analogous characteristics of glycine and DL-α-alanine in similar mixtures.
Purification and characterisation of a novel iso-propanol dehydrogenase from Phytomonas sp.
Uttaro, A D; Opperdoes, F R
1997-04-01
An alcohol dehydrogenase with two identical subunits and a subunit molecular mass of 40,000 was purified from Phytomonas sp. isolated from the lactiferous tubes of Euphorbia characias. Digitonin titration and subcellular fractionation suggest that the enzyme is present in the mitochondrion. It utilises as substrates, primary and secondary alcohols, is specific for NAD+ as coenzyme and is inhibited by HgCl(2). The pH optimum for the oxidation of ethanol is 9.5, and for the reverse reaction 8.5. The apparent Km values for iso-propanol and ethanol are 40 and 34 microM, respectively and for the reverse reaction, with acetone as substrate, 14 microM. The respective specific activities with iso-propanol and ethanol as substrate, as measured in crude extracts are 300 and 16 mU (milligram of protein)-1. In isoelectric focusing the enzyme showed three major bands with slightly differing isoelectric points that ranged from 6.4 to 6.8. The name, iso-propanol dehydrogenase is proposed for this enzyme.
NASA Astrophysics Data System (ADS)
Badelin, V. G.; Smirnov, V. I.
2013-01-01
The enthalpies of L-tryptophane solution in water-methanol, water-ethanol, water-1-propanol, and water-2-propanol mixtures at alcohol concentrations of x 2 = 0-0.4 mole fractions were measured by calorimetry. The standard enthalpies of L-tryptophane solution (Δsol H ∘) and transfer (Δtr H ∘) from water to the binary solvent were calculated. The influence of the composition of the water-alcohol mixture and the structure and properties of L-tryptophane on the enthalpy characteristics of the latter was considered. The enthalpy coefficients of pair interactions ( h xy ) of L-tryptophane with alcohol molecules were calculated. The coefficients were positive and increased in the series: methanol (MeOH), ethanol (EtOH), 1-propanol (1-PrOH), and 2-propanol (2-PrOH). The solution and transfer enthalpies of L-tryptophane were compared with those of aliphatic amino acids (glycine, L-threonine, DL-alanine, L-valine, and L-phenylalanine) in similar binary solvents.
Student Preparation of Acetone from 2-Propanol.
ERIC Educational Resources Information Center
Kauffman, J. M.; McKee, J. R.
1982-01-01
Background information, procedures, and materials needed are provided for an experiment in which acetone is produced from 2-propanol. The experiment does not use magnetic stirring, avoids the necessity for exhaustive extractions with ether, and produces a 60-percent yield of redistilled acetone within a two-and-one-half-hour laboratory period.…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, M.H.; Lee, W.C.
1996-05-01
Acid gases such as CO{sub 2} and H{sub 2}S are frequently removed from natural gas, synthetic natural gas, and other process gas streams by means of absorption into aqueous alkanol-amine solutions. The solubility and diffusivity of N{sub 2}O in (diethanolamine + N-methyldiethanolamine + water) and in (diethanolamine + 2-amino-2-methyl-1-propanol + water) were measured at (30, 35, and 40)C and at atmospheric pressure. Five (diethanolamine + N-methyldiethanolamine + water) and four (diethanolamine + 2-amino-2-methyl-1-propanol + water) systems were studied. The total amine mass percent in all cases was 30. A solubility apparatus was used to measure the solubility of N{sub 2}Omore » in amine solutions. The diffusivity was measured by a wetted wall column absorber. The N{sub 2}O analogy was used to estimate the solubility and diffusivity of CO{sub 2} in (diethanolamine + N-methyldiethanolamine + water) and in (diethanolamine + 2-amino-2-methyl-1-propanol + water).« less
Gómez, Jorge E.; Navarro, Fabián H.; Sandoval, Junior E.
2015-01-01
A novel 3-hydroxypropyl (propanol) bonded silica phase has been prepared by hydrosilylation of allyl alcohol on a hydride silica intermediate, in the presence of platinum (0)-divinyltetramethyldisiloxane (Karstedt's catalyst). The regio-selectivity of this synthetic approach had been correctly predicted by previous reports involving octakis(dimethylsiloxy)octasilsesquioxane (Q8M8H) and hydrogen silsesquioxane (T8H8), as molecular analogs of hydride amorphous silica. Thus, C-silylation predominated (~ 94%) over O-silylation, and high surface coverages of propanol groups (5±1 µmol/m2) were typically obtained in this work. The propanol-bonded phase was characterized by spectroscopic (IR and solid state NMR on silica microparticles), contact angle (on fused-silica wafers) and CE (on fused-silica tubes) techniques. CE studies of the migration behavior of pyridine, caffeine, tris(2,2’-bipyridine)Ru(II) chloride and lysozyme on propanol-modified capillaries were carried out. The adsorption properties of these select silanol-sensitive solutes were compared to those on the unmodified and hydride-modified tubes. It was found that hydrolysis of the SiH species underlying the immobilized propanol moieties leads mainly to strong ion-exchange based interactions with the basic solutes at pH 4, particularly with lysozyme. Interestingly, and in agreement with water contact angle and electroosmotic mobility figures, the silanol-probe interactions on the buffer-exposed (hydrolyzed) hydride surface are quite different from those of the original unmodified tube. PMID:24934906
Sadeghi, Rahmat; Ebrahimi, Nosaibah
2011-11-17
A systematic study of osmotic coefficient, conductivity, volumetric and acoustic properties of solutions of ionic liquid 1-hexyl-3-methylimidazolium chloride ([C(6)mim][Cl]) in various molecular solvents has been made at different temperatures in order to study of ionic association and solvation behavior of [C(6)mim][Cl] in different solutions. Precise measurements on electrical conductances of solutions of [C(6)mim][Cl] in water, methanol, ethanol, 1-propanol, 2-propanol, 1-butanol, and acetonitrile at 293.15, 298.15, and 303.15 K are reported and analyzed with Barthel's low-concentration chemical model (lcCM) to obtain the limiting molar conductivities and association constants of this ionic liquid in the investigated solvents. Strong ion pairing was found for the ionic liquid in 2-propanol, 1-butanol, and 1-propanol, whereas ion association in acetonitrile, methanol and ethanol is rather weak and in water the ionic liquid is fully dissociated. In the second part of this work, the apparent molar volumes and isentropic compressibilities of [C(6)mim][Cl] in water, methanol, ethanol, acetonitrile, 1-propanol, 2-propanol, and 1-butanol are obtained at the 288.15-313.15 K temperature range at 5 K intervals at atmospheric pressure from the precise measurements of density and sound velocity. The infinite dilution apparent molar volume and isentropic compressibility values of the free ions and ion pairs of [C(6)mim][Cl] in the investigated solvents as well as the excess molar volume of the investigated solutions are determined and their variations with temperature and type of solvents are also studied. Finally, the experimental measurements of osmotic coefficient at 318.15 K for binary solutions of [C(6)mim][Cl] in water, methanol, ethanol, 2-propanol, and acetonitrile are taken using the vapor pressure osmometry (VPO) method and from which the values of the solvent activity, vapor pressure, activity coefficients, and Gibbs free energies are calculated. The results are interpreted in terms of ion association, ion-dipole interactions, and structural factors of the ionic liquid and investigated organic solvents. The ionic liquid is solvated to a different extent by the molecular solvents, and ionic association is affected significantly by ionic solvation.
Biofuels, such as ethanol and biodiesel, are a growing component of the nation’s fuel supply. Ethanol is the primary biofuel in the US market, distributed as a blend with petroleum gasoline, in concentrations ranging from 10% ethanol (E10) to 85% ethanol (E85). Biodiesel, made fr...
An Automated Distillation Column for the Unit Operations Laboratory
ERIC Educational Resources Information Center
Perkins, Douglas M.; Bruce, David A.; Gooding, Charles H.; Butler, Justin T.
2005-01-01
A batch distillation apparatus has been designed and built for use in the undergraduate unit operations laboratory course. The column is fully automated and is accompanied by data acquisition and control software. A mixture of 1-propanol and 2-propanol is separated in the column, using either a constant distillate rate or constant composition…
1988-05-01
alcohol (1- octanol ) phenol n-propyl alcohol (1-propanol) isopropy1 alcohol (2-propanol) **2. Aldehydes acetaldehyde (ethanal) acrolein (propenal...59.0) D-7 MACs 7-Day ppm fmq/M^) 20 (105) 20 (82.0) 20 (70.4) 20 (70.4) Mol. Wt. methyl hexyl ketone (2- octanone ) 128.2 methyl
Ozone reacts with n-aldehydes (n = 4 - 10), benzaldehyde, ethanol, isopropanol, and n-propanol adsorbed on a dual-bed graphitized carbon/carbon molecular sieve adsorbent cartridge. Destruction of n-aldehydes increases with n number and with ozone concentration. In some samp...
Herruzo, R; Vizcaino, M J; Yela, R
2018-04-01
Surgical use of 4% chlorhexidine soap (CHX-4) and 10% povidone iodine (PVP-I-10) does not meet the standards defined by EN 12791. To investigate the possibility of increasing the immediate and residual effects of these antiseptics. Over three consecutive weeks, n-propanol, standard CHX-4 and PVP-I-10 were tested in two experimental groups of volunteers. The new method for applying the antiseptic substances involved standard hand rub and rinse of CHX-4 or PVP-I-10, followed by application of an aqueous solution based on 5% chlorhexidine or PVP-I-10 with no further rinsing of the hands prior to donning gloves. Samples were taken to assess immediate and residual effects, analysing the logarithmic reduction of colony-forming units. At t=0 h, n-propanol was superior in bactericidal effect to standard CHX-4 (P<0.05), but the new chlorhexidine protocol was superior to both standard CHX-4 (P<0.01) and n-propanol (P<0.05); the same effect was observed at t=3 h (residual effect). At t=0 h, n-propanol was significantly superior to standard PVP-I-10, but the new PVP-I-10 protocol was superior, although not significantly, to n-propanol. There was no significant residual effect at t=3 h. The new protocol for chlorhexidine application permits surgical hand preparation with chlorhexidine, as a safe alternative to alcohol solutions, because it meets the standards defined by EN 12791. Copyright © 2017 The Healthcare Infection Society. Published by Elsevier Ltd. All rights reserved.
Transient ultrafast coherent spectroscopy of 2-propanol
NASA Astrophysics Data System (ADS)
Meiselman, Seth; Decamp, Matthew; Lorenz, Virginia
We use transient coherent spontaneous Raman spectroscopy to measure the coherence lifetimes of vibrational states in liquid propanol. By creating single-photon-level collective excitations of the vibrational states in the system we observe coherence oscillations due to simultaneous excitation of the 2885 cm-1, 2938 cm-1, and 2976 cm-1 modes. These lifetimes and oscillation frequencies agree with frequency-domain lineshape measurements.
Liquid-vapor phase equilibria of three-component systems of propanol-2-propanoic acid esters
NASA Astrophysics Data System (ADS)
Suntsov, Yu. K.; Goryunov, V. A.; Chuikov, A. M.
2017-12-01
The boiling points of solutions of three-component systems formed by propanol-2 and propanoic acid esters are measured at different pressures by means of ebulliometry. The coefficients of the activity of the solutions' components are measured using Wilson and nonrandom two-liquid (NRTL) equations. The results from calculations are in line with the experimental data.
Biofuels, such as ethanol and biodiesel, are a growing component of the nation’s fuel supply. Ethanol is the primary biofuel in the US market, distributed as a blend with petroleum gasoline, in concentrations ranging from 10% ethanol (E10) to 85% ethanol (E85). Biodiesel, made fr...
Biofuels, such as ethanol and biodiesel, are a growing component of the nation's fuel supply. Ethanol is the primary biofuel in the US martket, distributed as a blend with petroleum gasoline in concentrations ranging from 10% ethanol (E10) to 85% ethanol (E85). Biodiesel, made ...
Catalytic dehydration of biomass derived 1-propanol to propene over M-ZSM-5 (M = H, V, Cu, or Zn)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lepore, Andrew W.; Li, Zhenglong; Davison, Brian H.
Here, the impetus to explore biomass derived chemicals arises from a desire to enable renewable and sustainable commodity chemicals. To this end, we report catalytic production of propene, a building-block molecule, from 1-propanol. We found that zeolite catalysts are quite versatile and can produce propene at or below 230 C with high selectivity. Increasing the reaction temperature above 230 C shifted product selectivity towards C4+ hydrocarbons. Cu-ZSM-5 was found to exhibit a broader temperature window for high propene selectivity and could function at higher 1-propanol space velocities than H-ZSM-5. A series of experiments with 1-propan(ol-D) showed deuterium incorporation in themore » hydrocarbon product stream including propene suggesting that hydrocarbon pool type pathway might be operational concurrent with dehydration to produce C4+ hydrocarbons. Diffuse reflectance infra-red spectroscopy of 1-propanol and 1-propan(ol-D) over Cu-ZSM-5 in combination with deuterium labeling experiments suggest that deuterium incorporation occurs in two steps. Incorporation of deuterium occurs post dehydration via exchange with the partially deuterated catalyst surface.« less
Response of a Zn₂TiO₄ Gas Sensor to Propanol at Room Temperature.
Gaidan, Ibrahim; Brabazon, Dermot; Ahad, Inam Ul
2017-08-31
In this study, three different compositions of ZnO and TiO₂ powders were cold compressed and then heated at 1250 °C for five hours. The samples were ground to powder form. The powders were mixed with 5 wt % of polyvinyl butyral (PVB) as binder and 1.5 wt % carbon black and ethylene-glyco-lmono-butyl-ether as a solvent to form screen-printed pastes. The prepared pastes were screen printed on the top of alumina substrates containing arrays of three copper electrodes. The three fabricated sensors were tested to detect propanol at room temperature at two different concentration ranges. The first concentration range was from 500 to 3000 ppm while the second concentration range was from 2500 to 5000 ppm, with testing taking place in steps of 500 ppm. The response of the sensors was found to increase monotonically in response to the increment in the propanol concentration. The surface morphology and chemical composition of the prepared samples were characterized by Scanning Electron Microscopy (SEM) and X-Ray Diffraction (XRD). The sensors displayed good sensitivity to propanol vapors at room temperature. Operation under room-temperature conditions make these sensors novel, as other metal oxide sensors operate only at high temperature.
Yamaguchi, Makoto; Matsunaga, Takuro; Amemiya, Kazuki; Ohira, Akihiro; Hasegawa, Naoki; Shinohara, Kazuhiko; Ando, Masaki; Yoshida, Toshihiko
2014-12-26
The dispersion of perfluorinated sulfonic acid ionomers in catalyst inks is an important factor controlling the performance of catalyst layers in membrane electrode assemblies of proton exchange membrane fuel cells (PEMFCs). The effect of water/alcohol composition on the dispersion of H-Nafion in water/1-propanol and water/ethanol solutions was studied by dynamic light scattering (DLS), small-angle X-ray scattering (SAXS), and (19)F nuclear magnetic resonance ((19)F NMR) spectroscopy. Hydrodynamic radii calculated from DLS decay profiles and the radii and interparticle distance of rod-like particles derived from SAXS profiles showed almost the same dependence on alcohol concentration. 1-Propanol was more effective than ethanol to induce changes in the characteristic lengths of the rod-like particles. The motional narrowing in the (19)F NMR spectra by addition of 1-propanol indicates selective solvation of the rod-like particles. We suppose this might have decreased their radii and induced their elongation, which eventually led to extension of the ordered regions as observed in the hydrodynamic radii. Our study helps to clarify the dispersion of Nafion in aqueous alcohol solutions, which has implications for the performance of PEMFCs.
Catalytic dehydration of biomass derived 1-propanol to propene over M-ZSM-5 (M = H, V, Cu, or Zn)
Lepore, Andrew W.; Li, Zhenglong; Davison, Brian H.; ...
2017-04-03
Here, the impetus to explore biomass derived chemicals arises from a desire to enable renewable and sustainable commodity chemicals. To this end, we report catalytic production of propene, a building-block molecule, from 1-propanol. We found that zeolite catalysts are quite versatile and can produce propene at or below 230 C with high selectivity. Increasing the reaction temperature above 230 C shifted product selectivity towards C4+ hydrocarbons. Cu-ZSM-5 was found to exhibit a broader temperature window for high propene selectivity and could function at higher 1-propanol space velocities than H-ZSM-5. A series of experiments with 1-propan(ol-D) showed deuterium incorporation in themore » hydrocarbon product stream including propene suggesting that hydrocarbon pool type pathway might be operational concurrent with dehydration to produce C4+ hydrocarbons. Diffuse reflectance infra-red spectroscopy of 1-propanol and 1-propan(ol-D) over Cu-ZSM-5 in combination with deuterium labeling experiments suggest that deuterium incorporation occurs in two steps. Incorporation of deuterium occurs post dehydration via exchange with the partially deuterated catalyst surface.« less
Effect of eight solvents on ethanol analysis by Dräger 7110 Evidential breath analyzer.
Laakso, Olli; Pennanen, Teemu; Himberg, Kimmo; Kuitunen, Tapio; Himberg, Jaakko-Juhani
2004-09-01
The Dräger 7110 MK III FIN Evidential breath analyzer is classified as a quantitative analyzer capable to provide sufficient evidence for establishing legal intoxication. The purpose of this study was to evaluate ethanol specificity of this instrument in the presence of other solvents. Effects of eight possible interfering compounds on ethanol analysis were determined in a procedure simulating a human breathing. Most of the compounds studied had either a negligible effect on ethanol analysis (acetone, methyl ethyl ketone, and methyl isobutyl ketone) or were detected in very low concentrations before influencing ethanol readings (methanol, ethyl acetate, and diethyl ether). However, 1-propanol and 2-propanol increased the ethanol readings significantly. Thus, Dräger ethanol readings should be interpreted carefully in the presence of propanol.
Cartner, T; Brand, N; Tian, K; Saud, A; Carr, T; Stapleton, P; Lane, M E; Rawlings, A V
2017-04-01
The aim of this exploratory study was to investigate the effect of ethanol, isopropanol and n-propanol on stratum corneum (SC) enzymes and keratinocytes in vitro together with their effects on skin condition and function. Activities of kallikrein 5 (KLK5) and phospholipase A2 (PLA2) as well as keratinocyte metabolic activity, interleukin-1α (IL-1α) and tumor necrosis factor-α (TNF-α) were measured in vitro in the presence and absence of the different alcohols. We also measured transepidermal water loss (TEWL), skin capacitance, visual dryness and visual redness on the volar forearms of 25 Caucasian women following application of the alcohols 20 and 100 times per day over a period of 14 days in a clinical study. Reduced activities of KLK5 and PLA2 were observed in the presence of the alcohols. The greatest denaturing effect was always observed for n-propanol (P < 0.001), and in the case of PLA2, the effect of isopropanol was greater than ethanol (P < 0.001). Equally, ethanol had the mildest effects on keratinocyte metabolic activity and cytokine secretion (P < 0.001) and n-propanol always produced the most severe changes in normal and differentiated keratinocytes. These in vitro findings supported the clinical results where the major effects were on the induction of skin irritation (increased dropout rates) and ranked the intolerance of the different alcohols as follows: n-propanol > isopropanol > ethanol. At the high application frequencies, the effect of the different alcohols on transepidermal water loss (TEWL) and skin capacitance was similar, but at the low application frequencies, n-propanol had a significant effect on TEWL and capacitance values (P < 0.05). Equally, n-propanol and isopropanol produced significantly more skin redness at the low application frequencies. Clearly, isopropanol and n-propanol caused significant SC and keratinocyte perturbation in vitro together with damage to skin condition and function in vivo whereas ethanol did not. As a result, we show that ethanol-based sanitizers are better tolerated by skin, particularly in high-use settings, than other alcohols and should be the active ingredient of choice. © 2016 The Authors. International Journal of Cosmetic Science published by John Wiley & Sons Ltd on behalf of Society of Cosmetic Scientists and Société Française de Cosmétologie.
Biofuels, such as ethanol and biodiesel, are a growing component of the nation’s fuel supply. Ethanol is the primary biofuel in the US market, distributed as a blend with petroleum gasoline, in concentrations ranging from 10% ethanol (E10) to 85% ethanol (E85). Biodiesel, made ...
Analysis of vibrational spectra of 3-halo-1-propanols CH(2)XCH(2)CH(2)OH (X is Cl and Br).
Badawi, Hassan M; Förner, Wolfgang
2008-12-01
The conformational stability and the three rotor internal rotations in 3-chloro- and 3-bromo-1-propanols were investigated by DFT-B3LYP/6-311+G and ab initio MP2/6-311+G, MP3/6-311+G and MP4(SDTQ)//MP3/6-311+G levels of theory. On the calculated potential energy surface twelve distinct minima were located all of which were not predicted to have imaginary frequencies at the B3LYP level of theory. The calculated lowest energy minimum in the potential curves of both molecules was predicted to correspond to the Gauche-gauche-trans (Ggt) conformer in excellent agreement with earlier microwave and electron diffraction results. The equilibrium constants for the conformational interconversion of the two 3-halo-1-propanols were calculated at the B3LYP/6-311+G level of calculation and found to correspond to an equilibrium mixture of about 32% Ggt, 18% Ggg1, 13% Tgt, 8% Tgg and 8% Gtt conformations for 3-chloro-1-propanol and 34% Ggt, 15% Tgt, 13% Ggg1, 9% Tgg and 7% Gtt conformations for 3-bromo-1-propanol at 298.15K. The nature of the high energy conformations was verified by carrying out solvent experiments using formamide ( epsilon=109.5) and MP3 and MP4//MP3 calculations. The vibrational frequencies of each molecule in its three most stable forms were computed at the B3LYP level and complete vibrational assignments were made based on normal coordinate calculations and comparison with experimental data of the molecules.
Catalytic Deoxygenation of 1,2-Propanediol to Give n-Propanol
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schlaf, Marcel; Ghosh, Prasenjit; Fagan, Paul J.
2009-03-01
Catalytic deoxygenation of 1,2-propanediol has been studied as a model the for deoxygenation of polyols and other biomass-derived compounds. Deoxygenation of 1,2-propanediol (1.0 M in sulfolane) catalyzed by {[Cp*Ru(CO)2]2(μ-H)}+OTf – (0.5 mol %) at 110 °C under H2 (750 psi) in the presence of HOTf (60 mM) gives n-propanol (54 %) as the major product, indicating a high selectivity for deoxygenation of the internal OH over the terminal OH of the diol. Di-n propyl ether forms through condensation of n-propanol with itself, and propylene glycol propyl ether arises from condensation of n-propanol with the starting material diol, giving a totalmore » of up to 80 % yield for deoxygenation / hydrogenation products under these conditions. The deoxygenation of 1,2-propanediol is strongly influenced by the concentration of acid, giving faster rates and proceeding to higher conversions as the concentration of HOTf is increased. There is little or no dependence of the rate on the pressure of H2. Propionaldehyde was observed as an intermediate, being formed through acid-catalyzed dehydration of 1,2-propanediol. This aldehyde is hydrogenated to n-propanol through an ionic pathway involving protonation of the aldehyde, followed by hydride transfer from the neutral hydride, Cp*Ru(CO)2H. The proposed mechanism for the deoxygenation/hydrogenation reaction involves formation of a highly acidic dihydrogen complex, [Cp*Ru(CO)2(η2-H2)]+OTf-. Regeneration of the dihydrogen complex occurs through reaction of Cp*Ru(CO)2OTf with H2. Pacific Northwest National Laboratory is operated by Battelle for the US Department of Energy.« less
NASA Astrophysics Data System (ADS)
Ghezelbash, Mahsa; Majd, Abdollah Eslami; Darbani, Seyyed Mohammad Reza; Mousavi, Seyyed Jabbar; Ghasemi, Ali; Tehrani, Masoud Kavosh
2017-01-01
Laser-induced breakdown spectroscopy (LIBS) technique is used to record some plasma emissions of different laminar diffusion methanol, ethanol, and n-propanol alcohol flames, to investigate the shapes, structures (i.e., reactants and products zones), kind, and quality of burning in different areas. For this purpose, molecular bands of CH, CH*, C2, CN, and CO as well as atomic and ionic lines of C, H, N, and O are identified, simultaneously. Experimental results indicate that the CN and C2 emissions have highest intensity in LIBS spectrum of n-propanol flame and the lowest in methanol. In addition, lowest content of CO pollution and better quality of burning process in n-propanol fuel flame toward ethanol and methanol are confirmed by comparison between their CO molecular band intensities. Moreover, variation of the signal intensity from these three flames with that from a known area of burner plate is compared. Our findings in this research advance the prior results in time-integrated LIBS combustion application and suggesting that LIBS can be used successfully with the CCD detector as a non-gated analytical tool, given its simple instrumentation needs, real-time capability applications of molecular detection in laminar diffusion flame samples, requirements.
Sauter, Waldemar; Bergmann, Olaf L; Schröder, Uwe
2017-08-10
Here, we propose the use of hydroxyacetone, a dehydration product of glycerol, as a platform for the electrocatalytic synthesis of acetone, 1,2-propanediol, and 2-propanol. 11 non-noble metals were investigated as electrode materials in combination with three different electrolyte compositions toward the selectivity, Coulombic efficiency (CE), and reaction rates of the electrocatalytic hydrogenation (formation of 1,2-propanediol) and hydrodeoxygenation (formation of acetone and propanol) of hydroxyacetone. With a selectivity of 84.5 %, a reaction rate of 782 mmol h -1 m -2 and a CE of 32 % (for 0.09 m hydroxyacetone), iron electrodes, in a chloride electrolyte, yielded the best 1,2 propanediol formation. A further enhancement of the performance can be achieved upon increasing the educt concentration to 0.5 m, yielding a reaction rate of 2248.1 mmol h -1 m -2 and a CE of 64.5 %. Acetone formation was optimal at copper and lead electrodes in chloride solution, with lead showing the lowest tendency of side product formation. 2-propanol formation can be achieved using a consecutive oxidation of the formed acetone (at iron electrodes). 1-propanol formation was observed only in traces. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, M.H.; Lai, M.D.
1995-03-01
Solutions of amines are frequently used in gas-treating processes to remove acid gases, such as CO{sub 2} and H{sub 2}S, from gas streams in the natural gas and synthetic ammonia industries and petroleum chemical plants. The solubility and diffusivity of N{sub 2}O in (monoethanolamine + N-methyldiethanolamine + water) and in (monoethanolamine + 2-amino-2-methyl-l-propanol + water) were measured at 30, 35, and 40 C and at atmospheric pressure. Six (monoethanolamine + N-methyldiethanolamine + water) and five (monoethanolamine + 2-amino-2-methyl-l-propanol + water) systems were studied. The total amine mass percent in all cases was 30. The solubilities were measured by a solubilitymore » apparatus similar to that of Haimour and Sandall (1984). A wetted wall column absorber was used to obtain the diffusivity of N{sub 2}O in amines. The N{sub 2}O solubilities in amine solutions have been correlated on the basis of the excess Henry constant correlation of Wang et al. (1992). The N{sub 2}O analogy was used to estimate the solubility and diffusivity of CO{sub 2} in (monoethanolamine + N-methyldiethanolamine + water) and in (monoethanolamine + 2-amino-2-methyl-l-propanol + water).« less
NASA Astrophysics Data System (ADS)
Wen, Yue-Hua; Cheng, Jie; Ning, Shang-Qi; Yang, Yu-Sheng
A zinc-air battery using zinc regeneration electrolysis with propanol oxidation as a counter electrode reaction is reported in this paper. It possesses functions of both zincate reduction and electrochemical preparation, showing the potential for increasing the electronic energy utilization. Charge/discharge tests and scanning electron microscopy (SEM) micrographs reveal that when a nickel sheet plated with the high-H 2-overpotential metal, cadmium, was used as the negative substrate electrode, the dendritic formation and hydrogen evolution are suppressed effectively, and granular zinc deposits become larger but relatively dense with the increase of charge time. The performance of batteries is favorable even if the charge time is as long as 5 h at the current density of 20 mA cm -2. Better discharge performance is achieved using a 'cavity-opening' configuration for the discharge cell rather than a 'gas-introducing' configuration. The highest energy efficiency is up to 59.2%. That is, the energy consumed by organic electro-synthesis can be recovered by 59.2%. Cyclic voltammograms show that the sintered nickel electrode exhibits a good electro-catalysis activity for the propanol oxidation. The increase of propanol concentration conduces to an enhancement in the organic electro-synthesis efficiency. The organic electro-synthesis current efficiency of 82% can be obtained.
Soyer, Asli; Bayraktar, Emine; Mehmetoglu, Ulku
2010-01-01
Optically active 1-phenyl 1-propanol is used as a chiral building block and synthetic intermediate in the pharmaceutical industries. In this study, the enantioselective production of 1-phenyl 1-propanol was investigated systematically using response surface methodology (RSM). Before RSM was applied, the effects of the enzyme source, the type of acyl donor, and the type of solvent on the kinetic resolution of 1-phenyl 1-propanol were studied. The best results were obtained with Candida antartica lipase (commercially available as Novozym 435), vinyl laurate as the acyl donor, and isooctane as the solvent. In the RSM, substrate concentration, molar ratio of acyl donor to the substrate, amount of enzyme, temperature, and stirring rate were chosen as independent variables. The predicted optimum conditions for a higher enantiomeric excess (ee) were as follows: substrate concentration, 233 mM; molar ratio of acyl donor to substrate, 1.5; enzyme amount, 116 mg; temperature, 47 °C; and stirring rate, 161 rpm. A verification experiment conducted at these optimized conditions for maximum ee yielded 91% for 3 hr, which is higher than the predicted value of 83%. The effect of microwave on the ee was also investigated and ee reached 87% at only 5 min.
Code of Federal Regulations, 2014 CFR
2014-07-01
...-, compds. with ethanol 2-[2-(C12-14-alkyloxy) ethoxy] derivs. hydrogen sulfates. 721.5358 Section 721.5358...-propanol, 1,1′,1′-nitrilotris-, compds. with ethanol 2-[2-(C12-14-alkyloxy) ethoxy] derivs. hydrogen.... hydrogen sulfates (PMN P-99-928; CAS No. 222975-06-6) is subject to reporting under this section for the...
Code of Federal Regulations, 2011 CFR
2011-07-01
...-, compds. with ethanol 2-[2-(C12-14- alkyloxy) ethoxy] derivs. hydrogen sulfates. 721.5358 Section 721.5358...-propanol, 1,1′,1′-nitrilotris-, compds. with ethanol 2-[2-(C12-14- alkyloxy) ethoxy] derivs. hydrogen.... hydrogen sulfates (PMN P-99-928; CAS No. 222975-06-6) is subject to reporting under this section for the...
Code of Federal Regulations, 2012 CFR
2012-07-01
...-, compds. with ethanol 2-[2-(C12-14-alkyloxy) ethoxy] derivs. hydrogen sulfates. 721.5358 Section 721.5358...-propanol, 1,1′,1′-nitrilotris-, compds. with ethanol 2-[2-(C12-14-alkyloxy) ethoxy] derivs. hydrogen.... hydrogen sulfates (PMN P-99-928; CAS No. 222975-06-6) is subject to reporting under this section for the...
Code of Federal Regulations, 2013 CFR
2013-07-01
...-, compds. with ethanol 2-[2-(C12-14-alkyloxy) ethoxy] derivs. hydrogen sulfates. 721.5358 Section 721.5358...-propanol, 1,1′,1′-nitrilotris-, compds. with ethanol 2-[2-(C12-14-alkyloxy) ethoxy] derivs. hydrogen.... hydrogen sulfates (PMN P-99-928; CAS No. 222975-06-6) is subject to reporting under this section for the...
Code of Federal Regulations, 2010 CFR
2010-07-01
...-, compds. with ethanol 2-[2-(C12-14- alkyloxy) ethoxy] derivs. hydrogen sulfates. 721.5358 Section 721.5358...-propanol, 1,1′,1′-nitrilotris-, compds. with ethanol 2-[2-(C12-14- alkyloxy) ethoxy] derivs. hydrogen.... hydrogen sulfates (PMN P-99-928; CAS No. 222975-06-6) is subject to reporting under this section for the...
Infrared Analysis of Gasoline/Alcohol Blends.
1981-02-01
in storage, routine handling and distribution. As a result, other oxygenates such as methanol , iso-propanol, t-butanoA, methyl -t- butyl ether, and...Table 1 lists TABLE 1. ALCOHOL ANALYTE BAND NUMBERS -1 Component Analytical Frequency, cm Gasoline 967 Methanol 1030 Ethanol 882 iso-propanol 952 t...of varying concen- trations of each alcohol in a gasoline were obtained, with Figure 4 showing a low and high standard for methanol . The net peak
Motiwala, Hashim F; Yin, Qin; Aubé, Jeffrey
2015-12-29
The Schmidt reaction of aromatic aldehydes using a substoichiometric amount (40 mol %) of triflic acid is described. Low catalyst loading was enabled by a strong hydrogen-bond-donating solvent hexafluoro-2-propanol (HFIP). This improved protocol tolerates a broad scope of aldehydes with diverse functional groups and the corresponding nitriles were obtained in good to high yields without the need for aqueous work up.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hurtubise, R.J.; Hussain, A.; Silver, H.F.
1981-11-01
The normal-phase liquid chromatographic models of Scott, Snyder, and Soczewinski were considered for a ..mu..-Bondapak NH/sub 2/ stationary phase. n-Heptane:2-propanol and n-heptane:ethyl acetate mobile phases of different compositions were used. Linear relationships were obtained from graphs of log K' vs. log mole fraction of the strong solvent for both n-heptane:2-propanol and n-heptane:ethyl acetate mobile phases. A linear relationship was obtained between the reciprocal of corrected retention volume and % wt/v of 2-propanol but not between the reciprocal of corrected retention volume and % wt/v of ethyl acetate. The slopes and intercept terms from the Snyder and Soczewinski models were foundmore » to approximately describe interactions with ..mu..-Bondapak NH/sub 2/. Capacity factors can be predicted for the compounds by using the equations obtained from mobile phase composition variation experiments.« less
Characterization of the products formed by the reaction of trichlorocyanuric acid with 2-propanol.
Sandercock, P Mark L; Barnett, Julie S
2009-11-01
We report a recent investigation into the death of a cat that was initially thought to involve intentionally burning the animal via the use of an ignitable liquid. The exposure of the animal to flame was ruled out. Instead, forensic investigation revealed the intentional mixing together of a common outdoor swimming pool chlorinator, trichlorocyanuric acid (TCCA), and 2-propanol (aka, isopropyl alcohol or rubbing alcohol). The reaction of these two chemicals resulted in the formation of cyanuric acid residue, hydrochloric acid, and the evolution of a significant volume of chlorine gas. Further alpha-chlorination side reactions also occurred between 2-propanol and TCCA to produce a variety of chlorinated 2-propanone species that were detected on the submitted evidence. The identification of the products of both the main reaction and the side reactions allowed the authors to determine what chemicals were originally mixed together by the culprit.
Ruminal and intermediary metabolism of propylene glycol in lactating Holstein cows.
Kristensen, N B; Raun, B M L
2007-10-01
Four lactating Holstein cows fitted with ruminal cannulas and permanent indwelling catheters in the mesenteric artery, mesenteric vein, hepatic portal vein, and hepatic vein were used in a cross-over design to study the metabolism of propylene glycol (PG). Each cow received 2 treatments: control (no infusion) and infusion of 650 g of PG into the rumen at the time of the morning feeding. Propylene glycol was infused on the day of sampling only. Samples of arterial, portal, and hepatic blood as well as ruminal fluid were obtained at 0.5 h before feeding and at 0.5, 1.5, 2.5, 3.5, 5, 7, 9, and 11 h after feeding. Infusion of PG did not affect ruminal pH or the total concentration of ruminal volatile fatty acids, but did decrease the molar proportion of ruminal acetate. The ruminal concentrations of PG, propanol, and propanal as well as the molar proportion of propionate increased with PG infusion. The plasma concentrations of PG, ethanol, propanol, propanal, glucose, L-lactate, propionate, and insulin increased with PG and the plasma concentrations of acetate and beta-hydroxybutyrate decreased. The net portal flux of PG, propanol, and propanal increased with PG. The hepatic uptake of PG was equivalent to 19% of the intraruminal dose. When cows were dosed with PG, the hepatic extraction of PG was between 0 and 10% depending on the plasma concentration of PG, explaining the slow decrease in arterial PG. The increased net hepatic flux of L-lactate with PG could account for the entire hepatic uptake of PG, which suggests that the primary hepatic pathway for PG is oxidation to l-lactate. The hepatic uptake of propanol increased with PG, but no effects of PG on the net hepatic and net splanchnic flux of glucose were observed. Despite no effect of PG on net portal flux and net hepatic flux of propionate, the net splanchnic flux of propionate increased and the data suggest that propionate produced from hepatic metabolism of propanol is partly released to the blood. The data suggest that PG affects metabolism of the cows by 2 modes of action: 1) increased supply of l-lactate and propionate to gluconeogenesis and 2) insulin resistance of peripheral tissues induced by increased concentrations of PG and propanol as well as a decreased ratio of ketogenic to glucogenic metabolites in arterial blood plasma.
40 CFR Table 2a to Subpart E of... - Reactivity Factors
Code of Federal Regulations, 2014 CFR
2014-07-01
... 0.67 Methyl Amyl Ketone 110-43-0 2.80 Hexane 110-54-3 1.45 n-Propyl Formate 110-74-7 0.93 2... (2-Propanol) 67-63-0 0.71 Acetone (Propanone) 67-64-1 0.43 n-Propanol (n-Propyl Alcohol) 71-23-8 2.74 n-Butyl Alcohol (Butanol) 71-36-3 3.34 n-Pentanol (Amyl Alcohol) 71-41-0 3.35 Benzene 71-43-2 0.81 1...
40 CFR Table 2a to Subpart E of... - Reactivity Factors
Code of Federal Regulations, 2013 CFR
2013-07-01
... 0.67 Methyl Amyl Ketone 110-43-0 2.80 Hexane 110-54-3 1.45 n-Propyl Formate 110-74-7 0.93 2... (2-Propanol) 67-63-0 0.71 Acetone (Propanone) 67-64-1 0.43 n-Propanol (n-Propyl Alcohol) 71-23-8 2.74 n-Butyl Alcohol (Butanol) 71-36-3 3.34 n-Pentanol (Amyl Alcohol) 71-41-0 3.35 Benzene 71-43-2 0.81 1...
40 CFR Table 2a to Subpart E of... - Reactivity Factors
Code of Federal Regulations, 2012 CFR
2012-07-01
... 0.67 Methyl Amyl Ketone 110-43-0 2.80 Hexane 110-54-3 1.45 n-Propyl Formate 110-74-7 0.93 2... (2-Propanol) 67-63-0 0.71 Acetone (Propanone) 67-64-1 0.43 n-Propanol (n-Propyl Alcohol) 71-23-8 2.74 n-Butyl Alcohol (Butanol) 71-36-3 3.34 n-Pentanol (Amyl Alcohol) 71-41-0 3.35 Benzene 71-43-2 0.81 1...
Environmental stress cracking in gamma-irradiated polycarbonate - A diffusion approach
NASA Astrophysics Data System (ADS)
Silva, Pietro Paolo J. C. de O.; Araújo, Patricia L. B.; da Silveira, Leopoldo B. B.; Araújo, Elmo S.
2017-01-01
Polycarbonate (PC) is an engineering polymer which presents interesting properties. This material has been also used in medical devices, which is frequently exposed to gamma radiosterilization and to chemical agents. This may produce significant changes in polymer structure, leading to failure in service. The present work brings about a new approach on environmental stress cracking (ESC) processes elucidation in 100 kGy gamma-irradiated PC, by evaluating the diffusion process of methanol or 2-propanol in test specimens and determining the diffusion parameters on solvent-irradiated polymer systems. A comparison of diffusion parameters for both solvents indicated that methanol has a considerable ESC action on PC, with diffusion parameter of 7.5×10-14±1% m2 s-1 for non-irradiated PC and 7.8×10-14±2.8% m2 s-1 for PC irradiated at 100 kGy. In contrast, 2-propanol did not act as an ESC agent, as it did promote neither swelling nor cracks in the test specimens. These results were confirmed by visual analysis and optical microscopy. Unexpectedly, structural damages evidenced in tensile strength tests suggested that 2-propanol is as aggressive as methanol chemical for PC. Moreover, although some manufacturers indicate the use of 2-propanol as a cleaning product for PC artifacts, such use should be avoided in parts under mechanical stress.
A novel membrane-less direct alcohol fuel cell
NASA Astrophysics Data System (ADS)
Yi, Qingfeng; Chen, Qinghua; Yang, Zheng
2015-12-01
Membrane-less fuel cell possesses such advantages as simplified design and lower cost. In this paper, a membrane-less direct alcohol fuel cell is constructed by using multi-walled carbon nanotubes (MWCNT) supported Pd and ternary PdSnNi composites as the anode catalysts and Fe/C-PANI composite, produced by direct pyrolysis of Fe-doped polyaniline precursor, as the oxygen reduction reaction (ORR) catalyst. The alcohols investigated in the present study are methanol, ethanol, n-propanol, iso-propanol, n-butanol, iso-butanol and sec-butanol. The cathode catalyst Fe/C-PANI is electrochemically inactive to oxidation of the alcohols. The performance of the cell with various alcohols in 1 mol L-1 NaOH solution on either Pd/MWCNT or PdSnNi/MWCNT catalyst has been evaluated. In any case, the performance of the cell using the anode catalyst PdSnNi/MWCNT is considerably better than Pd/MWCNT. For the PdSnNi/MWCNT, the maximum power densities of the cell using methanol (0.5 mol L-1), ethanol (0.5 mol L-1), n-propanol (0.5 mol L-1), iso-propanol (0.5 mol L-1), n-butanol (0.2 mol L-1), iso-butanol (0.2 mol L-1) and sec-butanol (0.2 mol L-1) are 0.34, 1.03, 1.07, 0.44, 0.50, 0.31 and 0.15 mW cm-2, respectively.
A novel alcohol/iron (III) fuel cell
NASA Astrophysics Data System (ADS)
Yi, Qingfeng; Zou, Tao; Zhang, Yuanyuan; Liu, Xiaoping; Xu, Guorong; Nie, Huidong; Zhou, Xiulin
2016-07-01
A novel alcohol fuel cell is constructed by using Fe3+ as the oxidation agent instead of the conventional O2. Various alcohols as the fuels are tested, including methanol, ethanol, n-propanol and iso-propanol. In this fuel cell, the anode catalysts tested are PdSn/β-cd-CNT, PdSn/CNT, Pd/β-cd-CNT, Pd/CNT and Pd/β-cd-C, prepared by using multi-walled carbon nanotube (CNT) and carbon powder (C), as well as β-cyclodexdrin (β-cd) modified CNT (β-cd-CNT) and β-cd modified C (β-cd-C), as the substrates to immobilize PdSn and Pd nanoparticles in glycol solvent. The as-synthesized PdSn/β-cd-CNT catalyst presents significantly higher electroactivity for alcohol oxidation than the conventional Pd/C catalyst. Fe3+ reduction reaction is carried out on the cathode made of carbon powder. The anolyte (alcohols in 1 mol L-1 NaOH) and catholyte (Fe3+ in 0.5 mol L-1 NaCl) are separated with a Nafion 117 membrane. Open circuit voltage (OCV) of the cell with the anode PdSn/β-cd-CNT is 1.14-1.22 V, depending upon the used alcohol. The maximum power densities with methanol, ethanol, n-propanol and iso-propanol fuels are 15.2, 16.1, 19.9 and 12.2 mW cm-2, respectively.
Contribution of liver alcohol dehydrogenase to metabolism of alcohols in rats.
Plapp, Bryce V; Leidal, Kevin G; Murch, Bruce P; Green, David W
2015-06-05
The kinetics of oxidation of various alcohols by purified rat liver alcohol dehydrogenase (ADH) were compared with the kinetics of elimination of the alcohols in rats in order to investigate the roles of ADH and other factors that contribute to the rates of metabolism of alcohols. Primary alcohols (ethanol, 1-propanol, 1-butanol, 2-methyl-1-propanol, 3-methyl-1-butanol) and diols (1,3-propanediol, 1,3-butanediol, 1,4-butanediol, 1,5-pentanediol) were eliminated in rats with zero-order kinetics at doses of 5-20 mmol/kg. Ethanol was eliminated most rapidly, at 7.9 mmol/kgh. Secondary alcohols (2-propanol-d7, 2-propanol, 2-butanol, 3-pentanol, cyclopentanol, cyclohexanol) were eliminated with first order kinetics at doses of 5-10 mmol/kg, and the corresponding ketones were formed and slowly eliminated with zero or first order kinetics. The rates of elimination of various alcohols were inhibited on average 73% (55% for 2-propanol to 90% for ethanol) by 1 mmol/kg of 4-methylpyrazole, a good inhibitor of ADH, indicating a major role for ADH in the metabolism of the alcohols. The Michaelis kinetic constants from in vitro studies (pH 7.3, 37 °C) with isolated rat liver enzyme were used to calculate the expected relative rates of metabolism in rats. The rates of elimination generally increased with increased activity of ADH, but a maximum rate of 6±1 mmol/kg h was observed for the best substrates, suggesting that ADH activity is not solely rate-limiting. Because secondary alcohols only require one NAD(+) for the conversion to ketones whereas primary alcohols require two equivalents of NAD(+) for oxidation to the carboxylic acids, it appears that the rate of oxidation of NADH to NAD(+) is not a major limiting factor for metabolism of these alcohols, but the rate-limiting factors are yet to be identified. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Contribution of Liver Alcohol Dehydrogenase to Metabolism of Alcohols in Rats
Plapp, Bryce V.; Leidal, Kevin G.; Murch, Bruce P.; Green, David W.
2015-01-01
The kinetics of oxidation of various alcohols by purified rat liver alcohol dehydrogenase (ADH) were compared with the kinetics of elimination of the alcohols in rats in order to investigate the roles of ADH and other factors that contribute to the rates of metabolism of alcohols. Primary alcohols (ethanol, 1-propanol, 1-butanol, 2-methyl-1-propanol, 3-methyl-1-butanol) and diols (1,3-propanediol, 1,3-butanediol, 1,4-butanediol, 1,5-pentanediol) were eliminated in rats with zero-order kinetics at doses of 5–20 mmole/kg. Ethanol was eliminated most rapidly, at 7.9 mmole/kg•h. Secondary alcohols (2-propanol-d7, 2-propanol, 2-butanol, 3-pentanol, cyclopentanol, cyclohexanol) were eliminated with first order kinetics at doses of 5–10 mmole/kg, and the corresponding ketones were formed and slowly eliminated with zero or first order kinetics. The rates of elimination of various alcohols were inhibited on average 73% (55% for 2-propanol to 90% for ethanol) by 1 mmole/kg of 4-methylpyrazole, a good inhibitor of ADH, indicating a major role for ADH in the metabolism of the alcohols. The Michaelis kinetic constants from in vitro studies (pH 7.3, 37 °C) with isolated rat liver enzyme were used to calculate the expected relative rates of metabolism in rats. The rates of elimination generally increased with increased activity of ADH, but a maximum rate of 6 ± 1 mmole/kg•h was observed for the best substrates, suggesting that ADH activity is not solely rate-limiting. Because secondary alcohols only require one NAD+ for the conversion to ketones whereas primary alcohols require two equivalents of NAD+ for oxidation to the carboxylic acids, it appears that the rate of oxidation of NADH to NAD+ is not a major limiting factor for metabolism of these alcohols, but the rate-limiting factors are yet to be identified. PMID:25641189
DOE Office of Scientific and Technical Information (OSTI.GOV)
Davis, R.A.; Pogainis, B.J.
1995-11-01
Aqueous solutions of alkanolamines have applications in acid gas treatment for the removal of acid gases such as carbon dioxide and hydrogen sulfide. The solubility of nitrous oxide in aqueous blends of N-methyldiethanolamine and 2-amino-2-methyl-1 propanol was measured over the temperature range 10--60 C. The total composition of the alkanolamines in water ranged from 30 to 50 mass %. The experimental results were interpreted in terms of Henry`s constants.
[Solubilization Specificities Interferon beta-1b from Inclusion Bodies].
Zhuravko, A S; Kononova, N V; Bobruskin, A I
2015-01-01
A new solubilization method of recombinant interferon beta-1b (IFNβ-1b) from the inclusion bodies was developed. This method allows to extract the target protein selectively in the solutions of different alcohols, such as ethanol, propanol and isopropanol. It was shown that the more effective IFNβ-1b solubilization was achieved in the 55% propanol solution. This method allowed to extract the target protein from inclusion bodies around 85-90%, and significantly reduced Escherichia coli content in the solubilizate, in comparison with standard methods.
Time-resolved EPR study on the photochemical reactions of benzil
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mukai, Masahiro; Yamnauchi, Seigo; Hirota, Noboru
1992-04-16
TREPR and optical studies on the photochemical reactions of benzil in 2-propanol and benzene-TEA conclude that emissive signals are due to the reaction from T{sub n} produced via the S{sub n} pointing right T{sub n} intersystem crossing process. The free-pair radical-pair mechanism can account for the main features of the slow rise component of the chemically induced dynamic electron polarization signal of the ketyl radical in 2-propanol. 27 refs., 10 figs., 2 tabs.
A Puzzling Alcohol Dehydration Reaction Solved by GC-MS Analysis
NASA Astrophysics Data System (ADS)
Pelter, Michael W.; Macudzinski, Rebecca M.
1999-06-01
We have adapted the dehydration of 2-methyl-2-propanol to a "puzzle" approach for use in our second-semester chemistry major organic laboratory. The reaction of 2-methyl-2-propanol with ~50% sulfuric acid at 100 °C yields isobutylene, which reacts further by a "puzzling" reaction. By coupling the GC/MS analysis of the product mixture with their knowledge of the mechanism of alcohol dehydration and alkene reactivity, students are able to identify the major products of this reaction.
Solvent Effects in the Electroreduction of Ferrocene at Pt in the Temperature Range 200-300 K
1991-03-20
been obtained at iow temperatures downto 92 K ata P ulramcroeectode(dimete, 2 pm inthree alcohol solvents, namely, methanol, ethanol , and n-propanol. In...In this aree.-doutee-eace&4 Kinetic parameters for the electrooxidation of ferrocene have been obtained at low temperatures down to 193 ’K at a Pt...with solvent nature. tnsvetsiky of~aitm Davis, CA 95616 Kinetic data obtained in mteehanol, ethanol . and I1- propanol as a function of temperature
Chang, Fei; Xie, Yunchao; Chen, Juan; Luo, Jieru; Li, Chenlu; Hu, Xuefeng; Xu, Bin
2015-02-01
Preparation of uniform BiOCI flower-like microspheres was facilely accomplished through a sim- ple protocol involving regulation of pH value in aqueous with sodium hydroxide in the presence of n-propanol. The as-prepared samples were characterized by a collection of techniques, such as X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy dispersive X-ray spectroscopy (EDX), UV-vis diffuse reflectance spectroscopy (UV-vis DRS), and nitrogen adsorption-desorption isotherms. Based upon the SEM analyses, uniform microspheres could be formed with coexistence of some fragments of BiOCI nanosheets without n-propanol. The addition of appropriate amount of n-propanol was beneficial to provide BiOCI samples containing only flower-like microspheres, which were further subjected to the photocatalytic measurements towards Rhodamine B in aqueous under visible light irradiation and exhibited the best catalytic performance among all samples tested. In addition, the photocatalytic process was confirmed to undergo through a photosensitization pathway, in which superoxide radicals (.O-) played critical roles.
Lee, Maw-Rong; Chiu, Tzu-Chun; Dou, Jianpeng
2007-05-22
This study proposes a method for identifying 1,3-dichloro-2-propanol and 3-chloro-1,2-propandiol in aqueous matrices by using headspace on-fiber derivatization following solid-phase microextraction combined with gas chromatography-mass spectrometry. The optimized SPME experimental procedures for extracting 1,3-dichloro-2-propanol and 3-chloro-1,2-propandiol in aqueous solutions involved a 85 microm polyacrylate-coated fiber at pH 6, a sodium chloride concentration of 0.36 g mL(-1), extraction at 50 degrees C for 15 min and desorption of analytes at 260 degrees C for 3 min. Headspace derivatization was conducted in a laboratory-made design with N-methyl-N-(trimethylsilyl)-trifluoroacetamide vapor following solid-phase microextraction by using 3 microL N-methyl-N-(trimethylsilyl)-trifluoroacetamide at an oil bath temperature of 230 degrees C for 40 s. This method had good repeatability (R.S.D.s < or = 19%, n = 8) and good linearity (r2 > or = 0.9972) for ultrapure water and soy sauce samples that were spiked with two analytes. Detection limits were obtained at the ng mL(-1). The result demonstrated that headspace on-fiber derivatization following solid-phase microextraction was a simple, fast and accurate technique for identifying trace 1,3-dichloro-2-propanol and 3-chloro-1,2-propandiol in soy sauce.
Alcohol Dehydration on Monooxo W=O and Dioxo O=W=O Species
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Zhenjun; Smid, Bretislav; Kim, Yu Kwon
2012-08-16
The dehydration of 1-propanol on nanoporous WO3 films prepared via ballistic deposition at ~20 K has been investigated using temperature programmed desorption, infrared reflection absorption spectroscopy and density functional theory. The as deposited films are extremely efficient in 1-propanol dehydration to propene. This activity is correlated with the presence of dioxo O=W=O groups while monooxo W=O species are shown to be inactive. Annealing of the film induces densification that results in the loss of catalytic activity due to annihilation O=W=O species.
Volbeda, Anne Geert; Kistemaker, Hans A V; Overkleeft, Herman S; van der Marel, Gijsbert A; Filippov, Dmitri V; Codée, Jeroen D C
2015-09-04
A new, fast, mild and chemoselective deprotection method to cleave p-methoxybenzyl and 2-naphthylmethyl ethers using catalytic amounts of hydrochloric acid in a 1:1 mixture of hexafluoro-2-propanol (HFIP) and methylene chloride (DCM) is described. The scope of the methodology becomes apparent from 14 examples of orthogonally protected monosaccharides that are subjected to HCl/HFIP treatment. The applicability of the HCl/HFIP method is illustrated by the synthesis of a sulfated β-mannuronic acid disaccharide.
NASA Astrophysics Data System (ADS)
Matsuoka, Masanori; Takahashi, Fumiki; Asakura, Yoshiyuki; Jin, Jiye
2016-07-01
The sonochemiluminescence (SCL) behavior of lucigenin (Luc2+) has been studied in aqueous solutions irradiated with 500 kHz ultrasound. Compared with the SCL of a luminol system, a tremendously increased SCL intensity is observed from 50 µM Luc2+ aqueous solution (pH =11) when small amounts of coreactants such as 2-propanol coexist. It is shown that SCL intensity strongly depends on the presence of dissolved gases such as air, O2, N2, and Ar. The highest SCL intensity is obtained in an O2-saturated solution, indicating that molecular oxygen is required to generate SCL. Since SCL intensity is quenched completely in the presence of superoxide dismutase (SOD), an enzyme that can catalyze the disproportionation of O2 •-, the generation of O2 •- in the ultrasonic reaction field is important in the SCL of Luc2+. In this work, the evidence of O2 •- production is examined by a spectrofluorometric method using 2-(2-pyridyl)benzothiazoline as the fluorescent probe. The results indicate that the yield of O2 •- is markedly increased in the O2-saturated solutions when a small amount of 2-propanol coexists, which is consistent with the results of SCL measurements. 2-Propanol in the interfacial region of a cavitation bubble reacts with a hydroxyl radical (•OH) to form a 2-propanol radical, CH3C•(OH)CH3, which can subsequently react with dissolved oxygen to generate O2 •-. The most likely pathways for SCL as well as the spatial distribution of SCL in a microreactor are discussed in this study.
Formation of complex natural flavours by biotransformation of apple pomace with basidiomycetes.
Bosse, Andrea K; Fraatz, Marco A; Zorn, Holger
2013-12-01
Altogether 30 different basidiomycetes were grown submerged in liquid culture media using seven different by-products of the food industry as the only carbon source. Seven fungus/substrate combinations revealed interesting flavour profiles. Culture supernatants of Tyromyces chioneus grown on apple pomace were extracted, and the aroma compounds were analysed by gas chromatography-olfactometry (GC-O). Potent odorants were identified by aroma extract dilution analysis (AEDA), calculation of the odour activity values (OAV), and proven by confection of an aroma model. 3-Phenylpropanal, 3-phenyl-1-propanol, and benzyl alcohol were identified as potent aroma biotransformation products. Headspace solid-phase microextraction gas chromatography mass spectrometry (HS-SPME-GC-MS) experiments showed that 3-phenylpropanal, 3-phenyl-1-propanol, benzyl alcohol, methyl 3-phenylpropionate, methyl 2-phenylacetate, cinnamaldehyde and methyl cinnamate were produced during the cultivation period of eight days. By means of labelling experiments, (E)-cinnamic acid was identified as the precursor of 3-phenylpropanal and 3-phenyl-1-propanol. Basidiomycetes were able to biotransform food by-products to pleasant complex flavour mixtures. Copyright © 2013 Elsevier Ltd. All rights reserved.
Phase equilibrium measurements on twelve binary mixtures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Giles, N.F.; Wilson, H.L.; Wilding, W.V.
1996-11-01
Phase equilibrium measurements have been performed on twelve binary mixtures. The PTx method was used to obtain vapor-liquid equilibrium data for the following binary systems at two temperatures each: ethanethiol + propylene; nitrobenzene + methanol; pyridine + ethyl acetate; octane + tert-amyl methyl ether; diisopropyl ether + butane; 1,3-dichloro-2-propanol + epichlorohydrin; 2,3-dichloro-1-propanol + epichlorohydrin; 2,3-epoxy-1-propanol + epichlorohydrin; 3-chloro-1,2-propanediol + epichlorohydrin; methanol + hydrogen cyanide. For these systems, equilibrium vapor and liquid phase compositions were derived from the PTx data using the Soave equation of state to represent the vapor phase and the Wilson, NRTL, or Redlich-Kister activity coefficient model tomore » represent the liquid phase. The infinite dilution activity coefficient of methylamine in N-methyl-2-pyrrolidone was determined at three temperatures by performing PTx measurements on the N-methyl-2-pyrrolidone was determined at three temperatures by performing PTx measurements on the N-methyl-2-pyrrolidone-rich half of the binary. Liquid-liquid equilibrium studies were made on the triethylene glycol + 1-pentene system at two temperatures by directly analyzing samples taken from each liquid phase.« less
Regioselective alkane hydroxylation with a mutant AlkB enzyme
Koch, Daniel J.; Arnold, Frances H.
2012-11-13
AlkB from Pseudomonas putida was engineered using in-vivo directed evolution to hydroxylate small chain alkanes. Mutant AlkB-BMO1 hydroxylates propane and butane at the terminal carbon at a rate greater than the wild-type to form 1-propanol and 1-butanol, respectively. Mutant AlkB-BMO2 similarly hydroxylates propane and butane at the terminal carbon at a rate greater than the wild-type to form 1-propanol and 1-butanol, respectively. These biocatalysts are highly active for small chain alkane substrates and their regioselectivity is retained in whole-cell biotransformations.
NASA Astrophysics Data System (ADS)
Romanenko, Yu. E.; Merkin, A. A.; Komarov, A. A.; Lefedova, O. V.
2014-08-01
The kinetics of the hydrogenation of intermediates in the reduction of nitrobenzene in aqueous 2-propanol with acetic acid and sodium hydroxide additions on nickel catalysts was studied. A kinetic description of liquid-phase hydrogenation of azobenzene and phenylhydroxylamine was suggested. A kinetic model was developed. The dependences that characterize the variation of the amounts of the starting compound, reaction product, and absorbed hydrogen during the reaction were calculated. The calculated values were shown to be in satisfactory agreement with the experimental values under different reaction conditions.
NASA Astrophysics Data System (ADS)
Yamashita, Hiromi; Maekawa, Kazuhiro; Nakao, Hidetoshi; Anpo, Masakazu
2004-10-01
Using a mixture of tetraethylammonium fluoride and dodecylamine as templates, hydrophobic mesoporous silica supports were prepared. The fine anatase TiO 2 photocatalysts were prepared on the fluoride-modified hydrophobic mesoporous silica and the adsorption properties and the photocatalytic degradation of an aqueous 2-propanol or 2-hexanol solution into CO 2 and H 2O have been studied. The amount of adsorption and the photocatalytic reactivities increased with increasing the content of fluoride ions on these photocatalysts. 2-Hexanol diluted in water was adsorbed on the hydrophobic catalysts more efficiently than 2-propanol.
Inactivation of murine norovirus by chemical biocides on stainless steel
2009-01-01
Background Human norovirus (NoV) causes more than 80% of nonbacterial gastroenteritis in Europe and the United States. NoV transmission via contaminated surfaces may be significant for the spread of viruses. Therefore, measures for prevention and control, such as surface disinfection, are necessary to interrupt the dissemination of human NoV. Murine norovirus (MNV) as a surrogate for human NoV was used to study the efficacy of active ingredients of chemical disinfectants for virus inactivation on inanimate surfaces. Methods The inactivating properties of different chemical biocides were tested in a quantitative carrier test with stainless steel discs without mechanical action. Vacuum-dried MNV was exposed to different concentrations of alcohols, peracetic acid (PAA) or glutaraldehyde (GDA) for 5 minutes exposure time. Detection of residual virus was determined by endpoint-titration on RAW 264.7 cells. Results PAA [1000 ppm], GDA [2500 ppm], ethanol [50% (v/v)] and 1-propanol [30% (v/v)] were able to inactivate MNV under clean conditions (0.03% BSA) on the carriers by ≥ 4 log10 within 5 minutes exposure time, whereas 2-propanol showed a reduced effectiveness even at 60% (v/v). Furthermore, there were no significant differences in virus reduction whatever interfering substances were used. When testing with ethanol, 1- and 2-propanol, results under clean conditions were nearly the same as in the presence of dirty conditions (0.3% BSA plus 0.3% erythrocytes). Conclusion Products based upon PAA, GDA, ethanol and 1-propanol should be used for NoV inactivation on inanimate surfaces. Our data provide valuable information for the development of strategies to control NoV transmission via surfaces. PMID:19583832
Davydovskaya, Polina; Ranft, Annekatrin; Lotsch, Bettina V; Pohle, Roland
2014-07-15
Metal-organic frameworks (MOFs) constitute a new generation of porous crystalline materials, which have recently come into focus as analyte-specific active elements in thin-film sensor devices. Cu-BTC--also known as HKUST-1--is one of the most theoretically and experimentally investigated members of the MOF family. Its capability to selectively adsorb different gas molecules renders this material a promising candidate for applications in chemical gas and vapor sensing. Here, we explore details of the host-guest interactions between HKUST-1 and various analytes under different environmental conditions and study the vapor adsorption mechanism by mass-sensitive and work-function-based readouts. These complementary transduction mechanisms were successfully applied for the detection of low ppm (2 to 50 ppm) concentrations of different alcohols (methanol, ethanol, 1-propanol, and 2-propanol) adsorbed into Cu-BTC thin films. Evaluation of the results allows for the comparison of the amounts of adsorbed vapors and the contribution of each vapor to the changes of the electronic properties of Cu-BTC. The influence of the length of the alcohol chain (C1-C3) and geometry (1-propanol, 2-propanol) as well as their polarity on the sensing performance was investigated, revealing that in dry air, short chain alcohols are more likely adsorbed than long chain alcohols, whereas in humid air, this preference is changed, and the sensitivity toward alcohols is generally decreased. The adsorption mechanism is revealed to differ for dry and humid atmospheres, changing from a site-specific binding of alcohols to the open metal sites under dry conditions to weak physisorption of the analytes dissolved in surface-adsorbed water reservoirs in humid air, with the signal strength being governed by their relative concentration.
Furumiya, Junichi; Nishimura, Hiroyuki; Nakanishi, Akinori; Hashimoto, Yoshiaki
2011-07-01
We report an autopsy case of postmortem ethanol diffusion into the cardiac blood after aspiration of wood chips, although antemortem ethanol consumption was not evident. A man in his twenties, who was loading a truck with small wood chips in a hot, humid storehouse, was accidentally buried in a heap of chips. At the time the body was discovered, 20 h after the accident, rectal temperature was 36°C. Autopsy showed the cause of death to be asphyxia due to obstruction of the airway by aspiration of wood chips. The ethanol and n-propanol levels were significantly higher in the lungs (left, 0.603 and 0.009 mg/g; right, 0.571 and 0.006 mg/g) than in other tissues. A significant difference in ethanol concentration was observed between the left cardiac blood (0.243 mg/g) and the right femoral blood (0.042 mg/g). Low levels of ethanol and n-propanol were detected in the stomach contents (0.105 and 0.001 mg/g, respectively). In order to determine whether aspiration of wood chips affects postmortem ethanol production in the lung, we measured the ethanol and n-propanol levels of homogenized rabbit lung tissue incubated with autoclaved or non-autoclaved wood chips. Levels of ethanol and n-propanol were significantly higher in the homogenates incubated with non-autoclaved chips for 24h. The results of this animal experiment suggested that the ethanol detected in the lung was produced by putrefactive bacteria within the wood chips. After death, the ethanol produced endogenously in the lung appears to have diffused and affected the ethanol concentration of the left cardiac blood. 2011 Elsevier Ireland Ltd. All rights reserved.
Synthesis of 1,3,3-trinitroazetidine
Hiskey, Michael A.; Coburn, Michael D.
