Sample records for propeller tip speed

  1. Cruise noise of the SR-2 propeller model in a wind tunnel

    NASA Technical Reports Server (NTRS)

    Dittmar, James H.

    1989-01-01

    Noise data on the SR-2 model propeller were taken in the NASA Lewis Research Center 8- by 6-Foot Wind Tunnel. The maximum blade passing tone rises with increasing helical tip Mach number to a peak level at a helical tip Mach number of about 1.05; then it remains the same or decreases at higher helical tip Mach numbers. This behavior, which has been observed with other propeller models, points to the possibility of using higher propeller tip speeds to limit airplane cabin noise while maintaining high flight speed and efficiency. Noise comparisons of the straight-blade SR-2 propeller and the swept-blade SR-7A propeller showed that the tailored sweep of the SR-7A appears to be the cause of both lower peak noise levels and a slower noise increase with increasing helical tip Mach number.

  2. Sound from a Two-Blade Propeller at Supersonic Tip Speeds

    NASA Technical Reports Server (NTRS)

    Hubbard, Harvey H; Lassiter, Leslie W

    1952-01-01

    Report presents the results of sound measurements at static conditions made for a two-blade 47-inch-diameter propeller in the tip Mach number range 0.75 to 1.30. For comparison, spectrums have been obtained at both subsonic and supersonic tip speeds. In addition, the measured data are compared with calculations by the theory of Gutin which has previously been found adequate for predicting the sound at subsonic tip speeds. Curves are presented from which the maximum over-all noise levels in free space may be estimated if the power, tip Mach number, and distance are known.

  3. Wind energy conversion system

    DOEpatents

    Longrigg, Paul

    1987-01-01

    The wind energy conversion system includes a wind machine having a propeller connected to a generator of electric power, the propeller rotating the generator in response to force of an incident wind. The generator converts the power of the wind to electric power for use by an electric load. Circuitry for varying the duty factor of the generator output power is connected between the generator and the load to thereby alter a loading of the generator and the propeller by the electric load. Wind speed is sensed electro-optically to provide data of wind speed upwind of the propeller, to thereby permit tip speed ratio circuitry to operate the power control circuitry and thereby optimize the tip speed ratio by varying the loading of the propeller. Accordingly, the efficiency of the wind energy conversion system is maximized.

  4. Summary and recent results from the NASA advanced High Speed Propeller Research Program

    NASA Technical Reports Server (NTRS)

    Mitchell, G. A.; Mikkelson, D. C.

    1982-01-01

    Advanced high-speed propellers offer large performance improvements for aircraft that cruise in the Mach 0.7 to 0.8 speed regime. The current status of the NASA research program on high-speed propeller aerodynamics, acoustics, and aeroelastics is described. Recent wind tunnel results for five 8- to 10-blade advanced models are compared with analytical predictions. Test results show that blade sweep was important in achieving net efficiencies near 80 percent at Mach 0.8 and reducing near-field cruise noise by dB. Lifting line and lifting surface aerodynamic analysis codes are under development and some initial lifting line results are compared with propeller force and probe data. Some initial laser velocimeter measurements of the flow field velocities of an 8-bladed 45 deg swept propeller are shown. Experimental aeroelastic results indicate that cascade effects and blade sweep strongly affect propeller aeroelastic characteristics. Comparisons of propeller near-field noise data with linear acoustic theory indicate that the theory adequate predicts near-field noise for subsonic tip speeds but overpredicts the noise for supersonic tip speeds. Potential large gains in propeller efficiency of 7 to 11 percent at Mach 0.8 may be possible with advanced counter-rotation propellers.

  5. Acoustic analysis of the propfan

    NASA Technical Reports Server (NTRS)

    Farassat, F.; Succi, G. P.

    1979-01-01

    A review of propeller noise prediction technology is presented. Two methods for the prediction of the noise from conventional and advanced propellers in forward flight are described. These methods are based on different time domain formulations. Brief descriptions of the computer algorithms based on these formulations are given. The output of the programs (the acoustic pressure signature) was Fourier analyzed to get the acoustic pressure spectrum. The main difference between the two programs is that one can handle propellers with supersonic tip speed while the other is for subsonic tip speed propellers. Comparisons of the calculated and measured acoustic data for a conventional and an advanced propeller show good agreement in general.

  6. Summary of recent NASA propeller research

    NASA Technical Reports Server (NTRS)

    Mikkelson, D. C.; Mitchell, G. A.; Bober, L. J.

    1984-01-01

    Advanced high-speed propellers offer large performance improvements for aircraft that cruise in the Mach 0.7 to 0.8 speed regime. At these speeds, studies indicate that there is a 15 to near 40 percent block fuel savings and associated operating cost benefits for advanced turboprops compared to equivalent technology turbofan powered aircraft. Recent wind tunnel results for five eight to ten blade advanced models are compared with analytical predictions. Test results show that blade sweep was important in achieving net efficiencies near 80 percent at Mach 0.8 and reducing nearfield cruise noise by about 6 dB. Lifting line and lifting surface aerodynamic analysis codes are under development and some results are compared with propeller force and probe data. Also, analytical predictions are compared with some initial laser velocimeter measurements of the flow field velocities of an eightbladed 45 swept propeller. Experimental aeroelastic results indicate that cascade effects and blade sweep strongly affect propeller aeroelastic characteristics. Comparisons of propeller near-field noise data with linear acoustic theory indicate that the theory adequately predicts near-field noise for subsonic tip speeds but overpredicts the noise for supersonic tip speeds.

  7. Summary of recent NASA propeller research

    NASA Technical Reports Server (NTRS)

    Mikkelson, D. C.; Mitchell, G. A.; Bober, L. J.

    1985-01-01

    Advanced high speed propellers offer large performance improvements for aircraft that cruise in the Mach 0.7 to 0.8 speed regime. At these speeds, studies indicate that there is a 15 to near 40 percent block fuel savings and associated operating cost benefits for advanced turboprops compared to equivalent technology turbofan powered aircraft. Recent wind tunnel results for five eight to ten blade advanced models are compared with analytical predictions. Test results show that blade sweep was important in achieving net efficiencies near 80 percent at Mach 0.8 and reducing nearfield cruise noise about 6 dB. Lifting line and lifting surface aerodynamic analysis codes are under development and some results are compared with propeller force and probe data. Also, analytical predictions are compared with some initial laser velocimeter measurements of the flow field velocities of an eight bladed 45 swept propeller. Experimental aeroelastic results indicate that cascade effects and blade sweep strongly affect propeller aeroelastic characteristics. Comparisons of propeller nearfield noise data with linear acoustic theory indicate that the theory adequately predicts nearfield noise for subsonic tip speeds, but overpredicts the noise for supersonic tip speeds.

  8. Experimental verification of propeller noise prediction

    NASA Technical Reports Server (NTRS)

    Succi, G. P.; Munro, D. H.; Zimmer, J. A.

    1980-01-01

    Results of experimental measurements of the sound fields of 1/4-scale general aviation propellers are presented and experimental wake surveys and pressure signatures obtained are compared with theoretical predictions. Experiments were performed primarily on a 1C160 propeller model mounted in front of a symmetric body in an anechoic wind tunnel, and measured the thrust and torque produced by propeller at different rotation speeds and tunnel velocities, wakes at three axial distances, and sound pressure at various azimuths and tip speeds with advance ratio or tunnel velocity constant. Aerodynamic calculations of blade loading were performed using airfoil section characteristics and a modified strip analysis procedure. The propeller was then modeled as an array of point sound sources with each point characterized by the force and volume of the corresponding propeller section in order to obtain the acoustic characteristics. Measurements are found to agree with predictions over a wide range of operating conditions, tip speeds and propeller nacelle combinations, without the use of adjustable constants.

  9. Cruise noise of the 2/9th scale model of the Large-scale Advanced Propfan (LAP) propeller, SR-7A

    NASA Technical Reports Server (NTRS)

    Dittmar, James H.; Stang, David B.

    1987-01-01

    Noise data on the Large-scale Advanced Propfan (LAP) propeller model SR-7A were taken in the NASA Lewis Research Center 8 x 6 foot Wind Tunnel. The maximum blade passing tone noise first rises with increasing helical tip Mach number to a peak level, then remains the same or decreases from its peak level when going to higher helical tip Mach numbers. This trend was observed for operation at both constant advance ratio and approximately equal thrust. This noise reduction or, leveling out at high helical tip Mach numbers, points to the use of higher propeller tip speeds as a possible method to limit airplane cabin noise while maintaining high flight speed and efficiency. Projections of the tunnel model data are made to the full scale LAP propeller mounted on the test bed aircraft and compared with predictions. The prediction method is found to be somewhat conservative in that it slightly overpredicts the projected model data at the peak.

  10. Cruise noise of the 2/9 scale model of the Large-scale Advanced Propfan (LAP) propeller, SR-7A

    NASA Technical Reports Server (NTRS)

    Dittmar, James H.; Stang, David B.

    1987-01-01

    Noise data on the Large-scale Advanced Propfan (LAP) propeller model SR-7A were taken in the NASA Lewis Research Center 8 x 6 foot Wind Tunnel. The maximum blade passing tone noise first rises with increasing helical tip Mach number to a peak level, then remains the same or decreases from its peak level when going to higher helical tip Mach numbers. This trend was observed for operation at both constant advance ratio and approximately equal thrust. This noise reduction or, leveling out at high helical tip Mach numbers, points to the use of higher propeller tip speeds as a possible method to limit airplane cabin noise while maintaining high flight speed and efficiency. Projections of the tunnel model data are made to the full scale LAP propeller mounted on the test bed aircraft and compared with predictions. The prediction method is found to be somewhat conservative in that it slightly overpredicts the projected model data at the peak.

  11. Propeller rotation noise due to torque and thrust

    NASA Technical Reports Server (NTRS)

    Deming, Arthur F

    1940-01-01

    Sound pressure of the first four harmonics of rotation from a full-scale two-blade propeller were measured and are compared with values calculated from theory. The comparison is made (1) for the space distribution with constant tip speed and (2) for fixed space angles with variable tip speed. A relation for rotation noise from an element of radius developed by Gutin is given showing the effect of number of blades on the rotation noise.

  12. Aerodynamic Characteristics at High Speeds of Full-Scale Propellers having Different Shank Designs

    NASA Technical Reports Server (NTRS)

    Maynard, Julian D.

    1947-01-01

    Tests of two 10-foot-diameter two-blade propellers which differed only in shank design have been made in the Langley 16-foot high-speed tunnel. The propellers are designated by their blade design numbers, NACA 10-(5)(08)-03, which had aerodynamically efficient airfoil shank sections, and NACA l0-(5)(08)-03R which had thick cylindrical shank sections typical of conventiona1 blades, The propellers mere tested on a 2000-horsepower dynamometer through a range of blade-angles from 20deg to 55deg at various rotational speeds and at airspeeds up to 496 miles per hour. The resultant tip speeds obtained simulate actual flight conditions, and the variation of air-stream Mach number with advance ratio is within the range of full-scale constant-speed propeller operation. Both propellers were very efficient, the maximum envelope efficiency being approximately 0,95 for the NACA 10-(5)(08)-03 propeller and about 5 percent less for the NACA 10-(5)(08)-03R propeller. Based on constant power and rotational speed, the efficiency of the NACA 10-(05)(08)-03 propeller was from 2.8 to 12 percent higher than that of the NACA 10-(5)(08)-03R propeller over a range of airspeeds from 225 to 450 miles per hour. The loss in maximum efficiency at the design blade angle for the NACA 10-(5)(08)-03 and 10-(5)(08)-03R propellers vas about 22 and 25 percent, respectively, for an increase in helical tip Mach number from 0.70 to 1.14.

  13. Noise of a model high speed counterrotation propeller at simulated takeoff/approach conditions (F7/A7)

    NASA Technical Reports Server (NTRS)

    Woodward, Richard P.

    1987-01-01

    A high speed advanced counterrotation propeller, was tested in the NASA-Lewis 9 x 15 foot Anechoic Wind Tunnel at simulated takeoff/approach conditions of 0.2 Mach number. Acoustic measurements were taken with fixed floor microphones, an axially translating microphone probe, and with a polar microphone probe which was fixed to the propeller nacelle and could take both sideline and circumferential acoustic surveys. Aerodynamic measurements were also made to establish the propeller operating conditions. The propeller was run over a range of blade setting angles from 36.4/36.5 to 41.1/39.4 deg, tip speeds from 165 to 259 m/sec, rotor spacings from 1.56 to 3.63 based on forward rotor tip chord to aerodynamic separation, and angles of attack to + or - 16 deg. First order rotor alone tones showed highest directivity levels near the propeller plane, while interaction tone showed high levels throughout sideline directivity, especially toward the propeller rotation axis. Interaction tone levels were sensitive to propeller row spacing while rotor alone tones showed little spacing effect. There is a decreased noise level associated with higher propeller blade numbers for the same overall propeller thrust.

  14. Investigation of the NACA 4-(3)(8)-045 Two-blade Propellers at Forward Mach Numbers to 0.725 to Determine the Effects of Compressibility and Solidity on Performance

    NASA Technical Reports Server (NTRS)

    Stack, John; Draley, Eugene C; Delano, James B; Feldman, Lewis

    1950-01-01

    As part of a general investigation of propellers at high forward speeds, tests of two 2-blade propellers having the NACA 4-(3)(8)-03 and NACA 4-(3)(8)-45 blade designs have been made in the Langley 8-foot high-speed tunnel through a range of blade angle from 20 degrees to 60 degrees for forward Mach numbers from 0.165 to 0.725 to establish in detail the changes in propeller characteristics due to compressibility effects. These propellers differed primarily only in blade solidity, one propeller having 50 percent and more solidity than the other. Serious losses in propeller efficiency were found as the propeller tip Mach number exceeded 0.91, irrespective of forward speed or blade angle. The magnitude of the efficiency losses varied from 9 percent to 22 percent per 0.1 increase in tip Mach number above the critical value. The range of advance ratio for peak efficiency decreased markedly with increase of forward speed. The general form of the changes in thrust and power coefficients was found to be similar to the changes in airfoil lift coefficient with changes in Mach number. Efficiency losses due to compressibility effects decreased with increase of blade width. The results indicated that the high level of propeller efficiency obtained at low speeds could be maintained to forward sea-level speeds exceeding 500 miles per hour.

  15. A possible explanation for the present difference between linear noise theory and experimental data for supersonic helical tip speed propellers

    NASA Technical Reports Server (NTRS)

    Dittmar, J. H.

    1983-01-01

    High speed turboprops are attractive candidates for future aircraft because of their high propulsive efficiency. However, the noise of their propellers may create a cabin environment problem for the aircraft powered by these propellers. The noise of some propeller models was measured, and predictions of the noise using a method based on the Ffowcs Williams-Hawkins equation were made. The predictions and data agree well at lower helical tip Mach numbers but deviate above Mach 1.0. Some possible reasons why the theory does not predict the data and focuses on improvement of the aerodynamic inputs as the most likely remedy are investigated. In particular, it is proposed that an increase in the drag and a decrease in the lift near the tip of the blade where the majority of the noise is generated, is warranted in the input to the theory.

  16. Observations from varying the lift and drag inputs to a noise prediction method for supersonic helical tip speed propellers

    NASA Technical Reports Server (NTRS)

    Dittmar, J. H.

    1984-01-01

    Previous comparisons between calculated and measured supersonic helical tip speed propeller noise show them to have different trends of peak blade passing tone versus helical tip Mach number. It was postulated that improvements in this comparison could be made first by including the drag force terms in the prediction and then by reducing the blade lift terms at the tip to allow the drag forces to dominate the noise prediction. Propeller hub to tip lift distributions were varied, but they did not yield sufficient change in the predicted lift noise to improve the comparison. This result indicates that some basic changes in the theory may be needed. In addition, the noise predicted by the drag forces did not exhibit the same curve shape as the measured data. So even if the drag force terms were to dominate, the trends with helical tip Mach number for theory and experiment would still not be the same. The effect of the blade shock wave pressure rise was approxmated by increasing the drag coefficient at the blade tip. Predictions using this shock wdave approximation did have a curve shape similar to the measured data. This result indicates that the shock pressure rise probably controls the noise at supersonic tip speed and that the linear prediction method can give the proper noise trend with Mach number.

  17. Propfan noise propagation

    NASA Technical Reports Server (NTRS)

    George, Albert R.; Sim, Ben WEL-C.

    1993-01-01

    The unconventional supersonic tip speed of advanced propellers has led to uncertainties about Propfan's noise acceptability and compliance with Federal Aviation Noise Regulation (FAR 36). Overhead flight testing of the Propfan with an SR-7L blade during 1989's Propfan Test Assessment (PTA) Program have shown unexpectedly high far-field sound pressure levels. This study here attempts to provide insights into the acoustics of a single-rotating propeller (SRP) with supersonic tip speed. At the same time, the role of the atmosphere in shaping the far-field noise characteristics is investigated.

  18. Noise of a model counterrotation propeller with reduced aft rotor diameter at simulated takeoff/approach conditions (F7/A3)

    NASA Technical Reports Server (NTRS)

    Woodward, Richard P.; Gordon, Eliott B.

    1988-01-01

    A model high-speed advanced counterrotation propeller, F7/A3, was tested in the NASA Lewis Research Center 9 by 15 foot Anechoic Wind Tunnel at simulated takeoff/approach conditions of 0.2 Mach number. Acoustic measurements were taken with an axially translating microphone probe, and with a polar microphone probe which was fixed to the propeller nacelle and could take both sideline and circumferential acoustic surveys. Aerodynamic measurements were also made to establish propeller operating conditions. The propeller was run at two setting angles (front angle/rear angle) of 36.4/43.5 and 41.1/46.4 degrees, forward rotor tip speeds from 165 to 259 m/sec, rotor spacings from 8.48 to 14.99 cm based on pitch change axis separation, and angles of attack to 16 degrees. The aft rotor diameter was 85 percent of the forward rotor diameter to reduce tip vortex-aft rotor interaction as a major interaction noise source. Results are compared with equal diameter F7/A7 data which was previously obtained under similar operating conditions. The aft rotor-alone tone was 7 dB lower for the reduced diameter aft rotor, due to reduced tip speed at constant rpm. Interaction tone levels for the F7/A3 propeller were higher at minimum row spacing and lower at maximum spacing.

  19. Farfield inflight measurements of high-speed turboprop noise

    NASA Technical Reports Server (NTRS)

    Balombin, J. R.; Loeffler, I. J.

    1983-01-01

    A flight program was carried out to determine the variation of noise level with distance from a model high-speed propeller. Noise measurements were obtained at different distances from a SR-3 propeller mounted on a JetStar aircraft, with the test instrumentation mounted on a Learjet flown in formation. The propeller was operated at 0.8 m flight Mach number, 1.12 helical tip Mach number and at 0.7 flight Mach number, 1.0 helical tip Mach number. The instantaneous pressure from individual blades was observed to rise faster at the 0.8 flight speed, than at the 0.7 M flight speed. The measured levels appeared to decrease in good agreement with a 6 dB/doubling of distance decay, over the measurement range of approximately 16 m to 100 m distance. Further extrapolation, to the distances represented by a community, would suggest that the propagated levels during cruise would not cause a serious community annoyance.

  20. Noise of a simulated installed model counterrotation propeller at angle-of-attack and takeoff/approach conditions

    NASA Technical Reports Server (NTRS)

    Woodward, Richard P.

    1990-01-01

    Two modern high-speed advanced counterrotation propellers, F7/A7 and F7/A3 were tested in the NASA Lewis Research Center's 9- by 15-Foot Anechoic Wind Tunnel at simulated takeoff/approach conditions of 0.2 Mach. Both rotors were of similar diameter on the F7/A7 propeller, while the aft diameter of the F7/A3 propeller was 85 percent of the forward propeller to reduce tip vortex-aft rotor interaction. The two propellers were designed for similar performance. The propellers were tested in both the baseline configuration and installed configuration consisting of a simulated upstream nacelle support pylon and fuselage section. Acoustic measurements were made with a polar microphone probe which recorded sideline directivities at various azimuthal locations. Aerodynamic measurements were also made to establish propeller operating conditions. The propellers were run at initial blade setting angles adjusted to achieve equal forward/aft torque ratios at angle of attack with the pylon and fuselage simulation in place. Data are presented for propeller operation at 80 and 90 percent of design speed (the forward rotor design tip speed was 238 m/sec (780 ft/sec). Both propellers were tested at the maximum rotor-rotor spacing of 14.99 cm (5.90 in.) based on the pitch change axis separation.

  1. Propeller thrust analysis using Prandtl's lifting line theory, a comparison between the experimental thrust and the thrust predicted by Prandtl's lifting line theory

    NASA Astrophysics Data System (ADS)

    Kesler, Steven R.

    The lifting line theory was first developed by Prandtl and was used primarily on analysis of airplane wings. Though the theory is about one hundred years old, it is still used in the initial calculations to find the lift of a wing. The question that guided this thesis was, "How close does Prandtl's lifting line theory predict the thrust of a propeller?" In order to answer this question, an experiment was designed that measured the thrust of a propeller for different speeds. The measured thrust was compared to what the theory predicted. In order to do this experiment and analysis, a propeller needed to be used. A walnut wood ultralight propeller was chosen that had a 1.30 meter (51 inches) length from tip to tip. In this thesis, Prandtl's lifting line theory was modified to account for the different incoming velocity depending on the radial position of the airfoil. A modified equation was used to reflect these differences. A working code was developed based on this modified equation. A testing rig was built that allowed the propeller to be rotated at high speeds while measuring the thrust. During testing, the rotational speed of the propeller ranged from 13-43 rotations per second. The thrust from the propeller was measured at different speeds and ranged from 16-33 Newton's. The test data were then compared to the theoretical results obtained from the lifting line code. A plot in Chapter 5 (the results section) shows the theoretical vs. actual thrust for different rotational speeds. The theory over predicted the actual thrust of the propeller. Depending on the rotational speed, the error was: at low speeds 36%, at low to moderate speeds 84%, and at high speeds the error increased to 195%. Different reasons for these errors are discussed.

  2. Inflight source noise of an advanced full-scale single-rotation propeller

    NASA Technical Reports Server (NTRS)

    Woodward, Richard P.; Loeffler, Irvin J.

    1991-01-01

    Flight tests to define the far field tone source at cruise conditions were completed on the full scale SR-7L advanced turboprop which was installed on the left wing of a Gulfstream II aircraft. This program, designated Propfan Test Assessment (PTA), involved aeroacoustic testing of the propeller over a range of test conditions. These measurements defined source levels for input into long distance propagation models to predict en route noise. Inflight data were taken for 7 test cases. The sideline directivities measured by the Learjet showed expected maximum levels near 105 degrees from the propeller upstream axis. However, azimuthal directivities based on the maximum observed sideline tone levels showed highest levels below the aircraft. An investigation of the effect of propeller tip speed showed that the tone level of reduction associated with reductions in propeller tip speed is more significant in the horizontal plane than below the aircraft.

  3. A review of propeller discrete frequency noise prediction technology with emphasis on two current methods for time domain calculations

    NASA Technical Reports Server (NTRS)

    Farassat, F.; Succi, G. P.

    1980-01-01

    A review of propeller noise prediction technology is presented which highlights the developments in the field from the successful attempt of Gutin to the current sophisticated techniques. Two methods for the predictions of the discrete frequency noise from conventional and advanced propellers in forward flight are described. These methods developed at MIT and NASA Langley Research Center are based on different time domain formulations. Brief description of the computer algorithms based on these formulations are given. The output of these two programs, which is the acoustic pressure signature, is Fourier analyzed to get the acoustic pressure spectrum. The main difference between the programs as they are coded now is that the Langley program can handle propellers with supersonic tip speed while the MIT program is for subsonic tip speed propellers. Comparisons of the calculated and measured acoustic data for a conventional and an advanced propeller show good agreement in general.