1994-01-01
A process of preparing 1,3,3-trinitroazetidine including forming a 5-hydroxymethyl-5-nitro-1-alkyltetrahydro-1,3-oxazine, e.g., reacting a 1,3,5-trialkyl hexahydrotriazine and tris(hydroxymethyl)nitromethane, ring opening said 5-hydroxymethyl-5-nitro-1-alkyltetrahydro-1,3-oxazine to form a 3-alkylamino-2-hydroxymethyl-2-nitro-1-propanol salt, ring closing said 3-alkylamino-2-hydroxymethyl-2-nitro-1-propanol salt to form a 3-hydroxymethyl-3-nitro-1-alkylazetidine salt, nitrating said 3-hydroxymethyl-3-nitro-1-alkylazetidine salt to form a 1-alkyl-3,3-dinitroazetidine, and converting said 1-alkyl-3,3-dinitroazetidine into 1,3,3-trinitroazetidine is disclosed.
Synthesis of 1,3,3-trinitroazetidine
Hiskey, M.A.; Coburn, M.D.
1994-08-09
A process of preparing 1,3,3-trinitroazetidine includes forming a 5-hydroxymethyl-5-nitro-1-alkyltetrahydro-1,3-oxazine, e.g., reacting a 1,3,5-trialkyl hexahydrotriazine and tris(hydroxymethyl)nitromethane, ring opening said 5-hydroxymethyl-5-nitro-1-alkyltetrahydro-1,3-oxazine to form a 3-alkylamino-2-hydroxymethyl-2-nitro-1-propanol salt, ring closing said 3-alkylamino-2-hydroxymethyl-2-nitro-1-propanol salt to form a 3-hydroxymethyl-3-nitro-1-alkylazetidine salt, nitrating said 3-hydroxymethyl-3-nitro-1-alkylazetidine salt to form a 1-alkyl-3,3-dinitroazetidine, and converting said 1-alkyl-3,3-dinitroazetidine into 1,3,3-trinitroazetidine is disclosed. 1 fig.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alvarez, E.; Rendo, R.; Sanjurjo, B.
1998-11-01
The surface tension of aqueous solutions of N-methyldiethanolamine and diethanolamine + N-methyldiethanolamine, monoethanolamine + N-methyldiethanolamine and 2-amino-2-methyl-1-propanol + N-methyldiethanolamine was measured at temperatures from 25 C to 50 C. For binary mixtures the concentration range was 0--50 mass % N-methyldiethanolamine, and for the tertiary mixtures the concentration range for each amine was 0--50 mass %. The experimental values were correlated with temperature and mole fraction. The maximum deviation in both cases was always less than 0.5%.
Easy approach to assembling a biomimetic color film with tunable structural colors.
Wang, Wentao; Tang, Bingtao; Ma, Wei; Zhang, Jian; Ju, Benzhi; Zhang, Shufen
2015-06-01
The self-assembly of silica microspheres into a close-packed array is a simple method of fabricating three-dimensional photonic crystal structural color films. However, the color is very dull because of the interferences of scattering and background light. In this study, we added a small quantity of surface-modified carbon black (CB) to the system of colloidal silica in n-propanol. The use of n-propanol as a dispersant is beneficial to the rapid development of photonic crystal films during the process of dip-coating. The doping of CB into silica microspheres can absorb background and scattering light, resulting in vivid structural colors.
Hirai, Takayuki; Bando, Yoko
2005-08-15
CdS nanoparticles, prepared in reverse micellar system, were immobilized onto thiol-modified aluminosilicate particles (ASSH) by a simple operation: addition of ASSH in the micellar solution and mild stirring. The resulting CdS nanoparticles-aluminosilicate composites (ASCdS) were used as photocatalysts for H2 generation from 2-propanol aqueous solution. The chemical properties of the aluminosilicate, such as affinity for water and other reactants, were found to affect the photocatalytic property of the CdS nanoparticles immobilized. Zeolite particles, having affinity for water and 2-propanol, gave a good ASCdS photocatalyst with respect to H2 generation.
NASA Astrophysics Data System (ADS)
Nikolić, G. M.; Živković, J. V.; Atanasković, D. S.; Nikolić, M. G.
2013-12-01
Liquid-liquid extraction of paracetamol from aqueous NaCl solutions was performed with diethyl ether, 1-propanol, 1-butanol, isobutanol, 1-pentanol, and binary mixtures diethyl ether/1-propanol, diethyl ether/1-butanol, and diethyl ether/isobutanol. Among the pure solvents investigated in this study best extraction efficacy was obtained with 1-butanol. Synergic effects in the extraction with binary mixtures was investigated and compared with some other systems used for the extraction of poorly extractable compounds. Results obtained in this study may be of both fundamental and practical importance.
Shi, Yuanyuan; Kamasah, Alexander; Suits, Arthur G
2016-11-17
We report a crossed molecular beam study of the reaction dynamics of fluorine atom with 1-propanol, 1-butene, and 1-hexene. The product alkoxy and alkenyl radicals were detected via dc slice imaging by 157 nm single photon ionization at collision energies around 10 kcal mol -1 . The analyzed data is interpreted with the aid of theoretical investigation of the relevant potential energy surfaces. The translational energy distribution and center-of-mass angular distribution of F + 1-propanol is quite similar to our previous results for F + n-butane, albeit with an increased fraction of the available energy in translation. In F atom reaction with alkenes, we also detected the HF formation channel. The low translational energy release and presence of significant backward scattering suggests the importance of an addition/elimination mechanism. Our selective single photon ionization probe allows us to examine the dynamics in minor channels in these systems. Although the probe is not sensitive to reaction at vinylic H sites, theoretical calculations consistently suggest a lower barrier from the addition complex to HF elimination involving vinylic H atoms.
Toribio, Alix; Delannay, Eldra; Richard, Bernard; Plé, Karen; Zèches-Hanrot, Monique; Nuzillard, Jean-Marc; Renault, Jean-Hugues
2007-01-26
The pH-zone refining centrifugal partition chromatography technique was used to separate the two acetylcholinesterase inhibitors huperzines A and B from a crude alkaloid extract of the club moss Huperzia serrata. Complete co-elution of huperzines A and B was initially observed with the well-known methyl tert-butyl ether-acetonitrile-water (4:1:5, v/v/v) solvent system with triethylamine (8mM) as the displacer and methane sulfonic acid (6mM) as the retainer. An efficient biphasic system was designed on the basis of solvent association that provided selectivity in the elution mode: n-heptane/ethyl acetate/n-propanol/water (5:15:35:45, v/v/v/v). Lowering the bridge solvent content (n-propanol) of this system increased the polarity difference between the two phases thus adapting it to the pH-zone refining mode. Thus, the purification of these compounds was achieved using the biphasic system n-heptane/ethyl acetate/n-propanol/water (10:30:15:45, v/v/v/v) with triethylamine (8mM) as the displacer and methane sulfonic acid (6mM) as the retainer.
Kieda, Ryan D; Dunkelberger, Adam D; Case, Amanda S; Crim, F Fleming
2017-02-02
The role of different solvent environments in determining the behavior of molecules in solution is a fundamental aspect of chemical reactivity. We present an approach for exploring the influence of solvent properties on condensed-phase dynamics using ultrafast transient absorption spectroscopy in supercritical CO 2 . Using supercritical CO 2 permits adjustment of the density, by varying the temperature and pressure, whereas varying the concentration or identity of a second solvent, the cosolvent, in a binary mixture allows for adjustments of the degree of interaction between the solute and the solvent. Salicylidene aniline, a prototypical excited-state intramolecular proton-transfer system, is the subject of this study. In this system, the decay rate of the transient absorption signal decreases as the fraction of the cosolvent (for both 1-propanol and cyclohexane) increases. The decay rate also decreases with an increase in the viscosity of the mixture, but the effect is much larger for the 1-propanol cosolvent than for cyclohexane. These observations illustrate that the decay rate of the photoexcited salicylidene aniline depends on more than just the solvent viscosity, suggesting that properties such as polarity also play a role in the dynamics.
Engelhart, Steffen; Exner, Martin; Simon, Arne
2015-01-01
This in vitro study investigated the external disinfection of two needle-free connection devices (NFC) using Octeniderm® (spraying and wiping technique) vs. Descoderm® pads (wiping technique). The split-septum membrane of the NFC was contaminated with >105 CFU K. pneumoniae or S. epidermidis. The efficacy of the disinfection at 30 sec. exposure time was controlled by taking a swab sample and by flushing the NFC with sterile 0.9% sodium chloride solution. Disinfection with octenidine dihydrochloride 0.1 g, 1-Propanol 30.0 g, and 2-Propanol 45.0 g in 100 g solution was highly effective (CFU reduction ≥4 log) against both microorganisms, whereas the use of 63.1 g 2-Propanol in 100 ml solution led to residual contamination with S. epidermidis. Our investigation underlines that (i) in clinical practice disinfection of NFCs before use is mandatory, and that (ii) details of disinfection technique are of utmost importance regarding their efficacy. Our investigation revealed no significant differences between both split-septum NFC types. Clinical studies are needed to confirm a possible superiority of disinfectants with long-lasting residual antimicrobial activity. PMID:26693394
Catalytic activity of carbon nanotubes in the conversion of aliphatic alcohols
NASA Astrophysics Data System (ADS)
Zhitnev, Yu. N.; Tveritinova, E. A.; Chernyak, S. A.; Savilov, S. V.; Lunin, V. V.
2016-06-01
Carbon nanotubes (CNTs) obtained via the catalytic pyrolysis of hexane at 750°C were studied as the catalysts in conversion of C2-C4 alcohols. The efficiency of CNTs as catalysts in dehydration and dehydrogenation of ethanol, 1-propanol, 2-propanol, 1-butanol, 2-butanol, and tert-butanol was studied by means of pulse microcatalysis. The surface and structural characteristics of CNTs are investigated via SEM, TEM, DTA, BET, and XPS. CNTs are shown to be effective catalysts in the conversion of alcohols and do not require additional oxidative treatment. The regularities of the conversion of aliphatic alcohols, related to the properties of the CNTs surface and the structure of the alcohols are identified.
Efficient ejection of H3+ from hydrocarbon molecules induced by ultrashort intense lalifeser fields
NASA Astrophysics Data System (ADS)
Hoshina, Kennosuke; Furukawa, Yusuke; Okino, Tomoya; Yamanouchi, Kaoru
2008-09-01
The ejection processes of hydrogen molecular ion H3+ from 12 kinds of hydrocarbon molecular species, methanol, ethanol, 1-propanol, 2-propanol, acetone, acetaldehyde, methane, ethane, ethylene, allene, 1,3-butadiene, and cyclohexane, induced by intense laser fields (˜1014W/cm2) have been investigated by time-of-flight mass spectroscopy. The observation of the H3+ production with the kinetic energy range of 3.5-5.0eV from doubly ionized ethylene, allene, 1,3-butadiene, and cyclohexane, which have no methyl groups, showed the existence of the ultrafast hydrogen migration processes that enables three hydrogen atoms to come together to form H3+ within a hydrocarbon molecule.
Total cross sections for electron scattering by 1-propanol at impact energies in the range 40-500 eV
NASA Astrophysics Data System (ADS)
da Silva, D. G. M.; Gomes, M.; Ghosh, S.; Silva, I. F. L.; Pires, W. A. D.; Jones, D. B.; Blanco, F.; Garcia, G.; Buckman, S. J.; Brunger, M. J.; Lopes, M. C. A.
2017-11-01
Absolute total cross section (TCS) measurements for electron scattering from 1-propanol molecules are reported for impact energies from 40 to 500 eV. These measurements were obtained using a new apparatus developed at Juiz de Fora Federal University—Brazil, which is based on the measurement of the attenuation of a collimated electron beam through a gas cell containing the molecules to be studied at a given pressure. Besides these experimental measurements, we have also calculated TCS using the Independent-Atom Model with Screening Corrected Additivity Rule and Interference (IAM-SCAR+I) approach with the level of agreement between them being typically found to be very good.
Kimura, Yuji; Haraguchi, Kazutoshi
2017-05-16
Clay-alcohol-water ternary dispersions were compared with alcohol-water binary mixtures in terms of viscosity and optical absorbance. Aqueous clay dispersions to which lower alcohols (ethanol, 1-propanol, 2-propanol, and tert-butanol) were added exhibited significant viscosity anomalies (maxima) when the alcohol content was 30-55 wt %, as well as optical absorbance anomalies (maxima). The maximum viscosity (η max ) depended strongly on the clay content and varied between 300 and 8000 mPa·s, making it remarkably high compared with the viscosity anomalies (2 mPa·s) observed in alcohol-water binary mixtures. The alcohol content at η max decreased as the hydrophobicity of the alcohol increased. The ternary dispersions with viscosity anomalies exhibited thixotropic behaviors. The effects of other hydrophilic solvents (glycols) and other kinds of clays were also clarified. Based on these findings and the average particle size changes, the viscosity anomalies in the ternary dispersions were explained by alcohol-clustering-induced network formation of the clay nanosheets. It was estimated that 0.9, 1.7, and 2.5 H 2 O molecules per alcohol molecule were required to stabilize the ethanol, 2-propanol, and tert-butanol, respectively, in the clay-alcohol-water dispersions.
Vicentino, Priscila O; Cassella, Ricardo J
2017-01-01
This paper proposes a novel approach for the extraction of Hg from Brazilian gasoline samples: extraction induced by microemulsion breaking (EIMB). In this approach, a microemulsion is formed by mixing the sample with n-propanol and HCl. Afterwards, the microemulsion is destabilized by the addition of water and the two phases are separated: (i) the top phase, containing the residual gasoline and (ii) the bottom phase, containing the extracted analyte in a medium containing water, n-propanol and the ethanol originally present in the gasoline sample. The bottom phase is then collected and the Hg is measured by cold vapor atomic absorption spectrometry (CV-AAS). This model study used Brazilian gasoline samples spiked with Hg (organometallic compound) to optimize the process. Under the optimum extraction conditions, the microemulsion was prepared by mixing 8.7mL of sample with 1.2mL of n-propanol and 0.1mL of a 10molL -1 HCl solution. Emulsion breaking was induced by adding 300µL of deionized water and the bottom phase was collected for the measurement of Hg. Six samples of Brazilian gasoline were spiked with Hg in the organometallic form and recovery percentages in the range of 88-109% were observed. Copyright © 2016 Elsevier B.V. All rights reserved.
Rapid Estimation of Tocopherol Content in Linseed and Sunflower Oils-Reactivity and Assay.
Prevc, Tjaša; Levart, Alenka; Cigić, Irena Kralj; Salobir, Janez; Ulrih, Nataša Poklar; Cigić, Blaž
2015-08-13
The reactivity of tocopherols with 2,2-diphenyl-1-picrylhydrazyl (DPPH) was studied in model systems in order to establish a method for quantifying vitamin E in plant oils. The method was optimized with respect to solvent composition of the assay medium, which has a large influence on the course of reaction of tocopherols with DPPH. The rate of reaction of α-tocopherol with DPPH is higher than that of γ-tocopherol in both protic and aprotic solvents. In ethyl acetate, routinely applied for the analysis of antioxidant potential (AOP) of plant oils, reactions of tocopherols with DPPH are slower and concentration of tocopherols in the assay has a large influence on their molar reactivity. In 2-propanol, however, two electrons are exchanged for both α- and γ-tocopherols, independent of their concentration. 2-propanol is not toxic and is fully compatible with polypropylene labware. The chromatographically determined content of tocopherols and their molar reactivity in the DPPH assay reveal that only tocopherols contribute to the AOP of sunflower oil, whereas the contribution of tocopherols to the AOP of linseed oil is 75%. The DPPH assay in 2-propanol can be applied for rapid and cheap estimation of vitamin E content in plant oils where tocopherols are major antioxidants.
Surgical hand disinfection with a propanol-based hand rub: equivalence of shorter application times.
Kampf, G; Ostermeyer, C; Heeg, P
2005-04-01
The aim of this study was to determine the efficacy of a propanol-based hand rub at application times shorter than 3 min. The bacterial pre-value was obtained from the finger tips (prEN 12791). Subjects treated their hands with the reference procedure (n-propanol, 60%) for 3 min or the product (crossover design). Sterillium was applied for 3, 2, 1.5 and 1 min. Four other preparations were tested for 1 min. Post-values (immediate effect) were taken from one hand, and the other hand was gloved for 3h. After the gloves were removed, the second post-value was taken (sustained effect). Sterillium was more effective than the reference procedure at 3, 2 and 1.5 min (immediate and sustained effect). The immediate effect after 1 min was significantly lower [mean log(10) reduction factor (RF): 1.91+/-0.90 vs. 2.52+/-0.95; P=0.001], whereas the sustained effect was not (mean RF: 1.81+/-1.06 vs. 2.05+/-1.14; P=0.204). All other preparations failed the efficacy requirement at 1 min for both the immediate and sustained effect. Using 2 x 3 mL Sterillium for a total of 1.5 min for surgical hand disinfection was at least as effective as the 3-min reference disinfection.
Lamberto, M; Ackman, R G
1995-09-20
The effect of derivatization with 2-amino-2-methyl-propanol on trans-3-hexadecenoic acid was investigated as part of the identification of the trans-3-hexadecenoic acid in two Nova Scotian seaweeds. After the extraction of the total fatty acids and their methylation, the monoenoic trans fraction was isolated by thin-layer chromatography on silica gels impregnated with silver nitrate. This fraction was first analyzed by gas chromatography and showed the presence of the trans-3-hexadecenoic acid; other fatty acids were not present. The isolated fraction was derivatized with 2-amino-2-methyl-propanol prior to analysis by gas chromatography/mass spectrometry. The chromatogram obtained showed the presence of a positional isomer formed during the derivatization of the trans-3-hexadecenoic acid. The mass spectrum showed a prominent [M+H] and diagnostic ions for the identification of the unknown isomer, corresponding to the 4,4-dimethyloxazoline (DMOX) derivative of a presumed 2-hexadecenoic acid. Definitive confirmation of the ethylenic bond position was obtained by oxidative ozonolysis of the DMOX derivatives of the fatty acids under investigation. Infrared spectroscopy showed that the artifact formed during the DMOX derivatization of trans-3-hexadecenoic acid was the DMOX derivative of cis-2-hexadecenoic acid.
Liquid eutectic GaIn as an alternative electrode for PTB7:PCBM organic solar cells
NASA Astrophysics Data System (ADS)
Thanh Hau Pham, Viet; Kieu Trinh, Thanh; Tam Nguyen Truong, Nguyen; Park, Chinho
2017-04-01
Conventional vacuum deposition process of aluminum (Al) is costly, time-consuming and difficult to apply to the large-scale production of organic photovoltaic devices (OPV). This paper reports a vacuum-free fabrication process of poly[[4,8-bis(2-ethylhexyl)oxy]benzo[1,2-b:4,5-b‧]dithiophene-2,6-diyl][3-fluoro-2-[(2-ethylhexyl)carbonyl]thienophenediyl]:[6,6]-phenyl C71 butyric acid methyl ester (PTB7:PCBM) bulk heterojunction organic solar cell with liquid eutectic gallium-indium (EGaIn) electrode as an alternative to the common Al electrode. The insertion of a thin poly(ethylene oxide) (PEO) layer after depositing organic photoactive layer could help prevent the diffusion of liquid EGaIn into the active layer and allow the deposition of the EGaIn electrode. The PEO interfacial layer was formed by spin-coating from a mixed solvent of alcohol and water. Among different alcohol+water (methanol, ethanol, ethylene glycol, n-propanol, isopropanol, and isobutanol) mixed solvent tested, the n-propanol+water mixed solvent showed the greatest enhancement to the performance of OPVs. The improved device performance was attributed to the reactivity of mixed solvent n-propanol+water toward the surface of PTB7:PCBM active layer, which could help optimize surface morphology.
NASA Astrophysics Data System (ADS)
Nejati Moshtaghin, Mahboubeh
The focus of this thesis is to achieve a better understanding of the newly discovered surfactant-polyelectrolyte complex coacervate (SPCC) systems induced by fluoroalcohol/acid as well as short chain aliphatic alcohol; and to elucidate their applications in extraction and enrichment of proteins and enzyme. We have discovered that fluoroalcohols and --acids induce complex coacervation and phase separation in the aqueous mixtures of oppositely charged anionic polyelectrolytes; specifically, sodium salts of polyacrylic acid and polymethacrylic acid and cationic surfactant (cetyltrimethylammonium bromide, CTAB) over a broad range of concentrations of mole fractions of the oppositely charged amphiphiles. Accordingly, these new classes of coacervators will significantly broaden the scope and facilitate engineering of new coacervate phases. Toward these goals, we have inspected the formation of surfactant-polyelectrolyte complex coacervates in the presence of fluoroalcohols namely hexafluoroisopropanol (HFIP) and Trifluoroethanol (TFE). Furthermore, the extent of coacervation as a function of concentrations the system components, and charge ratios of the oppositely charged amphiphiles has been investigated. Polyelectrolytes are considered to be milder reagents, as compared to surfactants, regarding proteins denaturation. This highlights the importance of a detailed investigation of the efficiency of our coacervate systems for extraction and preconcentration of proteins and enzymes, especially, when the biological activity of the extracted proteins needs to be maintained based on the objectives mentioned above, the results of the investigations have been organized in four chapters. In Chapter II, the phase behavior of the FA-SPCC will be investigated. The objective is to examine the phase behavior and phase properties with respect to the extent of coacervation in different solution conditions. In particular, the effects of different solution variables such as concentration of FA, oppositely charged amphiphiles (surfactant-polyelectrolyte), and the charge ratio of the surfactant-polyelectrolyte on the extent of coacervation have been investigated. Furthermore, the chemical composition of each phase formed in the coacervate system was determined as a function of HFIP percentage. Phase diagrams of HFIP-PMA-CTAB and 2-propanol-PMA-CTAB were studied. The phase separation occurs over a wide range of polyelectrolyte, surfactant and alcohol concentration. In addition, a study of the dependence of coacervate volume on phase composition in different system (as defined by concentrations and mole charge ratio of amphihiles and alcohols) provided useful insight about possible underlying interactions and mechanisms. It has been concluded that neutralization favors coacervation in both systems. However, according to the compositional analysis of both HFIP and 2-propanol SPCC system, it seems that coacervation mechanisms are different. In Chapter III the properties of 2-propanol--SPCC, with analogous surfactant (CTAB) and polyelectrolyte (PMA) used in Chapter II, will be investigated. In particular, we are interested in examining the difference between the phase separation characteristics of the coacervates induced by 2-propanol and HFIP as coacervator. For this purpose, the phase behavior and the chemical composition of the phases will be analyzed as a function of 2-propanol and constituents concentrations. Chapter IV contains results of our investigations on the activity of a model enzyme (Trypsin) in 2-propanol- and FA-induced SPCC system. These investigations will facilitate understanding whether the aliphatic alcohol, AA- and FA-induced SPCC system denature the model enzymes. Such investigations also help in evaluation of the applicability of the coacervate systems developed in this work in proteomics where the proteolytic activity of enzymes is used for protein digestion. Finally, in Chapter V, the efficiency of the coacervate system (2-propanol-induced-PMA-CTAB) for extraction of cytochrome c, as a model protein, will be investigated.
DIFFERENTIAL THERMOMETRIC TITRATIONS AND THE DETERMINATION OF HEATS OF REACTION,
TITRATION , THERMISTORS), (*HEAT OF REACTION, TITRATION ), SILVER COMPOUNDS, NITRATES, AMMONIA, PYRIDINES, ETHYLENEDIAMINE, AMINES, ALCOHOLS, BUTANOLS, PROPANOLS, SODIUM COMPOUNDS, HYDROXIDES, TEST METHODS
Impedimetric detection of alcohol vapours using nanostructured zinc ferrite.
Kannan, Padmanathan Karthick; Saraswathi, Ramiah
2014-11-01
A comparative study on the sensing characteristics of nanostructured zinc ferrite to three primary alcohols viz. methanol, ethanol and propanol has been carried out. The zinc ferrite has been prepared by a combustion method and characterized by XRD, FTIR, AFM and SEM. Impedance studies in the alcohol concentration range varying from 100 to 1000 ppm show definite variations in response to both the nature of the alcohol and its concentration. The nanostructured zinc ferrite shows the highest sensor response to methanol and least to propanol. Equivalent circuit modelling and calibration have been made for all the three alcohol sensors. The material shows a better selectivity to the alcohols compared to formaldehyde, ammonia and acetone vapours. Copyright © 2014 Elsevier B.V. All rights reserved.
De-pinning of contact line of droplets on rough surfaces
NASA Astrophysics Data System (ADS)
Madhurima, V.; Nilavarasi, K.
2016-10-01
The present study reports the formation of self-assembled droplet pattern on the PDMS polymer coated over grooved side of DVD under saturated vapours of alcohols. Comparison of the results with breath figures formed over unconstrained side of DVD is made. Four different environments namely methanol, ethanol, 2-propanol and n-butanol are used for the analysis. It is observed that the pattern formation occurs with methanol and ethanol vapours and not with 2-propanol and n-butanol. The difference is pattern formation with different alcohols is attributed to the variation in chain length and the presence of hydrophobic groups in alcohols, as given by Traube's rule. The distortion of patterns over constrained surface is attributed to the depinning of contact lines.
NASA Astrophysics Data System (ADS)
Semushina, Yu. P.; Pechenyuk, S. I.; Kuzmich, L. F.; Knyazeva, A. I.
2017-01-01
The rate of the gas-phase oxidation of ethanol, 2-propanol, acetone, ethyl acetate, dioxane, and benzene with atmospheric oxygen is studied on surfaces of bimetallic oxide catalysts Co-Fe, Cu-Fe, Cr-Co, and Ni-Fe, prepared via thermal decomposition of double complex compounds in air. It is found that the rate of oxidation of volatile compounds depends on the volume of the transient pores in the catalyst sample. The rate of oxidation on the same catalyst at 350°C depends on the nature of the substance in the order: acetone > ethyl acetate > ethanol > propanol > dioxane, benzene.
Homogeneous nucleation of ethanol and n-propanol in a shock tube
NASA Technical Reports Server (NTRS)
Peters, F.
1982-01-01
The condensation by homogeneous nucleation of ethanol (200 proof) and of n-propanol (99.98%) carried at small mole fraction in dry air (99.995%) was studied in the unsteady, isentropic expansion of a shock tube. Samples of the vapor at different partial pressures in dry air at room temperature were expanded into the liquid coexistence regime of the condensing species. A Kristler pressure transducer and Rayleigh light scattering were used to measure the pressure in the expansion and the onset of condensation. Condensation was observed at different locations between 0.15 and 1 m upstream of the diaphragm location, which correspond to different cooling rates of of the vapor samples about 50 to 10 C/ms.
Lei, Yu; Lee, Sungsik; Low, Ke -Bin; ...
2016-04-26
Compared with Pt/Al 2O 3, sintering-resistant Pt nanoparticle catalysts promoted by ZnO significantly improved the reactivity and selectivity toward hydrogen formation in the aqueous phase reforming (APR) of 1-propanol. The improved performance was found to benefit from both the electronic and geometric effects of ZnO thin films. In situ small-angle X-ray scattering and scanning transmission electron microscopy showed that ZnO-promoted Pt possessed promising thermal stability under APR reaction conditions. In situ X-ray absorption spectroscopy showed clear charge transfer between ZnO and Pt nanoparticles. The improved reactivity and selectivity seemed to benefit from having both Pt-ZnO and Pt-Al 2O 3 interfaces.
Conversion of wood residues to diesel fuel
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kuester, J.L.
1981-01-01
The basic approach is indirect liquefaction, i.e., thermal gasification followed by catalytic liquefaction. The indirect approach results in separation of the oxygen in the biomass feedstock, i.e., oxygenated compounds do not appear in the liquid hydrocarbon fuel product. The general conversion scheme is shown. The process is capable of accepting a wide variety of feedstocks. Potential products include medium quality gas, normal propanol, paraffinic fuel and/or high octane gasoline. A flow diagram of the continuous laboratory unit is shown. A fluidized bed pyrolysis system is used for gasification. Capacity is about 10 lbs/h of feedstock. The pyrolyzer can be fluidizedmore » with recycle pyrolysis gas, steam or recycle liquefaction system off gas or some combination thereof. Tars are removed in a wet scrubber. Unseparated pyrolysis gases are utilized as feed to a modified Fischer-Tropsch reactor. The liquid condensate from the reactor consists of a normal propanol-water phase and a paraffinic hydrocarbon phase. The reactor can be operated to optimize for either product. If a high octane gasoline is desired, the paraffinic fuel is passed through a conventional catalytic reformer. The normal propanol could be used as a fuel extender if blended with the hydrocarbon fuel products. Off gases from the downstream reactors are of high quality due to the accumulation of low molecular weight paraffins.« less
Novel Acetone Metabolism in a Propane-Utilizing Bacterium, Gordonia sp. Strain TY-5▿
Kotani, Tetsuya; Yurimoto, Hiroya; Kato, Nobuo; Sakai, Yasuyoshi
2007-01-01
In the propane-utilizing bacterium Gordonia sp. strain TY-5, propane was shown to be oxidized to 2-propanol and then further oxidized to acetone. In this study, the subsequent metabolism of acetone was studied. Acetone-induced proteins were found in extracts of cells induced by acetone, and a gene cluster designated acmAB was cloned on the basis of the N-terminal amino acid sequences of acetone-induced proteins. The acmA and acmB genes encode a Baeyer-Villiger monooxygenase (BVMO) and esterase, respectively. The BVMO encoded by acmA was purified from acetone-induced cells of Gordonia sp. strain TY-5 and characterized. The BVMO exhibited NADPH-dependent oxidation activity for linear ketones (C3 to C10) and cyclic ketones (C4 to C8). Escherichia coli expressing the acmA gene oxidized acetone to methyl acetate, and E. coli expressing the acmB gene hydrolyzed methyl acetate. Northern blot analyses revealed that polycistronic transcription of the acmAB gene cluster was induced by propane, 2-propanol, and acetone. These results indicate that the acmAB gene products play an important role in the metabolism of acetone derived from propane oxidation and clarify the propane metabolism pathway of strain TY-5 (propane → 2-propanol → acetone → methyl acetate → acetic acid + methanol). This paper provides the first evidence for BVMO-dependent acetone metabolism. PMID:17071761
Huizer, Daan; Huijbregts, Mark A J; van Rooij, Joost G M; Ragas, Ad M J
2014-08-01
The coherence between occupational exposure limits (OELs) and their corresponding biological limit values (BLVs) was evaluated for 2-propanol and acetone. A generic human PBPK model was used to predict internal concentrations after inhalation exposure at the level of the OEL. The fraction of workers with predicted internal concentrations lower than the BLV, i.e. the 'false negatives', was taken as a measure for incoherence. The impact of variability and uncertainty in input parameters was separated by means of nested Monte Carlo simulation. Depending on the exposure scenario considered, the median fraction of the population for which the limit values were incoherent ranged from 2% to 45%. Parameter importance analysis showed that body weight was the main factor contributing to interindividual variability in blood and urine concentrations and that the metabolic parameters Vmax and Km were the most important sources of uncertainty. This study demonstrates that the OELs and BLVs for 2-propanol and acetone are not fully coherent, i.e. enforcement of BLVs may result in OELs being violated. In order to assess the acceptability of this "incoherence", a maximum population fraction at risk of exceeding the OEL should be specified as well as a minimum level of certainty in predicting this fraction. Copyright © 2014 Elsevier Inc. All rights reserved.
Prediction of solvation enthalpy of gaseous organic compounds in propanol
NASA Astrophysics Data System (ADS)
Golmohammadi, Hassan; Dashtbozorgi, Zahra
2016-09-01
The purpose of this paper is to present a novel way for developing quantitative structure-property relationship (QSPR) models to predict the gas-to-propanol solvation enthalpy (Δ H solv) of 95 organic compounds. Different kinds of descriptors were calculated for each compound using the Dragon software package. The variable selection technique of replacement method (RM) was employed to select the optimal subset of solute descriptors. Our investigation reveals that the dependence of physical chemistry properties of solution on solvation enthalpy is nonlinear and that the RM method is unable to model the solvation enthalpy accurately. The results established that the calculated Δ H solv values by SVM were in good agreement with the experimental ones, and the performances of the SVM models were superior to those obtained by RM model.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Silkenbaeumer, D.; Lichtenthaler, R.N.; Rumpf, B.
1998-08-01
The solubility of carbon dioxide in aqueous solutions containing 2-amino-2-methyl-1-propanol (AMP) was measured in the temperature range from 313 to 353 K at total pressures up to 2.7 MPa using an analytical method. A model taking into account chemical reactions in the liquid phase as well as physical interactions is used to correlate the new data. To test the predictive capability of the model, the solubility of carbon dioxide in an aqueous solution containing AMP and N-methyldiethanolamine (MDEA) was measured at 313 K. Experimental results are reported and compared to literature data and calculations.
Ab initio Study on Ionization Energies of 3-Amino-1-propanol
NASA Astrophysics Data System (ADS)
Wang, Ke-dong; Jia, Ying-bin; Lai, Zhen-jiang; Liu, Yu-fang
2011-06-01
Fourteen conformers of 3-amino-1-propanol as the minima on the potential energy surface are examined at the MP2/6-311++G** level. Their relative energies calculated at B3LYP, MP3 and MP4 levels of theory indicated that two most stable conformers display the intramolecular OH···N hydrogen bonds. The vertical ionization energies of these conformers calculated with ab initio electron propagator theory in the P3/aug-cc-pVTZ approximation are in agreement with experimental data from photoelectron spectroscopy. Natural bond orbital analyses were used to explain the differences of IEs of the highest occupied molecular ortibal of conformers. Combined with statistical mechanics principles, conformational distributions at various temperatures are obtained and the temperature dependence of photoelectron spectra is interpreted.
Quick synthesis of 2-propanol derived fluorescent carbon dots for bioimaging applications
NASA Astrophysics Data System (ADS)
Angamuthu, Raja; Palanisamy, Priya; Vasudevan, Vasanthakumar; Nagarajan, Sedhu; Rajendran, Ramesh; Vairamuthu, Raj
2018-04-01
Herein, for the first time, we present a one-pot ingenious preparative method for fluorescent carbon dots from 2-propanol (2P-CDs) without external treatments. Structure, morphology, chemical composition and fluorescence properties of the 2P-CDs were examined. These results confirm that the as-synthesized 2P-CDs are amorphous, monodispersed, spherical and the average particle size is 2.5 ± 0.7 nm. Most importantly, excitation-dependent emission properties were observed, which suggest that these 2P-CDs may be used in multicolor bioimaging applications. When incubated with HeLa cells, the 2P-CDs exhibit low cytotoxicity, and positive biocompatibility. Confocal microscopy image shows the uptake of 2P-CDs by HeLa cells and the application of probable biomarker is demonstrated.
NASA Astrophysics Data System (ADS)
Pinterich, T.; Winkler, P. M.; Vrtala, A. E.; Wagner, P. E.
2011-08-01
In this paper we present the results of contact angle measurements between n-propanol and silver substrates in the temperature range from -10 °C to 30 °C. The interest in a potential temperature dependence of contact angles originates from recent experiments by S. Schobesberger et al. (Schobesberger S., Strange temperature dependence observed for heterogeneous nucleation of n-propanol vapor on NaCl particles. Master's thesis, University of Vienna, 2008; Schobesberger S. et al., Experiments on the temperature dependence of heterogeneous nucleation on NaCl and Ag particles. In preparation.) investigating the temperature dependence for heterogeneous nucleation of n-propanol vapour on NaCl and on silver particles. We determined dynamic advancing θ a and receding θ r angles on variously prepared silver probes. The Dynamic Wilhelmy method (Wilhelmy L., Über die Abhängigkeit der Capillaritäts-Constanten des Alkohols von Substanz und Gestalt des benetzten festen Körpers. Ann. Phys. Chem., 199:177-217, 1863) was applied using a Krüss K12 Tensiometer, with a refrigerated double-walled glass top. With respect to its potential influence on heterogeneous nucleation mainly the advancing angle is of interest. The uniform probe geometry required was achieved by accurate cutting and by multiple polishing stages up to the accomplishment of a 0.04 μm grain size. The original probes consist of 925 sterling silver including a 7.5% copper content. Additional coating with silver pro Analysi (p.A.) was applied making use of pure silver powder evaporation process via Physical Vapour Deposition (PVD). Results show that a surface contamination by copper cannot be neglected for the specification of contact angles. It turned out that additional PVD coatings not only change the values of θa but also their temperature dependence. With increasing the number of coatings of a plate the contact angle decreases and its temperature dependence inverts. Since the contact angle hysteresis θhyst. obtained for the variously often coated probes remained practically constant possible changes in surface roughness with increasing number of PVD layers could be excluded.
21 CFR 184.1670 - Propylparaben.
Code of Federal Regulations, 2011 CFR
2011-04-01
...-hydroxybenzoate. It is produced by the n-propanol esterification of p-hydroxybenzoic acid in the presence of... practices. Current good manufacturing practice results in a maximum level of 0.1 percent in food. (e) Prior...
A sensor of alcohol vapours based on thin polyaniline base film and quartz crystal microbalance.
Ayad, Mohamad M; El-Hefnawey, Gad; Torad, Nagy L
2009-08-30
Thin films of polyaniline base, emeraldine base (EB), coating on the quartz crystal microbalance (QCM) electrode were used as a sensitive layer for the detection of a number of primary aliphatic alcohols such as ethanol, methanol, 2-propanol and 1-propanol vapours. The frequency shifts (Deltaf) of the QCM were increased due to the vapour adsorption into the EB film. Deltaf were found to be linearly correlated with the concentrations of alcohols vapour in part per million (ppm). The sensitivity of the sensor was found to be governed by the chemical structure of the alcohol. The sensor shows a good reproducibility and reversibility. The diffusions of different alcohols vapour were studied and the diffusion coefficients (D) were calculated. It is concluded that the diffusion of the vapours into the EB film follows Fickian kinetics.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Lizhong; Ouyang, Shuxin; Ren, Bofan
2015-10-01
Macroporous GaN/ZnO solid solution photocatalyst is synthesized through a novel sol-gel method under mild conditions. The performance of as-synthesized solid solution photocatalyst is evaluated for decomposition of gaseous 2-propanol (IPA). It is found that due to enhancement in both the adsorption to gaseous IPA and the absorbance to visible light, the porous GaN/ZnO solid solution exhibits a good photocatalytic performance for IPA decomposition. Moreover, the mechanism for photocatalytic degradation IPA over porous GaN/ZnO solid solution is also investigated in comparison with those for the two end materials ZnO and GaN. The trapping effects with different scavengers prove that both themore » photoexcited electrons and holes affect the IPA photodegradation process, simultaneously.« less
Sensing of volatile organic compounds by copper phthalocyanine thin films
NASA Astrophysics Data System (ADS)
Ridhi, R.; Saini, G. S. S.; Tripathi, S. K.
2017-02-01
Thin films of copper phthalocyanine have been deposited by thermal evaporation technique. We have subsequently exposed these films to the vapours of methanol, ethanol and propanol. Optical absorption, infrared spectra and electrical conductivities of these films before and after exposure to chemical vapours have been recorded in order to study their sensing mechanisms towards organic vapours. These films exhibit maximum sensing response to methanol while low sensitivities of the films towards ethanol and propanol have been observed. The changes in sensitivities have been correlated with presence of carbon groups in the chemical vapours. The effect of different types of electrodes on response-recovery times of the thin film with organic vapours has been studied and compared. The electrodes gap distance affects the sensitivity as well as response-recovery time values of the thin films.
Sarkar, Souravi; Mandal, Sarthak; Ghatak, Chiranjib; Rao, Vishal Govind; Ghosh, Surajit; Sarkar, Nilmoni
2012-02-02
The photoinduced electron transfer (PET) reaction has been investigated in a room temperature imidazolium ionic liquid (RTIL), 1-ethyl-3-methylimidazolium ethyl sulfate ([Emim][EtSO(4)]) and also in [Emim][EtSO(4)]-co-solvents mixtures from N,N-dimethyl aniline (DMA) to different Coumarin dyes using steady state and time-resolved fluorescence quenching measurements. We have used water and methanol and 2-propanol as the cosolvents of RTILs for the PET study. On going from neat ionic liquid to the RTIL-co-solvents mixtures the electron transfer rate has been largely enhanced. In neat RTIL as well as in [Emim][EtSO(4)]-co-solvents mixtures, a Marcus type of inversion in the PET rate have been observed.
The Kirkwood-Buff theory of solutions and the local composition of liquid mixtures.
Shulgin, Ivan L; Ruckenstein, Eli
2006-06-29
The present paper is devoted to the local composition of liquid mixtures calculated in the framework of the Kirkwood-Buff theory of solutions. A new method is suggested to calculate the excess (or deficit) number of various molecules around a selected (central) molecule in binary and multicomponent liquid mixtures in terms of measurable macroscopic thermodynamic quantities, such as the derivatives of the chemical potentials with respect to concentrations, the isothermal compressibility, and the partial molar volumes. This method accounts for an inaccessible volume due to the presence of a central molecule and is applied to binary and ternary mixtures. For the ideal binary mixture it is shown that because of the difference in the volumes of the pure components there is an excess (or deficit) number of different molecules around a central molecule. The excess (or deficit) becomes zero when the components of the ideal binary mixture have the same volume. The new method is also applied to methanol + water and 2-propanol + water mixtures. In the case of the 2-propanol + water mixture, the new method, in contrast to the other ones, indicates that clusters dominated by 2-propanol disappear at high alcohol mole fractions, in agreement with experimental observations. Finally, it is shown that the application of the new procedure to the ternary mixture water/protein/cosolvent at infinite dilution of the protein led to almost the same results as the methods involving a reference state.
Quiliano, Miguel; Pabón, Adriana; Moles, Ernest; Bonilla-Ramirez, Leonardo; Fabing, Isabelle; Fong, Kim Y; Nieto-Aco, Diego A; Wright, David W; Pizarro, Juan C; Vettorazzi, Ariane; López de Cerain, Adela; Deharo, Eric; Fernández-Busquets, Xavier; Garavito, Giovanny; Aldana, Ignacio; Galiano, Silvia
2018-05-25
Design, synthesis, structure-activity relationship, cytotoxicity studies, in silico drug-likeness, genotoxicity screening, and in vivo studies of new 1-aryl-3-substituted propanol derivatives led to the identification of nine compounds with promising in vitro (55, 56, 61, 64, 66, and 70-73) and in vivo (66 and 72) antimalarial profiles against Plasmodium falciparum and Plasmodium berghei. Compounds 55, 56, 61, 64, 66 and 70-73 exhibited potent antiplasmodial activity against chloroquine-resistant strain FCR-3 (IC 50 s < 0.28 μM), and compounds 55, 56, 64, 70, 71, and 72 showed potent biological activity in chloroquine-sensitive and multidrug-resistant strains (IC 50 s < 0.7 μM for 3D7, D6, FCR-3 and C235). All of these compounds share appropriate drug-likeness profiles and adequate selectivity indexes (77 < SI < 184) as well as lack genotoxicity. In vivo efficacy tests in a mouse model showed compounds 66 and 72 to be promising candidates as they exhibited significant parasitemia reductions of 96.4% and 80.4%, respectively. Additional studies such as liver stage and sporogony inhibition, target exploration of heat shock protein 90 of P. falciparum, targeted delivery by immunoliposomes, and enantiomer characterization were performed and strongly reinforce the hypothesis of 1-aryl-3-substituted propanol derivatives as promising antimalarial compounds. Copyright © 2018 Elsevier Masson SAS. All rights reserved.
Nti-Gyabaah, J; Chmielowski, R; Chan, V; Chiew, Y C
2008-07-09
Accurate experimental determination of solubility of active pharmaceutical ingredients (APIs) in solvents and its correlation, for solubility prediction, is essential for rapid design and optimization of isolation, purification, and formulation processes in the pharmaceutical industry. An efficient material-conserving analytical method, with in-line reversed HPLC separation protocol, has been developed to measure equilibrium solubility of lovastatin in ethanol, 1-propanol, 1-butanol, 1-pentanol, 1-hexanol, and 1-octanol between 279 and 313K. Fusion enthalpy DeltaH(fus), melting point temperature, Tm, and the differential molar heat capacity, DeltaC(P), were determined by differential scanning calorimetry (DSC) to be 43,136J/mol, 445.5K, and 255J/(molK), respectively. In order to use the regular solution equation, simplified assumptions have been made concerning DeltaC(P), specifically, DeltaC(P)=0, or DeltaC(P)=DeltaS. In this study, we examined the extent to which these assumptions influence the magnitude of the ideal solubility of lovastatin, and determined that both assumptions underestimate the ideal solubility of lovastatin. The solubility data was used with the calculated ideal solubility to obtain activity coefficients, which were then fitted to the van't Hoff-like regular solution equation. Examination of the plots indicated that both assumptions give erroneous excess enthalpy of solution, H(infinity), and hence thermodynamically inconsistent activity coefficients. The order of increasing ideality, or solubility of lovastatin was butanol>1-propanol>1-pentanol>1-hexanol>1-octanol.
Jain, Rishu; Sharma, Deepak; Kumar, Rajesh
2013-10-01
To determine the effects of alcohols on the low-frequency local motions that control slow changes in structural dynamics of native-like compact states of proteins, we have studied the effects of alcohols on structural fluctuation of M80-containing Ω-loop by measuring the rate of thermally driven CO dissociation from a natively folded carbonmonoxycytochrome c under varying concentrations of alcohols (methanol, ethanol, 1-propanol, 2-propanol, 3°-butanol, 2,2,2-trifluoroethanol). As alcohol is increased, the rate coefficient of CO dissociation (k(diss)) first decreases in subdenaturing region and then increases on going from subdenaturing to denaturing milieu. This decrease in k(diss) is more for 2,2,2-trifluroethanol and 1-propanol and least for methanol, indicating that the first phase of motional constraint is due to the hydrophobicity of alcohols and intramolecular protein cross-linking effect of alcohols, which results in conformational entropy loss of protein. The thermal denaturation midpoint for ferrocytochrome c decreases with increase in alcohol, indicating that alcohol decrease the global stability of protein. The stabilization free energy (ΔΔG) in alcohols' solution was calculated from the slope of the Wyman-Tanford plot and water activity. The m-values obtained from the slope of ΔΔG versus alcohols plot were found to be more negative for longer and linear chain alcohols, indicating destabilization of proteins by alcohols through disturbance of hydrophobic interactions and hydrogen bonding.
Baratta, Walter; Ballico, Maurizio; Esposito, Gennaro; Rigo, Pierluigi
2008-01-01
The reaction of [RuCl(CNN)(dppb)] (1; HCNN=6-(4-methylphenyl)-2-pyridylmethylamine) with NaOiPr in 2-propanol/C6D6 affords the alcohol adduct alkoxide [Ru(OiPr)(CNN)(dppb)].n iPrOH (5), containing the Ru-NH2 linkage. The alkoxide [Ru(OiPr)(CNN)(dppb)] (4) is formed by treatment of the hydride [Ru(H)(CNN)(dppb)] (2) with acetone in C6D6. Complex 5 in 2-propanol/C6D6 equilibrates quickly with hydride 2 and acetone with an exchange rate of (5.4+/-0.2) s(-1) at 25 degrees C, higher than that found between 4 and 2 ((2.9+/-0.4) s(-1)). This fast process, involving a beta-hydrogen elimination versus ketone insertion into the Ru-H bond, occurs within a hydrogen-bonding network favored by the Ru-NH2 motif. The cationic alcohol complex [Ru(CNN)(dppb)(iPrOH)](BAr(f)4) (6; Ar(f)=3,5-C6H3(CF3)2), obtained from 1, Na[BAr(f)4], and 2-propanol, reacts with NaOiPr to afford 5. Complex 5 reacts with either 4,4'-difluorobenzophenone through hydride 2 or with 4,4'-difluorobenzhydrol through protonation, affording the alkoxide [Ru(OCH(4-C6H4F)2)(CNN)(dppb)] (7) in 90 and 85 % yield of the isolated product. The chiral CNN-ruthenium compound [RuCl(CNN)((S,S)-Skewphos)] (8), obtained by the reaction of [RuCl2(PPh3)3] with (S,S)-Skewphos and orthometalation of HCNN in the presence of NEt3, is a highly active catalyst for the enantioselective transfer hydrogenation of methylaryl ketones (turnover frequencies (TOFs) of up to 1.4 x 10(6) h(-1) at reflux were obtained) with up to 89% ee. Also the ketone CF3CO(4-C6H4F), containing the strong electron-withdrawing CF3 group, is reduced to the R alcohol with 64% ee and a TOF of 1.5 x 10(4) h(-1). The chiral alkoxide [Ru(OiPr)(CNN)((S,S)-Skewphos)]n iPrOH (9), obtained from 8 and NaOiPr in the presence of 2-propanol, reacts with CF3CO(4-C6H4F) to afford a mixture of the diastereomer alkoxides [Ru(OCH(CF3)(4-C6H4F))(CNN)((S,S)-Skewphos)] (10/11; 74% yield) with 67% de. This value is very close to the enantiomeric excess of the alcohol (R)-CF3CH(OH)(4-C6H4F) formed in catalysis, thus suggesting that diastereoisomeric alkoxides with the Ru-NH2 linkage are key species in the catalytic asymmetric transfer hydrogenation reaction.
Alcohol vapours sensor based on thin polyaniline salt film and quartz crystal microbalance.
Ayad, Mohamad M; Torad, Nagy L
2009-06-15
A sensor based on the quartz crystal microbalance (QCM) technique was developed for detection of a number of primary aliphatic alcohols such as ethanol, methanol, 1-propanol, and 2-propanol vapours. Detection was based on a sensitive and a thin film of polyaniline, emeraldine salt (ES), coated the QCM electrode. The frequency shifts (Delta f) of the QCM were increased due to the vapour absorption into the ES film. The values of Delta f were found to be linearly correlated with the concentrations of alcohols vapour in mg L(-1). The changes in frequency are due to the hydrophilic character of the ES and the electrostatic interaction as well as the type of the alcohol. The sensor shows a good reproducibility and reversibility. The diffusion and diffusion coefficient (D) of different alcohols vapour were determined. It was found that the sensor follows Fickian kinetics.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Orme, Christopher Joseph; Klaehn, John Ray; Harrup, Mason Kurt
Two linear phosphazene polymers were synthesized with differing amounts of hydrophilic 2-(2-methoxyethoxy)ethanol (MEE) and hydrophobic 4-methoxyphenol (MEOP) substituted on the backbone. These high polymers were cast into membranes and their permeability to water, methanol, ethanol, and 2-propanol was evaluated as a function of temperature. An additional polymer with a low content of MEE was studied for water permeation and was characterized by trace flux. At higher levels of MEE on the backbone, fluxes of all solvents increased. Solubility also was found to increase with increasing MEE content for all solvents except water. Unexpectedly, water was found to be less solublemore » in the higher MEE polymer, although higher membrane fluxes were observed. Diffusion coefficients showed the following trend: methanol 2-propanol > ethanol water. Finally, the affinity of solvents and polymers was discussed in terms of Hansen solubility parameters.« less
Food grade microemulsion systems: canola oil/lecithin:n-propanol/water.
Abbasi, Soleiman; Radi, Mohsen
2016-03-01
In this study, the capability of a natural surfactant, lecithin, and the influence of ionic strength, pH, and temperature on some properties of a food grade microemulsion system were evaluated. For this purpose, the pseudoternary phase diagrams of canola oil/lecithin:n-propanol/water microemulsions in the presence of different salts (NaCl and CaCl2), ionic strengths, pHs, and temperatures were constructed. Our findings showed that the presence of salts slightly increased the W/O areas on the phase diagrams, whereas pH variation was not effective on the microemulsion formation. The expansion of microemulsion areas with temperature indicated the greater triglycerides solubilization capacity of lecithin based microemulsions at higher temperatures. These findings revealed the efficiency of lecithin-based microemulsion system for solubilization of triglycerides which can potentially be used for extraction of edible vegetable oils particularly canola oil. Copyright © 2015 Elsevier Ltd. All rights reserved.
Solvothermal synthesis of nickel-tungsten sulfides for 2-propanol dehydration.
Gómez-Gutiérrez, Claudia M; Luque, P A; Guerra-Rivas, G; López-Sánchez, J A; Armenta, M A; Quintana, J M; Olivas, A
2015-01-01
The bimetallic nickel-tungsten catalysts were prepared via solvothermal method. The X-ray Diffractometer (XRD) analysis revealed that the corresponding peaks at 14°, 34°, and 58° were for tungsten disulfide (WS2 ) hexagonal phase. The catalysts displayed different crystalline phase with nickel addition, and as an effect the WS2 surface area decreased from 74.7 to 2.0 m(2) g(--1) . In this sense, high-resolution transmission electron microscopy (HRTEM) showed the layers set in direction (002) with an onion-like morphology, and in the center of the particles there is a large amount of nickel contained with 6-8 layers covering it. The catalytic dehydration of 2-propanol was selective to propene in 100% at 250 °C for the sample with 0.7 of atomic ratio of Ni/Ni + W. © Wiley Periodicals, Inc.
NASA Technical Reports Server (NTRS)
Weber, Arthur L.
1995-01-01
The oxidation of 2,3-dimercapto-1-propanol by ferric ions on the surface of iron(III) hydroxide oxide (Fe(OH)O) yielded polydisulfide oligomers. This polymerization occurred readily at low dithiol concentration under mild aqueous conditions. Polydisulfide polymers up to the 15-mer were synthesized from 1 mM dithiol in 5 ml water reacted with iron(III) hydroxide oxide (20 mg, 160 micromole Fe) for 3 days under anaerobic conditions at 40 C and pH 4. About 91% of the dithiol was converted to short soluble oligomers and 9% to insoluble larger oligomers that were isolated with the FE(OH)O phase. Reactions carried out at the same ratio of dithiol to FE(OH)O but at higher dithiol concentrations gave higher yields of the larger insoluble oligomers. The relationship of these results to prebiotic polymer synthesis is discussed.
NASA Technical Reports Server (NTRS)
Weber, Arthur L.
1995-01-01
The oxidation of 2, 3-dimercapto-1-propanol by ferric ions on the surface of iron(III) hydroxide oxide (Fe(OH)O) yielded polydisulfide oligomers. This polymerization occurred readily at low dithiol concentration under mild aqueous conditions. Polydisulfide polymers up to the 15-mer were synthesized from 1 mM dithiol in 5 ml water reacted with iron(III) hydroxide oxide (20 mg, 160 micromole Fe) for 3 days under anaerobic conditions at 40 C and pH 4. About 91% of the dithiol was converted to short soluble oligomers and 9% to insoluble larger oligomers that were isolated with the Fe(OH)O phase. Reactions carried out at the same ratio of dithiol to Fe(OH)O but at higher dithiol concentrations gave higher yields of the larger insoluble oligomers. The relationship of these results to prebiotic polymer synthesis is discussed.
Laser-induced fluorescence imaging of acetone inside evaporating and burning fuel droplets
NASA Astrophysics Data System (ADS)
Shringi, D. S.; Shaw, B. D.; Dwyer, H. A.
2009-01-01
Laser-induced fluorescence was used to visualize acetone fields inside individual droplets of pure acetone as well as droplets composed of methanol or 1-propanol initially mixed with acetone. Droplets were supported on a horizontal wire and two vaporization conditions were investigated: (1) slow evaporation in room air and (2) droplet combustion, which leads to substantially faster droplet surface regression rates. Acetone was preferentially gasified, causing its concentration in droplets to drop in time with resultant decreases in acetone fluorescence intensities. Slowly vaporizing droplets did not exhibit large spatial variations of fluorescence within droplets, indicating that these droplets were relatively well mixed. Ignition of droplets led to significant variations in fluorescence intensities within droplets, indicating that these droplets were not well mixed. Ignited droplets composed of mixtures of 1-propanol and acetone showed large time-varying changes in shapes for higher acetone concentrations, suggesting that bubble formation was occurring in these droplets.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, M.H.; Lie, Y.C.
1994-07-01
The densities and viscosities of aqueous mixtures of monoethanolamine (MEA) with N-methyldiethanolamine (MDEA) and MEA with 2-amino-2-methyl-1-propanol (AMP) have been studied at temperatures from 30 to 80 C. For density measurements, four MEA + MDEA (a total of 20 mass %) + H[sub 2]O mixtures and eight MEA + AMP (20 and 30 mass %) + H[sub 2]O mixtures were studied. For viscosity measurements, ten MEA + MDEA + H[sub 2]O mixtures and eight MEA + AMP + H[sub 2]O mixtures were measured. A Redlich-Kister equation of the excess volume was applied to represent the density of the liquid mixtures.more » The equation of Grunberg and Nissan of liquid viscosity was used to correlate the viscosity data. Both density and viscosity calculations show satisfactory results.« less
Phase equilibrium measurements on nine binary mixtures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wilding, W.V.; Giles, N.F.; Wilson, L.C.
1996-11-01
Phase equilibrium measurements have been performed on nine binary mixtures. The PTx method was used to obtain vapor-liquid equilibrium data for the following systems at two temperatures each: (aminoethyl)piperazine + diethylenetriamine; 2-butoxyethyl acetate + 2-butoxyethanol; 2-methyl-2-propanol + 2-methylbutane; 2-methyl-2-propanol + 2-methyl-2-butene; methacrylonitrile + methanol; 1-chloro-1,1-difluoroethane + hydrogen chloride; 2-(hexyloxy)ethanol + ethylene glycol; butane + ammonia; propionaldehyde + butane. Equilibrium vapor and liquid phase compositions were derived form the PTx data using the Soave equation of state to represent the vapor phase and the Wilson or the NRTL activity coefficient model to represent the liquid phase. A large immiscibility region existsmore » in the butane + ammonia system at 0 C. Therefore, separate vapor-liquid-liquid equilibrium measurements were performed on this system to more precisely determine the miscibility limits and the composition of the vapor phase in equilibrium with the two liquid phases.« less
Amplification of hofmeister effect by alcohols.
Xu, Yun; Liu, Guangming
2014-07-03
We have demonstrated that Hofmeister effect can be amplified by adding alcohols to aqueous solutions. The lower critical solution temperature behavior of poly(N-isopropylacrylamide) has been employed as the model system to study the amplification of Hofmeister effect. The alcohols can more effectively amplify the Hofmeister effect following the series methanol < ethanol < 1-propanol < 2-propanol for the monohydric alcohols and following the series d-sorbitol ≈ xylitol ≈ meso-erythritol < glycerol < ethylene glycol < methanol for the polyhydric alcohols. Our study reveals that the relative extent of amplification of Hofmeister effect is determined by the stability of the water/alcohol complex, which is strongly dependent on the chemical structure of alcohols. The more stable solvent complex formed via stronger hydrogen bonds can more effectively differentiate the anions through the anion-solvent complex interactions, resulting in a stronger amplification of Hofmeister effect. This study provides an alternative method to tune the relative strength of Hofmeister effect besides salt concentration.
NASA Astrophysics Data System (ADS)
Vijayakumar, P.; Senthil Pandian, M.; Ramasamy, P.
2018-04-01
Tungsten carbide nanorods/Zirconium dioxide (WC-NRs/ZrO2) composite material was used as a counter electrode (CE) for efficient dye-sensitized solar cell (DSSC) fabrication. The prepared WC-NRs/ZrO2 (N-Methyl-2-pyrrolidone (NMP)/2-Propanol) gel is drop casted on the FTO substrate for CE. The morphological analysis was confirmed by FESEM and TEM. Nyquist plot clearly indicates that the NMP based WC-NRs/ZrO2 CE possesses high electrocatalytic activity and faster charge-transfer ability for the reduction of I3- due to the lower charge transfer resistance. The fabricated WC-NRs/ZrO2 (NMP) composite CE is demonstrated with high power conversion efficiency (PCE) of 6.63% in comparison to the WC-NRs/ZrO2 (2-propanol) CE of 2.29% under same conditions.
Catalytic wet oxidation: mathematical modeling of multicompound destruction.
Yang, J; Hand, D W; Hokanson, D R; Crittenden, J C; Oman, E J
2003-01-01
A mathematical model of a three-phase catalytic reactor, CatReac, was developed for analysis and optimization of a catalytic oxidation reactor that is used in the International Space Station potable water processor. The packed-bed catalytic reactor, known as the volatile reactor assembly (VRA), is operated as a three-phase reactor and contains a proprietary catalyst, a pure-oxygen gas phase, and the contaminated water. The contaminated water being fed to the VRA primarily consists of acetic acid, acetone, ethanol, 1-propanol, 2-propanol, and propionic acid ranging in concentration from 1 to 10 mg/L. The Langmuir-Hinshelwood Hougen-Watson (L-H) (Hougen, 1943) expression was used to describe the surface reaction rate for these compounds. Single and multicompound short-column experiments were used to determine the L-H rate parameters and calibrate the model. The model was able to predict steady-state multicomponent effluent profiles for short and full-scale reactor experiments.
Umasankar, Yogeswaran; Periasamy, Arun Prakash; Chen, Shen-Ming
2010-01-15
Conductive composite film which contains nafion (NF) doped multi-walled carbon nanotubes (MWCNTs) along with the incorporation of poly(malachite green) (PMG) has been synthesized on glassy carbon electrode (GCE), gold and indium tin oxide (ITO) electrodes by potentiostatic methods. The presence of MWCNTs in the composite film (MWCNTs-NF-PMG) enhances surface coverage concentration (Gamma) of PMG to approximately 396%, and increases the electron transfer rate constant (k(s)) to approximately 305%. Similarly, electrochemical quartz crystal microbalance study reveals the enhancement in the deposition of PMG at MWCNTs-NF film. The surface morphology of the composite film deposited on ITO electrode has been studied using scanning electron microscopy (SEM) and scanning tunneling microscopy (STM). These two techniques reveal that the PMG incorporated on MWCNTs-NF film. The MWCNTs-NF-PMG composite film also exhibits promising enhanced electrocatalytic activity towards the simple aliphatic alcohols such as methanol, ethanol and propanol. The electroanalytical responses of analytes at NF-PMG and MWCNTs-NF-PMG films were measured using both cyclic voltammetry (CV) and differential pulse voltammetry (DPV). From electroanalytical studies, well defined voltammetric peaks have been obtained at MWCNTs-NF-PMG composite film for methanol, ethanol and propanol at Epa=609, 614 and 602mV respectively. The sensitivity of MWCNTs-NF-PMG composite film towards methanol, ethanol and propanol in CV technique are 0.59, 0.36 and 0.92microAmM(-1)cm(-2) respectively, which are higher than NF-PMG film. Further, the sensitivity values obtained using DPV are higher than the values obtained using CV technique.
Marangoni Effects in the Boiling of Binary Fluid Mixtures
NASA Technical Reports Server (NTRS)
Ahmed, Sayeed; Carey, Van P.; Motil, Brian
1996-01-01
Results of very recent experimental studies indicate that during nucleate boiling in some binary mixture, Marangoni effects augment the gravity driven flow of liquid towards the heated surface. With gravity present, it is impossible to separate the two effects. The reduced gravity environment gives an unique opportunity to explore th role of Marangoni effects on the boiling mechanisms free of gravitational body forces that obscure the role of such effects. However, recent experimental results suggest that under reduced gravity conditions, Marangoni effects is the dominant mechanism of vapor-liquid exchange at the surface for some binary mixture. To further explore such effects, experiments have been conducted with water/2-propanol mixtures at three different concentrations under normal gravity with different orientations of the heater surface and under reduce gravity aboard the DC-9 aircraft at NASA Lewis Research Center. The system pressure was sub atmospheric (approx. 8 kP at 1g(n)) and the bulk liquid temperature varied from low subcooling to near saturation. The molar concentrations of 2-propanol tested were 0.015, 0.025, and 0.1. Boiling curves were obtained both for high gravity (approx. 2g(n)) and reduce gravity (approx. 0.01g(n)). For each concentration of 2-propanol, the critical heat flux has been determined in the flight experiments only for reduced gravity conditions. Comparison of boiling curves and CHF obtained under l-g(n) an reduced gravity indicates that boiling mechanism in this mixtures is nearly independent of gravity. The results also indicate that the Marangoni mechanism is strong enough in these mixtures to sustain the boiling under reduced gravity conditions.
Korkmaz, Ufuk; Bulut, Ahmet
2015-02-05
The experimental and theoretical investigation of a novel organic nonlinear optical (NLO) squarate salt of 2-pyridinium propanol hydrogen squarate (1), C8H12ON(+)·C4HO4(-), were reported in this study. The crystal structure of the title compound was found to crystallize in the triclinic P-1 space group. In the asymmetric unit each squaric acid molecules have donated one H atom to the pyridines N1 and N2 atoms of a 2-pyridine propanol molecule, forming the salt (1). The X-ray analysis clearly indicated that the crystal packing has shown the hydrogen bonding ring pattern of D2(2)(10) (α-dimer) through N-H⋯O interactions. The structural and vibrational properties of the compound were also studied by computational methods of ab initio performed on the compound at DFT/B3LYP/6-31++G(d,p) (2) and HF/6-31++G(d,p) (3) level of theory. The calculation results on the basis of two models for both the optimized molecular structure and vibrational properties for the 1 are presented and compared with the X-ray analysis result. The molecular electrostatic potential (MEP), electronic absorption spectra, frontier molecular orbitals (FMOs), conformational flexibility and non-linear optical properties (NLO) of the title compound were also studied at the 2 level and the results are reported. In order to evaluate the suitability for NLO applications thermal analysis (TG, DTA and DTG) data of 1 were also obtained. Copyright © 2014 Elsevier B.V. All rights reserved.
Searching for trans ethyl methyl ether in Orion KL★,★★
Tercero, B.; Cernicharo, J.; López, A.; Brouillet, N.; Kolesniková, L.; Motiyenko, R. A.; Margulès, L.; Alonso, J. L.; Guillemin, J.-C.
2015-01-01
We report on the tentative detection of trans ethyl methyl ether (tEME), t-CH3CH2OCH3, through the identification of a large number of rotational lines from each one of the spin states of the molecule towards Orion KL. We also search for gauche-trans-n-propanol, Gt-n-CH3CH2CH2OH, an isomer of tEME in the same source. We have identified lines of both species in the IRAM 30 m line survey and in the ALMA Science Verification data. We have obtained ALMA maps to establish the spatial distribution of these species. Whereas tEME mainly arises from the compact ridge component of Orion, Gt-n-propanol appears at the emission peak of ethanol (south hot core). The derived column densities of these species at the location of their emission peaks are ≤(4.0 ± 0.8) × 1015 cm−2 and ≤(1.0 ± 0.2)× 1015 cm−2 for tEME and Gt-n-propanol, respectively. The rotational temperature is ~100 K for both molecules. We also provide maps of CH3OCOH, CH3CH2OCOH, CH3OCH3, CH3OH, and CH3CH2OH to compare the distribution of these organic saturated O-bearing species containing methyl and ethyl groups in this region. Abundance ratios of related species and upper limits to the abundances of non-detected ethers are provided. We derive an abundance ratio N(CH3OCH3)/N(tEME) ≥ 150 in the compact ridge of Orion. PMID:26869726
Searching for trans ethyl methyl ether in Orion KL.
Tercero, B; Cernicharo, J; López, A; Brouillet, N; Kolesniková, L; Motiyenko, R A; Margulès, L; Alonso, J L; Guillemin, J-C
2015-10-01
We report on the tentative detection of trans ethyl methyl ether (tEME), t-CH 3 CH 2 OCH 3 , through the identification of a large number of rotational lines from each one of the spin states of the molecule towards Orion KL. We also search for gauche-trans-n-propanol, Gt-n-CH 3 CH 2 CH 2 OH, an isomer of tEME in the same source. We have identified lines of both species in the IRAM 30 m line survey and in the ALMA Science Verification data. We have obtained ALMA maps to establish the spatial distribution of these species. Whereas tEME mainly arises from the compact ridge component of Orion, Gt-n-propanol appears at the emission peak of ethanol (south hot core). The derived column densities of these species at the location of their emission peaks are ≤(4.0 ± 0.8) × 10 15 cm -2 and ≤(1.0 ± 0.2)× 10 15 cm -2 for tEME and Gt-n-propanol, respectively. The rotational temperature is ~100 K for both molecules. We also provide maps of CH 3 OCOH, CH 3 CH 2 OCOH, CH 3 OCH 3 , CH 3 OH, and CH 3 CH 2 OH to compare the distribution of these organic saturated O-bearing species containing methyl and ethyl groups in this region. Abundance ratios of related species and upper limits to the abundances of non-detected ethers are provided. We derive an abundance ratio N (CH 3 OCH 3 )/ N (tEME) ≥ 150 in the compact ridge of Orion.
Chun, Hao-Jung; Poklis, Justin L.; Poklis, Alphonse; Wolf, Carl E.
2016-01-01
Ethanol is the most widely used and abused drug. While blood is the preferred specimen for analysis, tissue specimens such as brain serve as alternative specimens for alcohol analysis in post-mortem cases where blood is unavailable or contaminated. A method was developed using headspace gas chromatography with flame ionization detection (HS-GC-FID) for the detection and quantification of ethanol, acetone, isopropanol, methanol and n-propanol in brain tissue specimens. Unfixed volatile-free brain tissue specimens were obtained from the Department of Pathology at Virginia Commonwealth University. Calibrators and controls were prepared from 4-fold diluted homogenates of these brain tissue specimens, and were analyzed using t-butanol as the internal standard. The chromatographic separation was performed with a Restek BAC2 column. A linear calibration was generated for all analytes (mean r2 > 0.9992) with the limits of detection and quantification of 100–110 mg/kg. Matrix effect from the brain tissue was determined by comparing the slopes of matrix prepared calibration curves with those of aqueous calibration curves; no significant differences were observed for ethanol, acetone, isopropanol, methanol and n-propanol. The bias and the CVs for all volatile controls were ≤10%. The method was also evaluated for carryover, selectivity, interferences, bench-top stability and freeze-thaw stability. The HS-GC-FID method was determined to be reliable and robust for the analysis of ethanol, acetone, isopropanol, methanol and n-propanol concentrations in brain tissue, effectively expanding the specimen options for post-mortem alcohol analysis. PMID:27488829
Aithal, Mahesh; Belur, Prasanna D
2013-01-01
Enzymatic synthesis of propyl gallate in an organic solvent was studied using cell-associated tannase (E.C. 3.1.1.20) of Bacillus massiliensis. Lyophilized biomass showing tannase activity was used as a biocatalyst. The influence of buffer pH and strength, water activity, temperature, biocatalyst loading, gallic acid concentration, and 1-propanol concentration was studied by the one-factor-at-a-time method. Subsequently, response surface methodology was applied based on a central composite design to determine the effects of three independent variables (biocatalyst loading, gallic acid concentration, and 1-propanol concentration) and their mutual interactions. A total of 20 experiments were conducted, and a statistical model was developed, which predicted the maximum propyl gallate yield of 20.28 μg/mL in the reaction mixture comprising 40.4 mg biocatalyst, 0.4 mM gallic acid, and 6.52 % (v/v) 1-propanol in 9.5 mL benzene at 30°C. The subsequent verification experiments established the validity of the model. Under optimal conditions, 25% conversion of gallic acid to propyl gallate was achieved on a molar basis. The absence of the need for enzyme purification and subsequent immobilization steps and good conversion efficiency makes this enzyme system an interesting one. Reports on the applications of bacterial whole cell systems for synthetic reactions in organic solvents are scarce, and perhaps this is the first report on bacterial cell-associated tannase-mediated esterification in a nonaqueous medium. © 2013 International Union of Biochemistry and Molecular Biology, Inc.
Sonmez, Melda; Ince, Huseyin Yavuz; Yalcin, Ozlem; Ajdžanović, Vladimir; Spasojević, Ivan; Meiselman, Herbert J; Baskurt, Oguz K
2013-01-01
The role of membrane fluidity in determining red blood cell (RBC) deformability has been suggested by a number of studies. The present investigation evaluated alterations of RBC membrane fluidity, deformability and stability in the presence of four linear alcohols (methanol, ethanol, propanol and butanol) using ektacytometry and electron paramagnetic resonance (EPR) spectroscopy. All alcohols had a biphasic effect on deformability such that it increased then decreased with increasing concentration; the critical concentration for reversal was an inverse function of molecular size. EPR results showed biphasic changes of near-surface fluidity (i.e., increase then decrease) and a decreased fluidity of the lipid core; rank order of effectiveness was butanol > propanol > ethanol > methanol, with a significant correlation between near-surface fluidity and deformability (r = 0.697; p<0.01). The presence of alcohol enhanced the impairment of RBC deformability caused by subjecting cells to 100 Pa shear stress for 300 s, with significant differences from control being observed at higher concentrations of all four alcohols. The level of hemolysis was dependent on molecular size and concentration, whereas echinocytic shape transformation (i.e., biconcave disc to crenated morphology) was observed only for ethanol and propanol. These results are in accordance with available data obtained on model membranes. They document the presence of mechanical links between RBC deformability and near-surface membrane fluidity, chain length-dependence of the ability of alcohols to alter RBC mechanical behavior, and the biphasic response of RBC deformability and near-surface membrane fluidity to increasing alcohol concentrations.
Antibacterial Efficacy of Several Surgical Hand Preparation Products Used by Veterinary Students.
Chou, Po-Yen; Doyle, Aimie J; Arai, Shiori; Burke, Pierre J; Bailey, Trina R
2016-05-01
To compare the antibacterial efficacy of different surgical hand antisepsis protocols used by veterinary students. Prospective, randomized, controlled study. Third year veterinary students (n=45). The participants were randomly assigned to 4 of the following 12 hand preparation product/time combinations: nonabrasive hand scrub method with 4% chlorhexidine gluconate (CH); hand rub with a mixture of 30% 1-propanol and 45% 2-propanol solution (MPS), 70% 2-propanol solution (IPS), or 61% ethanol solution with 1% chlorhexidine gluconate (ES/CH), with a contact time of 1.5, 3, or 5 minutes. Antibacterial efficacy was assessed after surgical hand preparation and at the end of surgery. Log reductions of total bacterial colony forming unit (CFU)/mL and positive aerobic culture rates were compared using multivariable analysis of variance and multivariable logistic regression, respectively. After surgical hand preparation, CH and ES/CH provided significantly higher log CFU reduction and lower positive culture rate for Gram-positive and spore-forming bacteria compared to MPS and IPS. Increase in contact time did not provide significant improvement in bacterial reduction. At the end of surgery, ES/CH provided significantly higher log CFU reduction compared to IPS and lower positive culture rate for Gram-positive bacteria compared to CH, MPS, and IPS. Increase in contact time significantly improved log CFU reduction in ES/CH and MPS groups. In our population of veterinary students ES/CH hand rubs or CH scrubs were more effective in reducing bacterial CFU during surgical hand preparation than MPS or IPS. © Copyright 2016 by The American College of Veterinary Surgeons.
Sonmez, Melda; Ince, Huseyin Yavuz; Yalcin, Ozlem; Ajdžanović, Vladimir; Spasojević, Ivan; Meiselman, Herbert J.; Baskurt, Oguz K.
2013-01-01
The role of membrane fluidity in determining red blood cell (RBC) deformability has been suggested by a number of studies. The present investigation evaluated alterations of RBC membrane fluidity, deformability and stability in the presence of four linear alcohols (methanol, ethanol, propanol and butanol) using ektacytometry and electron paramagnetic resonance (EPR) spectroscopy. All alcohols had a biphasic effect on deformability such that it increased then decreased with increasing concentration; the critical concentration for reversal was an inverse function of molecular size. EPR results showed biphasic changes of near-surface fluidity (i.e., increase then decrease) and a decreased fluidity of the lipid core; rank order of effectiveness was butanol > propanol > ethanol > methanol, with a significant correlation between near-surface fluidity and deformability (r = 0.697; p<0.01). The presence of alcohol enhanced the impairment of RBC deformability caused by subjecting cells to 100 Pa shear stress for 300 s, with significant differences from control being observed at higher concentrations of all four alcohols. The level of hemolysis was dependent on molecular size and concentration, whereas echinocytic shape transformation (i.e., biconcave disc to crenated morphology) was observed only for ethanol and propanol. These results are in accordance with available data obtained on model membranes. They document the presence of mechanical links between RBC deformability and near-surface membrane fluidity, chain length-dependence of the ability of alcohols to alter RBC mechanical behavior, and the biphasic response of RBC deformability and near-surface membrane fluidity to increasing alcohol concentrations. PMID:24086751
Biofuel production by recombinant microorganisms
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liao, James C.; Atsumi, Shota; Cann, Anthony F.
Provided herein are metabolically-modified microorganisms useful for producing biofuels. More specifically, provided herein are methods of producing high alcohols including isobutanol, 1-butanol, 1-propanol, 2-methyl-1-butanol, 3-methyl-1-butanol and 2-phenylethanol from a suitable substrate.
Weiss, K; Kroschewski, B; Auerbach, H
2016-10-01
Ensiling conditions strongly influence fermentation characteristics, yeast count, and aerobic stability. Numerous volatile organic compounds including esters are produced, which may negatively affect feed intake and animal performance and air quality. In addition to a farm survey, 3 laboratory experiments were carried out to study the effects of air (by delayed sealing or by air infiltration during anaerobic storage), temperature (20 and 35°C), and various types of additives [blends of either sodium benzoate and sodium propionate (SBSP) or of sodium benzoate and potassium sorbate (SBPS); buffered mixture of formic and propionic acids (FAPA); homofermentative inoculant (LAB)]. After additive treatment, chopped whole corn plants were packed into 1.5-L glass jars and stored for several months. For treatments with air infiltration, glass jars with holes in the lid and body were used. The farm survey in 2009 revealed large variation in lactate, acetate, ethanol, n-propanol, and 1,2-propanediol concentrations. Whereas ethyl esters were detected in all silages, the mean ethyl lactate concentrations were higher than those for ethyl acetate (474 vs. 38mg/kg of dry matter). In the ensiling experiments, few unequivocal effects of the tested factors on the analyzed parameters were observed due to many interactions. Delayed ensiling without additives decreased lactic acid production but, in one trial, increased acetic acid and had no effect on ethanol. The effect of delayed sealing on yeast counts and aerobic stability differed widely among experiments. Air infiltration during fermentation tested in one trial did not alter lactic acid production, but resulted in more acetic acid in delayed and more ethanol than in promptly sealed untreated silages. Greater ethanol production was associated with increased yeast numbers. Storage at high temperature resulted in lower lactic acid and n-propanol, and a trend toward reduced ethanol production was observed. The additive FAPA consistently caused increased ethanol and reduced n-propanol levels with no effect on yeast counts and aerobic stability. When the additives SBSP and SBPS decreased n-propanol and ethanol, reduced yeast counts were also found. Ethyl ester formation was strongly correlated with those of ethanol and to a lesser degree with those of the respective acid. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Marangoni Effects on Near-Bubble Microscale Transport During Boiling of Binary Fluid Mixtures
NASA Technical Reports Server (NTRS)
V. Carey; Sun, C.; Carey, V. P.
2000-01-01
In earlier investigations, Marangoni effects were observed to be the dominant mechanism of boiling transport in 2-propanol/water mixtures under reduced gravity conditions. In this investigation we have examined the mechanisms of binary mixture boiling by exploring the transport near a single bubble generated in a binary mixture between a heated surface and cold surface. The temperature field created in the liquid around the bubble produces vaporization over the portion of its interface near the heated surface and condensation over portions of its interface near the cold surface. Experiments were conducted using different mixtures of water and 2-propanol under 1g conditions and under reduced gravity conditions aboard the KC135 aircraft. Since 2-propanol is more volatile than water, there is a lower concentration of 2-propanol near the hot surface and a higher concentration of 2-propanol near the cold plate relative to the bulk quantity. This difference in interface concentration gives rise to strong Marangoni effects that move liquid toward the hot plate in the near bubble region for 2-propanol and water mixtures. In the experiments in this study, the pressure of the test system was maintained at about 5 kPa to achieve the full spectrum of boiling behavior (nucleate boiling, critical heat flux and film boiling) at low temperature and heat flux levels. Heat transfer data and visual documentation of the bubble shape were extracted from the experimental results. In the 1-g experiments at moderate to high heat flux levels, the bubble was observed to grow into a mushroom shape with a larger top portion near the cold plate due to the buoyancy effect. The shape of the bubble was somewhat affected by the cold plate subcooling and the superheat of the heated surface. At low superheat levels for the heated surface, several active nucleation sites were observed, and the vapor stems from them merged to form a larger bubble. The generation rate of vapor is moderate in this regime and the bubble shape is cylindrical in appearance. In some instances, the bubble interface appeared to oscillate. At higher applied heat flux levels, the top of the bubble became larger, apparently to provide more condensing interface area adjacent to the cold plate. Increasing the applied heat flux ultimately led to dry-out of the heated surface, with conditions just prior to dryout corresponding to the maximum heat flux (CHF). A more stable bubble was observed when the system attained the minimum heat flux (for film boiling). In this regime, most of the surface under the bottom of the bubble was dry with nucleate boiling sometimes occuring around the contact perimeter of the bubble at heated surface. Different variations (e.g. gap between two plates, molar concentration of the liquid mixture) of the experiments were examined to determine parametric effects on the boiling process and to determine the best conditions for the KC135 reduced gravity tests. Variation of the gap was found to have a minor impact on the CHF. However, reducing the gap between the hot and cold surface was observed to significantly reduce the minimum heat flux for fixed molar concentration of 2-propanol. In the reduced gravity experiments aboard the KC135 aircraft, the bubble formed in the 6.4 mm gap was generally cylindrical or barrel shaped and it increased its extent laterally as the surface superheat increased. In reduced gravity experiments, dryout of the heated surface under the bubble was observed to occur at a lower superheated temperature than for 1g conditions. Observed features of the boiling process and heat transfer data under reduced gravity will be discussed in detail. The results of the reduced gravity experiments will also be compared to those obtained in comparable 1g experiments. In tandem with the experiments we are also developing a computational model of the transport in the liquid surrounding the bubble during the boiling process. The computational model uses a level set method to model motion of the interface. It will incorporate a macroscale treatment of the transport in the liquid gap between the surfaces and a microscale treatment of transport in the regions between the bubble interface and the solid surfaces. The features of the model will be described in detail. Future research directions suggested by the results to date will also be discussed.
DIFFUSION MEASUREMENTS DURING PERVAPORATION THROUGH A ZEOLITE MEMBRANE
An isotopic-transient technique was used to directly measure diffusion times of H2O, methanol, ethanol, 2-propanol, and acetone in pure and binary mixture feeds transporting through a zeolite membrane under steady-state pervaporation conditions. Diffusivities can be determ...
Pressurized solvent extraction of pure food grade starch
USDA-ARS?s Scientific Manuscript database
A commercial pressurized solvent extractor was used to remove lipid and non-lipid material from cornstarch using n-propanol/water and ethanol/water mixtures. Yields and chemical composition of the extract fractions were determined. Cornstarch samples were characterized using pasting properties and...
Sad, María E; Neurock, Matthew; Iglesia, Enrique
2011-12-21
This study reports evidence for catalytic deoxygenation of alkanols, alkanals, and alkanediols on dispersed Cu clusters with minimal use of external H(2) and with the concurrent formation of new C-C and C-O bonds. These catalysts selectively remove O-atoms from these oxygenates as CO or CO(2) through decarbonylation or decarboxylation routes, respectively, that use C-atoms present within reactants or as H(2)O using H(2) added or formed in situ from CO/H(2)O mixtures via water-gas shift. Cu catalysts fully convert 1,3-propanediol to equilibrated propanol-propanal intermediates that subsequently form larger oxygenates via aldol-type condensation and esterification routes without detectable involvement of the oxide supports. Propanal-propanol-H(2) equilibration is mediated by their chemisorption and interconversion at surfaces via C-H and O-H activation and propoxide intermediates. The kinetic effects of H(2), propanal, and propanol pressures on turnover rates, taken together with measured selectivities and the established chemical events for base-catalyzed condensation and esterification reactions, indicate that both reactions involve kinetically relevant bimolecular steps in which propoxide species, acting as the base, abstract the α-hydrogen in adsorbed propanal (condensation) or attack the electrophilic C-atom at its carbonyl group (esterification). These weakly held basic alkoxides render Cu surfaces able to mediate C-C and C-O formation reactions typically catalyzed by basic sites inherent in the catalyst, instead of provided by coadsorbed organic moieties. Turnover rates for condensation and esterification reactions decrease with increasing Cu dispersion, because low-coordination corner and edge atoms prevalent on small clusters stabilize adsorbed intermediates and increase the activation barriers for the bimolecular kinetically relevant steps required for both reactions. © 2011 American Chemical Society
Synergy as design principle for metabolic engineering of 1-propanol production in Escherichia coli.
Shen, Claire R; Liao, James C
2013-05-01
Synthesis of a desired product can often be achieved via more than one metabolic pathway. Whether naturally evolved or synthetically engineered, these pathways often exhibit specific properties that are suitable for production under distinct conditions and host organisms. Synergy between pathways arises when the underlying pathway characteristics, such as reducing equivalent demand, ATP requirement, intermediate utilization, and cofactor preferences, are complementary to each other. Utilization of such pathways in combination leads to an increased metabolite productivity and/or yield compared to using each pathway alone. This work illustrates the principle of synergy between two different pathways for 1-propanol production in Escherichia coli. A model-guided design based on maximum theoretical yield calculations identified synergy of the native threonine pathway and the heterologous citramalate pathway in terms of production yield across all flux ratios between the two pathways. Characterization of the individual pathways by host gene deletions demonstrates their distinct metabolic characteristics: the necessity of TCA cycle for threonine pathway and the independence of TCA cycle for the citramalate pathway. The two pathways are also complementary in driving force demands. Production experiments verified the synergistic effects predicted by the yield model, in which the platform with dual pathway for 2-ketobutyrate synthesis achieved higher yield (0.15g/g of glucose) and productivity (0.12g/L/h) of 1-propanol than individual ones alone: the threonine pathway (0.09g/g; 0.04g/L/h) or the citramalate pathway (0.11g/g; 0.04g/L/h). Thus, incorporation of synergy into the design principle of metabolic engineering may improve the production yield and rate of the desired compound. Copyright © 2013 Elsevier Inc. All rights reserved.
Interstellar Aldehydes and their corresponding Reduced Alcohols: Interstellar Propanol?
NASA Astrophysics Data System (ADS)
Etim, Emmanuel; Chakrabarti, Sandip Kumar; Das, Ankan; Gorai, Prasanta; Arunan, Elangannan
2016-07-01
There is a well-defined trend of aldehydes and their corresponding reduced alcohols among the known interstellar molecules; methanal (CH_2O) and methanol (CH_3OH); ethenone (C_2H_2O) and vinyl alcohol (CH_2CHOH); ethanal (C_2H_4O) and ethanol(C_2H_5OH); glycolaldehyde (C_2H_4O_2) and ethylene glycol(C_2H_6O_2). The reduced alcohol of propanal (CH_3CH_2CHO) which is propanol (CH_3CH_2CH_2OH) has not yet been observed but its isomer; ethyl methyl ether (CH_3CH_2OCH_3) is a known interstellar molecule. In this article, different studies are carried out in investigating the trend between aldehydes and their corresponding reduced alcohols and the deviation from the trend. Kinetically and with respect to the formation route, alcohols could have been produced from their corresponding reduced aldehydes via two successive hydrogen additions. This is plausible because of (a) the unquestionable high abundance of hydrogen, (b) presence of energy sources within some of the molecular clouds and (c) the ease at which successive hydrogen addition reaction occurs. In terms of stability, the observed alcohols are thermodynamically favorable as compared to their isomers. Regarding the formation process, the hydrogen addition reactions are believed to proceed on the surface of the interstellar grains which leads to the effect of interstellar hydrogen bonding. From the studies, propanol and propan-2-ol are found to be more strongly attached to the surface of the interstellar dust grains which affects its overall gas phase abundance as compared to its isomer ethyl methyl ether which has been observed.
Dettenkofer, M; Wilson, C; Gratwohl, A; Schmoor, C; Bertz, H; Frei, R; Heim, D; Luft, D; Schulz, S; Widmer, A F
2010-06-01
To compare the efficacy of two commercially available, alcohol-based antiseptic solutions for preparation and care of central venous catheter (CVC) insertion sites, with and without octenidine dihydrochloride, a double-blind, randomized, controlled trial was undertaken in the haematology units and in one surgical unit of two university hospitals. Adult patients with a non-tunnelled CVC were randomly assigned to two different skin disinfection regimens at the insertion site: 0.1% octenidine with 30% 1-propanol and 45% 2-propanol, and as control 74% ethanol with 10% 2-propanol. Endpoints were (i) skin colonization at the insertion site; (ii) positive culture from the catheter tip (> or = 15 CFU); and (iii) occurrence of CVC-associated bloodstream infection (defined according to criteria set by the CDC). Four hundred patients with inserted CVC were enrolled from May 2002 through April 2005. Both groups were similar in respect of patient characteristics and co-morbidities. Skin colonization at the CVC insertion site during the first 10 days was significantly reduced by octenidine treatment (relative difference octenidine vs. control: 0.21; 95%CI: 0.11-0.39, p <0.0001). Positive culture of the catheter tip was significantly less frequent in the octenidine group (7.9%) than in the control group (17.8%): OR = 0.39 (95%CI: 0.20-0.80, p 0.009). Patients treated with octenidine had a non-significant reduction in catheter-associated bloodstream infections (4.1% vs. 8.3%; OR = 0.44; 95%CI: 0.18-1.08, p 0.081). Side effects were similar in both groups. This randomized controlled trial supports the results of two observational studies demonstrating octenidine in alcoholic solution to be a better option than alcohol alone for the prevention of CVC-associated infections.
AROMATIC AMINES IN AND NEAR THE BUFFALO RIVER
Three sediment samples taken from the Buffalo River and two soil samples taken near its bank have been analyzed for 2-propanol-extractable, basic organic compounds by using GC/MS. Eleven aromatic amines related to the commercial production of malachite green and crystal violet we...
Mass balance evaluation of alcohol emission from cattle feed
USDA-ARS?s Scientific Manuscript database
Silage on dairy farms has been recognized as an important source of volatile organic compounds (VOCs) to the atmosphere, and therefore a contributor to tropospheric ozone. Considering reactivity and likely emission rates, ethanol, 1-propanol, and acetaldehyde probably make the largest contribution t...
Method to synthesize lanthanide fluoride materials from lanthanide fluorinated alkoxides
DOE Office of Scientific and Technical Information (OSTI.GOV)
Boyle, Timothy J.
Lanthanide fluorinated alkoxide derivatives can be synthesized from the alcoholysis reaction of the lanthanide bis-trimethylsilyl amide and an excess amount of hexafluoro iso-propanol. Nanoparticles can be formed from the lanthanide fluorinated alkoxide derivatives by a solvothermal or solution precipitation process.
Matsuura, Tsutashi; Ogawa, Akihiro; Ohara, Yukari; Nishina, Shogo; Nakanishi, Maho; Gohtani, Shoichi
2018-02-01
The effect of alcohols (ethanol, 1-propanol, propylene glycol, glycerin, sucrose) on the phase behavior and emulsification of sucrose stearic acid ester (SSE)/water/edible vegetable oil (EVO) systems was investigated. Adding sucrose, propylene glycol, and glycerin narrowed the oil-separated two-phase region in the phase diagram of the SSE/water/EVO systems, whereas adding ethanol and 1-propanol expanded the oil-separated two-phase region. Changing the course of emulsification in the phase diagram showed that the size of the oil-droplet particle typically decreased in a system with a narrowed oil-separated region. The emulsification properties of the systems varied with respect to changes in the phase diagram. The microstructure of the systems was examined using small-angle X-ray scattering, and the ability to retain the oil in the lamellar structure of the SSEs was suggested as an important role in emulsification, because the mechanism of the systems was the same as that for the liquid crystal emulsification method.
Falkensson, M; Jones, W; Sörbo, B
1989-06-01
We describe a novel mouth-cup device for sampling breath from unconscious subjects and analysis with a hand-held breath-alcohol instrument, the "Alcolmeter SD-2." This equipment was evaluated in healthy volunteers after they drank a moderate dose of alcohol. Three kinds of breath were analyzed: (a) end-expired air from a conventional mouth-tube, (b) breath sampled from the mouth-cup, and (c) air from a nasal tube supplied with the breath analyzer. The ethanol concentration in breath from the mouth-cup was slightly less than in end-expired air but significantly greater than in nasal air. Results with mouth-tube and mouth-cup correlated highly with blood-ethanol concentration as determined by gas chromatography; nasal-tube air correlated less well. The Alcolmeter responded not only to ethanol but also to methanol, 1-propanol, and 2-propanol, whereas ethylene glycol gave no response. The time-response curve for methanol was different, and this might permit differential diagnosis of methanol poisoning.
Wachtel, E; Bach, D; Miller, I R
2013-01-01
Using differential scanning calorimetry and small and wide angle X-ray diffraction, we show that, following extended incubation at room temperature, methanol, propanol, and three of the isomers of butanol can induce ordering in dipalmitoyl phosphatidylserine (DPPS) gel phase bilayers. The organization of the bilayers in the presence of ethanol, described previously, is now observed to be a general effect of short chain alcohols. Evidence is presented for tilting of the acyl chains with respect to the bilayer normal in the presence of ethanol or propanol. However, the different chain lengths of the alcohols, and isomeric form, influence the thermal stability of the ordered gel to different extents. This behavior is unlike that of the gel state phosphatidylcholine analog which, in the presence of short chain alcohols, undergoes hydrocarbon chain interdigitation. Dipalmitoyl phosphatidylcholine added to DPPS in the presence of 20 vol% ethanol, acts to suppress the ordered gel phase. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Phuoc, Tran X.; Howard, Bret. H.; Martello, Donald V.; Soong, Yee; Chyu, Minking K.
2008-11-01
Laser ablation of magnesium in deionized water (DW), solutions of DW and sodium dodecyl sulfate (SDS) with different concentrations, acetone and 2-propanol has been conducted. The results showed that ablation in acetone and 2-propanol yielded MgO and Mg nanocrystallites as isolated particles and agglomerated chains probably intermixed with organic residues resulting from the alteration/decomposition of the solvents under the high-energy conditions. Brucite-like Mg(OH) 2 particles were mainly produced by laser ablation of Mg in either DW or DW-SDS solutions. Ablation in DW yielded particles of fiber-like shapes having a diameter of about 5-10 nm and length as long as 150 nm. Materials produced in DW-SDS solutions were composed of various size and shape particles. Some had rough surfaces with irregular shapes. Small particles were about 20-30 nm and larger particles were about 120 nm. Particles with rod-like, triangular, and plate-like shapes were also observed.
Morimoto, T; Tashiro, F; Nagashima, H; Nishizawa, K; Nagata, F; Yokogawa, Y; Suzuki, T
2000-01-01
The perfusion culture system using a shaken ceramic membrane flask (SCMF) was employed to accumulate microorganisms separated from river water and to produce poly-beta-hydroxybutyric acid (PHB). Using a two-step culture method with a single SCMF, river microorganisms were cultured by separately feeding four representative carbon sources, n-propanol, lactic acid, methanol, and formic acid. After 140 h culture, the cell concentration and PHB content respectively reached 43 g/l and 35% when a propanol medium was fed. Using a two-stage perfusion culture with twin SCMFs, the seed cell mass was increased in the first SCMF and then supplied to the second flask for PHB production. As a consequence, the cellular PHB content rose to 51% in the second SCMF, while the cell concentration gradually increased to 25 g/l after 175 h perfusion culture. These results demonstrated the utility of the two-stage perfusion culture system for developing a cheap means of producing PHB coincident with wastewater treatment.
Tao, Zheng-Yi; Chai, Xin-Sheng; Wu, Shu-Bin
2011-09-16
This study demonstrates a headspace gas chromatographic(HS-GC) technique for the determination of residual epichlorohydrin (ECH) and generated 1,3-dichloro-2-propanol (DCP) in synthesis process of 3-chloro-2-hydroxypropyltrimethylammonium chloride (CHTAC). By a weight-based sampling method, coupled with significant dilution in 15.8% sodium sulfate and 0.1% silver nitrate mixed solution rapidly, the sample for HS-GC analysis is prepared. Based on the reaction stoichiometry, the conversion (R) of CHTAC during the synthesis process can be calculated from sampling weight and GC peak area. The results showed that the method has a good measurement precision (RSD<2.5%) and accuracy (recovery=101-104%) for the quantification of both ECH and DCP in the process samples. The present method is simple and accurate, which can be used for the efficient determination of the CHTAC conversion in the synthesis research. Copyright © 2011 Elsevier B.V. All rights reserved.
Selective deoxygenation of aldehydes and alcohols on molybdenum carbide (Mo2C) surfaces
NASA Astrophysics Data System (ADS)
Xiong, Ke; Yu, Weiting; Chen, Jingguang G.
2014-12-01
The selective deoxygenation of aldehydes and alcohols without cleaving the Csbnd C bond is crucial for upgrading bio-oil and other biomass-derived molecules to useful fuels and chemicals. In this work, propanal, 1-propanol, furfural and furfuryl alcohol were selected as probe molecules to study the deoxygenation of aldehydes and alcohols on molybdenum carbide (Mo2C) prepared over a Mo(1 1 0) surface. The reaction pathways were investigated using temperature programmed desorption (TPD) and high resolution electron energy loss spectroscopy (HREELS). The deoxygenation of propanal and 1-propanol went through a similar intermediate (propoxide or η2(C,O)-propanal) to produce propene. The deoxygenation of furfural and furfuryl alcohol produced a surface intermediate similar to adsorbed 2-methylfuran. The comparison of these results revealed the promising deoxygenation performance of Mo2C, as well as the effect of the furan ring on the selective deoxygenation of the Cdbnd O and Csbnd OH bonds.
Gao, Da-Ming; Kobayashi, Takashi; Adachi, Shuji
2015-01-01
The influence of water-miscible alcohols (methanol, 1-propanol, 2-propanol, and t-butyl alcohol) on the isomerization of glucose to fructose and mannose was investigated under subcritical aqueous conditions (180-200 °C). Primary and secondary alcohols promoted the conversion and isomerization of glucose to afford fructose and mannose with high and low selectivity, respectively. On the other hand, the decomposition (side-reaction) of glucose was suppressed in the presence of the primary and secondary alcohols compared with that in subcritical water. The yield of fructose increased with increasing concentration of the primary and secondary alcohols, and the species of the primary and secondary alcohols tested had little effect on the isomerization behavior of glucose. In contrast, the isomerization of glucose was suppressed in subcritical aqueous t-butyl alcohol. Both the conversion of glucose and the yield of fructose decreased with increasing concentration of t-butyl alcohol. In addition, mannose was not detected in reactions using subcritical aqueous t-butyl alcohol.
Fuel droplet burning rates at high pressures
NASA Technical Reports Server (NTRS)
Canada, G. S.; Faeth, G. M.
1972-01-01
Combustion of methanol, ethanol, propanol -1, n - pentane, n - heptane and n - decane was observed in air under natural convection conditions at pressures up to 100 atm. The droplets were simulated by porous spheres with diameters in the range 0.63 - 1.90 cm. The pressure levels of the tests were high enough so that near critical combustion was observed for methanol and ethanol. Measurements were made of the burning rate and liquid surface temperatures of the fuels. The data were compared with variable property analysis of the combustion process, including a correction for natural convection. The burning rate predictions of the various theories were similar and in fair agreement with the data. The high pressure theory gave the best prediction for the liquid surface temperatures of ethanol and propanol -1 at high pressure. The experiments indicated the approach of critical burning conditions for methanol and ethanol at pressures on the order of 80 - 100 atm, which was in good agreement with the predictions of both the low and high pressure analysis.
Enantiomeric resolution of five chiral pesticides on a Chiralpak IB-H column by SFC.
Jin, Lixia; Gao, Weiliang; Yang, Huayun; Lin, Chunmian; Liu, Weiping
2011-10-01
The enantiomeric separations of five chiral pesticides, diclofopmethyl, 1; benalaxy, 2; acetofenate, 3; myclobutanil, 4; and difenoconazole, 5, were conducted on a Chiralpak IB-H column by a packed-column supercritical fluid chromatography (p-SFC). All compounds, except difenoconazole and myclobutanil, were well resolved within 10 min. As the mobile phase polarity decreased through changing the percentage and the type of alcohol modifiers in the supercritical carbon dioxide (CO(2)), the retention time, the separation factors, and the resolution increased. However, based on the retention time and the resolution, the optimized separations were obtained with the mobile phase containing 10% 2-propanol for diclofop-methyl 1; benalaxy, 2; myclobutanil, 4; difenoconazole, 5; and containing 3% 2-propanol for acetofenate, 3. The optimized separation temperature was at 35°C under the supercritical fluid condition. The π-π interactions and the hydrogen bonding interactions between Chiralpak IB-H CSP and the analytes might be the main chiral discriminations on enantioseparation of these five pesticides.
Tasaltin, Cihat; Ebeoglu, Mehmet Ali; Ozturk, Zafer Ziya
2012-01-01
In this study, zinc oxide (ZnO) was a very good candidate for improving the sensitivity of gas sensor technology. The preparation of an electrospun ZnO nanostructured thin film on a 433 MHz Rayleigh wave based Surface Acoustic Wave (SAW) sensor and the investigation of the acoustoelectric effect on the responses of the SAW sensor are reported. We prepared an electrospun ZnO nanostructured thin film on the SAW devices by using an electrospray technique. To investigate the dependency of the sensor response on the structure and the number of the ZnO nanoparticles, SAW sensors were prepared with different coating loads. The coating frequency shifts were adjusted to fall between 100 kHz and 2.4 MHz. The sensor measurements were performed against VOCs such as acetone, trichloroethylene, chloroform, ethanol, n-propanol and methanol vapor. The sensor responses of n-propanol have opposite characteristics to the other VOCs, and we attributed these characteristics to the elastic effect/acoustoelectric effect.
NASA Astrophysics Data System (ADS)
Wallberg, Jens; Kjaergaard, Henrik G.
2017-06-01
Absolute measurements of the weak transitions require sensitive spectroscopic techniques. With our recently constructed pulsed cavity ring down (CRD) spectrometer, we have recorded the third and fourth vibrational overtone of the OH stretching vibration in a series of simple alcohols: methanol (MeOH), ethanol (EtOH), 1-propanol (1-PrOH), 2-propanol (2-PrOH) and tert-butanol (tBuOH). The CRD setup (in a flow cell configuration) is combined with a conventional FTIR spectrometer to determine the partial pressure of the alcohols from the fundamental transitions of the OH-stretching vibration. The oscillator strengths of the overtone transitions are determined from the integrated absorbances of the overtone spectra and the partial pressures. Furthermore, the oscillator strengths were calculated using vibrational local mode theory with energies and dipole moments calculated at CCSD(T)/aug-cc-pVTZ level of theory. We find a good agreement between the observed and calculated oscillator strengths across the series of alcohols.
REMEDIATING PESTICIDE CONTAMINATED SOILS USING SOLVENT EXTRACTION
Bench-scale solvent extraction studies were performed on soil samples obtained from a Superfund site contaminated with high levels of p,p'-DDT, p,p'-DDD,, p,p'-DDE and toxaphene. The effectiveness of the solvent extraction process was assessed using methanol and 2-propanol as sol...
Threshold responses of odor, nasal pungency (irritation), and eye irritation were measured for single chemicals (1-propanol, 1-hexanol, ethyl acetate, heptyl acetate, 2-pentanone, 2-heptanone, toluene, ethyl benzene, and propyl benzene) and mixtures of them (two three-component m...
Laser-Based Measurement of Refractive Index Changes: Kinetics of 2,3-Epoxy-1-propanol Hydrolysis.
ERIC Educational Resources Information Center
Spencer, Bert; Zare, Richard N.
1988-01-01
Describes an experiment in which a simple laser-based apparatus is used for measuring the change in refractive index during the acid-catalyzed hydrolysis of glycidol into glycerine. Gives a schematic of the experimental setup and discusses the kinetic analysis. (MVL)
The removal of water from organic solvents and biofuels, including lower alcohols (i.e., methanol, ethanol, propanol, and butanol), is necessary for the production, blending, and reuse of those organic compounds. Water forms an azeotrope with many hydrophilic solvents, complicati...
Ionic Liquids as Solvent, Catalyst Support Chemical Agent Decontamination and Detoxification
2004-12-15
agents. 8 3.2 Reactions in surfactant systems Currie studied the reaction between 3-bromo-1-propanol and phenol and a series of phenols carrying...Liquids; Knoche, W., Schomacker, R., Eds.; Springer-Verlag: New York, 1998, pp 1-10. (52) Gonzaga , F.; Perez, E.; Rico-Lattes, I.; Lattes, A. New Journal
Ruminal fermentation of anti-methanogenic nitrate- and nitro-containing forages in vitro
USDA-ARS?s Scientific Manuscript database
Nitrate, 3-nitro-1-propionic acid (NPA), and 3-nitro-1-propanol (NPOH) can accumulate in forages and be poisonous to animals if fed at high enough amounts. These chemicals are also recognized as potent anti-methanogenic compounds, but plants naturally containing these chemicals have been studied li...
Whoosh Bottle Safety, Again: What about What Is inside?
ERIC Educational Resources Information Center
Gregory, Robert B.; Lauber, Matthew
2012-01-01
Studies regarding the whoosh bottle combustion experiment have largely focused on the detonation hazard of the demonstration, particularly with regards to fuel and container choice. Previous work has suggested that the fuel should be 2-propanol owing to its relatively cool flame characteristics. The current study has found that the combustion of…
Aversive Olfactory Learning and Associative Long-Term Memory in "Caenorhabditis elegans"
ERIC Educational Resources Information Center
Amano, Hisayuki; Maruyama, Ichiro N.
2011-01-01
The nematode "Caenorhabditis elegans" ("C. elegans") adult hermaphrodite has 302 invariant neurons and is suited for cellular and molecular studies on complex behaviors including learning and memory. Here, we have developed protocols for classical conditioning of worms with 1-propanol, as a conditioned stimulus (CS), and hydrochloride (HCl) (pH…
USDA-ARS?s Scientific Manuscript database
Pollock gelatin/poly(vinyl alcohol) (PVA) fibers were electrospun using deionized water as the solvent and pollock gelatin/poly(lactic acid) (PLA) fibers were electrospun using 1,1,1,3,3,3-hexafluoro-2-propanol (HFIP) as the solvent. The chemical, thermal, and thermal stability properties were exami...
Using Nuclear Magnetic Resonance Spectroscopy for Measuring Ternary Phase Diagrams
ERIC Educational Resources Information Center
Woodworth, Jennifer K.; Terrance, Jacob C.; Hoffmann, Markus M.
2006-01-01
A laboratory experiment is presented for the upper-level undergraduate physical chemistry curriculum in which the ternary phase diagram of water, 1-propanol and n-heptane is measured using proton nuclear magnetic resonance (NMR) spectroscopy. The experiment builds upon basic concepts of NMR spectral analysis, typically taught in the undergraduate…
Yamada, Hidetaka; Matsuzaki, Yoichi; Higashii, Takayuki; Kazama, Shingo
2011-04-14
We used density functional theory (DFT) calculations with the latest continuum solvation model (SMD/IEF-PCM) to determine the mechanism of CO(2) absorption into aqueous solutions of 2-amino-2-methyl-1-propanol (AMP). Possible absorption process reactions were investigated by transition-state optimization and intrinsic reaction coordinate (IRC) calculations in the aqueous solution at the SMD/IEF-PCM/B3LYP/6-31G(d) and SMD/IEF-PCM/B3LYP/6-311++G(d,p) levels of theory to determine the absorption pathways. We show that the carbamate anion forms by a two-step reaction via a zwitterion intermediate, and this occurs faster than the formation of the bicarbonate anion. However, we also predict that the carbamate readily decomposes by a reverse reaction rather than by hydrolysis. As a result, the final product is dominated by the thermodynamically stable bicarbonate anion that forms from AMP, H(2)O, and CO(2) in a single-step termolecular reaction.
Fourier-transformed infrared breath testing after ingestion of technical alcohol.
Laakso, Olli; Haapala, Matti; Pennanen, Teemu; Kuitunen, Tapio; Himberg, Jaakko-Juhani
2007-07-01
The study aim was to evaluate the feasibility of a Fourier-transformed infrared (FT-IR) analyzer for out-of-laboratory use by screening the exhalations of inebriated individuals, and to determine analysis quality using common breath components and solvents. Each of the 35 inebriated participants gave an acceptable sample. Because of the metabolism of 2-propanol, the subjects exhaled high concentrations of acetone in addition to ethanol. Other volatile ingredients of technical ethanol products (methyl ethyl ketone, methyl isobutyl ketone, and 2-propanol) were also detected. The lower limits of quantification for the analyzed components ranged from 1.7 to 12 microg/L in simulated breath samples. The bias was +/-2% for ethanol and -11% for methanol. Within-day and between-day coefficients of variation were <1% for ethanol and <4% for methanol. The bias of ethanol and methanol analyses due to coexisting solvents ranged from -0.8 to +2.2% and from -5.6 to +2.9%, respectively. The FT-IR method proved suitable for use outside the laboratory and fulfilled the quality criteria for analysis of solvents in breath.
Disordered amorphous calcium carbonate from direct precipitation
Farhadi Khouzani, Masoud; Chevrier, Daniel M.; Güttlein, Patricia; ...
2015-06-01
Amorphous calcium carbonate (ACC) is known to play a prominent role in biomineralization. Different studies on the structure of biogenic ACCs have illustrated that they can have distinct short-range orders. However, the origin of so-called proto-structures in synthetic and additive-free ACCs is not well understood. In the current work, ACC has been synthesised in iso-propanolic media by direct precipitation from ionic precursors, and analysed utilising a range of different techniques. The data suggest that this additive-free type of ACC does not resemble clear proto-structural motifs relating to any crystalline polymorph. This can be explained by the undefined pH value inmore » iso-propanolic media, and the virtually instantaneous precipitation. Altogether, this work suggests that aqueous systems and pathways involving pre-nucleation clusters are required for the generation of clear proto-structural features in ACC. Experiments on the ACC-to-crystalline transformation in solution with and without ethanol highlight that polymorph selection is under kinetic control, while the presence of ethanol can control dissolution re-crystallisation pathways.« less
NASA Astrophysics Data System (ADS)
Khanlarzadeh, K.; Iloukhani, H.; Soleimani, M.
2017-07-01
Densities were measured for binary mixtures of isobutanol with 1-alkanols, namely: methanol, ethanol, 1-propanol, 1-butanol, 1-pentanol and 1-hexanol at the temperatures of (288.15, 298.15 and 308.15) K and ambient pressure. Excess molar volumes, VmE , thermal expansion coefficients α, excess thermal expansion coefficients αE, and isothermal coefficients of pressure excess molar enthalpy, (∂HmE / ∂ P) T , x , were derived from the experimental data and the computed results were fitted to the Redlich-Kister equation. The Peng-Robinson-Stryjek-Vera (PRSV) equation of state was applied, in combination with simple mixing rules to predict the excess molar volume. The VmE results were positive for the mixtures of isobutanol with methanol, ethanol, 1-propanol, 1-butanol, and negative for isobutanol with 1-pentanol and 1-hexanol over the whole composition range. The results showed very small deviations from the behavior of ideal solutions in these mixtures and were analyzed to discuss the nature and strength of intermolecular interactions.
NASA Astrophysics Data System (ADS)
Verardo, E.; Atteia, O.; Prommer, H.
2017-06-01
Organic pollutants such as solvents or petroleum products are widespread contaminants in soil and groundwater systems. In-situ bioremediation is a commonly used remediation technology to clean up the subsurface to eliminate the risks of toxic substances to reach potential receptors in surface waters or drinking water wells. This study discusses the development of a subsurface model to analyse the performance of an actively operating field-scale enhanced bioremediation scheme. The study site was affected by a mixed toluene, dihydromyrcenol (DHM), methanol, and i-propanol plume. A high-resolution, time-series of data was used to constrain the model development and calibration. The analysis shows that the observed failure of the treatment system is linked to an inefficient oxygen injection pattern. Moreover, the model simulations also suggest that additional contaminant spillages have occurred in 2012. Those additional spillages and their associated additional oxygen demand resulted in a significant increase in contaminant fluxes that remained untreated. The study emphasises the important role that reactive transport modelling can play in data analyses and for enhancing remediation efficiency.
Moreno Horn, Marcus; Garbe, Leif-Alexander; Tressl, Roland; Adrian, Lorenz; Görisch, Helmut
2003-04-01
Rhodococcus sp. strain DTB (DSM 44534) grows on bis(1-chloro-2-propyl) ether (DDE) as sole source of carbon and energy. The non-chlorinated diisopropyl ether and bis(1-hydroxy-2-propyl) ether, however, did not serve as substrates. In ether degradation experiments with dense cell suspensions, 1-chloro-2-propanol and chloroacetone were formed, which indicated that scission of the ether bond is the first step while dehalogenation of the chlorinated C(3)-compounds occurs at a later stage of the degradation pathway. Inhibition of ether scission by methimazole suggested that the first step in degradation is catalyzed by a flavin-dependent enzyme activity. The non-chlorinated compounds 1,2-propanediol, hydroxyacetone, lactate, pyruvate, 1-propanol, propanal, and propionate also supported growth, which suggested that the intermediates 1,2-propanediol and hydroxyacetone are converted to pyruvate or to propionate, which can be channeled into the citric acid cycle by a number of routes. Total release of chloride and growth-yield experiments with DDE and non-chlorinated C(3)-compounds suggested complete biodegradation of the chlorinated ether.
Alcohols enhance caerulein-induced zymogen activation in pancreatic acinar cells
LU, ZHAO; KARNE, SURESH; KOLODECIK, THOMAS; GORELICK, FRED S.
2010-01-01
Activation of zymogens within the pancreatic acinar cell is an early feature of acute pancreatitis. Supraphysiological concentrations of cholecystokinin (CCK) cause zymogen activation and pancreatitis. The effects of the CCK analog, caerulein, and alcohol on trypsin and chymotrypsin activation in isolated pancreatic acini were examined. Caerulein increased markers of zymogen activation in a time- and concentration-dependent manner. Notably, trypsin activity reached a peak value within 30 min, then diminished with time, whereas chymotrypsin activity increased with time. Ethanol (35 mM) sensitized the acinar cells to the effects of caerulein (10−10 to 10−7 M) on zymogen activation but had no effect alone. The effects of ethanol were concentration dependent. Alcohols with a chain length of ≥2 also sensitized the acinar cell to caerulein; the most potent was butanol. Branched alcohols (2-propanol and 2-butanol) were less potent than aliphatic alcohols (1-propanol and 1-butanol). The structure of an alcohol is related to its ability to sensitize acinar cells to the effects of caerulein on zymogen activation. PMID:11842000
Amid, Mehrnoush; Abdul Manap, Mohd Yazid; Mustafa, Shuhaimi
2013-07-15
As a novel method of purification, an aqueous organic phase system (AOPS) was employed to purify pectinase from mango waste. The effect of different parameters, such as the alcohol concentration (ethanol, 1-propanol, and 2-propanol), the salt type and concentration (ammonium sulfate, potassium phosphate and sodium citrate), the feed stock crude load, the aqueous phase pH and NaCl concentration, were investigated in the recovery of pectinase from mango peel. The partition coefficient (K), selectivity (S), purification factor (PF) and yield (Y, %) were investigated in this study as important parameters for the evaluation of enzyme recovery. The desirable partition efficiency for pectinase purification was achieved in an AOPS of 19% (w/w) ethanol and 22% (w/w) potassium phosphate in the presence of 5% (w/w) NaCl at pH 7.0. Based on the system, the purification factor of pectinase was enhanced 11.7, with a high yield of 97.1%. Copyright © 2013 Elsevier B.V. All rights reserved.
TiO2 gas sensor to detect the propanol at room temperature
NASA Astrophysics Data System (ADS)
Gaidan, Ibrahim; Asbia, Salim; Brabazon, Dermot; Ahad, Inam Ul
2017-10-01
Titanium dioxide (TiO2) was used as raw material to create sensing materials for gas sensor applications. The sample was mixed with isopropanol and wet-ball milled for 24 hours and then dried at 120°C to evaporate the solvent. Twenty grams of the dried powder was then pressed at 2 tons (27.58 MPa) using a pellet die. The pellet was heated at 1250°C in air for 5 hours and then milled for 10 minutes to powder form using a Gy-RO Mill machine. FIB and SEM analysis were used to study the microstructure of the materials. The polyvinyl butyral (5 wt.%) was used as a binder, while ethylenglycolmonobutylether served as a solvent to make a suitable paste. The paste was screen-printed on top of an alumina substrate that had copper electrodes to form the sensor. The sensor was used to detect propanol at room temperature over two different ranges (500 to 3000 ppm and 2500 to 5000 ppm). It was observed that the response of the device increased proportionally with increasing gas concentration repeatability.
Statistical modeling of competitive threshold collision-induced dissociation
NASA Astrophysics Data System (ADS)
Rodgers, M. T.; Armentrout, P. B.
1998-08-01
Collision-induced dissociation of (R1OH)Li+(R2OH) with xenon is studied using guided ion beam mass spectrometry. R1OH and R2OH include the following molecules: water, methanol, ethanol, 1-propanol, 2-propanol, and 1-butanol. In all cases, the primary products formed correspond to endothermic loss of one of the neutral alcohols, with minor products that include those formed by ligand exchange and loss of both ligands. The cross-section thresholds are interpreted to yield 0 and 298 K bond energies for (R1OH)Li+-R2OH and relative Li+ binding affinities of the R1OH and R2OH ligands after accounting for the effects of multiple ion-molecule collisions, internal energy of the reactant ions, and dissociation lifetimes. We introduce a means to simultaneously analyze the cross sections for these competitive dissociations using statistical theories to predict the energy dependent branching ratio. Thermochemistry in good agreement with previous work is obtained in all cases. In essence, this statistical approach provides a detailed means of correcting for the "competitive shift" inherent in multichannel processes.
Separating Iso-Propanol-Toluene mixture by azeotropic distillation
NASA Astrophysics Data System (ADS)
Iqbal, Asma; Ahmad, Syed Akhlaq
2018-05-01
The separation of Iso-Propanol-Toluene azeotropic mixture using Acetone as an entrainer has been simulated on Aspen Plus software package using rigorous methods. Calculations of the vapor-liquid equilibrium for the binary system are done using UNIQUAC-RK model which gives a good agreement with the experimental data reported in literature. The effects of the Reflux ratio (RR), distillate-to-feed molar ratio (D/F), feed stage, solvent feed stage, Total no. of stages and solvent feed temperature on the product purities and recoveries are studied to obtain their optimum values that give the maximum purity and recovery of products. The configuration consists of 20 theoretical stages with an equimolar feed of binary mixture. The desired separation of binary mixture has been achieved at the feed stage and an entrainer feeding stage of 15 and 12 respectively with the reflux ratios of 2.5 and 4.0, and D/F ratio of 0.75 and 0.54 respectively in the two columns. The simulation results thus obtained are useful to setup the optimal column configuration of the azeotropic distillation process.
Arif, Muhammad Irfan; Samin, Ghufrana; van Leeuwen, Jan G. E.; Oppentocht, Jantien
2012-01-01
A Pseudomonas putida strain (MC4) that can utilize 2,3-dichloro-1-propanol (DCP) and several aliphatic haloacids and haloalcohols as sole carbon and energy source for growth was isolated from contaminated soil. Degradation of DCP was found to start with oxidation and concomitant dehalogenation catalyzed by a 72-kDa monomeric protein (DppA) that was isolated from cell lysate. The dppA gene was cloned from a cosmid library and appeared to encode a protein equipped with a signal peptide and that possessed high similarity to quinohemoprotein alcohol dehydrogenases (ADHs), particularly ADH IIB and ADH IIG from Pseudomonas putida HK. This novel dehalogenating dehydrogenase has a broad substrate range, encompassing a number of nonhalogenated alcohols and haloalcohols. With DCP, DppA exhibited a kcat of 17 s−1. 1H nuclear magnetic resonance experiments indicated that DCP oxidation by DppA in the presence of 2,6-dichlorophenolindophenol (DCPIP) and potassium ferricyanide [K3Fe(CN)6] yielded 2-chloroacrolein, which was oxidized to 2-chloroacrylic acid. PMID:22752160
Synthesis and characterization of nanocrystalline mesoporous zirconia using supercritical drying.
Tyagi, Beena; Sidhpuria, Kalpesh; Shaik, Basha; Jasra, Raksh Vir
2006-06-01
Synthesis of nano-crystalline zirconia aerogel was done by sol-gel technique and supercritical drying using n-propanol solvent at and above supercritical temperature (235-280 degrees C) and pressure (48-52 bar) of n-propanol. Zirconia xerogel samples have also been prepared by conventional thermal drying method to compare with the super critically dried samples. Crystalline phase, crystallite size, surface area, pore volume, and pore size distribution were determined for all the samples in detail to understand the effect of gel drying methods on these properties. Supercritical drying of zirconia gel was observed to give thermally stable, nano-crystalline, tetragonal zirconia aerogels having high specific surface area and porosity with narrow and uniform pore size distribution as compared to thermally dried zirconia. With supercritical drying, zirconia samples show the formation of only mesopores whereas in thermally dried samples, substantial amount of micropores are observed along with mesopores. The samples prepared using supercritical drying yield nano-crystalline zirconia with smaller crystallite size (4-6 nm) as compared to higher crystallite size (13-20 nm) observed with thermally dried zirconia.
Nhung, Dang Thi Tuyet; Freydiere, Anne-Marie; Constant, Hélène; Falson, Françoise; Pirot, Fabrice
2007-04-04
In the present study, an original chlorhexidine-loaded nanocapsule-based gel (Nanochlorex) was tested as hand rub gel against the resident skin flora in comparison with 2-propanol 60% (v/v) and 62% (v/v) ethanol-based gel (Purell). After 30-s hand rub, the immediate bactericidal effect of Nanochlorex was found comparable to 2-propanol 60% (v/v) (reduction factor, RF: 0.30+/-0.35 versus 0.38+/-0.55, P>0.05) against aerobic bacteria, whereas the post-values of surviving anaerobes were shown significantly lower from Nanochlorex (P<0.001) and insignificant from 2-propanol 60% (v/v) (P>0.05). Sustained antibacterial effect of Nanochlorex was confirmed against the resident and transient hand flora in two sets of experiment. In the first, the results obtained with the glove-juice technique showed that the bactericidal effect induced by Nanochlorex hand rub persisted throughout 3-h period, while Purell failed to reduce significantly the post-values of surviving bacteria. In the second, repeated artificial contaminations with Staphylococcus epidermidis was carried out onto ex vivo human skin pre-treated by either Nanochlorex or Purell for 5min, then maintained in cell diffusion apparatus for 4h. The log(10) reduction of surviving bacteria was significantly higher with Nanochlorex than that determined with Purell after three successive contaminations (from approximately 5.5 to 1.5 log(10) reduction for Nanochlorex between the first and the third contamination; approximately 1log(10) reduction for Purell throughout the experiment), confirming the sustained antibacterial effect of chlorhexidine-loaded nanocapsule-based gel. The immediate and sustained antibacterial effect of Nanochlorex was explained by chlorhexidine carrier system which improved the drug targeting to bacteria and reduced from osmotic gel further bacterial growth on the skin. Nanochlorex) might constitute a promising approach for hygienic hand disinfection in care practice performing multiple procedures.
Contin, Mario; Flor, Sabrina; Martinefski, Manuela; Lucangioli, Silvia; Tripodi, Valeria
2014-01-07
In this work, a novel molecularly imprinted polymer (MIP) for use as a solid phase extraction sorbent was developed for the determination of coenzyme Q10 (CoQ10) in liver extract. CoQ10 is an essential cofactor in mitochondrial oxidative phosphorylation and a powerful antioxidant agent found in low concentrations in biological samples. This fact and its high hydrophobicity make the analysis of CoQ10 technically challenging. Accordingly, a MIP was synthesised using coenzyme Q0 as the template, methacrylic acid as the functional monomer, acetonitrile as the porogen, ethylene glycol dimethacrylate as the crosslinker and benzoyl peroxide as the initiator. Various parameters affecting the polymer preparation and extraction efficiency were evaluated. Morphological characterisation of the MIP and its proper comparison with C18 as a sorbent in solid phase extraction were performed. The optimal conditions for the molecularly imprinted solid phase extraction (MISPE) consisted of 400 μL of sample mixed with 30 mg of MIP and 600 μL of water to reach the optimum solution loading. The loading was followed by a washing step consisting of 1 mL of a 1-propanol solution (1-propanol:water, 30:70,v/v) and elution with 1 mL of 1-propanol. After clean-up, the CoQ10 in the samples was analysed by high performance liquid chromatography. The extraction recoveries were higher than 73.7% with good precision (3.6-8.3%). The limits of detection and quantification were 2.4 and 7.5 μg g(-1), respectively, and a linear range between 7.5 and 150 μg g(-1) of tissue was achieved. The new MISPE procedure provided a successful clean-up for the determination of CoQ10 in a complex matrix. Copyright © 2013 Elsevier B.V. All rights reserved.
USDA-ARS?s Scientific Manuscript database
The phytochemicals 3-nitro-1-propionic acid (NPA) and 3-nitro-1-propanol (NPOH) are produced by a wide variety of leguminous plants, including over 150 different species and varieties of Astragalus. These compounds are toxic to naive grazing animals, but can be safely fed to cattle and sheep that h...
75 FR 43076 - 2-Propanol, 1,1′,1′′-nitrilotris-; Exemption from the Requirement of a Tolerance
Federal Register 2010, 2011, 2012, 2013, 2014
2010-07-23
.../kg/day). Three mutagenicity studies (Ames test, mammalian gene mutation, and chromosome aberration...- and post-harvest. Dow AgroSciences, LLC submitted a petition to EPA under the Federal Food, Drug, and....gpoaccess.gov/ecfr . To access the harmonized test guidelines referenced in this document electronically...
In the late 1990s, there was a perception that “green” fuels such as ethanol posed less of a threat to ground water because they were readily degraded. This lead to a conclusion that the transition to “green” fuels would require less vigilance and that the existing level of effo...
In the late 1990s, there was a perception that “green” fuels such as ethanol posed less of a threat to ground water because they were readily degraded. This lead to a conclusion that the transition to “green” fuels would require less vigilance and that the existing level of effo...
Submassive hepatic necrosis induced by dichloropropanol.
Haratake, J; Furuta, A; Iwasa, T; Wakasugi, C; Imazu, K
1993-06-01
A hitherto undescribed industrial liver injury of fulminant form induced by dichloropropanol is reported. Two middle-aged men developed severe hepatic injury just after cleaning a dichloropropanol tank at a plant producing dichloropropanol. They died from hepatic failure 4 and 11 days respectively, after carrying out the work. Liver specimens taken at autopsy from one of the cases showed submassive hepatic necrosis. This accident prompted us to undertake an experimental study in rats of intraperitoneal one-shot injection of two isomeric substances of dichloropropanol, that is, 2,3-dichloro-1-propanol (DC1P) and 1,3-dichloro-2-propanol (DC2P). Saline was injected into the control rats. One, two, four, six, 24, 48, 72 h, and 1 week after the injection, rats in each group were sacrificed. Neither control nor DC1P-injected rats showed significant biochemical or histopathological abnormalities. DC2P-injected rats revealed elevations of transaminase from 6 h after the injections, and submassive necrosis of the liver was observed in many rats. It was concluded that the severe liver injuries in both the human cases and rats in our study were caused by DC2P.
Conversion of Methanol, Ethanol and Propanol over Zeolites
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ramasamy, Karthikeyan K.; Wang, Yong
2013-06-04
Renewable fuel from lignocellulosic biomass has recently attracted more attention due to its environmental and the potential economic benefits over the crude oil [1]. In particular the production of fuel range hydrocarbon (HC) from alcohol generated lots of interest since the alcohol can be produced from biomass via thermochemical [2] (mixed alcohol from gasification derived synthesis gas) as well as the biochemical routes [3] (alcohol fermentation). Along with the development of ZSM5 synthesis and the discovery of methanol-to-gasoline (MTG) process by Mobil in 1970’s triggered lots of interest in research and development arena to understand the reaction mechanisms of alcoholsmore » over zeolites in particular ZSM5 [4]. More detailed research on methanol conversion was extensively reported [5] and in recent times the research work can be found on ethanol [6] and other alcohols as well but comprehensive comparison of catalyst activity and the deactivation mechanism of the conversion of various alcohols over zeolites has not been reported. The experiments were conducted on smaller alcohols such as methanol, ethanol and 1-propanol over HZSM5. The experimental results on the catalyst activity and the catalyst deactivation mechanism will be discussed.« less
Nagarajan, V; Chandiramouli, R
2017-05-01
The electronic properties of borophane nanosheet and adsorption behavior of three distinct alcohol vapors namely methanol, ethanol and 1-propanol on borophane nanosheet is studied using density functional theory method for the first time. The state-of-the-art provides insights on to the development of new two dimensional materials with the surface passivation on boron nanostructures. The density of states spectrum provides a clear perception on charge transfer upon adsorption of alcohol vapors on borophane nanosheets. The monolayer of borophane band gap widens upon adsorption of alcohol vapors, which can be used for the detection for volatile organic vapors. The adsorption properties of alcohol vapors on borophane base material are analyzed in terms of natural bond orbital, average energy gap variation, adsorption energy and energy gap. The most suitable adsorption sites of methanol, ethanol and 1-propanol molecules on borophane nanosheet are investigated in atomistic level. The adsorption of alcohol molecules on borophane nanosheet is found to be more favorable. The findings suggest that the monolayer borophane nanosheet can be utilized to detect the presence of alcohol vapors in the atmosphere. Copyright © 2017 Elsevier Inc. All rights reserved.
Fluorescence spectroscopy of Rhodamine 6G: concentration and solvent effects.