  4. Tradespace Exploration of Distributed Propulsors for Advanced On-Demand Mobility Concepts

    NASA Technical Reports Server (NTRS)

    Borer, Nicholas K.; Moore, Mark D.; Turnbull, Andrew R.

    2014-01-01

    Combustion-based sources of shaft power tend to significantly penalize distributed propulsion concepts, but electric motors represent an opportunity to advance the use of integrated distributed propulsion on an aircraft. This enables use of propellers in nontraditional, non-thrust-centric applications, including wing lift augmentation, through propeller slipstream acceleration from distributed leading edge propellers, as well as wingtip cruise propulsors. Developing propellers for these applications challenges long-held constraints within propeller design, such as the notion of optimizing for maximum propulsive efficiency, or the use of constant-speed propellers for high-performance aircraft. This paper explores the design space of fixed-pitch propellers for use as (1) lift augmentation when distributed about a wing's leading edge, and (2) as fixed-pitch cruise propellers with significant thrust at reduced tip speeds for takeoff. A methodology is developed for evaluating the high-level trades for these types of propellers and is applied to the exploration of a NASA Distributed Electric Propulsion concept. The results show that the leading edge propellers have very high solidity and pitch well outside of the empirical database, and that the cruise propellers can be operated over a wide RPM range to ensure that thrust can still be produced at takeoff without the need for a pitch change mechanism. To minimize noise exposure to observers on the ground, both the leading edge and cruise propellers are designed for low tip-speed operation during takeoff, climb, and approach.

  5. Air Reactions to Objects Moving at Rates Above the Velocity of Sound with Application to the Air Propeller

    NASA Technical Reports Server (NTRS)

    Reed, S Albert

    1922-01-01

    There has been a tradition general among aeronautical engineers that a critical point exists for tip speeds at or near the velocity of sound, indicating a physical limit in the use of propellers at higher tip speeds; the idea being that something would occur analogous to what is known in marine propellers as cavitation. In the examination of the physics pertaining to both propellers and projectiles moving at or above 1100 feet per second, the conclusion was reached by the author that there is no reason for the existence of such a critical point and that, if it had been noted by observers it was not inherent in the phenomena revealed, but rather due to a particular shape or proportion of the projectile and that, with properly proportioned sections, it would not exist.

  6. Farfield inflight measurement of high-speed turboprop noise

    NASA Technical Reports Server (NTRS)

    Balombin, J. R.; Loeffler, I. J.

    1982-01-01

    A flight program was carried out to determine the variation of noise level with distance from a model high speed propeller. Noise measurements were obtained at different distances from a SR-3 propeller mounted on a JetStar aircraft, with the test instrumentation mounted on a Lear jet flown in formation. The propeller was operated at 0.8 flight Mach number, 1.12 helical tip Mach number and at 0.7 flight Mach number, 1.0 helical tip Mach number. The instantaneous pressure from individual blades was observed to rise faster at the 0.8 M flight speed, than at the 0.7 M flight speed. The measured levels appeared to decrease in good agreement with a 6 dB/doubling of distance decay, over the measurement range of approximately 16 m to 100 m distance. Further extrapolation, to the distances represented by a community, would suggest that the propagated levels during cruise would not cause a serious community annoyance.

  7. Aerodynamic Characteristics of a Two-blade NACA 10-(3)(062)-045 Propeller and of a Two-blade NACA 10-(3)(08)-045 Propeller

    NASA Technical Reports Server (NTRS)

    Solomon, William

    1953-01-01

    Characteristics are given for the two-blade NACA 10-(3)(062)-045 propeller and for the two-blade NACA 10-(3)(08)-045 propeller over a range of advance ratio from 0.5 to 3.8, through a blade-angle range from 20 degrees to 55 degrees measured at the 0.75 radius. Maximum efficiencies of the order of 91.5 to 92 percent were obtained for the propellers. The propeller with the thinner airfoil sections over the outboard portion of the blades, the NACA 10-(3)(062)-045 propeller, had lower losses at high tip speeds, the difference amounting to about 5 percent at a helical tip Mach number of 1.10.

  8. Low and high speed propellers for general aviation: Performance potential and recent wind tunnel test results

    NASA Technical Reports Server (NTRS)

    Jeracki, R. J.; Mitchell, G. A.

    1981-01-01

    The performance of lower speed, 5 foot diameter model general aviation propellers, was tested in the Lewis wind tunnel. Performance was evaluated for various levels of airfoil technology and activity factor. The difference was associated with inadequate modeling of blade and spinner losses for propellers round shank blade designs. Suggested concepts for improvement are: (1) advanced blade shapes (airfoils and sweep); (2) tip devices (proplets); (3) integrated propeller/nacelles; and (4) composites. Several advanced aerodynamic concepts were evaluated in the Lewis wind tunnel. Results show that high propeller performance can be obtained to at least Mach 0.8.

  9. Directivity and trends of noise generated by a propeller in a wake

    NASA Technical Reports Server (NTRS)

    Block, P. J. W.; Gentry, C. L., Jr.

    1986-01-01

    An experimental study of the effects on far-field propeller noise of a pylon wake interaction was conducted with a scale model of a single-rotation propeller in a low-speed anechoic wind tunnel. A detailed mapping of the noise directivity was obtained at 10 test conditions covering a wide range of propeller power landings at several subsonic tip speeds. Two types of noise penalties were investigated-pulser and spacing. The pusher noise penalty is the difference in the average overall sound pressure level, OASPL, for pusher and tractor installations. (In a pusher installation, the propeller disk is downstream of a pylon or another aerodynamic surface.) The spacing noise penalty is the difference in the average OASPL for different distances between the pylon trailing edge and the propeller. The variations of these noise penalties with axial, or flyover, angle theta and circumferential angle phi are presented, and the trends in these noise penalties with tip Mach number and power loading are given for selected values of theta and phi. The circumferential directivity of the noise from a pusher installation showed that the addition noise due to the interaction of the pylon wake with the propeller had a broad peak over a wide range of circumferential angles approximately perpendicular to the pylon with a sharp minimum 90 deg. to the pylon for the majority of cases tested. The variation of the pusher noise penalty with theta had a minimum occurring near the propeller plane and maximum values of as much as 20 dB occurring toward the propeller axes. The magnitude of the pusher noise penalty generally decreased as propeller tip Mach number or power loading was increased.

  10. Theoretical prediction of nonlinear propagation effects on noise signatures generated by subsonic or supersonic propeller or rotor-blade tips

    NASA Technical Reports Server (NTRS)

    Barger, R. L.

    1980-01-01

    The nonlinear propagation equations for sound generated by a constant speed blade tip are presented. Propagation from a subsonic tip is treated as well as the various cases that can occur at supersonic speeds. Some computed examples indicate that the nonlinear theory correlates with experimental results better than linear theory for large amplitude waves. For swept tips that generate a wave with large amplitude leading expansion, the nonlinear theory predicts a cancellation effect that results in a significant reduction of both amplitude and impulse.

  11. Laboratory experiments on active suppression of advanced turboprop noise

    NASA Technical Reports Server (NTRS)

    Dittmar, J. H.

    1985-01-01

    The noise generated by supersonic tip speed propellers may be a cabin environment problem for future propeller-driven airplanes. Active suppression from speakers inside the airplane cabin has been proposed for canceling out this noise. The potential of active suppression of advanced turboprop noise was tested by using speakers in a rectangular duct. Experiments were first performed with sine wave signals. The results compared well with the ideal cancellation curve of noise as a function of phase angle. Recorded noise signals from subsonic and supersonic tip speed propellers were than used in the duct to deterthe potential for canceling their noise. The subsonic propeller data showed significant cancellations but less than those obtained with the sine wave. The blade-passing-tone cancellation curve for the supersonic propeller was very similar to the subsonic curve, indicating that it is potentially just as easy to cancel supersonic as subsonic propeller blade-passing-tone noise. Propeller duct data from a recorded propeller source and spatial data taken on a propeller-drive airplane showed generally good agreement when compared versus phase angle. This agreement, combined with the similarity of the subsonic and supersonic duct propeller data, indicates that the area of cancellation for advanced supersonic propellers will be similar to that measured on the airplane. Since the area of cancellation on the airplane was small, a method for improving the active noise suppression by using outside speakers is discussed.

  12. The radiation of sound from a propeller at angle of attack

    NASA Technical Reports Server (NTRS)

    Mani, Ramani

    1990-01-01

    The mechanism by which the noise generated at the blade passing frequency by a propeller is altered when the propeller axis is at an angle of attack to the freestream is examined. The measured noise field is distinctly non axially symmetric under such conditions with far field sound pressure levels both diminished and increased relative to the axially symmetric values produced with the propeller at zero angle of attack. Attempts have been made to explain this non axially symmetric sound field based on the unsteady (once per rev) loading experienced by the propeller blades when the propeller axis is at non zero angle of attack. A calculation based on this notion appears to greatly underestimate the measured azimuthal asymmetry of noise for high tip speed, highly loaded propellers. A new mechanism is proposed; namely, that at angle of attack, there is a non axially symmetric modulation of the radiative efficiency of the steady loading and thickness noise which is the primary cause of the non axially symmetric sound field at angle of attack for high tip speed, heavily loaded propellers with a large number of blades. A calculation of this effect to first order in the crossflow Mach number (component of freestream Mach number normal to the propeller axis) is carried out and shows much better agreement with measured noise data on the angle of attack effect.

  13. Low and high speed propellers for general aviation - Performance potential and recent wind tunnel test results

    NASA Technical Reports Server (NTRS)

    Jeracki, R. J.; Mitchell, G. A.

    1981-01-01

    A survey is presented of current research efforts in general aviation, low-speed propeller design and high-speed propfan design, with attention on such features as (1) advanced blade shapes, with novel airfoils and sweep, (2) tip devices, (3) integrated propeller/nacelle designs, (4) area-ruled spinners, (5) lightweight, all-composite blade construction, and (6) contra-rotating propfan systems. The potential overall improvements associated with these design modifications are calculated to lie at 10-15% for low-speed rotors and 15-30% for high-speed ones. Emphasis is placed on noise reduction, blade drag, performance prediction methods and wind tunnel testing of alternative rotor configurations. Extensive use of graphs is made in performance comparisons between alternative blade and rotor designs.

  14. Aeroacoustic effects of reduced aft tip speed at constant thrust for a model counterrotation turboprop at takeoff conditions

    NASA Technical Reports Server (NTRS)

    Woodward, Richard P.; Hughes, Christopher E.

    1990-01-01

    A model high-speed, advanced counterrotation propeller, F7/A7, was tested in the anechoic wind tunnel at simulated takeoff and approach conditions of Mach 0.2. The propeller was operated in a baseline configuration with the forward and aft rotor blade setting angles and forward and aft rotational speeds essentially equal. Two additional configurations were tested with the aft rotor at increased blade setting angles and the rotational speed reduced to achieve overall performance similar to that of the baseline configuration. Acoustic data were taken with an axially translating microphone probe that was attached to the tunnel floor. Concurrent aerodynamic data were taken to define propeller operating conditions.

  15. Users' manual for the Langley high speed propeller noise prediction program (DFP-ATP)

    NASA Technical Reports Server (NTRS)

    Dunn, M. H.; Tarkenton, G. M.

    1989-01-01

    The use of the Dunn-Farassat-Padula Advanced Technology Propeller (DFP-ATP) noise prediction program which computes the periodic acoustic pressure signature and spectrum generated by propellers moving with supersonic helical tip speeds is described. The program has the capacity of predicting noise produced by a single-rotation propeller (SRP) or a counter-rotation propeller (CRP) system with steady or unsteady blade loading. The computational method is based on two theoretical formulations developed by Farassat. One formulation is appropriate for subsonic sources, and the other for transonic or supersonic sources. Detailed descriptions of user input, program output, and two test cases are presented, as well as brief discussions of the theoretical formulations and computational algorithms employed.

  16. Aeroacoustic effects of reduced aft tip speed at constant thrust for a model counterrotation turboprop at takeoff conditions

    NASA Technical Reports Server (NTRS)

    Woodward, Richard P.; Hughes, Christopher E.

    1990-01-01

    A model high-speed, advanced counterrotation propeller, F7/A7, was tested in the NASA Lewis Research Center's 9- by 15-foot anechoic wind tunnel at simulated takeoff and approach conditions of Mach 0.2. The propeller was operated in a baseline configuration with the forward and aft rotor blade setting angles (36.2deg and 35.4 deg) and forward and aft rotational speeds essentially equal. Two additional configurations were tested with the aft rotor at increased blade setting angles and the rotational speed reduced to achieve overall performance similar to that of the baseline configuration. The aft rotor blade angles were adjusted such that the thrust and power absorption for each rotor remained the same as for the baseline configuration. Acoustic data were taken with an axially translating microphone probe that was attached to the tunnel floor. Concurrent aerodynamic data were taken to define propeller operating conditions. The aft rotor fundamental tone was about 6 dB lower with the 36.2 deg and 38.4 deg blade setting angles, and about 9 dB lower with the 36.2 and 41.4 deg blade setting angles. Predicted noise reductions based on tip speed considerations were 5 and 9.5 dB, respectively, for the two altered blade setting angles.

  17. Compressibility Effects in Aeronautical Engineering

    NASA Technical Reports Server (NTRS)

    Stack, John

    1941-01-01

    Compressible-flow research, while a relatively new field in aeronautics, is very old, dating back almost to the development of the first firearm. Over the last hundred years, researches have been conducted in the ballistics field, but these results have been of practically no use in aeronautical engineering because the phenomena that have been studied have been the more or less steady supersonic condition of flow. Some work that has been done in connection with steam turbines, particularly nozzle studies, has been of value, In general, however, understanding of compressible-flow phenomena has been very incomplete and permitted no real basis for the solution of aeronautical engineering problems in which.the flow is likely to be unsteady because regions of both subsonic and supersonic speeds may occur. In the early phases of the development of the airplane, speeds were so low that the effects of compressibility could be justifiably ignored. During the last war and immediately after, however, propellers exhibited losses in efficiency as the tip speeds approached the speed of sound, and the first experiments of an aeronautical nature were therefore conducted with propellers. Results of these experiments indicated serious losses of efficiency, but aeronautical engineers were not seriously concerned at the time became it was generally possible. to design propellers with quite low tip. speeds. With the development of new engines having increased power and rotational speeds, however, the problems became of increasing importance.

  18. Compressive spherical beamforming for localization of incipient tip vortex cavitation.

    PubMed

    Choo, Youngmin; Seong, Woojae

    2016-12-01

    Noises by incipient propeller tip vortex cavitation (TVC) are generally generated at regions near the propeller tip. Localization of these sparse noises is performed using compressive sensing (CS) with measurement data from cavitation tunnel experiments. Since initial TVC sound radiates in all directions as a monopole source, a sensing matrix for CS is formulated by adopting spherical beamforming. CS localization is examined with known source acoustic measurements, where the CS estimated source position coincides with the known source position. Afterwards, CS is applied to initial cavitation noise cases. The result of cavitation localization was detected near the upper downstream area of the propeller and showed less ambiguity compared to Bartlett spherical beamforming. Standard constraint in CS was modified by exploiting the physical features of cavitation to suppress remaining ambiguity. CS localization of TVC using the modified constraint is shown according to cavitation numbers and compared to high-speed camera images.

  19. Radiated noise of ducted fans

    NASA Astrophysics Data System (ADS)

    Eversman, Walter

    The differences in the radiated acoustic fields of ducted and unducted propellers of the same thrust operating under similar conditions are investigated. An FEM model is created for the generation, propagation, and radiation of steady, rotor alone noise and exit guide vane interaction noise of a ducted fan. For a specified number of blades, angular mode harmonic, and rotor angular velocity, the acoustic field is described in a cylindrical coordinate system reduced to only the axial and radial directions. It is found that, contrary to the usual understanding of the Tyler and Sofrin (1962) result, supersonic tip speed rotor noise can be cut off if the tip Mach number is only slightly in excess of unity and if the number of blades is relatively small. If there are many blades, the fundamental angular mode number is large, and the Tyler and Sofrin result for thin annuli becomes more relevant. Shrouding of subsonic tip speed propellers is a very effective means of controlling rotor alone noise.

  20. Measurement of noise and its correlation to performance and geometry of small aircraft propellers

    NASA Astrophysics Data System (ADS)

    Štorch, Vít; Nožička, Jiří; Brada, Martin; Gemperle, Jiří; Suchý, Jakub

    2016-03-01

    A set of small model and UAV propellers is measured both in terms of aerodynamic performance and acoustic noise under static conditions. Apart from obvious correlation of noise to tip speed and propeller diameter the influence of blade pitch, blade pitch distribution, efficiency and shape of the blade is sought. Using the measured performance data a computational model for calculation of aerodynamic noise of propellers will be validated. The range of selected propellers include both propellers designed for nearly static conditions and propellers that are running at highly offdesign conditions, which allows to investigate i.e. the effect of blade stall on both noise level and performance results.

  1. Noise of two high-speed model counter-rotation propellers at takeoff/approach conditions

    NASA Astrophysics Data System (ADS)

    Woodward, Richard P.

    1992-08-01

    This paper presents acoustic results for two model counter-rotation propellers which were tested in the NASA Lewis 9- x 15-ft Anechoic Wind Tunnel. The propellers had a common forward rotor, but the diameter of the aft rotor of the second propeller was reduced in an effort to reduce its interaction with the forward rotor tip vortex. The propellers were tested at Mach 0.20, which is representative of takeoff/approach operation. Acoustic results are presented for these propellers which show the effect of rotor spacing, reduced aft rotor diameter, operation at angle-of-attack, blade loading, and blade number. Limited aerodynamic results are also presented to establish the propeller operating conditions.

  2. Noise of two high-speed model counter-rotation propellers at takeoff/approach conditions

    NASA Technical Reports Server (NTRS)

    Woodward, Richard P.

    1992-01-01

    This paper presents acoustic results for two model counter-rotation propellers which were tested in the NASA Lewis 9- x 15-ft Anechoic Wind Tunnel. The propellers had a common forward rotor, but the diameter of the aft rotor of the second propeller was reduced in an effort to reduce its interaction with the forward rotor tip vortex. The propellers were tested at Mach 0.20, which is representative of takeoff/approach operation. Acoustic results are presented for these propellers which show the effect of rotor spacing, reduced aft rotor diameter, operation at angle-of-attack, blade loading, and blade number. Limited aerodynamic results are also presented to establish the propeller operating conditions.

  3. Takeoff/approach noise for a model counterrotation propeller with a forward-swept upstream rotor

    NASA Technical Reports Server (NTRS)

    Woodward, Richard P.; Hall, David G.; Podboy, Gary G.; Jeracki, Robert J.

    1993-01-01

    A scale model of a counterrotating propeller with forward-swept blades in the forward rotor and aft-swept blades in the aft rotor (designated F39/A31) has been tested in the NASA Lewis 9- by 15-Foot Anechoic Wind Tunnel. This paper presents aeroacoustic results at a takeoff/approach condition of Mach 0.20. Laser Doppler velocimeter results taken in a plane between the two rotors are also included to quantify the interaction flow field. The intention of the forward-swept design is to reduce the magnitude of the forward rotor tip vortex and/or wakes which impinge on the aft rotor, thus lowering the interaction tone levels. A reference model propeller (designated F31/A31), having aft-swept blades in both rotors, was also tested. Aeroelastic performance of the F39/A31 propeller was disappointing. The forward rotor tip region tended to untwist toward higher effective blade angles under load. The forward rotor also exhibited steady state blade flutter at speeds and loadings well below the design condition. The noise results, based on sideline acoustic data, show that the interaction tone levels were up to 8 dB higher with the forward-swept design compared to those for the reference propeller at similar operating conditions, with these tone level differences extending down to lower propeller speeds where flutter did not occur. These acoustic results are for a poorly-performing forward-swept propeller. It is quite possible that a properly-designed forward-swept propeller would exhibit substantial interaction tone level reductions.

  4. Measured noise of a scale model high speed propeller at simulated takeoff/approach conditions

    NASA Technical Reports Server (NTRS)

    Woodward, Richard P.

    1987-01-01

    A model high-speed advanced propeller, SR-7A, was tested in the NASA Lewis 9x15 foot anechoic wind tunnel at simulated takeoff/approach conditions of 0.2 Mach number. These tests were in support of the full-scale Propfan Text Assessment (PTA) flight program. Acoustic measurements were taken with fixed microphone arrays and with an axially translating microphone probe. Limited aerodynamic measurements were also taken to establish the propeller operating conditions. Tests were conducted with the propeller alone and with three down-stream wing configurations. The propeller was run over a range of blade setting angles from 32.0 deg. to 43.6 deg., tip speeds from 183 to 290 m/sec (600 to 950 ft/sec), and angles of attack from -10 deg. to +15 deg. The propeller alone BPF tone noise was found to increase 10 dB in the flyover plane at 15 deg. propeller axis angle of attack. The installation of the straight wing at minimum spacing of 0.54 wing chord increased the tone noise 5 dB under the wing of 10 deg. propeller axis angle of attack, while a similarly spaced inboard upswept wing only increased the tone noise 2 dB.

  5. Preliminary measurement of the noise from the 2/9 scale model of the Large-scale Advanced Propfan (LAP) propeller, SR-7A

    NASA Technical Reports Server (NTRS)

    Dittmar, J. H.

    1985-01-01

    Noise data on the Large-scale Advanced Propfan (LAP) propeller model SR-7A were taken into the NASA Lewis 8- by 6-Foot Wind Tunnel. The maximum blade passing tone decreases from the peak level when going to higher helical tip Mach numbers. This noise reduction points to the use of higher propeller speeds as a possible method to reduce airplane cabin noise while maintaining high flight speed and efficiency. Comparison of the SR-7A blade passing noise with the noise of the similarly designed SR-3 propeller shows good agreement as expected. The SR-7A propeller is slightly noisier than the SR-3 model in the plane of rotation at the cruise condition. Projections of the tunnel model data are made to the full-scale LAP propeller mounted on the test bed aircraft and compared with design predictions. The prediction method is conservative in the sense that it overpredicts the projected model data.

  6. Pusher propeller noise directivity and trends

    NASA Technical Reports Server (NTRS)

    Block, P. J. W.

    1986-01-01

    The effects of pylon wake interaction on far-field propeller noise are studied using a model scale SR-2 propeller in a low-speed anechoic wind tunnel. The variation in the pusher noise penalty with axial angle theta and circumferential angle phi is compared to that of the tractor noise penalty; and the former exhibits minima occurring in the propeller plane and maxima occurring toward the propeller axis. The magnitude of the pusher installation noise penalty decreased with in increase in shaft horsepower and tip Mach number. Directivity comparisons revealed that both a noise reduction and a directivity pattern change resulted when the pylon was moved farther from the propeller. Noise emerging from the wake interaction was distinguished from that of the propeller by means of a modal decomposition.

  7. Propeller noise caused by blade tip radial forces

    NASA Technical Reports Server (NTRS)

    Hanson, D. B.

    1986-01-01

    New experimental evidence which indicates the presence of leading edge and tip edge vortex flow on Prop-Fans is examined, and performance and noise consequences are addressed. It was shown that the tip edge vortex is a significant noise source, particularly for unswept Prop-Fan blades. Preliminary calculations revealed that the addition of the tip side edge source to single rotation Prop-Fans during take off conditions improved the agreement between experiment and theory at blade passing frequency. At high-speed conditions such as the Prop-Fan cruise point, the tip loading effect tends to cancel thickness noise.