Zehentbauer, Florian M; Moretto, Claudia; Stephen, Ryan; Thevar, Thangavel; Gilchrist, John R; Pokrajac, Dubravka; Richard, Katherine L; Kiefer, Johannes
2014-01-01
Rhodamine 6G (R6G), also known as Rhodamine 590, is one of the most frequently used dyes for application in dye lasers and as a fluorescence tracer, e.g., in the area of environmental hydraulics. Knowing the spectroscopic characteristics of the optical emission is key to obtaining high conversion efficiency and measurement accuracy, respectively. In this work, solvent and concentration effects are studied. A series of eight different organic solvents (methanol, ethanol, n-propanol, iso-propanol, n-butanol, n-pentanol, acetone, and dimethyl sulfoxide (DMSO)) are investigated at constant dye concentration. Relatively small changes of the fluorescence spectrum are observed for the different solvents; the highest fluorescence intensity is observed for methanol and lowest for DMSO. The shortest peak wavelength is found in methanol (568 nm) and the longest in DMSO (579 nm). Concentration effects in aqueous R6G solutions are studied over the full concentration range from the solubility limit to highly dilute states. Changing the dye concentration provides tunability between ∼550 nm in the dilute case and ∼620 nm at high concentration, at which point the fluorescence spectrum indicates the formation of R6G aggregates. Copyright © 2013 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Amano, Tomoki; Kondo, Hiroki; Takeda, Keigo; Ishikawa, Kenji; Kano, Hiroyuki; Hiramatsu, Mineo; Sekine, Makoto; Hori, Masaru
2016-09-01
We recently have established ultrahigh-speed synthesis method of nanographene materials employing in-liquid plasma, and reported high durability of Pt/nanographene composites as a fuel cell catalyst. Crystallinity and domain size of nanographene materials were essential to their durability. However, their mechanism is not clarified yet. In this study, we investigated the oxygen reduction reaction using three-types of nanographene materials with different crystallinity and domain sizes, which were synthesized using ethanol, 1-propanol and 1-butanol, respectively. According to our previous studies, the nanographene material synthesized using the lower molecular weight alcohol has the higher crystallinity and larger domain size. Pt nanoparticles were supported on the nanographene surfaces by reducing 8 wt% H2PtCl6 diluted with H2O. Oxygen reduction current densities at a potential of 0.2 V vs. RHE were 5.43, 5.19 and 3.69 mA/cm2 for the samples synthesized using ethanol, 1-propanol and 1-butanol, respectively. This means that the higher crystallinity nanographene showed the larger oxygen reduction current density. The controls of crystallinity and domain size of nanographene materials are essential to not only their durability but also highly efficiency as catalyst electrodes.
Opposed-Flow Flame Spread Across Propanol Pools: Effect of Liquid Fuel Depth
NASA Technical Reports Server (NTRS)
Kim, Inchul; Sirignano, William A.
1999-01-01
This computational study examines the effect of liquid fuel depth on flame spread across propanol pools with and without forced, opposed air flow. The initial pool temperature is below its closed- cup flash point temperature T(sub cc); so the liquid fuel must be heated sufficiently to create a combustible mixture of fuel vapor before ignition and flame spread can occur. Furthermore, in order for the flame to spread, an approximate rule is that the liquid fuel surface temperature ahead of the flame must be heated above T(sub cc) so that a flammable mixture just above the lean limit exists ahead of the flame. The depth of a liquid fuel pool would affect the heating of the liquid fuel pool and thus the liquid fuel surface temperature ahead of the flame. It has been observed experimentally and numerically that, at normal gravity without forced gas-phase flow and with the initial pool temperature T(sub 0) in a range well below T(sub cc), the flame periodically accelerates and decelerates (pulsates) as it propagates. The depth of a liquid fuel pool would change this range of T(sub 0) since it would affect the heating of the pool.
Carro, Antonia María; González, Paula; Fajar, Noelia; Lorenzo, Rosa Antonia; Cela, Rafael
2009-06-01
The headspace solid-phase micro-extraction technique with on-fibre derivatisation followed by gas chromatography-tandem mass spectrometry has been evaluated for the analysis of 1,3-dichloro-2-propanol in water. An asymmetric factorial design has been performed to study the influence of five experimental factors: extraction time and temperature, derivatisation time and temperature and pH. The best extraction performance is achieved in the headspace mode, with 5 mL stirred water samples (pH 4) containing 1.3 g of NaCl, equilibrated for 30 min at 25 degrees C, using divinylbenzene-carboxen-polydimethylsiloxane as the fibre coating. On-fibre derivatisation has been used for the first time with 50 microL of bis(trimethylsilyl)trifluoroacetamide at 25 degrees C during 15 min, leading to effective yields. The proposed method provides high sensitivity, good linearity and repeatability (relative standard deviation of 5.1% for 10 ng mL(-1) and n = 5). The limits of detection and quantification were 0.4 and 1.4 ng mL(-1), respectively. Analytical recoveries obtained for different water samples were approx. 100%.
Panagiotopoulou, Paraskevi; Martin, Nickolas; Vlachos, Dionisios G
2015-06-22
The catalytic performance of homogeneous Lewis acid catalysts and their interaction with Ru/C catalyst are studied in the catalytic transfer hydrogenation of furfural by using 2-propanol as a solvent and hydrogen donor. We find that Lewis acid catalysts hydrogenate the furfural to furfuryl alcohol, which is then etherified with 2-propanol. The catalytic activity is correlated with an empirical scale of Lewis acid strength and exhibits a volcano behavior. Lanthanides are the most active, with DyCl3 giving complete furfural conversion and a 97 % yield of furfuryl alcohol at 180 °C after 3 h. The combination of Lewis acid and Ru/C catalysts results in synergy for the stronger Lewis acid catalysts, with a significant increase in the furfural conversion and methyl furan yield. Optimum results are obtained by using Ru/C combined with VCl3 , AlCl3 , SnCl4 , YbCl3 , and RuCl3 . Our results indicate that the combination of Lewis acid/metal catalysts is a general strategy for performing tandem reactions in the upgrade of furans. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Hahn, H; Eder, E; Deininger, C
1991-01-01
1,3-Dichloro-2-propanol (1,3-DCP-OH, glycerol dichlorohydrin) is of great importance in many industrial processes and has been detected in foodstuffs, in particular in soup spices and instant soups. It has been shown to be carcinogenic, genotoxic and mutagenic. Its genotoxic mechanisms are, however, not yet entirely understood. We have investigated whether alcohol dehydrogenase (ADH) catalysed activation to the highly mutagenic and carcinogenic 1,3-dichloroacetone or formation of epichlorohydrin or other genotoxic compounds play a role for mutagenicity and genotoxicity. In our studies, no indications of ADH catalysed formation of 1,3-dichloropropane could be found, although we could demonstrate a clear activation by ADH in the case of 2-chloropropenol. Formation of allyl chloride could also be excluded. We found, however, clear evidence that epichlorohydrin formed chemically in the buffer and medium used in the test is responsible for genotoxicity. No indication was found that enzymatic formation of epichlorohydrin plays a role. Additional mutagenicity and genotoxicity studies with epichlorohydrin also confirmed the hypothesis that genotoxic effects of 1,3-DCP-OH depend on the chemical formation of epichlorohydrin.
Pazhang, Mohammad; Mehrnejad, Faramarz; Pazhang, Yaghub; Falahati, Hanieh; Chaparzadeh, Nader
2016-01-01
The effect of glycerol and sorbitol on the stability of porcine pancreas trypsin was investigated in this work. Molecular dynamics simulation and thermostability results showed that trypsin has two flexible regions, and polyols (sorbitol and glycerol) stabilize the enzyme by decreasing the flexibility of these regions. Radial distribution function results exhibited that sorbitol and glycerol were excluded from the first water layer of the enzyme, therefore decrease the flexibility of the regions by preferential exclusion. Also, results showed that the stabilization effect of sorbitol is more than glycerol. This observation could be because of the larger decrease in the fluctuations of trypsin in the presence of sorbitol. We also examined the role of solvent's hydrophobicity in enzyme stabilization by sorbitol and glycerol. To do so, the thermostability of trypsin was evaluated in the presence of solvents with different hydrophobicity (methanol, ethanol, isopropanol and n-propanol) in addition to the polyols. Our results depicted that glycerol is a better stabilizer than sorbitol in the presence of hydrophobic solvents (n-propanol), whereas sorbitol is a better stabilizer than glycerol in the presence of hydrophilic solvents (methanol). © 2015 International Union of Biochemistry and Molecular Biology, Inc.
Enantioselective HPLC resolution of synthetic intermediates of armodafinil and related substances.
Nageswara Rao, Ramisetti; Shinde, Dhananjay D; Kumar Talluri, Murali V N
2008-04-01
Armodafinil is a unique psychostimulant recently approved by the US Food and Drug Administration for the treatment of narcolepsy. The chromatographic resolution of its chiral intermediates including related substances in the total synthesis of armodafinil was studied on polysaccharide-based stationary phases, viz. cellulose tris-(3,5-dimethylphenylcarbamate) (Chiralcel OD-H) and amylose tris-(3,5-dimethylphenylcarbamate) (Chiralpak AD-H) by HPLC. The effects of 1-propanol, 2-propanol, ethanol, and trifluoroacetic acid added to the mobile phase and of column temperature on resolution were studied. A good separation was achieved on cellulose-based Chiralcel OD-H column compared to amylose-based Chiralpak AD-H. The effects of structural features of the solutes and solvents on discrimination between the enantiomers were examined. Baseline separation with R(s) >1.38 was obtained using a mobile phase containing n-hexane-ethanol-TFA (75:25:0.15 v/v/v). Detection was carried out at 225 nm with photodiode array detector while identification of enantiomers was accomplished by a polarimetric detector connected in series. The method was found to be suitable not only for process development of armodafinil but also for determination of the enantiomeric purity of bulk drugs and pharmaceuticals.
Dielectric Study of Alcohols Using Broadband Terahertz Time Domain Spectroscopy (THz-TDS).
NASA Astrophysics Data System (ADS)
Sarkar, Sohini; Saha, Debasis; Banerjee, Sneha; Mukherjee, Arnab; Mandal, Pankaj
2016-06-01
Broadband Terahertz-Time Domain Spectroscopy (THz-TDS) (1-10 THz) has been utilized to study the complex dielectric properties of methanol, ethanol, 1-propanol, 2-propanol, 1-butanol, and 1-octanol. Previous reports on dielectric study of alcohols were limited to 5 THz. At THz (1 THz = 33.33 wn = 4 meV) frequency range (0.1 to 15 THz), the molecular reorientation and several intermolecular vibrations (local oscillation of dipoles) may coexist and contribute to the overall liquid dynamics. We find that the Debye type relaxations barely contribute beyond 1 THz, rather three harmonic oscillators dominate the entire spectral range. To get insights on the modes responsible for the observed absorption in THz frequency range, we performed all atom molecular dynamics (MD) using OPLS force field and ab initio quantum calculations. Combined experimental and theoretical study reveal that the complex dielectric functions of alcohols have contribution from a) alkyl group oscillation within H-bonded network ( 1 THz), b) intermolecular H-bond stretching ( 5 THz) , and c) librational motions in alcohols. The present work, therefore, complements all previous studies on alcohols at lower frequencies and provides a clear picture on them in a broad spectral range from microwave to 10 THz.
NASA Astrophysics Data System (ADS)
Refat, Moamen S.; Ibrahim, Mohamed M.; Moussa, Mohamed A. A.
2012-01-01
Charge-transfer complexes (CTC) resulting from interactions of 1,3-di[( E)-1-(2-hydroxyphenyl) methylideneamino]-2-propanol Schiff base with some acceptors such as iodine (I2), bromine (Br2), and picric acid (PiA) have been isolated in the solid state in a chloroform solvent at room temperature. Based on elemental analysis, UV-Vis, infrared, and 1H NMR spectra, and thermogravimetric analysis (TG/DTG) of the solid CTC, [(Schiff)(I2)] (1), [(Schiff)(Br2)] complexes with a ratio of 1:1 and [(Schiff)(PiA)3] complexes with 1:3 have been prepared. In the picric acid complex, infrared and 1H NMR spectroscopic data indicate that the charge-transfer interaction is associated with a hydrogen bonding, whereas the iodine and bromine complexes were interpreted in terms of the formation of dative ion pairs [Schiff+, I{2/•-}] and [Schiff+, Br{2/•-}], respectively. Kinetic parameters were obtained for each stage of thermal degradation of the CT complexes using Coats-Redfern and Horowitz-Metzger methods. DC electrical properties as a function of temperature of these charge transfer complexes have been studied.
Mao, Like; Roos, Yrjö H; Miao, Song
2013-02-20
Monoglycerides (MGs) can form self-assembled structures in emulsions, which can be used to control volatile release. In this study, initial headspace concentrations (C(initial)), maximum headspace concentrations (C(max)), release rates, and partition coefficients of propanol, diacetyl, hexanal, and limonene were determined in MG structured oil-in-water emulsions using dynamic and static headspace analyses. For all of the volatile compounds, C(initial) values above structured emulsions were significantly lower than those above unstructured emulsions and decreased with increasing MG contents (p < 0.05). However, volatiles had higher release rates in emulsions with higher MG contents. When oil content was reduced from 20 to 10%, C(initial) and C(max) increased for limonene and hexanal and decreased for propanol and diacetyl. When different oils were applied, both C(initial) and C(max) were significantly lower in medium-chain triglyceride emulsions than in soybean oil emulsions (p < 0.05). Static headspace analysis revealed that volatile compounds had significantly lower air-emulsion partition coefficients in the structured emulsions than in unstructured emulsions (p < 0.05). These results indicated that MG structured emulsions can be potentially used as delivery systems to modulate volatile release.
NASA Astrophysics Data System (ADS)
Xavier, S.; Periandy, S.; Ramalingam, S.
2015-02-01
In this study, FT-IR, FT-Raman, NMR and UV spectra of 1-phenyl-1-propanol, an intermediate of anti-depressant drug fluoxetine, has been investigated. The theoretical vibrational frequencies and optimized geometric parameters have been calculated by using HF and density functional theory with the hybrid methods B3LYP, B3PW91 and 6-311+G(d,p)/6-311++G(d,p) basis sets. The theoretical vibrational frequencies have been found in good agreement with the corresponding experimental data. 1H and 13C NMR spectra were recorded and chemical shifts of the molecule were compared to TMS by using the Gauge-Independent Atomic Orbital (GIAO) method. A study on the electronic and optical properties, absorption wavelengths, excitation energy, dipole moment and frontier molecular orbital energies are performed using HF and DFT methods. The thermodynamic properties (heat capacity, entropy and enthalpy) at different temperatures are also calculated. NBO analysis is carried out to picture the charge transfer between the localized bonds and lone pairs. The local reactivity of the molecule has been studied using the Fukui function. NLO properties related to polarizability and hyperpolarizability are also discussed.
ERIC Educational Resources Information Center
Sims, Paul A.; Branscum, Katie M.; Kao, Lydia; Keaveny, Virginia R.
2010-01-01
A method to purify genomic DNA from "Escherichia coli" is presented. The method is an amalgam of published methods but has been modified and optimized for use in the undergraduate biochemistry laboratory. Specifically, the method uses Tide Free 2x Ultra laundry detergent, which contains unspecified proteases and lipases, "n"-butanol, 2-propanol,…
USDA-ARS?s Scientific Manuscript database
The gastrointestinal tract of bovines often contains bacteria that contribute to disorders of the rumen and may also contain foodborne or opportunistic human pathogens as well as causative agents of mastitis in cows. Thus, there is a need to develop broad-spectrum therapies that are effective while...
USDA-ARS?s Scientific Manuscript database
Mastitis is a common illness of dairy cattle and is very costly, economically, to the dairy farmer. Thus, there is a need to develop broad-spectrum therapies that are effective while not leading to unacceptably long antibiotic withdrawal times. The effects of the CH4-inhibitors nitroethane (2 mg/m...
USDA-ARS?s Scientific Manuscript database
The gastrointestinal tract of bovines often contains bacteria that contribute to disorders of the rumen and may also contain foodborne or opportunistic human pathogens as well as bacteria capable of causing mastitis in cows. Thus, there is a need to develop broad-spectrum therapies that are effecti...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, Yi Y.; Kung, Harold H.
The decomposition of 2-propanol was studied over SiO2, SiO2 with an overlayer of TiO2 (Ti/SiO2), Au/SiO2, and Au/SiO2 with an overlayer of TiO2 (Ti/[Au/SiO2]) at 170–190 °C. There was no reaction on SiO2. Propene was the only product on Ti/SiO2, and its rate of formation increased proportionally with the Ti content. Acetone was the major product (selectivity 65–99%) on all Au-containing catalysts. Its rate of formation also increased with Ti loading. In addition, small amounts of propene were also formed on Ti/[Au/SiO2] the rate of which increased with Ti loading. Characterization of the catalysts with N2 adsorption, STEM, DR-UV-vis spectroscopy,more » XPS, XANES and EXAFS suggested that the Ti formed an amorphous TiO2 overlayer on the catalyst. At high Ti loadings (4–5 wt.%), there were patches of thick porous TiO2 layer, and some microdomains of crystalline TiO2 could be detected. Au was present as 1–3 nm nanoparticles on all catalysts, before and after used in reaction. Only Lewis acid sites were detected based on results from pyridine adsorption, and their quantities increased with Ti loading. Based on the comparison of reaction rates, the dependence of the kinetics on 2-propanol partial pressure, the apparent activation energies, and the effect of co-feeding O2 among different catalysts, it was concluded that propene was formed on the TiO2 overlayer, acetone was formed primarily at the Au-TiO2 interfacial perimeter sites, and α-C-H bond breaking preceding acetone formation was more facile on Au at the interfacial site than other surface Au atoms. Implication of these results to the selective acetone formation in the oxidation of propane in the presence of a O2/H2 mixture was discussed.« less
Cobo, Martha; Becerra, Jorge; Castelblanco, Miguel; Cifuentes, Bernay; Conesa, Juan A
2015-08-01
The catalytic hydrodechlorination (HDC) of high concentrations of trichloroethylene (TCE) (4.9 mol%, 11.6 vol%) was studied over 1%Pd, 1%Rh and 0.5%Pd-0.5%Rh catalysts supported on CeO2 under conditions of room temperature and pressure. For this, a one-phase system of NaOH/2-propanol/methanol/water was designed with molar percentages of 13.2/17.5/36.9/27.6, respectively. In this system, the alcohols delivered the hydrogen required for the reaction through in-situ dehydrogenation reactions. PdRh/CeO2 was the most active catalyst for the degradation of TCE among the evaluated materials, degrading 85% of the trichloroethylene, with alcohol dehydrogenation rates of 89% for 2-propanol and 83% for methanol after 1 h of reaction. Fresh and used catalysts were characterized by Transmission Electron Microscopy (TEM), X-ray Photoelectron Spectroscopy (XPS), and Thermogravimetric analysis (TGA). These results showed important differences of the active phase in each catalyst sample. Rh/CeO2 had particle sizes smaller than 1 nm and the active metal was partially oxidized (Rh(0)/Rh(+δ) ratio of 0.43). This configuration showed to be suitable for alcohols dehydrogenation. On the contrary, Pd/CeO2 showed a Pd completed oxidized and with a mean particle size of 1.7 nm, which seemed to be unfavorable for both, alcohols dehydrogenation and TCE HDC. On PdRh/CeO2, active metals presented a mean particle size of 2.7 nm and more reduced metallic species, with ratios of Rh(0)/Rh(+δ) = 0.67 and Pd(0)/Pd(+δ) = 0.28, which showed to be suitable features for the TCE HDC. On the other hand, TGA results suggested some deposition of NaCl residues over the catalyst surfaces. Thus, the new reaction system using PdRh/CeO2 allowed for the degradation of high concentrations of the chlorinated compound by using in situ hydrogen liquid donors in a reaction at room temperature and pressure. Copyright © 2015 Elsevier Ltd. All rights reserved.
Searching for trans ethyl methyl ether in Orion KL⋆
NASA Astrophysics Data System (ADS)
Tercero, B.; Cernicharo, J.; López, A.; Brouillet, N.; Kolesniková, L.; Motiyenko, R. A.; Margulès, L.; Alonso, J. L.; Guillemin, J.-C.
2015-10-01
We report on the tentative detection of trans ethyl methyl ether (tEME), t-CH3CH2OCH3, through the identification of a large number of rotational lines from each one of the spin states of the molecule towards Orion KL. We also search for gauche-trans-n-propanol, Gt-n-CH3CH2CH2OH, an isomer of tEME in the same source. We have identified lines of both species in the IRAM 30 m line survey and in the ALMA Science Verification data. We have obtained ALMA maps to establish the spatial distribution of these species. Whereas tEME mainly arises from the compact ridge component of Orion, Gt-n-propanol appears at the emission peak of ethanol (south hot core). The derived column densities of these species at the location of their emission peaks are ≤(4.0 ± 0.8) × 1015 cm-2 and ≤(1.0 ± 0.2) × 1015 cm-2 for tEME and Gt-n-propanol, respectively. The rotational temperature is ~100 K for both molecules. We also provide maps of CH3OCOH, CH3CH2OCOH, CH3OCH3, CH3OH, and CH3CH2OH to compare the distribution of these organic saturated O-bearing species containing methyl and ethyl groups in this region. Abundance ratios of related species and upper limits to the abundances of non-detected ethers are provided. We derive an abundance ratio N(CH3OCH3)/N(tEME) ≥ 150 in the compact ridge of Orion. This paper makes use of the following ALMA data: ADS/JAO.ALMA#2011.0.00009.SV. ALMA is a partnership of ESO (representing its member states), NSF (USA), and NINS (Japan) with NRC (Canada), NSC, and ASIAA (Taiwan), and KASI (Republic of Korea), in cooperation with the Republic of Chile. The Joint ALMA Observatory is operated by ESO, AUI/NRAO, and NAOJ. This work was also based on observations carried out with the IRAM 30-m telescope. IRAM is supported by INSU/CNRS (France), MPG (Germany), and IGN (Spain).Appendix A is available in electronic form at http://www.aanda.org
Synthesis and stabilization of cobalt and copper nanoparticles by using Bombyx mori chitosan
NASA Astrophysics Data System (ADS)
Vokhidova, Noira R.; Yugay, Sergei M.; Rashidova, Sayyora Sh.; Yuldashev, Shavkat U.; Igamberdiev, Khusan T.; Yalishev, Vadim Sh.; Kang, Tae Won
2016-10-01
Cobalt and copper nanoparticles (NPs) were prepared by using 2-propanol in the presence of Bombyx mori chitosan to reduce the metals. The structural and the optical measurements show that chitosan molecules prevent the agglomeration and oxidation of the metal nanoparticles. The concentration of chitosan was shown to have a strong influence on the size and the distribution of NPs in a polymeric matrix.
Three Dimensional Optical Metamaterials via Direct Laser Writing
2013-03-01
can be derived from a face-centered-cubic (fcc) unit cell with a basis of two rods. b. Silver- coated woodpile structures with a period of 600 nm...described earlier. 4 It has been produced by the addition of zirconium propoxide (ZPO, 70% in propanol) to methacryloxypropyl trimethoxysilane (MAPTMS...structures, he materials investigation, synthesis and metallization protocols employed have been described in detail previously in 4-5. The silver- coated
Kinetics of Bacterial Growth on Chlorinated Aliphatic Compounds
van den Wijngaard, Arjan J.; Wind, Richèle D.; Janssen, Dick B.
1993-01-01
With the pure bacterial cultures Ancylobacter aquaticus AD20 and AD25, Xanthobacter autotrophicus GJ10, and Pseudomonas sp. strain AD1, Monod kinetics was observed during growth in chemostat cultures on 1,2-dichloroethane (AD20, AD25, and GJ10), 2-chloroethanol (AD20 and GJ10), and 1,3-dichloro-2-propanol (AD1). Both the Michaelis-Menten constants (Km) of the first catabolic (dehalogenating) enzyme and the Monod half-saturation constants (Ks) followed the order 2-chloroethanol, 1,3-dichloro-2-propanol, epichlorohydrin, and 1,2-dichloroethane. The Ks values of strains GJ10, AD20, and AD25 for 1,2-dichloroethane were 260, 222, and 24 μM, respectively. The low Ks value of strain AD25 was correlated with a higher haloalkane dehalogenase content of this bacterium. The growth rates of strains AD20 and GJ10 in continuous cultures on 1,2-dichloroethane were higher than the rates predicted from the kinetics of the haloalkane dehalogenase and the concentration of the enzyme in the cells. The results indicate that the efficiency of chlorinated compound removal is indeed influenced by the kinetic properties and cellular content of the first catabolic enzyme. The cell envelope did not seem to act as a barrier for permeation of 1,2-dichloroethane. PMID:16348981
Gonzalez-Siso, Paula; Lorenzo, Rosa A; Regenjo, María; Fernández, Purificación; Carro, Antonia M
2015-10-01
Chloropropanols are processing toxicants with a potential risk to human health due to the increased intake of processed foods. A rapid and efficient method for the determination of three chloropropanols in human plasma was developed using ultrasound-assisted dispersive liquid-liquid microextraction. The method involved derivatization and extraction in one step followed by gas chromatography with tandem mass spectrometry analysis. Parameters affecting extraction, such as sample pH, ionic strength, type and volume of dispersive and extraction solvents were optimized by response surface methodology using a pentagonal design. The linear range of the method was 5-200 ng/mL for 1,3-dichloro-2-propanol, 10-200 ng/mL for 2,3-dichloro-2-propanol and 10-400 ng/mL for 3-chloropropane-1,2-diol with the determination coefficients between 0.9989 and 0.9997. The limits of detection were in the range of 0.3-3.2 ng/mL. The precision varied from 1.9 to 10% relative standard deviation (n = 9). The recovery of the method was between 91 and 101%. Advantages such as low consumption of organic solvents and short time of analysis make the method suitable for the biomonitoring of chloropropanols. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Oxidation of As(III) to As(V) using ozone microbubbles.
Khuntia, Snigdha; Majumder, Subrata Kumar; Ghosh, Pallab
2014-02-01
The use of ozone in the treatment of water and wastewater is rapidly increasing due to its high oxidizing power. Arsenic is one the most toxic elements found in water. As(III) and As(V) are the major sources of arsenic poisoning. It is known that As(V) can be more easily removed from water by adsorptive methods than As(III). In this work, oxidation of more toxic As(III) to less toxic As(V) was studied in a pilot-plant by using ozone microbubbles. The microbubbles were effective in dissolving ozone in water. The oxidation was fast over a wide range of pH (e.g., 4-9). The role of hydroxyl radical in the oxidation of As(III) under acidic conditions was investigated by using 2-propanol as the hydroxyl radical scavenger. Under acidic conditions, the addition of 2-propanol slowed down the oxidation, which proves that hydroxyl radicals were involved in the oxidation process. The effect of carbonate ions on the rate of oxidation was investigated. It was found that the generation of carbonate ion radical from the carbonate ion accelerated the oxidation of As(III). The kinetics of oxidation of As(III) by ozone was studied. Copyright © 2013 Elsevier Ltd. All rights reserved.
Sherman, Brent J.; Rochelle, Gary T.
2016-12-16
Explanations for the mass transfer behavior of 2-amino-2-methyl-1-propanol (AMP) are conflicting, despite extensive study of the amine for CO 2 capture. At equilibrium, aqueous AMP reacts with CO 2 to give bicarbonate in a 1:1 ratio. While this is the same stoichiometry as a tertiary amine, the reaction rate of AMP is 100 times faster. This work aims to explain the mass transfer behavior of AMP, specifically the stoichiometry and kinetics. An eNRTL thermodynamic model was used to regress wetted-wall column mass transfer data with two activity-based reactions: formation of carbamate and formation of bicarbonate. Data spanned 40–100 C andmore » 0.15–0.60 mol CO 2/mol alk). The fitted carbamate rate constant is three orders of magnitude greater than the bicarbonate rate constant. Rapid carbamate formation explains the kinetics, while the stoichiometry is explained by the carbamate reverting in the bulk liquid to allow CO 2 to form bicarbonate. Understanding the role of carbamate formation and diffusion in hindered amines enables optimizing solvent amine concentration by balancing viscosity and free amine concentration. Furthermore, this improves absorber design for CO 2 capture.« less
Two in-vivo protocols for testing virucidal efficacy of handwashing and hand disinfection.
Steinmann, J; Nehrkorn, R; Meyer, A; Becker, K
1995-01-01
Whole-hands and fingerpads of seven volunteers were contaminated with poliovirus type 1 Sabin strain in order to evaluate virucidal efficacy of different forms of handwashing and handrub with alcohols and alcohol-based disinfectants. In the whole-hand protocol, handwashing with unmedicated soap for 5 min and handrubbing with 80% ethanol yielded a log reduction factor (RF) of > 2, whereas the log RF by 96.8% ethanol exceeded 3.2. With the fingerpad model ethanol produced a greater log RF than iso- or n-propanol. Comparing five commercial hand disinfectants and a chlorine solution (1.0% chloramine T-solution) for handrub, Desderman and Promanum, both composed of ethanol, yielded log RFs of 2.47 and 2.26 respectively after an application time of 60 s, similar to 1.0% chloramine T-solution (log RF of 2.28). Autosept, Mucasept, and Sterillium, based on n-propanol and/or isopropanol, were found to be significantly less effective (log RFs of 1.16, 1.06 and 1.52 respectively). A comparison of a modified whole-hand and the fingerpad protocol with Promanum showed similar results with the two systems suggesting both models are suitable for testing the in-vivo efficacy of handwashing agents and hand disinfectants which are used without any water.
Pereira, Éderson R; de Almeida, Tarcísio S; Borges, Daniel L G; Carasek, Eduardo; Welz, Bernhard; Feldmann, Jörg; Campo Menoyo, Javier Del
2016-04-01
High-resolution continuum source graphite furnace atomic absorption spectrometry (HR-CS GF AAS) has been applied for the development of a method for the determination of total As in fish oil samples using direct analysis. The method does not use any sample pretreatment, besides dilution with 1-propanole, in order to decrease the oil viscosity. The stability and sensitivity of As were evaluated using ruthenium and iridium as permanent chemical modifiers and palladium added in solution over the sample. The best results were obtained with ruthenium as the permanent modifier and palladium in solution added to samples and standard solutions. Under these conditions, aqueous standard solutions could be used for calibration for the fish oil samples diluted with 1-propanole. The pyrolysis and atomization temperatures were 1400 °C and 2300 °C, respectively, and the limit of detection and characteristic mass were 30 pg and 43 pg, respectively. Accuracy and precision of the method have been evaluated using microwave-assisted acid digestion of the samples with subsequent determination by HR-CS GF AAS and ICP-MS; the results were in agreement (95% confidence level) with those of the proposed method. Copyright © 2015 Elsevier B.V. All rights reserved.
Structure and thermodynamics of core-softened models for alcohols
DOE Office of Scientific and Technical Information (OSTI.GOV)
Munaò, Gianmarco, E-mail: gmunao@unime.it; Urbic, Tomaz
The phase behavior and the fluid structure of coarse-grain models for alcohols are studied by means of reference interaction site model (RISM) theory and Monte Carlo simulations. Specifically, we model ethanol and 1-propanol as linear rigid chains constituted by three (trimers) and four (tetramers) partially fused spheres, respectively. Thermodynamic properties of these models are examined in the RISM context, by employing closed formulæ for the calculation of free energy and pressure. Gas-liquid coexistence curves for trimers and tetramers are reported and compared with already existing data for a dimer model of methanol. Critical temperatures slightly increase with the number ofmore » CH{sub 2} groups in the chain, while critical pressures and densities decrease. Such a behavior qualitatively reproduces the trend observed in experiments on methanol, ethanol, and 1-propanol and suggests that our coarse-grain models, despite their simplicity, can reproduce the essential features of the phase behavior of such alcohols. The fluid structure of these models is investigated by computing radial distribution function g{sub ij}(r) and static structure factor S{sub ij}(k); the latter shows the presence of a low−k peak at intermediate-high packing fractions and low temperatures, suggesting the presence of aggregates for both trimers and tetramers.« less
M, Bindu; G, Unnikrishnan
2017-09-27
We report the transport characteristics of silicone rubber/nano-hydroxylapatite (SR/n-HA) systems at room temperature with reference to the effects of n-HA loading, morphology and penetrant nature, using toluene, xylene, ethyl acetate and butyl acetate in the liquid phase and methanol, ethanol, 1-propanol, 2-propanol and butanol in the vapour phase as probe molecules. The interaction between the n-HA particles and SR matrix has been confirmed by FTIR analysis. As the n-HA content in the SR matrix increased, the penetrant uptake has been found to decrease. The observations have been correlated with the density and void content of the systems. Scanning electron microscopy images have been found to be complementary to the observed transport features. The reinforcement effect of n-HA particles on the SR matrix has been verified by Kraus equation. Molecular mass between the cross links has been observed to decrease with an increase in n-HA loading. The results have been compared with affine, phantom network, parallel, series and Maxwell models. The transport data have been complemented by observations on biological fluid uptake with urea, d-glucose, KI, saline water, phosphate buffer and artificial urine as the media.
Shimakoshi, Hisashi; Luo, Zhongli; Inaba, Takuya; Hisaeda, Yoshio
2016-06-21
The electrolysis of benzotrichloride at -0.9 V vs. Ag/AgCl in the presence of the B12 model complex, heptamethyl cobyrinate perchlorate, in ethanol under aerobic conditions using an undivided cell equipped with a platinum mesh cathode and a zinc plate anode produced ethylbenzoate in 56% yield with 92% selectivity. The corresponding esters were obtained when the electrolysis was carried out in various alcohols such as methanol, n-propanol, and i-propanol. Benzoyl chloride was detected by GC-MS during the electrolysis as an intermediate for the ester formation. When the electrolysis was carried out under anaerobic conditions, partially dechlorinated products, 1,1,2,2-tetrachloro-1,2-diphenylethane and 1,2-dichlorostilibenes (E and Z forms), were obtained instead of an ester. ESR spin-trapping experiments using 5,5,-dimethylpyrroline N-oxide (DMPO) revealed that the corresponding oxygen-centered radical and carbon-centered radical were steadily generated during the electrolyses under aerobic and anaerobic conditions, respectively. Applications of the aerobic electrolysis to various organic halides, such as substituted benzotrichlorides, are described. Furthermore, the formation of amides with moderate yields by the aerobic electrolysis of benzotrichloride catalyzed by the B12 model complex in the presence of amines in acetonitrile is reported.
Acid Lipase from Candida viswanathii: Production, Biochemical Properties, and Potential Application
de Almeida, Alex Fernando; Carmona, Eleonora Cano
2013-01-01
Influences of environmental variables and emulsifiers on lipase production of a Candida viswanathii strain were investigated. The highest lipase activity (101.1 U) was observed at 210 rpm, pH 6.0, and 27.5°C. Other fermentation parameters analyzed showed considerable rates of biomass yield (Y L/S = 1.381 g/g), lipase yield (Y L/S = 6.892 U/g), and biomass productivity (P X = 0.282 g/h). Addition of soybean lecithin increased lipase production in 1.45-fold, presenting lipase yield (Y L/S) of 10.061 U/g. Crude lipase presented optimal activity at acid pH of 3.5, suggesting a new lipolytic enzyme for this genus and yeast in general. In addition, crude lipase presented high stability in acid conditions and temperature between 40 and 45°C, after 24 h of incubation in these temperatures. Lipase remained active in the presence of organic solvents maintaining above 80% activity in DMSO, methanol, acetonitrile, ethanol, acetone, 1-propanol, isopropanol, and 2-propanol. Effectiveness for the hydrolysis of a wide range of natural triglycerides suggests that this new acid lipase has high potential application in the oleochemical and food industries for hydrolysis and/or modification of triacylglycerols to improve the nutritional properties. PMID:24350270
Direct alcohol fuel cells: Increasing platinum performance by modification with sp-group metals
NASA Astrophysics Data System (ADS)
Figueiredo, Marta C.; Sorsa, Olli; Doan, Nguyet; Pohjalainen, Elina; Hildebrand, Helga; Schmuki, Patrik; Wilson, Benjamin P.; Kallio, Tanja
2015-02-01
By using sp group metals as modifiers, the catalytic properties of Pt can be improved toward alcohols oxidation. In this work we report the performance increase of direct alcohol fuel cells (DAFC) fuelled with ethanol or 2-propanol with platinum based anode electrodes modified with Bi and Sb adatoms. For example, by simply adding Sb to the Pt/C based anode ink during membrane electrode assembly fabrication of a direct ethanol fuel cell (DEFC) its performance is improved three-fold, with more than 100 mV increase in the open circuit potential. For the fuel cell fuelled with 2-propanol high power densities are obtained at very high potentials with these catalyst materials suggesting a great improvement for practical applications. Particularly in the case of Pt/C-Bi, the improvement is such that within 0.6 V (from 0.7 to 0.1 V) the power densities are between 7 and 9 mW/cm2. The results obtained with these catalysts are in the same range as those obtained with other bimetallic catalysts comprising of PtRu and PtSn, which are currently considered to be the best for these type of fuel cells and that are obtained by more complicated (and consequently more expensive) methods.
Ethanol stimulates epithelial sodium channels by elevating reactive oxygen species
Bao, Hui-Fang; Song, John Z.; Duke, Billie J.; Ma, He-Ping; Denson, Donald D.
2012-01-01
Alcohol affects total body sodium balance, but the molecular mechanism of its effect remains unclear. We used single-channel methods to examine how ethanol affects epithelial sodium channels (ENaC) in A6 distal nephron cells. The data showed that ethanol significantly increased both ENaC open probability (Po) and the number of active ENaC in patches (N). 1-Propanol and 1-butanol also increased ENaC activity, but iso-alcohols did not. The effects of ethanol were mimicked by acetaldehyde, the first metabolic product of ethanol, but not by acetone, the metabolic product of 2-propanol. Besides increasing open probability and apparent density of active channels, confocal microscopy and surface biotinylation showed that ethanol significantly increased α-ENaC protein in the apical membrane. The effects of ethanol on ENaC Po and N were abolished by a superoxide scavenger, 4-hydroxy-2,2,6,6-tetramethylpiperidinyloxy (TEMPOL) and blocked by the phosphatidylinositol 3-kinase inhibitor LY294002. Consistent with an effect of ethanol-induced reactive oxygen species (ROS) on ENaC, primary alcohols and acetaldehyde elevated intracellular ROS, but secondary alcohols did not. Taken together with our previous finding that ROS stimulate ENaC, the current results suggest that ethanol stimulates ENaC by elevating intracellular ROS probably via its metabolic product acetaldehyde. PMID:22895258
Sobieski, Brian J; Noda, Isao; Rabolt, John F; Chase, D Bruce
2017-10-01
In this work, we describe polymer-solvent interactions in biosynthesized and biodegradable poly[(R)-3-hydroxybutyrate- co-(R)-3-hydroxyhexanoate] (PHBHx) and the atactic homopolymer, poly(3-hydroxybutyrate) (a-PHB), which were studied both as neat polymers and in solutions of chloroform and 1,1,1,3,3,3-hexafluoro-2-propanol (HFIP). Specifically, infrared frequency shifts of the carbonyl band were observed in semi-crystalline PHBHx, but not in a-PHB, because it cannot form the helical conformation required for crystallization. The carbonyl band of PHBHx exhibited the high frequency associated with amorphous structure in chloroform and the lower frequency traditionally attributed to the helical crystalline structure in HFIP. The same results were obtained for a-PHB, demonstrating that the helical structure is not required for a lower frequency carbonyl-stretching mode. It is proposed that the band shift is due to hydrogen bonding between the carbonyl and hydroxyl hydrogen in HFIP. Therefore, the carbonyl frequency observed upon crystallization is most likely due to hydrogen bonding between the carbonyl and methyl hydrogen of the neighboring polymer chain in the crystal lattice as previously suggested.
Notes on Vapor Pressure Equilibria Measurements
NASA Astrophysics Data System (ADS)
Krieger, Albert G.; Henderson, John W.
1996-11-01
After reading the article in this Journal (1), we would like to share our experience with a similar experiment based on an earlier article in this Journal (2). Freshman students at our institution use manometers and 24/40 ground-glass distillation apparatus (abandoned by our organic chemistry classes) to measure boiling points at reduced pressures. Distilled water and 2-methyl-1-propanol are typical liquids of interest. Students enter their collected data into an Excel template which generates graphs of P vs. T and log P vs 1/T to demonstrate the nonlinear and linear relationships that exist between vapor pressures and temperatures. The templates use the Clausius-Clapeyron equation to determine the normal boiling point and the enthalpy of vaporization of the liquid studies. The boiling point determined for water is 100 oC and for 2-methyl-1-propanol is 106 oC, within 2 o of the CRC Handbook data. We have found that the availability of state-of-the-art equipment need not limit the ability to teach and demonstrate fundamental principles. The Excel template (Macintosh) is available upon request domestically and for the cost of international postage for others. Literature Cited 1. Kidahl, N.; Berka, L. H. J. Chem. Educ. 1995, 72, 258. 2. Schaber, P. M. J. Chem. Educ. 1985, 62, 345.
Virucidal activity of chemical biocides against mimivirus, a putative pneumonia agent.
Campos, Rafael Kroon; Andrade, Ketyllen Reis; Ferreira, Paulo Cesar Peregrino; Bonjardim, Cláudio Antônio; La Scola, Bernard; Kroon, Erna Geessien; Abrahão, Jônatas Santos
2012-12-01
Acanthamoeba polyphaga mimivirus (APMV), the largest known virus, has been studied as a putative pneumonia agent, especially in hospital environments. Despite the repercussions of the discovery of APMV, there has been no study related to the control of APMV and the susceptibility of this virus to disinfectants. This work investigated the virucidal activity against mimivirus of chemical biocides commonly used in clinical practice for the disinfection of hospital equipment and rooms. APMV was dried on sterilized steel coupons, exposed to different concentrations of alcohols (ethanol, 1-propanol and 2-propanol) and commercial disinfectants (active chlorine, glutaraldehyde and benzalkonium chloride) and titrated in amoebas using the TCID50 value. The stability of APMV on an inanimate surface was also tested in the presence and absence of organic matter for 30 days. APMV showed a high level of resistance to chemical biocides, especially alcohols. Only active chlorine and glutaraldehyde were able to decrease the APMV titers to undetectable levels. Dried APMV showed long-lasting stability on an inanimate surface (30 days), even in the absence of organic matter. The data presented herein may help health and laboratory workers plan the best strategy to control this putative pneumonia agent from surfaces and devices. Copyright © 2012 Elsevier B.V. All rights reserved.
Rogers, Jessica D; Ferrer, Imma; Tummings, Shantal S; Bielefeldt, Angela R; Ryan, Joseph N
2017-09-05
The rapid expansion of unconventional oil and gas development has raised concerns about the potential contamination of aquifers; however, the groundwater fate and transport of hydraulic fracturing fluid compounds and mixtures remains a significant data gap. Degradation kinetics of five hydraulic fracturing compounds (2-propanol, ethylene glycol, propargyl alcohol, 2-butoxyethanol, and 2-ethylhexanol) in the absence and presence of the biocide glutaraldehyde were investigated under a range of redox conditions using sediment-groundwater microcosms and flow-through columns. Microcosms were used to elucidate biodegradation inhibition at varying glutaraldehyde concentrations. In the absence of glutaraldehyde, half-lives ranged from 13 d to >93 d. Accurate mass spectrometry indicated that a trimer was the dominant aqueous-phase glutaraldehyde species. Microbial inhibition was observed at glutaraldehyde trimer concentrations as low as 5 mg L -1 , which demonstrated that the trimer retained some biocidal activity. For most of the compounds, biodegradation rates slowed with increasing glutaraldehyde concentrations. For many of the compounds, degradation was faster in the columns than the microcosms. Four compounds (2-propanol, ethylene glycol, propargyl alcohol, and 2-butoxyethanol) were found to be both mobile and persistent in groundwater under a range of redox conditions. The glutaraldehyde trimer and 2-ethylhexanol were more rapidly degraded, particularly under oxic conditions.
Effect of morphology and solvent on two-photon absorption of nano zinc oxide
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kavitha, M.K.; Haripadmam, P.C.; Gopinath, Pramod
Highlights: ► ZnO nanospheres and triangular structures synthesis by novel precipitation technique. ► The effect of precursor concentration on the size and shape of nano ZnO. ► Open aperture Z-scan measurements of the ZnO nanoparticle dispersions. ► Nanospheres exhibit higher two photon absorption coefficient than triangular nanostructures. ► Nanospheres dispersed in water exhibit higher two photon absorption coefficient than its dispersion in 2-propanol. - Abstract: In this paper, we report the effect of morphology and solvent on the two-photon absorption of nano zinc oxide. Zinc oxide nanoparticles in two different morphologies like nanospheres and triangular nanostructures are synthesized by novelmore » precipitation technique and their two-photon absorption coefficient is measured using open aperture Z-scan technique. Experimental results show that the zinc oxide nanospheres exhibit higher two-photon absorption coefficient than the zinc oxide triangular nanostructures. The zinc oxide nanospheres dispersed in water exhibit higher two-photon absorption coefficient than that of its dispersion in 2-propanol. The zinc oxide nanospheres dispersed in water shows a decrease in two-photon absorption coefficient with an increase in on-axis irradiance. The result confirms the dependence of shape and solvent on the two-photon absorption of nano zinc oxide.« less
Kaufmann, Anton; Widmer, Mirjam; Maden, Kathryn; Butcher, Patrick; Walker, Stephan
2018-03-05
A reversed-phase ion-pairing chromatographic method was developed for the detection and quantification of inorganic and organic anionic food additives. A single-stage high-resolution mass spectrometer (orbitrap ion trap, Orbitrap) was used to detect the accurate masses of the unfragmented analyte ions. The developed ion-pairing chromatography method was based on a dibutylamine/hexafluoro-2-propanol buffer. Dibutylamine can be charged to serve as a chromatographic ion-pairing agent. This ensures sufficient retention of inorganic and organic anions. Yet, unlike quaternary amines, it can be de-charged in the electrospray to prevent the formation of neutral analyte ion-pairing agent adducts. This process is significantly facilitated by the added hexafluoro-2-propanol. This approach permits the sensitive detection and quantification of additives like nitrate and mono-, di-, and triphosphate as well as citric acid, a number of artificial sweeteners like cyclamate and aspartame, flavor enhancers like glutamate, and preservatives like sorbic acid. This is a major advantage, since the currently used analytical methods as utilized in food safety laboratories are only capable in monitoring a few compounds or a particular category of food additives. Graphical abstract Deptotonation of ion pair agent in the electrospray interface.
Das, Vijay Kumar; Mazhar, Sumaira; Gregor, Lennon; Stein, Barry D; Morgan, David Gene; Maciulis, Nicholas A; Pink, Maren; Losovyj, Yaroslav; Bronstein, Lyudmila M
2018-06-14
Here, we report transfer hydrogenation of nitroarenes to aminoarenes using 2-propanol as a hydrogen source and Ag-containing magnetically recoverable catalysts based on partially reduced graphene oxide (pRGO) sheets. X-ray diffraction and X-ray photoelectron spectroscopy data demonstrated that, during the one-pot catalyst synthesis, formation of magnetite nanoparticles (NPs) is accompanied by the reduction of graphene oxide (GO) to pRGO. The formation of Ag 0 NPs on top of magnetite nanoparticles does not change the pRGO structure. At the same time, the catalyst structure is further modified during the transfer hydrogenation, leading to a noticeable increase of sp 2 carbons. These carbons are responsible for the adsorption of substrate and intermediates, facilitating a hydrogen transfer from Ag NPs and creating synergy between the components of the catalyst. The nitroarenes with electron withdrawing and electron donating substituents allow for excellent yields of aniline derivatives with high regio and chemoselectivity, indicating that the reaction is not disfavored by these functionalities. The versatility of the catalyst synthetic protocol was demonstrated by a synthesis of an Ru-containing graphene derivative based catalyst, also allowing for efficient transfer hydrogenation. Easy magnetic separation and stable catalyst performance in the transfer hydrogenation make this catalyst promising for future applications.
Horikoshi, Satoshi; Shirasaka, Yutaro; Uchida, Hiroshi; Horikoshi, Natsuko; Serpone, Nick
2016-08-04
To date syntheses of nitrogen-doped TiO2 photocatalysts (TiO2-xNx) have been carried out under high temperatures and high pressures with either NH3 or urea as the nitrogen sources. This article reports for the first time the facile preparation of N-doped TiO2 (P25 titania) in aqueous media at ambient temperature and pressure under inert conditions (Ar- and N2-purged dispersions) with 4-nitrophenol (or 4-nitrobenzaldehyde) as the nitrogen source. The resulting N-doped P25 TiO2 materials were characterized by UV/Vis and X-ray photoelectron spectroscopies (XPS) that confirmed the presence of nitrogen within the photocatalyst; X-ray diffraction (XRD) techniques confirmed the crystalline phases of the doped material. The photocatalytic activity of N-doped TiO2 was assessed through examining the photodegradation of 4-chlorophenol in aqueous media and iso-propanol as a volatile pollutant under UV/Vis and visible-light irradiation. Under visible light irradiation, undoped P25 was inactive contrary to N-doped P25 that successfully degraded 95% of the 4-chlorophenol (after 10 h) and 23% of iso-propanol (after 2.5 h).
NASA Astrophysics Data System (ADS)
Tveritinova, E. A.; Zhitnev, Yu. N.; Chernyak, S. A.; Arkhipova, E. A.; Savilov, S. V.; Lunin, V. V.
2017-03-01
Carbon nanomaterials with the structure of graphene and different compositions of the surface groups are used as catalysts for the conversion of C2-C4 aliphatic alcohols. The conversions of ethanol, propanol- 1, propanol-2, butanol-1, butanol-2, and tert-butanol on carbon nanotubes, nanoflakes, and nanoflakes doped with nitrogen are investigated. Oxidized and nonoxidized multiwalled carbon nanotubes, nanoflakes, and nanoflakes doped with nitrogen are synthesized. X-ray diffraction analysis, X-ray photoelectron spectroscopy, scanning and transmission electronic microscopies, Brunauer-Emmett-Teller method, derivatographic analyses, and the pulsed microcatalytic method are used to characterize comprehensively the prepared catalysts. It was established that all of the investigated carbon nanomaterials (with the exception of nondoped carbon nanoflakes) are bifunctional catalysts for the conversion of aliphatic alcohols, and promote dehydration reactions with the formation of olefins and dehydrogenation reactions with the formation of aldehydes or ketones. Nanoflakes doped with nitrogen are inert with respect to secondary alcohols and tert-butanol. The role of oxygen-containing and nitrogen-containing surface groups, and of the geometrical structure of the carbon matrix of graphene nanocarbon materials in the catalytic conversion of aliphatic alcohols, is revealed. Characteristics of the conversion of aliphatic alcohols that are associated with their structure are identified.
Neurock, Matthew; Tao, Zhiyuan; Chemburkar, Ashwin; Hibbitts, David D; Iglesia, Enrique
2017-04-28
Condensation and esterification are important catalytic routes in the conversion of polyols and oxygenates derived from biomass to fuels and chemical intermediates. Previous experimental studies show that alkanal, alkanol and hydrogen mixtures equilibrate over Cu/SiO 2 and form surface alkoxides and alkanals that subsequently promote condensation and esterification reactions. First-principle density functional theory (DFT) calculations were carried out herein to elucidate the elementary paths and the corresponding energetics for the interconversion of propanal + H 2 to propanol and the subsequent C-C and C-O bond formation paths involved in aldol condensation and esterification of these mixtures over model Cu surfaces. Propanal and hydrogen readily equilibrate with propanol via C-H and O-H addition steps to form surface propoxide intermediates and equilibrated propanal/propanol mixtures. Surface propoxides readily form via low energy paths involving a hydrogen addition to the electrophilic carbon center of the carbonyl of propanal or via a proton transfer from an adsorbed propanol to a vicinal propanal. The resulting propoxide withdraws electron density from the surface and behaves as a base catalyzing the activation of propanal and subsequent esterification and condensation reactions. These basic propoxides can readily abstract the acidic C α -H of propanal to produce the CH 3 CH (-) CH 2 O* enolate, thus initiating aldol condensation. The enolate can subsequently react with a second adsorbed propanal to form a C-C bond and a β-alkoxide alkanal intermediate. The β-alkoxide alkanal can subsequently undergo facile hydride transfer to form the 2-formyl-3-pentanone intermediate that decarbonylates to give the 3-pentanone product. Cu is unique in that it rapidly catalyzes the decarbonylation of the C 2n intermediates to form C 2n-1 3-pentanone as the major product with very small yields of C 2n products. This is likely due to the absence of Brønsted acid sites, present on metal oxide catalysts, that rapidly catalyze dehydration of the hemiacetal or hemiacetalate over decarbonylation. The basic surface propoxide that forms on Cu can also attack the carbonyl of a surface propanal to form propyl propionate. Theoretical results indicate that the rates for both aldol condensation and esterification are controlled by reactions between surface propoxide and propanal intermediates. In the condensation reaction, the alkoxide abstracts the weakly acidic hydrogen of the C α -H of the adsorbed alkanal to form the surface enolate whereas in the esterification reaction the alkoxide nucleophilically attacks the carbonyl group of a vicinal bound alkanal. As both condensation and esterification involve reactions between the same two species in the rate-limiting step, they result in the same rate expression which is consistent with experimental results. The theoretical results indicate that the barriers between condensation and esterification are within 3 kJ mol -1 of one another with esterification being slightly more favored. Experimental results also report small differences in the activation barriers but suggest that condensation is slightly preferred.
Arndt, Torsten; Grüner, Joachim; Schröfel, Stefanie; Stemmerich, Karsten
2012-11-30
Urine ethyl glucuronide (EtG) is considered as a specific marker of recent ethanol consumption. We describe false-positive DRI(®) EIA EtG enzyme immunoassay results caused by propyl glucuronides in urine after using a propanol-based hand sanitizer. EtG screening was done with the DRI(®) EIA EtG assay (Microgenics), using a cut-off of 0.5 mg/L as recommended by the manufacturer and of 0.1 mg/L as demanded by the German Regulations for Reissuing Drivers Licenses. Confirmatory EtG analysis was done with the ClinMass(®) EtG LC-MS/MS testkit (Recipe), extended by the mass transitions 235.1→75.1, 235.1→85.1, and 235.1→113.1 for the detection of the 1- and 2-propyl glucuronides. Self-experiments were done by staff members of our lab (n=7), using 3 mL Sterillium(®) Classic Pure (30 g/100 g 1-propanol and 45 g/100 g 2-propanol) for hand sanitation every quarter of an hour for 8 h according to DIN EN 1500:2011-05 with and without an exhauster and by passive inhalation of the sanitizer vapor. Spot urine samples were taken immediately before and up to 24 h after the first sanitizer use. False-positive immunoassay results of up to 4 mg/L or 2.3 mg/g creatinine were obtained after normal use of the sanitizer and also after passive inhalation of the sanitizer vapor (up to 0.89 mg/L or 0.61 mg/g). Immunoassay results were positive even after 4-fold use of the sanitizer (up to 0.14 mg/L or 0.38 mg/g) and up to 6 h after the last sanitizer contact (maximum 0.63 mg/L and 0.33 mg/g for sanitizer users and 0.25 mg/g after passive inhalation). Spiking of EtG-free urine with 1-propyl glucuronide (Athena Environmental Sciences) between 0.05 and 10 mg/L clearly demonstrated a cross reaction of the immunoassay of approx. 10% as compared to EtG. LC-MS/MS of urines with a positive immunoassay EtG result did not show EtG signals, but distinct signals of 1-propyl glucuronide (n-propyl glucuronide) and 2-propyl glucuronide (iso-propyl glucuronide). An exhauster effectively prevented the inhalation of the sanitizer vapor, the formation of propyl glucuronides and thus false-positive DRI(®) EIA EtG screening results, proving that propyl alcohols are almost exclusively taken up by respiration. The widespread use of propanol-containing products such as hand sanitizers may lead to sufficient uptake of propyl alcohols and excretion of significant amounts of propyl glucuronides to yield false-positive DRI(®) EIA EtG screening results. Thus, positive EtG immunoassay results have to be controlled by mass-spectrometry, in clinical cases at least if ethanol intake is denied by the patient. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.
Transfer Hydro-dehalogenation of Organic Halides Catalyzed by Ruthenium(II) Complex.
You, Tingjie; Wang, Zhenrong; Chen, Jiajia; Xia, Yuanzhi
2017-02-03
A simple and efficient Ru(II)-catalyzed transfer hydro-dehalogenation of organic halides using 2-propanol solvent as the hydride source was reported. This methodology is applicable for hydro-dehalogenation of a variety of aromatic halides and α-haloesters and amides without additional ligand, and quantitative yields were achieved in many cases. The potential synthetic application of this method was demonstrated by efficient gram-scale transformation with catalyst loading as low as 0.5 mol %.
Absorption performance for CO2 capture process using MDEA-AMP aqueous solution
NASA Astrophysics Data System (ADS)
Liu, Gang; Kou, Liqing; Li, Chao
2017-03-01
The absorption capacity and the absorption rate of CO2 in 2-amino-2-methyl-1-propanol (AMP)-N-methyldiethanolamine (MDEA) aqueous solution were measured. The temperatures ranged from 303.2K to 323.2K. The mass fractions of AMP and MDEA respectively ranged from 0 to 0.03 and 0.2 to 0.3. The influence of temperature and w AMP on the absorption capacity and absorption rate of CO2 was illustrated.
40 CFR Table 2a to Subpart E of... - Reactivity Factors
Code of Federal Regulations, 2011 CFR
2011-07-01
... 2.10 Isobutyl Acetate 110-19-0 0.67 Methyl Amyl Ketone 110-43-0 2.80 Hexane 110-54-3 1.45 n-Propyl...-63-0 0.71 Acetone (Propanone) 67-64-1 0.43 n-Propanol (n-Propyl Alcohol) 71-23-8 2.74 n-Butyl Alcohol (Butanol) 71-36-3 3.34 n-Pentanol (Amyl Alcohol) 71-41-0 3.35 Benzene 71-43-2 0.81 1,1,1-Trichloroethane 71...
40 CFR Table 2a to Subpart E of... - Reactivity Factors
Code of Federal Regulations, 2010 CFR
2010-07-01
... 2.10 Isobutyl Acetate 110-19-0 0.67 Methyl Amyl Ketone 110-43-0 2.80 Hexane 110-54-3 1.45 n-Propyl...-63-0 0.71 Acetone (Propanone) 67-64-1 0.43 n-Propanol (n-Propyl Alcohol) 71-23-8 2.74 n-Butyl Alcohol (Butanol) 71-36-3 3.34 n-Pentanol (Amyl Alcohol) 71-41-0 3.35 Benzene 71-43-2 0.81 1,1,1-Trichloroethane 71...
Hensgens, C M; Vonck, J; Van Beeumen, J; van Bruggen, E F; Hansen, T A
1993-01-01
A NAD-dependent, oxygen-labile alcohol dehydrogenase was purified from Desulfovibrio gigas. It was decameric, with subunits of M(r) 43,000. The best substrates were ethanol (Km, 0.15 mM) and 1-propanol (Km, 0.28 mM). N-terminal amino acid sequence analysis showed that the enzyme belongs to the same family of alcohol dehydrogenases as Zymomonas mobilis ADH2 and Bacillus methanolicus MDH. Images PMID:8491707
Collisions of low-energy electrons with isopropanol
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bettega, M. H. F.; Winstead, C.; McKoy, V.
2011-10-15
We report measured and calculated cross sections for elastic scattering of low-energy electrons by isopropanol (propan-2-ol). The experimental data were obtained using the relative flow technique with helium as the standard gas and a thin aperture as the collimating target gas source, which permits use of this method without the restrictions imposed by the relative flow pressure conditions on helium and the unknown gas. The differential cross sections were measured at energies of 1.5, 2, 3, 5, 6, 8, 10, 15, 20, and 30 eV and for scattering angles from 10 deg. to 130 deg. The cross sections were computedmore » over the same energy range employing the Schwinger multichannel method in the static-exchange plus polarization approximation. Agreement between theory and experiment is very good. The present data are compared with previously calculated and measured results for n-propanol, the other isomer of C{sub 3}H{sub 7}OH. Although the integral and momentum transfer cross sections for the isomers are very similar, the differential cross sections show a strong isomeric effect: In contrast to the f-wave behavior seen in scattering by n-propanol, d-wave behavior is observed in the cross sections of isopropanol. These results corroborate our previous observations in electron collisions with isomers of C{sub 4}H{sub 9}OH.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
DeTuri, V.F.; Ervin, K.M.
Energy-resolved competitive collision-induced dissociation methods are used to measure the gas-phase acidities of a series of alcohols (methanol, ethanol, 2-propanol, and 2-methyl-2-propanol). The competitive dissociation reactions of fluoride-alcohol, [F{sup {minus}}{center{underscore}dot}HOR], alkoxide-water, [RO{sup {minus}}{center{underscore}dot}HOH], and alkoxide-methanol [RO{+-}{center{underscore}dot}HOCH{sub 3}] proton-bound complexes are studied using a guided ion beam tandem mass spectrometer. The reaction cross sections and product branching fractions to the two proton transfer channels are measured as a function of collision energy. The enthalpy difference between the two product channels is found by modeling the reaction cross sections near threshold using RRKM theory to account for the energy-dependent product branching ratiomore » and kinetic shift. From the enthalpy difference, the alcohol gas-phase acidities are determined relative to the well-known values of HF and H{sub 2}O. The measured gas-phase acidities are {Delta}{sub acid}H{sub 298}(CH{sub 3}OH) = 1599 {+-} 3 kJ/mol, {Delta}{sub acid}H{sub 298}(CH{sub 3}CH{sub 2}OH) = 1586 {+-} 5 kJ/mol, {Delta}{sub acid}H{sub 298}((CH{sub 3}){sub 2}CHOH) = 1576 {+-} 4 kJ/mol, and {Delta}{sub acid}H{sub 298}((CH{sub 3}){sub 3}COH) = 1573 {+-} 3 kJ/mol.« less
Enhancements in mass transfer for carbon capture solvents part I: Homogeneous catalyst
Widger, Leland R.; Sarma, Moushumi; Bryant, Jonathan J.; ...
2017-06-15
The novel small molecule carbonic anhydrase (CA) mimic [Co III(Salphen-COO -)Cl]HNEt 3 ( 1), was synthesized as an additive for increasing CO 2 absorption rates in amine-based post-combustion carbon capture processes (CCS), and its efficacy was verified. 1 was designed for use in a kinetically slow but thermally stable blended solvent, containing the primary amines 1-amino-2-propanol (A2P) and 2-amino-2-methyl-1-propanol (AMP). Together, the A2P/AMP solvent and 1 reduce the overall energy penalty associated with CO 2 capture from coal-derived flue gas, relative to the baseline solvent MEA. 1 is also effective at increasing absorption kinetics of kinetically fast solvents, such asmore » MEA, which can reduce capital costs by requiring a smaller absorber tower. The transition from catalyst testing under idealized laboratory conditions, to process relevant lab- and bench-scale testing adds many additional variables that are not well understood and rarely discussed. As a result, the stepwise testing of both 1 and the novel A2P/AMP solvent blend is described through a transition process that identifies many of these process and evaluation challenges not often addressed when designing a chemical or catalytic additive for industrial CCS systems, where consideration of solvent chemistry is typically the primary goal.« less
Moriya, Hyuga; Tanaka, Sohei; Iida, Yukari; Kitagawa, Satomi; Aizawa, Sen-Ichi; Taga, Atsushi; Terashima, Hiroyuki; Yamamoto, Atsushi; Kodama, Shuji
2018-05-16
Xanthohumol, isoxanthohumol, and 8-prenylnaringenin in beer, hop, and hop pellet samples were analyzed by HPLC using InertSustain phenyl column and the mobile phase containing 40% methanol and 12% 2-propanol. Fractions of isoxanthohumol and 8-prenylnaringenin obtained by the above HPLC were separately collected. Isoxanthohumol and 8-prenylnaringenin were enantioseparated by HPLC using Chiralcel OD-H column with a mobile phase composed of hexane/ethanol (90/10, v/v) and Chiralpak AD-RH column with a mobile phase composed of methanol/2-propanol/water (40/20/40, v/v/v), respectively. Both of isoxanthohumol and 8-prenylnaringenin from beer, hop, and hop pellet samples were found to be a racemic mixture. This can be explained that the two analytes were produced by non-enzymatic process. The effects of boiling conditions on the conversion of xanthohumol into isoxanthohumol were also studied. A higher concentration of ethanol in heating solvent resulted in a decrease in the conversion ratio and the conversion was stopped by addition of ethanol more than 50% (v/v). The isomerization was significantly affected pH (2-10) and the boiling medium at pH 5 was minimum for the conversion. Therefore, it was suggested that xanthohumol was relatively difficult to convert to isoxanthohumol in wort (pH 5-5.5) during boiling. This article is protected by copyright. All rights reserved.
Chemical transformation of 3-bromo-2,2-bis(bromomethyl)-propanol under basic conditions.
Ezra, Shai; Feinstein, Shimon; Bilkis, Itzhak; Adar, Eilon; Ganor, Jiwchar
2005-01-15
The mechanism of the spontaneous decomposition of 3-bromo-2,2-bis(bromomethyl)propanol (TBNPA) and the kinetics of the reaction of the parent compound and two subsequent products were determined in aqueous solution at temperatures from 30 to 70 degrees C and pH from 7.0 to 9.5. TBNPA is decomposed by a sequence of reactions that form 3,3-bis(bromomethyl)oxetane (BBMO), 3-bromomethyl-3-hydroxymethyloxetane (BMHMO), and 2,6-dioxaspiro[3.3]-heptane (DOH), releasing one bromide ion at each stage. The pseudo-first-order rate constant of the decomposition of TBNPA increases linearlywith the pH. The apparent activation energy of this transformation (98+/-2 KJ/mol) was calculated from the change of the effective second-order rate constant with temperature. The pseudoactivation energies of BBMO and BMHMO were estimated to be 109 and 151 KJ/mol, respectively. Good agreement was found between the rate coefficients derived from changes in the organic molecules concentrations and those determined from the changes in the Br- concentrations. TBNPA is the most abundant semivolatile organic pollutant in the aquitard studied, and together with its byproducts they posess an environmental hazard. TBNPA half-life is estimated to be about 100 years. This implies that high concentrations of TBNPA will persist in the aquifer long after the elimination of all its sources.