  8. Measurement of the Differential and Total Thrust and Torque of Six Full-Scale Adjustable-Pitch Propellers

    NASA Technical Reports Server (NTRS)

    Stickle, George W

    1933-01-01

    Force measurements giving total thrust and torque, and propeller slip stream surveys giving differential thrust and torque were simultaneously made on each of six full-scale propellers in the 20-foot propeller-research tunnel of the National Advisory Committee for Aeronautics. They were adjustable-pitch metal propellers 9.5 feet in diameter; three had modified Clark Y blade sections and three had modified RAF-6 blade sections. This report gives the differential thrust and torque and the variation caused by changing the propeller tip speed and the pitch setting. The total thrust and torque obtained from integration of the thrust and torque distribution curves are compared with those obtained by direct force measurements.

  9. Noise of the SR-3 propeller model at 2 deg and 4 deg angle of attack

    NASA Technical Reports Server (NTRS)

    Dittmar, J. H.; Jeracki, R. J.

    1981-01-01

    The noise effect of operating supersonic tip speed propellers at angle of attack with respect to the incoming flow was determined. Increases in the maximum blade passage noise were observed for the propeller operating at angle of attack. The noise increase was not symmetrical with one wall of the wind tunnel having significantly more noise increase than the other wall. This was apparently the result of the rotational direction of the propeller. The lack of symmetry of the noise at angle of attack to the use of oppositely rotating propellers on opposite sides of an airplane fuselage as a way of minimizing the noise due to operation at angle of attack.

  10. Noise of a model counterrotation propeller with simulated fuselage and support pylon at takeoff/approach conditions

    NASA Technical Reports Server (NTRS)

    Woodward, Richard P.; Hughes, Christopher E.

    1989-01-01

    Two modern high-speed advanced counterrotation propellers, F7/A7 and F7/A3 were tested in the NASA Lewis Research Centers's 9- by 15-foot Anechoic Wind Tunnel at simulated takeoff/approach conditions of 0.2 Mach number. Both rotors were of similar diameter on the F7/A7 propeller, while the aft rotor diameter of the F7/A3 propeller was 85 percent of the forward propeller to reduce tip vortex-aft rotor interaction. The two propellers were designed for similar performance. The propellers were tested in both the clean configuration, and installed configuration consisting of a simulated upstream nacelle support pylon and fuselage section. Acoustic measurements were made with an axially translating microphone probe, and with a polar microphone probe which was fixed to the propeller nacelle and could make both sideline and circumferential acoustic surveys. Aerodynamic measurements were also made to establish propeller operating conditions. The propellers were run at blade setting angles (fron angle/rear angle) of 41.1/39.4 deg for the F7/A7 propeller, and 41.1/46.4 deg for the F7/A3 propeller. The forward rotors were tested over a range of tip speeds from 165 to 259 m/sec (540 to 850 ft/sec), and both propellers were tested at the maximum rotor-rotor spacing, based on pitch change axis separation, of 14.99 cm (5.90 in.). The data presented in this paper are for 0 deg propeller axis angle of attack. Results are presented for the baseline, pylon-alone, and strut + fuselage configurations. The presence of the simulated fuselage resulted in higher rotor-alone tone levels in a direction normal to the advancing propeller blade near the fuselage. A corresponding rotor-alone tone reduction was often observed 180 deg circumferentially from this region of increased noise. A significant rotor-alone increase for both rotors was observed diametrically opposite the fuselage. In some cases, interaction tone levels were likewise affected by the simulated installation.

  11. Characteristics of Five Propellers in Flight

    NASA Technical Reports Server (NTRS)

    Crowley, J W , Jr; Mixson, R E

    1928-01-01

    This investigation was made for the purpose of determining the characteristics of five full-scale propellers in flight. The equipment consisted of five propellers in conjunction with a VE-7 airplane and a Wright E-2 engine. The propellers were of the same diameter and aspect ratio. Four of them differed uniformly in thickness and pitch and the fifth propeller was identical with one of the other four with exception of a change of the airfoil section. The propeller efficiencies measured in flight are found to be consistently lower than those obtained in model tests. It is probable that this is mainly a result of the higher tip speeds used in the full-scale tests. The results show also that because of differences in propeller deflections it is difficult to obtain accurate comparisons of propeller characteristics. From this it is concluded that for accurate comparisons it is necessary to know the propeller pitch angles under actual operating conditions. (author)

  12. Sea trials of a ducted tip propeller designed for improved cavitation performance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hordnes, I.; Bidaud, A.; Green, S.I.

    1994-12-31

    Studies have shown that ``ring-wing`` or ``ducted`` tip devices reduce substantially the inception index of trailing vortices generated by a hydrofoil (Green et al. 1988). It has also been shown that these devices improve the lift/drag ratio of an airfoil at high angle of incidence (Duan et al. 1992). These finding indicate that there may be a marine application for the ducted tip. Experimental equipment has been designed and manufactured in preparation for upcoming tests of a propeller with ducted tips. The tips are tubes aligned with the propeller blade tips that will replace a radial fraction of the originalmore » blade tips equal to the diameter of the tubes. The tube dimensions have been chosen according to the span/tip diameter and chord/tip length ratios used by Duan et al. (1992), and the tubes will be given a curvature equal to the propeller tip radius. Field trials will be given a curvature equal to the propeller tip radius. Field trials will be conducted on a 36 inch diameter propeller that is used to propel a 45 ft. fishing (seine) boat operating in the coastal waters outside Vancouver. The performance of the propeller will be measured in terms of the propeller efficiency as a function of advance ratio. A special force transducer has been designed that is capable of recording both torque and thrust on the propeller shaft even though these are expected to produce shaft strains of different orders of magnitude. As a supplementary means of monitoring the propeller performance, a hydrophone will be located near the propeller wake in order to measure the tip vortex cavitation noise.« less

  13. Aerodynamic Characteristics of Airfoils at High Speeds

    NASA Technical Reports Server (NTRS)

    Briggs, L J; Hull, G F; Dryden, H L

    1925-01-01

    This report deals with an experimental investigation of the aerodynamical characteristics of airfoils at high speeds. Lift, drag, and center of pressure measurements were made on six airfoils of the type used by the air service in propeller design, at speeds ranging from 550 to 1,000 feet per second. The results show a definite limit to the speed at which airfoils may efficiently be used to produce lift, the lift coefficient decreasing and the drag coefficient increasing as the speed approaches the speed of sound. The change in lift coefficient is large for thick airfoil sections (camber ratio 0.14 to 0.20) and for high angles of attack. The change is not marked for thin sections (camber ratio 0.10) at low angles of attack, for the speed range employed. At high speeds the center of pressure moves back toward the trailing edge of the airfoil as the speed increases. The results indicate that the use of tip speeds approaching the speed of sound for propellers of customary design involves a serious loss in efficiency.

  14. An asymptotic theory of supersonic propeller noise

    NASA Technical Reports Server (NTRS)

    Envia, Edmane

    1992-01-01

    A theory for predicting the noise field of a propeller with a realistic blade geometry is presented. The theory, which utilizes a large blade count approximation, provides an efficient formula for predicting the radiation of sound from all three sources of propeller noise. Comparisons with full numerical integration indicate that the noise levels predicted by this formula are quite accurate. Calculations based on this method also show that the radiation from the Lighthill quadrupole source is rather substantial when compared with thickness and loading noise for high speed propellers. A preliminary application of the theory to the problem of the sensitivity of the peak noise levels generated by a supersonic propeller to the variations in its tip helical Mach number has produced a trend that is in qualitative agreement with the experimental observations.

  15. Wind-Tunnel Results of Advanced High-Speed Propellers at Takeoff, Climb, and Landing Mach Numbers

    NASA Technical Reports Server (NTRS)

    Stefko, George L.; Jeracki, Robert J.

    1985-01-01

    Low-speed wind-tunnel performance tests of two advanced propellers have been completed at the NASA Lewis Research Center as part of the NASA Advanced Turboprop Program. The 62.2 cm (24.5 in.) diameter adjustable-pitch models were tested at Mach numbers typical of takeoff, initial climbout, and landing speeds (i.e., from Mach 0.10 to 0.34) at zero angle of attack in the NASA Lewis 10 by 10 Foot Supersonic Wind Tunnel. Both models had eight blades and a cruise-design-point operating condition of Mach 0.80, and 10.668 km (35,000 ft) I.S.A. altitude, a 243.8 m/s (800 ft/sec) tip speed, and a high power loading of 301 kW/sq m (37.5 shp/sq ft). Each model had its own integrally designed area-ruled spinner, but used the same specially contoured nacelle. These features reduced blade-section Mach numbers and relieved blade-root choking at the cruise condition. No adverse or unusual low-speed operating conditions were found during the test with either the straight blade SR-2 or the 45 deg swept SR-3 propeller. Typical efficiencies of the straight and 45 deg swept propellers were 50.2 and 54.9 percent, respectively, at a takeoff condition of Mach 0.20 and 53.7 and 59.1 percent, respectively, at a climb condition of Mach 0.34.

  16. Dynamic calibration and analysis of crack tip propagation in energetic materials using real-time radiography

    NASA Astrophysics Data System (ADS)

    Butt, Ali

    Crack propagation in a solid rocket motor environment is difficult to measure directly. This experimental and analytical study evaluated the viability of real-time radiography for detecting bore regression and propellant crack propagation speed. The scope included the quantitative interpretation of crack tip velocity from simulated radiographic images of a burning, center-perforated grain and actual real-time radiographs taken on a rapid-prototyped model that dynamically produced the surface movements modeled in the simulation. The simplified motor simulation portrayed a bore crack that propagated radially at a speed that was 10 times the burning rate of the bore. Comparing the experimental image interpretation with the calibrated surface inputs, measurement accuracies were quantified. The average measurements of the bore radius were within 3% of the calibrated values with a maximum error of 7%. The crack tip speed could be characterized with image processing algorithms, but not with the dynamic calibration data. The laboratory data revealed that noise in the transmitted X-Ray intensity makes sensing the crack tip propagation using changes in the centerline transmitted intensity level impractical using the algorithms employed.

  17. Performance Analysis of Two Early NACA High Speed Propellers with Application to Civil Tiltrotor Configurations

    NASA Technical Reports Server (NTRS)

    Harris, Franklin D.

    1996-01-01

    The helicopter industry is vigorously pursuing development of civil tiltrotors. One key to efficient high speed performance of this rotorcraft is prop-rotor performance. Of equal, if not greater, importance is assurance that the flight envelope is free of aeroelastic instabilities well beyond currently envisioned cuise speeds. This later condition requires study at helical tip Match numbers well in excess of 1.0. Two 1940's 'supersonic' propeller experiments conducted by NACA have provided an immensely valuable data bank with which to study prop-rotor behavior at transonic and supersonic helical tip Mach numbers. Very accurate 'blades alone' data were obtained by using nearly an infinite hub. Tabulated data were recreated from the many thrust and power figures and are included in two Appendices to this report. This data set is exceptionally well suited to re-evaluating classical blade element theories as well as evolving computational fluid dynamic (CFD) analyses. A limited comparison of one propeller's experimental results to a modem rotorcraft CFD code is made. This code, referred to as TURNS, gives very encouraging results. Detailed analysis of the performance data from both propellers is provided in Appendix A. This appendix quantifies the minimum power required to produce usable prop-rotor thrust. The dependence of minimum profile power on Reynolds number is quantified. First order compressibility power losses are quantified as well and a first approximation to design air-foil thickness ratio to avoid compressibility losses is provided. Appendix A's results are applied to study high speed civil tiltrotor cruise performance. Predicted tiltrotor performance is compared to two turboprop commercial transports. The comparison shows that there is no fundamental aerodynamic reason why the rotorcraft industry could not develop civil tiltrotor aircraft which have competitive cruise performance with today's regional, turboprop airlines. Recommendations for future study that will insure efficient prop-rotor performance to well beyond 400 knots are given.

  18. Annoyance caused by propeller airplane flyover noise

    NASA Technical Reports Server (NTRS)

    Mccurdy, D. A.; Powell, C. A.

    1984-01-01

    Laboratory experiments were conducted to provide information on quantifying the annoyance response of people to propeller airplane noise. The items of interest were current noise metrics, tone corrections, duration corrections, critical band corrections, and the effects of engine type, operation type, maximum takeoff weight, blade passage frequency, and blade tip speed. In each experiment, 64 subjects judged the annoyance of recordings of propeller and jet airplane operations presented at d-weighted sound pressure levels of 70, 80, and 90 dB in a testing room which simulates the outdoor acoustic environment. The first experiment examined 11 propeller airplanes with maximum takeoff weights greater than or equal to 5700 kg. The second experiment examined 14 propeller airplanes weighting 5700 kg or less. Five jet airplanes were included in each experiment. For both the heavy and light propeller airplanes, perceived noise level and perceived level (Stevens Mark VII procedure) predicted annoyance better than other current noise metrics.

  19. An asymptotic theory of supersonic propeller noise

    NASA Technical Reports Server (NTRS)

    Envia, Edmane

    1992-01-01

    A theory for predicting the noise field of supersonic propellers with realistic blade geometries is presented. The theory, which utilizes a large-blade-count approximation, provides an efficient formula for predicting the radiation of sound from all three sources of propeller noise. Comparisons with a full numerical integration indicate that the levels predicted by this formula are quite accurate. Calculations also show that, for high speed propellers, the noise radiated by the Lighthill quadrupole source is rather substantial when compared with the noise radiated by the blade thickness and loading sources. Results from a preliminary application of the theory indicate that the peak noise level generated by a supersonic propeller initially increases with increasing tip helical Mach number, but is eventually reaches a plateau and does not increase further. The predicted trend shows qualitative agreement with the experimental observations.

  20. Static Thrust and Power Characteristics of Six Full-Scale Propellers

    DTIC Science & Technology

    1940-01-01

    8217 v’arri’a’t aaINt Ilio- adasigns tip) speed’a by 1ii1) ,i vinag .10 perce’ant aI’a’aita’n Itiliil tha’ thar’ist a’auaflia’i’iit o’’~af n faictaoi

  1. Cavitation noise studies on marine propellers

    NASA Astrophysics Data System (ADS)

    Sharma, S. D.; Mani, K.; Arakeri, V. H.

    1990-04-01

    Experimental observations are described of cavitation inception and noise from five model propellers, three basic and two modified, tested in the open jet section of the Indian Institute of Science high-speed water tunnel facility. Extensive experiments on the three basic propellers of different design, which included visualization of cavitation and measurements of noise, showed that the dominant type of cavitation was in the form of tip vortex cavitation, accompanied by leading edge suction side sheet cavitation in its close vicinity, and the resultant noise depended on parameters such as the advance coefficient, the cavitation number, and the propeller geometry. Of these, advance coefficient was found to have the maximum influence not only on cavitation noise but also on the inception of cavitation. Noise levels and frequencies of spectra obtained from all the three basic propellers at conditions near inception and different advance coefficient values, when plotted in the normalized form as suggested by Blake, resulted in a universal spectrum which would be useful for predicting cavitation noise at prototype scales when a limited extent of cavitation is expected in the same form as observed on the present models. In an attempt to delay the onset of tip vortex cavitation, the blades of two of the three basic propellers were modified by drilling small holes in the tip and leading edge areas. Studies on the modified propellers showed that the effectiveness of the blade modification was apparently stronger at low advance coefficient values and depended on the blade sectional profile. Measurements of cavitation noise indicated that the modification also improved the acoustic performance of the propellers as it resulted in a complete attenuation of the low-frequency spectral peaks, which were prominent with the basic propellers. In addition to the above studies, which were conducted under uniform flow conditions, one of the basic propellers was tested in the simulated wake of a typical single screw ship. The wake was simulated by using a wire screen technique. Observations of cavitation and measurement of noise clearly showed that the presence of the wake had a strong influence on the propeller cavitation and noise performance. Cavitation was found to be of the cloud type, which generated very intense noise compared to that generated by tip vortex cavitation along with leading edge suction side sheet cavitation in the uniform flow conditions. The noise spectra obtained with wake simulation also are presented in a normalized form to be of general utility.

  2. The effect of swirl recovery vanes on the cruise noise of an advanced propeller

    NASA Technical Reports Server (NTRS)

    Dittmar, James H.; Hall, David G.

    1990-01-01

    The SR-7A propeller was acoustically tested with and without downstream swirl recovery vanes to determine if any extra noise was caused by the interaction of the propeller wakes and vortices with these vanes. No additional noise was observed at the cruise condition over the angular range tested. The presence of the swirl recovery vanes did unload the propeller and some small peak noise reductions were observed from lower propeller loading noise. The propeller was also tested alone to investigate the behavior of the peak propeller noise with helical tip Mach number. As observed before on other propellers, the peak noise first rose with helical tip Mach number and then leveled off or decreased at higher helical tip Mach numbers. Detailed pressure-time histories indicate that a portion of the primary pressure pulse is progressively cancelled by a secondary pulse as the helical tip Mach number is increased. This cancellation appears to be responsible for the peak noise behavior at high helical tip Mach numbers.

  3. Noise of the SR-6 propeller model at 2 deg and 4 deg angles of attack

    NASA Technical Reports Server (NTRS)

    Dittmar, J. H.; Stefko, G. L.

    1983-01-01

    The noise generated by supersonic-tip-speed propellers creates a cabin noise problem for future airplanes powered by these propellers. Noise of a number of propeller models were measured in the NASA Lewis 8- by 6-Foot Wind Tunnel with flow parallel to the propeller axis. In flight, as a result of the induced upwash from the airplane wing, the propeller is at an angle of attack with respect to the incoming flow. Therefore, the 10-blade SR-6 propeller was operated at angle of attack to determine its noise behavior. Higher blade passage tones were observed for the propeller operating at angle of attack in a 0.6 axial Mach number flow. The noise increase was not symmetrical, with one wall of the wind tunnel showing a larger noise increase than the other wall. No noise increase was observed at angle of attack in a 0.8 axial Mach number flow. For this propeller the dominance of thickness noise, which does not increase with angle of attack, explains the lack of noise increase at the higher 0.8 Mach number.

  4. Supersonic propeller noise in a uniform flow

    NASA Technical Reports Server (NTRS)

    Jou, Wen-Huei

    1989-01-01

    The sound field produced by a supersonic propeller operating in a uniform flow is investigated. The main interest is the effect of the finite forward flight speed on the directivity of the sound field as seen by an observer on the aircraft. It is found that there are cones of silence on the axis of the propeller. The semiapex angles on these cones are equal fore and aft of the propeller plane, and depend on the tip Mach number only. The Fourier coefficients of the acoustic pressure contain the Doppler amplification factor. The sound field weakens in the upstream direction and strengthen downstream. Kinematic considerations of the emitted Mach waves not only confirm these results, but also provide physical insight into the sound generation mechanism. The predicted zone of silence and the Doppler amplification factor are compared to the theoretical prediction of shock wave formation and the flight test of the SR3 propeller.

  5. Free-Space Oscillating Pressures Near the Tips of Rotating Propellers

    NASA Technical Reports Server (NTRS)

    Hubbard, Harvey H; Regier, Arthur A

    1950-01-01

    The theory is given for calculating the free-space oscillating pressures associated with a rotating propeller, at any point in space. Because of its complexity this analysis is convenient only for use in the critical region near the propeller tips where the assumptions used by Gutin to simplify his final equations are not valid. Good agreement was found between analytical and experimental results in the tip Mach number range 0.45 to two, three, four, five, six, on eight-blade propellers and for a range of tip clearances from 0.04 to 0.30 times the propeller diameter. If the power coefficient, tip Mach number, and the tip clearance are known for a given propeller, the designer may determine from these charts the average maximum free-space oscillating pressure in the critical region near the plane of rotation. A section of the report is devoted to the fuselage response to these oscillating pressures and indicates some of the factors to be considered in solving the problems of fuselage vibration and noise.

  6. Procedure for noise prediction and optimization of advanced technology propellers

    NASA Technical Reports Server (NTRS)

    Jou, W. H.; Bernstein, S.

    1979-01-01

    The sound field due to a propeller operating at supersonic tip speed in a uniform flow was investigated. Using the fact that the wave front in a uniform stream is a convected sphere, the fundamental solution to the convected wave equation was easily obtained. The Fourier coefficients of the pressure signature were obtained by a far field approximation, and are expressed as an integral over the blade platform. It is shown that cones of silence exist fore and aft the propeller plane. The semiapex angles are shown. These angles are independent of the individual Mach components such as the flight Mach number and the rotation Mach number. The result is confirmed by the computation of the ray path of the emitted Mach waves. The Doppler amplification factor strengthens the signal behind the propeller while it weakens that upstream.

  7. In-flight source noise of an advanced full-scale single-rotation propeller

    NASA Technical Reports Server (NTRS)

    Woodward, Richard P.; Loffler, Irvin J.

    1991-01-01

    Flight tests to define the far-field tone source at cruise conditions have been completed on the full-scale SR-7L advanced turboprop, which was installed on the left wing of a Gulfstream II aircraft. These measurements defined source levels for input into long-distance propagation models to predict en route noise. Infight data were taken for seven test cases. The sideline directivities measured showed expected maximum levels near 105 deg from the propeller upstream axis. However, azimuthal directivities based on the maximum observed sideline tone levels showed highest levels below the aircraft. The tone level reduction associated with reductions in propeller tip speed is shown to be more significant in the horizontal plane than below the aircraft.

  8. The singing vortex.

    PubMed

    Arndt, R; Pennings, P; Bosschers, J; van Terwisga, T

    2015-10-06

    Marine propellers display several forms of cavitation. Of these, propeller-tip vortex cavitation is one of the important factors in propeller design. The dynamic behaviour of the tip vortex is responsible for hull vibration and noise. Thus, cavitation in the vortices trailing from tips of propeller blades has been studied extensively. Under certain circumstances cavitating vortices have been observed to have wave-like disturbances on the surfaces of vapour cores. Intense sound at discrete frequencies can result from a coupling between tip vortex disturbances and oscillating sheet cavitation on the surfaces of the propeller blades. This research article focuses on the dynamics of vortex cavitation and more in particular on the energy and frequency content of the radiated pressures.

  9. The singing vortex

    PubMed Central

    Arndt, R.; Pennings, P.; Bosschers, J.; van Terwisga, T.

    2015-01-01

    Marine propellers display several forms of cavitation. Of these, propeller-tip vortex cavitation is one of the important factors in propeller design. The dynamic behaviour of the tip vortex is responsible for hull vibration and noise. Thus, cavitation in the vortices trailing from tips of propeller blades has been studied extensively. Under certain circumstances cavitating vortices have been observed to have wave-like disturbances on the surfaces of vapour cores. Intense sound at discrete frequencies can result from a coupling between tip vortex disturbances and oscillating sheet cavitation on the surfaces of the propeller blades. This research article focuses on the dynamics of vortex cavitation and more in particular on the energy and frequency content of the radiated pressures. PMID:26442147

  10. An acoustic experimental and theoretical investigation of single disc propellers

    NASA Technical Reports Server (NTRS)

    Bumann, Elizabeth A.; Korkan, Kenneth D.

    1989-01-01

    An experimental study of the acoustic field associated with two, three, and four blade propeller configurations with a blade root angle of 50 deg was performed in the Texas A&M University 5 ft. x 6 ft. acoustically-insulated subsonic wind tunnel. A waveform analysis package was utilized to obtain experimental acoustic time histories, frequency spectra, and overall sound pressure level (OASPL) and served as a basis for comparison to the theoretical acoustic compact source theory of Succi (1979). Valid for subsonic tip speeds, the acoustic analysis replaced each blade by an array of spiraling point sources which exhibited a unique force vector and volume. The computer analysis of Succi was modified to include a propeller performance strip analysis which used a NACA 4-digit series airfoil data bank to calculate lift and drag for each blade segment given the geometry and motion of the propeller. Theoretical OASPL predictions were found to moderately overpredict experimental values for all operating conditions and propeller configurations studied.

  11. Computation of the tip vortex flowfield for advanced aircraft propellers

    NASA Technical Reports Server (NTRS)

    Tsai, Tommy M.; Dejong, Frederick J.; Levy, Ralph

    1988-01-01

    The tip vortex flowfield plays a significant role in the performance of advanced aircraft propellers. The flowfield in the tip region is complex, three-dimensional and viscous with large secondary velocities. An analysis is presented using an approximate set of equations which contains the physics required by the tip vortex flowfield, but which does not require the resources of the full Navier-Stokes equations. A computer code was developed to predict the tip vortex flowfield of advanced aircraft propellers. A grid generation package was developed to allow specification of a variety of advanced aircraft propeller shapes. Calculations of the tip vortex generation on an SR3 type blade at high Reynolds numbers were made using this code and a parametric study was performed to show the effect of tip thickness on tip vortex intensity. In addition, calculations of the tip vortex generation on a NACA 0012 type blade were made, including the flowfield downstream of the blade trailing edge. Comparison of flowfield calculations with experimental data from an F4 blade was made. A user's manual was also prepared for the computer code (NASA CR-182178).

  12. An experimental investigation of an advanced turboprop installation on a swept wing at subsonic and transonic speeds

    NASA Technical Reports Server (NTRS)

    Carlson, John R.; Pendergraft, Odis C., Jr.

    1987-01-01

    An investigation was conducted in the Langley 16-Foot Transonic Tunnel to determine the effects of a turboprop-nacelle installation on the pressure distributions over a swept, supercritical wing. The tests were conducted at Mach numbers from 0.20 to 0.80, at angles of attack from 0 to 5 degrees, nacelle nozzle pressure ratios from 1.0 to 1.6, and at propeller tip speeds from 700 to 800 ft/sec. The results of this study indicate that the turboprop nacelle interference, with and without power, on a swept wing is greater on the inboard wing panel than on the outboard wing panel. The over-the-wing nacelle installation with the propeller upwash on the inboard panel had flow separation problems at a Mach number of 0.80. No severe flow separation problems appear to exist for either propeller rotation direction for the under-the-wing nacelle installation. The local flow disturbances caused by the under-the-wing nacelle installation were in general less severe than for the over-the-wing nacelle installation.

  13. Thickness noise of a propeller and its relation to blade sweep

    NASA Astrophysics Data System (ADS)

    Amiet, R. K.

    1988-07-01

    Linear acoustic theory is used to determine the thickness noise produced by a supersonic propeller with sharp leading and trailing edges. The method reveals details of the calculated waveform. Abrupt changes of slope in the pressure-time waveform which are produced by singular points entering or leaving the tip blade are pointed out. It is found that the behavior of the pressure-time waveform is closely related to changes in the retarded rotor shape. The results indicate that logarithmic singularities in the waveform are produced by regions on the blade edges that move towards the observer at sonic speed, with the edge normal to the line joining the source point and the observer.

  14. En route noise of turboprop aircraft and their acceptability: Report of tests

    NASA Technical Reports Server (NTRS)

    Held, Wolf

    1990-01-01

    The development of propfan-powered aircraft has been observed with great interest. It is obvious that during cruising flight, the aircraft powerplant (propellers) cause a noise clearly perceivable on the ground. It is the audible frequency spectrum of the propfan powerplants relative to the high tip speeds that presents the problem. A flight test was conducted on 30 April, 1989 at the Frankfurt Airport. Results of the test flight are present.

  15. The importance of quadrupole sources in prediction of transonic tip speed propeller noise

    NASA Technical Reports Server (NTRS)

    Hanson, D. B.; Fink, M. R.

    1978-01-01

    A theoretical analysis is presented for the harmonic noise of high speed, open rotors. Far field acoustic radiation equations based on the Ffowcs-Williams/Hawkings theory are derived for a static rotor with thin blades and zero lift. Near the plane of rotation, the dominant sources are the volume displacement and the rho U(2) quadrupole, where u is the disturbance velocity component in the direction blade motion. These sources are compared in both the time domain and the frequency domain using two dimensional airfoil theories valid in the subsonic, transonic, and supersonic speed ranges. For nonlifting parabolic arc blades, the two sources are equally important at speeds between the section critical Mach number and a Mach number of one. However, for moderately subsonic or fully supersonic flow over thin blade sections, the quadrupole term is negligible. It is concluded for thin blades that significant quadrupole noise radiation is strictly a transonic phenomenon and that it can be suppressed with blade sweep. Noise calculations are presented for two rotors, one simulating a helicopter main rotor and the other a model propeller. For the latter, agreement with test data was substantially improved by including the quadrupole source term.

  16. User's manual for PEPSIG NASA tip vortex version

    NASA Technical Reports Server (NTRS)

    Tsai, Tommy M.; Dejong, Frederick J.; Levy, Ralph

    1988-01-01

    The tip vortex flowfield plays a significant role in the performance of advanced aircraft propellers. The flowfield in the tip region is complex, three-dimensional and viscous with large secondary velocities. A computer code was developed to predict the tip vortex flowfield of advanced aircraft propellers. This document is the user's manual. The analysis and a series of test cases are presented in NASA-CR-182179.

  17. Further comparison of wind tunnel and airplane acoustic data for advanced design high speed propeller models

    NASA Technical Reports Server (NTRS)

    Dittmar, J. H.

    1985-01-01

    Comparisons were made between the SR-2 and SR-3 model propeller noise data taken in the NASA 8-by-6 wind tunnel, in the United Technologies Research Center (UTRC) anechoic tunnel, and with boom and fuselage microphones on the NASA Jetstar airplane. Plots of peak blade passage tone noise versus helical tip Mach number generally showed good agreement. The levels of the airplane fuselage data were somewhat lower than the boom data by an approximately uniform value. The curve shapes were similar except for the UTRC data which was flatter than the other sets. This was attributed to the UTRC data being taken at constant power while the other data were taken at constant advance ratio. General curves of the peak blade passage tone versus helical tip Mach number fit through all the data are also presented. Directivity shape comparisons at the cruise condition were similar for the airplane and 8-by-6 tunnel data. The UTRC data peaked farther forward but, when an angle correction was made for the different axial Mach number used in the UTRC tests, the shape was similar to the others. The general agreement of the data from the four configurations enables the formation of a good consensus of the noise from these propellers.

  18. Comparison of advanced turboprop and turbofan airplanes

    NASA Technical Reports Server (NTRS)

    Johnson, V. S.

    1983-01-01

    Results of a parametric study to determine the effects of design variables and penalties on the fuel efficiency of Mach 0.8, 125-passenger, advanced turboprop airplanes show that propeller-wing interference penalty has a major effect. Propeller tip speed has a minor effect, and could be decreased to alleviate the noise problem without significant effects on fuel efficiency. The anticipated noise levels produced by the propfan will require additional acoustical treatment for the fuselage; this additional weight can have a significant effect on fuel efficiency. The propfan advantage over an equivalent technology turbofan is strongly dependent on the interference penalty and acoustical treatment weight. Lowering the cruise Mach number to around 0.73 would result in greatly increased fuel efficiency.

  19. 14 CFR 25.1149 - Propeller speed and pitch controls.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Propeller speed and pitch controls. 25.1149... Accessories § 25.1149 Propeller speed and pitch controls. (a) There must be a separate propeller speed and... synchronization of all propellers. (d) The propeller speed and pitch controls must be to the right of, and at...

  20. 14 CFR 25.1149 - Propeller speed and pitch controls.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Propeller speed and pitch controls. 25.1149... Accessories § 25.1149 Propeller speed and pitch controls. (a) There must be a separate propeller speed and... synchronization of all propellers. (d) The propeller speed and pitch controls must be to the right of, and at...

  1. A Preliminary Study of a Propeller Powered by Gas Jets Issuing from the Blade Tips

    DTIC Science & Technology

    1946-11-01

    ISSUING FROM THE BLADE TIPS By J. C. Sanders and N. D. Sanders Aircraft Engine Research Laboratory Cleveland, Ohio icaflit w<• w &£N •^5$" jm "^o*6w...propeller powered by Jets in the blade tips made by Roy in 1930 (reference 3) showed that this engine would be less efficient than;a reciprocating...development of the turbojet engine , which is .now of outstanding interest. The possibilities of the jet -operated propeller are re-exeroined and the

  2. Experimental study of noise reduction for an unstiffened cylindrical model of an airplane fuselage

    NASA Astrophysics Data System (ADS)

    Willis, C. M.; Daniels, E. F.

    1981-12-01

    Noise reduction measurements were made for a simplified model of an airplane fuselage consisting of an unstiffened aluminum cylinder 0.5 m in diameter by 1.2 m long with a 1.6-mm-thick wall. Noise reduction was first measured with a reverberant field pink-noise load on the cylinder exterior. Next, noise reduction was measured by using a propeller to provide a more realistic noise load on the cylinder. Structural resonance frequencies and acoustic reverberation times for the cylinder interior volume were also measured. Comparison of data from the relatively simple test using reverberant-field noise with data from the more complex propeller-noise tests indicates some similarity in both the overall noise reduction and the spectral distribution. However, all of the test parameters investigated (propeller speed, blade pitch, and tip clearance) had some effect on the noise-reduction spectra. Thus, the amount of noise reduction achieved appears to be somewhat dependent upon the spectral and spatial characteristics of the flight conditions. Information is also presented on cyclinder resonance frequencies, damping, and characteristics of propeller-noise loads.

  3. Evaluation of panel code predictions with experimental results of inlet performance for a 17-inch ducted prop/fab simulator operating at Mach 0.2

    NASA Technical Reports Server (NTRS)

    Boldman, D. R.; Iek, C.; Hwang, D. P.; Jeracki, R. J.; Larkin, M.; Sorin, G.

    1991-01-01

    An axisymmetric panel code was used to evaluate a series of ducted propeller inlets. The inlets were tested in the Lewis 9 by 15 Foot Low Speed Wind Tunnel. Three basic inlets having ratios of shroud length to propeller diameter of 0.2, 0.4, and 0.5 were tested with the Pratt and Whitney ducted prop/fan simulator. A fourth hybrid inlet consisting of the shroud from the shortest basic inlet coupled with the spinner from the largest basic inlet was also tested. This later configuration represented the shortest overall inlet. The simulator duct diameter at the propeller face was 17.25 inches. The short and long spinners provided hub-to-tip ratios of 0.44 at the propeller face. The four inlets were tested at a nominal free stream Mach number of 0.2 and at angles of attack from 0 degrees to 35 degrees. The panel code method incorporated a simple two-part separation model which yielded conservative estimates of inlet separation.

  4. 14 CFR 23.33 - Propeller speed and pitch limits.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Propeller speed and pitch limits. 23.33... Propeller speed and pitch limits. (a) General. The propeller speed and pitch must be limited to values that... the all engine(s) operating climb speed specified in § 23.65, the propeller must limit the engine r.p...

  5. 14 CFR 23.33 - Propeller speed and pitch limits.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Propeller speed and pitch limits. 23.33... Propeller speed and pitch limits. (a) General. The propeller speed and pitch must be limited to values that... the all engine(s) operating climb speed specified in § 23.65, the propeller must limit the engine r.p...

  6. In-flight measurement of propeller noise on the fuselage of an airplane

    NASA Technical Reports Server (NTRS)

    Pla, Frederic G.; Ranaudo, Richard; Woodward, Richard P.

    1989-01-01

    In-flight measurements of propeller noise on the fuselage of an OV-10A aircraft were obtained using a horizontal and a vertical microphone array. A wide range of flight conditions were tested including changes in angle of attack, sideslip angle, power coefficient, helical tip Mach number and advance ratio, and propeller direction of rotation. Results show a dependence of the level and directivity of the tones on the angle of attack and on the sideslip angle with the propeller direction of rotation, which is similar to results obtained in wind tunnel tests with advanced propeller designs. The level of the tones at each microphone increases with increasing angle of attack for inboard-down propeller rotation and decreases for inboard-up rotation. The level also increases with increasing slideslip angle for both propeller directions of rotation. Increasing the power coefficient results in a slight increase in the level of the tones. A strong shock wave is generated by the propeller blades even at relatively low helical tip Mach numbers resulting in high harmonic levels. As the helical tip Mach number and the advance ratio are increased, the level of the higher harmonics increases much faster than the level of the blade passage frequency.

  7. In-flight acoustic results from an advanced-design propeller at Mach numbers to 0.8

    NASA Technical Reports Server (NTRS)

    Mackall, K. G.; Lasagna, P. L.; Walsh, K.; Dittmar, J. H.

    1982-01-01

    Acoustic data for the advanced-design SR-3 propeller at Mach numbers to 0.8 and helical tip Mach numbers to 1.14 are presented. Several advanced-design propellers, previously tested in wind tunnels at the Lewis Research Center, are being tested in flight at the Dryden Flight Research Facility. The flight-test propellers are mounted on a pylon on the top of the fuselage of a JetStar airplane. Instrumentation provides near-field acoustic data for the SR-3. Acoustic data for the SR-3 propeller at Mach numbers up to 0.8, for propeller helical tip Mach numbers up to 1.14, and comparison of wind tunnel to flight data are included. Flowfield profiles measured in the area adjacent to the propeller are also included.

  8. 14 CFR 25.1149 - Propeller speed and pitch controls.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Propeller speed and pitch controls. 25.1149... Accessories § 25.1149 Propeller speed and pitch controls. (a) There must be a separate propeller speed and pitch control for each propeller. (b) The controls must be grouped and arranged to allow— (1) Separate...

  9. 14 CFR 25.1149 - Propeller speed and pitch controls.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Propeller speed and pitch controls. 25.1149... Accessories § 25.1149 Propeller speed and pitch controls. (a) There must be a separate propeller speed and pitch control for each propeller. (b) The controls must be grouped and arranged to allow— (1) Separate...

  10. 14 CFR 25.1149 - Propeller speed and pitch controls.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Propeller speed and pitch controls. 25.1149... Accessories § 25.1149 Propeller speed and pitch controls. (a) There must be a separate propeller speed and pitch control for each propeller. (b) The controls must be grouped and arranged to allow— (1) Separate...

  11. Propeller Tip Flutter

    NASA Technical Reports Server (NTRS)

    Liebers, Fritz

    1932-01-01

    The present report is limited to a case of tip flutter recognized by experience as being important. It is the case where outside interferences force vibrations upon the propeller. Such interferences may be set up by the engine, or they may be the result of an unsymmetrical field of flow.

  12. Velocity field measurements in the wake of a propeller model

    NASA Astrophysics Data System (ADS)

    Mukund, R.; Kumar, A. Chandan

    2016-10-01

    Turboprop configurations are being revisited for the modern-day regional transport aircrafts for their fuel efficiency. The use of laminar flow wings is an effort in this direction. One way to further improve their efficiency is by optimizing the flow over the wing in the propeller wake. Previous studies have focused on improving the gross aerodynamic characteristics of the wing. It is known that the propeller slipstream causes early transition of the boundary layer on the wing. However, an optimized design of the propeller and wing combination could delay this transition and decrease the skin friction drag. Such a wing design would require the detailed knowledge of the development of the slipstream in isolated conditions. There are very few studies in the literature addressing the requirements of transport aircraft having six-bladed propeller and cruising at a high propeller advance ratio. Low-speed wind tunnel experiments have been conducted on a powered propeller model in isolated conditions, measuring the velocity field in the vertical plane behind the propeller using two-component hot-wire anemometry. The data obtained clearly resolved the mean velocity, the turbulence, the ensemble phase averages and the structure and development of the tip vortex. The turbulence in the slipstream showed that transition could be close to the leading edge of the wing, making it a fine case for optimization. The development of the wake with distance shows some interesting flow features, and the data are valuable for flow computation and optimization.

  13. 14 CFR 23.1149 - Propeller speed and pitch controls.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Propeller speed and pitch controls. 23.1149... Powerplant Controls and Accessories § 23.1149 Propeller speed and pitch controls. (a) If there are propeller... propeller; and (2) Simultaneous control of all propellers. (b) The controls must allow ready synchronization...

  14. 14 CFR 23.1149 - Propeller speed and pitch controls.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Propeller speed and pitch controls. 23.1149... Powerplant Controls and Accessories § 23.1149 Propeller speed and pitch controls. (a) If there are propeller... propeller; and (2) Simultaneous control of all propellers. (b) The controls must allow ready synchronization...

  15. 14 CFR 23.1149 - Propeller speed and pitch controls.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Propeller speed and pitch controls. 23.1149... Powerplant Controls and Accessories § 23.1149 Propeller speed and pitch controls. (a) If there are propeller... propeller; and (2) Simultaneous control of all propellers. (b) The controls must allow ready synchronization...

  16. Large-eddy simulation of propeller wake at design operating conditions

    NASA Astrophysics Data System (ADS)

    Kumar, Praveen; Mahesh, Krishnan

    2016-11-01

    Understanding the propeller wake is crucial for efficient design and optimized performance. The dynamics of the propeller wake are also central to physical phenomena such as cavitation and acoustics. Large-eddy simulation is used to study the evolution of the wake of a five-bladed marine propeller from near to far field at design operating condition. The computed mean loads and phase-averaged flow field show good agreement with experiments. The propeller wake consisting of tip and hub vortices undergoes streamtube contraction, which is followed by the onset of instabilities as evident from the oscillations of the tip vortices. Simulation results reveal a mutual induction mechanism of instability where instead of the tip vortices interacting among themselves, they interact with the smaller vortices generated by the roll-up of the blade trailing edge wake in the near wake. Phase-averaged and ensemble-averaged flow fields are analyzed to explain the flow physics. This work is supported by ONR.

  17. Open airscrew VTOL concepts

    NASA Technical Reports Server (NTRS)

    Stepniewski, W. Z.; Tarczynski, T.

    1992-01-01

    The following concepts, based on using open airscrew(s) for VTOL maneuvers, are re-examined in light of current technology: (1) tip-driven helicopters, (2) compound helicopters; and (3) high-speed VTOL aircraft, represented by tiltrotors, tiltwings, retractoplanes and stoppable rotors. Criteria, permitting one to compare performance of aircraft using diverse lifting and propelling methods are established. Determination of currently possible performance, indication of near-future potentials, and comparison of those items with the baseline levels (as represented by contemporary shaft-driven helicopters, first generation tiltrotors, and commercial turboprop fixed-wind aircraft) constitutes bulk of this report.

  18. Numerical investigation of tip clearance effects on the performance of ducted propeller

    NASA Astrophysics Data System (ADS)

    Ding, Yongle; Song, Baowei; Wang, Peng

    2015-09-01

    Tip clearance loss is a limitation of the improvement of turbomachine performance. Previous studies show the Tip clearance loss is generated by the leakage flow through the tip clearance, and is roughly linearly proportional to the gap size. This study investigates the tip clearance effects on the performance of ducted propeller. The investigation was carried out by solving the Navier-Stokes equations with the commercial Computational Fluid Dynamic (CFD) code CFX14.5. These simulations were carried out to determine the underlying mechanisms of the tip clearance effects. The calculations were performed at three different chosen advance ratios. Simulation results showed that the tip loss slope was not linearly at high advance due to the reversed pressure at the leading edge. Three type of vortical structures were observed in the tip clearance at different clearance size.

  19. AGOR 28

    DTIC Science & Technology

    2016-05-18

    Aft Deck Noise Levels – RFW in the works. • Steering Hydraulics – Reports from Armstrong indicate that the system hydraulics over heat during DP...7 • Propeller Tips - The local Hundested vendor and a...MRU Upper Transducer Room 13 Hundested began work “shaping” the outer edge of the propeller tips. Stbd side completed in approx. 3

  20. Observations of tip vortex cavitation inception from a model marine propeller

    NASA Astrophysics Data System (ADS)

    Lodha, R. K.; Arakeri, V. H.

    1984-01-01

    Cavitation inception characteristics of a model marine propeller having three blades, developed area ratio of 0.34 and at three different pitch to diameter ratios of 0.62, 0.83 and 1.0 are reported. The dominant type of cavitation observed at inception was the tip vortex type. The measured magnitude of inception index is found to agree well with a proposed correlation due to Strasberg. Performance calculations of the propeller based on combined vortex and blade element theory are also presented.

  1. 14 CFR 25.33 - Propeller speed and pitch limits.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Propeller speed and pitch limits. 25.33... AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Flight General § 25.33 Propeller speed and pitch limits. (a) The propeller speed and pitch must be limited to values that will ensure— (1) Safe operation...

  2. 14 CFR 23.1149 - Propeller speed and pitch controls.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Propeller speed and pitch controls. 23.1149... Powerplant Controls and Accessories § 23.1149 Propeller speed and pitch controls. (a) If there are propeller speed or pitch controls, they must be grouped and arranged to allow— (1) Separate control of each...

  3. 14 CFR 23.1149 - Propeller speed and pitch controls.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Propeller speed and pitch controls. 23.1149... Powerplant Controls and Accessories § 23.1149 Propeller speed and pitch controls. (a) If there are propeller speed or pitch controls, they must be grouped and arranged to allow— (1) Separate control of each...

  4. 14 CFR 25.33 - Propeller speed and pitch limits.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Propeller speed and pitch limits. 25.33... AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Flight General § 25.33 Propeller speed and pitch limits. (a) The propeller speed and pitch must be limited to values that will ensure- (1) Safe operation...

  5. 14 CFR 23.33 - Propeller speed and pitch limits.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... the all engine(s) operating climb speed specified in § 23.65, the propeller must limit the engine r.p... approved overspeed, a means to limit the maximum engine and propeller speed to not more than the maximum... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Propeller speed and pitch limits. 23.33...

  6. 14 CFR 23.33 - Propeller speed and pitch limits.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... the all engine(s) operating climb speed specified in § 23.65, the propeller must limit the engine r.p... approved overspeed, a means to limit the maximum engine and propeller speed to not more than the maximum... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Propeller speed and pitch limits. 23.33...

  7. 14 CFR 23.33 - Propeller speed and pitch limits.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... the all engine(s) operating climb speed specified in § 23.65, the propeller must limit the engine r.p... approved overspeed, a means to limit the maximum engine and propeller speed to not more than the maximum... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Propeller speed and pitch limits. 23.33...

  8. 14 CFR 25.875 - Reinforcement near propellers.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... strong and stiff enough to withstand the effects of the induced vibration and of ice thrown from the propeller. (b) No window may be near the propeller tips unless it can withstand the most severe ice impact...

  9. 14 CFR 25.875 - Reinforcement near propellers.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... strong and stiff enough to withstand the effects of the induced vibration and of ice thrown from the propeller. (b) No window may be near the propeller tips unless it can withstand the most severe ice impact...

  10. 14 CFR 25.875 - Reinforcement near propellers.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... strong and stiff enough to withstand the effects of the induced vibration and of ice thrown from the propeller. (b) No window may be near the propeller tips unless it can withstand the most severe ice impact...

  11. 14 CFR 25.875 - Reinforcement near propellers.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... strong and stiff enough to withstand the effects of the induced vibration and of ice thrown from the propeller. (b) No window may be near the propeller tips unless it can withstand the most severe ice impact...

  12. 14 CFR 25.875 - Reinforcement near propellers.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... strong and stiff enough to withstand the effects of the induced vibration and of ice thrown from the propeller. (b) No window may be near the propeller tips unless it can withstand the most severe ice impact...

  13. Dynamics of Isolated Tip Vortex Cavitation

    NASA Astrophysics Data System (ADS)

    Pennings, Pepijn; Bosschers, Johan; van Terwisga, Tom

    2014-11-01

    Performance of ship propellers and comfort levels in the surroundings are limited by various forms of cavitation. Amongst these forms tip vortex cavitation is one of the first appearing forms and is expected to be mainly responsible for the emission of broadband pressure fluctuations typically occurring between the 4th to the 7th blade passing frequency (approx. 40--70 Hz). These radiated pressure pulses are likely to excite parts of the hull structure resulting in a design compromise between efficiency and comfort. Insight is needed in the mechanism of acoustic emission from the oscillations by a tip vortex cavity. In the current experimental study the tip vortex cavity from a blade with an elliptic planform and sections based on NACA 662 - 415 with meanline a = 0 . 8 is observed using high speed shadowgraphy in combination with blade force and acoustic measurements. An analytic model describing three main cavity deformation modes is verified and used to explain the origin of a cavity eigenfrequency or ``vortex singing'' phenomenon observed by Maines and Arndt (1997) on the tip vortex cavity originating from the same blade. As no hydrodynamic sound originating from the tip vortex cavity was observed it is posed that a tip flow instability is essential for ``vortex singing.'' This research was funded by the Lloyd's Register Foundation as part of the International Institute for Cavitation Research.