Sun, Jianxia; Xu, Wei; Zhu, Cuijuan; Hu, Yunfeng; Jiang, Xinwei; Ou, Shiyi; Su, Zhijian; Huang, Yadong; Jiao, Rui; Bai, Weibin
2016-01-01
1,3-Dichloro-2-propanol (1,3-DCP) is a food processing contaminant and has been shown to perturb male reproductive function. Cyanidin-3-O-glucoside (C3G), an anthocyanin antioxidant, is reported to have protective effects on many organs. However, it remains unclear whether C3G protects against chemical-induced reproductive toxicity. The present study was therefore to investigate the intervention of C3G on 1,3-DCP-induced reproductive toxicity in R2C Leydig cells. Results demonstrated that C3G inhibited the 1,3-DCP-induced cytotoxicity and cell shape damage with the effective doses being ranging from 10 to 40 μmol/L. In addition, 1,3-DCP (2 mmol/L) exposure significantly increased the ROS level and mitochondrial membrane potential damage ratio, leading to a decrease in progesterone production, while C3G intervention reduced the ROS level, and increased the progesterone production after 24 h treatment. Most importantly, C3G intervention could up-regulate the cyclic adenosine monophosphate (cAMP) level and protein expression of steroidogenic acute regulatory protein and 3β-hydroxysteroid dehydrogenase. It was concluded that C3G is effective in reducing 1,3-DCP-induced reproductive toxicity via activating steroidogenic enzymes and cAMP level. PMID:27867356
Enhancements in mass transfer for carbon capture solvents part II: Micron-sized solid particles
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mannel, David S.; Qi, Guojie; Widger, Leland R.
2017-06-01
The novel small molecule carbonic anhydrase (CA) mimic [CoIII(Salphen-COO-)Cl]HNEt3 (1), was synthesized as an additive for increasing CO2 absorption rates in amine-based post-combustion carbon capture processes (CCS), and its efficacy was verified. 1 was designed for use in a kinetically slow but thermally stable blended solvent, containing the primary amines 1-amino-2-propanol (A2P) and 2-amino-2-methyl-1-propanol (AMP). Together, the A2P/AMP solvent and 1 reduce the overall energy penalty associated with CO2 capture from coal-derived flue gas, relative to the baseline solvent MEA. 1 is also effective at increasing absorption kinetics of kinetically fast solvents, such as MEA, which can reduce capital costsmore » by requiring a smaller absorber tower. The transition from catalyst testing under idealized laboratory conditions, to process relevant lab- and bench-scale testing adds many additional variables that are not well understood and rarely discussed. The stepwise testing of both 1 and the novel A2P/AMP solvent blend is described through a transition process that identifies many of these process and evaluation challenges not often addressed when designing a chemical or catalytic additive for industrial CCS systems, where consideration of solvent chemistry is typically the primary goal.« less
Shih, Yu-Jen; Tsai, Meng-Tso; Huang, Yao-Hui
2013-05-01
2,2,3,3-Tetrafluoro-1-propanol (TFP, C3H4F4O, M.W. = 132.06) is extensively used as the solvent in CD-R and DVD-R fabrication. Since it has a fluorinated alky-chain configuration and is non-biodegradable, its treatment by conventional oxidation methods is typically very inefficient. In this work, novel three-phase fluidized bed reactor (3P-FBR, 7.5 cm in diameter, 50 cm high) that combines photo oxidation (UV/H2O2, one of AOPs (Advanced Oxidation Process) and adsorption (BT5 iron oxide as adsorbent) processes is designed for mineralizing and defluorinizing TFP wastewater. The experimental results reveal that TFP can be efficiently mineralized, and the BT5 that is circulated by aeration in the 3P-FBR system can remove the released fluoride ions in the reaction period. Irradiation with 254 nm UV and a 10 mM H2O2 dose yield a TOC removal of TFP (1.39 mM, equivalent to an initial TOC of 50 ppm) of over 99.95% in 2 h, and 99% of fluoride was removed by BT5 with an adsorption capacity of 24.1 mg-F g(-1). Copyright © 2013 Elsevier Ltd. All rights reserved.
Scarlatti, Francesca; Bauvy, Chantal; Ventruti, Annamaria; Sala, Giusy; Cluzeaud, Françoise; Vandewalle, Alain; Ghidoni, Riccardo; Codogno, Patrice
2004-04-30
The sphingolipid ceramide is involved in the cellular stress response. Here we demonstrate that ceramide controls macroautophagy, a major lysosomal catabolic pathway. Exogenous C(2)-ceramide stimulates macroautophagy (proteolysis and accumulation of autophagic vacuoles) in the human colon cancer HT-29 cells by increasing the endogenous pool of long chain ceramides as demonstrated by the use of the ceramide synthase inhibitor fumonisin B(1). Ceramide reverted the interleukin 13-dependent inhibition of macroautophagy by interfering with the activation of protein kinase B. In addition, C(2)-ceramide stimulated the expression of the autophagy gene product beclin 1. Ceramide is also the mediator of the tamoxifen-dependent accumulation of autophagic vacuoles in the human breast cancer MCF-7 cells. Monodansylcadaverine staining and electron microscopy showed that this accumulation was abrogated by myriocin, an inhibitor of de novo synthesis ceramide. The tamoxifen-dependent accumulation of vacuoles was mimicked by 1-phenyl-2-decanoylamino-3-morpholino-1-propanol, an inhibitor of glucosylceramide synthase. 1-Phenyl-2-decanoylamino-3-morpholino-1-propanol, tamoxifen, and C(2)-ceramide stimulated the expression of beclin 1, whereas myriocin antagonized the tamoxifen-dependent up-regulation. Tamoxifen and C(2)-ceramide interfere with the activation of protein kinase B, whereas myriocin relieved the inhibitory effect of tamoxifen. In conclusion, the control of macroautophagy by ceramide provides a novel function for this lipid mediator in a cell process with major biological outcomes.
Duman, Yonca Avci; Kazan, Dilek; Denizci, Aziz Akin; Erarslan, Altan
2014-01-01
In this study, our investigations showed that the increasing concentrations of all examined mono alcohols caused a decrease in the Vm, kcat and kcat/Km values of Bacillus clausii GMBE 42 serine alkaline protease for casein hydrolysis. However, the Km value of the enzyme remained almost the same, which was an indicator of non-competitive inhibition. Whereas inhibition by methanol was partial non-competitive, inhibition by the rest of the alcohols tested was simple non-competitive. The inhibition constants (KI) were in the range of 1.32-3.10 M, and the order of the inhibitory effect was 1-propanol>2-propanol>methanol>ethanol. The ΔG(≠) and ΔG(≠)E-T values of the enzyme increased at increasing concentrations of all alcohols examined, but the ΔG(≠)ES value of the enzyme remained almost the same. The constant Km and ΔG(≠)ES values in the presence and absence of mono alcohols indicated the existence of different binding sites for mono alcohols and casein on enzyme the molecule. The kcat of the enzyme decreased linearly by increasing log P and decreasing dielectric constant (D) values, but the ΔG(≠) and ΔG(≠)E-T values of the enzyme increased by increasing log P and decreasing D values of the reaction medium containing mono alcohols.
Cocrystal Screening of Ibuprofen with Oxalic Acid and Citric Acid via Grinding Method
NASA Astrophysics Data System (ADS)
Othman, M. F.; Anuar, N.; Rahman, S. Ad; Taifuddin, N. A. Ahmad
2018-05-01
Ibuprofen is a Class II Biological Safety Class (BSC) drugs used for relief of arthritis, as an analgesic and possesses the effect of antiplatelet. The major problem involves in ibuprofen is it has a low solubility and high permeability thus causes an unsatisfactory therapeutic effect to humans. Thus, in this work, alteration of ibuprofen’s physicochemical properties is conducted by means of cocrystallization technique. Co-crystallizations of ibuprofen were prepared with selected coformers using dry grinding and liquid assisted grinding (LAG) techniques in different molar ratios while ethanol and propanol were used as a solvent. The new crystalline forms were identified and characterized by differential scanning calorimetry (DSC), powder X-ray diffraction (PXRD) and fourier transform infrared spectroscopy (FTIR). Analysis for Ibuprofen-Citric acid (IBP-CA) system, co-crystal was successfully formed in 1:2, 1:3, 2:1 and 3:1 molar ratios for neat grinding method although the co-crystal produced is unstable. Meanwhile, for Ibuprofen-Oxalic acid (IBP-OA) system, the co-crystal formation was identified only in 1:1, 1:2 and 1:3 molar ratios for the neat grinding method. LAG method shows that co-crystal formation was unsuccessful in both solvents for IBP-CA, while IBP-OA co-crystal was formed in the molar ratio 1:1, 2:1 and 3:1 in ethanol, and 2:1 and 3:1 in propanol.
Sun, Jianxia; Xu, Wei; Zhu, Cuijuan; Hu, Yunfeng; Jiang, Xinwei; Ou, Shiyi; Su, Zhijian; Huang, Yadong; Jiao, Rui; Bai, Weibin
2016-01-01
1,3-Dichloro-2-propanol (1,3-DCP) is a food processing contaminant and has been shown to perturb male reproductive function. Cyanidin-3- O -glucoside (C3G), an anthocyanin antioxidant, is reported to have protective effects on many organs. However, it remains unclear whether C3G protects against chemical-induced reproductive toxicity. The present study was therefore to investigate the intervention of C3G on 1,3-DCP-induced reproductive toxicity in R2C Leydig cells. Results demonstrated that C3G inhibited the 1,3-DCP-induced cytotoxicity and cell shape damage with the effective doses being ranging from 10 to 40 μmol/L. In addition, 1,3-DCP (2 mmol/L) exposure significantly increased the ROS level and mitochondrial membrane potential damage ratio, leading to a decrease in progesterone production, while C3G intervention reduced the ROS level, and increased the progesterone production after 24 h treatment. Most importantly, C3G intervention could up-regulate the cyclic adenosine monophosphate (cAMP) level and protein expression of steroidogenic acute regulatory protein and 3β-hydroxysteroid dehydrogenase. It was concluded that C3G is effective in reducing 1,3-DCP-induced reproductive toxicity via activating steroidogenic enzymes and cAMP level.
Jawor-Baczynska, Anna; Moore, Barry D; Sefcik, Jan
2015-01-01
We report investigations on the formation of mesostructured solutions in DL-valine-water-2-propanol mixtures, and the crystallization of DL-valine from these solutions. Mesostructured liquid phases, similar to those previously observed in aqueous solutions of glycine and DL-alanine, were observed using Dynamic Light Scattering and Brownian microscopy, in both undersaturated and supersaturated solutions below a certain transition temperature. Careful experimentation was used to demonstrate that the optically clear mesostructured liquid phase, comprising colloidal mesoscale clusters dispersed within bulk solution, is thermodynamically stable and present in equilibrium with the solid phase at saturation conditions. Solutions prepared by slow cooling contained mesoscale clusters with a narrow size distribution and a mean hydrodynamic diameter of around 200 nm. Solutions of identical composition prepared by rapid isothermal mixing of valine aqueous solutions with 2-propanol contained mesoscale clusters which were significantly larger than those observed in slowly cooled solutions. The presence of larger mesoscale clusters was found to correspond to faster nucleation. Observed induction times were strongly dependent on the rapid initial mixing step, although solutions were left undisturbed afterwards and the induction times observed were up to two orders of magnitude longer than the initial mixing period. We propose that mesoscale clusters above a certain critical size are likely to be the location of productive nucleation events.
Gil-Agustí, M; Carda-Broch, S; Monferrer-Pons, Ll; Esteve-Romero, J
2007-07-13
Two biogenic amines, tryptamine and tyramine, and their precursors, tryptophan and tyrosine, were determined by a liquid chromatographic procedure. A hybrid micellar mobile phase of sodium dodecyl sulphate (SDS) and 1-propanol, a C18 column and electrochemical detection were used. A pH study in the range of 3-9 was performed and pH 3 was finally selected in accordance with resolution and analysis time. Oxidation potential was also checked in the range 0.6-0.9V: the maximum area obtained in all those potentials was at 0.8V, which was selected to carry out the analysis using a sequence of pulsed amperometric detection waveform. The four compounds were resolved using a mobile phase of 0.15M SDS-5% 1-propanol with an analysis time of 16 min. Repeatabilities and intermediate precision were evaluated at three different concentrations for each compound with RSD values lower than 2.6 and 4.8%, respectively. Limits of detection and quantification were also obtained within the 10-40 and 33-135 ng/ml ranges, respectively. Finally, the applicability of the procedure was tested in several types of wine and no matrix effect was observed. The possibility of direct sample introduction simplifies and greatly expedites the treatments with reduced cost, improving the accuracy of the procedures.
NASA Astrophysics Data System (ADS)
Madrid Mendoza, Juan Antonio
El objetivo de esta tesis es investigar sobre la sintesis, propiedades y aplicaciones de las nanoparticulas de Ca(OH)2 para consolidar materiales patrimoniales arquitectonicos. Las nanoparticulas de Ca(OH)2 se han utilizado recientemente en la conservacion del patrimonio, aunque algunos aspectos de la sintesis no son completamente comprendidos. En el presente estudio, hemos desarrollado metodos optimizados para obtener nanoparticulas de alta pureza mediante sintesis de fase homogenea y heterogenea utilizando diferentes materiales de partida. Se han realizado del orden de cien sintesis en diferentes condiciones para comprobar la validez y fiabilidad del metodo sintetico. Los resultados confirman que la temperatura de reaccion tiene una gran influencia en el tamano y la morfologia de las nanoparticulas de Ca(OH)2. Ademas, se ha investigado la estabilidad de las nanoparticulas a lo largo del tiempo en mezclas de 2-propanol / agua, en las que se encontro que la ausencia de agua era critica para evitar la aglomeracion de Ca(OH)2. Una vez dispersas en 2-propanol, las nanoparticulas se han utilizado para consolidar sustratos reales (piedra, adobe y estuco) confirmando su alto rendimiento en terminos de consolidacion superficial y - cuando se mezcla con ciertos surfactantes - en reduccion de la absorcion de agua. Asimismo, se ha investigado el uso de nanoparticulas modificadas basadas en M(OH)2, donde M=Ca2+, Mg2+, con el objetivo de mejorar tanto la cohesion superficial como la durabilidad de los materiales patrimoniales (p. ej. piedra Tabaire). Finalmente, el tratamiento de consolidacion basado en nanoparticulas puras de Ca(OH)2 se utilizo en emplazamientos con valor patrimonial, como edificios historicos y yacimientos arqueologicos (Teatro Romano de Cartagena) obteniendo resultados satisfactorios. The aim of this thesis is to investigate on the synthesis, properties and applications of Ca(OH)2 nanoparticles to consolidate architectural heritage materials. Ca(OH)2 nanoparticles have recently been used in heritage conservation, although some aspects of the synthesis are not fully-understood. In the present study, we have developed optimised methods for obtaining high-purity nanoparticles based on homogenous and heterogeneous phase synthesis using different starting materials. Around one hundred syntheses have been performed to test the validity and reliability of the synthetic method in different conditions. The results confirm that the reaction temperature has a great influence on the size and morphology of Ca(OH)2 nanoparticles. Besides, the nanoparticles stability has been investigated over time in 2-propanol / water mixtures, in which the absence of water was found to be critical to avoid Ca(OH)2 agglomeration. Once dispersed in 2-propanol, the nanoparticles have been used to consolidate real substrates (stone, adobe and stucco) confirming their high performance in terms of surface consolidation and - when mixed with certain surfactants - water absorption. Likewise, the use of modified nanoparticles based on M(OH)2, where M=Ca2+, Mg2+, has been investigated with the aim of improving both the surface cohesion and durability of heritage materials (e.g. Tabaire stone). Finally, the consolidation treatment consisting in pure Ca(OH)2 nanoparticles has been used in cultural heritage sites, such as historical buildings and archaeological monuments (Roman Theatre of Cartagena) leading to satisfactory results.
Solubility of 3-Caffeoylquinic Acid in Different Solvents at 291-340 K
NASA Astrophysics Data System (ADS)
Wang, Y. T.; Zhang, C. L.; Cheng, X. L.; Zhao, J. H.; Wang, L. C.
2017-12-01
Using a laser monitoring observation technique the solubilities of 3-caffeoylquinic acid in pure solvents, water, methanol, ethanol, 1-propanol, 1-butanol, and two mixed solvents, methanol + water, ethanol + water have been determined at temperature range from 291-340 K. The experimental data were correlated by the modified Apelblat equation, λ h equation, and ideal model. The calculated solubilities were turned out very consistent with the experimental results, and the modified Apelblat equation shows the best agreement.
A Continued Study of Optical Sound Generation and Amplification
1987-10-31
compared to the output of a PVDF hydrophone as shown in Figure 1.2. Given the inaccuracies in beam size estimates, the agreement between theory and...on this curve which are separated by two regions of constant acoustic amplitude. The first extends from zero to 75 jiJ. The boiling point of CS2 is...the general shape of the experimental curves . Figure 1.5 shows the magnitude of the probe beam deflection versus time for propanol. Hutchins and Tam
Voigt, J.A.; Sipola, D.L.; Tuttle, B.A.; Anderson, M.T.
1999-06-01
A process is disclosed for producing powders of perovskite-type compounds which comprises mixing a metal alkoxide solution with a lead acetate solution to form a homogeneous, clear metal solution, adding an oxalic acid/n-propanol solution to this metal solution to form an easily filterable, free-flowing precursor powder and then calcining this powder. This process provides fine perovskite-phase powders with ferroelectric properties which are particularly useful in a variety of electronic applications. 4 figs.
The Function of CTLA4 During the In Vivo Immune Response to Infectious Disease
2000-09-20
Shahinian et al.. 1993)~ as is the rejection of skin allografts (Kawai et aL 1996). CD28- deficient mice and wild-type mount comparable responses to...l-propanol buffer. with 0.6% SeaPlaque agarose. The plates \\\\’ere incubated overnight and the number of blue spots per well were counted with a...phenylmethylsulfonylfluoride~5 ~g1ml aprotinin. I ~g1ml pepstatin A~ and 2 ~g!ml leupeptin. The lysate was cleared by centri fugation ~ protein concentration was
High Energy Halogen Chemistry.
1978-01-01
underwent addition of triflic acid and of hydrochloric acid . The oxetane was polymerized ~zith phosphorous pentaflucride to ~lve a polymer stable to 2900...in aqueous dioxane . The oxetane was not affected by boron trifluoride etherate In chloroform, or by methanolic solutions of sulfuric or triflic acids ...concentrated hydrochloric acid to give 3-chloro-2-fluoro-2-nitro-l-propanol. NO • i 2 NO2OH CF I + CF SOH— 3 CF SO OCH CCH OH O OH ~ 3 3 2 2~ 2 F NO NO
Voigt, James A.; Sipola, Diana L.; Tuttle, Bruce A.; Anderson, Mark T.
1999-01-01
A process for producing powders of perovskite-type compounds which comprises mixing a metal alkoxide solution with a lead acetate solution to form a homogeneous, clear metal solution, adding an oxalic acid/n-propanol solution to this metal solution to form an easily filterable, free-flowing precursor powder and then calcining this powder. This process provides fine perovskite-phase powders with ferroelectric properties which are particularly useful in a variety of electronic applications.
Mechanism of olefin epoxidation in the presence of a titanium-containing zeolite
NASA Astrophysics Data System (ADS)
Danov, S. M.; Krasnov, V. L.; Sulimov, A. V.; Ovcharova, A. V.
2013-11-01
The effect of the nature of a solvent on the liquid-phase epoxidation of olefins with an aqueous solution of hydrogen peroxide over a titanium-containing zeolite is studied. Butanol-1, butanol-2, propanol-1, isopropanol, methanol, ethanol, water, acetone, methyl ethyl ketone, isobutanol, and tert-butanol are examined as solvents. A mechanism of olefin epoxidation with hydrogen peroxide in an alcohol medium over a titanium-containing zeolite is proposed. Epoxidation reactions involving hydrogen peroxide and different olefins are studied experimentally.
Carrasco-Pancorbo, Alegría; Arráez-Román, David; Segura-Carretero, Antonio; Fernández-Gutiérrez, Alberto
2006-06-01
We describe the first analytical method involving SPE and CZE coupled to ESI-IT MS (CZE-ESI-MS) used to identify and characterize phenolic compounds in olive oil samples. The SPE, CZE and ESI-MS parameters were optimized in order to maximize the number of phenolic compounds detected and the sensitivity of their determination. To this end we have devised a detailed method to find the best conditions for CE separation and the detection by MS of the phenolic compounds present in olive oil using a methanol-water extract of Picual extra-virgin olive oil (VOO). Electrophoretic separation was carried out using an aqueous CE buffer system consisting of 60 mM NH(4)OAc at pH 9.5 with 5% of 2-propanol, a sheath liquid containing 2-propanol/water 60:40 v/v and 0.1% v/v triethylamine. This method offers to the analyst the chance to study important phenolic compounds such as phenolic alcohols (tyrosol (TY), hydroxytyrosol (HYTY) and 2-(4-hydroxyphenyl)ethyl acetate), lignans ((+)-pinoresinol and (+)-1-acetoxypinoresinol), complex phenols (ligstroside aglycon (Lig Agl), oleuropein aglycon, their respective decarboxylated derivatives and several isomeric forms of these (dialdehydic form of oleuropein aglycon, dialdehydic form of ligstroside aglycon, dialdehydic form of decarboxymethyl elenolic acid linked to HYTY, dialdehydic form of decarboxymethyl elenolic acid linked to TY) and 10-hydroxy-oleuropein aglycon) and one other phenolic compound (elenolic acid) in extra-VOO by using a simple SPE before CE-ESI-MS analysis.
Catalytic transfer hydrogenation with terdentate CNN ruthenium complexes: the influence of the base.
Baratta, Walter; Siega, Katia; Rigo, Pierluigi
2007-01-01
The catalytic activity of the terdentate complex [RuCl(CNN)(dppb)] (A) [dppb=Ph(2)P(CH(2))(4)PPh(2); HCNN=6-(4'-methylphenyl)-2-pyridylmethylamine] in the transfer hydrogenation of acetophenone (S) with 2-propanol has been found to be dependent on the base concentration. The limit rate has been observed when NaOiPr is used in high excess (A/base molar ratio > 10). The amino-isopropoxide species [Ru(OiPr)(CNN)(dppb)] (B), which forms by reaction of A with sodium isopropoxide via displacement of the chloride, is catalytically active. The rate of conversion of acetophenone obeys second-order kinetics v=k[S][B] with the rate constants in the range 218+/-8 (40 degrees C) to 3000+/-70 M(-1) s(-1) (80 degrees C). The activation parameters, evaluated from the Eyring equation are DeltaH(++)=14.0+/-0.2 kcal mol(-1) and DeltaS(++)=-3.2 +/-0.5 eu. In a pre-equilibrium reaction with 2-propanol complex B gives the cationic species [Ru(CNN)(dppb)(HOiPr)](+)[OiPr](-) (C) with K approximately 2x10(-5) M. The hydride species [RuH(CNN)(dppb)] (H), which forms from B via beta-hydrogen elimination process, catalyzes the reduction of S and, importantly, its activity increases by addition of base. The catalytic behavior of the hydride H has been compared to that of the system A/NaOiPr (1:1 molar ratio) and indicates that the two systems are equivalent.
Li, Zhen; Xu, Ce; Shu, Jinian; Yang, Bo; Zou, Yao
2017-04-01
Real-time detection of lung cancer-related volatile organic compounds (VOCs) is a promising, non-intrusive technique for lung cancer (LC) prescreening. In this study, a novel method was designed to enhance the detection selectivity and sensitivity of LC-related polar VOCs by dichloromethane (CH 2 Cl 2 ) doping-assisted low-pressure photoionization mass spectrometry (LPPI-MS). Compared with conventional LPPI-MS, CH 2 Cl 2 doping-assisted LPPI-MS boosted the peak intensities of n-propanol, n-pentanal, acetone, and butyl acetate in nitrogen specifically by 53, 18, 16, and 43 times, respectively. The signal intensities of their daughter ions were inhibited or reduced. At relative humidity (RH) of 20%, the sensitivities of n-propanol, n-pentanal, acetone, and butyl acetate detection ranged from 116 to 452 counts/ppbv with a detection time of 10s and R 2 >0.99 for the linear calibration curves. The method was also applicable under higher RH levels of 50% and 90%. Breath samples obtained from 10 volunteers and spiked samples were investigated. Eight-fold enhancements in the signal intensities of polar VOCs were observed in the normal and spiked samples. These preliminary results demonstrate the efficacy of the dichloromethane doping-assisted LPPI technique for the detection of LC-related polar VOCs. Further studies are indispensible to illustrating the detailed mechanism and applying the technique to breath diagnosis. Copyright © 2016 Elsevier B.V. All rights reserved.
Zhao, Lu; Xie, Jingqian; Guo, Fangjie; Liu, Kai
2018-05-01
Supercritical fluid chromatography (SFC) is already used for enantioseparation in the pharmaceutical industry, but it is rarely used for the separation of chiral pesticides. Comparing with high performence liquid chromatography, SFC uses much more environmnetal friendly and economic mobile phase, supercritical CO 2 . In our work, the enantioseparation of an amide herbicide, napropamide, using three different polysaccharide-type chiral stationary phases (CSPs) in SFC was investigated. By studying the effect of different CSPs, organic modifiers, temperature, back-pressure regulator pressures, and flow rates for the enantioseparation of napropamide, we established a rapid and green method for enantioseparation that takes less than 2 minutes: The column was CEL2, the mobile phase was CO 2 with 20% 2-propanol, and the flow rate was 2.0 mL/min. We found that CEL2 demonstrated the strongest resolution capability. Acetonitrile was favored over alcoholic solvents when the CSP was amylose and 2-propanol was the best choice when using cellulose. When the concentration of the modifiers or the flow rate was decreased, resolutions and analysis times increased concurrently. The temperature and back-pressure regulator pressure exhibited only minor influences on the resolution and analysis time of the napropamide enantioseparations with these chiral columns. The molecular docking analysis provided a deeper insight into the interactions between the enantiomers and the CSPs at the atomic level and partly explained the reason for the different elution orders using the different chiral columns. © 2018 Wiley Periodicals, Inc.
Copper nanoparticle ensembles for selective electroreduction of CO 2 to C 2-C 3 products
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Dohyung; Kley, Christopher S.; Li, Yifan
Direct conversion of carbon dioxide to multicarbon products remains as a grand challenge in electrochemical CO 2 reduction. Various forms of oxidized copper have been demonstrated as electrocatalysts that still require large overpotentials. Here in this paper, we show that an ensemble of Cu nanoparticles (NPs) enables selective formation of C 2–C 3 products at low overpotentials. Densely packed Cu NP ensembles underwent structural transformation during electrolysis into electrocatalytically active cube-like particles intermixed with smaller nanoparticles. Ethylene, ethanol, and n-propanol are the major C 2–C 3 products with onset potential at -0.53 V (vs. reversible hydrogen electrode, RHE) and Cmore » 2–C 3 faradaic efficiency (FE) reaching 50% at only -0.75 V. Thus, the catalyst exhibits selective generation of C 2–C 3 hydrocarbons and oxygenates at considerably lowered overpotentials in neutral pH aqueous media. In addition, this approach suggests new opportunities in realizing multicarbon product formation from CO 2, where the majority of efforts has been to use oxidized copper-based materials. Robust catalytic performance is demonstrated by 10 h of stable operation with C 2–C 3 current density 10 mA/cm 2 (at -0.75 V), rendering it attractive for solar-to-fuel applications. Lastly, Tafel analysis suggests reductive CO coupling as a rate determining step for C 2 products, while n-propanol (C 3) production seems to have a discrete pathway.« less
NASA Astrophysics Data System (ADS)
Mulijani, S.; Iswantini, D.; Wicaksono, R.; Notriawan, D.
2018-03-01
A new approach to design and construction of an optical ethanol sensor has been developed by immobilizing a direct dye at a porous cellulosic polymer fllm. This sensor was fabricated by binding Nile Red to a cellulose acetate membrane that had previously been subjected to an exhaustive base hydrolysis. The prepared optical ethanol sensor was enhanced by adding pluronic as a porogen in the membrane. The addition of pluronic surfactant into cellulose acetate membrane increased the hydrophilic and porous properties of membrane. Advantageous features of the design include simple and easy of fabrication. Variable affecting sensor performance of dye concentration have been fully evaluated and optimized. The rapid response results from the porous structure of the polymeric support, which minimizes barriers to mass transport. Signal of optical sensor based on reaction of dye nile red over the membrane with ethanol and will produce the purple colored product. Result was obtained that maximum intensity of dye nile red reacted with alcohol is at 630-640 nm. Linear regression equation (r2), limit of detection, and limit of quantitation of membrane with 2% dye was 0.9625, 0.29%, and 0.97%. Performance of optical sensor was also evaluated through methanol, ethanol and propanol. This study was purposed to measure the polarity and selectivity of optic sensor toward the alcohol derivatives. Fluorescence intensity of optic sensor membrane for methanol 5%, ethanol 5% and propanol 5% was 15113.56, 16573.75 and 18495.97 respectively.
Biodegradation of bisphenol A and other bisphenols by a gram-negative aerobic bacterium
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lobos, J.H.; Leib, T.K.; Tahmun Su
1992-06-01
A novel bacterium designated strain MV1 was isolated from a sludge enrichmet takes from the wastewater treatment plant at a plastics manufacturing facility and shown to degrade 2,2-bis(4-hydroxyphenyl)propane (4,4[prime]-isopropylidenediphenol or bisphenol A). Strain MV1 is a gram-negative, aerobic bacillus that grows on bisphenol A as a sole source of carbon and energy. Total carbon analysis for bisphenol A degradation demonstrated that 60% of the carbon was mineralized to CO[sub 2], 20% was associated with the bacterial cells, and 20% was converted to soluble organic compounds. Metabolic intermediates detected in the culture medium during growth on bisphenol A were identified asmore » 4-hydroxybenzoic acid, 4-hydroxyacetophenone, 2,2-bis(4-hydroxyphenyl)-1-propanol, and 2,3-bis(4-hydroxyphenyl)-1,2-propanediol. Most of the bisphenol A degraded by strain MV1 is cleaved in some way to form 4-hydroxybenzoic acid and 4-hydroxyacetophenone, which are subsequently mineralized or assimilated into cell carbon. In addition, about 20% of the bisphenol A is hydroxylated to form 2,2-bis(4-hydroxyphenyl)-1-propanol, which is slowly biotransformed to 2,3-bis(4-hydroxyphenyl)-1,2-propanediol. Cells that were grown on bisphenol A degraded a variety of bisphenol alkanes, hydroxylated benzoic acids, and hydroxylated acetophenones during resting-cell assays. Transmission electron microscopy of cells grown on bisphenol A revealed lipid storage granules and intracytoplasmic membranes.« less
Copper nanoparticle ensembles for selective electroreduction of CO 2 to C 2-C 3 products
Kim, Dohyung; Kley, Christopher S.; Li, Yifan; ...
2017-09-18
Direct conversion of carbon dioxide to multicarbon products remains as a grand challenge in electrochemical CO 2 reduction. Various forms of oxidized copper have been demonstrated as electrocatalysts that still require large overpotentials. Here in this paper, we show that an ensemble of Cu nanoparticles (NPs) enables selective formation of C 2–C 3 products at low overpotentials. Densely packed Cu NP ensembles underwent structural transformation during electrolysis into electrocatalytically active cube-like particles intermixed with smaller nanoparticles. Ethylene, ethanol, and n-propanol are the major C 2–C 3 products with onset potential at -0.53 V (vs. reversible hydrogen electrode, RHE) and Cmore » 2–C 3 faradaic efficiency (FE) reaching 50% at only -0.75 V. Thus, the catalyst exhibits selective generation of C 2–C 3 hydrocarbons and oxygenates at considerably lowered overpotentials in neutral pH aqueous media. In addition, this approach suggests new opportunities in realizing multicarbon product formation from CO 2, where the majority of efforts has been to use oxidized copper-based materials. Robust catalytic performance is demonstrated by 10 h of stable operation with C 2–C 3 current density 10 mA/cm 2 (at -0.75 V), rendering it attractive for solar-to-fuel applications. Lastly, Tafel analysis suggests reductive CO coupling as a rate determining step for C 2 products, while n-propanol (C 3) production seems to have a discrete pathway.« less
Akkari, Marwa; Aranda, Pilar; Ben Haj Amara, Abdessalem; Ruiz-Hitzky, Eduardo
2016-01-01
In this study, ZnO/SiO 2 -clay heterostructures were successfully synthesized by a facile two-step process applied to two types of clays: montmorillonite layered silicate and sepiolite microfibrous clay mineral. In the first step, intermediate silica-organoclay hybrid heterostructures were prepared following a colloidal route based on the controlled hydrolysis of tetramethoxysilane in the presence of the starting organoclay. Later on, pre-formed ZnO nanoparticles (NP) dispersed in 2-propanol were incorporated under ultrasound irradiation to the silica-organoclay hybrid heterostructures dispersed in 2-propanol, and finally, the resulting solids were calcinated to eliminate the organic matter and to produce ZnO nanoparticles (NP) homogeneously assembled to the clay-SiO 2 framework. In the case of montmorillonite the resulting materials were identified as delaminated clays of ZnO/SiO 2 -clay composition, whereas for sepiolite, the resulting heterostructure is constituted by the assembling of ZnO NP to the sepiolite-silica substrate only affecting the external surface of the clay. The structural and morphological features of the prepared heterostructures were characterized by diverse physico-chemical techniques (such as XRD, FTIR, TEM, FE-SEM). The efficiency of these new porous ZnO/SiO 2 -clay heterostructures as potential photocatalysts in the degradation of organic dyes and the removal of pharmaceutical drugs in water solution was tested using methylene blue and ibuprofen compounds, respectively, as model of pollutants.
NASA Technical Reports Server (NTRS)
Kulis, Michael J.; Perry, David S.; Miller, Fletcher; Piltch, Nancy
2003-01-01
A diode laser diagnostic is being developed for use in an ongoing investigation of flame spread in microgravity at NASA Glenn Research Center. Flame spread rates through non-homogenous gas mixtures are significantly different in a microgravity environment because of buoyancy and possibly hydrostatic pressure effects. These effects contribute to the fuel vapor concentration ahead of the flame being altered so that flame spread is more rapid in microgravity. This paper describes spectral transmission measurements made through mixtures of alcohol, water vapor, and nitrogen in a gas cell that was designed and built to allow measurements at temperatures up to 500 C. The alcohols considered are methanol, ethanol, and n-propanol. The basic technique of wavelength modulation spectroscopy for gas species measurements in microgravity was developed by Silver et al. For this technique to be applicable, one must carefully choose the spectral features over which the diode laser is modulated to provide good sensitivity and minimize interference from other molecular lines such as those in water. Because the methanol spectrum was not known with sufficient resolution in the wavelength region of interest, our first task was to perform high-resolution transmission measurements with an FTIR spectrometer for methanol vapor in nitrogen, followed recently by ethanol and n-propanol. A computer program was written to generate synthesized data to mimic that expected from the experiment using the laser diode, and results from that simulation are also presented.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smith, Colin D.; Lebarbier, Vanessa M.; Flake, Matthew D.
2016-04-01
In this study we report on a ZnxZryOz mixed oxide type catalyst capable of converting a syngas-derived C2+ mixed oxygenate feedstock to isobutene-rich olefins. Aqueous model feed comprising of ethanol, acetaldehyde, acetic acid, ethyl acetate, methanol, and propanol was used as representative liquid product derived from a Rh-based mixed oxygenate synthesis catalyst. Greater than 50% carbon yield to C3-C5 mixed olefins was demonstrated when operating at 400-450oC and 1 atm. In order to rationalize formation of the products observed feed components were individually evaluated. Major constituents of the feed mixture (ethanol, acetaldehyde, acetic acid, and ethyl acetate) were found tomore » produce isobutene-rich olefins. C-C coupling was also demonstrated for propanol feedstock - a minor constituent of the mixed oxygenate feed - producing branched C6 olefins, revealing scalability to alcohols higher than ethanol following an analogous reaction pathway. Using ethanol and propanol feed mixtures, cross-coupling reactions produced mixtures of C4, C5, and C6 branched olefins. The presence of H2 in the feed was found to facilitate hydrogenation of the ketone intermediates, thus producing straight chain olefins as byproducts. While activity loss from coking is observed complete catalyst regeneration is achieved by employing mild oxidation. For conversion of the mixed oxygenate feed a Zr/Zn ratio of 2.5 and a reaction temperature of 450oC provides the best balance of stability, activity, and selectivity. X-ray diffraction and scanning transmission electron microscopy analysis reveals the presence of primarily cubic phase ZrO2 and a minor amount of the monoclinic phase, with ZnO being highly dispersed in the lattice. The presence of ZnO appears to stabilize the cubic phase resulting in less monoclinic phase as the ZnO concentration increases. Infrared spectroscopy shows the mixed oxide acid sites are characterized as primarily Lewis type acidity. The direct relationship between isobutene production and the ratio of basic/acidic sites was demonstrated. An optimized balance of active sites for isobutene production from acetone was obtained with a basic/acidic site ratio of ~2. This technology for the conversion of aqueous mixtures of C2+ mixed oxygenates provides significant advantages over other presently studied catalysts in that its unique properties permit the utilization of a variety of feeds in a consistently selective manner.« less
Milani, Barbara; Crottib, Corrado; Farnetti, Erica
2008-09-14
Transfer hydrogenation from 2-propanol to CO/4-methylstyrene and CO/styrene polyketones was catalyzed by [Ir(diene)(N-N)X] (N-N = nitrogen chelating ligand; X = halogen) in the presence of a basic cocatalyst. The reactions were performed using dioxane as cosolvent, in order to overcome problems due to low polyketone solubility. The polyalcohols were obtained in yields up to 95%, the conversions being markedly dependent on the nature of the ligands coordinated to iridium as well as on the experimental conditions.
Characteristic of Nitron for Use as a Chemical Sensor in Studies of the Upper Atmosphere
NASA Technical Reports Server (NTRS)
Meadows, Kapres; Wright, Cassandra K.; Sims, S. C.; Morris, V. R.
1997-01-01
We are investigating the use of nitron as a potential chemical sensor for nitric acid and other electron deficient nitrogen oxides. Solutions of nitron in 1-propanol, toluene, and chloroform have been tested for use on a piezoelectric quartz crystal microbalance. We are testing various solvents and metal cations which can maximize the lifetime and reaction specificity of nitron so that they may be used as chemical coatings for stratospheric measurement of trace gases. Results of the work to date will be shown, and future direction discussed.
Mechanisms of deterioration of nutrients phase 1
NASA Technical Reports Server (NTRS)
Karel, M.; Flink, J. M.
1972-01-01
Experimental methods are studied by which freeze-dried foods of improved quality are produced. Considered are: (1) Factors effecting the loss of butanol from frozen aqueous food solutions during storage; (2) a freeze-drying microscope system for observing solidification processes in organic mixtures and aqueous inorganic salt solutions; (3) browning of high quality freeze-dried foods with minimal organoleptic and nutritional detoriation; (4) retention of PVP-n-propanol in freeze-dried food models; and (5) effects of freezing rate and sucrose immersion on taste and texture of freeze-dried apple slices.
Lyubimov, Sergey E; Rastorguev, Eugenie A; Davankov, Vadim A
2011-09-01
New chiral amidophosphite ligand was synthesized and tested in the Rh-catalyzed asymmetric hydrogenation of (Z)-β-(acylamino)acrylates in protic solvents and supercritical carbon dioxide (scCO(2) ) The catalytic performance is affected greatly by the acidity of the solvents. Better enantioselectivity (up to 88% ee) was achieved in scCO(2) containing 1,1,1,3,3,3-hexafluoro-2-propanol, compared to neat protic solvents. Copyright © 2011 Wiley-Liss, Inc.
[Influence of mobile phase composition on chiral separation of organic selenium racemates].
Han, Xiao-qian; Qi, Bang-feng; Dun, Hui-juan; Zhu, Xin-yi; Na, Peng-jun; Jiang, Sheng-xiang; Chen, Li-ren
2002-05-01
The chiral separation of some chiral compounds with similar structure on the cellulose tris (3,5-dimethylphenylcarbamate) chiral stationary phase prepared by us was obtained. Ternary mobile phases influencing chiral recognition were investigated. A mode of interaction between the structural character of samples and chiral stationary phase is discussed. The results indicated that the retention and chiral separation of the analytes had a bigger change with minute addition of alcohols or acetonitrile as modifier in n-hexane/2-propanol (80/20, volume ratio) binary mobile phase.
Pietta, P; Bruno, A; Mauri, P; Rava, A
1992-02-28
Calendula officinalis and Sambucus nigra flowers were analysed by reversed-phase high-performance liquid chromatography (RP-HPLC) and micellar electrokinetic capillary chromatography (MECC). RP-HPLC was performed on C8 Aquapore RP 300 columns with eluents containing 2-propanol and tetrahydrofuran. MECC was carried out on a 72-cm fused-silica capillary using sodium dodecyl sulphate and sodium borate (pH 8.3) as the running buffer. The results obtained by these techniques are compared.
Okot-Kotber, Moses; Liavoga, Allan; Yong, Kwon-Joong; Bagorogoza, Katherine
2002-04-10
Polyphenol oxidase (PPO), known to induce browning in wheat-based products, has been shown to be activatable in wheat (Triticum aestivum) bran extracts by chemical compounds. The activity in the extracts could be increased to varying degrees with acetone, methanol, ethanol, 2-propanol, and n-butanol as additives in the extraction buffer. The most potent alcoholic activator was n-butanol (about a 3-fold increase), followed by 2-propanol and ethanol, whereas methanol had the least effect. Ionic detergents in the extraction buffer were also good activators, with sodium dodecyl sulfate (SDS) being more potent (3-fold increase) than cetyltrimethylammonium bromide (CTAB) that had only half as much effect, whereas the nonionic detergent, Triton X-114, was ineffective. The chaotropes, urea and guanidine x HCl (GND), were the most potent activators of all, increasing the activity over 4-fold. Of the two chaotropes, GND was more effective at lower concentrations (<6 M) than urea. However, the enzyme activity lessened at a higher concentration of GND (6 M), while there was a further increase in the activity with 6 M urea treatment. The activity lessened with higher concentration of GND presumably as a result of extensive denaturation of the enzyme, as GND is known to be a more potent denaturant than urea. It is hypothesized that in wheat PPO exists in an inactive form which may be activated by the presence of activators, hitherto unknown, similar in effect to that elicited by the chemical denaturants in this study.
NASA Astrophysics Data System (ADS)
Godin, Paul J.; Le Bris, Karine; Strong, Kimberly
2017-12-01
Absorption cross-sections of 1,1,1,3,3,3-hexafluoro-2-propanol (HFIP) were derived from Fourier transform infrared spectra recorded from 530 to 3400 cm-1 with a resolution of 0.1 cm-1 over a temperature range of 300-362 K. These results were compared to previously published experimental measurements made at room temperature and to a theoretical spectrum from density functional theory (DFT) calculations. Good agreement is found between the experimentally derived results, DFT calculations, and previously published data. The only temperature dependence observed was in the amplitude of some of the absorption peaks due to the changing ratio of the stable conformations of HFIP. This temperature dependence does not result in a significant trend in integrated band strength as a function of temperature. The average value for integrated band strength is found to be (2.649 ± 0.065)x10-16 cm molecule-1 for HFIP over the spectral range of 595 to 3010 cm-1. Radiative efficiency (RE) and the global warming potential (GWP) for HFIP were also derived. A RE of 0.293 ± 0.059 Wm-2ppbv-1 is derived, which leads to a GWP100 of 188 in the range of 530 to 3000 cm-1. The DFT calculation is linearly adjusted to match the experimental spectrum. Using this adjusted DFT spectrum to expand the range below 530 to 0 cm-1 , increases the RE to 0.317 ± 0.063 Wm-2ppbv-1 and the GWP100 to 203.
Ye, Yangfang; Wang, Xin; Zhang, Limin; Lu, Zhenmei; Yan, Xiaojun
2012-07-01
Nicotine can cause oxidative damage to organisms; however, some bacteria, for example Pseudomonas sp. HF-1, are resistant to such oxidative stress. In the present study, we analyzed the concentration-dependent metabolic response of Pseudomonas sp. HF-1 to nicotine stress using ¹H NMR spectroscopy coupled with multivariate data analysis. We found that the dominant metabolites in Pseudomonas sp. HF-1 were eight aliphatic organic acids, six amino acids, three sugars and 11 nucleotides. After 18 h of cultivation, 1 g/L nicotine caused significant elevation of sugar (glucose, trehalose and maltose), succinate and nucleic acid metabolites (cytidine, 5'-CMP, guanine 2',3'-cyclic phosphate and adenosine 2',3'-cyclic phosphate), but decrease of glutamate, putrescine, pyrimidine, 2-propanol, diethyl ether and acetamide levels. Similar metabolomic changes were induced by 2 g/L nicotine, except that no significant change in trehalose, 5'-UMP levels and diethyl ether were found. However, 3 g/L nicotine led to a significant elevation in the two sugars (trehalose and maltose) levels and decrease in the levels of glutamate, putrescine, pyrimidine and 2-propanol. Our findings indicated that nicotine resulted in the enhanced nucleotide biosynthesis, decreased glucose catabolism, elevated succinate accumulation, severe disturbance in osmoregulation and complex antioxidant strategy. And a further increase of nicotine level was a critical threshold value that triggered the change of metabolic flow in Pseudomonas sp. HF-1. These findings revealed the comprehensive insights into the metabolic response of nicotine-degrading bacteria to nicotine-induced oxidative toxicity.
Lee, Sang Mi; Shin, Gil-Ok; Park, Kyung Min; Chang, Pahn-Shick; Kim, Young-Suk
2013-01-01
Static headspace gas chromatographic (SHS-GC) analysis was performed to determine the release of 13 odorants in hydrocolloid model systems containing original or regio-selectively carboxylated cellulose at different pH values. The release of most odor compounds was decreased in the hydrocolloid solutions compared to control, with the amounts of 2-propanol, 3-methyl-1-butanol, and 2,3-butanedione released into the headspace being less than those of any other odor compound in the hydrocolloid model systems. However, there was no considerable difference between original cellulose-containing and carboxylated-cellulose containing systems in the release of most compounds, except for relatively long-chain esters such as ethyl caprylate and ethyl nonanoate. The release from the original and carboxylated cellulose solutions controlled to pH 10 was significantly higher than that from solutions adjusted to pH 4 and 7 in the case of some esters (ethyl acetate, methyl propionate, ethyl propionate, ethyl butyrate, butyl propionate, ethyl caproate) and alcohols (2-propanol, 3-methyl-1-butanol), in particular, ethyl butyrate and 3-methyl-1-butanol. In contrast, the release of 2,3-butanedione from both the original and carboxylated cellulose solutions was increased at pH 4 and 7 compared to that at pH 10 by about 70% and 130%, respectively. Our study demonstrated that the release of some odorants could be changed significantly by addition of both original and carboxylated cellulose in hydrocolloid model systems, but only minor effect was observed in pH of the solution. PMID:23447013
Karadjova, Irina B; Lampugnani, Leonardo; Tsalev, Dimiter L
2005-02-28
Analytical procedures for electrothermal atomic absorption spectrometric (ETAAS) determination of arsenic in essential oils from lavender (Lavendula angustifolia) and rose (Rosa damascena) are described. For direct ETAAS analysis, oil samples are diluted with ethanol or i-propanol for lavender and rose oil, respectively. Leveling off responses of four different arsenic species (arsenite, arsenate, monomethylarsonate and dimethylarsinate) is achieved by using a composite chemical modifier: l-cysteine (0.05gl(-1)) in combination with palladium (2.5mug) and citric acid (100mug). Transverse-heated graphite atomizer (THGA) with longitudinal Zeeman-effect background correction and 'end-capped' graphite tubes with integrated pyrolytic graphite platforms, pre-treated with Zr-Ir for permanent modification are employed as most appropriate atomizer. Calibration with solvent-matched standard solutions of As(III) is used for four- and five-fold diluted samples of lavender and rose oil, respectively. Lower dilution factors required standard addition calibration by using aqueous (for lavender oil) or i-propanol (for rose oil) solutions of As(III). The limits of detection (LOD) for the whole analytical procedure are 4.4 and 4.7ngg(-1) As in levender and rose oil, respectively. The relative standard deviation (R.S.D.) for As at 6-30ngg(-1) levels is between 8 and 17% for both oils. As an alternative, procedure based on low temperature plasma ashing in oxygen with ETAAS, providing LODs of 2.5 and 2.7ngg(-1) As in levender and rose oil, respectively, and R.S.D. within 8-12% for both oils has been elaborated. Results obtained by both procedures are in good agreement.
Molecular emulsions: from charge order to domain order.
Perera, Aurélien
2017-10-25
Aqueous mixtures of small molecules, such as lower n-alkanols for example, are known to be micro-segregated, with domains in the nano-meter range. One consequence of this micro-segregation would be the existence of long range domain-domain oscillatory correlations in the various atom-atom pair correlation functions, and subsequent pre-peaks in the corresponding atom-atom structure factors, in the q-vector range corresponding to nano-sized domains. However, no such pre-peak have ever been observed in the large corpus of radiation scattering data published so far on aqueous mixtures of small n-alkanols. By using large scale simulations of aqueous-1propanol mixtures, it is shown herein that the origin for the absence of scattering pre-peak resides in the exact cancellation of the contributions of the various atom-atom correlation pre-peaks to the total scattered intensity. The mechanism for this cancellation is due to the differences in the long range oscillatory behaviour of the correlations (beyond 1 nm), which are exactly out-of-phase between same species and cross species. This is similar to the charge order observed in ionic melts, but differs from room temperature ionic liquids, where the segregation is between charged and neutral groups, instead of species segregation. The consequences of such cancellation in the experimental scattering data are examined, in relation to the possibility of detecting micro-segregation through such methods. In the particular case of aqueous-1propanol mixtures, it is shown the X-ray scattering leads an exact cancellation, while this cancellation in neutron scattering is seen to depend on the deuteration ratio between solvent and solute.
Villegas-Guzman, Paola; Silva-Agredo, Javier; Giraldo-Aguirre, Ana L; Flórez-Acosta, Oscar; Petrier, Christian; Torres-Palma, Ricardo A
2015-01-01
The sonochemical degradation of dicloxacillin (DXC) was studied in both synthetic and natural waters. Degradation routes and the effect of experimental conditions such as pH, initial DXC concentration and ultrasonic power were evaluated. Experiments were carried out with a fixed frequency (600kHz). The best performances were achieved using acidic media (pH=3) and high power (60W). The degradation process showed pseudo-first order kinetics as described by the Okitsu model. To evaluate water matrix effects, substrate degradation, in the presence of Fe(2+) and organic compounds such as glucose and 2-propanol, was studied. A significant improvement was achieved with Fe(2+) (1.0mM). Inhibition of the degradation process was observed at a relatively high concentration of 2-propanol (4.9mM), while glucose did not show any effect. Natural water showed an interesting effect: for a low concentration of DXC (6.4μM), an improvement in the degradation process was observed, while at a higher concentration of DXC (0.43mM), degradation was inhibited. Additionally, the extent of degradation of the process was evaluated through the analysis of chemical oxygen demand (COD), antimicrobial activity, total organic carbon (TOC) and biochemical oxygen demand (BOD5). A 30% removal of COD was achieved after the treatment and no change in the TOC was observed. Antimicrobial activity was eliminated after 360min of ultrasonic treatment. After 480min of treatment, a biodegradable solution was obtained. Copyright © 2014 Elsevier B.V. All rights reserved.
Okamoto, Hitoshi; Nakajima, Toshiaki; Ito, Yuji; Aketo, Takao; Shimada, Kenji; Yamato, Susumu
2005-03-09
Cyclodextrin-modified microemulsion electrokinetic chromatography (CD-MEEKC) was used to simultaneously determine 14 active ingredients (thiamine nitrate, anhydrous caffeine, acetaminophen, riboflavin, guaifenesin, pseudoephedrine hydrochloride, ascorbic acid, ethenzamide, DL-methylephedrine hydrochloride, dihydrocodeine phosphate, ibuprofen, noscapine, carbinoxamine maleate, and bromhexine hydrochloride) in a cold medicine. Separation of the ingredients was optimized by changing the SDS concentration and oil type and the addition of 2-propanol and cyclodextrin (CD) to the separation solution. The separation selectivity was improved dramatically by changing CD type. All of the active ingredients and formulation excipients were successfully separated with the use of a separation solution consisting of 0.81% (w/w) pentane, 6.61% (w/w) 1-butanol, 2% (w/w) 2-propanol, 4.47% (w/w) SDS, and 86.11% (w/w) 10 mM sodium tetraborate solution with 3 mM 2,6-di-O-methyl-beta-CD. The established method was then validated and demonstrated to be applicable to the determination of the active ingredients in a model cold medicine. No interference from the formulation excipients was observed. Good linearities were obtained with correlation coefficients above 0.999. Recovery and precision ranged from 99.1 to 100.7% and from 0.5 to 2.8% R.S.D., respectively. The detection limit for ingredients ranged from 0.6 to 4.2 microg ml(-1). Good agreement was obtained between the established method and the traditional HPLC method. These results suggest that CD-MEEKC can be used for the determination of multiple ingredients in cold medicine.
Sun, Jianxia; Bai, Shun; Bai, Weibin; Zou, Feiyan; Zhang, Lei; Li, Guoqiang; Hu, Yunfeng; Li, Mingwei; Yan, Rian; Su, Zhijian; Huang, Yadong
2014-07-01
1,3-Dichloro-2-propanol (1,3-DCP) is a well-known food processing contaminant that has been shown to impede male reproductive function. However, its mechanism of action remains elusive. In this study, the effects of 1,3-DCP on progesterone production were investigated using the R2C Leydig cell model. 1,3-DCP significantly reduced cell viability from 7.48% to 97.4% at doses comprised between 0.5 and 6mM. Single cell gel/comet assays and atomic force microscopy assays showed that 1,3-DCP induced early phase cell apoptosis. In addition, 1,3-DCP significantly reduced progesterone production detected by radioimmunoassay (RIA). The results from quantitative polymerase chain reaction and western blotting demonstrated that the mRNA expression levels of steroidogenic acute regulatory protein (StAR), cytochrome P450 side-chain cleavage enzyme and 3β-hydroxysteroid dehydrogenase were significantly down-regulated in R2C cells. Particularly, the change rhythm of Star expression was highly consistent with progesterone production. Furthermore, the cyclic adenosine monophosphate (cAMP) and the mitochondrial membrane potential mediated by ROS, which are involved in regulating progesterone synthesis were also decreased in response to the 1,3-DCP treatment. Overall, the data presented here suggested that 1,3-DCP interferes with the male steroidogenic capacity mainly by down-regulating the level of cAMP and the key enzymes involved in the androgen synthesis pathway. Copyright © 2014 Elsevier Ltd. All rights reserved.
Zeglinski, Jacek; Kuhs, Manuel; Khamar, Dikshitkumar; Hegarty, Avril C; Devi, Renuka K; Rasmuson, Åke C
2018-04-03
The influence of the solvent in nucleation of tolbutamide, a medium-sized, flexible and polymorphic organic molecule, has been explored by measuring nucleation induction times, estimating solvent-solute interaction enthalpies using molecular modelling and calorimetric data, probing interactions and clustering with spectroscopy, and modelling solvent-dependence of molecular conformation in solution. The nucleation driving force required to reach the same induction time is strongly solvent-dependent, increasing in the order: acetonitrile
Nakamura, T; Nagasawa, T; Yu, F; Watanabe, I; Yamada, H
1992-01-01
During the course of the transformation of 1,3-dichloro-2-propanol (DCP) into (R)-3-chloro-1,2-propanediol [(R)-MCP] with the cell extract of Corynebacterium sp. strain N-1074, epichlorohydrin (ECH) was transiently formed. The cell extract was fractionated into two DCP-dechlorinating activities (fractions Ia and Ib) and two ECH-hydrolyzing activities (fractions IIa and IIb) by TSKgel DEAE-5PW column chromatography. Fractions Ia and Ib catalyzed the interconversion of DCP to ECH, and fractions IIa and IIb catalyzed the transformation of ECH into MCP. Fractions Ia and IIa showed only low enantioselectivity for each reaction, whereas fractions Ib and IIb exhibited considerable enantioselectivity, yielding R-rich ECH and MCP, respectively. Enzymes Ia and Ib were isolated from fractions Ia and Ib, respectively. Enzyme Ia had a molecular mass of about 108 kDa and consisted of four subunits identical in molecular mass (about 28 kDa). Enzyme Ib was a protein of 115 kDa, composed of two different polypeptides (about 35 and 32 kDa). The specific activity of enzyme Ib for DCP was about 30-fold higher than that of enzyme Ia. Both enzymes catalyzed the transformation of several halohydrins into the corresponding epoxides with liberation of halides and its reverse reaction. Their substrate specificities and immunological properties differed from each other. Enzyme Ia seemed to be halohydrin hydrogen-halide-lyase which was already purified from Escherichia coli carrying a gene from Corynebacterium sp. strain N-1074. Images PMID:1447132
Tom, Justin; Jakubec, Philip J; Andreas, Heather A
2018-05-01
Exposing a carbon electrode to hemoglobin (Hb) and alcoholic solvents, such as methanol, ethanol or 1-propanol, drastically changes Hb electroactivity, but until this work, the important underlying mechanisms were unclear. For the first time, we show that these alcohols impact Hb electroactivity via three mechanisms: modification of the carbon surface oxides on the glassy carbon (GC) electrode, Hb film formation, and structural changes to Hb. C 1s X-ray photoelectron spectroscopy provided evidence for significant alcohol-induced modification of the carbon surface oxides, and differential pulse voltammetry showed links between these modifications and Hb electroactivity. Spectroscopic ellipsometry showed that Hb films formed during exposure to Hb- and alcohol-containing electrolytes increased in thickness with increasing alcohol content, although film thickness played only a minor role in Hb electroactivity. Alcohol-induced structural changes in Hb are confirmed with UV-visible absorption and fluorescence data, showing that Hb denaturation also was a significant factor in increasing Hb electroactivity. Carbon-surface-oxide modification and Hb denaturation worked in tandem to maximally increase the Hb electroactivity in 60% methanol. While in ethanol and 1-propanol, the significant increases in Hb electroactivity caused by Hb denaturation were offset by an increase in Hb-inhibiting carbon surface oxides. Knowledge of these mechanisms shows the impact of alcohols on both Hb and carbon electrodes, allows for thoughtful design of the Hb-sensing system, is vital for proper analysis of Hb electroactivity in the presence of these alcohols (e.g., when used as binder solvents for immobilizing Hb into films), and provides fundamental understanding of the Hb-carbon interactions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stephenson, Casey J.; Hassan Beyzavi, M.; Klet, Rachel C.
Reaction of styrene oxide with sodium cyanoborohydride and a catalytic amount of Hf-NU-1000 yields the anti-Markovnikov product, 2-phenylethanol, with over 98% regioselectivity. On the other hand, propylene oxide is ring opened in a Markovnikov fashion to form 2-propanol with 95% regioselectivity. Both styrene oxide and propylene oxide failed to react with sodium cyanoborohydride without the addition of Hf-NU-1000 indicative of the crucial role of Hf-NU-1000 as a catalyst in this reaction. To the best of our knowledge, this is the first report of the use of a metal-organic framework material as a catalyst for ring-opening of epoxides with hydrides.
Method for producing high dielectric strength microvalves
Kirby, Brian J [San Francisco, CA; Reichmuth, David S [Oakland, CA; Shepodd, Timothy J [Livermore, CA
2006-04-04
A microvalve having a cast-in-place and lithographically shaped mobile, polymer monolith for fluid flow control in microfluidic devices and method of manufacture. The microvalve contains a porous fluorinated polymer monolithic element whose pores are filled with an electrically insulating, high dielectric strength fluid, typically a perfluorinated liquid. This combination provides a microvalve that combines high dielectric strength with extremely low electrical conductivity. These microvalves have been shown to have resistivities of at least 100 G.OMEGA. and are compatible with solvents such as water at a pH between 2.7 and 9.0, 1-1 propanol, acetonitrile, and acetone.
Adsorption of alcohols on a two-dimensional SiO2 single crystal - Alcohol adsorption on silicatene
NASA Astrophysics Data System (ADS)
Nayakasinghe, M. T.; Sivapragasam, N.; Burghaus, U.
2017-12-01
The adsorption kinetics of alcohols (methanol, ethanol, 1-propanol, 1-butanol, 1-pentanol) was studied on monoatomic, two-dimensional SiO2 single crystals (silicatene) using thermal desorption spectroscopy (TDS). Silicatene was grown on Mo(1 1 2) at ultra-high vacuum. In contrast to Mo, the alcohols physisorb molecularly on the hydrophobic SiO2/Mo surface. Zero coverage binding energies vary from 46.5 to 65.5 kJ/mol and increase with molecular size. Silicatene was characterized by Auger electron spectroscopy (AES), low energy electron diffraction (LEED), and water TDS.
NASA Astrophysics Data System (ADS)
Huang, S. M.; Zhou, F. L.
2017-12-01
Alcohol has great potential to delay the coagulation of cement. The effects of alcohol on paste fluidity and normal consistency coagulation time have been studied for polycarboxylate superplasticizer and naphthene cement admixture. Seven alcohols were combined with polycarboxylate superplasticizer and naphthene at a concentration of 0.01-0.09%, respectively, including n-propanol, methanol, sorbitol, ethylene glycol, glycerol, ethanol, and mannitol. The fluidity and normal consistency coagulation time of each cement admixture were measured. The performance of both polycarboxylate superplasticizer and naphthene cement admixtures were compared to develop cement admixture with delayed coagulation.
Self-reduction of a copper complex MOD ink for inkjet printing conductive patterns on plastics.
Farraj, Yousef; Grouchko, Michael; Magdassi, Shlomo
2015-01-31
Highly conductive copper patterns on low-cost flexible substrates are obtained by inkjet printing a metal complex based ink. Upon heating the ink, the soluble complex, which is composed of copper formate and 2-amino-2-methyl-1-propanol, decomposes under nitrogen at 140 °C and is converted to pure metallic copper. The decomposition process of the complex is investigated and a suggested mechanism is presented. The ink is stable in air for prolonged periods, with no sedimentation or oxidation problems, which are usually encountered in copper nanoparticle based inks.
NASA Astrophysics Data System (ADS)
Lee, Choong-Gon; Umeda, Minoru; Uchida, Isamu
The effect of temperature on methanol, ethanol, 2-propanol, and 2-butanol electrooxidation is investigated with Pt/C and Pt-Ru/C microporous electrodes. Cyclic voltammetry is employed in temperatures ranging from 25 to 80 °C to provide quantitative and qualitative information on the kinetics of alcohol oxidation. Methanol displays the greatest activity atom alcohols. The addition of ruthenium reduces the poisoning effect, although it is ineffective with secondary alcohols. Secondary alcohols undergo a different oxidation mechanism at higher temperatures. Microporous electrodes provide detailed information on alcohol oxidation.
Jordan, Alexander T; Hsieh, Jeffery S; Lee, Daniel T
2013-01-01
A method to separate inkjet ink from water was developed using a liquid phase, electric discharge process. The liquid phase, electric discharge process with filtration or sedimentation was shown to remove 97% of inkjet ink from solutions containing between 0.1-0.8 g/L and was consistent over a range of treatment conditions. Additionally, particle size analysis of treated allyl alcohol and treated propanol confirmed the electric discharge treatment has a polymerization mechanism, and small molecule analysis of treated methanol using gas chromatography and mass spectroscopy confirmed the mechanism was free radical initiated polymerization.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Blazy, V., E-mail: vincent.blazy@irstea.fr; Guardia, A. de, E-mail: amaury.de-guardia@irstea.fr; Benoist, J.C
Highlights: • The gaseous emissions produced by various composting process conditions were characterized and quantified. • Nine compounds were potentially odorous: TMA, NH{sub 3}, 2-pentanone, 1-propanol-2-methyl, acetophenone and sulphur forms. • The tested composting process conditions reduced odour emissions by a factor of 5–10. • A reduction of 10{sup 5} to 10{sup 6} is required to reach an odour threshold limit at peak event emissions. • Both aeration rate and bulking agent had the most impact on reducing odour emissions. - Abstract: Compost sustainability requires a better control of its gaseous emissions responsible for several impacts including odours. Indeed, compostingmore » odours have stopped the operation of many platforms and prevented the installation of others. Accordingly, present technologies collecting and treating gases emitted from composting are not satisfactory and alternative solutions must be found. Thus, the aim of this paper was to study the influence of composting process conditions on gaseous emissions. Pig slaughterhouse sludge mixed with wood chips was composted under forced aeration in 300 L laboratory reactors. The process conditions studied were: aeration rate of 1.68, 4.03, 6.22, 9.80 and 13.44 L/h/kg of wet sludge; incorporation ratio of 0.55, 0.83 and 1.1 (kg of wet wood chips/kg of wet sludge), and; bulking agent particles size of <10, 10 < 20 and 20 < 30 mm. Out-going gases were sampled every 2 days and their composition was analysed using gas chromatography coupled with mass spectrometry (GC–MS). Fifty-nine compounds were identified and quantified. Dividing the cumulated mass production over 30 days of composting, by odour threshold, 9 compounds were identified as main potential odour contributors: hydrogen sulphide, trimethylamine, ammonia, 2-pentanone, 1-propanol-2-methyl, dimethyl sulphide, dimethyl disulphide, dimethyl trisulphide and acetophenone. Five gaseous compounds were correlated with both aeration rate and bulking agent to waste ratio: hydrogen sulphide, trimethylamine, ammonia, 2-pentanone and 1-propanol-2-methyl. However, dropping the aeration rate and increasing the bulking agent to waste ratio reduced gaseous odour emissions by a factor of 5–10, when the required threshold dilution factor ranged from 10{sup 5} to 10{sup 6}, to avoid nuisance at peak emission rates. Process influence on emissions of dimethyl sulphide, dimethyl disulphide, dimethyl trisulphide were poorly correlated with both aeration rate and bulking agent to waste ratio as a reaction with hydrogen sulphide was suspected. Acetophenone emissions originated from the wood chips. Olfactory measurements need to be correlated to gaseous emissions for a more accurate odour emission evaluation.« less
Potassium sorbate reduces production of ethanol and 2 esters in corn silage.