  14. Hydrodynamics of a three-dimensional self-propelled flexible plate

    NASA Astrophysics Data System (ADS)

    Ryu, Jaeha; Sung, Hyung Jin

    2017-11-01

    A three-dimensional self-propelled flexible plate in a quiescent flow was simulated using the immersed boundary method. The clamped leading edge of the flexible plate was forced into a vertical oscillation, while free to move horizontally. To reveal the hydrodynamics of the plate, the averaged cruising speed (UC) , the input power (P) , and the swimming efficiency (η) were analyzed as a function of the bending rigidity (γ) and the flapping frequency (f) . The velocity field around the plate and the exerted force on the plate were demonstrated to find out the dynamic interaction between the plate and the surrounding fluid. The kinematics of the plate, the maximum angle of attack (ϕmax) , and the mean effective length (Leff) were examined accounting for the hydrodynamics of the self-propelled flexible plate. The vortical structures around the plate were visualized, and the influence of the tip vortex on the swimming efficiency was explored qualitatively and quantitatively. This work was supported by the Creative Research Initiatives (No. 2017-013369) program of the National Research Foundation of Korea (MSIP).

  15. A Numerical Study of Cavitation Inception in Complex Flow Fields

    DTIC Science & Technology

    2007-12-01

    field in a tip vortex flow of an open propeller to better describe the interaction between the blade wake and the tip vortex (i.e. the roll-up... WAKE INTERACTION ON CAVITATION INCEPTION IN AN OPEN PROPELLER ................15 2.5 NON-SPHERICAL BUBBLE EFFECTS ON CAVITATION INCEPTION [14,15...18 2.6 STUDY OF CAVITATION INCEPTION NOISE [16,17,18

  16. Optimization and performance calculation of dual-rotation propellers

    NASA Technical Reports Server (NTRS)

    Davidson, R. E.

    1981-01-01

    An analysis is given which enables the design of dual-rotation propellers. It relies on the use of a new tip loss factor deduced from T. Theodorsen's measurements coupled with the general methodology of C. N. H. Lock. In addition, it includes the effect of drag in optimizing. Some values for the tip loss factor are calculated for one advance ratio.

  17. Detailed noise measurements on the SR-7A propeller: Tone behavior with helical tip Mach number

    NASA Technical Reports Server (NTRS)

    Dittmar, James H.; Hall, David G.

    1991-01-01

    Detailed noise measurements were taken on the SR-7A propeller to investigate the behavior of the noise with helical tip Mach number and then to level off as Mach number was increased further. This behavior was further investigated by obtaining detailed pressure-time histories of data. The pressure-time histories indicate that a portion of the primary pressure pulse is progressively cancelled by a secondary pulse which results in the noise leveling off as the helical tip Mach number is increased. This second pulse appears to originate on the same blade as the primary pulse and is in some way connected to the blade itself. This leaves open the possibility of redesigning the blade to improve the cancellation; thereby, the propeller noise is reduced.

  18. Detailed noise measurements on the SR-7A propeller: Tone behavior with helical tip Mach number

    NASA Astrophysics Data System (ADS)

    Dittmar, James H.; Hall, David G.

    1991-12-01

    Detailed noise measurements were taken on the SR-7A propeller to investigate the behavior of the noise with helical tip Mach number and then to level off as Mach number was increased further. This behavior was further investigated by obtaining detailed pressure-time histories of data. The pressure-time histories indicate that a portion of the primary pressure pulse is progressively cancelled by a secondary pulse which results in the noise leveling off as the helical tip Mach number is increased. This second pulse appears to originate on the same blade as the primary pulse and is in some way connected to the blade itself. This leaves open the possibility of redesigning the blade to improve the cancellation; thereby, the propeller noise is reduced.

  19. 14 CFR 25.33 - Propeller speed and pitch limits.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... used to limit the low pitch position of the propeller blades must be set so that the engine does not... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Propeller speed and pitch limits. 25.33... AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Flight General § 25.33 Propeller speed and pitch limits...

  20. 14 CFR 25.33 - Propeller speed and pitch limits.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... used to limit the low pitch position of the propeller blades must be set so that the engine does not... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Propeller speed and pitch limits. 25.33... AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Flight General § 25.33 Propeller speed and pitch limits...

  1. 14 CFR 25.33 - Propeller speed and pitch limits.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... used to limit the low pitch position of the propeller blades must be set so that the engine does not... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Propeller speed and pitch limits. 25.33... AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Flight General § 25.33 Propeller speed and pitch limits...

  2. An improved computer program for calculating the theoretical performance parameters of a propeller type wind turbine. An appendix to the final report on feasibility of using wind power to pump irrigation water (Texas). [PROP Code

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barieau, R.E.

    1977-03-01

    The PROP Program of Wilson and Lissaman has been modified by adding the Newton-Raphson Method and a Step Wise Search Method, as options for the method of solution. In addition, an optimization method is included. Twist angles, tip speed ratio and the pitch angle may be varied to produce maximum power coefficient. The computer program listing is presented along with sample input and output data. Further improvements to the program are discussed.

  3. Low-speed wind tunnel performance of high-speed counterrotation propellers at angle-of-attack

    NASA Technical Reports Server (NTRS)

    Hughes, Christopher E.; Gazzaniga, John A.

    1989-01-01

    The low-speed aerodynamic performance characteristics of two advanced counterrotation pusher-propeller configurations with cruise design Mach numbers of 0.72 were investigated in the NASA Lewis 9- by 15-Foot Low-Speed Wind Tunnel. The tests were conducted at Mach number 0.20, which is representative of the aircraft take-off/landing flight regime. The investigation determined the effect of nonuniform inflow on the propeller performance characteristics for several blade angle settings and a range of rotational speeds. The inflow was varied by yawing the propeller model to angle-of-attack by as much as plus or minus 16 degrees and by installing on the counterrotation propeller test rig near the propeller rotors a model simulator of an aircraft engine support pylon and fuselage. The results of the investigation indicated that the low-speed performance of the counterrotation propeller configurations near the take-off target operating points were reasonable and were fairly insensitive to changes in model angle-of-attack without the aircraft pylon/fuselage simulators installed on the propeller test rig. When the aircraft pylon/fuselage simulators were installed, small changes in propeller performance were seen at zero angle-of-attack, but fairly large changes in total power coefficient and very large changes of aft-to-forward-rotor torque ratio were produced when the propeller model was taken to angle-of-attack. The propeller net efficiency, though, was fairly insensitive to any changes in the propeller flowfield conditions near the take-off target operating points.

  4. Radiated Sound of a High-Speed Water-Jet-Propelled Transportation Vessel.

    PubMed

    Rudd, Alexis B; Richlen, Michael F; Stimpert, Alison K; Au, Whitlow W L

    2016-01-01

    The radiated noise from a high-speed water-jet-propelled catamaran was measured for catamaran speeds of 12, 24, and 37 kn. The radiated noise increased with catamaran speed, although the shape of the noise spectrum was similar for all speeds and measuring hydrophone depth. The spectra peaked at ~200 Hz and dropped off continuously at higher frequencies. The radiated noise was 10-20 dB lower than noise from propeller-driven ships at comparable speeds. The combination of low radiated noise and high speed could be a factor in the detection and avoidance of water-jet-propelled ships by baleen whales.

  5. Investigation of Effectiveness of Air-Heating a Hollow Steel Propeller for Protection Against Icing. 3: 25% Partitioned Blades

    NASA Technical Reports Server (NTRS)

    Mulholland, Donald R.; Perkins, Porter J.

    1948-01-01

    The icing protection obtained from an internally air-heated propeller blade partitioned to confine the heated air forward of 25-percent chord was investigated in the NACA Cleveland icing research tunnel. A production-model hollow steel propeller was modified with an Internal radial partition at 25-percent chord and with shank and tip openings to admit and exhaust the heated air. Temperatures were measured on the blade surfaces and in the heated-air system during tunnel icing conditions. Heat-exchanger effectiveness and photographs of Ice formations on the blades were obtained. Surface temperature measurements indicated that confining the heated air forward of the 25-percent chord gave.a more economical distribution of the applied heat as compared with unpartitioned and 50-percent partitioned blades, by dissipating a greater percentage of the available heat at the leading edge. At a propeller speed of 850 rpm, a heating rate of 7000 Btu per hour per blade at a shank air temperature of 400 F provided adequate Icing protection at ambient-air temperatures of 23 F but not at temperatures as low as 15 F. With the heating rate used, a heat-exchanger effectiveness of 77 percent was obtained as compared to 56 percent for 50-percent partitioned and 47 percent for unpartitioned blades.

  6. Propeller speed and phase sensor

    NASA Technical Reports Server (NTRS)

    Collopy, Paul D. (Inventor); Bennett, George W. (Inventor)

    1992-01-01

    A speed and phase sensor counterrotates aircraft propellers. A toothed wheel is attached to each propeller, and the teeth trigger a sensor as they pass, producing a sequence of signals. From the sequence of signals, rotational speed of each propeller is computer based on time intervals between successive signals. The speed can be computed several times during one revolution, thus giving speed information which is highly up-to-date. Given that spacing between teeth may not be uniform, the signals produced may be nonuniform in time. Error coefficients are derived to correct for nonuniformities in the resulting signals, thus allowing accurate speed to be computed despite the spacing nonuniformities. Phase can be viewed as the relative rotational position of one propeller with respect to the other, but measured at a fixed time. Phase is computed from the signals.

  7. Micarta Propellers II : Method of Construction

    NASA Technical Reports Server (NTRS)

    Caldwell, F W; Clay, N S

    1924-01-01

    The methods used in manufacturing Micarta propellers differ considerably from those employed with wood propellers on account of the hardness of the materials. The propellers must be formed accurately to size in a mold and afterwards balanced without the customary trimming of the material from the tips. Described here are the pressing and molding processes, filing, boring, balancing, and curing.

  8. High speed turboprops for executive aircraft, potential and recent test results

    NASA Technical Reports Server (NTRS)

    Mikkelson, D. C.; Mitchell, G. A.

    1980-01-01

    Four high speed propeller models were designed and tested in an 8x6 foot wind tunnel in order to evaluate the potential of advanced propeller technology. Results from these tests show that the combination of: increased blade number, aerodynamically integrated propeller/nacelles, reduced blade thickness, spinner area ruling, and blade sweep are important in achieving high propeller efficiency at the high cruise speeds.

  9. Effect of cavitation on flow structure of a tip vortex

    NASA Astrophysics Data System (ADS)

    Matthieu, Dreyer; Reclari, Martino; Farhat, Mohamed

    2013-11-01

    Tip vortices, which may develop in axial turbines and marine propellers, are often associated with the occurrence of cavitation because of the low pressure in their core. Although this issue has received a great deal of attention, it is still unclear how the phase transition affects the flow structure of such a vortex. In the present work, we investigate the change of the vortex structure due to cavitation incipience. The measurement of the velocity field is performed in the case of a tip vortex generated by an elliptical hydrofoil placed in the test section of EPFL high speed cavitation tunnel. To this end, a 3D stereo PIV is used with fluorescent seeding particles. A cost effective method is developed to produce in-house fluorescent seeding material, based on polyamide particles and Rhodamine-B dye. The amount of cavitation in the vortex core is controlled by the inlet pressure in the test section, starting with the non-cavitating case. We present an extensive analysis of the vorticity distribution, the vortex intensity and core size for various cavitation developments. This research is supported by CCEM and swisselectric research.

  10. Experimental optimization of a free vortex propeller runner for micro hydro application

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Singh, Punit; Nestmann, Franz

    2009-09-15

    The turbine technology for low head application in the micro hydro range has been vastly neglected despite niche available in scattered regions of valley flows as well as in wastewater canals and other energy recovery schemes, where the available head does not exceed 2 meters. The goal of this study is to develop hydraulically optimized propeller turbines for the micro hydro range with a particular focus on ease of manufacture. This paper presents a wide range of geometrical optimization steps carried out on a propeller runner, whose blades have been designed using the free vortex theory, and operating with amore » gross head from 1.5 to 2 m and discharge of approximately 75 l/s. It further illustrates 3 stages of geometrical modifications carried out on the runner with an objective of optimizing the runner performance. These modifications comprised of changes to the tip angles (both at the runner inlet and exit) as well as the hub angles (at the runner inlet) of the runner blades. The paper also presents an interesting theoretical methodology to analyze the effects of each optimization stage. This method looks at the relative changes to shaft power and discharge at constant head and speed and gives wonderful insight as to how the internal parameters like Euler shaft work and runner hydraulic losses are behaving with respect to each optimization stage. It was found that the performance of the runner was very sensitive to changes to exit tip angle. At two levels of modification, the discharge increased in the range of 15-30%, while shaft power increased in the range of 12-45%, thus influencing the efficiency characteristics. The results of the runner inlet tip modification were very interesting in that a very significant rise of turbine efficiency was recorded from 55% to 74% at the best efficiency point, which was caused by a reduced discharge consumption as well as a higher power generation. It was also found that the optimization study on a propeller runner has reasonably validated the estimates of the free vortex theory despite small deviations. The final runner configuration demonstrated a maximum efficiency of 74% ({+-}1.8%), which is very encouraging from the perspectives of micro hydro application. The paper concludes with recommendations of a series of optimization steps to increase the efficiency of the runner. It also recommends the attempt of Computational Fluid Dynamics both as a validation and optimization tool for future research on propeller runners. (author)« less

  11. An analysis for high speed propeller-nacelle aerodynamic performance prediction. Volume 1: Theory and application

    NASA Technical Reports Server (NTRS)

    Egolf, T. Alan; Anderson, Olof L.; Edwards, David E.; Landgrebe, Anton J.

    1988-01-01

    A computer program, the Propeller Nacelle Aerodynamic Performance Prediction Analysis (PANPER), was developed for the prediction and analysis of the performance and airflow of propeller-nacelle configurations operating over a forward speed range inclusive of high speed flight typical of recent propfan designs. A propeller lifting line, wake program was combined with a compressible, viscous center body interaction program, originally developed for diffusers, to compute the propeller-nacelle flow field, blade loading distribution, propeller performance, and the nacelle forebody pressure and viscous drag distributions. The computer analysis is applicable to single and coaxial counterrotating propellers. The blade geometries can include spanwise variations in sweep, droop, taper, thickness, and airfoil section type. In the coaxial mode of operation the analysis can treat both equal and unequal blade number and rotational speeds on the propeller disks. The nacelle portion of the analysis can treat both free air and tunnel wall configurations including wall bleed. The analysis was applied to many different sets of flight conditions using selected aerodynamic modeling options. The influence of different propeller nacelle-tunnel wall configurations was studied. Comparisons with available test data for both single and coaxial propeller configurations are presented along with a discussion of the results.

  12. Research into the propeller strut for high speed outboard motor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shimizu, Takashi; Sunayama, Yoshihiko

    1995-12-31

    For better performance of outboard motors for high speed craft, improvement in the performance of the propeller strut located ahead of the propeller is indispensable in addition to ameliorating the performance of the screw propeller itself. Thus, it is extremely important to reduce the drag of the propeller strut, which accounts for the predominant portion of the submerged parts of the motor and hull when the craft is running at high speed and to improve the propeller efficiency in the wake of the propeller strut. This paper, taking up two different shapes of the propeller strut, compares the performances ofmore » the propeller placed in the wake of the propeller strut in tank tests, and discusses the drag of the propeller strut. The two propeller strut shapes are that of a 70% scaled down model of the propeller strut Suzuki`s 200 PS outboard motor and its improved version. The propeller used in the experiment is one having super cavitating blades with the Pseudo-Kirchhoff nose, whose performance the authors have been analyzing systematically. Detailed comparison was further made of the drags of the differently shaped propeller struts by means of computational fluid dynamics.« less

  13. Cruise noise measurements of a scale model advanced ducted propulsor

    NASA Technical Reports Server (NTRS)

    Dittmar, James H.; Hughes, Christopher E.; Bock, Lawrence A.; Hall, David G.

    1993-01-01

    A scale model Advanced Ducted Propulsor (ADP) was tested in NASA Lewis Research Center's 8- by 6-Foot Wind Tunnel to obtain acoustic data at cruise conditions. The model, designed and manufactured by Pratt & Whitney Division of United Technologies, was tested with three inlet lengths. The model has 16 rotor blades and 22 stator vanes, which results in a cut-on condition with respect to rotor-stator interaction noise. Comparisons of the noise directivity of the ADP with that of a previously tested high-speed, unducted propeller showed that the ADP peak blade passing tone was about 30 dB below that of the propeller, and therefore, should not present a cabin or enroute noise problem. The maximum blade passing tone first increased with increasing helical tip Mach number, peaked, and then decreased at a higher Mach number. The ADP tests with the shortest inlet showed more noise in the inlet arc than did tests with either of the other two inlet lengths.

  14. Satellite Propellant Pump Research

    NASA Technical Reports Server (NTRS)

    Schneider, Steven J.; Veres, Joseph P.; Hah, Chunill; Nerone, Anthony L.; Cunningham, Cameron C.; Kraft, Thomas G.; Tavernelli, Paul F.; Fraser, Bryan

    2005-01-01

    NASA Glenn initiated a satellite propellant pump technology demonstration program. The goal was to demonstrate the technologies for a 60 percent efficient pump at 1 gpm flow rate and 500 psia pressure rise. The pump design and analysis used the in-house developed computer codes named PUMPA and HPUMP3D. The requirements lead to a 4-stage impeller type pump design with a tip diameter of 0.54 inches and a rotational speed of 57,000 rpm. Analyses indicated that flow cavitation was not a problem in the design. Since the flow was incompressible, the stages were identical. Only the 2-stage pump was designed, fabricated, assembled, and tested for demonstration. Water was selected as the surrogate fluid for hydrazine in this program. Complete mechanical design including stress and dynamic analyses were conducted. The pump was driven by an electric motor directly coupled to the impellers. Runs up to 57,000 rpm were conducted, where a pressure rise of 200 psia at a flow rate of 0.8 gpm was measured to validate the design effort.

  15. Propeller flow visualization techniques

    NASA Technical Reports Server (NTRS)

    Stefko, G. L.; Paulovich, F. J.; Greissing, J. P.; Walker, E. D.

    1982-01-01

    Propeller flow visualization techniques were tested. The actual operating blade shape as it determines the actual propeller performance and noise was established. The ability to photographically determine the advanced propeller blade tip deflections, local flow field conditions, and gain insight into aeroelastic instability is demonstrated. The analytical prediction methods which are being developed can be compared with experimental data. These comparisons contribute to the verification of these improved methods and give improved capability for designing future advanced propellers with enhanced performance and noise characteristics.

  16. Simulations of the DARPA Suboff Submarine Including Self-Propulsion with the E1619 Propeller

    DTIC Science & Technology

    2012-01-01

    and experiments are remarkable, including the maximum velocity in the wake of the 37 blades , the velocity deficit induced by the tip vortices...added to the wake matches the grid size of the fine grids used for the tips of the blades , thus providing a grid of consistent refinement for the...geometry or larger number of blades for the same advance coefficient. These two mechanisms in a marine propeller lead to larger induced wake

  17. Full field study of strain distribution near the crack tip in the fracture of solid propellants via large strain digital image correlation and optical microscopy

    NASA Astrophysics Data System (ADS)

    Gonzalez, Javier

    A full field method for visualizing deformation around the crack tip in a fracture process with large strains is developed. A digital image correlation program (DIC) is used to incrementally compute strains and displacements between two consecutive images of a deformation process. Values of strain and displacements for consecutive deformations are added, this way solving convergence problems in the DIC algorithm when large deformations are investigated. The method developed is used to investigate the strain distribution within 1 mm of the crack tip in a particulate composite solid (propellant) using microscopic visualization of the deformation process.

  18. Effects of propeller rotation direction on airplane interior noise levels

    NASA Technical Reports Server (NTRS)

    Willis, C. M.; Mayes, W. H.; Daniels, E. F.

    1985-01-01

    Interior noise measurements for upsweeping and downsweeping movement of the propeller blade tips past the fuselage were made on a twin-engine airplane and on two simplified fuselage models. Changes in interior noise levels of as much as 8 dB reversal of propeller rotation direction were measured for some configurations and test conditions.

  19. Wind tunnel acoustic study of a propeller installed behind an airplane empennage: Data report

    NASA Technical Reports Server (NTRS)

    Wilby, J. F.; Wilby, E. G.

    1985-01-01

    The open test section of the NASA-Ames 7- by 10- ft wind tunnel was used for an acoustic test of a propeller mounted behind an airplane empennage. The empennage was attached to a model fuselage and the propeller with its electric motor drive was mounted separately so that the relative positions of empennage and propeller could be varied. A single vertical fin, and a V-tail with, and without, a dorsal fin configurations were used the model propeller had four blades (SR-1). Data were recorded at several locations for two tunnel flow speeds (45.7) and 62.5 m/s) and propeller speeds in the range 4000 to 8200 rpm. Data reduction was performed in narrowband and one-third octave band spectra, with emphasis on harmonics of the passage frequency blade. The influence of flow speed, propeller rpm, empennage configuration, axial and vertical separation between propeller axis and empennage centerline, and empennage angle of incidence on propeller harmonic levels and acoustic field directivity are studied.

  20. Investigation of frequency-response characteristics of engine speed for a typical turbine-propeller engine

    NASA Technical Reports Server (NTRS)

    Taylor, Burt L , III; Oppenheimer, Frank L

    1951-01-01

    Experimental frequency-response characteristics of engine speed for a typical turbine-propeller engine are presented. These data were obtained by subjecting the engine to sinusoidal variations of fuel flow and propeller-blade-angle inputs. Correlation is made between these experimental data and analytical frequency-response characteristics obtained from a linear differential equation derived from steady-state torque-speed relations.

  1. Altitude-Wind-Tunnel Investigation of Performance of Several Propellers on YP-47M Airplane at High Blade Loadings. 6; Hamilton Standard 6507A-2 Four- and Three-Blade Propellers

    NASA Technical Reports Server (NTRS)

    Saari, Martin J.; Sorin, Solomon M.

    1946-01-01

    An altitude-wind-tunnel investigation has been made to determine the performance of Hamilton Standard 6507A-2 four-blade and three-blade propellers on a YP-47M airplane at high blade loadings and high engine powers. Characteristics of the four-blase propeller were obtained for a range of power coefficients from 0.10 to 1.00 at free-stream Mach numbers of 0.20, 0.30, 0.40. Characteristics of the three-blade propeller were obtained for a range of power coefficients from 0.30 to 1.00 at a free-stream Mach number of 0.40. Results of the force measurements indicate primarily the trend of propeller efficiency for changes in power coefficient or advance-diameter ratio because no corrections for the effects of tunnel-wall constriction on the installation were applied. Slipstream surveys are presented to illustrate blade thrust load distribution for certain operating conditions. Within the range of advance-diameter ratios investigated at each free-stream Mach number, the efficiency of the four-blade propeller decreased as the power coefficient was increased from 0.10 to 1.00. For the three-blade propeller, nearly constant maximum efficiencies were obtained for power coefficients from 0.32 to 0.63 at advance-diameter ratios between 1.90 and 3.00. In general, for conditions below the stall and critical tip Mach number, the maximum thrust load shifted from the inboard sections toward the tip sections as the power coefficient was increased or as the advance-diameter ratio was decreased. For conditions beyond the stall or critical tip Mach number, losses in thrust occurred on the outboard blade sections owing to flow break-down; the thrust load increased slightly on the inboard sections.