Hafner, Sasha D; Franco, Roberta B; Kung, Limin; Rotz, C Alan; Mitloehner, Frank
2014-12-01
The objective of this work was to evaluate the effects of biological and chemical silage additives on the production of volatile organic compounds (VOC; methanol, ethanol, 1-propanol, methyl acetate, and ethyl acetate) within corn silage. Recent work has shown that silage VOC can contribute to poor air quality and reduce feed intake. Silage additives may reduce VOC production in silage by inhibiting the activity of bacteria or yeasts that produce them. We produced corn silage in 18.9-L bucket silos using the following treatments: (1) control (distilled water); (2) Lactobacillus buchneri 40788, with 400,000 cfu/g of wet forage; (3) Lactobacillus plantarum MTD1, with 100,000 cfu/g; (4) a commercial buffered propionic acid-based preservative (68% propionic acid, containing ammonium and sodium propionate and acetic, benzoic, and sorbic acids) at a concentration of 1 g/kg of wet forage (0.1%); (5) a low dose of potassium sorbate at a concentration of 91 mg/kg of wet forage (0.0091%); (6) a high dose of potassium sorbate at a concentration of 1g/kg of wet forage (0.1%); and (7) a mixture of L. plantarum MTD1 (100,000 cfu/g) and a low dose of potassium sorbate (91 mg/kg). Volatile organic compound concentrations within silage were measured after ensiling and sample storage using a headspace gas chromatography method. The high dose of potassium sorbate was the only treatment that inhibited the production of multiple VOC. Compared with the control response, it reduced ethanol by 58%, ethyl acetate by 46%, and methyl acetate by 24%, but did not clearly affect production of methanol or 1-propanol. The effect of this additive on ethanol production was consistent with results from a small number of earlier studies. A low dose of this additive does not appear to be effective. Although it did reduce methanol production by 24%, it increased ethanol production by more than 2-fold and did not reduce the ethyl acetate concentration. All other treatments increased ethanol production at least 2-fold relative to the control, and L. buchneri addition also increased the 1-propanol concentration to approximately 1% of dry matter. No effects of any treatments on fiber fractions or protein were observed. However, L. buchneri addition resulted in slightly more ammonia compared with the control. If these results hold under different conditions, a high dose of potassium sorbate will be an effective treatment for reducing VOC production in and emission from silage. Regulations aimed at reducing VOC emission could be ineffective or even increase emission if they promote silage additives without recognition of different types of additives. Copyright © 2014 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Semelsberger, Troy A.; Borup, Rodney L.
The production of a hydrogen-rich fuel-cell feed by dimethyl ether (DME) steam reforming was investigated using calculations of thermodynamic equilibrium as a function of steam-to-carbon ratio (0.00-4.00), temperature (100-600 °C), pressure (1-5 atm), and product species. Species considered were acetone, acetylene, carbon dioxide, carbon monoxide, dimethyl ether, ethane, ethanol, ethylene, formaldehyde, formic acid, hydrogen, isopropanol, methane, methanol, methyl-ethyl ether, n-propanol and water. Thermodynamic equilibrium calculations of DME steam reforming indicate complete conversion of dimethyl ether to hydrogen, carbon monoxide and carbon dioxide at temperatures greater than 200 °C and steam-to-carbon ratios greater than 1.25 at atmospheric pressure ( P = 1 atm). Increasing the operating pressure shifts the equilibrium toward the reactants; increasing the pressure from 1 to 5 atm decreases the conversion of dimethyl ether from 99.5 to 76.2%. The trend of thermodynamically stable products in decreasing mole fraction is methane, ethane, isopropyl alcohol, acetone, n-propanol, ethylene, ethanol, methyl-ethyl ether and methanol-formaldehyde, formic acid, and acetylene were not observed. Based on the equilibrium calculations, the optimal processing conditions for dimethyl ether steam reforming occur at a steam-to-carbon ratio of 1.50, a pressure of 1 atm, and a temperature of 200 °C. These thermodynamic equilibrium calculations show dimethyl ether processed with steam will produce hydrogen-rich fuel-cell feeds—with hydrogen concentrations exceeding 70%. The conversion of dimethyl ether via hydrolysis (considering methanol as the only product) is limited by thermodynamic equilibrium. Equilibrium conversion increases with temperature and steam-to-carbon ratio. A maximum dimethyl ether conversion of 62% is achieved at a steam-to-carbon ratio of 5.00 and a processing temperature of 600 °C.
NASA Astrophysics Data System (ADS)
Papu, Nabam Hina; Lingfa, Pradip
2018-04-01
Navicula Sphaerophora was isolated from a fresh water reservoir in Arunachal Pradesh, India. N. Sphaerophora was grown on two different culture media, chu13 medium and Miracle Gro-medium. The maximum yield was obtained by using culture medium chu13(5.08 g/100ml of culture media). Microalgae crude oil was extracted using soxhlation method with three different solvents n-hexane, iso-propanol and hexane/ iso-propanol mixture. The maximum crude oil was obtained using n-hexane as a solvent (13.8% of dry weight biomass). The crude oil was converted into biodiesel using single stage transesterification process with sodium hydroxide (NaOH) as a base catalyst. Fuel properties of algae biodiesel satisfied biodiesel standard ASTM D6751 and use of this fuel should be comparable with petroleum diesel. Further short term engine test was conducted on single cylinder direct injection diesel engine at four different load (25%,50%,75% and 100%). Three different petroleum diesel and Microalgae Biodiesel blends (10%, 20% and 30%) were prepared. The influence of biodiesel blends on BSFC (brake specific fuel consumption), BTE (brake thermal efficiency), oxides of nitrogen (NOx), UBHC (unburnt hydrocarbons), carbonmonoxide (CO) and smoke opacity was studied and compared with petroleum diesel. Microalgae methyl ester 50% blend (B50) had lowest brake thermal efficiency (BTE) and highest Brake specific fuel consumption (BSFC) as compared to diesel; this may be due to Lower calorific value. HC, CO emission and smoke opacity reduces significantly with microalgae methyl ester. However, the NOx emission increases with all blends when compared to petroleum diesel. 10% microalgae blend with petroleum diesel showed the closet performance to petroleum diesel. Results obtained from present investigation confirmed the biofuel potentiality of Navicula Sphaerophora.
Samapundo, Simbarashe; Mujuru, Felix Mugove; de Baenst, Ilse; Denon, Quenten; Devlieghere, Frank
2016-02-01
This study evaluated the effect of residual O2 level (0% to 5%) on microbial growth and volatile metabolite production on par-fried French fries packaged in a modified atmosphere with 60% CO2 (rest N2 ) at 4 °C. The results obtained showed that the initial headspace (IH) O2 level had an effect on growth of Leuconostoc mesenteroides on French fry simulation agar, whereby growth was slightly faster under 5% O2 . In terms of quantity, ethanol, 2-methyl-1-propanol, and dimethyl disulphide were the most significant volatile metabolites produced by L. mesenteroides. The production of ethanol by L. mesenteroides was highest on simulation agar packaged under low IH O2 levels (0% to 1%), indicating that the fermentative metabolism was induced under these conditions. In agreement with the results observed on the simulation medium, growth of native lactic acid bacteria was faster under an IH O2 level of 5%. In addition, ethanol, 2-methyl-1-propanol, and dimethyl disulphide were also quantitatively the most important volatile metabolites. However, in contrast, greater quantities of ethanol and dimethyl disulphide were produced on par-fried French fries packaged under 5% O2 . This was attributed to the limited growth of the native flora on the par-fried French fries under residual O2 levels of 0% and 1%. Although some significant differences (P < 0.05) occurred between the French fries packaged in 0%, 1%, and 5 % residual O2 during storage, all products were considered to be acceptable for consumption. The results of this study can be used to optimize the shelf-life of packaged chill stored potato products. © 2016 Institute of Food Technologists®
Caruso, Rosario; Scordino, Monica; Traulo, Pasqualino; Gagliano, Giacomo
2012-01-01
A capillary GC-flame ionization detection (FID) method to determine volatile compounds (ethyl acetate, 1,1-diethoxyethane, methyl alcohol, 1-propanol, 2-methyl-1-propanol, 2-methyl-1-butanol, 3-methyl-1-butanol, 1-butanol, and 2-butanol) in wine was investigated in terms of calculation of detection limits and calibration method. The main objectives were: (1) calculation of regression coefficient parameters by ordinary least-squares (OLS) and bivariate least-squares (BLS) regression models, taking into account errors in both axes; (2) estimation of linear dynamic range (LDR) according to International Conference on Harmonization recommendations; (3) performance evaluation of a method by using three different internal standards (ISs) such as acetonitrile, acetone, and 1-pentanol; (4) evaluation of LODs according to the U.S. Environmental Protection Agency (EPA) 3sigma approach and the Hubaux-Vos (H-V) method; (5) application of H-V theory to a gas chromatographic analytical method and to a food matrix; and (6) accuracy assessment of the method relative to methyl alcohol content through a Unione Italiana Vini (UIV) interlaboratory proficiency test. Calibration curves calculated via BLS and OLS show similar slopes, while intercepts are closer to zero in the first case, independent of the chosen IS. The studied ISs show a substantially equivalent behavior, even though the IS closer to the analyte retention time seems to be more appropriate in terms of LDR and LOD. Results indicate an underestimation of LODs using the EPA 3sigma approach instead of the more realistic H-V method, both with OLS and BLS regression models. Methanol contents compared with UIV average values indicate recovery between 90 and 110%.
Prasertsab, Anittha; Maihom, Thana; Probst, Michael; Wattanakit, Chularat; Limtrakul, Jumras
2018-06-04
The hydrogen transfer of furfural to furfuryl alcohol with i-propanol as the hydrogen source over cation-exchanged Lewis acidic BEA zeolite has been investigated by means of density functional calculations. The reaction proceeds in three steps. First the O-H bond of i-propanol is broken to form a propoxide intermediate. After that, the furylmethoxy intermediate is formed via hydrogen transfer process, and finally furylmethoxy abstracts the proton to form the furfuryl alcohol product. The second step is rate-determining by requiring the highest activation energy (23.8 kcal/mol) if the reaction takes place on Li-Sn-BEA zeolite. We find that the catalytic activity of various cation-exchanged Sn-BEA zeolites is in the order Li-Sn-BEA > Na-Sn-BEA > K-Sn-BEA. The lower activation energy for Li-Sn-BEA compared to Na-Sn-BEA and K-Sn-BEA can be explained by the larger charge transfer from the carbonyl bond to the catalyst, leading to its activation and to the attraction of the hydrogen being transferred. The larger charge transfer in turn is due to the smaller gap between the energies of furfural HOMO and the zeolite LUMO in Li-Sn-BEA, compared to both Na-Sn-BEA and K-Sn-BEA. In a similar way, we also compare the catalytic activity of tetravalent metal centers (Sn, Zr, and Hf) substituted into BEA and find in the order Zr ≥ Hf > Sn, based on activation energies. Finally we investigate statistically which property of the reactants is a suitable descriptor for an approximative prediction of the reaction rate in order to be able to quickly screen promising catalytic materials for this reaction.
Baratta, Walter; Baldino, Salvatore; Calhorda, Maria José; Costa, Paulo J; Esposito, Gennaro; Herdtweck, Eberhardt; Magnolia, Santo; Mealli, Carlo; Messaoudi, Abdelatif; Mason, Sax A; Veiros, Luis F
2014-10-13
Reaction of [RuCl(CNN)(dppb)] (1-Cl) (HCNN=2-aminomethyl-6-(4-methylphenyl)pyridine; dppb=Ph2 P(CH2 )4 PPh2 ) with NaOCH2 CF3 leads to the amine-alkoxide [Ru(CNN)(OCH2 CF3 )(dppb)] (1-OCH2 CF3 ), whose neutron diffraction study reveals a short RuO⋅⋅⋅HN bond length. Treatment of 1-Cl with NaOEt and EtOH affords the alkoxide [Ru(CNN)(OEt)(dppb)]⋅(EtOH)n (1-OEt⋅n EtOH), which equilibrates with the hydride [RuH(CNN)(dppb)] (1-H) and acetaldehyde. Compound 1-OEt⋅n EtOH reacts reversibly with H2 leading to 1-H and EtOH through dihydrogen splitting. NMR spectroscopic studies on 1-OEt⋅n EtOH and 1-H reveal hydrogen bond interactions and exchange processes. The chloride 1-Cl catalyzes the hydrogenation (5 atm of H2 ) of ketones to alcohols (turnover frequency (TOF) up to 6.5×10(4) h(-1) , 40 °C). DFT calculations were performed on the reaction of [RuH(CNN')(dmpb)] (2-H) (HCNN'=2-aminomethyl-6-(phenyl)pyridine; dmpb=Me2 P(CH2 )4 PMe2 ) with acetone and with one molecule of 2-propanol, in alcohol, with the alkoxide complex being the most stable species. In the first step, the Ru-hydride transfers one hydrogen atom to the carbon of the ketone, whereas the second hydrogen transfer from NH2 is mediated by the alcohol and leads to the key "amide" intermediate. Regeneration of the hydride complex may occur by reaction with 2-propanol or with H2 ; both pathways have low barriers and are alcohol assisted. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Suchomel, M; Kundi, M; Allegranzi, B; Pittet, D; Rotter, M L
2011-10-01
The 2009 World Health Organization (WHO) Guidelines on hand hygiene in health care recommend alcohol-based hand rubs for both hygienic and pre-surgical hand treatment. Two formulations based on ethanol 80% v/v and 2-propanol 75% v/v are proposed for local preparation in healthcare settings where commercial products are not available or too expensive. Both formulations and our suggested modifications (using mass rather than volume percent concentrations) were evaluated for their conformity with the efficacy requirements of the forthcoming amendment of the European Norm (EN) 12791, i.e. non-inferiority of a product when compared with a reference procedure (1-propanol 60% v/v for 3 min) immediately and 3 h after antisepsis. In this study, the WHO-recommended formulations were tested for 3 min and 5 min. Neither formulation met the efficacy requirements of EN 12791 with 3 min application. Increasing the respective concentrations to 80 w/w (85% v/v) and 75 w/w (80% v/v), together with a prolonged application of 5 min, rendered the immediate effect of both formulations non-inferior to the reference antisepsis procedure. This was not the case with the 3h effect, which remained significantly inferior to the reference. Although the original formulations do not meet the efficacy requirements of EN 12791, the clinical significance of this finding deserves further clinical trials. To comply with the requirement of EN 12791, an amendment to the formulations is possible by increasing the alcohol concentrations through changing volume into mass percent and prolonging the duration of application from 3 min to 5 min. Copyright © 2011 World Health Organization. Published by Elsevier Ltd on behalf of the Healthcare Infection Society. Published by Elsevier Ltd.. All rights reserved.
Occurrence of chloropropanols in soy sauce and other foods in China between 2002 and 2004.
Fu, Wu Sheng; Zhao, Yunfeng; Zhang, Gong; Zhang, Lei; Li, Jing Guang; Tang, Chang Dong; Miao, Hong; Ma, Jin Bo; Zhang, Qi; Wu, Yong Ning
2007-08-01
A survey of chloropropanols in soy sauce and some selected foods in China is reported. Thirty-seven traditionally brewed soy sauce samples contained 3-MCPD below the EC maximum limit (ML) of 0.02 mg kg(-1). All soy sauce samples (629) from retailers contained levels of 3-MCPD ranging between <0.005 (LOQ) and 189 mg kg(-1), and only 12.2% had levels in excess of the Chinese ML of 1.0 mg kg(-1) for acid hydrolyzed vegetable protein (acid HVP). This indicates that the necessary processing changes have been made to decrease levels of chloropropanols in soy sauce. 2-Monochloropropane-1,3-diol (2-MCPD), 1,3-dichloro-2-propanol (1,3-DCP) and 2,3-dichloro-1-propanol (2,3-DCP) were detected in 48.1 19.1 and 3.78% of the soy sauce samples, respectively; the highest levels being 20.3, 8.26 and 0.50 mg kg(-1), respectively. A good linear correlation was found between the amount of 3-MCPD and 2-MCPD, with the level of 3-MCPD being generally higher than that of other chloropropanols for the same soy sauce. Acid HVP contained 3-MCPD at a level of 0.010-117.7 mg kg(-1) (on a liquid basis) and 80% of samples contained levels exceeding 1.0 mg kg(-1). In some other foods investigated, relatively high levels of 3-MCPD were found in soy sauce powder, oyster sauce, beef products, instant noodle spices and health foods, ranging from 0.029 to 13.64 mg kg(-1). It is concluded that abnormal levels of 3-MCPD in soy sauce or other foods produced in China may result from acid hydrolysis or the addition of the contaminated acid HVP.
Balasubramaniam, Bharathiraja; Sudalaiyadum Perumal, Ayyappasamy; Jayaraman, Jayamuthunagai; Mani, Jayakumar; Ramanujam, Praveenkumar
2012-08-01
The petroleum fuel is nearing the line of extinction. Recent research and technology have provided promising outcomes to rely on biodiesel as the alternative and conventional source of fuel. The use of renewable source - vegetable oil constitutes the main stream of research. In this preliminary study, Waste Cooking Oil (WCO) was used as the substrate for biodiesel production. Lipase enzyme producing fungi Rhizopus oryzae 262 and commercially available pure lipase enzyme were used for comparative study in the production of Fatty Acid Alkyl Esters (FAAE). The whole cell (RO 262) and pure lipase enzyme (PE) were immobilized using calcium alginate beads. Calcium alginate was prepared by optimizing with different molar ratios of calcium chloride and different per cent sodium alginate. Entrapment immobilization was done for whole cell biocatalyst (WCB). PE was also immobilized by entrapment for the transesterification reaction. Seven different solvents - methanol, ethanol, n-propanol, n-butanol, iso-propanol, iso-butanol and iso-amyl alcohol were used as the acyl acceptors. The reaction parameters like temperature (30°C), molar ratio (1:3 - oil:solvent), reaction time (24 h), and amount of enzyme (10% mass ratio to oil) were also optimized for methanol alone. The same parameters were adopted for the other acyl acceptors too. Among the different acyl acceptors - methanol, whose reaction parameters were optimized showed maximum conversion of triglycerides to FAAE-94% with PE and 84% with WCB. On the whole, PE showed better catalytic converting ability with all the acyl acceptor compared to WCB. Gas chromatography analysis (GC) was done to determine the fatty acid composition of WCO (sunflower oil) and FAAE production with different acyl acceptors. Copyright © 2012 Elsevier Ltd. All rights reserved.
Pavlova, Sylvia I; Jin, Ling; Gasparovich, Stephen R; Tao, Lin
2013-07-01
Ethanol consumption and poor oral hygiene are risk factors for oral and oesophageal cancers. Although oral streptococci have been found to produce excessive acetaldehyde from ethanol, little is known about the mechanism by which this carcinogen is produced. By screening 52 strains of diverse oral streptococcal species, we identified Streptococcus gordonii V2016 that produced the most acetaldehyde from ethanol. We then constructed gene deletion mutants in this strain and analysed them for alcohol and acetaldehyde dehydrogenases by zymograms. The results showed that S. gordonii V2016 expressed three primary alcohol dehydrogenases, AdhA, AdhB and AdhE, which all oxidize ethanol to acetaldehyde, but their preferred substrates were 1-propanol, 1-butanol and ethanol, respectively. Two additional dehydrogenases, S-AdhA and TdhA, were identified with specificities to the secondary alcohol 2-propanol and threonine, respectively, but not to ethanol. S. gordonii V2016 did not show a detectable acetaldehyde dehydrogenase even though its adhE gene encodes a putative bifunctional acetaldehyde/alcohol dehydrogenase. Mutants with adhE deletion showed greater tolerance to ethanol in comparison with the wild-type and mutant with adhA or adhB deletion, indicating that AdhE is the major alcohol dehydrogenase in S. gordonii. Analysis of 19 additional strains of S. gordonii, S. mitis, S. oralis, S. salivarius and S. sanguinis showed expressions of up to three alcohol dehydrogenases, but none showed detectable acetaldehyde dehydrogenase, except one strain that showed a novel ALDH. Therefore, expression of multiple alcohol dehydrogenases but no functional acetaldehyde dehydrogenase may contribute to excessive production of acetaldehyde from ethanol by certain oral streptococci.
Kahe, Hadi; Chamsaz, Mahmoud
2016-11-01
A simple and reliable supramolecule-aggregated liquid solid microextraction method is described for preconcentration and determination of trace amounts of bismuth in water as well as human blood serum and hair samples. Catanionic microstructures of cetyltrimethylammonium bromide (CTAB) and sodium dodecyl sulfate (SDS) surfactants, dissolved in deionized water/propanol, are used as a green solvent to extract bismuth (III)-diethyldithiocarbamate complexes by dispersive microextraction methodology. The extracted solid phase is easily removed and dissolved in 50 μL propanol for subsequent measurement by electrothermal atomic absorption spectrometry (ET-AAS). The procedure benefits the merits of supramolecule aggregates' properties and dispersive microextraction technique using water as the main component of disperser solvent, leading to direct interaction with analyte. Phase separation behavior of extraction solvent and different parameters influencing the extraction efficiency of bismuth ion such as salt concentration, pH, centrifugation time, amount of chelating agent, SDS:CTAB mole ratio, and solvent amounts were thoroughly optimized. Under the optimal experimental conditions, the calibration curve was linear in the range of 0.3-6 μg L -1 Bi (III) with a limit of detection (LOD) of 0.16 μg L -1 (S/N = 3). The relative standard deviations (RSD) of determination were obtained to be 5.1 and 6.2 % for 1 and 3 μg L -1 of Bi (III), respectively. The developed method was successfully applied as a sensitive and accurate technique for determination of bismuth ion in human blood serum, hair samples, and a certified reference material.
Metabolism of spacecraft cleaning reagents by Mars Odyssey and Phoenix-associated Acinetobacter
NASA Astrophysics Data System (ADS)
Mogul, Rakesh; Barding, Gregory; Baki, Ryan; Perkins, Nicole; Lee, Sooji; Lalla, Sid; Campos, Alexa; Sripong, Kimberly; Madrid, Steve
2016-07-01
The metabolomic and proteomic properties that promote microbial survival in spacecraft assembly facilities are important aspects to planetary protection and astrobiology. In this presentation, we will provide molecular and biological evidence that the spacecraft-associated Acinetobacter metabolize/degrade spacecraft cleaning reagents such as ethanol, 2-propanol, and Kleenol-30. Gas chromatography-mass spectrometry (GC-MS) studies on A. radioresistens 50v1 (Mars Odyssey) show that the metabolome is dependent upon growth conditions and that ^{13}C-labeled ethanol is incorporated into metabolites such as TCA/glyoxylate cycle intermediates, amino acids, monosaccharides, and disaccharides (e.g., trehalose). In fact, plate count assays show that ethanol is a sole carbon source under minimal conditions for several Mars Phoenix and Odyssey-associated Acinetobacter strains, which may explain why the Acinetobacter are among the most abundant genera found in spacecraft assembly facilities. Biochemical analyses support the enzymatic oxidation of ethanol and 2-propanol by a membrane-bound and NAD+/PQQ-dependent alcohol dehydrogenase, with current kinetic data providing similar apparent K _{M} and maximum growth rate values of ˜5 and 8 mM ethanol, respectively. Preliminary GC-MS analysis also suggests that Kleenol-30 is degraded by A. radioresistens 50v1 when grown in ethanol mixtures. Under minimal conditions, A. radioresistens 50v1 (˜10 ^{8} cfu/mL) also displays a remarkable oxidative extremotolerance (˜2-log reduction in 10 mM hydrogen peroxide), which suggests crucial roles for metabolites associated with oxidative stress (e.g., trehalose) and the observed appreciable catalase specific activities. In conclusion, these results provide key insights into the survival strategies of spacecraft-associated Acinetobacter and emphasize the importance of characterizing the carbon metabolism of forward contaminants.
ELISA assays and alcohol: increasing carbon chain length can interfere with detection of cytokines
von Maltzan, Kristine; Pruett, Stephen B.
2010-01-01
Enzyme-linked immunosorbent assays (ELISA) are frequently used in studies on cytokine production in response to treatment of cell cultures or laboratory animals. When an ELISA assay is performed on cell culture supernatants, samples often contain the treatment agents. The purpose of the present study was to determine if some of the agents evaluated might inhibit cytokine detection by interfering with the ELISA, leaving the question of whether cytokine production was inhibited unanswered. Mouse and human cytokine ELISA kits from BD Biosciences were used according to the manufacturer’s instructions. Cytokine proteins were subjected to one to five carbon alcohols at 86.8 mM (methanol, ethanol, 1-propanol, 2-propanol, n-butanol, and n-pentanol). After treating cell cultures with alcohols of different carbon chain lengths, we found that some of the alcohols interfered with measurement of some cytokines by ELISA, thus making their effects on cytokine production by cells in culture unclear. Increasing carbon chain length of straight chain alcohols positively correlated with their ability to inhibit detection of TNF-α and IL-10, but not with the detection of IL-6, IL-8, and IL-12. To avoid misinterpretation of treatment effects, ELISA assays should be tested with the reference protein and the treatment agent first, before testing biological samples. These results along with other recent results we obtained using circular dichroism indicate that alcohols with 2 or more carbons can directly alter protein conformation enough to disrupt binding in an ELISA (shown in the present study) or to inhibit ligand induced conformational changes (results not shown). Such direct effects have not been given enough consideration as a mechanism of ethanol action in the immune system. PMID:20843633
Small, F J; Ensign, S A
1995-01-01
Evidence for a requirement for CO2 in the productive metabolism of aliphatic alkenes and epoxides by the propylene-oxidizing bacterium Xanthobacter strain Py2 is presented. In the absence of CO2, whole-cell suspensions of propylene-grown cells catalyzed the isomerization of propylene oxide (epoxypropane) to acetone. In the presence of CO2, no acetone was produced. Acetone was not metabolized by suspensions of propylene-grown cells, in either the absence or presence of CO2. The degradation of propylene and propylene oxide by propylene-grown cells supported the fixation of 14CO2 into cell material, and the time course of 14C fixation correlated with the time course of propylene and propylene oxide degradation. The degradation of glucose and propionaldehyde by propylene-grown or glucose-grown cells did not support significant 14CO2 fixation. With propylene oxide as the substrate, the concentration dependence of 14CO2 fixation exhibited saturation kinetics, and at saturation, 0.9 mol of CO2 was fixed per mol of propylene oxide consumed. Cultures grown with propylene in a nitrogen-deficient medium supplemented with NaH13CO3 specifically incorporated 13C label into the C-1 (major labeled position) and C-3 (minor labeled position) carbon atoms of the endogenous storage compound poly-beta-hydroxybutyrate. No specific label incorporation was observed when cells were cultured with glucose or n-propanol as a carbon source. The depletion of CO2 from cultures grown with propylene, but not glucose or n-propanol, inhibited bacterial growth. We propose that propylene oxide metabolism in Xanthobacter strain Py2 proceeds by terminal carboxylation of an isomerization intermediate, which, in the absence of CO2, is released as acetone. PMID:7592382
Conversion of 1,3-Propylene Glycol on Rutile TiO2(110)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Long; Li, Zhenjun; Smith, R. Scott
2014-10-09
The adsorption of 1,3-propylene glycol (1,3-PG) on partially reduced TiO2(110) and its conversion to products have been studied by a combination of molecular beam dosing and temperature programmed desorption (TPD). When the Ti surface sites are saturated by 1,3-PG, ~80% of the molecules undergo further reactions to yield products that are liberated during the TPD ramp. In contrast to ethylene glycol (EG) and 1,2- propylene glycol (1,2-PG) that yield only alkenes and water at very low coverages (< 0.05 ML), two additional products, HCHO and C2H4, along with propylene (CH3CHCH2) and water are observed for 1,3-PG. Identical TPD line shapesmore » and desorption yields for HCHO and C2H4 suggest that these products result from C-C bond cleavage and are coupled. At higher 1,3-PG coverages (> 0.1 ML), propanal (CH3CH2CHO) and two additional products, 1-propanol (CH3CH2CH2OH) and acrolein (CH2CHCHO), are observed. The desorption of 1-propanol is found to be coupled with the desorption of acrolein, suggesting that these products are formed by the disproportionation of two 1,3-PG molecules. The coverage dependent TPD results further show that propylene formation dominates at low coverages (< 0.3 ML), while the decomposition and disproportionation channels increase rapidly at higher coverages and reach yields comparable to that of propylene at the 1,3-PG saturation coverage of 0.5 ML. The observed surface chemistry clearly shows how the molecular structure of glycols influences their reaction pathways on oxide surfaces.« less
Stowe, Haley M; Hwang, Gyeong S
2017-12-06
2-Amino-2-methyl-1-propanol (AMP), a sterically hindered amine, exhibits a much higher CO 2 absorption rate relative to tertiary amine diethylethanolamine (DEEA), while both yield bicarbonate as a major product in aqueous solution, despite their similar basicity. We present molecular mechanisms underlying the significant difference of CO 2 absorption rate based on ab initio molecular dynamics simulations combined with metadynamics. Our calculations predict the free energy barrier for base-catalyzed CO 2 hydration to be lower in aqueous AMP compared to DEEA. Further molecular analysis suggests that the difference in free energy barrier is largely attributed to entropic effects associated with reorganization of H 2 O molecules adjacent to the basic N site. Stronger hydrogen bonding of H 2 O with N of DEEA than AMP, in addition to the presence of bulky ethyl groups, suppresses the thermal rearrangement of adjacent H 2 O molecules, thereby leading to lower stability of the transition state involving OH - creation and CO 2 polarization. Moreover, the hindered reorganization of adjacent H 2 O molecules is found to facilitate migration of OH - (created via proton abstraction by DEEA) away from the N site while suppressing CO 2 approach. This leads us to speculate that catalyzed CO 2 hydration in aqueous DEEA may involve OH - migration through multiple hydrogen-bonded H 2 O molecules prior to reaction with CO 2 , whereas in aqueous AMP it seems to preferentially follow the one H 2 O-mediated mechanism. This study highlights the importance of entropic effects in determining both mechanisms and rates of CO 2 absorption into aqueous sterically hindered amines.
Ismaiel, A A; Zhu, C X; Colby, G D; Chen, J S
1993-01-01
Two primary alcohols (1-butanol and ethanol) are major fermentation products of several clostridial species. In addition to these two alcohols, the secondary alcohol 2-propanol is produced to a concentration of about 100 mM by some strains of Clostridium beijerinckii. An alcohol dehydrogenase (ADH) has been purified to homogeneity from two strains (NRRL B593 and NESTE 255) of 2-propanol-producing C. beijerinckii. When exposed to air, the purified ADH was stable, whereas the partially purified ADH was inactivated. The ADHs from the two strains had similar structural and kinetic properties. Each had a native M(r) of between 90,000 and 100,000 and a subunit M(r) of between 38,000 and 40,000. The ADHs were NADP(H) dependent, but a low level of NAD(+)-linked activity was detected. They were equally active in reducing aldehydes and 2-ketones, but a much lower oxidizing activity was obtained with primary alcohols than with secondary alcohols. The kcat/Km value for the alcohol-forming reaction appears to be a function of the size of the larger alkyl substituent on the carbonyl group. ADH activities measured in the presence of both acetone and butyraldehyde did not exceed activities measured with either substrate present alone, indicating a common active site for both substrates. There was no similarity in the N-terminal amino acid sequence between that of the ADH and those of fungi and several other bacteria. However, the N-terminal sequence had 67% identity with those of two other anaerobes, Thermoanaerobium brockii and Methanobacterium palustre. Furthermore, conserved glycine and tryptophan residues are present in ADHs of these three anaerobic bacteria and ADHs of mammals and green plants. Images PMID:8349550
Taha, Mohamed; Lee, Ming-Jer
2013-06-28
Water and the organic solvents tetrahydrofuran, 1,3-dioxolane, 1,4-dioxane, 1-propanol, 2-propanol, tert-butanol, acetonitrile, or acetone are completely miscible in all proportions at room temperature. Here, we present new buffering-out phase separation systems that the above mentioned organic aqueous solutions can be induced to form two liquid phases in the presence of a biological buffer 2-[[1,3-dihydroxy-2-(hydroxymethyl)propan-2-yl]amino]ethanesulfonic acid (TES). The lower liquid phase is rich in water and buffer, and the upper phase is organic rich. This observation has both practical and mechanistic interests. The phase diagrams of these systems were constructed by experimental measurements at ambient conditions. Molecular dynamic (MD) simulations were performed for TES + water + THF system to understand the interactions between TES, water, and organic solvent at molecular level. Several composition-sets for this system, beyond and inside the liquid-liquid phase-splitting region, have been simulated. Interestingly, the MD simulation for compositions inside the phase separation region showed that THF molecules are forced out from the water network to start forming a new liquid phase. The hydrogen-bonds, hydrogen-bonds lifetimes, hydrogen-bond energies, radial distribution functions, coordination numbers, the electrostatic interactions, and the van der Waals interactions between the different pairs have been calculated. Additionally, MD simulations for TES + water + tert-butanol∕acetonitrile∕acetone phase separation systems were simulated. The results from MD simulations provide an explanation for the buffering-out phenomena observed in [TES + water + organic solvent] systems by a mechanism controlled by the competitive interactions of the buffer and the organic solvent with water. The molecular mechanism reported here is helpful for designing new benign separation materials.
Furlong, Suzanne J; Ridgway, Neale D; Hoskin, David W
2008-03-01
Bovine lactoferricin (LfcinB) is a cationic antimicrobial peptide that selectively induces apoptosis in several different types of human cancer cells. However, the potential use of LfcinB as an anticancer agent is presently limited by the need for relatively high concentrations of the peptide to trigger apoptosis. Ceramide is a membrane sphingolipid that is believed to function as a second messenger during apoptosis. In this study, we investigated the role of ceramide in LfcinB-induced apoptosis in CCRF-CEM and Jurkat T-leukemia cell lines. Exposure to LfcinB caused nuclear condensation and fragmentation, poly(ADP-ribose) polymerase (PARP) cleavage, and DNA fragmentation in CCRF-CEM and Jurkat T-cell acute lymphoblastic leukemia cell lines. Treatment with C6 ceramide, a cell-permeable, short-chain ceramide analog, also induced apoptotic nuclear morphology, PARP cleavage, and DNA fragmentation in T-leukemia cells. Although LfcinB treatment did not cause ceramide to accumulate in CCRF-CEM or Jurkat cells, the addition of C6 ceramide to LfcinB-treated T-leukemia cells resulted in increased DNA fragmentation. Furthermore, modulation of cellular ceramide metabolism either by inhibiting ceramidases with D-erythro-2-(N-myristoylamino)-1-phenyl-1-propanol or N-oleoylethanolamine, or by blocking glucosylceramide synthase activity with 1-phenyl-2-palmitoylamino-3-morpholino-1-propanol, enhanced the ability of LfcinB to trigger apoptosis in both Jurkat and CCRF-CEM cells. In addition, LfcinB-induced apoptosis of T-leukemia cells was enhanced in the presence of the antiestrogen tamoxifen, which has multiple effects on cancer cells, including inhibition of glucosylceramide synthase activity. We conclude that manipulation of cellular ceramide levels in combination with LfcinB therapy warrants further investigation as a novel strategy for the treatment of T cell-derived leukemias.
Pavlova, Sylvia I.; Jin, Ling; Gasparovich, Stephen R.
2013-01-01
Ethanol consumption and poor oral hygiene are risk factors for oral and oesophageal cancers. Although oral streptococci have been found to produce excessive acetaldehyde from ethanol, little is known about the mechanism by which this carcinogen is produced. By screening 52 strains of diverse oral streptococcal species, we identified Streptococcus gordonii V2016 that produced the most acetaldehyde from ethanol. We then constructed gene deletion mutants in this strain and analysed them for alcohol and acetaldehyde dehydrogenases by zymograms. The results showed that S. gordonii V2016 expressed three primary alcohol dehydrogenases, AdhA, AdhB and AdhE, which all oxidize ethanol to acetaldehyde, but their preferred substrates were 1-propanol, 1-butanol and ethanol, respectively. Two additional dehydrogenases, S-AdhA and TdhA, were identified with specificities to the secondary alcohol 2-propanol and threonine, respectively, but not to ethanol. S. gordonii V2016 did not show a detectable acetaldehyde dehydrogenase even though its adhE gene encodes a putative bifunctional acetaldehyde/alcohol dehydrogenase. Mutants with adhE deletion showed greater tolerance to ethanol in comparison with the wild-type and mutant with adhA or adhB deletion, indicating that AdhE is the major alcohol dehydrogenase in S. gordonii. Analysis of 19 additional strains of S. gordonii, S. mitis, S. oralis, S. salivarius and S. sanguinis showed expressions of up to three alcohol dehydrogenases, but none showed detectable acetaldehyde dehydrogenase, except one strain that showed a novel ALDH. Therefore, expression of multiple alcohol dehydrogenases but no functional acetaldehyde dehydrogenase may contribute to excessive production of acetaldehyde from ethanol by certain oral streptococci. PMID:23637459
Khodakivs'kyĭ, O A
2013-01-01
In experiments with the rat model of acute disorder of encephalic circulation (bilateral carotid occlusion) it was found that introduction of derivate of adamantan 1-adamantiloxy-3-morfolino-2 propanol (under conventional name ademol) in the dose 2 mg/kg intraabdominal in treatment regimen (in an hour after reconstruction of insult and further 1 time every 24 hours during 21 days) was accompanied by a recovery of mnemotropic properties and is more effective than cytikolin, resulting in a decreased lethality and neurological deficiency in acute and recovery periods of insults. The data received proved the usefulness of development of ademol based cerebroprotective remedy.
Process for the conversion of lower alcohols to higher branched oxygenates
Barger, Paul T.
1996-01-01
A process is provided for the production of branched C.sub.4+ oxygenates from lower alcohols such as methanol, ethanol, propanol and mixtures thereof. The process comprises contacting the lower alcohols with a solid catalyst comprising a mixed metal oxide support having components selected from the group consisting of oxides of zinc, magnesium, zirconia, titanium, manganese, chromium, and lanthanides, and an activation metal selected from the group consisting of Group VIII metal, Group IB metals, and mixtures thereof. The advantage of the process is improved yields and selectivity to isobutanol which can subsequently be employed in the production of high octane motor gasoline.
Process for the conversion of lower alcohols to higher branched oxygenates
Barger, P.T.
1996-09-24
A process is provided for the production of branched C{sub x} oxygenates from lower alcohols such as methanol, ethanol, propanol and mixtures thereof. The process comprises contacting the lower alcohols with a solid catalyst comprising a mixed metal oxide support having components selected from the group consisting of oxides of zinc, magnesium, zirconia, titanium, manganese, chromium, and lanthanides, and an activation metal selected from the group consisting of Group VIII metal, Group IB metals, and mixtures thereof. The advantage of the process is improved yields and selectivity to isobutanol which can subsequently be employed in the production of high octane motor gasoline.
NASA Astrophysics Data System (ADS)
Ortega-Robles, Emmanuel; Cruz-Orea, Alfredo; Elías-Viñas, David
2018-03-01
The lock-in amplifier is a very useful instrument for observing very small signals under adverse signal-to-noise conditions. In this work, we describe a simple and portable lock-in amplifier designed to be used in photoacoustic measurements. The device was used to measure the thermal effusivity of eight different liquid samples (distilled water, glycerol, acetone, ethanol, 2-propanol, chloroform, hexane, and methanol), as well as the effusivity of acetone in aqueous solution at distinct concentrations, giving good results. The instrument has a bandwidth of 10 Hz-10 kHz and a sensitivity of 1 μV.
NASA Astrophysics Data System (ADS)
Ahn, Hyun-Joo; Lee, Cherl-Ho; Kim, Jae-Hyun; Han, Sang-Bae; Jo, Cheorun; Kim, Sung; Byun, Myung-Woo
2004-01-01
The radiolytic products of N-nitrosodimethylamine (NDMA) and N-nitrosopyrrolidine (NPYR) dissolved in dichloromethane (DCM) were identified after gamma irradiation. The UV spectra of NDMA and NPYR indicated that irradiation reduced the typical peak of NDMA at 258 nm and NPYR at 260 nm.The major radiolytic components identified in irradiated NDMA were ethyl acetate and 2-dimethyl propanol. The irradiated NPYR dissolved in DCM and produced 2-butanone and 2-methyl-6-propyl piperidine as the major radiolytic components. 2-Methyl-6-propyl piperidine was the component detected in the greatest concentration in irradiated NPYR.
Synthesis and Tautomerization of Hydroxylated Isoflavones Bearing Heterocyclic Hemi-Aminals
Frasinyuk, Mykhaylo S.; Bondarenko, Svitlana P.; Khilya, Volodymyr P.; Liu, Chunming; Watt, David S.; Sviripa, Vitaliy M.
2017-01-01
The aminomethylation of hydroxylated isoflavones with 2-aminoethanol, 3-amino-1-propanol, 4-amino-1-butanol, and 5-amino-1-pentanol in the presence of excess formaldehyde led principally to 9-(2-hydroalkyl)-9,10-dihydro-4H,8H-chromeno[8,7-e][1,3]-oxazin-4-ones 4 and/or the tautomeric 7-hydroxy-8-(1,3-oxazepan-3-ylmethyl)-4H-chromen-4-ones 5. The ratio of these tautomers was dependent on solvent polarity, electronic effects of aryl substituents in the isoflavone and the structure of the amino alcohol. NMR studies confirmed the interconversion of tautomeric forms. PMID:25412895
General anesthetics cause mitochondrial dysfunction and reduction of intracellular ATP levels
Kishikawa, Jun-ichi; Inoue, Yuki; Fujikawa, Makoto; Nishimura, Kenji; Nakanishi, Atsuko; Tanabe, Tsutomu; Imamura, Hiromi
2018-01-01
General anesthetics are indispensable for effective clinical care. Although, the mechanism of action of general anesthetics remains controversial, lipid bilayers and proteins have been discussed as their targets. In this study, we focused on the relationship between cellular ATP levels and general anesthetics. The ATP levels of nematodes and cultured mammalian cells were decreased by exposure to three general anesthetics: isoflurane, pentobarbital, and 1-phenoxy-2-propanol. Furthermore, these general anesthetics abolished mitochondrial membrane potential, resulting in the inhibition of mitochondrial ATP synthesis. These results suggest that the observed decrease of cellular ATP level is a common phenomenon of general anesthetics. PMID:29298324
Time-resolved ESR spectra of the α-hydroxybenzyl-amine complex
NASA Astrophysics Data System (ADS)
Kawai, Akio; Kobori, Yasuhiro; Obi, Kinichi
1993-11-01
Time-resolved ESR spectra of the α-hydroxybenzyl radical were measured in benzene and 2-propanol solutions by the photo-dissociation of benzoin. The hyperfine structure (hfs) of α-hydroxybenzyl depends on the solvents. In a benzene solution containing triethylamine, two species with different hyperfine structure appeared simultaneously. As the ratio of intensity for the two species depends on the concentration of triethylamine, one of them is assigned to the bare α-hydroxybenzyl and the other to the 1:1 complex of α-hydroxybenzyl and triethylamine. The equilibrium constant of complex formation was estimated to be about 450 M -1 from the analysis of CIDEP intensities.
Soto-Castro, Delia; Cruz-Morales, Jorge A; Ramírez Apan, María Teresa; Guadarrama, Patricia
2010-11-09
This study describes the synthesis of two new families of dendrimers based on the esterification of N-alkylated 3-amine-1-propanol with two different cores, adipic acid (1st and 2nd generations) and ethylenediamine (generation 1.5), both with carboxylic acid end groups, offering a wide variety of further modifications at the periphery. According to the cytotoxic evaluation of the dendrimers and their possible degradation products within cell lines, these materials could be considered as innocuous. In preliminary studies, the synthesized dendrimers proved to be potential enhancers of solubility of highly hydrophobic drugs, like methotrexate, widely used in chemotherapy.
Musa paradisiaca stem juice as a source of peroxidase and ligninperoxidase.
Vernwal, S K; Yadav, R S; Yadav, K D
2000-10-01
Musa paradisiaca stem juice has been shown to contain peroxidase activity of the order of 0.1 enzyme unit/ml. The Km values of this peroxidase for the substrates guaiacol and hydrogen peroxide are 2.4 and 0.28 mM respectively. The pH and temperature optima are 4.5 and 62.5 degrees C respectively. Like other peroxidases, it follows double displacement type mechanism. At low pH, Musa paradisiaca stem juice exhibits ligninperoxidase type activity. The pH optimum for ligninperoxidase type activity is 2.0 and the temperature optimum is 24 degrees C. The Km values for veratryl alcohol and n-propanol are 66 and 78 microM respectively.
Nonlinear optical properties of hybridized CdS/ZnS-PVP sols
NASA Astrophysics Data System (ADS)
Kulagina, A. S.; Evstropiev, S. K.; Khrebtov, A. I.
2017-11-01
Hybrid composites of CdS-core ZnS-shell nanoparticles embedded in polyvinylpyrrolidone (PVP) matrixes have been prepared and characterized. Cadmium sulfide (CdS) nanocrystals were grown in water-propanol-2 solutions containing high-molecular (Ms=1300000) polyvinylpyrrolidone (PVP) at room temperature using cadmium nitrate and sodium sulfide as the cadmium and sulfur sources, respectively. The CdS/ZnS-PVP suspensions have promising optical properties for nanocomposite films based on. Nonlinear optical properties of diluted CdS/ZnS sols were studied at 532 nm and 5 ns laser pulses by using the Z-scan technique. Dependence of the nonlinear-optical coefficients on the CdS weight has been obtained.
[Gas chromatography in quantitative analysis of hydrocyanic acid and its salts in cadaveric blood].
Iablochkin, V D
2003-01-01
A direct gas chromatography method was designed for the quantitative determination of cyanides (prussic acid) in cadaveric blood. Its sensitivity is 0.05 mg/ml. The routine volatile products, including substances, which emerge due to putrefaction of organic matters, do not affect the accuracy and reproducibility of the method; the exception is H-propanol that was used as the internal standard. The method was used in legal chemical expertise related with acute cyanide poisoning (suicide) as well as with poisoning of products of combustion of nonmetals (foam-rubber). The absolute error does not exceed 10% with a mean quadratic deviation of 0.0029-0.0033 mg.
Ahro, M; Hakala, M; Kauppinen, J; Kallio, H
2001-10-01
Four apple wine fermentation processes have been observed by means of direct-inlet gas-phase FTIR spectroscopy. The apple juice concentrates were each fermented by two species of Saccharomyces cerevisiae starters, and the experiment was repeated. The development of the concentrations of 1-propanol, 4-methylpyridine, acetaldehyde, acetic acid, and ethyl acetate was monitored. Two different sampling methods were used--static headspace and direct injection of the must. The performance of the FTIR method is limited by the high ethanol concentration. It can be mathematically proven that the amount of sample can be selected so that any distortion due to ethanol is minimized. Headspace GC-MS was used for preliminary compound identification.
Detection of hexamethonium-perchlorate association complexes using NACE-MS.
Groom, Carl A; Hawari, Jalal
2007-02-01
Perchlorate (ClO(4) (+)) and other chlorine oxide anions were observed to complex weakly with hexamethonium (1,6-bis-(trimethylammonium)-hexane) in both aqueous and polar nonaqueous solvents. The resultant positively charged complexes were resolved by NACE using 2-propanol/acetone electrolytes prior to mass spectrometric detection using an Agilent(3D)CE system coupled to a Bruker Esquire 3000+ quadrupole IT mass detector. Using electrokinetic injection, the method detection limit for perchlorate in nonaqueous media was 10 microg/L. The isotope patterns due to the presence of (35)Cl and (37)Cl in complex mass spectra allowed for unambiguous identification of perchlorate, chlorate (ClO(3) (+)), chlorite (ClO(2) (+)), and chloride (Cl(+)) in photoreaction samples.
Thermodynamic study of quercetin and rutin mixtures with alcohols
NASA Astrophysics Data System (ADS)
Szymczyk, Katarzyna; Taraba, Anna
2018-04-01
The paper presents interactions between quercetin (3,3‧,4‧,5,7-pentahydroxyflavone) and its glycoside, rutin with short chain alcohols, methanol, ethanol and 1-propanol studied by the surface tension measurements. An attempt was made to investigate the effect of flavonoid and alcohol concentrations as well as temperature on the thermodynamic parameters of alcohols adsorption at the water-air interface that is the standard free enthalpy, enthalpy and entropy of adsorption as well as the infinite dilution activity coefficient. The obtained results show that the mixtures of quercetin with methanol and rutin with ethanol are characterized by the best adsorption properties but all studied systems become less structured after adsorption.
Surface tension of aqueous solutions of diethanolamine and triethanolamine from 25 C to 50 C
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vazquez, G.; Alvarez, E.; Rendo, R.
1996-07-01
Aqueous solutions of alkanolamines such as monoethanolamine (MEA), diethanolamine (DEA), triethanolamine (TEA), N-methyldiethanolamine (MDEA), and 2-amino-2-methyl-1-propanol (AMP) are good solvents for the removal of acid gases such CO{sub 2} and H{sub 2}S from the gas streams of many processes in the natural gas, ammonia synthesis, and some chemical industries. The surface tension of aqueous solutions of diethanolamine and triethanolamine was measured over the entire concentration range at temperatures of 25 C to 50 C. The experimental values were correlated with temperature and with mole fraction. The maximum deviation was in both cases always less than 0.5%.
Yashiro, Kazuki; Hanaya, Kengo; Shoji, Mitsuru; Sugai, Takeshi
2015-01-01
We have synthesized artepillin C, a diprenylated p-hydroxycinnamate originally isolated from Brazilian propolis and exhibiting antioxidant and antitumor activities, from 2,6-diallylphenol. Replacement of the terminal vinyl with 2,2-dimethylvinyl group by olefin cross-metathesis and subsequent transformation yielded 2,6-diprenyl-1,4-hydroquinone diacetate. Candida antarctica lipase B-catalyzed deacetylation in 2-propanol regioselectively removed the less hindered acetyl group to give 2,6-diprenyl-1,4-hydroquinone 1-monoacetate. After triflation of the liberated 4-hydroxy group, a three-carbon side chain was introduced by palladium-mediated alkenylation with methyl acrylate. Final hydrolysis of the esters furnished artepillin C.
Johansson, K; Jönsson-Pettersson, G; Gorton, L; Marko-Varga, G; Csöregi, E
1993-12-01
A reagentless carbon paste electrode chemically modified with covalently bound alcohol oxidase and horse-radish peroxidase was examined as a selective sensor in flow injection and column liquid chromatography. A combination of carbodiimide, glutaraldehyde, and polyethyleneimine was used for immobilizing the enzymes in the paste. The surface of the electrodes was protected by first forming a layer of electropolymerized ortho-phenylenediamine followed by deposition of a cation exchange membrane (Eastman AQ 29D). The electrodes were used for detection of hydrogen peroxide, methanol, ethanol, propanol, isopropanol, and butanol. Preliminary investigations of the use of this sensor for bioprocess control are reported.
Tang, Bo; Wang, Yan; Liang, Huiling; Chen, Zhenzhen; He, Xiwen; Shen, Hanxi
2006-03-01
An oxidation reaction of tyrosine (Tyr) with H(2)O(2) catalyzed by horseradish peroxidase (HRP) was studied by spectrofluorimetry and differential spectrophotometry in the alcohol(methanol, ethanol, 1-propanol and isopropanol)-water mutual solubility system. Compared with the enzymatic-catalyzed reaction in the water medium, the fluorescence intensities of the product weakened, even extinguished. Because the addition of alcohols made the conformation of HRP change, the catalytic reaction shifted to the side of polymerization and the polymer (A(n)H(2), n>or=3) exhibited no fluorescence. The four alcohols cannot deactivate HRP. Moreover isopropanol activated HRP remarkably.
PMR-15 polyimide modifications for improved prepreg tack
NASA Technical Reports Server (NTRS)
Vannucci, R. D.
1982-01-01
The use of mixed solvents and of modified monomeric ester reactants was investigated as a means of improving the tack and drape retention characteristics of PMR-15 polyimide prepreg. Methanol, ethanol, 1-propanol and 1-butanol were used to prepare the esters, prepreg solutions, and T-300 graphite fabric and Celion 6000 unidirectional fiber prepregs. The tack retention characteristics of the T-300 fabric prepreg after exposure to simulated use conditions were determined using a simple lap shear test. Drape was qualitatively assessed by visually monitoring the deformability of the prepreg. Thermo-oxidative stability and mechanical properties retention of the Celion 6000 grahite fiber composites were determined as a function of exposure time in air at 600 F.
Direct numerical simulation of a combusting droplet with convection
NASA Technical Reports Server (NTRS)
Liang, Pak-Yan
1992-01-01
The evaporation and combustion of a single droplet under forced and natural convection was studied numerically from first principles using a numerical scheme that solves the time-dependent multiphase and multispecies Navier-Stokes equations and tracks the sharp gas-liquid interface cutting across an arbitrary Eulerian grid. The flow fields both inside and outside of the droplet are resolved in a unified fashion. Additional governing equations model the interphase mass, energy, and momentum exchange. Test cases involving iso-octane, n-hexane, and n-propanol droplets show reasonable comparison rate, and flame stand-off distance. The partially validated code is, thus, readied to be applied to more demanding droplet combustion situations where substantial drop deformation render classical models inadequate.
Catalyst for producing lower alcohols
Rathke, Jerome W.; Klingler, Robert J.; Heiberger, John J.
1987-01-01
A process and system for the production of the lower alcohols such as methanol, ethanol and propanol involves the reaction of carbon monoxide and water in the presence of a lead salt and an alkali metal formate catalyst combination. The lead salt is present as solid particles such as lead titanate, lead molybdate, lead vanadate, lead zirconate, lead tantalate and lead silicates coated or in slurry within molten alkali metal formate. The reactants, carbon monoxide and steam are provided in gas form at relatively low pressures below 100 atmospheres and at temperatures of 200-400.degree. C. The resulted lower alcohols can be separated into boiling point fractions and recovered from the excess reactants by distillation.
2005-08-01
1979) 0.63d ocK f= owK (1) where Kow = octanol to water partitioning coefficient, L/kg foc = fraction of organic carbon of the soil Barber...Software 59 2-Methylthiophene 554-14-3 0.135 EPI Software 60 2-Nitrophenol 88-75-5 0.039 EPI Software 61 2- Octanone 111-13-7 0.148 EPI Software 62 2...Nitrophenol 88-75-5 6.09E-09 1.72E-12 2- Octanone 111-13-7 2.56E-11 7.23E-15 2-Pentanone 107-87-9 1.83E-08 5.18E-12 2-Propanol 67-63-0 4.08E-09 1.15E-12 2
The lipid moiety of brincidofovir is required for in vitro antiviral activity against Ebola virus.
McMullan, Laura K; Flint, Mike; Dyall, Julie; Albariño, César; Olinger, Gene G; Foster, Scott; Sethna, Phiroze; Hensley, Lisa E; Nichol, Stuart T; Lanier, E Randall; Spiropoulou, Christina F
2016-01-01
Brincidofovir (BCV) is the 3-hexadecyloxy-1-propanol (HDP) lipid conjugate of the acyclic nucleoside phosphonate cidofovir (CDV). BCV has established broad-spectrum activity against double-stranded DNA (dsDNA) viruses; however, its activity against RNA viruses has been less thoroughly evaluated. Here, we report that BCV inhibited infection of Ebola virus in multiple human cell lines. Unlike the mechanism of action for BCV against cytomegalovirus and other dsDNA viruses, phosphorylation of CDV to the diphosphate form appeared unnecessary. Instead, antiviral activity required the lipid moiety and in vitro activity against EBOV was observed for several HDP-nucleotide conjugates. Copyright © 2015. Published by Elsevier B.V.
Lagrain, Bert; Brunnbauer, Markus; Rombouts, Ine; Koehler, Peter
2013-01-01
The present paper describes a method for the identification of intact high molecular weight glutenin subunits (HMW-GS), the quality determining proteins from the wheat storage proteome. The method includes isolation of HMW-GS from wheat flour, further separation of HMW-GS by reversed-phase high-performance liquid chromatography (RP-HPLC), and their subsequent molecular identification with electrospray ionization mass spectrometry using a quadrupole-time-of-flight mass analyzer. For HMW-GS isolation, wheat proteins were reduced and extracted from flour with 50% 1-propanol containing 1% dithiothreitol. HMW-GS were then selectively precipitated from the protein mixture by adjusting the 1-propanol concentration to 60%. The composition of the precipitated proteins was first evaluated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis with Coomassie staining and RP-HPLC with ultraviolet detection. Besides HMW-GS (≥65%), the isolated proteins mainly contained ω5-gliadins. Secondly, the isolated protein fraction was analyzed by liquid chromatography-mass spectrometry. Optimal chromatographic separation of HMW-GS from the other proteins in the isolated fraction was obtained when the mobile phase contained 0.1% trifluoroacetic acid as ion-pairing agent. Individual HMW-GS were then identified by determining their molecular masses from the high-resolution mass spectra and comparing these with theoretical masses calculated from amino acid sequences. Using formic acid instead of trifluoroacetic acid in the mobile phase increased protein peak intensities in the base peak mass chromatogram. This allowed the detection of even traces of other wheat proteins than HMW-GS in the isolated fraction, but the chromatographic separation was inferior with a major overlap between the elution ranges of HMW-GS and ω-gliadins. Overall, the described method allows a rapid assessment of wheat quality through the direct determination of the HMW-GS composition and offers a basis for further top-down proteomics of individual HMW-GS and the entire wheat glutenin fraction.
Florek, Ewa; Kulza, Maksymilian; Piekoszewski, Wojciech; Gomółka, Ewa; Jawień, Wojciech; Teżyk, Artur; Napierała, Marta
2015-10-01
A vast majority of people who abuse alcohol are also defined as "heavy smokers". Tobacco smokes induces CYP1A1, CYP1A2, CYP2A6 isoenzymes, but on the other hand, ethanol activates CYP2E1, which can be important during combined, chronic use of both of them. The aim of the study was to evaluate the influence of tobacco smoke xenobiotics on ethanol pharmacokinetics and the level of its metabolites in alcohol preferring and non-preferring rats. Ethanol, acetaldehyde, methanol, n-propanol and n-butanol were determined in whole blood by means of gas chromatography. Cotinine in serum was determined by LC-MS/MS. A non-compartmental analysis (cotinine, acetaldehyde) and Widmark equation (ethanol) were used for pharmacokinetic parameters calculation. Ethanol levels were lower in animals exposed to tobacco smoke compared to rats receiving this xenobiotic, without a prior exposure to tobacco smoke. Lower values of the studied pharmacokinetic parameters were observed in the alcohol preferring males compared to the non-alcohol preferring rats. Both n-propanol and n-butanol had higher values of the pharmacokinetic parameters analyzed in the animals exposed to tobacco smoke and ethanol compared to those, which ethanol was administered only once. An increase in maximum concentration and the area under concentration-time curve for ethanol after its administration to rats preferring alcohol and exposed to tobacco smoke are accompanied by a decrease in the volume of distribution. The changes in the volume of distribution may be caused by an increase in the first-pass effect, in the intestinal tract and/or in the liver. The acetaldehyde elimination rate constant was significantly higher in alcohol-preferring animals. Copyright © 2015 Institute of Pharmacology, Polish Academy of Sciences. Published by Elsevier Urban & Partner Sp. z o.o. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fuentes-Silva, D.; Mendoza-Hernández, G.; Stojanoff, V.
2007-09-01
Crystallization of important glycoenzymes involved in IgE-mediated latex allergy. Latex from Hevea brasiliensis contains several allergenic proteins that are involved in type I allergy. One of them is Hev b 2, which is a β-1,3-glucanase enzyme that exists in different isoforms with variable glycosylation content. Two glucanase isoforms were isolated from trees of the GV-42 clone by gel filtration, affinity and ion-exchange chromatography. Isoform I had a carbohydrate content of about 20%, with N-linked N-acetyl-glucosamine, N-acetyl-galactosamine, fucose and galactose residues as the main sugars, while isoform II showed 6% carbohydrate content constisting of N-acetyl-glucosamine, fucose, mannose and xylose. Both isoformsmore » were crystallized by the hanging-drop vapour-diffusion method. Isoform I crystals were grown using 0.2 M trisodium citrate dihydrate, 0.1 M Na HEPES pH 7.5 and 20%(v/v) 2-propanol, but these crystals were not appropriate for data collection. Isoform II crystals were obtained under two conditions and X-ray diffraction data were collected from both. In the first condition (0.2 M trisodium citrate, 0.1 M sodium cacodylate pH 6.5, 30% 2-propanol), crystals belonging to the tetragonal space group P4{sub 1} with unit-cell parameters a = b = 150.17, c = 77.41 Å were obtained. In the second condition [0.2 M ammonium acetate, 0.1 M trisodium citrate dihydrate pH 5.6, 30%(w/v) polyethylene glycol 4000] the isoform II crystals belonged to the monoclinic space group P2{sub 1}, with unit-cell parameters a = 85.08, b = 89.67, c = 101.80 Å, β = 113.6°. Preliminary analysis suggests that there are four molecules of isoform II in both asymmetric units.« less
Lagrain, Bert; Brunnbauer, Markus; Rombouts, Ine; Koehler, Peter
2013-01-01
The present paper describes a method for the identification of intact high molecular weight glutenin subunits (HMW-GS), the quality determining proteins from the wheat storage proteome. The method includes isolation of HMW-GS from wheat flour, further separation of HMW-GS by reversed-phase high-performance liquid chromatography (RP-HPLC), and their subsequent molecular identification with electrospray ionization mass spectrometry using a quadrupole-time-of-flight mass analyzer. For HMW-GS isolation, wheat proteins were reduced and extracted from flour with 50% 1-propanol containing 1% dithiothreitol. HMW-GS were then selectively precipitated from the protein mixture by adjusting the 1-propanol concentration to 60%. The composition of the precipitated proteins was first evaluated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis with Coomassie staining and RP-HPLC with ultraviolet detection. Besides HMW-GS (≥65%), the isolated proteins mainly contained ω5-gliadins. Secondly, the isolated protein fraction was analyzed by liquid chromatography-mass spectrometry. Optimal chromatographic separation of HMW-GS from the other proteins in the isolated fraction was obtained when the mobile phase contained 0.1% trifluoroacetic acid as ion-pairing agent. Individual HMW-GS were then identified by determining their molecular masses from the high-resolution mass spectra and comparing these with theoretical masses calculated from amino acid sequences. Using formic acid instead of trifluoroacetic acid in the mobile phase increased protein peak intensities in the base peak mass chromatogram. This allowed the detection of even traces of other wheat proteins than HMW-GS in the isolated fraction, but the chromatographic separation was inferior with a major overlap between the elution ranges of HMW-GS and ω-gliadins. Overall, the described method allows a rapid assessment of wheat quality through the direct determination of the HMW-GS composition and offers a basis for further top-down proteomics of individual HMW-GS and the entire wheat glutenin fraction. PMID:23520527
Maas, Alexandra; Maier, Christoph; Michel-Lauter, Beate; Broecker, Sebastian; Madea, Burkhard; Hess, Cornelius
2017-03-01
Propofol (2,6-diisopropylphenol) is a water-insoluble, intravenous anesthetic that is widely used for the induction and maintenance of anesthesia as well as for endoscopic and pediatric sedation. After admission, propofol undergoes extensive hepatic and extrahepatic metabolism, including direct conjugation to propofol glucuronide and hydroxylation to 2,6-diisopropyl-1,4-quinol. The latter substance subsequently undergoes phase II metabolism, resulting in the formation of further metabolites (1quinolglucuronide, 4quinolglucuronide and 4quinol-sulfate). Further minor phase I propofol metabolites (2-(ω-propanol)-6-isopropylphenol and 2-(ω-propanol)-6-isopropyl-1,4-quinol)) are also described. Due to its chemical structure with the phenolic hydroxyl group, propofol is also an appropriate substrate for sulfation by sulfotransferases. The existence of propofol sulfate was investigated by liquid chromatography electrospray ionization triple quadrupole mass spectrometry (LCESIQQQ-MS) and liquid chromatography electrospray ionization quadrupole time-of-flight mass spectrometry (LCESI-QTOF-MS). A propofol sulfate reference standard was used for identification and method development, yielding a precursor at m/z 257 (deprotonated propofol sulfate) and product ions at m/z 177 (deprotonated propofol) and m/z 80 ([SO3]-). Propofol sulfate - a further phase II metabolite of propofol - was verified in urine samples by LC-ESI-QQQ-MS and LC-ESI-QTOF-MS. Analyses of urine samples from five volunteers collected before and after propofol-induced sedation verified the presence of propofol sulfate in urine following propofol administration, whereas ascertained concentrations of this metabolite were significantly lower compared with detected propofol glucuronide concentrations. The existence of propofol sulfate as a further phase II propofol metabolite in humans could be verified by two different detection techniques (LCESIQQQ-MS and LC-ESI-QTOFMS) on the basis of a propofol sulfate reference standard. Evaluation of the quantitative analyses of propofol sulfate imply that propofol sulfate represents a minor metabolite of propofol and is only slightly involved in human propofol clearance.