  2. Tip Vortex Cavitation

    NASA Astrophysics Data System (ADS)

    Maines, Brant H.; Arndt, Roger E. A.

    2000-11-01

    Cavitation in vortical flows is a problem of practical importance, that is relatively unexplored. Vortical structures of importance range from the eddies occurring randomly in space and time in turbulent flows to the developed vortices that occur at the tips of lifting surfaces and at the hubs of propellers and hydraulic turbines. A variety of secondary flow phenomena such as the horse shoe vortices that form around bridge piers, chute blocks and struts, and the secondary vortices found in the clearance passages of turbomachinery are also important cavitation sites. Tip vortex cavitation can be viewed as a canonical problem that captures many of the essential physics associated with vortex cavitation in general. This paper describes the inception process and focuses on the high levels of tension that can be sustained in the flow, which appears to scale with the blade loading. High speed video visualization indicates that the details of how free stream nuclei are ingested plays a major role in the nucleation and inception process. A new photographic technique was used to obtain high quality images of the bubble growth process at framing rates as high as 40,000 fps. Sponsored by the Office of Naval Research

  3. Propeller tip and hub vortex dynamics in the interaction with a rudder

    NASA Astrophysics Data System (ADS)

    Felli, Mario; Falchi, Massimo

    2011-11-01

    In the present paper, the interaction mechanisms of the vortices shed by a single-screw propeller with a rudder installed in its wake are addressed; in particular, following the works by Felli et al. (Exp Fluids 6(1):1-11, 2006a, Exp Fluids 46(1):147-1641, 2009a, Proceedings of the 8th international symposium on particle image velocimetry: Piv09, Melbourne, 2009b), the attention is focused on the analysis of the evolution, instability, breakdown and recovering mechanisms of the propeller tip and hub vortices during the interaction with the rudder. To investigate these mechanisms in detail, a wide experimental activity consisting in time-resolved visualizations, velocity measurements by particle image velocimetry (PIV) and laser Doppler velocimetry (LDV) along horizontal chordwise, vertical chordwise and transversal sections of the wake have been performed in the Cavitation Tunnel of the Italian Navy. Collected data allows to investigate the major flow features that distinguish the flow field around a rudder operating in the wake of a propeller, as, for example, the spiral breakdown of the vortex filaments, the rejoining mechanism of the tip vortices behind the rudder and the mechanisms governing the different spanwise misalignment of the vortex filaments in the pressure and suction sides of the appendage.

  4. DFVLR/FAA (Deutsche Forschungs-und Versuchsanstalt fuer Luft und Raumfahrt/Federal Aviation Administration) Propeller Noise Tests in the German- Dutch Wind Tunnel DNW

    DTIC Science & Technology

    1986-01-01

    8 2.2 Test-rig Installation ................................ 9 2.3 Test Propellers ...................................... 9 2.4 In-flow...considerations, the maximUm power con- sumption of each propeller had to be limited to approximately 9 250 kW. Propeller-tip geometries as well as the radial...in the streamwise direction and arranged in a "helical" manner around a streamwise-orientated main carrier-tibe. This construct. - n concept (Fig. 9

  5. Numerical evaluation of propeller noise including nonlinear effects

    NASA Technical Reports Server (NTRS)

    Korkan, K. D.; Von Lavante, E.; Bober, L. J.

    1986-01-01

    Propeller noise in the acoustic near field is presently determined through the integration of the pressure-time history in the tangential direction of a numerically generated flowfield around a propfan of SR-3 type, including the shock wave system in the vicinity of the propeller tip. This acoustic analysis yields overall sound pressure levels, and the associated frequency spectra, as a function of observer location.

  6. Self-assembly and speed distributions of active granular particles

    NASA Astrophysics Data System (ADS)

    Sánchez, R.; Díaz-Leyva, P.

    2018-06-01

    The relationship between the dynamics of self-propelled systems and the self-assembly of structured clusters are studied via the experimental speed distributions of submonolayers of self-propelled granular particles. A distribution developed for non-self-propelled granular particles describes the speed distributions remarkably well, despite some of the assumptions behind its original derivation not being applicable. This is explained in terms of clustering and dissipation being the key phenomena governing this regime.

  7. Performance optimization of marine propellers

    NASA Astrophysics Data System (ADS)

    Lee, Chang-Sup; Choi, Young-Dal; Ahn, Byoung-Kwon; Shin, Myoung-Sup; Jang, Hyun-Gil

    2010-12-01

    Recently a Wide Chord Tip (WCT) propeller has been developed and applied to a commercial ship by STX Offshore & Shipbuilding. It is reported that the WCT propeller significantly reduces pressure fluctuations and also ship's noise and vibration. On the sea trial, vibration magnitude in the accommodations at NCR was measured at 0.9mm/sec which is only 10% of international allowable magnitude of vibration (9mm/sec). In this paper, a design method for increasing performance of the marine propellers including the WCT propeller is suggested. It is described to maximize the performance of the propeller by adjusting expanded areas of the propeller blade. Results show that efficiency can be increased up to over 2% through the suggested design method.

  8. An experimental investigation of free-tip response to a jet

    NASA Technical Reports Server (NTRS)

    Young, L. A.

    1986-01-01

    The aerodynamic response of passively oscillating tips appended to a model helicopter rotor was investigated during a whirl test. Tip responsiveness was found to meet free-tip rotor requirements. Experimental and analytical estimates of the free-tip aerodynamic spring, mechanical spring, and aerodynamic damping were calculated and compared. The free tips were analytically demonstrated to be operating outside the tip resonant response region at full-scale tip speeds. Further, tip resonance was shown to be independent of tip speed, given the assumption that the tip forcing frequency is linearly dependent upon the rotor rotational speed.

  9. Aeroacoustic wind-tunnel tests of a light twin-boom general-aviation airplane with free or shrouded-pusher propellers. [in the Langley full-scale tunnel

    NASA Technical Reports Server (NTRS)

    Mclemore, H. C.; Pegg, R. J.

    1980-01-01

    Tests were conducted in the Langley full-scale tunnel to determine the aerodynamic performance and acoustic characteristics of four different pusher-propeller configurations on a twin boom, general aviation airplane. The propellers included a 2-blade free propeller, two 3-blade shrouded propellers, and a 5-blade shrouded propeller. The tests were conducted for a range of airplane angles of attack from about 0 deg to 16 deg for test speeds from 0 to about 36 m/sec and for a range of propeller blade angles and rotation speeds. The free propeller provided the best aerodynamic propulsive performance. For forward flight conditions, the free propeller noise levels were lower than those of the shrouded propellers. In the static conditions the free propeller noise levels were as low as those for the shrouded propellers, except for the propeller in-plane noise where the shrouded propeller noise levels were lower.

  10. Effect of Tip-Speed Constraints on the Optimized Design of a Wind Turbine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dykes, K.; Resor, B.; Platt, A.

    This study investigates the effect of tip-velocity constraints on system levelized cost of energy (LCOE). The results indicate that a change in maximum tip speed from 80 to 100~m/s could produce a 32% decrease in gearbox weight (a 33% reduction in cost) which would result in an overall reduction of 1%-9% in system LCOE depending on the design approach. Three 100~m/s design cases were considered including a low tip-speed ratio/high-solidity rotor design, a high tip-speed ratio/ low-solidity rotor design, and finally a flexible blade design in which a high tip-speed ratio was used along with removing the tip deflection constraintmore » on the rotor design. In all three cases, the significant reduction in gearbox weight caused by the higher tip-speed and lower overall gear ratio was counterbalanced by increased weights for the rotor and/or other drivetrain components and the tower. As a result, the increased costs of either the rotor or drivetrain components offset the overall reduction in turbine costs from down-sizing the gearbox. Other system costs were not significantly affected, whereas energy production was slightly reduced in the 100~m/s case low tip-speed ratio case and increased in the high tip-speed ratio case. This resulted in system cost of energy reductions moving from the 80~m/s design to the 100~m/s designs of 1.2% for the low tip-speed ratio, 4.6% for the high tip-speed ratio, and 9.5% for the final flexible case (the latter result is optimistic because the impact of deflection of the flexible blade on power production was not modeled). Overall, the results demonstrate that there is a trade-off in system design between the maximum tip velocity and the overall wind plant cost of energy, and there are many trade-offs within the overall system in designing a turbine for a high maximum tip velocity.« less

  11. Performance and acoustic prediction of counterrotating propeller configurations

    NASA Technical Reports Server (NTRS)

    Denner, B. W.; Korkan, K. D.

    1989-01-01

    The Davidson (1981) numerical method is used to predict the performance of a counterrotating propeller configuration over a range of different front and back disk rotation speeds with constant-speed propellers; this has yielded such overall performance parameters as integrated thrust, torque, and power, as well as the radial variation of blade torque and thrust. Since the unsteady component of the noise from a counterrotating propeller configuration is minimal in the plane of the propeller disk, this approach is restricted to noise-level predictions for observer locations in this region.

  12. Noise of a simulated installed model counterrotation propeller at angle-of-attack and takeoff/approach conditions

    NASA Technical Reports Server (NTRS)

    Woodward, Richard P.

    1990-01-01

    Acoustic results for two model counterrotation propellers are presented. The propellers were tested over a range of rotational speeds and propeller axis angles of attack in both the baseline configuration and the installed configuration consisting of a simulated upstream nacelle support pylon and fuselage section. Acoustic data were taken with a polar microphone probe attached to the downstream propeller housing, capable of surveying directivities at several azimuthal locations. The forward and aft rotor power coefficients and fundamental rotor-alone tone levels are found to be directly controlled by propeller axis angle of attack. The second-order rotor-alone tones are strongly influenced by the upstream pylon wake at 80 percent speed; however, rotor-alone mechanisms control the tone level at 90 percent speed, while rotor-rotor interaction tones are essentially unaffected by the presence of the simulated installation.

  13. Wind-tunnel test of an articulated helicopter rotor model with several tip shapes

    NASA Technical Reports Server (NTRS)

    Berry, J. D.; Mineck, R. E.

    1980-01-01

    Six interchangeable tip shapes were tested: a square (baseline) tip, an ogee tip, a subwing tip, a swept tip, a winglet tip, and a short ogee tip. In hover at the lower rotational speeds the swept, ogee, and short ogee tips had about the same torque coefficient, and the subwing and winglet tips had a larger torque coefficient than the baseline square tip blades. The ogee and swept tip blades required less torque coefficient at lower rotational speeds and roughly equivalent torque coefficient at higher rotational speeds compared with the baseline square tip blades in forward flight. The short ogee tip required higher torque coefficient at higher lift coefficients than the baseline square tip blade in the forward flight test condition.

  14. Experimental framework to study tip vortex interactions in multirotor wakes

    NASA Astrophysics Data System (ADS)

    Yao, Rongnan; Araya, Daniel

    2017-11-01

    We present an experimental study to compare the dynamic characteristics of tip vortices shed from a propeller in a crossflow to similar characteristics of an isolated vortex column generated in a closed system. Our aim is to evaluate the feasibility of using this simple isolated system to study the more complicated three-dimensional vortex interactions inherent to multirotor wakes, where the local unsteadiness generated by one rotor can strongly impact the performance of nearby rotors. Time-resolved particle image velocimetry is used to measure the velocity field of the propeller wake flow in a wind tunnel and the vortex column in a water tank. Specific attention is placed on analyzing the observed vortex core precession in the isolated system and comparing this to characteristic tip-vortex wandering phenomenon.

  15. Vibrations of a Marine Propeller Operating in a Nonuniform Inflow.

    DTIC Science & Technology

    1980-04-01

    Expanded Blade Midsurface ......... ........................ ... 73 16 - Calculated Normalized Propeller RMS Vibration Velocity as a Function of...averaged over the blade midsurface ), rather thaft the maximum velocities near the blade tip. Then, for the two test propellers, the rms nonuniform inflow...time- averaged midsurface of the blade, then the instantaneous position S of the vibrating midsurface is _S (ric)+ qct S(r,c,t) = (rc) + q(t) i(rc

  16. Impact of ETO propellants on the aerothermodynamic analyses of propulsion components

    NASA Technical Reports Server (NTRS)

    Civinskas, K. C.; Boyle, R. J.; Mcconnaughey, H. V.

    1988-01-01

    The operating conditions and the propellant transport properties used in Earth-to-Orbit (ETO) applications affect the aerothermodynamic design of ETO turbomachinery in a number of ways. Some aerodynamic and heat transfer implications of the low molecular weight fluids and high Reynolds number operating conditions on future ETO turbomachinery are discussed. Using the current SSME high pressure fuel turbine as a baseline, the aerothermodynamic comparisons are made for two alternate fuel turbine geometries. The first is a revised first stage rotor blade designed to reduce peak heat transfer. This alternate design resulted in a 23 percent reduction in peak heat transfer. The second design concept was a single stage rotor to yield the same power output as the baseline two stage rotor. Since the rotor tip speed was held constant, the turbine work factor doubled. In this alternate design, the peak heat transfer remained the same as the baseline. While the efficiency of the single stage design was 3.1 points less than the baseline two stage turbine, the design was aerothermodynamically feasible, and may be structurally desirable.

  17. Forward rotor vortex effects on counter rotating propeller noise

    NASA Technical Reports Server (NTRS)

    Laur, Michele; Squires, Becky; Nagel, Robert T.

    1992-01-01

    Three configurations of a model counter rotating propeller manipulate the blade tip flow by: placing the CRP at angle of attack, installing shrouds, and turning the upstream blades to provide forward sweep. Flow visualization and flow measurements with thermal anemometry show no evidence of a tip vortex; however, a leading edge vortex was detected on aft swept blades. The modifications served to alter the strength and/or path of the leading edge vortex. The vortical flow is eliminated by forward sweep on the upstream propeller blades. Far field acoustic data from each test indicate only small influences on the level and directivity of the BPFs. The interaction tone at the sum of the two BPF's was significantly altered in a consistent manner. As the vortex system varied, the interaction tone was affected: far field noise levels in the forward quandrant increased and the characteristic noise minimum near the plane of rotation became less pronounced and in some cases were eliminated. If the forward propeller leading edge vortex system does not impact the rear propeller in the standard manner, a net increase in the primary interaction tone occurs for the model tested. If the leading edge vortex is removed, the interaction tone increases.

  18. A similitude method and the corresponding blade design of a low-speed large-scale axial compressor rotor

    NASA Astrophysics Data System (ADS)

    Yu, Chenghai; Ma, Ning; Wang, Kai; Du, Juan; Van den Braembussche, R. A.; Lin, Feng

    2014-04-01

    A similitude method to model the tip clearance flow in a high-speed compressor with a low-speed model is presented in this paper. The first step of this method is the derivation of similarity criteria for tip clearance flow, on the basis of an inviscid model of tip clearance flow. The aerodynamic parameters needed for the model design are then obtained from a numerical simulation of the target high-speed compressor rotor. According to the aerodynamic and geometric parameters of the target compressor rotor, a large-scale low-speed rotor blade is designed with an inverse blade design program. In order to validate the similitude method, the features of tip clearance flow in the low-speed model compressor are compared with the ones in the high-speed compressor at both design and small flow rate points. It is found that not only the trajectory of the tip leakage vortex but also the interface between the tip leakage flow and the incoming main flow in the high-speed compressor match well with that of its low speed model. These results validate the effectiveness of the similitude method for the tip clearance flow proposed in this paper.

  19. In-flight acoustic test results for the SR-2 and SR-3 advanced-design propellers

    NASA Technical Reports Server (NTRS)

    Lasagna, P. L.; Mackall, K. G.; Cohn, R. B.

    1983-01-01

    Several advanced-design propellers, previously tested in the wind tunnel at the Lewis Research Center, have been tested in flight at the Dryden Flight Research Facility. The flight-test propellers were mounted on a pylon on the top of the fuselage of a JetStar airplane. Acoustic data for the advanced-design SR-2 and SR-3 propellers at Mach numbers to 0.8 and helical-tip Mach numbers to 1.15 are presented; maximum blade-passage frequency sound-pressure levels are also compared.

  20. Optical measurement of unducted fan flutter

    NASA Technical Reports Server (NTRS)

    Kurkov, Anatole P.; Mehmed, Oral

    1990-01-01

    A nonintrusive optical method is described for flutter vibrations in unducted fan or propeller rotors and provides detailed spectral results for two flutter modes of a scaled unducted fan. The measurements were obtained in a high-speed wind tunnel. A single-rotor and a dual-rotor counterrotating configuration of the model were tested; however, only the forward rotor of the counterrotating configuration fluttered. Conventional strain gages were used to obtain flutter frequency; optical data provided complete phase results and an indication of the flutter mode shape through the ratio of the leading- to trailing-edge flutter amplitudes near the blade tip. In the transonic regime exhibited some features that are usually associated with nonlinear vibrations. Experimental mode shape and frequencies were compared with calculated values that included centrifugal effects.

  1. Unsteady hydrodynamics of blade forces and acoustic responses of a model scaled submarine excited by propeller's thrust and side-forces

    NASA Astrophysics Data System (ADS)

    Wei, Yingsan; Wang, Yongsheng

    2013-04-01

    This study presents the unsteady hydrodynamics of the excitations from a 5-bladed propeller at two rotating speeds running in the wake of a small-scaled submarine and the behavior of the submarine's structure and acoustic responses under the propeller excitations. Firstly, the propeller flow and submarine flows are independently validated. The propulsion of the hull-propeller is simulated using computational fluid dynamics (CFD), so as to obtain the transient responses of the propeller excitations. Finally, the structure and acoustic responses of the submarine under propeller excitations are predicted using a finite element/boundary element model in the frequency domain. Results show that (1) the propeller excitations are tonal at the propeller harmonics, and the propeller transversal force is bigger than vertical force. (2) The structure and acoustic responses of the submarine hull is tonal mainly at the propeller harmonics and the resonant mode frequencies of the hull, and the breathing mode in axial direction as well as the bending modes in vertical and transversal directions of the hull can generate strong structure vibration and underwater noise. (3) The maximum sound pressure of the field points increases with the increasing propeller rotating speed at structure resonances and propeller harmonics, and the rudders resonant mode also contributes a lot to the sound radiation. Lastly, the critical rotating speeds of the submarine propeller are determined, which should be carefully taken into consideration when match the propeller with prime mover in the propulsion system. This work shows the importance of the propeller's tonal excitation and the breathing mode plus the bending modes in evaluating submarine's noise radiation.

  2. A method of calculating the performance of controllable propellers with sample computations

    NASA Technical Reports Server (NTRS)

    Hartman, Edwin P

    1934-01-01

    This paper contains a series of calculations showing how the performance of controllable propellers may be derived from data on fixed-pitch propellers given in N.A.C.A. Technical Report No. 350, or from similar data. Sample calculations are given which compare the performance of airplanes with fixed-pitch and with controllable propellers. The gain in performance with controllable propellers is shown to be largely due to the increased power available, rather than to an increase in efficiency. Controllable propellers are of particular advantage when used with geared and with supercharged engines. A controllable propeller reduces the take-off run, increases the rate of climb and the ceiling, but does not increase the high speed, except when operating above the design altitude of the previously used fixed-pitch propeller or when that propeller was designed for other than high speed.

  3. The effect of tip speed ratio on a vertical axis wind turbine at high Reynolds numbers

    NASA Astrophysics Data System (ADS)

    Parker, Colin M.; Leftwich, Megan C.

    2016-05-01

    This work visualizes the flow surrounding a scaled model vertical axis wind turbine at realistic operating conditions. The model closely matches geometric and dynamic properties—tip speed ratio and Reynolds number—of a full-size turbine. The flow is visualized using particle imaging velocimetry (PIV) in the midplane upstream, around, and after (up to 4 turbine diameters downstream) the turbine, as well as a vertical plane behind the turbine. Time-averaged results show an asymmetric wake behind the turbine, regardless of tip speed ratio, with a larger velocity deficit for a higher tip speed ratio. For the higher tip speed ratio, an area of averaged flow reversal is present with a maximum reverse flow of -0.04U_∞. Phase-averaged vorticity fields—achieved by syncing the PIV system with the rotation of the turbine—show distinct structures form from each turbine blade. There were distinct differences in results by tip speed ratios of 0.9, 1.3, and 2.2 of when in the cycle structures are shed into the wake—switching from two pairs to a single pair of vortices being shed—and how they convect into the wake—the middle tip speed ratio vortices convect downstream inside the wake, while the high tip speed ratio pair is shed into the shear layer of the wake. Finally, results show that the wake structure is much more sensitive to changes in tip speed ratio than to changes in Reynolds number.

  4. Low-speed wind-tunnel tests of an advanced eight-bladed propeller

    NASA Technical Reports Server (NTRS)

    Coe, P. L., Jr.; Gentry, G. L., Jr.; Dunham, D. M.

    1985-01-01

    As part of a research program on advanced turboprop aircraft aerodynamics, a low-speed wind-tunnel investigation was conducted to document the basic performance and force and moment characteristics of an advanced eight-bladed propeller. The results show that in addition to the normal force and pitching moment produced by the propeller/nacelle combination at angle of attack, a significant side force and yawing moment are also produced. Furthermore, it is shown that for test conditions wherein compressibility effects can be ignored, accurate simulation of propeller performance and flow fields can be achieved by matching the nondimensional power loading of the model propeller to that of the full-scale propeller.

  5. Circulation control propellers for general aviation, including a BASIC computer program

    NASA Technical Reports Server (NTRS)

    Taback, I.; Braslow, A. L.; Butterfield, A. J.

    1983-01-01

    The feasibility of replacing variable pitch propeller mechanisms with circulation control (Coanada effect) propellers on general aviation airplanes was examined. The study used a specially developed computer program written in BASIC which could compare the aerodynamic performance of circulation control propellers with conventional propellers. The comparison of aerodynamic performance for circulation control, fixed pitch and variable pitch propellers is based upon the requirements for a 1600 kg (3600 lb) single engine general aviation aircraft. A circulation control propeller using a supercritical airfoil was shown feasible over a representative range of design conditions. At a design condition for high speed cruise, all three types of propellers showed approximately the same performance. At low speed, the performance of the circulation control propeller exceeded the performance for a fixed pitch propeller, but did not match the performance available from a variable pitch propeller. It appears feasible to consider circulation control propellers for single engine aircraft or multiengine aircraft which have their propellers on a common axis (tractor pusher). The economics of the replacement requires a study for each specific airplane application.

  6. Wind tunnel performance results of swirl recovery vanes as tested with an advanced high speed propeller

    NASA Technical Reports Server (NTRS)

    Gazzaniga, John A.; Rose, Gayle E.

    1992-01-01

    Tests of swirl recovery vanes designed for use in conjunction with advanced high speed propellers were carried out at the NASA Lewis Research Center. The eight bladed 62.23 cm vanes were tested with a 62.23 cm SR = 7A high speed propeller in the NASA Lewis 2.44 x 1.83 m Supersonic Wind Tunnel for a Mach number range of 0.60 to 0.80. At the design operating condition for cruise of Mach 0.80 at an advance ratio of 3.26, the vane contribution to the total efficiency approached 2 percent. At lower off-design Mach numbers, the vane efficiency is even higher, approaching 4.5 percent for the Mach 0.60 condition. Use of the swirl recovery vanes essentially shifts the peak of the high speed propeller efficiency to a higher operating speed. This allows a greater degree of freedom in the selection of rpm over a wider operating range. Another unique result of the swirl recovery vane configuration is their essentially constant torque split between the propeller and the swirl vanes over a wide range of operating conditions for the design vane angle.

  7. Radially leaned outlet guide vanes for fan source noise reduction

    NASA Technical Reports Server (NTRS)

    Kazin, S. B.