Zhu, Koudi; Gu, Binghe; Kerry, Michael; Mintert, Markus; Luong, Jim; Pursch, Matthias
2017-03-24
A novel base treatment followed by liquid-liquid extraction was developed to remove the interference of excess derivatization reagent BSTFA [N,O-Bis(trimethylsilyl)trifluoroacetamide] and its byproducts for trace determination of 1-chloro-2-propanol and 2-chloro-1-propanol in a food additive. The corresponding trimethylsilyl derivatives were analyzed by gas chromatography mass spectrometry (GC/MS) detection in selective ion monitoring mode. Due to a large volume splitless injection needed for achieving the required sensitivity, excess BSTFA in the derivatization sample solution interfered with the trimethylsilyl derivatives of the analytes of interest, making their quantitation not attainable. Efforts were made to decompose BSTFA while keeping the trimethylsilyl derivatives intact. Water or aqueous sulfuric acid treatment converted BSTFA into mainly N-trimethylsilyltrifluoroacetamide, which partitions between aqueous and organic layers. In contrast, aqueous sodium hydroxide decomposed BSTFA into trifluoroacetic acid, which went entirely into the aqueous layer. No BSTFA or its byproduct N-trimethylsilyltrifluoroacetamide or trifluroacetamide was found in the organic layer where the derivatized alcohols existed, which in turn completely eliminated their interference, enabling accurate and precise determination of parts per billion of the short-chain alcohols in the food additive. Contrary to the conventional wisdom that a trimethylsilyl derivative is susceptible to hydrolysis, the derivatized short-chain alcohols were found stable even in the presence of 0.17N aqueous sodium hydroxide as the improved GC/MS method was validated successfully, with a satisfactory linearity response in the concentration range of 10-400ng/g (regression coefficient greater than 0.999), good method precision (<4%), good recovery (90-98%), and excellent limit of detection (3ng/g) and limit of quantitation (10ng/g). Copyright © 2017 Elsevier B.V. All rights reserved.
The Effect of Chain Length on Mid-Infrared and Near-Infrared Spectra of Aliphatic 1-Alcohols.
Kwaśniewicz, Michał; Czarnecki, Mirosław A
2018-02-01
Effect of the chain length on mid-infrared (MIR) and near-infrared (NIR) spectra of aliphatic 1-alcohols from methanol to 1-decanol was examined in detail. Of particular interest were the spectra-structure correlations in the NIR region and the correlation between MIR and NIR spectra of 1-alcohols. An application of two-dimensional correlation analysis (2D-COS) and chemometric methods provided comprehensive information on spectral changes in the data set. Principal component analysis (PCA) and cluster analysis evidenced that the spectra of methanol, ethanol, and 1-propanol are noticeably different from the spectra of higher 1-alcohols. The similarity between the spectra increases with an increase in the chain length. Hence, the most similar are the spectra of 1-nonanol and 1-decanol. Two-dimensional hetero-correlation analysis is very helpful for identification of the origin of bands and may guide selection of the best spectral ranges for the chemometric analysis. As shown, normalization of the spectra pronounces the intensity changes in various spectral regions and provides information not accessible from the raw data. The spectra of alcohols cannot be represented as a sum of the CH 3 , CH 2 , and OH group spectra since the OH group is involved in the hydrogen bonding. As a result, the spectral changes of this group are nonlinear and its spectral profile cannot be properly resolved. Finally, this work provides a lot of evidence that the degree of self-association of 1-alcohols decreases with the increase in chain length because of the growing meaning of the hydrophobic interactions. For butyl alcohol and higher 1-alcohols the hydrophobic interactions are more important than the OH OH interactions. Therefore, methanol, ethanol, and 1-propanol have unlimited miscibility with water, whereas 1-butanol and higher 1-alcohols have limited miscibility with water.
Akinshola, B Emmanuel
2001-01-01
The effects of n-alcohols (methanol to 1-decanol) on kainate-activated AMPA receptor subunit GluR1 and GluR3 ion currents were studied in Xenopus oocytes using the two-electrode voltage-clamp recording technique. For short-chain alcohols from methanol to 1-hexanol, potency for inhibition of GluR1 and GluR3 receptor-mediated current increased in proportion to the chain length or hydrophobicity of the alcohol. The IC50 values of these alcohols for GluR1 were: methanol, 702 mM; ethanol, 170 mM; 1-propanol, 69 mM; 1-butanol, 20 mM; 1-pentanol, 17 mM; and 1-hexanol, 10 mM. For GluR3, IC50 values were: methanol, 712 mM; ethanol, 238 mM; 1-propanol, 50 mM; 1-butanol, 32 mM; 1-pentanol, 13 mM; and 1-hexanol, 7 mM. For long-chain alcohols, 1-heptanol was less potent than 1-hexanol (estimated IC50: 19 mM for GluR1 and 18 mM for GluR3), 1-octanol had little effect only on GluR3, and 1-nonanol and 1-decanol did not significantly inhibit both GluR1 and GluR3 responses. The observations indicate that straight-chain n-alcohols exhibit a cutoff in their potency for inhibition of the function of non-NMDA glutamate receptor subunits, GluR1 and GluR3. The cutoff in potency of n-alcohols for inhibition of non-NMDA glutamate receptor function is consistent with the interpretation that alcohols affect the function of these receptor-channels by interacting with an alcohol binding site of specific dimensions on the receptor protein. PMID:11429388
Solubility of sugars and sugar alcohols in ionic liquids: measurement and PC-SAFT modeling.
Carneiro, Aristides P; Held, Christoph; Rodríguez, Oscar; Sadowski, Gabriele; Macedo, Eugénia A
2013-08-29
Biorefining processes using ionic liquids (ILs) require proper solubility data of biomass-based compounds in ILs, as well as an appropriate thermodynamic approach for the modeling of such data. Carbohydrates and their derivatives such as sugar alcohols represent a class of compounds that could play an important role in biorefining. Thus, in this work, the pure IL density and solubility of xylitol and sorbitol in five different ILs were measured between 288 and 339 K. The ILs under consideration were 1-ethyl-3-methylimidazolium dicyanamide, 1-butyl-3-methylimidazolium dicyanamide ([bmim][DCA]), Aliquat dicyanamide, trihexyltetradecylphosphonium dicyanamide, and 1-ethyl-3-methylimidazolium trifluoroacetate. Comparison with the literature data was performed, showing good agreement. With the exception of [bmim][DCA], the solubility of these sugar alcohols in the other ILs is presented for the first time. The measured data as well as previously published solubility data of glucose and fructose in these ILs were modeled by means of PC-SAFT using a molecular-based associative approach for ILs. PC-SAFT was used in this work as it has shown to be applicable to model the solubility of xylitol and sorbitol in ILs (Paduszyński; et al. J. Phys. Chem. B 2013, 117, 7034-7046). For this purpose, three pure IL parameters were fitted to pure IL densities, activity coefficients of 1-propanol at infinite dilution in ILs, and/or xylitol solubility in ILs. This approach allows accurate modeling of the pure IL data and the mixture data with only one binary interaction parameter k(ij) between sugar and the IL or sugar alcohol and the IL. In cases where only the pure IL density and activity coefficients of 1-propanol at infinite dilution in ILs were used for the IL parameter estimation, the solubility of the sugars and sugar alcohols in the ILs could be predicted (k(ij) = 0 between sugar and the IL or sugar alcohol and the IL) with reasonable accuracy.
Hydration shell parameters of aqueous alcohols: THz excess absorption and packing density.
Matvejev, V; Zizi, M; Stiens, J
2012-12-06
Solvation in water requires minimizing the perturbations in its hydrogen bonded network. Hence solutes distort water molecular motions in a surrounding domain, forming a molecule-specific hydration shell. The properties of those hydration shells impact the structure and function of the solubilized molecules, both at the single molecule and at higher order levels. The size of the hydration shell and the picoseconds time-scale water dynamics retardation are revealed by terahertz (THz) absorption coefficient measurements. Room-temperature absorption coefficient at f = 0.28 [THz] is measured as a function of alcohol concentration in aqueous methanol, ethanol, 1,2-propanol, and 1-butanol solutions. Highly diluted alcohol measurements and enhanced overall measurement accuracy are achieved with a THz absorption measurement technique of nL-volume liquids in a capillary tube. In the absorption analysis, bulk and interfacial molecular domains of water and alcohol are considered. THz ideal and excess absorption coefficients are defined in accordance with thermodynamics mixing formulations. The parameter extraction method is developed based on a THz excess absorption model and hydrated solute molecule packing density representation. First, the hydration shell size is deduced from the hydrated solute packing densities at two specific THz excess absorption nonlinearity points: at infinite alcohol dilution (IAD) and at the THz excess absorption extremum (EAE). Consequently, interfacial water and alcohol molecular domain absorptions are deduced from the THz excess absorption model. The hydration shell sizes obtained at the THz excess absorption extremum are in excellent agreement with other reports. The hydration shells of methanol, ethanol, 1- and 2-propanol consist of 13.97, 22.94, 22.99, and 31.10 water molecules, respectively. The hydration shell water absorption is on average 0.774 ± 0.028 times the bulk water absorption. The hydration shell parameters might shed light on hydration dynamics of biomolecules.
Stsiapanava, Alena; Chaloupkova, Radka; Fortova, Andrea; Brynda, Jiri; Weiss, Manfred S; Damborsky, Jiri; Smatanova, Ivana Kuta
2011-02-01
Haloalkane dehalogenases make up an important class of hydrolytic enzymes which catalyse the cleavage of carbon-halogen bonds in halogenated aliphatic compounds. There is growing interest in these enzymes owing to their potential use in environmental and industrial applications. The haloalkane dehalogenase DhaA from Rhodococcus rhodochrous NCIMB 13064 can slowly detoxify the industrial pollutant 1,2,3-trichloropropane (TCP). Structural analysis of this enzyme complexed with target ligands was conducted in order to obtain detailed information about the structural limitations of its catalytic properties. In this study, the crystallization and preliminary X-ray analysis of complexes of wild-type DhaA with 2-propanol and with TCP and of complexes of the catalytically inactive variant DhaA13 with the dye coumarin and with TCP are described. The crystals of wild-type DhaA were plate-shaped and belonged to the triclinic space group P1, while the variant DhaA13 can form prism-shaped crystals belonging to the orthorhombic space group P2(1)2(1)2(1) as well as plate-shaped crystals belonging to the triclinic space group P1. Diffraction data for crystals of wild-type DhaA grown from crystallization solutions with different concentrations of 2-propanol were collected to 1.70 and 1.26 Å resolution, respectively. A prism-shaped crystal of DhaA13 complexed with TCP and a plate-shaped crystal of the same variant complexed with the dye coumarin diffracted X-rays to 1.60 and 1.33 Å resolution, respectively. A crystal of wild-type DhaA and a plate-shaped crystal of DhaA13, both complexed with TCP, diffracted to atomic resolutions of 1.04 and 0.97 Å, respectively.
Gu, Minjeong; Cho, Keunchang; Kang, Seong Ho
2018-07-27
The migration behavior of organic fluorescent dyes (i.e., crystal violet, methyl violet base, methyl violet B base, rhodamine 6G, and rhodamine B base) in non-aqueous capillary electrophoresis (NACE) was investigated by focusing on the physicochemical properties of various organic solvents [ethanol, methanol, 2-propanol, dimethylformamide (DMF), and dimethyl sulfoxide (DMSO)] in background electrolyte (BGE). Laser-induced fluorescence (LIF) and UV/Vis detectors were employed to observe both the migration time of organic dyes and the electroosmotic flow (EOF) in NACE, respectively. As seen in conventional aqueous BGE, the mobility of EOF in organic solvents tended to rise when the ratio between the dielectric constant and the solvent's viscosity (ε/η) increased in accordance with Smoluchowski's equation. However, unlike the ε/η of pure organic solvents, the migration order of dyes changed as follows: methanol (60.0) > DMF (45.8) > ethanol (22.8) > DMSO (23.4) > 2-propanol (9.8). Since the amount of acetic acid added to balance the pH depends on the pK a of each solvent, EOF changed when the difference in the ε/η value was small. This resulted from the inhibition of mobility, and its difference was dependent on the ε/η of BGEs with high ionic strength. In particular, the actual mobility of dyes in DMF showed excellent compliance with the Debye-Hückel-Onsager (DHO) theory extended by Falkenhagen and Pitts, which enabled us to analyze all dyes within 15 min with excellent resolution (R s > 2.5) under optimum NACE conditions (10 mM sodium borate and 4661 mM acetic acid in 100% DMF, pH 4.5). In addition, the NACE method was successfully applied for analyzing commercially available ballpoint ink pens. Thus, these results could be used to anticipate the migration order of organic dyes in a 100% NACE separation system. Copyright © 2018 Elsevier B.V. All rights reserved.
Alcohol-induced versus anion-induced states of alpha-chymotrypsinogen A at low pH.
Khan, F; Khan, R H; Muzammil, S
2000-09-29
Characterization of conformational transition and folding intermediates is central to the study of protein folding. We studied the effect of various alcohols (trifluoroethanol (TFE), butanol, propanol, ethanol and methanol) and salts (K(3)FeCN(6), Na(2)SO(4), KClO(4) and KCl) on the acid-induced state of alpha-chymotrypsinogen A, a predominantly beta-sheet protein, at pH 2.0 by near-UV circular dichroism (CD), far-UV CD and 1-anilinonaphthalene-8-sulfonic acid (ANS) fluorescence measurements. Addition of alcohols led to an increase in ellipticity value at 222 nm indicating the formation of alpha-helical structure. The order of effectiveness of alcohols was shown to be TFE>butanol>propanol>ethanol>methanol. ANS fluorescence data showed a decrease in fluorescence intensity on alcohol addition, suggesting burial of hydrophobic patches. The near-UV CD spectra showed disruption of tertiary structure on alcohol addition. No change in ellipticity was observed on addition of salts at pH 2.0, whereas in the presence of 2 M urea, salts were found to induce a molten globule-like state as evident from the increases in ellipticity at 222 nm and ANS fluorescence indicating exposure of hydrophobic regions of the protein. The effectiveness in inducing the molten globule-like state, i.e. both increase in ellipticity at 222 nm and increase in ANS fluorescence, followed the order K(3)FeCN(6)>Na(2)SO(4)>KClO(4)>KCl. The loss of signal in the near-UV CD spectrum on addition of alcohols indicating disordering of tertiary structure results suggested that the decrease in ANS fluorescence intensity may be attributed to the unfolding of the ANS binding sites. The results imply that the alcohol-induced state had characteristics of an unfolded structure and lies between the molten globule and the unfolded state. Characterization of such partially folded states has important implications for protein folding.
Disposition of inhaled 1-chloro-2-propanol in F344/N rats
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bond, J.A.; Birnbaum, L.S.; Dahl, A.R.
1988-09-30
Propylene chlorohydrins, of which 1-chloro-2-propanol (1-CP) is a constituent, used as intermediates in the manufacture of propylene oxide and have been identified as potential air pollutants. The objective of these studies was to determine whether changes in the inhaled exposure concentration would affect the disposition of 1-CP in rats. In addition, experiments were conducted to identify the carbon atom of 1-CP that is metabolized to CO2. Rats were exposed nose-only to (14C)1-CP for 6 hr to 8.3 +/- 1.0 ppm (26.1 +/- 3.2 micrograms/liter air) or 77 +/- 4 ppm (245 +/- 13 micrograms/liter air) (mean +/- SE). There weremore » two major routes of elimination of 14C, urinary and exhalation of CO2, which together accounted for about 80% of the total 14C in excreta and carcass. Half-times for elimination of 14C in urine as 14CO2 were between 3 and 7 hr with no effect of exposure concentration on the elimination half-times for either route. After the end of exposure, kidneys, livers, trachea, and nasal turbinates contained high concentrations of (14C)1-CP equivalents at both exposure concentrations (30-50 nmol 14C/g tissue for the 8 ppm exposure level and 200-350 nmol 14C/g tissue for the 80 ppm exposure level). Elimination of 14C from tissues was biphasic with about 50% of the material in a tissue being rapidly eliminated with a half-time of 1 to 3 hr and the remaining material slowly eliminated with a half-time of 40 to 80 hr. There was no effect of exposure concentration on elimination half-times in tissues. Major metabolites detected in urine and tissues (liver, kidney, and lung) were N-acetyl-S-(hydroxypropyl)cysteine and/or S-(2-hydroxypropyl)-cysteine. Little unmetabolized 1-CP (less than 1%) was detected in analyzed tissues or urine.« less
2015-01-01
The observed toxicity and carcinogenicity of 1,3-dichloro-2-propanol (DCP) in rodents is thought to be due to the formation of reactive metabolites, epichlorohydrin (ECH) and dichloroacetone (DCA). However, there is no direct evidence for the formation of these metabolites from exposure to DCP in rodents due to the challenges of measuring these reactive intermediates directly in vivo. The objective of this work was to investigate the metabolism of DCP to ECH and DCA in vivo by first developing a sensitive analytical method in a suitable biological matrix and analyzing samples from rats administered DCP. DCA reacted rapidly in vitro in rat blood, plasma, and liver homogenate, precluding its detection. Because ECH rapidly disappeared in liver homogenate, but was relatively long-lived in plasma and blood in vitro, blood was selected for analysis of this metabolite. Following a single oral dose of 50 mg/kg DCP in male or female Harlan Sprague–Dawley rats, ECH was detected in blood with a maximum concentration reached at ≤13.7 min. ECH was cleared rapidly with a half-life of ca. 33 and 48 min in males and females, respectively. Following a single oral dose of 25 mg/kg ECH in male and female rats, the elimination half-life of ECH was ca. 34 and 20 min, respectively; the oral bioavailability of ECH was low (males, 5.2%; females, 2.1%), suggesting extensive first pass metabolism of ECH following oral administration. The area under the concentration vs time curve for ECH following oral administration of DCP and intravenous administration of ECH was used to estimate the percent of the DCP dose converted to ECH in rats. On the basis of this analysis, we concluded that in male and female rats following oral administration of 50 mg/kg DCP, ≥1.26% or ≥1.78% of the administered dose was metabolized to ECH, respectively. PMID:25254956
1-Propanol probing methodology: two-dimensional characterization of the effect of solute on H2O.
Koga, Yoshikata
2013-09-21
The wording "hydrophobicity/hydrophilicity" has been used in a loose manner based on human experiences. We have devised a more quantitative way to redefine "hydrophobes" and "hydrophiles" in terms of the mole fraction dependence pattern of one of the third derivative quantities, the enthalpic interaction between solute molecules. We then devised a thermodynamic methodology to characterize the effect of a solute on H2O in terms of its hydrophobicity and/or hydrophilicity. We use a thermodynamic signature, the enthalpic interaction of 1-propanol, H, to monitor how the test solute modifies H2O. By this method, characterization is facilitated by two indices; one pertaining to its hydrophobicity and the other its hydrophilicity. Hence differences among amphiphiles are quantified in a two-dimensional manner. Furthermore, an individual ion can be characterized independent of a counter ion. By using this methodology, we have studied the effects on H2O of a number of solutes, and gained some important new insights. For example, such commonly used examples of hydrophobes in the literature as tetramethyl urea, trimethylamine-N-oxide, and tetramethylammonium salts are in fact surprisingly hydrophilic. Hence the conclusions about "hydrophobes" using these samples ought to be interpreted with caution. The effects of anions on H2O found by this methodology are in the same sequence of the Hofmeister ranking, which will no doubt aid a further investigation into this enigma in biochemistry. Thus, it is likely that this methodology could play an important role in the characterization of the effects of solutes in H2O, and a perspective view may be useful. Here, we describe the basis on which the methodology is developed and the methodology itself in m.ore detail than given in individual papers. We then summarize the results in two dimensional hydrophobicity/hydrophilicity maps.
Keshipour, Sajjad; Mirmasoudi, Seyyedeh Sahra
2018-09-15
Dimercaprol as the chelating agent of Au(III) was loaded on chitosan aerogel. Dimercaprol supported on chitosan aerogel efficiently was complexed with Au(III). The new organometallic compound showed good catalytic activity in the oxidation reaction of some aliphatic alcohols, benzyl alcohol, and ethylbenzene. High conversions and excellent selectivities were obtained in the solvent-free oxidation reactions under mild reaction conditions. Also, turnover numbers were calculated for the oxidation reactions with 203, 134, 308, 282, 392, and 153 for 1-pentanol, 1-octanol, 2-propanol, 2-butanol, benzyl alcohol, and ethylbenzene, respectively. The organometallic compound is applicable as a heterogeneous Au(III) catalyst with high chemical stabilityand recyclability up to 6 times. Copyright © 2018 Elsevier Ltd. All rights reserved.
Control of NO concentration in solutions of nitrosothiol compounds by light.
Zhelyaskov, V R; Gee, K R; Godwin, D W
1998-03-01
We studied the thermal and photolytic decomposition of two S-nitrosothiols, S-nitrosoglutathione (GSNO) and S-nitroso-N-acetylpenicillamine (SNAP), in water or propanol solutions. A "concentration clamp" (relatively constant concentration of NO as a function of time) could be implemented in a closed volume by varying the pH, concentration of nitrovasodilator and intensity of the light source. Depending on the conditions, the light either stimulated NO release or sharply decreased NO concentration in the test solutions. Changes in the absorption spectra of GSNO solutions were monitored as a function of light exposure. Generation of superoxide as a product of a photolytic decomposition reaction of S-nitrosothiols and further oxidation of NO is the most likely mechanism for light suppression of NO concentration.
ANALYSIS OF OUT OF DATE MCU MODIFIER LOCATED IN SRNL
DOE Office of Scientific and Technical Information (OSTI.GOV)
Crawford, C.
2014-10-22
SRNL recently completed density measurements and chemical analyses on modifier samples stored in drums within SRNL. The modifier samples date back to 2008 and are in various quantities up to 40 gallons. Vendor information on the original samples indicates a shelf life of 5 years. There is interest in determining if samples that have been stored for more than the 5 year shelf life are still acceptable for use. The Modular Caustic Side Solvent Extraction Unit (MCU) Solvent component Cs-7SB [(2,2,3,3- tetraflouropropoxy)-3-(4-sec-butylphenoxy)-2-propanol, CAS #308362-88-1] is used as a diluent modifier to increase extractant solubility and provide physical characteristics necessary formore » diluent trimming.« less
Pennacchio, Angela; Giordano, Assunta; Esposito, Luciana; Langella, Emma; Rossi, Mosè; Raia, Carlo A
2010-04-01
The stereochemistry of the hydride transfer in reactions catalyzed by NAD(H)-dependent alcohol dehydrogenase from Thermus thermophilus HB27 was determined by means of (1)H-NMR spectroscopy. The enzyme transfers the pro-S hydrogen of [4R-(2)H]NADH and exhibits Prelog specificity. Enzyme-substrate docking calculations provided structural details about the enantioselectivity of this thermophilic enzyme. These results give additional insights into the diverse active site architectures of the largely versatile short-chain dehydrogenase superfamily enzymes. A feasible protocol for the synthesis of [4R-(2)H]NADH with high yield was also set up by enzymatic oxidation of 2-propanol-d(8) catalyzed by Bacillus stearothermophilus alcohol dehydrogenase.
Combustion of liquid fuels in a flowing combustion gas environment at high pressures
NASA Technical Reports Server (NTRS)
Canada, G. S.; Faeth, G. M.
1975-01-01
The combustion of fuel droplets in gases which simulate combustion chamber conditions was considered both experimentally and theoretically. The fuel droplets were simulated by porous spheres and allowed to gasify in combustion gases produced by a burner. Tests were conducted for pressures of 1-40 atm, temperatures of 600-1500 K, oxygen concentrations of 0-13% (molar) and approach Reynolds numbers of 40-680. The fuels considered in the tests included methanol, ethanol, propanol-1, n-pentane, n-heptane and n-decane. Measurements were made of both the rate of gasification of the droplet and the liquid surface temperature. Measurements were compared with theory, involving various models of gas phase transport properties with a multiplicative correction for the effect of forced convection.
Lipase-catalyzed synthesis of fatty acid amide (erucamide) using fatty acid and urea.
Awasthi, Neeraj Praphulla; Singh, R P
2007-01-01
Ammonolysis of fatty acids to the corresponding fatty acid amides is efficiently catalysed by Candida antartica lipase (Novozym 435). In the present paper lipase-catalysed synthesis of erucamide by ammonolysis of erucic acid and urea in organic solvent medium was studied and optimal conditions for fatty amides synthesis were established. In this process erucic acid gave 88.74 % pure erucamide after 48 hour and 250 rpm at 60 degrees C with 1:4 molar ratio of erucic acid and urea, the organic solvent media is 50 ml tert-butyl alcohol (2-methyl-2-propanol). This process for synthesis is economical as we used urea in place of ammonia or other amidation reactant at atmospheric pressure. The amount of catalyst used is 3 %.
Retardation of organo-bromides in a fractured chalk aquitard.
Ezra, Shai; Feinstein, Shimon; Yakirevich, Alex; Adar, Eilon; Bilkis, Itzhak
2006-08-10
This study investigates the mechanisms controlling the distribution of 3-bromo-2,2-bis(bromomethyl)propanol (TBNPA) and 2,2-bis(bromomethyl)propan-1,3-diol (DBNPG) in a fractured chalk aquitard. An extensive monitoring program showed a systematic decrease in the TBNPA/DBNPG ratio with distance from the contamination source. Sorption of TBNPA on the white and/or gray chalks comprising the aquitard is approximately one order of magnitude greater than that of DBNPG. This results in more efficient removal of TBNPA from the fracture into the porous matrix and thus decreases the TBNPA/DBNPG ratio in the fracture water. Mathematical modeling of solute transport in the fracture domain illustrates the probable importance of sorption in controlling the spatial variation in TBNPA and DBNPG ratio.
NASA Astrophysics Data System (ADS)
Nik Him, N. R.; Huda, T.
2018-05-01
Study on the production of bioethanol using palm oil empty fruit bunch (EFB) has been performed using actinomycete Streptosporangium roseum. Positive result of bioethanol production was recorded using Iodoform test followed by confirmation with GC-FID using a polar capillary column (PEG-type, 10m x 0.53, with autosampler) and n-propanol as internal standard. The first and second round distillation has produced azeotrope (85-15% ethanol-water) and the third round has concentrated the ethanol to 96.1%. Therefore, the process was accomplished by using molecular sieves that selectively absorbed the final excess water. Direct fermentation using Streptosporangium roseum has shown to be a very potential way to catalyst for the synthesis of bioethanol from EFB.
Hybrid pigments resulting from several guest dyes onto γ-alumina host: A spectroscopic analysis
NASA Astrophysics Data System (ADS)
Pérez, Erik; Ibarra, Ilich A.; Guzmán, Ariel; Lima, Enrique
2017-02-01
The synthesis of hybrid pigments was made from combination of γ-Al2O3 and some organic chromophores such as carminic acid, alizarin, purpurin, curcumin, fluorescein and betacyanins. The γ-Al2O3 was obtained through sol-gel synthesis with 2-propanol and aluminium tri-sec-butoxide (ATB). This article presents some spectroscopic evidences related to the formation of aluminium complexes between coordinative unsaturated sites (CUS) of aluminium and some organic groups (carboxylic acid, quaternary ammonium and β-keto enol) present in the chromophores structure. The physicochemical properties upcoming from a spectroscopic analysis point out that these materials can be applied in the design of new materials with potential uses in artworks and in the field of cultural heritage.
NASA Technical Reports Server (NTRS)
Charnley, S. B.; Kress, M. E.; Tielens, A. G. G. M.; Millar, T. J.
1995-01-01
We have investigated the gas-phase chemistry in dense cores where ice mantles containing ethanol and other alcohols have been evaporated. Model calculations show that methanol, ethanol, propanol, and butanol drive a chemistry leading to the formation of several large ethers and esters. Of these molecules, methyl ethyl ether (CH3OC2H5) and diethyl ether (C2H5)2O attain the highest abundances and should be present in detectable quantities within cores rich in ethanol and methanol. Gas-phase reactions act to destroy evaporated ethanol and a low observed abundance of gas-phase C,H,OH does not rule out a high solid-phase abundance. Grain surface formation mechanisms and other possible gas-phase reactions driven by alcohols are discussed, as are observing strategies for the detection of these large interstellar molecules.
Magnetically responsive enzyme powders
NASA Astrophysics Data System (ADS)
Pospiskova, Kristyna; Safarik, Ivo
2015-04-01
Powdered enzymes were transformed into their insoluble magnetic derivatives retaining their catalytic activity. Enzyme powders (e.g., trypsin and lipase) were suspended in various liquid media not allowing their solubilization (e.g., saturated ammonium sulfate and highly concentrated polyethylene glycol solutions, ethanol, methanol, 2-propanol) and subsequently cross-linked with glutaraldehyde. Magnetic modification was successfully performed at low temperature in a freezer (-20 °C) using magnetic iron oxides nano- and microparticles prepared by microwave-assisted synthesis from ferrous sulfate. Magnetized cross-linked enzyme powders were stable at least for two months in water suspension without leakage of fixed magnetic particles. Operational stability of magnetically responsive enzymes during eight repeated reaction cycles was generally without loss of enzyme activity. Separation of magnetically modified cross-linked powdered enzymes from reaction mixtures was significantly simplified due to their magnetic properties.
Alcohol Dehydrogenase Activities of Wine Yeasts in Relation to Higher Alcohol Formation
Singh, Rajendra; Kunkee, Ralph E.
1976-01-01
Alcohol dehydrogenase activities were examined in cell-free extracts of 10 representative wine yeast strains having various productivities of higher alcohols (fusel oil). The amount of fusel alcohols (n-propanol, isobutanol, active pentanol, and isopentanol) produced by the different yeasts and the specific alcohol dehydrogenase activities with the corresponding alcohols as substrates were found to be significantly related. No such relationship was found for ethanol. The amounts of higher alcohols formed during vinification could be predicted from the specific activities of the alcohol dehydrogenases with high accuracy. The results suggest a close relationship between the control of the activities of alcohol dehydrogenase and the formation of fusel oil alcohols. Also, new procedures for the prediction of higher alcohol formation during alcoholic beverage fermentation are suggested. PMID:16345179
Room-temperature processing of CdSe quantum dots with tunable sizes
NASA Astrophysics Data System (ADS)
Joo, So-Yeong; Jeong, Da-Woon; Lee, Chan-Gi; Kim, Bum-Sung; Park, Hyun-Su; Kim, Woo-Byoung
2017-06-01
In this work, CdSe quantum dots (QDs) with tunable sizes have been fabricated via photo-induced chemical etching at room temperature, and the related reaction mechanism was investigated. The surface of QDs was oxidized by the holes generated through photon irradiation of oxygen species, and the obtained oxide layer was dissolved in an aqueous solution of 3-amino-1-propanol (APOL) with an APOL:H2O volume ratio of 5:1. The generated electrons promoted QD surface interactions with amino groups, which ultimately passivated surface defects. The absorption and photoluminescence emission peaks of the produced QDs were clearly blue-shifted about 26 nm with increasing time, and the resulting quantum yield for an 8 h etched sample was increased from 20% to 26%, as compared to the initial sample.
Kanazawa, Hideko; Tsubayashi, Akane; Nagata, Yoshiko; Matsushima, Yoshikazu; Mori, Chiharu; Kizu, Junko; Higaki, Megumu
2002-03-01
The chiral separation of loxoprofen was achieved on a chiral column with UV and circular dichroism (CD) detection. The good resolution of four loxoprofen stereoisomers was obtained. The column used for the chiral separation was Chiralcel OJ column (250 x 4.6 mm) using hexane-2-propanol-trifluoroacetic acid (95:5:0.1), as an eluent. The flow-rate was 1.0 ml/min and the detection was at 225 nm. In addition, CD and UV spectra were obtained by stopped flow scanning. The method allows the determination of the stereoisomers of loxoprofen in human plasma after the administration of therapeutic dose of the racemic drug, thus HPLC with CD detector is useful for the stereospecific determination of loxoprofen products in biological samples.
Method for producing high surface area chromia materials for catalysis
Gash, Alexander E [Brentwood, CA; Satcher, Joe [Patterson, CA; Tillotson, Thomas [Tracy, CA; Hrubesh, Lawrence [Pleasanton, CA; Simpson, Randall [Livermore, CA
2007-05-01
Nanostructured chromium(III)-oxide-based materials using sol-gel processing and a synthetic route for producing such materials are disclosed herein. Monolithic aerogels and xerogels having surface areas between 150 m.sup.2/g and 520 m.sup.2/g have been produced. The synthetic method employs the use of stable and inexpensive hydrated-chromium(III) inorganic salts and common solvents such as water, ethanol, methanol, 1-propanol, t-butanol, 2-ethoxy ethanol, and ethylene glycol, DMSO, and dimethyl formamide. The synthesis involves the dissolution of the metal salt in a solvent followed by an addition of a proton scavenger, such as an epoxide, which induces gel formation in a timely manner. Both critical point (supercritical extraction) and atmospheric (low temperature evaporation) drying may be employed to produce monolithic aerogels and xerogels, respectively.
Ultra-high resolution X-ray structures of two forms of human recombinant insulin at 100 K.
Lisgarten, David R; Palmer, Rex A; Lobley, Carina M C; Naylor, Claire E; Chowdhry, Babur Z; Al-Kurdi, Zakieh I; Badwan, Adnan A; Howlin, Brendan J; Gibbons, Nicholas C J; Saldanha, José W; Lisgarten, John N; Basak, Ajit K
2017-08-01
The crystal structure of a commercially available form of human recombinant (HR) insulin, Insugen (I), used in the treatment of diabetes has been determined to 0.92 Å resolution using low temperature, 100 K, synchrotron X-ray data collected at 16,000 keV (λ = 0.77 Å). Refinement carried out with anisotropic displacement parameters, removal of main-chain stereochemical restraints, inclusion of H atoms in calculated positions, and 220 water molecules, converged to a final value of R = 0.1112 and R free = 0.1466. The structure includes what is thought to be an ordered propanol molecule (POL) only in chain D(4) and a solvated acetate molecule (ACT) coordinated to the Zn atom only in chain B(2). Possible origins and consequences of the propanol and acetate molecules are discussed. Three types of amino acid representation in the electron density are examined in detail: (i) sharp with very clearly resolved features; (ii) well resolved but clearly divided into two conformations which are well behaved in the refinement, both having high quality geometry; (iii) poor density and difficult or impossible to model. An example of type (ii) is observed for the intra-chain disulphide bridge in chain C(3) between Sγ6-Sγ11 which has two clear conformations with relative refined occupancies of 0.8 and 0.2, respectively. In contrast the corresponding S-S bridge in chain A(1) shows one clearly defined conformation. A molecular dynamics study has provided a rational explanation of this difference between chains A and C. More generally, differences in the electron density features between corresponding residues in chains A and C and chains B and D is a common observation in the Insugen (I) structure and these effects are discussed in detail. The crystal structure, also at 0.92 Å and 100 K, of a second commercially available form of human recombinant insulin, Intergen (II), deposited in the Protein Data Bank as 3W7Y which remains otherwise unpublished is compared here with the Insugen (I) structure. In the Intergen (II) structure there is no solvated propanol or acetate molecule. The electron density of Intergen (II), however, does also exhibit the three types of amino acid representations as in Insugen (I). These effects do not necessarily correspond between chains A and C or chains B and D in Intergen (II), or between corresponding residues in Insugen (I). The results of this comparison are reported. Graphical abstract Conformations of PheB25 and PheD25 in three insulin structures: implications for biological activity? Insulin residues PheB25 and PheD25 are considered to be important for insulin receptor binding and changes in biological activity occur when these residues are modified. In porcine insulin and Intergen (II) PheB25 adopts conformation B and PheD25 conformation D. However, unexpectedly PheB25 in Insugen (I) human recombinant insulin adopts two distinct conformations corresponding to B and D, Figure 1 and PheD25 adopts a single conformation corresponding to B not D, Figure 2. Conformations of this residue in the ultra-high resolution structure of Insugen (I) are therefore unique within this set. Figures were produced with Biovia, Discovery Studio 2016.
Xu, Zhen; Wang, Miaomiao; Ye, Bang-Ce
2017-10-15
Propanol stimulates erythromycin biosynthesis by increasing the supply of propionyl coenzyme A (propionyl-CoA), a starter unit of erythromycin production in Saccharopolyspora erythraea Propionyl-CoA is assimilated via propionyl-CoA carboxylase to methylmalonyl-CoA, an extender unit of erythromycin. We found that the addition of n -propanol or propionate caused a 4- to 16-fold increase in the transcriptional levels of the SACE_3398-3400 locus encoding propionyl-CoA carboxylase, a key enzyme in propionate metabolism. The regulator PccD was proved to be directly involved in the transcription regulation of the SACE_3398-3400 locus by EMSA and DNase I footprint analysis. The transcriptional levels of SACE_3398-3400 were upregulated 15- to 37-fold in the pccD gene deletion strain (Δ pccD ) and downregulated 3-fold in the pccD overexpression strain (WT/pIB- pccD ), indicating that PccD was a negative transcriptional regulator of SACE_3398-3400. The Δ pccD strain has a higher growth rate than that of the wild-type strain (WT) on Evans medium with propionate as the sole carbon source, whereas the growth of the WT/pIB- pccD strain was repressed. As a possible metabolite of propionate metabolism, methylmalonic acid was identified as an effector molecule of PccD and repressed its regulatory activity. A higher level of erythromycin in the Δ pccD strain was observed compared with that in the wild-type strain. Our study reveals a regulatory mechanism in propionate metabolism and suggests new possibilities for designing metabolic engineering to increase erythromycin yield. IMPORTANCE Our work has identified the novel regulator PccD that controls the expression of the gene for propionyl-CoA carboxylase, a key enzyme in propionyl-CoA assimilation in S. erythraea PccD represses the generation of methylmalonyl-CoA through carboxylation of propionyl-CoA and reveals an effect on biosynthesis of erythromycin. This finding provides novel insight into propionyl-CoA assimilation, and extends our understanding of the regulatory mechanisms underlying the biosynthesis of erythromycin. Copyright © 2017 American Society for Microbiology.
Xu, Zhen; Wang, Miaomiao
2017-01-01
ABSTRACT Propanol stimulates erythromycin biosynthesis by increasing the supply of propionyl coenzyme A (propionyl-CoA), a starter unit of erythromycin production in Saccharopolyspora erythraea. Propionyl-CoA is assimilated via propionyl-CoA carboxylase to methylmalonyl-CoA, an extender unit of erythromycin. We found that the addition of n-propanol or propionate caused a 4- to 16-fold increase in the transcriptional levels of the SACE_3398–3400 locus encoding propionyl-CoA carboxylase, a key enzyme in propionate metabolism. The regulator PccD was proved to be directly involved in the transcription regulation of the SACE_3398–3400 locus by EMSA and DNase I footprint analysis. The transcriptional levels of SACE_3398–3400 were upregulated 15- to 37-fold in the pccD gene deletion strain (ΔpccD) and downregulated 3-fold in the pccD overexpression strain (WT/pIB-pccD), indicating that PccD was a negative transcriptional regulator of SACE_3398–3400. The ΔpccD strain has a higher growth rate than that of the wild-type strain (WT) on Evans medium with propionate as the sole carbon source, whereas the growth of the WT/pIB-pccD strain was repressed. As a possible metabolite of propionate metabolism, methylmalonic acid was identified as an effector molecule of PccD and repressed its regulatory activity. A higher level of erythromycin in the ΔpccD strain was observed compared with that in the wild-type strain. Our study reveals a regulatory mechanism in propionate metabolism and suggests new possibilities for designing metabolic engineering to increase erythromycin yield. IMPORTANCE Our work has identified the novel regulator PccD that controls the expression of the gene for propionyl-CoA carboxylase, a key enzyme in propionyl-CoA assimilation in S. erythraea. PccD represses the generation of methylmalonyl-CoA through carboxylation of propionyl-CoA and reveals an effect on biosynthesis of erythromycin. This finding provides novel insight into propionyl-CoA assimilation, and extends our understanding of the regulatory mechanisms underlying the biosynthesis of erythromycin. PMID:28760847
NASA Astrophysics Data System (ADS)
Treadaway, Victoria; Heikes, Brian G.; McNeill, Ashley S.; Silwal, Indira K. C.; O'Sullivan, Daniel W.
2018-04-01
A chemical ionization mass spectrometry (CIMS) method utilizing a reagent gas mixture of O2, CO2, and CH3I in N2 is described and optimized for quantitative gas-phase measurements of hydrogen peroxide (H2O2), methyl peroxide (CH3OOH), formic acid (HCOOH), and the sum of acetic acid (CH3COOH) and hydroxyacetaldehyde (HOCH2CHO; also known as glycolaldehyde). The instrumentation and methodology were designed for airborne in situ field measurements. The CIMS quantification of formic acid, acetic acid, and hydroxyacetaldehyde used I- cluster formation to produce and detect the ion clusters I-(HCOOH), I-(CH3COOH), and I-(HOCH2CHO), respectively. The CIMS also produced and detected I- clusters with hydrogen peroxide and methyl peroxide, I-(H2O2) and I-(CH3OOH), though the sensitivity was lower than with the O2- (CO2) and O2- ion clusters, respectively. For that reason, while the I- peroxide clusters are presented, the focus is on the organic acids. Acetic acid and hydroxyacetaldehyde were found to yield equivalent CIMS responses. They are exact isobaric compounds and indistinguishable in the CIMS used. Consequently, their combined signal is referred to as the acetic acid equivalent sum
. Within the resolution of the quadrupole used in the CIMS (1 m/z), ethanol and 1- and 2-propanol were potential isobaric interferences to the measurement of formic acid and the acetic acid equivalent sum, respectively. The CIMS response to ethanol was 3.3 % that of formic acid and the response to either 1- or 2-propanol was 1 % of the acetic acid response; therefore, the alcohols were not considered to be significant interferences to formic acid or the acetic acid equivalent sum. The multi-reagent ion system was successfully deployed during the Front Range Air Pollution and Photochemistry Éxperiment (FRAPPÉ) in 2014. The combination of FRAPPÉ and laboratory calibrations allowed for the post-mission quantification of formic acid and the acetic acid equivalent sum observed during the Deep Convective Clouds and Chemistry Experiment in 2012.
Industrial Acetogenic Biocatalysts: A Comparative Metabolic and Genomic Analysis
Bengelsdorf, Frank R.; Poehlein, Anja; Linder, Sonja; Erz, Catarina; Hummel, Tim; Hoffmeister, Sabrina; Daniel, Rolf; Dürre, Peter
2016-01-01
Synthesis gas (syngas) fermentation by anaerobic acetogenic bacteria employing the Wood–Ljungdahl pathway is a bioprocess for production of biofuels and biocommodities. The major fermentation products of the most relevant biocatalytic strains (Clostridium ljungdahlii, C. autoethanogenum, C. ragsdalei, and C. coskatii) are acetic acid and ethanol. A comparative metabolic and genomic analysis using the mentioned biocatalysts might offer targets for metabolic engineering and thus improve the production of compounds apart from ethanol. Autotrophic growth and product formation of the four wild type (WT) strains were compared in uncontrolled batch experiments. The genomes of C. ragsdalei and C. coskatii were sequenced and the genome sequences of all four biocatalytic strains analyzed in comparative manner. Growth and product spectra (acetate, ethanol, 2,3-butanediol) of C. autoethanogenum, C. ljungdahlii, and C. ragsdalei were rather similar. In contrast, C. coskatii produced significantly less ethanol and its genome sequence lacks two genes encoding aldehyde:ferredoxin oxidoreductases (AOR). Comparative genome sequence analysis of the four WT strains revealed high average nucleotide identity (ANI) of C. ljungdahlii and C. autoethanogenum (99.3%) and C. coskatii (98.3%). In contrast, C. ljungdahlii WT and C. ragsdalei WT showed an ANI-based similarity of only 95.8%. Additionally, recombinant C. ljungdahlii strains were constructed that harbor an artificial acetone synthesis operon (ASO) consisting of the following genes: adc, ctfA, ctfB, and thlA (encoding acetoacetate decarboxylase, acetoacetyl-CoA:acetate/butyrate:CoA-transferase subunits A and B, and thiolase) under the control of thlA promoter (PthlA) from C. acetobutylicum or native pta-ack promoter (Ppta-ack) from C. ljungdahlii. Respective recombinant strains produced 2-propanol rather than acetone, due to the presence of a NADPH-dependent primary-secondary alcohol dehydrogenase that converts acetone to 2-propanol. Furthermore, the ClosTronTM system was used to construct an adhE1 integration mutant. These results provide extensive insights into genetic features of industrially relevant bacterial biocatalysts and expand the toolbox for metabolic engineering of acetogenic bacteria able to ferment syngas. PMID:27458439
Blazy, V; de Guardia, A; Benoist, J C; Daumoin, M; Lemasle, M; Wolbert, D; Barrington, S
2014-07-01
Compost sustainability requires a better control of its gaseous emissions responsible for several impacts including odours. Indeed, composting odours have stopped the operation of many platforms and prevented the installation of others. Accordingly, present technologies collecting and treating gases emitted from composting are not satisfactory and alternative solutions must be found. Thus, the aim of this paper was to study the influence of composting process conditions on gaseous emissions. Pig slaughterhouse sludge mixed with wood chips was composted under forced aerationin 300 L laboratory reactors. The process conditions studied were: aeration rate of 1.68, 4.03, 6.22, 9.80 and 13.44 L/h/kg of wet sludge; incorporation ratio of 0.55, 0.83 and 1.1 (kg of wet wood chips/kg of wet sludge), and; bulking agent particles size of <10, 10<20 and 20<30 mm. Out-going gases were sampled every 2 days and their composition was analysed using gas chromatography coupled with mass spectrometry (GC-MS). Fifty-nine compounds were identified and quantified. Dividing the cumulated mass production over 30 days of composting, by odour threshold, 9 compounds were identified as main potential odour contributors: hydrogen sulphide, trimethylamine, ammonia, 2-pentanone, 1-propanol-2-methyl, dimethyl sulphide, dimethyl disulphide, dimethyl trisulphide and acetophenone. Five gaseous compounds were correlated with both aeration rate and bulking agent to waste ratio: hydrogen sulphide, trimethylamine, ammonia, 2-pentanone and 1-propanol-2-methyl. However, dropping the aeration rate and increasing the bulking agent to waste ratio reduced gaseous odour emissions by a factor of 5-10, when the required threshold dilution factor ranged from 10(5) to 10(6), to avoid nuisance at peak emission rates. Process influence on emissions of dimethyl sulphide, dimethyl disulphide, dimethyl trisulphide were poorly correlated with both aeration rate and bulking agent to waste ratio as a reaction with hydrogen sulphide was suspected. Acetophenone emissions originated from the wood chips. Olfactory measurements need to be correlated to gaseous emissions for a more accurate odour emission evaluation. Copyright © 2014 Elsevier Ltd. All rights reserved.
Alkylresorcinols in selected Polish rye and wheat cereals and whole-grain cereal products.
Kulawinek, Mariola; Jaromin, Anna; Kozubek, Arkadiusz; Zarnowski, Robert
2008-08-27
The alkylresorcinol content and homologue composition in selected Polish rye and wheat cultivars and selected whole-grain cereal products were determined in this study. Cereal grains and whole-grain cereal products were extracted with acetone, whereas bread types were extracted with hot 1-propanol. The average alkylresorcinol content in tested rye (approximately 1100 mg/kg DM) and wheat (approximately 800 mg/kg DM) grains harvested in Poland was within the range previously reported in Swedish and Finnish samples. The total alkylresorcinol content in tested cereal products available on the Polish market varied from very low levels in barley grain-based foods up to 3000 mg/kg DM in wheat bran. The total alkylresorcinol content in 14 bread samples extracted with hot 1-propanol varied from approximately 100 mg/kg DM in whole bread made with honey up to approximately 650 mg/kg DM in whole-rye bread. Calculated ratios of C17:0 to C21:0 homologues, a useful parameter previously used to distinguish between rye and wheat cereals and their derived products, was about 1.2-1.4 in rye products, about 0.2 in wheat products, and varied between 0.2 and 0.6 in cereal-derived products containing a mixture of whole rye and/or wheat. The data set obtained were subsequently compared using cluster and principal component analysis, which allowed the tested cereal products to be classified into two major groups consisting of whole-rye or whole-wheat products, respectively. On the basis of that approach, mixed cereal products containing rye and wheat bran or whole rye and wheat flour were grouped between those two well-defined clusters. Our work not only provides a detailed examination of alkylresorcinols in selected Polish rye and wheat cultivars and selected whole-grain cereal products, but also demonstrates that this type of analysis accompanied by the use of proper statistical algorithms offers an objective way to evaluate the quality of whole-grain rye and/or wheat and their derived products.
Inactivation of influenza A virus H1N1 by disinfection process.
Jeong, Eun Kyo; Bae, Jung Eun; Kim, In Seop
2010-06-01
Because any patient, health care worker, or visitor is capable of transmitting influenza to susceptible persons within hospitals, hospital-acquired influenza has been a clinical concern. Disinfection and cleaning of medical equipment, surgical instruments, and hospital environment are important measures to prevent transmission of influenza virus from hospitals to individuals. This study was conducted to evaluate the efficacy of disinfection processes, which can be easily operated at hospitals, in inactivating influenza A virus H1N1 (H1N1). The effects of 0.1 mol/L NaOH, 70% ethanol, 70% 1-propanol, solvent/detergent (S/D) using 0.3% tri (n-butyl)-phosphate and 1.0% Triton X-100, heat, and ethylene oxide (EO) treatments in inactivating H1N1 were determined. Inactivation of H1N1 was kinetically determined by the treatment of disinfectants to virus solution. Also, a surface test method, which involved drying an amount of virus on a surface and then applying the inactivation methods for 1 minute of contact time, was used to determine the virucidal activity. H1N1 was completely inactivated to undetectable levels in 1 minute of 70% ethanol, 70% 1-propanol, and solvent/detergent treatments in the surface tests as well as in the suspension tests. H1N1 was completely inactivated in 1 minute of 0.1 mol/L NaOH treatment in the suspension tests and also effectively inactivated in the surface tests with the log reduction factor of 3.7. H1N1 was inactivated to undetectable levels within 5 minutes, 2.5 minutes, and 1 minute of heat treatment at 70, 80, and 90 degrees C, respectively in the suspension tests. Also, H1N1 was completely inactivated by EO treatment in the surface tests. Common disinfectants, heat, and EO tested in this study were effective at inactivating H1N1. These results would be helpful in implementing effective disinfecting measures to prevent hospital-acquired infections. Copyright 2010 Association for Professionals in Infection Control and Epidemiology, Inc. Published by Mosby, Inc. All rights reserved.
NASA Technical Reports Server (NTRS)
Weber, Arthur L.
1994-01-01
The oxidation of 2,3-Dimercapto-1-propanol by ferric ions on the surface of iron (III) hydroxide oxide yielded polydisulfide polymers. This polymerization occured readily at low dithiol concentration under mild aqueous conditions. Polydisulfide polymers up to the 15-mer were synthesized from 1 mM dithiol in 5 ml water reacted with iron (III) hydroxide oxide (20 mg, 160 micro mole Fe) for 3 days under anaerobic conditions at 40 C and pH 4. About 91% of the dithiol was converted to short soluble oligomers and 9% to insoluble larger oligomers that were isolated with the mineral phase. Reactions at higher dithiol concentrations with the same ratio of dithiol to mineral gave a higher yield of the larger insoluble oligomers. The relationship of these results to prebiotic polymer synthesis will be discussed.
Kodama, Koichi; Kimura, Yuria; Shitara, Hiroaki; Yasutake, Mikio; Sakurai, Rumiko; Hirose, Takuji
2011-04-01
Solvent-induced chirality control in the enantioseparation of 1-phenylethylamine 1 by N-(p-toluenesulfonyl)-(S)-phenylalanine 2 via diastereomeric salt formation was studied. (S)-1·(S)-2 was preferentially crystallized as a less-soluble salt from aqueous alcohol, while (R)-1·(S)-2 salt was mainly obtained by addition of solvents with a six-membered ring such as dioxane, cyclohexane, tetrahydropyran, and cyclohexene to 2-propanol. Further investigations were carried out from the viewpoints of molecular structures, optical rotation measurement, and X-ray crystallographic analyses. Crystallographic analyses have revealed that incorporation of the six-membered ring solvent molecule in (R)-1·(S)-2 without hydrogen bonds changed the molecular conformation of (S)-2 to stabilize the salt, which changed the selectivity of 1 in the enantioseparation. Copyright © 2010 Wiley-Liss, Inc.
Huang, Z H; Gage, D A; Bieber, L L; Sweeley, C C
1991-11-15
A novel approach to the analysis of acylcarnitines has been developed. It involves a direct esterification using propyl chloroformate in aqueous propanol followed by ion-pair extraction with potassium iodide into chloroform and subsequent on-column N-demethylation of the resulting acylcarnitine propyl ester iodides. The products, acyl N-demethylcarnitine propyl esters, are volatile and are easily analyzed by gas chromatography-chemical ionization mass spectrometry. For medium-chain-length (C4-C12) acylcarnitine standards, detection limits are demonstrated to be well below 1 ng starting material using selected ion monitoring. Well-separated gas chromatographic peaks and structure-specific mass spectra are obtained with samples of synthetic and biological origin. Seven acylcarnitines have been characterized in the urine of a patient suffering from medium-chain acyl-CoA dehydrogenase deficiency.
Detailed Analysis for the Solvolysis of Isopropenyl Chloroformate
D’Souza, Malcolm John; Shuman, Kevin Edward; Omondi, Arnold Ochieng; Kevill, Dennis Neil
2011-01-01
The specific rates of solvolysis (including those obtained from the literature) of isopropenyl chloroformate (1) are analyzed using the extended Grunwald-Winstein equation, involving the NT scale of solvent nucleophilicity (S-methyldibenzothiophenium ion) combined with a YCl scale based on 1-adamantyl chloride solvolysis. A similarity model approach, using phenyl chloroformate solvolyses for comparison, indicated a dominant bimolecular carbonyl-addition mechanism for the solvolyses of 1 in all solvents except 97% 1,1,1,3,3,3-hexafluoro-2-propanol (HFIP). An extensive evaluation of the outcomes acquired through the application of the extended Grunwald-Winstein equation resulted in the proposal of an addition-elimination mechanism dominating in most of the solvents, but in 97-70% HFIP, and 97% 2,2,2-trifluoroethanol (TFE), it is proposed that a superimposed unimolecular (SN1) type ionization is making a significant contribution. PMID:21881623
NASA Astrophysics Data System (ADS)
Liong, W. L.; Sreekantan, S.; Hutagalung, S. D.
2010-05-01
Silicon nanoparticles are synthesized by microemulsion route. Silicon tetrachloride (SiCl4) is used as a silicon source. Meanwhile, hydrazine (N2H5OH), sodium hydroxide (NaOH), and polyethylene glycol (PEG) are used as reduction agent, stabilizer, and capping agent, respectively. In this study, the effects of different solvents (methanol, 1-butanol, 2-propanol, ethanol, acetone, and toluene) on the dispersion and the stabilization of silicon nanoparticles are studied intensively. The results in this study show that ethanol solvent has given smaller particle size, better size distribution, stable suspension and well dispersion of silicon nanoparticles. The diameter of synthesized silicon nanoparticles is in the range of 30-100 nm. Moreover, the absorption edge of silicon nanoparticles in ethanol is observed at a shorter wavelength compared to the others solvent.
Process for preparing lubricating oil from used waste lubricating oil
Whisman, Marvin L.; Reynolds, James W.; Goetzinger, John W.; Cotton, Faye O.
1978-01-01
A re-refining process is described by which high-quality finished lubricating oils are prepared from used waste lubricating and crankcase oils. The used oils are stripped of water and low-boiling contaminants by vacuum distillation and then dissolved in a solvent of 1-butanol, 2-propanol and methylethyl ketone, which precipitates a sludge containing most of the solid and liquid contaminants, unspent additives, and oxidation products present in the used oil. After separating the purified oil-solvent mixture from the sludge and recovering the solvent for recycling, the purified oil is preferably fractional vacuum-distilled, forming lubricating oil distillate fractions which are then decolorized and deodorized to prepare blending stocks. The blending stocks are blended to obtain a lubricating oil base of appropriate viscosity before being mixed with an appropriate additive package to form the finished lubricating oil product.
Quantitative analysis of NMR spectra with chemometrics
NASA Astrophysics Data System (ADS)
Winning, H.; Larsen, F. H.; Bro, R.; Engelsen, S. B.
2008-01-01
The number of applications of chemometrics to series of NMR spectra is rapidly increasing due to an emerging interest for quantitative NMR spectroscopy e.g. in the pharmaceutical and food industries. This paper gives an analysis of advantages and limitations of applying the two most common chemometric procedures, Principal Component Analysis (PCA) and Multivariate Curve Resolution (MCR), to a designed set of 231 simple alcohol mixture (propanol, butanol and pentanol) 1H 400 MHz spectra. The study clearly demonstrates that the major advantage of chemometrics is the visualisation of larger data structures which adds a new exploratory dimension to NMR research. While robustness and powerful data visualisation and exploration are the main qualities of the PCA method, the study demonstrates that the bilinear MCR method is an even more powerful method for resolving pure component NMR spectra from mixtures when certain conditions are met.
Pereira, Regina F R; Vidal, Carla B; de Lima, Ari C A; Melo, Diego Q; Dantas, Allan N S; Lopes, Gisele S; do Nascimento, Ronaldo F; Gomes, Clerton L; da Silva, Maria Nataniela
2012-01-01
Sugar cane spirits are some of the most popular alcoholic beverages consumed in Cape Verde. The sugar cane spirit industry in Cape Verde is based mainly on archaic practices that operate without supervision and without efficient control of the production process. The objective of this work was to evaluate samples of industrial and alembic sugar cane spirits from Cape Verde and Ceará, Brazil using principal component analysis. Thirty-two samples of spirits were analyzed, twenty from regions of the islands of Cape Verde and twelve from Ceará, Brazil. Of the samples obtained from Ceará, Brazil seven are alembic and five are industrial spirits. The components analyzed in these studies included the following: volatile organic compounds (n-propanol, isobutanol, isoamylic, higher alcohols, alcoholic grade, acetaldehyde, acetic acid, acetate); copper; and sulfates.
Nikitas, P; Pappa-Louisi, A
2005-09-01
The original work carried out by Freiling and Drake in gradient liquid chromatography is rewritten in the current language of reversed-phase liquid chromatography. This allows for the rigorous derivation of the fundamental equation for gradient elution and the development of two alternative expressions of this equation, one of which is free from the constraint that the holdup time must be constant. In addition, the above derivation results in a very simple numerical solution of the various equations of gradient elution under any gradient profile. The theory was tested using eight catechol-related solutes in mobile phases modified with methanol, acetonitrile, or 2-propanol. It was found to be a satisfactory prediction of solute gradient retention behavior even if we used a simple linear description for the isocratic elution of these solutes.
Iridium complexes for electrocatalysis
Sheehan, Stafford Wheeler; Hintermair, Ulrich; Thomsen, Julianne M; Brudvig, Gary W; Crabtree, Robert H
2017-10-17
Solution-phase (e.g., homogeneous) or surface-immobilized (e.g., heterogeneous) electrode-driven oxidation catalysts based on iridium coordination compounds which self-assemble upon chemical or electrochemical oxidation of suitable precursors and methods of making and using thereof are. Iridium species such as {[Ir(LX).sub.x(H.sub.2O).sub.y(.mu.-O)].sub.z.sup.m+}.sub.n wherein x, y, m are integers from 0-4, z and n from 1-4 and LX is an oxidation-resistant chelate ligand or ligands, such as such as 2(2-pyridyl)-2-propanolate, form upon oxidation of various molecular iridium complexes, for instance [Cp*Ir(LX)OH] or [(cod)Ir(LX)] (Cp*=pentamethylcyclopentadienyl, cod=cis-cis,1,5-cyclooctadiene) when exposed to oxidative conditions, such as sodium periodate (NaIO.sub.4) in aqueous solution at ambient conditions.
Enantiomeric resolution of p-toluenesulfonate of valine benzyl ester by preferential crystallizaion.
Munegumi, Toratane; Wakatsuki, Aiko; Takahashi, Yutaro
2012-02-01
Preferential crystallization of amino acid derivatives by seeding a pure enantiomer into racemic amino acid solutions has been studied for many years. However, few examples of valine derivatives have been reported so far. Although there have been some reports using valine hydrogen chloride with preferential crystallization, it is difficult to obtain optical isomers for valine derivatives using preferential crystallization. In this study, repeated preferential crystallization of p-toluenesulfonate valine benzyl ester with a 20% e.e. in 2-propanol gave a 94% e.e. on sonication. Sonication accelerated crystallization rate, but there was not a big difference in e.e. between with and without sonication. However, this research demonstrates the first preferential crystallization of p-toluenesulfonate of valine benzyl esters with an acceleration of crystallization using sonication. Copyright © 2011 Wiley Periodicals, Inc.
Pereira, Regina F. R.; Vidal, Carla B.; de Lima, Ari C. A.; Melo, Diego Q.; Dantas, Allan N. S.; Lopes, Gisele S.; do Nascimento, Ronaldo F.; Gomes, Clerton L.; da Silva, Maria Nataniela
2012-01-01
Sugar cane spirits are some of the most popular alcoholic beverages consumed in Cape Verde. The sugar cane spirit industry in Cape Verde is based mainly on archaic practices that operate without supervision and without efficient control of the production process. The objective of this work was to evaluate samples of industrial and alembic sugar cane spirits from Cape Verde and Ceará, Brazil using principal component analysis. Thirty-two samples of spirits were analyzed, twenty from regions of the islands of Cape Verde and twelve from Ceará, Brazil. Of the samples obtained from Ceará, Brazil seven are alembic and five are industrial spirits. The components analyzed in these studies included the following: volatile organic compounds (n-propanol, isobutanol, isoamylic, higher alcohols, alcoholic grade, acetaldehyde, acetic acid, acetate); copper; and sulfates. PMID:23227051
NASA Astrophysics Data System (ADS)
Litvinenko, S. V.; Bielobrov, D. O.; Lysenko, V.; Skryshevsky, V. A.
2016-08-01
The electronic tongue based on the array of low selective photovoltaic (PV) sensors and principal component analysis is proposed for detection of various alcohol solutions. A sensor array is created at the forming of p-n junction on silicon wafer with porous silicon layer on the opposite side. A dynamical set of sensors is formed due to the inhomogeneous distribution of the surface recombination rate at this porous silicon side. The sensitive to molecular adsorption photocurrent is induced at the scanning of this side by laser beam. Water, ethanol, iso-propanol, and their mixtures were selected for testing. It is shown that the use of the random dispersion of surface recombination rates on different spots of the rear side of p-n junction and principal component analysis of PV signals allows identifying mentioned liquid substances and their mixtures.
Enzymatic acylation of flavonoid glycosides by a carbohydrate esterase of family 16.
Biely, Peter; Cziszárová, Mária; Wong, Ken K Y; Fernyhough, Alan
2014-11-01
The acetyl esterase of Trichoderma reesei belonging to carbohydrate esterase (CE) family 16 catalyzes transacylations to carbohydrate moieties of flavonoid glycosides, esculin and rutin. The enzyme recognizes as acyl donors vinyl esters of short carboxylic acids. Esculin was acylated at position 3 of the glucosyl residue in aqueous solutions saturated with vinyl acetate and vinyl propionate. The yields of esculin monoacetate and monopropionate of esculin in aqueous medium (esculin 40 mM, enzyme 40 µg/ml, 40 °C, 3 days) were 67 and 55 %, respectively. Replacement of water by 2-propanol was required for a similar acylation of rutin at 4 mM concentration. The yields of rutin monoacetate and propionate were 60 and 30 %, respectively. The results indicate that the enzyme could be used for an easy modification of solubility and hydrophobicity of glycosylated compounds, including drugs and functional food additives.
The milling of pristine and brominated P-100 graphite fibers
NASA Technical Reports Server (NTRS)
Dillehay, M. E.; Gaier, J. R.
1986-01-01
Techniques were developed for the ball milling of pristine and brominated P-100 graphite fibers. Because of the lubrication properties of graphite, large ball loads (50 percent by volume) were required. Use of 2-propanol as a milling medium enhanced the efficiency of the process. Milled brominated P-100 fibers had resistivities which were indistinguishable from milled pristine P-100 fibers. Apparent loss of bromine from the brominated fibers suggests that bromine would not be the intercalate of choice in applications where milled fibers of this type are required. Other intercalates which do not degas may be more appropriate for a milled fiber application. These same results, however, do provide evidence that bromine molecules leave the fiber surface when removed from overpressure of bromine. While exploring possible solvent media for milling purposes, it was found that brominated fibers are stable in a wide variety of organic solvents.