    1973-01-01

    Two quiet engine program half scale fans one with a subsonic and the other with a supersonic fan tip speed at takeoff were run with 30 degree leaned and radial outlet guide vanes. Acoustic data at takeoff fan speed on the subsonic tip speed fan showed decreases in 200-foot sideline noise of from 1 to 2 PNdb. The supersonic tip speed fan a takeoff fan speed, however, showed noise increases of up 3 PNdb and a decrease in fan efficiency. At approach fan speed, the subsonic tip speed fan showed a noise decrease of 2.3 PNdb at the 200-foot sideline maximum angle and an increase in efficiency. The supersonic tip speed fan showed noise increase of 3.5 PNdb and no change in efficiency. The decrease in fan efficiency and the nature of the noise increase largely high frequency broadband noise lead to the speculation that an aerodynamic problem occurred.

  8. Low-speed wind-tunnel tests of single- and counter-rotation propellers

    NASA Technical Reports Server (NTRS)

    Dunham, D. M.; Gentry, G. L., Jr.; Coe, P. L., Jr.

    1986-01-01

    A low-speed (Mach 0 to 0.3) wind-tunnel investigation was conducted to determine the basic performance, force and moment characteristics, and flow-field velocities of single- and counter-rotation propellers. Compared with the eight-blade single-rotation propeller, a four- by four- (4 x 4) blade counter-rotation propeller with the same blade design produced substantially higher thrust coefficients for the same blade angles and advance ratios. The results further indicated that ingestion of the wake from a supporting pylon for a pusher configuration produced no significant change in the propeller thrust performance for either the single- or counter-rotation propellers. A two-component laser velocimeter (LV) system was used to make detailed measurements of the propeller flow fields. Results show increasing slipstream velocities with increasing blade angle and decreasing advance ratio. Flow-field measurements for the counter-rotation propeller show that the rear propeller turned the flow in the opposite direction from the front propeller and, therefore, could eliminate the swirl component of velocity, as would be expected.

  9. Small transport aircraft technology propeller study

    NASA Technical Reports Server (NTRS)

    Black, B. M.; Magliozzi, B.; Rohrbach, C.

    1983-01-01

    A study to define potential benefits of advanced technology propeller for 1985-1990 STAT commuter airplanes was completed. Two baselines, a Convair, 30 passenger, 0.47 Mach number airplane and a Lockheed, 50 passenger, 0.70 Mach number airplane, were selected from NASA-Ames sponsored airframe contracts. Parametric performance, noise level, weight and cost trends for propellers with varying number of blades, activity factor, camber and diameter incorporating blade sweep, tip proplets, advanced composite materials, advanced airfoils, advanced prevision synchrophasing and counter-rotation are presented. The resulting DOC, fuel burned, empty weight and acquisition cost benefits are presented for resizings of the two baseline airplanes. Six-bladed propeller having advanced composite blades, advanced airfoils, tip proplets and advanced prevision synchrophasers provided the maximum DOC improvements for both airplanes. DOC and fuel burned were reduced by 8.3% and 17.0% respectively for the Convair airplane and by 24.9% and 41.2% respectively for the Lockheed airplane. The larger reductions arose from a baseline definition with very heavy fuselage acoustic treatment. An alternate baseline, with a cabin noise 13dB in excess of the objective, was also studied.

  10. 14 CFR 25.905 - Propellers.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... STANDARDS: TRANSPORT CATEGORY AIRPLANES Powerplant General § 25.905 Propellers. (a) Each propeller must have a type certificate. (b) Engine power and propeller shaft rotational speed may not exceed the limits... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Propellers. 25.905 Section 25.905...

  11. 14 CFR 25.905 - Propellers.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... STANDARDS: TRANSPORT CATEGORY AIRPLANES Powerplant General § 25.905 Propellers. (a) Each propeller must have a type certificate. (b) Engine power and propeller shaft rotational speed may not exceed the limits... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Propellers. 25.905 Section 25.905...

  12. 14 CFR 25.905 - Propellers.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... STANDARDS: TRANSPORT CATEGORY AIRPLANES Powerplant General § 25.905 Propellers. (a) Each propeller must have a type certificate. (b) Engine power and propeller shaft rotational speed may not exceed the limits... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Propellers. 25.905 Section 25.905...

  13. 14 CFR 25.905 - Propellers.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... STANDARDS: TRANSPORT CATEGORY AIRPLANES Powerplant General § 25.905 Propellers. (a) Each propeller must have a type certificate. (b) Engine power and propeller shaft rotational speed may not exceed the limits... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Propellers. 25.905 Section 25.905...

  14. 14 CFR 25.905 - Propellers.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... STANDARDS: TRANSPORT CATEGORY AIRPLANES Powerplant General § 25.905 Propellers. (a) Each propeller must have a type certificate. (b) Engine power and propeller shaft rotational speed may not exceed the limits... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Propellers. 25.905 Section 25.905...

  15. Large-Eddy Simulation of Crashback in a Ducted Propulsor

    NASA Astrophysics Data System (ADS)

    Jang, Hyunchul; Mahesh, Krishnan

    2011-11-01

    Crashback is an operating condition to quickly stop a propelled vehicle, where the propeller is rotated in the reverse direction to yield negative thrust. The crashback condition is dominated by the interaction of free stream flow with strong reverse flow. Crashback causes highly unsteady loads and flow separation on blade surface. This study uses Large-Eddy Simulation to predict the highly unsteady flow field in crashback for a ducted propulsor. Thrust mostly arises from the blade surface, but most of side-force is generated from the duct surface. Both mean and RMS of pressure are much higher on inner surface of duct, especially near blade tips. This implies that side-force on the ducted propulsor is caused by the blade-duct interaction. Strong tip leakage flow is observed behind the suction side at the tip gap. The physical source of the tip leakage flow is seen to be the large pressure difference between pressure and suction sides. The conditional average during high amplitude event shows that the tip leakage flow and pressure difference are significantly higher. This work is supported by the United States Office of Naval Research under ONR Grant N00014-05-1-0003.

  16. High speed propeller acoustics and aerodynamics - A boundary element approach

    NASA Technical Reports Server (NTRS)

    Farassat, F.; Myers, M. K.; Dunn, M. H.

    1989-01-01

    The Boundary Element Method (BEM) is applied in this paper to the problems of acoustics and aerodynamics of high speed propellers. The underlying theory is described based on the linearized Ffowcs Williams-Hawkings equation. The surface pressure on the blade is assumed unknown in the aerodynamic problem. It is obtained by solving a singular integral equation. The acoustic problem is then solved by moving the field point inside the fluid medium and evaluating some surface and line integrals. Thus the BEM provides a powerful technique in calculation of high speed propeller aerodynamics and acoustics.

  17. Experimental and computational investigation of the tip clearance flow in a transonic axial compressor rotor

    NASA Astrophysics Data System (ADS)

    Suder, Kenneth L.; Celestina, Mark L.

    1995-06-01

    Experimental and computational techniques are used to investigate tip clearance flows in a transonic axial compressor rotor at design and part speed conditions. Laser anemometer data acquired in the endwall region are presented for operating conditions near peak efficiency and near stall at 100% design speed and at near peak efficiency at 60% design speed. The role of the passage shock/leakage vortex interaction in generating endwall blockage is discussed. As a result of the shock/vortex interaction at design speed, the radial influence of the tip clearance flow extends to 20 times the physical tip clearance height. At part speed, in the absence of the shock, the radial extent is only 5 times the tip clearance height. Both measurements and analysis indicate that under part-speed operating conditions a second vortex, which does not originate from the tip leakage flow, forms in the endwall region within the blade passage and exits the passage near midpitch. Mixing of the leakage vortex with primary flow downstream of the rotor at both design and part speed conditions is also discussed.

  18. Experimental and Computational Investigation of the Tip Clearance Flow in a Transonic Axial Compressor Rotor

    NASA Technical Reports Server (NTRS)

    Suder, Kenneth L.; Celestina, Mark L.

    1995-01-01

    Experimental and computational techniques are used to investigate tip clearance flows in a transonic axial compressor rotor at design and part speed conditions. Laser anemometer data acquired in the endwall region are presented for operating conditions near peak efficiency and near stall at 100% design speed and at near peak efficiency at 60% design speed. The role of the passage shock/leakage vortex interaction in generating endwall blockage is discussed. As a result of the shock/vortex interaction at design speed, the radial influence of the tip clearance flow extends to 20 times the physical tip clearance height. At part speed, in the absence of the shock, the radial extent is only 5 times the tip clearance height. Both measurements and analysis indicate that under part-speed operating conditions a second vortex, which does not originate from the tip leakage flow, forms in the endwall region within the blade passage and exits the passage near midpitch. Mixing of the leakage vortex with primary flow downstream of the rotor at both design and part speed conditions is also discussed.

  19. Numerical study of fairing installed between brackets based on CFD

    NASA Astrophysics Data System (ADS)

    Xi, Peng; Xiong, Ying; Tang, Xin

    2017-10-01

    In view of the low speed and instability of the flow between the two arms of the bracket in front of the propeller, the fairing is installed between the arms of the bracket taking example of compensating duct, in order to speed up the flow between the bracket arms and improve the flow quality. A four-propeller surface ship was studied and an integral mathematic model including hull, appendage and propellers was established. Using a RANS solver, its installation height, angle and airfoil is optimized. Then ship models with fairing and without fairing are calculated. The result shows that fairing improves propeller efficiency behind ship with 1.1% of the outer propeller and 1.6% of the inner propeller, which indicates that fairing helps improve the flow quality

  20. Aeroacoustics of advanced propellers

    NASA Technical Reports Server (NTRS)

    Groeneweg, John F.

    1990-01-01

    The aeroacoustics of advanced, high speed propellers (propfans) are reviewed from the perspective of NASA research conducted in support of the Advanced Turboprop Program. Aerodynamic and acoustic components of prediction methods for near and far field noise are summarized for both single and counterrotation propellers in uninstalled and configurations. Experimental results from tests at both takeoff/approach and cruise conditions are reviewed with emphasis on: (1) single and counterrotation model tests in the NASA Lewis 9 by 15 (low speed) and 8 by 6 (high speed) wind tunnels, and (2) full scale flight tests of a 9 ft (2.74 m) diameter single rotation wing mounted tractor and a 11.7 ft (3.57 m) diameter counterrotation aft mounted pusher propeller. Comparisons of model data projected to flight with full scale flight data show good agreement validating the scale model wind tunnel approach. Likewise, comparisons of measured and predicted noise level show excellent agreement for both single and counterrotation propellers. Progress in describing angle of attack and installation effects is also summarized. Finally, the aeroacoustic issues associated with ducted propellers (very high bypass fans) are discussed.

  1. Examination of propeller sound production using large eddy simulation

    NASA Astrophysics Data System (ADS)

    Keller, Jacob; Kumar, Praveen; Mahesh, Krishnan

    2018-06-01

    The flow field of a five-bladed marine propeller operating at design condition, obtained using large eddy simulation, is used to calculate the resulting far-field sound. The results of three acoustic formulations are compared, and the effects of the underlying assumptions are quantified. The integral form of the Ffowcs-Williams and Hawkings (FW-H) equation is solved on the propeller surface, which is discretized into a collection of N radial strips. Further assumptions are made to reduce FW-H to a Curle acoustic analogy and a point-force dipole model. Results show that although the individual blades are strongly tonal in the rotor plane, the propeller is acoustically compact at low frequency and the tonal sound interferes destructively in the far field. The propeller is found to be acoustically compact for frequencies up to 100 times the rotation rate. The overall far-field acoustic signature is broadband. Locations of maximum sound of the propeller occur along the axis of rotation both up and downstream. The propeller hub is found to be a source of significant sound to observers in the rotor plane, due to flow separation and interaction with the blade-root wakes. The majority of the propeller sound is generated by localized unsteadiness at the blade tip, which is caused by shedding of the tip vortex. Tonal blade sound is found to be caused by the periodic motion of the loaded blades. Turbulence created in the blade boundary layer is convected past the blade trailing edge leading to generation of broadband noise along the blade. Acoustic energy is distributed among higher frequencies as local Reynolds number increases radially along the blades. Sound source correlation and spectra are examined in the context of noise modeling.

  2. Analytical correlation of centrifugal compressor design geometry for maximum efficiency with specific speed

    NASA Technical Reports Server (NTRS)

    Galvas, M. R.

    1972-01-01

    Centrifugal compressor performance was examined analytically to determine optimum geometry for various applications as characterized by specific speed. Seven specific losses were calculated for various combinations of inlet tip-exit diameter ratio, inlet hub-tip diameter ratio, blade exit backsweep, and inlet-tip absolute tangential velocity for solid body prewhirl. The losses considered were inlet guide vane loss, blade loading loss, skin friction loss, recirculation loss, disk friction loss, vaneless diffuser loss, and vaned diffuser loss. Maximum total efficiencies ranged from 0.497 to 0.868 for a specific speed range of 0.257 to 1.346. Curves of rotor exit absolute flow angle, inlet tip-exit diameter ratio, inlet hub-tip diameter ratio, head coefficient and blade exit backsweep are presented over a range of specific speeds for various inducer tip speeds to permit rapid selection of optimum compressor size and shape for a variety of applications.

  3. Noise reduction for model counterrotation propeller at cruise by reducing aft-propeller diameter

    NASA Technical Reports Server (NTRS)

    Dittmar, James H.; Stang, David B.

    1987-01-01

    The forward propeller of a model counterrotation propeller was tested with its original aft propeller and with a reduced diameter aft propeller. Noise reductions with the reduced diameter aft propeller were measured at simulated cruise conditions. Reductions were as large as 7.5 dB for the aft-propeller passing tone and 15 dB in the harmonics at specific angles. The interaction tones, mostly the first, were reduced probably because the reduced-diameter aft-propeller blades no longer interacted with the forward propeller tip vortex. The total noise (sum of primary and interaction noise) at each harmonic was significantly reduced. The chief noise reduction at each harmonic came from reduced aft-propeller-alone noise, with the interaction tones contributing little to the totals at cruise. Total cruise noise reductions were as much as 3 dB at given angles for the blade passing tone and 10 dB for some of the harmonics. These reductions would measurably improve the fuselage interior noise levels and represent a definite cruise noise benefit from using a reduced diameter aft propeller.

  4. Experimental quiet engine program

    NASA Technical Reports Server (NTRS)

    Cornell, W. G.

    1975-01-01

    Full-scale low-tip-speed fans, a full-scale high-tip-speed fan, scale model versions of fans, and two full-scale high-bypass-ratio turbofan engines, were designed, fabricated, tested, and evaluated. Turbine noise suppression was investigated. Preliminary design studies of flight propulsion system concepts were used in application studies to determine acoustic-economic tradeoffs. Salient results are as follows: tradeoff evaluation of fan tip speed and blade loading; systematic data on source noise characteristics and suppression effectiveness; documentation of high- and low-fan-speed aerodynamic and acoustic technology; aerodynamic and acoustic evaluation of acoustic treatment configurations, casing tip bleed, serrated and variable pitch rotor blades, leaned outlet guide vanes, slotted tip casings, rotor blade shape modifications, and inlet noise suppression; systematic evaluation of aerodynamic and acoustic effects; flyover noise projections of engine test data; turbine noise suppression technology development; and tradeoff evaluation of preliminary design high-fan-speed and low-fan-speed flight engines.

  5. The effect of front-to-rear propeller spacing on the interaction noise of a model counterrotation propeller at cruise conditions

    NASA Technical Reports Server (NTRS)

    Dittmar, James H.

    1987-01-01

    The effect of front-to-rear propeller spacing on the interaction noise of a counterrotation propeller model was measured at cruise conditions. The data taken at an axial Mach number of 0.80 behaved as expected: interaction noise was reduced with increased spacing. The data taken at M=0.76 and M=0.72 did not behave as expected. At some of the test conditions the noise was unchanged; others even showed noise increases with increased spacing. A possible explanation, involving the amount of downstream blade area impacted by the tip vortex, is presented.

  6. Flow-field Survey of an Empennage Wake Interacting with a Pusher Propeller

    NASA Technical Reports Server (NTRS)

    Horne, W. Clifton; Soderman, Paul T.

    1988-01-01

    The flow field between a model empennage and a 591-mm-diameter pusher propeller was studied in the Ames 7- by 10-Foot Wind Tunnel with directional pressure probes and hot-wire anemometers. The region probed was bounded by the empennage trailing edge and downstream propeller. The wake properties, including effects of propeller operation on the empennage wake, were investigated for two empennage geometries: one, a vertical tail fin, the other, a Y-tail with a 34 deg dihedral. Results showed that the effect of the propeller on the empennage wake upstream of the propeller was not strong. The flow upstream of the propeller was accelerated in the streamwise direction by the propeller, but the empennage wake width and velocity defect were relatively unaffected by the presence of the propeller. The peak turbulence in the wake near the propeller tip station, 0.66 diameter behind the vertical tail fin, was approximately 3 percent of the free-stream velocity. The velocity field data can be used in predictions of the acoustic field due to propeller-wake interaction.

  7. Prediction of aerodynamic noise in a ring fan based on wake characteristics

    NASA Astrophysics Data System (ADS)

    Sasaki, Soichi; Fukuda, Masaharu; Tsujino, Masao; Tsubota, Haruhiro

    2011-06-01

    A ring fan is a propeller fan that applies an axial-flow impeller with a ring-shaped shroud on the blade tip side. In this study, the entire flow field of the ring fan is simulated using computational fluid dynamics (CFD); the accuracy of the CFD is verified through a comparison with the aerodynamic characteristics of a propeller fan of current model. Moreover, the aerodynamic noise generated by the fan is predicted on the basis of the wake characteristics. The aerodynamic characteristic of the ring fan based on CFD can represent qualitatively the variation in the measured value. The main flow domain of the ring fan is formed at the tip side of the blade because blade tip vortex is not formed at that location. Therefore, the relative velocity of the ring fan is increased by the circumferential velocity. The sound pressure levels of the ring fan within the frequency band of less than 200 Hz are larger than that of the propeller fan. In the analysis of the wake characteristics, it revealed that Karman vortex shedding occurred in the main flow domain in the frequency domain lower than 200 Hz; the aerodynamic noise of the ring fan in the vortex shedding frequency enlarges due to increase in the relative velocity and the velocity fluctuation.

  8. 46 CFR 113.37-5 - General requirements.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... equipped with fixed pitch propellers must have on the navigating bridge and at the engineroom control station a propeller speed and direction indicator for each shaft. (b) A vessel equipped with controllable pitch propellers must have on the navigating bridge and at the engineroom control station a propeller...

  9. 46 CFR 113.37-5 - General requirements.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... equipped with fixed pitch propellers must have on the navigating bridge and at the engineroom control station a propeller speed and direction indicator for each shaft. (b) A vessel equipped with controllable pitch propellers must have on the navigating bridge and at the engineroom control station a propeller...

  10. 46 CFR 113.37-5 - General requirements.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... equipped with fixed pitch propellers must have on the navigating bridge and at the engineroom control station a propeller speed and direction indicator for each shaft. (b) A vessel equipped with controllable pitch propellers must have on the navigating bridge and at the engineroom control station a propeller...

  11. Investigation of the NACA 4-(5)(08)-03 and NACA 4-(10)(08)-03 Two-Blade Propellers at Forward Mach Numbers to 0.725 to Determine the Effects of Camber and Compressibility on Performance

    NASA Technical Reports Server (NTRS)

    Delano, James B

    1951-01-01

    As part of a general investigation of propellers at high forward speeds, tests of two-blade propellers having the NACA 4-(5)(08)-03 and NACA 4-(10)(08)-03 blade designs were made in the Langley 8-foot high-speed tunnel through a range of blade angle from 20 degrees to 60 degrees for forward Mach numbers from 0.165 to 0.70 to determine the effect of camber and compressibility on propeller characteristics. Results previously reported for similar tests of a two-blade propeller having the NACA 4-(3)(08)-03 blade design are included for comparison.

  12. Performance Characteristics of a DME Propellant Arcjet Thruster

    NASA Astrophysics Data System (ADS)

    Kakami, Akira; Beeppu, Shinji; Maiguma, Muneyuki; Tachibana, Takeshi

    This paper describes the influence of cathode configuration on performance of an arcjet thruster using dimethyl ether (DME) propellant. DME, an ether compound, has suitable characteristics for a space propulsion system; DME is storable in a liquid state without being kept under a high pressure, and requires no sophisticated temperature management such as a cryogenic device. DME can be gasified and liquefied simply by adjusting temperature whereas hydrazine, a conventional propellant, requires an iridium-based particulate catalyst for its gasification. In this study, thrust of a 1-kW class DME arcjet thruster is measured at a discharge current of 13 A, DME mass flow rates ranging 15 to 60 mg/s under three cathode configurations: flat-tip rods of 2 and 4 mm in diam. and 4-mm-diam. rod having a cavity of 2 mm in diameter. Thrust measurements show that thrust is increased with propellant mass flow rate. Among the tested cathodes, the flat-tip rod of 4 mm in diam. with 55 mg/s DME flow rate yielded the highest performance: specific impulse of 330 s, thrust of 0.18 N, discharge power of 1400 W and specific power of 25 MJ/kg.

  13. 14 CFR 23.49 - Stalling period.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... on the stalling speed, with engine(s) idling and throttle(s) closed; (3) The propeller(s) in the... which the airplane is controllable with— (1) For reciprocating engine-powered airplanes, the engine(s... more than 110 percent of the stalling speed; (2) For turbine engine-powered airplanes, the propulsive...

  14. Phenomenological Model of Current Sheet Canting in Pulsed Electromagnetic Accelerators

    NASA Technical Reports Server (NTRS)

    Markusic, Thomas; Choueiri, E. Y.

    2003-01-01

    The phenomenon of current sheet canting in pulsed electromagnetic accelerators is the departure of the plasma sheet (that carries the current) from a plane that is perpendicular to the electrodes to one that is skewed, or tipped. Review of pulsed electromagnetic accelerator literature reveals that current sheet canting is a ubiquitous phenomenon - occurring in all of the standard accelerator geometries. Developing an understanding of current sheet canting is important because it can detract from the propellant sweeping capabilities of current sheets and, hence, negatively impact the overall efficiency of pulsed electromagnetic accelerators. In the present study, it is postulated that depletion of plasma near the anode, which results from axial density gradient induced diamagnetic drift, occurs during the early stages of the discharge, creating a density gradient normal to the anode, with a characteristic length on the order of the ion skin depth. Rapid penetration of the magnetic field through this region ensues, due to the Hall effect, leading to a canted current front ahead of the initial current conduction channel. In this model, once the current sheet reaches appreciable speeds, entrainment of stationary propellant replenishes plasma in the anode region, inhibiting further Hall-convective transport of the magnetic field; however, the previously established tilted current sheet remains at a fairly constant canting angle for the remainder of the discharge cycle, exerting a transverse J x B force which drives plasma toward the cathode and accumulates it there. This proposed sequence of events has been incorporated into a phenomenological model. The model predicts that canting can be reduced by using low atomic mass propellants with high propellant loading number density; the model results are shown to give qualitative agreement with experimentally measured canting angle mass dependence trends.

  15. High-speed AFM and the reduction of tip-sample forces

    NASA Astrophysics Data System (ADS)

    Miles, Mervyn; Sharma, Ravi; Picco, Loren

    High-speed DC-mode AFM has been shown to be routinely capable of imaging at video rate, and, if required, at over 1000 frames per second. At sufficiently high tip-sample velocities in ambient conditions, the tip lifts off the sample surface in a superlubricity process which reduces the level of shear forces imposed on the sample by the tip and therefore reduces the potential damage and distortion of the sample being imaged. High-frequency mechanical oscillations, both lateral and vertical, have been reported to reduced the tip-sample frictional forces. We have investigated the effect of combining linear high-speed scanning with these small amplitude high-frequency oscillations with the aim of reducing further the force interaction in high-speed imaging. Examples of this new version of high-speed AFM imaging will be presented for biological samples.