Protease activation in glycerol-based deep eutectic solvents.
Zhao, Hua; Baker, Gary A; Holmes, Shaletha
2011-11-01
Deep eutectic solvents (DESs) consisting of mixtures of a choline salt (chloride or acetate form) and glycerol are prepared as easily accessible, biodegradable, and inexpensive alternatives to conventional aprotic cation-anion paired ionic liquids. These DES systems display excellent fluidity coupled with thermal stability to nearly 200 °C. In this work, the transesterification activities of cross-linked proteases (subtilisin and α-chymotrypsin), immobilized on chitosan, were individually examined in these novel DESs. In the 1:2 molar ratio mixture of choline chloride/glycerol containing 3% (v/v) water, cross-linked subtilisin exhibited an excellent activity (2.9 μmo l min(-1) g(-1)) in conjunction with a selectivity of 98% in the transesterification reaction of N-acetyl-L-phenylalanine ethyl ester with 1-propanol. These highly encouraging results advocate more extensive exploration of DESs in protease-mediated biotransformations of additional polar substrates and use of DESs in biocatalysis more generally.
Borst, Claudia; Holzgrabe, Ulrike
2010-12-15
A chiral microemulsion electrokinetic chromatography method has been developed for the separation of the enantiomers of the phenethylamines ephedrine, N-methylephedrine, norephedrine, pseudoephedrine, adrenaline (epinephrine), 2-amino-1-phenylethanol, diethylnorephedrine, and 2-(dibutylamino)-1-phenyl-1-propanol, respectively. The separations were achieved using an oil-in-water microemulsion consisting of the oil-component ethyl acetate, the surfactant sodium dodecylsulfate, the cosurfactant 1-butanol, the organic modifier propan-2-ol and 20mM phosphate buffer pH 2.5 as aqueous phase. For enantioseparation sulfated beta-cyclodextrin was added. The method was compared to an already described CZE method, which made use of heptakis(2,3-di-O-diacetyl-6-O-sulfo)-beta-cyclodextrin (HDAS) as chiral selector. Additionally, the developed method was successfully applied to the related substances analysis of noradrenaline, adrenaline, dipivefrine, ephedrine and pseudoephedrine monographed in the European Pharmacopoeia 6. Copyright 2010 Elsevier B.V. All rights reserved.
Computational predictions of flame spread over alcohol pools
NASA Technical Reports Server (NTRS)
Schiller, D. N.; Ross, H. D.; Sirignano, W. A.
1993-01-01
The effects of buoyancy and thermocapillarity on pulsating and uniform flame spread above n-propanol fuel pools have been studied using a numerical model. Data obtained indicate that the existence of pulsating flame spread is dependent upon the formation of a gas-phase recirculation cell which entrains evaporating fuel vapor in front of the leading edge of the flame. The size of the recirculation cell which is affected by the extent of liquid motion ahead of the flame, is shown to dictate whether flame spread is uniform or pulsating. The amplitude and period of the flame pulsations are found to be proportional to the maximum extent of the flow head. Under conditions considered, liquid motion was not affected appreciably by buoyancy. Horizontal convection in the liquid is the dominant mechanism for transporting heat ahead of the flame for both the pulsating and uniform regimes.
Martínez-Algaba, C; Bermúdez-Saldaña, J M; Villanueva-Camañas, R M; Sagrado, S; Medina-Hernández, M J
2006-02-13
Rapid chromatographic procedures for analytical quality control of pharmaceutical preparations containing antihistamine drugs, alone or together with other kind of compounds are proposed. The method uses C18 stationary phases and micellar mobile phases of cetyltrimethylammonium bromide (CTAB) with either 1-propanol or 1-butanol as organic modifier. The proposed procedures allow the determination of the antihistamines: brompheniramine, chlorcyclizine, chlorpheniramine, diphenhydramine, doxylamine, flunarizine, hydroxyzine, promethazine, terfenadine, tripelennamine and triprolidine, in addition to caffeine, dextromethorphan, guaifenesin, paracetamol and pyridoxine in different pharmaceutical presentations (tablets, capsules, suppositories, syrups and ointments). The methods require minimum handling sample and are rapid (between 3 and 12 min at 1 mLmin(-1) flow rate) and reproducible (R.S.D. values<5%). Limits of detection are lower than 1 microgmL(-1) and the recoveries of the analytes in the pharmaceutical preparations are in the range 100+/-10%.
L-Cysteine Capped CdSe Quantum Dots Synthesized by Photochemical Route.
Singh, Avinash; Kunwar, Amit; Rath, M C
2018-05-01
L-cysteine capped CdSe quantum dots were synthesized via photochemical route in aqueous solution under UV photo-irradiation. The as grown CdSe quantum dots exhibit broad fluorescence at room temperature. The CdSe quantum dots were found to be formed only through the reactions of the precursors, i.e., Cd(NH3)2+4 and SeSO2-3 with the photochemically generated 1-hydroxy-2-propyl radicals, (CH3)2COH radicals, which are formed through the process of H atom abstraction by the photoexcited acetone from 2-propanol. L-Cysteine was found to act as a suitable capping agent for the CdSe quantum dots and increases their biocompatability. Cytotoxicty effects of these quantum dots were evaluated in Chinese Hamster Ovary (CHO) epithelial cells, indicated a significant lower level for the L-cysteine capped CdSe quantum dots as compare to the bare ones.
Droux, Serge; Félix, Guy
2011-01-01
We report here the application of subcritical water in chiral separations on two popular polysaccharide chiral stationary phases (CSPs): Chiralpak AD and Chiralcel OD. The behavior of these two CSPs was studied under reversed phase conditions at room temperature to discover the maximum percentage of water in the mobile phase, which provided the separation of enantiomers of flavanone and benzoin, respectively, in a reasonable time (i.e., less than 1 h). Then, the stability of Chiralpak AD and Chiralcel OD versus temperature was investigated and discussed. Chiralcel OD separation of flavanone racemate was obtained at 120 °C with water and 2-propanol (80/20) as the mobile phase, while benzoin racemate was separated in pure water at 160 °C. Separations of several racemates were also presented, and advantages and limitations of the technique were discussed. Copyright © 2011 Wiley Periodicals, Inc.
Droux, S; Roy, M; Félix, G
2014-10-01
We report here the study of the stability under subcritical water conditions of one of the most popular polysaccharide chiral stationary phase (CSP): Chiralcel OD. This CSP was used under high temperature and reversed phase conditions with acetonitrile and 2-propanol as modifier, respectively. The evolution of selectivity and resolution was investigated both in normal and reversed mode conditions with five racemates after packing, heating at 150 °C and separations of some racemic compounds under different high temperatures and mobile phase conditions. The results show that after using at high temperature and subcritical water conditions the selectivity was only moderately affected while the resolution fell dramatically especially in reversed mode due to the creation of a void at the head of the columns which reflects the dissolution of the silica matrix. Copyright © 2014 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Ghosh, David; Manka, Alexandra; Strey, Reinhard; Seifert, Soenke; Winans, Randall E.; Wyslouzil, Barbara E.
2008-09-01
In our earlier publication [M. Gharibeh et al., J. Chem. Phys. 122, 094512 (2005)] we determined the temperatures and partial pressures corresponding to the maximum nucleation rate for a series n-alcohols (CiH2i+lOH; i =3-5) during condensation in a supersonic nozzle. Although we were able to determine the characteristic time ΔtJmax corresponding to the peak nucleation rate, we were unable to measure the number density of the aerosol and, thus, unable to directly quantify the nucleation rate J. In this paper we report the results of our pioneering small angle x-ray scattering (SAXS) experiments of n-alcohol droplets formed in a supersonic nozzle together with a new series of complementary pressure trace measurements. By combining the SAXS and pressure trace measurement data we determine the nucleation rates as a function of temperature and supersaturation.
Melting of superheated molecular crystals
NASA Astrophysics Data System (ADS)
Cubeta, Ulyana; Bhattacharya, Deepanjan; Sadtchenko, Vlad
2017-07-01
Melting dynamics of micrometer scale, polycrystalline samples of isobutane, dimethyl ether, methyl benzene, and 2-propanol were investigated by fast scanning calorimetry. When films are superheated with rates in excess of 105 K s-1, the melting process follows zero-order, Arrhenius-like kinetics until approximately half of the sample has transformed. Such kinetics strongly imply that melting progresses into the bulk via a rapidly moving solid-liquid interface that is likely to originate at the sample's surface. Remarkably, the apparent activation energies for the phase transformation are large; all exceed the enthalpy of vaporization of each compound and some exceed it by an order of magnitude. In fact, we find that the crystalline melting kinetics are comparable to the kinetics of dielectric α-relaxation in deeply supercooled liquids. Based on these observations, we conclude that the rate of non-isothermal melting for superheated, low-molecular-weight crystals is limited by constituent diffusion into an abnormally dense, glass-like, non-crystalline phase.
Correlation of the rates of solvolysis of neopentyl chloroformate-a recommended protecting agent.
D'Souza, Malcolm J; Carter, Shannon E; Kevill, Dennis N
2011-02-15
The specific rates of solvolysis of neopentyl chloroformate (1) have been determined in 21 pure and binary solvents at 45.0 °C. In most solvents the values are essentially identical to those for ethyl and n-propyl chloroformates. However, in aqueous-1,1,1,3,3,3-hexafluoro-2-propanol mixtures (HFIP) rich in fluoroalcohol, 1 solvolyses appreciably faster than the other two substrates. Linear free energy relationship (LFER) comparison of the specific rates of solvolysis of 1 with those for phenyl chloroformate and those for n-propyl chloroformate are helpful in the mechanistic considerations, as is also the treatment in terms of the Extended Grunwald-Winstein equation. It is proposed that the faster reaction for 1 in HFIP rich solvents is due to the influence of a 1,2-methyl shift, leading to a tertiary alkyl cation, outweighing the only weak nucleophilic solvation of the cation possible in these low nucleophilicity solvents.
Contribution of Hydrogen Bonds to Paper Strength Properties.
Przybysz, Piotr; Dubowik, Marcin; Kucner, Marta Anna; Przybysz, Kazimierz; Przybysz Buzała, Kamila
2016-01-01
The objective of this work was to investigate the influence of hydrogen bonds between fibres on static and dynamic strength properties of paper. A commercial bleached pinewood kraft pulp was soaked in water, refined in a PFI, and used to form paper webs in different solvents, such as water, methanol, ethanol, n-propanol and n-butanol, to determine the effect of their dipole moment on static and dynamic strength properties of resulting paper sheets. Paper which was formed in water, being the solvent of the highest dipole moment among the tested ones, showed the highest breaking length and tear resistance. When paper webs were formed in n-butanol, which was the least polar among the solvents, these parameters were reduced by around 75%. These results provide evidence of the importance of water in paper web formation and strong impact of hydrogen bonds between fibres on strength properties of paper.
Contribution of Hydrogen Bonds to Paper Strength Properties
Przybysz, Piotr; Dubowik, Marcin; Kucner, Marta Anna; Przybysz, Kazimierz; Przybysz Buzała, Kamila
2016-01-01
The objective of this work was to investigate the influence of hydrogen bonds between fibres on static and dynamic strength properties of paper. A commercial bleached pinewood kraft pulp was soaked in water, refined in a PFI, and used to form paper webs in different solvents, such as water, methanol, ethanol, n-propanol and n-butanol, to determine the effect of their dipole moment on static and dynamic strength properties of resulting paper sheets. Paper which was formed in water, being the solvent of the highest dipole moment among the tested ones, showed the highest breaking length and tear resistance. When paper webs were formed in n-butanol, which was the least polar among the solvents, these parameters were reduced by around 75%. These results provide evidence of the importance of water in paper web formation and strong impact of hydrogen bonds between fibres on strength properties of paper. PMID:27228172
Phenolic Extracts from Wild Olive Leaves and Their Potential as Edible Oils Antioxidants
Lafka, Theodora-Ioanna; Lazou, Andriana E.; Sinanoglou, Vassilia J.; Lazos, Evangelos S.
2013-01-01
The kinetics solid-liquid extraction of phenolics from wild olive leaves was elaborated using different mathematical models (Peleg, second order, Elovich, and power law model). As solvents, methanol, ethanol, ethanol:water 1:1, n-propanol, isopropanol and ethyl acetate were used. The second order model best described the solvent extraction process, followed by the Elovich model. The most effective solvent was ethanol with optimum phenol extraction conditions 180 min, solvent to sample ratio 5:1 v/w and pH 2. Ethanol extract exhibited the highest antiradical activity among solvent and supercritical fluid extraction (SFE) extracts, which in addition showed the highest antioxidant capacity compared to synthetic and natural food antioxidants such as BHT, ascorbyl palmitate and vitamin E. Antioxidant potential of SFE extract was quite high, although its phenolic potential was not. Leaf extracts were proven to be good protectors for olive and sunflower oils at levels of 150 ppm. PMID:28239093
Development of on-board fuel metering and sensing system
NASA Astrophysics Data System (ADS)
Hemanth, Y.; Manikanta, B. S. S.; Thangaraja, J.; Bharanidaran, R.
2017-11-01
Usage of biodiesel fuels and their blends with diesel fuel has a potential to reduce the tailpipe emissions and reduce the dependence on crude oil imports. Further, biodiesel fuels exhibit favourable greenhouse gas emission and energy balance characteristics. While fossil fuel technology is well established, the technological implications of biofuels particularly biodiesel is not clearly laid out. Hence, the objective is to provide an on-board metering control in selecting the different proportions of diesel and bio-diesel blends. An on-board fuel metering system is being developed using PID controller, stepper motors and a capacitance sensor. The accuracy was tested with the blends of propanol-1, diesel and are found to be within 1.3% error. The developed unit was tested in a twin cylinder diesel engine with biodiesel blended diesel fuel. There was a marginal increase (5%) in nitric oxide and 14% increase in smoke emission with 10% biodiesel blended diesel at part load conditions.
Lovley, Derek R; Nevin, Kelly
2015-11-03
The invention provides systems and methods for generating organic compounds using carbon dioxide as a source of carbon and electrical current as an energy source. In one embodiment, a reaction cell is provided having a cathode electrode and an anode electrode that are connected to a source of electrical power, and which are separated by a permeable membrane. A biological film is provided on the cathode. The biological film comprises a bacterium that can accept electrons and that can convert carbon dioxide to a carbon-bearing compound and water in a cathode half-reaction. At the anode, water is decomposed to free molecular oxygen and solvated protons in an anode half-reaction. The half-reactions are driven by the application of electrical current from an external source. Compounds that have been produced include acetate, butanol, 2-oxobutyrate, propanol, ethanol, and formate.
Formation of diamond nanoparticle thin films by electrophoretic deposition
NASA Astrophysics Data System (ADS)
Goto, Yosuke; Ohishi, Fujio; Tanaka, Kuniaki; Usui, Hiroaki
2016-03-01
Thin films of diamond nanoparticles were prepared by electrophoretic deposition (EPD) using 0.5 wt % dispersions in water, ethanol, and 2-propanol. The film growth rate increased with increasing voltage applied to the electrodes. However, an excessive increase in voltage caused the degradation of film morphology. The optimum voltage was 4 V with an electrode separation of 5 mm. The film growth rate was higher in organic solvents than in water. The deposited film had a smooth surface with an average surface roughness comparable to the size of primary particles of the source material. It is notable that the EPD films had a considerably higher physical stability than spin-coated and cast films. The stability was further improved by thermally annealing the films. IR analysis revealed that the diamond nanoparticles have carboxy and amino groups on their surfaces. It is considered that the stability of the EPD films originate from a chemical reaction between these functional groups.
NASA Astrophysics Data System (ADS)
Wu, Siduo; Teng, Chao; Cai, Sheng; Jiang, Biwang; Wang, Yong; Meng, Hong; Tao, Huchun
2017-11-01
A novel triphenylphosphine-based porous polymer (TPDB) with a high Brunauer-Emmett-Teller (BET) surface area was synthesized through Friedel-Crafts alkylation of triphenylphosphine and α-dibromo- p-xylene. Then, the functional hydroxyl groups were successfully grafted onto the polymer framework by post modification of TPDB with 3-bromo-1-propanol (BP) and triethanolamine (TEA). The resulting sample TPDB-BP-TEA was characterized by various techniques such as FT-IR, TG, SEM, EDS mapping, ICP-MS, and N2 adsorption-desorption. This new polymer was tested as the catalyst in the solvent-free cycloaddition reaction of CO2 with epoxides, which exhibited excellent performance, with high yield, selectivity, and stable recyclability for several catalytic cycles. The comparison experiment results demonstrate that the bromide ions and hydroxyl groups, as well as high surface area, are key factors in improving the catalytic activity of this new catalyst.
NASA Astrophysics Data System (ADS)
Amano, Tomoki; Kondo, Hiroki; Takeda, Keigo; Ishikawa, Kenji; Hiramatsu, Mineo; Sekine, Makoto; Hori, Masaru
2018-04-01
Nanographene was synthesized in triple-phase plasmas comprising a gaseous phase, a gas-liquid boundary layer, and an in-liquid phase using a setup in which one electrode was placed in the gaseous phase while the other was immersed in the liquid phase. The triple-phase plasmas were generated using a pure alcohol, such as ethanol, 1-propanol, or 1-butanol, by applying a high voltage to a pair of electrodes made of copper or graphite. The nanographene synthesized using ethanol had high durability and thus could serve as a catalyst support in polymer electrolyte fuel cells (PEFCs). The PEFCs exhibited low degradation rates in the high-potential cycle test of a half-cell, as a result of which, a loss of only 10% was observed in the effective electrochemical surface area of Pt, even after 10,000 cycles.
Cruz, Gustavo N; Lima, Filipe S; Dias, Luís G; El Seoud, Omar A; Horinek, Dominik; Chaimovich, Hernan; Cuccovia, Iolanda M
2015-09-04
The dediazoniation of aryldiazonium salts in mixed solvents proceeds by a borderline SN1 and SN2 pathway, and product distribution should be proportional to the composition of the solvation shell of the carbon attached to the -N2 group (ipso carbon). The rates of dediazoniation of 2,4,6-trimethylbenzenediazonium in water, methanol, ethanol, propanol, and acetonitrile were similar, but measured product distributions were noticeably dependent on the nature of the water/cosolvent mixture. Here we demonstrated that solvent distribution in the first solvation shell of the ipso carbon, calculated from classical molecular dynamics simulations, is equal to the measured product distribution. Furthermore, we showed that regardless of the charge distribution of the initial state, i.e., whether the positive charge is smeared over the molecule or localized on phenyl moiety, the solvent distribution around the reaction center is nearly the same.
Volatile organic compounds and trace metal level in some beers collected from Romanian market
NASA Astrophysics Data System (ADS)
Voica, Cezara; Kovacs, Melinda; Vadan, Marius
2013-11-01
Beer is one of the most popular beverages at worldwide level. Through this study fifteen different types of beer collected from Romanian market were analysed in order to evaluate their mineral, trace element as well the their organic content. Importance of such characterization of beer samples is supported by the fact that their chemical composition can affect both taste and stability of beer, as well the consumer health. Minerals and trace elements analysis were performed on ICP-MS while organic compounds analysis was done through GC-MS. Through ICP-MS analysis, elements as Ca, Na, K and Mg were evidenced at mgṡkg-1 order while elements as Cr, Ba, Co, Ni were detected at lower level. After GC-MS analysis the major volatile compounds that were detected belong to alcohols namely ethanol, propanol, isobutanol, isoamyl alcohol and linalool. Selected fatty acids and esters were evidenced also in the studied beer samples.
A method suitable for DNA extraction from humus-rich soil.
Miao, Tianjin; Gao, Song; Jiang, Shengwei; Kan, Guoshi; Liu, Pengju; Wu, Xianming; An, Yingfeng; Yao, Shuo
2014-11-01
A rapid and convenient method for extracting DNA from soil is presented. Soil DNA is extracted by direct cell lysis in the presence of EDTA, SDS, phenol, chloroform and isoamyl alcohol (3-methyl-1-butanol) followed by precipitation with 2-propanol. The extracted DNA is purified by modified DNA purification kit and DNA gel extraction kit. With this method, DNA extracted from humus-rich dark brown forest soil was free from humic substances and, therefore, could be used for efficient PCR amplification and restriction digestion. In contrast, DNA sample extracted with the traditional CTAB-based method had lower yield and purity, and no DNA could be extracted from the same soil sample with a commonly-used commercial soil DNA isolation kit. In addition, this method is time-saving and convenient, providing an efficient choice especially for DNA extraction from humus-rich soils.
Regeneration of 2-amino-2-methyl-1-propanol used for carbon dioxide absorption.
Zhang, Pei; Shi, Yao; Wei, Jianwen; Zhao, Wei; Ye, Qing
2008-01-01
To improve the efficiency of the carbon dioxide cycling process and to reduce the regeneration energy consumption, a sterically hindered amine of 2-amino-2-methyl-1-propranol (AMP) was investigated to determine its regeneration behavior as a CO2 absorbent. The CO2 absorption and amine regeneration characteristics were experimentally examined under various operating conditions. The regeneration efficiency increased from 86.2% to 98.3% during the temperature range of 358 to 403 K. The most suitable regeneration temperature for AMP was 383 K, in this experiment condition, and the regeneration efficiency of absorption/regenerationruns descended from 98.3% to 94.0%. A number of heat-stable salts (HSS) could cause a reduction in CO2 absorption capacity and regeneration efficiency. The results indicated that aqueous AMP was easier to regenerate with less loss of absorption capacity than other amines, such as, monoethanolamine (MEA), diethanolamine (DEA), diethylenetriamine (DETA), and N-methyldiethanolamine (MDEA).
Li, Helong; Chu, Wei; Xu, Huailiang; Cheng, Ya; Chin, See-Leang; Yamanouchi, Kaoru; Sun, Hong-Bo
2016-06-02
Laser filamentation produced by the propagation of intense laser pulses in flames is opening up new possibility in application to combustion diagnostics that can provide useful information on understanding combustion processes, enhancing combustion efficiency and reducing pollutant products. Here we present simultaneous identification of multiple combustion intermediates by femtosecond filament excitation for five alkanol-air flames fueled by methanol, ethanol, n-propanol, n-butanol, and n-pentanol. We experimentally demonstrate that the intensities of filament-induced photoemission signals from the combustion intermediates C, C2, CH, CN increase with the increasing number of carbons in the fuel molecules, and the signal ratios between the intermediates (CH/C, CH/C2, CN/C, CH/C2, CN/CH) are different for different alkanol combustion flames. Our observation provides a way for sensing multiple combustion components by femtosecond filament excitation in various combustion conditions that strongly depend on the fuel species.
Raina, Ashok; Bedoukian, Robert; Florane, Chris; Lax, Alan
2012-10-01
Twenty-nine natural products and their derivatives were tested for both contact and vapor toxicity against the Formosan subterranean termite, Coptotermes formosanus Shiraki (Isoptera: Rhinotermitidae). Five natural products at 0.5% (wt:wt) in petri dish contact assay caused 100% mortality within 3 d. In vapor form, only three chemicals (styrallyl alcohol, 2-phenyl-2-propanol, and l-carvone) at 0.25 microl/liter air caused > 90% mortality in 3 d when tested on exposed termites: However, when termites were shielded by wood and soil, only one chemical, tetrahydrocarvone at 25 microl/liter air caused 100% mortality in 2 d. Preliminary test with termites in carton nests, exposed to tetrahydrocarvone vapor in desiccators, resulted in an average of 98.6% mortality in 7 d. With further development in the method of delivery, this chemical may be very useful in fumigating confined areas of termite infestation.
Proton transfer reaction mass spectrometry: on-line trace gas analysis at the ppb level
NASA Astrophysics Data System (ADS)
Hansel, A.; Jordan, A.; Holzinger, R.; Prazeller, P.; Vogel, W.; Lindinger, W.
1995-11-01
A system for trace gas analysis using proton transfer reaction mass spectrometry (PTR-MS) has been developed which allows for on-line measurements of components with concentrations as low as 1 ppb. The method is based on reactions of H3O+ ions, which perform non-dissociative proton transfer to most of the common organic trace constituents but do not react with any of the components present in clean air. Examples of analysis of breath taken from smokers and non-smokers as well as from patients suffering from cirrhosis of the liver, and of air in buildings as well as of ambient air taken at a road crossing demonstrate the wide range of applicability of this method. An enhanced level of acetonitrile in the breath is a most suitable indicator that a person is a smoker. Enhanced levels of propanol strongly indicate that a person has a severe liver deficiency.
Uteng, Marianne; Hauge, Håvard Hildeng; Brondz, Ilia; Nissen-Meyer, Jon; Fimland, Gunnar
2002-01-01
A rapid and simple two-step procedure suitable for both small- and large-scale purification of pediocin-like bacteriocins and other cationic peptides has been developed. In the first step, the bacterial culture was applied directly on a cation-exchange column (1-ml cation exchanger per 100-ml cell culture). Bacteria and anionic compounds passed through the column, and cationic bacteriocins were subsequently eluted with 1 M NaCl. In the second step, the bacteriocin fraction was applied on a low-pressure, reverse-phase column and the bacteriocins were detected as major optical density peaks upon elution with propanol. More than 80% of the activity that was initially in the culture supernatant was recovered in both purification steps, and the final bacteriocin preparation was more than 90% pure as judged by analytical reverse-phase chromatography and capillary electrophoresis. PMID:11823243
Basova, N E; Kormilitsin, B N; Perchenok, A Iu; Rozengart, E V; Saakov, V S; Suvorov, A A
2013-01-01
There was studied action of aliphatic alcohols (ethanol, propanol, isopropanol, n-butanol, isobutanol, secbutanol, tretbetanol) and pH on various kinds of reactional capability the serum cholinesterase. At the alcohols-affected inhibition of the cholinesterase hydrolytic activity, the determining role was played not the total number carbon atoms in the alcohol molecule, but by the "effective length" of the carbohydrate chain. The fact that the presence of alcohols did not affect parameters of the reverse cholinesterase inhibition with onium ions tetramethylammonium and choline allows suggesting the absence of effect solvents on specific acetylcholine sorption in the enzyme active center. With aid of two rows of hydrophobic organophosphorus inhibitors (OPI), we have managed to estimate both the degree and the character itself of the modifying action of alcohols and pH on the process of irreversible inhibition of serum cholinesterase.
Metabolic Engineering of Microorganisms for the Production of Higher Alcohols
Choi, Yong Jun; Lee, Joungmin; Jang, Yu-Sin
2014-01-01
ABSTRACT Due to the increasing concerns about limited fossil resources and environmental problems, there has been much interest in developing biofuels from renewable biomass. Ethanol is currently used as a major biofuel, as it can be easily produced by existing fermentation technology, but it is not the best biofuel due to its low energy density, high vapor pressure, hygroscopy, and incompatibility with current infrastructure. Higher alcohols, including 1-propanol, 1-butanol, isobutanol, 2-methyl-1-butanol, and 3-methyl-1-butanol, which possess fuel properties more similar to those of petroleum-based fuel, have attracted particular interest as alternatives to ethanol. Since microorganisms isolated from nature do not allow production of these alcohols at high enough efficiencies, metabolic engineering has been employed to enhance their production. Here, we review recent advances in metabolic engineering of microorganisms for the production of higher alcohols. PMID:25182323
Gonçalves, Heloísa Bressan; Jorge, João Atílio; Pessela, Benevides Costa; Lorente, Glória Fernandez; Guisán, José Manuel; Guimarães, Luis Henrique Souza
2013-04-01
The extracellular tannase from Emericela nidulans was immobilized on different ionic and covalent supports. The derivatives obtained using DEAE-Sepharose and Q-Sepharose were thermally stable from 60 to 75 °C, with a half life (t50) >24 h at 80 °C at pH 5.0. The glyoxyl-agarose and amino-glyoxyl derivatives showed a thermal stability which was lower than that observed for ionic supports. However, when the stability to pH was considered, the derivatives obtained from covalent supports were more stable than those obtained from ionic supports. DEAE-Sepharose and Q-Sepharose derivatives as well as the free enzyme were stable in 30 and 50 % (v/v) 1-propanol. The CNBr-agarose derivative catalyzed complete tannic acid hydrolysis, whereas the Q-Sepharose derivative catalyzed the transesterification reaction to produce propyl gallate (88 % recovery), which is an important antioxidant.
The use of fatty acid esters to enhance free acid sophorolipid synthesis.
Ashby, Richard D; Solaiman, Daniel K Y; Foglia, Thomas A
2006-02-01
Fatty acid esters were prepared by transesterification of soy oil with methanol (methyl-soyate, Me-Soy), ethanol (ethyl-soyate, Et-Soy) and propanol (propyl-soyate, Pro-Soy) and used with glycerol as fermentation substrates to enhance production of free-acid sophorolipids (SLs). Fed-batch fermentations of Candida bombicola resulted in SL yields of 46 +/- 4 g/l, 42 +/- 7 g/l and 18 +/- 6 g/l from Me-Soy, Et-Soy, and Pro-Soy, respectively. Liquid chromatography with atmospheric pressure ionization mass spectrometry (LC/API-MS) showed that Me-Soy resulted in 71% open-chain SLs with 59% of those molecules remaining esterified at the carboxyl end of the fatty acids. Et-Soy and Pro-Soy resulted in 43% and 80% open-chain free-acid SLs, respectively (containing linoleic acid and oleic acid as the principal fatty acid species linked to the sophorose sugar at the omega-1 position), with no evidence of residual esterification.
Wang, Xixi; Li, Xueying; Jiang, Xiaoya; Dong, Peipei; Liu, Haiyan; Bai, Ligai; Yan, Hongyuan
2017-04-01
A high performance liquid chromatography (HPLC) monolithic column was prepared by redox polymerization of styrene, dipentaerythritol hexaacrylate (DPHA) and ethylene glycol dimethacrylate (EDMA) in a porogen system of n-propanol/PEG400. The monolith was characterized by scanning electron microscopy (SEM), mercury intrusion porosimetry (MIP) and the results indicated that the monolith had a stable and homogeneous structure. The porosity of the monolithic column was 75.86% and average pore diameter was 2.1µm. Several alkylbenzenes and anilines were used to evaluate the column performance in terms of hydrophobicity. Then the column was applied to separate small molecules including phytosterol and BSA tryptic digest. Finally, five standard proteins, egg white and plasma were separated respectively and high separation capacity of protein was obtained. Copyright © 2016 Elsevier B.V. All rights reserved.
Comparative distribution of misonidazole and its amine metabolite in female Swiss Webster mice
DOE Office of Scientific and Technical Information (OSTI.GOV)
Born, J.L.; Hadley, W.M.
1985-06-01
The distribution of misonidazole and its terminal reduction product 1-(2-amino-1-imidazolyl)-3-methoxy-2-propanol (misoamine) were compared in female Swiss Webster mice to determine if either misonidazole or misoamine is distributed to peripheral nerves. Female Swiss Webster mice received a 100 mg/kg (5 ..mu..Ci/..mu..mole) i.p. dose of either /sup 3/H-misonidazole or /sup 3/H-miso-amine and the distribution of radioactivity was determined in various tissues including sciatic nerves and other myelinated nerves. Misonidazole produced higher initial tissue concentrations of radioactivity than did miso-amine. The relative tissue concentrations of radioactivity produced by misonidazole or miso-amine were similar, although not identical, 48 hours after administration of the drugs.more » Both sciatic and other myelinated nerves were found to retain radioactivity following the administration of either misonidazole or miso-amine.« less
Hydrogen production from alcohol reforming in a microwave ‘tornado’-type plasma
NASA Astrophysics Data System (ADS)
Tatarova, E.; Bundaleska, N.; Dias, F. M.; Tsyganov, D.; Saavedra, R.; Ferreira, C. M.
2013-12-01
In this work, an experimental investigation of microwave plasma-assisted reforming of different alcohols is presented. A microwave (2.45 GHz) ‘tornado’-type plasma with a high-speed tangential gas injection (swirl) at atmospheric pressure is applied to decompose alcohol molecules, namely methanol, ethanol and propanol, and to produce hydrogen-rich gas. The reforming efficiency is investigated both in Ar and Ar+ water vapor plasma environments. The hydrogen yield dependence on the partial alcohol flux is analyzed. Mass spectrometry and Fourier transform infrared spectroscopy are used to detect the outlet gas products from the decomposition process. Hydrogen, carbon monoxide, carbon dioxide and solid carbon are the main decomposition by-products. A significant increase in the hydrogen production rate is observed with the addition of a small amount of water. Furthermore, optical emission spectroscopy is applied to detect the radiation emitted by the plasma and to estimate the gas temperature and electron density.
Xie, Jia; Tian, Xiao-Fei; He, Song-Gui; Wei, Yun-Lu; Peng, Bin; Wu, Zhen-Qiang
2018-05-23
To investigate the effects of fusel alcohols on the intoxicating degree of liquor products, formulated liquors (FLs) were prepared by blending 1-propanol, isobutanol, and isoamyl alcohol with ethanol, organic acids, and corresponding ethyl esters to simulate the formula of traditional Chinese liquors. The prepared FLs were submitted for evaluation of their intoxicating degree (ID). The results showed that the fusel alcohols had a biphasic effect on the IDs of the FLs, depending on the comprehensive coordination of the characteristic minor components. The importance of the suitable ratio of alcohols/acids/esters (RAAE) on the IDs was also revealed. Under an optimal ratio level, the fusel alcohols exhibited negligible effects on the IDs of the FLs. Moreover, the ratio of isoamyl alcohol to isobutanol (IA/IB) showed a strong positive correlation to the IDs of the FLs. This study lays a foundation for the potential application in producing low-ID liquor.
Dundua, Alexander; Landfester, Katharina; Taden, Andreas
2014-11-01
Hydrophobic association and stimuli-responsiveness is a powerful tool towards water-based adhesives with strongly improved properties, which is demonstrated based on the example of hydrophobically modified alkali-soluble latexes (HASE) with modulated association. Their rheological properties are highly tunable due to the hydrophobic domains that act as physical crosslinking sites of adjustable interaction strength. Ethanol, propanol, and butanol are used as water-soluble model additives with different hydrophobicity in order to specifically target the association sites and impact the viscoelastic properties and stimuli-responsiveness. The rheological and mechanical property response upon dilution with water can be tailored, and dilution-resistant or even dilution-thickening systems are obtained. The investigations are of high importance for water-based adhesives, as our findings provide insight into general structure-property relationships to improve their setting behavior, especially upon contact with wet substrates. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Comparison between cachaça and rum using pattern recognition methods.
Cardoso, Daniel R; Andrade-Sobrinho, Luiz G; Leite-Neto, Alexandre F; Reche, Roni V; Isique, William D; Ferreira, Marcia M C; Lima-Neto, Benedito S; Franco, Douglas W
2004-06-02
The differentiation between cachaça and rum using analytical data referred to alcohols (methanol, propanol, isobutanol, and isopentanol), acetaldehyde, ethyl acetate, organic acids (octanoic acid, decanoic acid, and dodecanoic acid), metals (Al, Ca, Co, Cu, Cr, Fe, Mg, Mn, Ni, Na, and Zn), and polyphenols (protocatechuic acid, sinapaldehyde, syringaldehyde, ellagic acid, syringic acid, gallic acid, (-)-epicatechin, vanillic acid, vanillin, p-coumaric acid, coniferaldehyde, coniferyl alcohol, kaempferol, and quercetin) is described. The organic and metal analyte contents were determined in 18 cachaça and 21 rum samples using chromatographic methods (GC-MS, GC-FID, and HPLC-UV-vis) and inductively coupled plasma atomic emission spectrometry, respectively. The analytical data of the above compounds, when treated by principal component analysis, hierarchical cluster analysis, discriminant analysis, and K-nearest neighbor analysis, provide a very good discrimination between the two classes of beverages.
QCM gas phase detection with ceramic materials--VOCs and oil vapors.
Latif, Usman; Rohrer, Andreas; Lieberzeit, Peter A; Dickert, Franz L
2011-06-01
Titanate sol-gel layers imprinted with carbonic acids were used as sensitive layers on quartz crystal microbalance. These functionalized ceramics enable us detection of volatile organic compounds such as ethanol, n-propanol, n-butanol, n-hexane, n-heptane, n-/iso-octane, and n-decane. Variation of the precursors (i.e., tetrabutoxy titanium, tetrapropoxy titanium, tetraethoxy titanium) allows us to tune the sensitivity of the material by a factor of 7. Sensitivity as a function of precursors leads to selective inclusion of n-butanol vapors down to 1 ppm. The selectivity of materials is optimized to differentiate between isomers, e.g., n- and iso-octane. The results can be rationalized by correlating the sensor effects of hydrocarbons with the Wiener index. A mass-sensitive sensor based on titanate layer was also developed for monitoring emanation of degraded engine oil. Heating the sensor by a meander avoids vapor condensation. Thus, a continuously working oil quality sensor was designed.
Blacken, Grady R.; Volný, Michael; Vaisar, Tomáš; Sadílek, Martin; Tureček, František
2008-01-01
We report substantial in situ enrichment of phosphopeptides in peptide mixtures using zirconium oxide coated plates for detection by MALDI-TOF mass spectrometry. The novel feature of this approach rests on the specific preparation of zirconium oxide coatings using reactive landing on stainless steel support of gas-phase positive ions produced by electrospray of zirconium(IV)–n-propoxide solutions in 1-propanol. Reactive landing was found to produce durable functionalized surfaces for selective phosphopeptide capture and desorption–ionization by MALDI. Enrichment factors on the order of 20–90 were achieved for several monophosphorylated peptides relative to abundant nonphosphorylated peptides in tryptic digests. We demonstrate the ability of the zirconium oxide functionalized MALDI surfaces to facilitate detection of enriched phosphopeptides in mid-femtomole amounts of α-casein digests per MALDI spot. PMID:17569507
Itoh, Toshio; Uchida, Toshio; Izu, Noriya; Shin, Woosuck
2017-01-01
We investigated the preparation of well-dispersed core-shell ceria-poly(vinylpyrrolidone) (PVP) nanoparticles with an average particle size of around 20 nm which were used to produce a hybrid film with a polymer coating of dipentaerythritol hexaacrylate (DPHA). We obtained good dispersion of the nanoparticles in a mixed solvent of 48% 1-methoxy-2-propanol (MP), 32% 3-methoxy-3-methyl-1-butanol (MMB), and 20% methyl i-butyl ketone (MIBK). An ink of the polymer coating consisting of 68.7 wt% nanoparticles and 31.3 wt% DPHA with a polymerization initiator was prepared using this solvent mixture. The surface of the hybrid film showed low roughness and the nanoparticles formed a densely packed structure in the DPHA matrix. The resulting coating possessed excellent transparency and a high refractive index of 1.69. PMID:28773070
Temperature Gradient Effect on Gas Discrimination Power of a Metal-Oxide Thin-Film Sensor Microarray
Sysoev, Victor V.; Kiselev, Ilya; Frietsch, Markus; Goschnick, Joachim
2004-01-01
The paper presents results concerning the effect of spatial inhomogeneous operating temperature on the gas discrimination power of a gas-sensor microarray, with the latter based on a thin SnO2 film employed in the KAMINA electronic nose. Three different temperature distributions over the substrate are discussed: a nearly homogeneous one and two temperature gradients, equal to approx. 3.3 °C/mm and 6.7 °C/mm, applied across the sensor elements (segments) of the array. The gas discrimination power of the microarray is judged by using the Mahalanobis distance in the LDA (Linear Discrimination Analysis) coordinate system between the data clusters obtained by the response of the microarray to four target vapors: ethanol, acetone, propanol and ammonia. It is shown that the application of a temperature gradient increases the gas discrimination power of the microarray by up to 35 %.
Metabolic engineering of microorganisms for the production of higher alcohols.
Choi, Yong Jun; Lee, Joungmin; Jang, Yu-Sin; Lee, Sang Yup
2014-09-02
Due to the increasing concerns about limited fossil resources and environmental problems, there has been much interest in developing biofuels from renewable biomass. Ethanol is currently used as a major biofuel, as it can be easily produced by existing fermentation technology, but it is not the best biofuel due to its low energy density, high vapor pressure, hygroscopy, and incompatibility with current infrastructure. Higher alcohols, including 1-propanol, 1-butanol, isobutanol, 2-methyl-1-butanol, and 3-methyl-1-butanol, which possess fuel properties more similar to those of petroleum-based fuel, have attracted particular interest as alternatives to ethanol. Since microorganisms isolated from nature do not allow production of these alcohols at high enough efficiencies, metabolic engineering has been employed to enhance their production. Here, we review recent advances in metabolic engineering of microorganisms for the production of higher alcohols. Copyright © 2014 Choi et al.
Effect of UV irradiation on the evaporation rate of alcohols droplets
NASA Astrophysics Data System (ADS)
Korobko, O. V.; Britan, A. V.; Verbinskaya, G. H.; Gavryushenko, D. A.
2015-06-01
The effect of ultraviolet irradiation with a wavelength of 390 nm on the evaporation of droplets of the homologous series of alcohols ( n-propanol, n-butanol, n-pentanol, n-heptanol, n-octanol, and n-decanol) at 10, 30, 50, 100, and 200 mm Hg in an atmosphere of dry nitrogen is studied. The values of the evaporation rate of alcohols are calculated with and without irradiation. Starting from n-pentanol, the rate of evaporation grows strongly for droplets of higher alcohols under the effect of low-power irradiation not associated with the heating of the evaporating droplets of alcohols. The obtained results are analyzed by comparing them to experimental data on neutron scattering by alcohols. It is shown that free convection must be considered in order to describe the evaporation process. Expressions of different authors for describing this effect are analyzed.
Controlling Reaction Selectivity through the Surface Termination of Perovskite Catalysts
DOE Office of Scientific and Technical Information (OSTI.GOV)
Polo-Garzon, Felipe; Yang, Shi-Ze; Fung, Victor
2017-07-19
Although perovskites have been widely used in catalysis, tuning their surface terminations to control reaction selectivities has not been well established. In this work, we employ multiple surface sensitive techniques to characterize the surface termination (one aspect of surface reconstruction) of SrTiO 3 (STO) after thermal pretreatment (Sr-enrichment) and chemical etching (Ti-enrichment). We show, using the conversion of 2-propanol as a probe reaction, that the surface termination of STO can be controlled to greatly tune catalytic acid/base properties and consequently the reaction selectivities in a wide range, which are inaccessible using single metal oxides, either SrO or TiO 2. Densitymore » functional theory (DFT) calculations well explain the selectivity tuning and reaction mechanism on different surface terminations of STO. Similar catalytic tunability is also observed on BaZrO 3, highlighting the generality of the finding from this work.« less
Controlling Reaction Selectivity through the Surface Termination of Perovskite Catalysts
DOE Office of Scientific and Technical Information (OSTI.GOV)
Polo-Garzon, Felipe; Yang, Shi-Ze; Fung, Victor
2017-07-19
Although well known in the material science field, surface reconstruction of perovskites has not been implemented in heterogeneous catalysis. In this work, we employ multiple surface sensitive techniques to characterize the surface reconstruction of SrTiO3 (STO) after thermal pretreatment (Sr-enrichment) and chemical etching (Ti-enrichment). We show, using the conversion of 2-propanol as a probe reaction, that the surface reconstruction of STO can be controlled to greatly tune catalytic acid/base properties and consequently the reaction selectivities in a wide range, which are inaccessible using single metal oxides, either SrO or TiO2. Density functional theory (DFT) calculations well explain the selectivity tuningmore » and reaction mechanism on differently reconstructed surfaces of STO. Similar catalytic tunability is also observed on BaZrO3, highlighting the generality of the finding from this work.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tatsumi, Hironori; Liu, Fudong; Han, Hui-Ling
Platinum nanoparticles size range from 1 to 8 nm deposited on mesoporous silica MCF-17 catalyzed alcohol oxidations were studied in the gas and liquid phases. Among methanol, ethanol, 2- propanol and 2-butanol reactions, the turnover frequency increased with Pt nanoparticle size for all the alcohols utilized. The activation energies for the oxidations were almost same among all alcohol species, but higher in the gas phase than those in the liquid phase. Water coadsorption poisoned the reaction in the gas phase, while it increased the reaction turnover rates in the liquid phase. Sum frequency generation (SFG) vibrational spectroscopy studies and DFTmore » calculations revealed that the alcohol molecules pack horizontally on the metal surface in low concentrations and stand up in high concentrations, which affect the dissociation of β-hydrogen of the alcohols as the critical step in alcohol oxidations.« less
Tatsumi, Hironori; Liu, Fudong; Han, Hui-Ling; ...
2017-03-21
Platinum nanoparticles size range from 1 to 8 nm deposited on mesoporous silica MCF-17 catalyzed alcohol oxidations were studied in the gas and liquid phases. Among methanol, ethanol, 2- propanol and 2-butanol reactions, the turnover frequency increased with Pt nanoparticle size for all the alcohols utilized. The activation energies for the oxidations were almost same among all alcohol species, but higher in the gas phase than those in the liquid phase. Water coadsorption poisoned the reaction in the gas phase, while it increased the reaction turnover rates in the liquid phase. Sum frequency generation (SFG) vibrational spectroscopy studies and DFTmore » calculations revealed that the alcohol molecules pack horizontally on the metal surface in low concentrations and stand up in high concentrations, which affect the dissociation of β-hydrogen of the alcohols as the critical step in alcohol oxidations.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lovley, Derek R.; Nevin, Kelly P.
The invention provides systems and methods for generating organic compounds using carbon dioxide as a source of carbon and electrical current as an energy source. In one embodiment, a reaction cell is provided having a cathode electrode and an anode electrode that are connected to a source of electrical power, and which are separated by a permeable membrane. A biological film is provided on the cathode. The biological film comprises a bacterium that can accept electrons and that can convert carbon dioxide to a carbon-bearing compound and water in a cathode half-reaction. At the anode, water is decomposed to freemore » molecular oxygen and solvated protons in an anode half-reaction. The half-reactions are driven by the application of electrical current from an external source. Compounds that have been produced include acetate, butanol, 2-oxobutyrate, propanol, ethanol, and formate.« less
Kampf, Günter; Kramer, Axel
2004-01-01
The etiology of nosocomial infections, the frequency of contaminated hands with the different nosocomial pathogens, and the role of health care workers' hands during outbreaks suggest that a hand hygiene preparation should at least have activity against bacteria, yeasts, and coated viruses. The importance of efficacy in choosing the right hand hygiene product is reflected in the new Centers for Disease Control and Prevention guideline on hand hygiene (J. M. Boyce and D. Pittet, Morb. Mortal. Wkly. Rep. 51:1-45, 2002). The best antimicrobial efficacy can be achieved with ethanol (60 to 85%), isopropanol (60 to 80%), and n-propanol (60 to 80%). The activity is broad and immediate. Ethanol at high concentrations (e.g., 95%) is the most effective treatment against naked viruses, whereas n-propanol seems to be more effective against the resident bacterial flora. The combination of alcohols may have a synergistic effect. The antimicrobial efficacy of chlorhexidine (2 to 4%) and triclosan (1 to 2%) is both lower and slower. Additionally, both agents have a risk of bacterial resistance, which is higher for chlorhexidine than triclosan. Their activity is often supported by the mechanical removal of pathogens during hand washing. Taking the antimicrobial efficacy and the mechanical removal together, they are still less effective than the alcohols. Plain soap and water has the lowest efficacy of all. In the new Centers for Disease Control and Prevention guideline, promotion of alcohol-based hand rubs containing various emollients instead of irritating soaps and detergents is one strategy to reduce skin damage, dryness, and irritation. Irritant contact dermatitis is highest with preparations containing 4% chlorhexidine gluconate, less frequent with nonantimicrobial soaps and preparations containing lower concentrations of chlorhexidine gluconate, and lowest with well-formulated alcohol-based hand rubs containing emollients and other skin conditioners. Too few published data from comparative trials are available to reliably rank triclosan. Personnel should be reminded that it is neither necessary nor recommended to routinely wash hands after each application of an alcohol-based hand rub. Long-lasting improvement of compliance with hand hygiene protocols can be successful if an effective and accessible alcohol-based hand rub with a proven dermal tolerance and an excellent user acceptability is supplied, accompanied by education of health care workers and promotion of the use of the product. PMID:15489352
Mixed Alcohol Dehydration over Bronsted and Lewis Acidic Catalysts
Nash, Connor P.; Ramanathan, Anand; Ruddy, Daniel A.; ...
2015-12-01
Mixed alcohols are attractive oxygenated products of biomass-derived syngas because they may be catalytically converted to a range of hydrocarbon products, including liquid hydrocarbon fuels. Catalytic dehydration to form olefins is a potential first step in the conversion of C 2–C 4 alcohols into longer-chain hydrocarbons. Here, we describe the physical and chemical characterization along with catalytic activity and selectivity of 4 Brønsted and Lewis acidic catalysts for the dehydration of two mixed alcohol feed streams that are representative of products from syngas conversion over K-CoMoS type catalysts (i.e., ethanol, 1-propanol, 1-butanol and 2-methyl-1-propanol). Specifically, a Lewis acidic Zr-incorporated mesoporousmore » silicate (Zr-KIT-6), a commercial Al-containing mesoporous silicate (Al-MCM-41), a commercial microporous aluminosilicate (HZSM-5), and a commercial microporous silicoaluminophosphate (SAPO-34) were tested for mixed alcohol dehydration at 250, 300 and 350 °C. The zeolite materials exhibited high activity (>98% ethanol conversion) at all temperatures while the mesoporous materials only displayed significant activity (>10% ethanol conversion) at or above 300 °C. The turnover frequencies for ethanol dehydration at 300 °C decreased in the following order: HZSM-5 > SAPO-34 > Al-MCM-41 > Zr-KIT-6, suggesting that Brønsted acidic sites are more active than Lewis acidic sites for alcohol dehydration. At 300 °C, SAPO-34 produced the highest yield of olefin products from both a water-free ethanol rich feed stream and a C 3+-alcohol rich feed stream containing water. Post-reaction characterization indicated changes in the Brønsted-to-Lewis acidic site ratios for Zr-KIT-6, Al-MCM-41 and HZSM-5. Ammonia temperature programmed desorption indicated that the acid sites of post-reaction samples could be regenerated following treatment in air. The post-reaction SAPO-34 catalyst contained more aromatic, methylated aromatic and polyaromatic compounds than its zeolite counterpart HZSM-5, while no aromatic compounds were observed on post-reaction Al-MCM-41 or Zr-KIT-6 catalysts. Olefin yield at 300 °C over SAPO-34 (>95%) was comparable to published values for the methanol-to-olefins process, indicating the potential industrial application of mixed alcohol dehydration. Furthermore, the olefin product distribution over SAPO-34 was tunable by the composition of the alcohol feed mixture.« less
Mihlbachler, Kathleen; De Jesús, Marco A; Kaczmarski, Krzysztof; Sepaniak, Michael J; Seidel-Morgenstern, Andreas; Guiochon, Georges
2006-04-28
The binary adsorption isotherms of the enantiomers of Tröger's base in the phase system made of Chiral Technologies ChiralPak AD [a silica-based packing coated with amylose tri(3,5-dimethyl carbamate)] as the chiral stationary phase (CSP) and 2-propanol as the mobile phase were measured by the perturbation method. The more retained enantiomer exhibits a S-shaped adsorption isotherm with a clear inflection point, the concentration of the less retained enantiomer having practically no competitive influence on this isotherm: In the entire range of concentrations studied, dq2/dC1 approximately 0. By contrast, the less retained enantiomer has a Langmuir adsorption isotherm when pure. At constant mobile phase concentrations, however, its equilibrium concentration in the adsorbed phase increases with increasing concentration of the more retained enantiomer and dq1/dC2 > 0. This cooperative adsorption behavior, opposed to the classical competitive behavior, is exceedingly rare but was clearly demonstrated in this case. Two adsorption isotherm equations that account for these physical observations were derived. They are based on the formation of an adsorbed multi-layer, as suggested by the isotherm data. The excellent agreement between the experimental overloaded elution profiles of binary mixtures and the profiles calculated with the equilibrium-dispersive model validates this binary isotherm model. The adsorption energies calculated by molecular mechanics (MM) and by molecular dynamics (MD) indicate that the chiral recognition arising from the different interactions between the functional groups of the CSP and the molecules of the Tröger's base enantiomers are mainly driven by their Van der Waals interactions. The MD data suggest that the interactions of the (-)-Tröger's base with the CSP are more favored by 8+/-(5) kJ/mol than those of (+)-Tröger's base. This difference seems to be a contributing factor to the increased retention of the - enantiomer on this chromatographic system. The modeling of the data also indicates that both enantiomers can form high stoichiometry complexes while binding onto the stationary phase, in agreement with the results of the equilibrium isotherm studies.
Mixed Alcohol Dehydration over Bronsted and Lewis Acidic Catalysts
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nash, Connor P.; Ramanathan, Anand; Ruddy, Daniel A.
Mixed alcohols are attractive oxygenated products of biomass-derived syngas because they may be catalytically converted to a range of hydrocarbon products, including liquid hydrocarbon fuels. Catalytic dehydration to form olefins is a potential first step in the conversion of C 2–C 4 alcohols into longer-chain hydrocarbons. Here, we describe the physical and chemical characterization along with catalytic activity and selectivity of 4 Brønsted and Lewis acidic catalysts for the dehydration of two mixed alcohol feed streams that are representative of products from syngas conversion over K-CoMoS type catalysts (i.e., ethanol, 1-propanol, 1-butanol and 2-methyl-1-propanol). Specifically, a Lewis acidic Zr-incorporated mesoporousmore » silicate (Zr-KIT-6), a commercial Al-containing mesoporous silicate (Al-MCM-41), a commercial microporous aluminosilicate (HZSM-5), and a commercial microporous silicoaluminophosphate (SAPO-34) were tested for mixed alcohol dehydration at 250, 300 and 350 °C. The zeolite materials exhibited high activity (>98% ethanol conversion) at all temperatures while the mesoporous materials only displayed significant activity (>10% ethanol conversion) at or above 300 °C. The turnover frequencies for ethanol dehydration at 300 °C decreased in the following order: HZSM-5 > SAPO-34 > Al-MCM-41 > Zr-KIT-6, suggesting that Brønsted acidic sites are more active than Lewis acidic sites for alcohol dehydration. At 300 °C, SAPO-34 produced the highest yield of olefin products from both a water-free ethanol rich feed stream and a C 3+-alcohol rich feed stream containing water. Post-reaction characterization indicated changes in the Brønsted-to-Lewis acidic site ratios for Zr-KIT-6, Al-MCM-41 and HZSM-5. Ammonia temperature programmed desorption indicated that the acid sites of post-reaction samples could be regenerated following treatment in air. The post-reaction SAPO-34 catalyst contained more aromatic, methylated aromatic and polyaromatic compounds than its zeolite counterpart HZSM-5, while no aromatic compounds were observed on post-reaction Al-MCM-41 or Zr-KIT-6 catalysts. Olefin yield at 300 °C over SAPO-34 (>95%) was comparable to published values for the methanol-to-olefins process, indicating the potential industrial application of mixed alcohol dehydration. Furthermore, the olefin product distribution over SAPO-34 was tunable by the composition of the alcohol feed mixture.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kako, Tetsuya, E-mail: kako.tetsuya@nims.go.jp; Meng, Xianguang; Ye, Jinhua
Composite of NaBiO{sub 3}-loaded WO{sub 3} with a mixing ratio of 10:100 was prepared for photocatalytic harmful-organic-contaminant decomposition. The composite properties were measured using X-ray diffraction, ultraviolet-visible spectrophotometer (UV-Vis), and valence band-X-ray photoelectron spectroscope (VB-XPS). The results exhibited that the potentials for top of the valence band and bottom of conduction band for NaBiO{sub 3} can be estimated, respectively, as +2.5 V and -0.1 to 0 V. Furthermore, WO{sub 3}, NaBiO{sub 3}, and the composite showed IPA oxidation properties under visible-light irradiation. Results show that the composite exhibited much higher photocatalytic activity about 2-propanol (IPA) decomposition into CO{sub 2} thanmore » individual WO{sub 3} or NaBiO{sub 3} because of charge separation promotion and the base effect of NaBiO{sub 3}.« less
Naznin, Hushna Ara; Kimura, Minako; Miyazawa, Mitsuo; Hyakumachi, Mitsuro
2013-01-01
We extracted volatile organic compounds (VOCs) emitted by a plant growth-promoting fungus (PGPF) Phoma sp. GS8-3 by gas chromatography and identified them by mass spectrometry. All of the identified compounds belonged to C4-C8 hydrocarbons. Volatiles varied in number and quantity by the culture period of the fungus (in days). 2-Methyl-propanol and 3-methyl-butanol formed the main components of the volatile blends for all the culture periods of fungus. Growth-promoting effects of the identified synthetic compounds were analyzed individually and in blends using tobacco plants. We found that the mixture of volatiles extracted from 3-day-old culture showed significant growth promotion in tobacco in vitro. The volatile blend showed better growth promotion at lower than higher concentrations. Our results confirm the potential role of volatile organic compounds in the mechanism of growth enhancement by GS8-3. PMID:23080408
Sakumura, Yuichi; Koyama, Yutaro; Tokutake, Hiroaki; Hida, Toyoaki; Sato, Kazuo; Itoh, Toshio; Akamatsu, Takafumi; Shin, Woosuck
2017-01-01
Monitoring exhaled breath is a very attractive, noninvasive screening technique for early diagnosis of diseases, especially lung cancer. However, the technique provides insufficient accuracy because the exhaled air has many crucial volatile organic compounds (VOCs) at very low concentrations (ppb level). We analyzed the breath exhaled by lung cancer patients and healthy subjects (controls) using gas chromatography/mass spectrometry (GC/MS), and performed a subsequent statistical analysis to diagnose lung cancer based on the combination of multiple lung cancer-related VOCs. We detected 68 VOCs as marker species using GC/MS analysis. We reduced the number of VOCs and used support vector machine (SVM) algorithm to classify the samples. We observed that a combination of five VOCs (CHN, methanol, CH3CN, isoprene, 1-propanol) is sufficient for 89.0% screening accuracy, and hence, it can be used for the design and development of a desktop GC-sensor analysis system for lung cancer. PMID:28165388
Lee, Seunghwa; Kim, Dahee; Lee, Jaeyoung
2015-12-01
Electrocatalytic conversion of carbon dioxide (CO2) has recently received considerable attention as one of the most feasible CO2 utilization techniques. In particular, copper and copper-derived catalysts have exhibited the ability to produce a number of organic molecules from CO2. Herein, we report a chloride (Cl)-induced bi-phasic cuprous oxide (Cu2O) and metallic copper (Cu) electrode (Cu2OCl) as an efficient catalyst for the formation of high-carbon organic molecules by CO2 conversion, and identify the origin of electroselectivity toward the formation of high-carbon organic compounds. The Cu2OCl electrocatalyst results in the preferential formation of multi-carbon fuels, including n-propanol and n-butane C3-C4 compounds. We propose that the remarkable electrocatalytic conversion behavior is due to the favorable affinity between the reaction intermediates and the catalytic surface. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Reid, Kendra R; Kennedy, Lonnie J; Crick, Eric W; Conte, Eric D
2002-10-25
Presented is a solid-phase extraction sorbent material composed of cationic alkyltrimethylammonium surfactants attached to a strong cation-exchange resin via ion-exchange. The original hydrophilic cation-exchange resin is made hydrophobic by covering the surface with alkyl chains from the hydrophobic portion of the surfactant. The sorbent material now has a better ability to extract hydrophobic molecules from aqueous samples. The entire stationary phase (alkyltrimethylammonium surfactant) is removed along with the analyte during the elution step. The elution step requires a mild elution solvent consisting of 0.25 M Mg2+ in a 50% 2-propanol solution. The main advantage of using a removable stationary phase is that traditionally utilized toxic elution solvents such as methylene chloride, which are necessary to efficiently release strongly hydrophobic species from SPE stationary phases, may now be avoided. Also, the final extract is directly compatible with reversed-phase liquid chromatography. The performance of this procedure is presented using pyrene as a test molecule.
Growing up Radical: Investigation of Benzyl-Like Radicals with Increasing Chain Lengths
NASA Astrophysics Data System (ADS)
Korn, Joseph A.; Jawad, Khadija M.; Hewett, Daniel M.; Zwier, Timothy S.
2015-06-01
Combustion processes involve complex chemistry including pathways leading to polyaromatic hydrocarbons (PAHs) from small molecule precursors. Resonance stabilized radicals (RSRs) likely play an important role in the pathways to PAHs due to their unusual stability. Benzyl radical is a prototypical RSR that is stabilized by conjugation with the phenyl ring. Earlier work on α-methyl benzyl radical showed perturbations to the spectroscopy due to a hindered methyl rotor. If the alkyl chain is lengthened then multiple conformations become possible. This talk will discuss the jet-cooled spectroscopy of α-ethyl benzyl radical and α-propyl benzyl radical produced from the discharge of 1-phenyl propanol and 1-phenyl butanol respectively. Electronic spectra were obtained via resonant two-photon ionization, and IR spectra were obtained by resonant ion-dip infrared spectroscopy. Kidwell, N. M.; Reilly, N. J.; Nebgen, B.; Mehta-Hurt, D. N.; Hoehn, R. D.; Kokkin, D. L.; McCarthy, M. C.; Slipchenko, L. V.; Zwier, T. S. The Journal of Physical Chemistry A 2013, 117, 13465.
Li, Helong; Chu, Wei; Xu, Huailiang; Cheng, Ya; Chin, See-Leang; Yamanouchi, Kaoru; Sun, Hong-Bo
2016-01-01
Laser filamentation produced by the propagation of intense laser pulses in flames is opening up new possibility in application to combustion diagnostics that can provide useful information on understanding combustion processes, enhancing combustion efficiency and reducing pollutant products. Here we present simultaneous identification of multiple combustion intermediates by femtosecond filament excitation for five alkanol-air flames fueled by methanol, ethanol, n-propanol, n-butanol, and n-pentanol. We experimentally demonstrate that the intensities of filament-induced photoemission signals from the combustion intermediates C, C2, CH, CN increase with the increasing number of carbons in the fuel molecules, and the signal ratios between the intermediates (CH/C, CH/C2, CN/C, CH/C2, CN/CH) are different for different alkanol combustion flames. Our observation provides a way for sensing multiple combustion components by femtosecond filament excitation in various combustion conditions that strongly depend on the fuel species. PMID:27250021
Molecular Dynamic Simulation of Diffusion Coefficients for Alkanols in Supercritical CO2 1
NASA Astrophysics Data System (ADS)
Li, Zhiwei; Lai, Shuhui; Gao, Wei; Chen, Liuping
2018-07-01
The infinite dilution diffusion coefficients ( D 12) of methanol, ethanol, 1-propanol, 1-butanol and 1-pentanol in supercritical CO2 (scCO2) at 313.2 K and 10-16 MPa were simulated by molecular dynamics (MD) simulation. The microscopic structure was also analyzed by calculation of the radial distribution function, coordination number (CN) between the center mass of solute and solvent molecules, and the average number of hydrogen bonding of this system. In infinite dilute solution, the probability of forming hydrogen bond between alkanol molecules is greatly reduced relative to pure alkanol fluid, and the weak hydrogen bonds formed between alkanol and CO2 molecules. In general, this work provides a reliable simulation method for transfer properties of solutes in scCO2. The prediction data were provides for the design and development of chemical processing. The results are helpful for one to deeper understand the relationship between microscopic structures of fluid and its transfer properties.
Pinal, L; Cornejo, E; Arellano, M; Herrera, E; Nuñez, L; Arrizon, J; Gschaedler, A
2009-05-01
The effect of yeast strain, the agave age and the cultivation field location of agave were evaluated using kinetic parameters and volatile compound production in the tequila fermentation process. Fermentations were carried out with Agave juice obtained from two cultivation fields (CF1 and CF2), as well as two ages (4 and 8 years) and two Saccharomyces cerevisiae yeast strains (GU3 and AR5) isolated from tequila fermentation must. Sugar consumption and ethanol production varied as a function of cultivation field and agave age. The production of ethyl acetate, 1-propanol, isobutanol and amyl alcohols were influenced in varying degrees by yeast strain, agave age and cultivation field. Methanol production was only affected by the agave age and 2-phenylethanol was influenced only by yeast strain. This work showed that the use of younger Agave tequilana for tequila fermentation resulted in differences in sugar consumption, ethanol and volatile compounds production at the end of fermentation, which could affect the sensory quality of the final product.
Tang, Yunping; Zhang, Guomei; Wang, Zheng; Liu, Dan; Zhang, Linglu; Zhou, Yafeng; Huang, Ju; Yu, Fangmiao; Yang, Zuisu; Ding, Guofang
2018-02-01
(S)-3-chloro-1-phenyl-1-propanol ((S)-CPPO) is an important chiral intermediate predominantly used in the synthesis of the chiral side chain of (S)-fluoxetine. In this study, carbonyl reductase (CBR) from Novosphingobium aromaticivorans was successfully expressed in recombinant E. coli. The enzymatic activity of the recombinant CBR was significantly increased to 1875 U/mL in the fed-batch fermentation in a 10 L fermenter and recombinant CBR was then purified and characterized. By regenerating NADH with glucose dehydrogenase, 100 g/L 3-chloro-1-phenyl-1-propanone (3-CPP) was successfully converted to (S)-CPPO with a conversion of 100% and ee value of 99.6% after 12 h at 30 °C in PBS buffer (pH 7.0), which are the highest reported to date for the bio-production of (S)-CPPO and presented great potential for green production of (S)-CPPO at industrial scale. Copyright © 2017 Elsevier Ltd. All rights reserved.