  16. 40 CFR 1042.505 - Testing engines using discrete-mode or ramped-modal duty cycles.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... used with) controllable-pitch propellers or with electrically coupled propellers, unless these engines... engines that are used with (or intended to be used with) controllable-pitch propellers or with electrically coupled propellers. Use this duty cycle also for variable-speed propulsion marine engines that are...

  17. 40 CFR 1042.505 - Testing engines using discrete-mode or ramped-modal duty cycles.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... used with) controllable-pitch propellers or with electrically coupled propellers, unless these engines... engines that are used with (or intended to be used with) controllable-pitch propellers or with electrically coupled propellers. Use this duty cycle also for variable-speed propulsion marine engines that are...

  18. 40 CFR 1042.505 - Testing engines using discrete-mode or ramped-modal duty cycles.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... used with) controllable-pitch propellers or with electrically coupled propellers, unless these engines... engines that are used with (or intended to be used with) controllable-pitch propellers or with electrically coupled propellers. Use this duty cycle also for variable-speed propulsion marine engines that are...

  19. 40 CFR Appendix III to Part 1042 - Not-to-Exceed Zones

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... marine engines used with controllable-pitch propellers or with electrically coupled propellers, as... CONTROLS CONTROL OF EMISSIONS FROM NEW AND IN-USE MARINE COMPRESSION-IGNITION ENGINES AND VESSELS Pt. 1042... (or at Maximum Test Torque for constant-speed engines). (2) Percent speed means the percentage of...

  20. 40 CFR Appendix III to Part 1042 - Not-to-Exceed Zones

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... marine engines used with controllable-pitch propellers or with electrically coupled propellers, as... CONTROLS CONTROL OF EMISSIONS FROM NEW AND IN-USE MARINE COMPRESSION-IGNITION ENGINES AND VESSELS Pt. 1042... (or at Maximum Test Torque for constant-speed engines). (2) Percent speed means the percentage of...

  1. 40 CFR Appendix III to Part 1042 - Not-to-Exceed Zones

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... marine engines used with controllable-pitch propellers or with electrically coupled propellers, as... CONTROLS CONTROL OF EMISSIONS FROM NEW AND IN-USE MARINE COMPRESSION-IGNITION ENGINES AND VESSELS Pt. 1042... (or at Maximum Test Torque for constant-speed engines). (2) Percent speed means the percentage of...

  2. 40 CFR Appendix III to Part 1042 - Not-to-Exceed Zones

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... marine engines used with controllable-pitch propellers or with electrically coupled propellers, as... CONTROLS CONTROL OF EMISSIONS FROM NEW AND IN-USE MARINE COMPRESSION-IGNITION ENGINES AND VESSELS Pt. 1042... (or at Maximum Test Torque for constant-speed engines). (2) Percent speed means the percentage of...

  3. 40 CFR Appendix III to Part 1042 - Not-to-Exceed Zones

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... marine engines used with controllable-pitch propellers or with electrically coupled propellers, as... CONTROLS CONTROL OF EMISSIONS FROM NEW AND IN-USE MARINE COMPRESSION-IGNITION ENGINES AND VESSELS Pt. 1042... (or at Maximum Test Torque for constant-speed engines). (2) Percent speed means the percentage of...

  4. A Comparison of Measured Tone Modes for Two Low Noise Propulsion Fans

    NASA Technical Reports Server (NTRS)

    Heidelberg, Laurence J.; Elliott, David M.

    2000-01-01

    The acoustic modes for two low tip speed propulsion fans were measured to examine the effects of fan tip speed, at constant pressure ratio. A continuously rotating microphone method was used that provided the complete modal structure (circumferential and radial order) at the fundamental and second harmonic of the blade passing tone as well as most of the third harmonic modes. The fans are compared in terms of their rotor/stator interaction modal power, and total tone power. It was hoped that the lower tip speed might produce less noise. This was not the case. The higher tip speed fan, at both takeoff and cutback speeds, had lower tone and interaction levels. This could be an indication that the higher aerodynamic loading required to produce the same pressure ratio for the lower tip speed fan resulted in a greater velocity deficit in the blade wakes and thus more noise. Results consistent with expected rotor transmission effects were noted in the inlet modal structures of both fans.

  5. Effect of Blade Cutout on Power Required by Helicopters Operating at High Tip-Speed Ratios

    NASA Technical Reports Server (NTRS)

    Gessow, Alfred; Gustafson, F. B.

    1960-01-01

    A numerical study was made of the effects of blade cutout on the power required by a sample helicopter rotor traveling at tip-speed ratios of 0.3, 0.4, and 0.5. The amount of cutout varied from 0 to 0.5 of the rotor radius and the calculations were carried out for a thrust coefficient-solidity ratio of 0.04. In these calculations the blade within the cutout radius was assumed to have zero chord. The effect of such cutout on profile-drag power ranged from almost no effect at a tip-speed ratio of 0.3 to as much as a 60 percent reduction at a tip-speed ratio of 0.5. Optimum cutout was about 0.3 of the rotor radius. Part of the large power reduction at a tip-speed ratio of 0.5 resulted from a reduction in tip-region stall, brought about by cutout. For tip-speed ratios greater than 0.3, cutout also effected a significant increase in the ability of the rotor to overcome helicopter parasite drag. It is thus seen that the adverse trends (at high tip-speed ratios) indicated by the uniform-chord theoretical charts are caused in large measure by the center portion of the rotor. The extent to which a modified-design rotor can actually be made more efficient at high speeds than a uniform-chord rotor will depend in practice on the degree of success in minimizing the blade plan form near the center and on special modifications in center-section profiles. A few suggestions and estimates in regard to such modifications are included herein.

  6. Perceived Annoyance to Noise Produced by a Distributed Electric Propulsion High Lift System

    NASA Technical Reports Server (NTRS)

    Palumbo, Dan; Rathsam, Jonathan; Christian, Andrew; Rafaelof, Menachem

    2016-01-01

    Results of a psychoacoustic test performed to understand the relative annoyance to noise produced by several configurations of a distributed electric propulsion high lift system are given. It is found that the number of propellers in the system is a major factor in annoyance perception. This is an intuitive result as annoyance increases, in general, with frequency, and, the blade passage frequency of the propellers increases with the number of propellers. Additionally, the data indicate that having some variation in the blade passage frequency from propeller-to-propeller is beneficial as it reduces the high tonality generated when all the propellers are spinning in synchrony at the same speed. The propellers can be set to spin at different speeds, but it was found that allowing the motor controllers to drift within 1% of nominal settings produced the best results (lowest overall annoyance). The methodology employed has been demonstrated to be effective in providing timely feedback to designers in the early stages of design development.

  7. Study on Prediction of Underwater Radiated Noise from Propeller Tip Vortex Cavitation

    NASA Astrophysics Data System (ADS)

    Yamada, Takuyoshi; Sato, Kei; Kawakita, Chiharu; Oshima, Akira

    2015-12-01

    The method to predict underwater radiated noise from tip vortex cavitation was studied. The growth of a single cavitation bubble in tip vortex was estimated by substituting the tip vortex to Rankine combined vortex. The ideal spectrum function for the sound pressure generated by a single cavitation bubble was used, also the empirical factor for the number of collapsed bubbles per unit time was introduced. The estimated noise data were compared with measured ship's ones and it was found out that this method can estimate noise data within 3dB difference.

  8. Synchronous critical speed tracking in hydrostatic bearing supported rotors

    NASA Technical Reports Server (NTRS)

    Henderson, Thomas W.; Scharrer, Joseph K.

    1989-01-01

    Hydrostatic bearings used in advanced turbopump designs use the pumped propellant as the working fluid and supply the propellant to the bearing from pump discharge. The resulting rotordynamic coefficients are highly speed-dependent and in some instances can cause system natural frequencies to coincide with spin speed over a wide speed range. This paper discusses this 'synchronous tracking' phenomenon. The factors affecting it are defined, and specific examples are presented. Methods which identify synchronous tracking issues early in the design process are reported, and techniques for eliminating this undesirable characteristic are addressed.

  9. High-tip-speed, low-loading transonic fan stage. Part 3: Final report

    NASA Technical Reports Server (NTRS)

    Ware, T. C.; Kobayashi, R. J.; Jackson, R. J.

    1974-01-01

    Tests were conducted on a high-tip-speed, low-loading transonic fan stage to determine the performance and inlet flow distortion tolerance of the design. The fan was designed for high efficiency at a moderate pressure ratio by designing the hub section to operate at minimum loss when the tip operates with an oblique shock. The design objective was an efficiency of 86 percent at a pressure ratio of 1.5, a specific flow (flow per unit annulus area) of 42 lb/sec-sq. ft (205.1 kgm/sec-m sq), and a tip speed of 1600 ft/sec (488.6 m/sec). During testing, a peak efficiency of 84 percent was achieved at design speed and design specific flow. At the design speed and pressure ratio, the flow was 4 percent greater than design, efficiency was 81 percent, and a stall margin of 24 percent was obtained. The stall line was improved with hub radial distortion but was reduced when the stage was tested with tip radial and circumferential flow distortions. Blade-to-blade values of static pressures were measured over the rotor blade tips.

  10. Progress in Open Rotor Research: A U.S. Perspective

    NASA Technical Reports Server (NTRS)

    Van Zante, Dale E.

    2015-01-01

    In response to the 1970s oil crisis, NASA created the Advanced Turboprop Project (ATP) to mature technologies for high-speed propellers to enable large reductions in fuel burn relative to turbofan engines of that era. Both single rotation and contra-rotation concepts were designed and tested in ground based facilities as well as flight. Some novel concepts configurations that were not well publicized at the time, were proposed as part of the effort. The high-speed propeller concepts did provide fuel burn savings, albeit with some acoustics and structural challenges to overcome. When fuel prices fell, the business case for radical new engine configurations collapsed and the research emphasis returned to high bypass ducted configurations. With rising oil prices and increased environmental concerns there is renewed interest in high-speed propeller based engine architectures. Contemporary analysis tools for aerodynamics and aeroacoustics have enabled a new era of blade designs that have both high efficiency and acceptable noise characteristics. A recent series of tests in the U.S. have characterized the aerodynamic performance and noise from these modern contra-rotating propeller designs. Additionally the installation and noise shielding aspects for conventional airframes and blended wing bodies have been studied. Historical estimates of propfan performance have relied on legacy propeller performance and acoustics data. Current system studies make use of the modern propeller data with higher fidelity installation effects data to estimate the performance of a contemporary aircraft system with favorable results. This paper presents the current state of high-speed propeller open rotor research within the U.S. from an overall viewpoint of the various efforts ongoing. The current projections for the technology are presented.

  11. Influence of yaw on propeller aerodynamic characteristics

    NASA Astrophysics Data System (ADS)

    Nguyen, Van Bang; Rozehnal, Dalibor; Hnidka, Jakub; Pham, Vu Uy

    2018-06-01

    Between the propeller axis and free stream direction, it can still be a non-zero yaw angle. This paper introduces some propeller experiments, in which the propeller aerodynamic characteristics have been determined in various yaw angle and different rotational speeds. The experimental aerodynamic characteristics are acquired dynamic values, from which the influence of yaw conditions on the frequency and the amplitude of propeller thrust and torque can be obtained.

  12. Exit blade geometry and part-load performance of small axial flow propeller turbines: An experimental investigation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Singh, Punit; Nestmann, Franz

    2010-09-15

    A detailed experimental investigation of the effects of exit blade geometry on the part-load performance of low-head, axial flow propeller turbines is presented. Even as these turbines find important applications in small-scale energy generation using micro-hydro, the relationship between the layout of blade profile, geometry and turbine performance continues to be poorly characterized. The experimental results presented here help understand the relationship between exit tip angle, discharge through the turbine, shaft power, and efficiency. The modification was implemented on two different propeller runners and it was found that the power and efficiency gains from decreasing the exit tip angle couldmore » be explained by a theoretical model presented here based on classical theory of turbomachines. In particular, the focus is on the behaviour of internal parameters like the runner loss coefficient, relative flow angle at exit, mean axial flow velocity and net tangential flow velocity. The study concluded that the effects of exit tip modification were significant. The introspective discussion on the theoretical model's limitation and test facility suggests wider and continued experimentation pertaining to the internal parameters like inlet vortex profile and exit swirl profile. It also recommends thorough validation of the model and its improvement so that it can be made capable for accurate characterization of blade geometric effects. (author)« less

  13. Study and Sub-System Optimization of Propulsion and Drive Systems for the Large Civil TiltRotor (LCTR2) Rotorcraft

    NASA Technical Reports Server (NTRS)

    Robuck, Mark; Wilkerson, Joseph; Snyder, Christopher A.; Zhang, Yiyi; Maciolek, Bob

    2013-01-01

    In a series of study tasks conducted as a part of NASA's Fundamental Aeronautics Program, Rotary Wing Project, Boeing and Rolls-Royce explored propulsion, drive, and rotor system options for the NASA Large Civil Tilt Rotor (LCTR2) concept vehicle. The original objective of this study was to identify engine and drive system configurations to reduce rotor tip speed during cruise conditions and quantify the associated benefits. Previous NASA studies concluded that reducing rotor speed (from 650 fps hover tip speed) during cruise would reduce vehicle gross weight and fuel burn. Initially, rotor cruise speed ratios of 54% of the hover tip speed were of most interest during operation at cruise air speed of 310 ktas. Interim results were previously reported1 for cruise tip speed ratios of 100%, 77%, and 54% of the hover tip speed using engine and/or gearbox features to achieve the reduction. Technology levels from commercial off-the-shelf (COTS), through entry-in-service (EIS) dates of 2025 and 2035 were considered to assess the benefits of advanced technology on vehicle gross weight and fuel burn. This technical paper presents the final study results in terms of vehicle sizing and fuel burn as well as Operational and Support (O&S) costs. New vehicle sizing at rotor tip speed reduced to 65% of hover is presented for engine performance with an EIS 2035 fixed geometry variable speed power turbine. LCTR2 is also evaluated for missions range cases of 400, 600, 800, 1000, and 1200 nautical miles and cruise air speeds of 310, 350 and 375 ktas.

  14. Sources, control, and effects of noise from aircraft propellers and rotors. [noise prediction (aircraft

    NASA Technical Reports Server (NTRS)

    Mixson, J. S.; Greene, G. C.; Dempsey, T. K.

    1981-01-01

    Source noise predictions are compared with measurements for conventional low-speed propellers, for new high speed propellers (propfans), and for a helicopter. Results from a light aircraft demonstration program are described, indicating that about 5-dB reduction of flyover noise can be obtained without significant performance penalty. Sidewall design studies are described for interior noise control in light general aviation aircraft and in large transports using propfan propulsion. The weight of the added acoustic treatment is estimated and tradeoffs between weight and noise reduction are discussed. A laboratory study of passenger response to combined broadband and tonal propeller like noise is described. Subject discomfort ratings of combined tone broadband noises are compared with ratings of broadband (boundary layer) noise alone, and the relative importance of the propeller tones is examined.

  15. The Relationship between Appendage Geometry and Propeller Blade Unsteady Forces.

    DTIC Science & Technology

    1987-11-01

    unsteady thrust and torque for a given propeller geometry. The results indicate that unsteady force reduction can be obtained by modification of the flow ... unsteady force calculation methods available are: 1) quasi-steady using uniform flow ; 2) quasi-steady using lifting-line theory; 3) two-dimensional... experimental data and the calculated unsteady forces that both the flow field near the body surface and behind the appendage tip must be

  16. Propellant Crack Tip Ignition and Propagation under Rapid Pressurization

    DTIC Science & Technology

    1982-10-01

    that the ignition-delay time decreases and the heat flux to the propellant surface increases as the pressurization rate is increased. The decrease in...leading to ignition. The model predicts the experimental obseriation that the ignition delay time decreases as the pressurization rate is increased...pressurization rate on both crack propagation velocity and time variation of crack shape was studied. Experimental results indicated that the crack velocity

  17. New test techniques and analytical procedures for understanding the behavior of advanced propellers

    NASA Technical Reports Server (NTRS)

    Stefko, G. L.; Bober, L. J.; Neumann, H. E.

    1983-01-01

    Analytical procedures and experimental techniques were developed to improve the capability to design advanced high speed propellers. Some results from the propeller lifting line and lifting surface aerodynamic analysis codes are compared with propeller force data, probe data and laser velocimeter data. In general, the code comparisons with data indicate good qualitative agreement. A rotating propeller force balance demonstrated good accuracy and reduced test time by 50 percent. Results from three propeller flow visualization techniques are shown which illustrate some of the physical phenomena occurring on these propellers.

  18. Full-Scale Tests of Several Propellers Equipped with Spinners, Cuffs, Airfoil and Round Shanks, and NACA 16-Series Sections, Special Report

    NASA Technical Reports Server (NTRS)

    Biermann, David; Hartman, Edwin P.; Pepper, Edward

    1940-01-01

    Wind-tunnel tests of several propeller, cuff, and spinner combinations were conducted in the 20 foot propeller-research tunnel. Three propellers, which ranged in diameter from 8.4 to 11.25 feet, were tested at the front end of a streamline body incorporating spinners of two diameters. The tests covered a blade angle range from 20 deg to 65 deg. The effect of spinner diameter and propeller cuffs on the characteristics of one propeller was determined. Test were also conducted using a propeller which incorporated aerodynamically good shank sections and using one which incorporated the NACA 16 series sections for the outer 20 percent of the blades. Compressibility effects were not measured, owing to the low testing speeds. The results indicated that a conventional propeller was slightly more efficient when tested in conjunction with a 28 inch diameter spinner than with a 23 inch spinner, and that cuffs increased the efficiency as well as the power absorption characteristics. A propeller having good aerodynamic shanks was found to be definitely superior from the efficiency standpoint to a conventional round-shank propeller with or without cuffs; this propeller would probably be considered structurally impracticable, however. The propeller incorporating the NACA 16 series sections at the tims were found to have a slightly higher efficiency than a conventional propeller; the take-off characteristics appeared to be equally good. The effects noted above probably would be accentuated at helical speeds at which compressibility effects would enter.

  19. Photographic Combustion Characterization of LOX/Hydrocarbon Type Propellants

    NASA Technical Reports Server (NTRS)

    Judd, D. C.

    1980-01-01

    The advantages and limitations of using high speed photography to identify potential combustion anomalies (pops, fuel freezing, reactive stream separation (RSS), carbon formation) were demonstrated. Combustion evaluation criteria were developed for evaluating, characterizing, and screening promising low cost propellant combination(s) and injector element(s) for long life, reusable engine systems. Carbon formation and RSS mechanisms and trends were identified by using high speed color photography at speeds up to 6000 frames/sec. Single element injectors were tested with LOX/RP-1, LOX/Propane, LOX/Methane and LOX/Ammonia propellants. Tests were conducted using seven separate injector elements. Five different conventionally machined elements were tested: OFO Triplet; Rectangular Unlike Doublet (RUD); Unlike Doublet (UD); Like on Lke Doublet (LOL-EDM); and Slit Triplet.

  20. High-Tip-Speed, Low-Loading Transonic Fan Stage. Part 1: Aerodynamic and Mechanical Design

    NASA Technical Reports Server (NTRS)

    Wright, L. C.; Vitale, N. G.; Ware, T. C.; Erwin, J. R.

    1973-01-01

    A high-tip-speed, low-loading transonic fan stage was designed to deliver an overall pressure ratio of 1.5 with an adiabatic efficiency of 86 percent. The design flow per unit annulus area is 42.0 pounds per square foot. The fan features a hub/tip ratio of 0.46, a tip diameter of 28.74 in. and operates at a design tip speed of 1600 fps. For these design conditions, the rotor blade tip region operates with supersonic inlet and supersonic discharge relative velocities. A sophisticated quasi-three-dimensional characteristic section design procedure was used for the all-supersonic sections and the inlet of the midspan transonic sections. For regions where the relative outlet velocities are supersonic, the blade operates with weak oblique shocks only.

  1. Measurements of the Time-Averaged and Instantaneous Induced Velocities in the Wake of a Helicopter Rotor Hovering at High Tip Speeds

    NASA Technical Reports Server (NTRS)

    Heyson, Harry H.

    1960-01-01

    Measurements of the time-averaged induced velocities were obtained for rotor tip speeds as great as 1,100 feet per second (tip Mach number of 0.98) and measurements of the instantaneous induced velocities were obtained for rotor tip speeds as great as 900 feet per second. The results indicate that the small effects on the wake with increasing Mach number are primarily due to the changes in rotor-load distribution resulting from changes in Mach number rather than to compressibility effects on the wake itself. No effect of tip Mach number on the instantaneous velocities was observed. Under conditions for which the blade tip was operated at negative pitch angles, an erratic circulatory flow was observed.

  2. A Design Method and an Application for Contrarotating Propellers

    DTIC Science & Technology

    1990-01-01

    force gen- stricted to uniform flow , it fhowed that the analysis of CR pro- erated by the contrarotating propeller to be balanced by the drag... uniform flow at where the operating point of the propeller for a typical high-speed sur- ,/2 face ship. Force measurements for the CR propelier in... experimental thrust coefficient, torque Bronze. Since this propeller set is designed for uniform flow , coefficient, and efficiency for the CR propellers

  3. Experimental aerodynamic performance of advanced 40 deg-swept 10-blade propeller model at Mach 0.6 to 0.85

    NASA Technical Reports Server (NTRS)

    Mitchell, Glenn A.

    1988-01-01

    A propeller designated as SR-6, designed with 40 deg of sweep and 10 blades to cruise at Mach 0.8 at an altitude of 10.7 km (35,000 ft), was tested in the NASA Lewis Research Center's 8- by 6-Foot Wind Tunnel. This propeller was one of a series of advanced single rotation propeller models designed and tested as part of the NASA Advanced Turboprop Project. Design-point net efficiency was almost constant to Mach 0.75 but fell above this speed more rapidly than that of any previously tested advanced propeller. Alternative spinners that further reduced the near-hub interblade Mach numbers and relieved the observed hub choking improved performance above Mach 0.75. One spinner attained estimated SR-6 Design-point net deficiencies of 80.6 percent at Mach 0.75 and 79.2 percent at Mach 0.8, higher than the measured performance of any previously tested advanced single-rotation propeller at these speeds.

  4. An Application Of High-Speed Photography To The Real Ignition Course Of Composite Propellants

    NASA Astrophysics Data System (ADS)

    Fusheng, Zhang; Gongshan, Cheng; Yong, Zhang; Fengchun, Li; Fanpei, Lei

    1989-06-01

    That the actual solid rocket motor behavior and delay time of the ignition of Ap/HTPB composite propellant ignited by high energy pyrotechics contained condensed particles have been investigated is the key of this paper. In experiments, using high speed camera, the pressure transducer, the photodiode and synchro circuit control system designed by us synchronistically observe and record all course and details of the ignition. And pressure signal, photodiode signal and high speed photography frame are corresponded one by one.

  5. Investigation of Pneumatic Inlet and Diffuser Blowing on a Ducted Fan Propulsor in Static Thrust Operation

    NASA Technical Reports Server (NTRS)

    Kondor, Shayne; Englar, Robert J.; Lee, Warren J.

    2003-01-01

    Tilting ducted fans present a solution for the lifting and forward flight propulsion requirements of VTOL aircraft. However, the geometry of the duct enshrouding the propeller has great a effect on the efficiency of the fan in various flight modes. Shroud geometry controls the velocity and pressure at the face of the fan, while maintaining a finite loading out at the tips of the fan blades. A duct tailored for most efficient generation of static lifting thrust will generally suffer from performance deficiencies in forward flight. The converse is true as well, leaving the designer with a difficult trade affecting the overall performance and sizing of the aircraft. Ideally, the shroud of a vertical lifting fan features a generous bell mouth inlet promoting acceleration of flow into the face of the fan, and terminating in a converging nozzle at the exit. Flow entering the inlet is accelerated into the fan by the circulation about the shroud, resulting in an overall increase in thrust compared to an open propeller operating under the same conditions . The accelerating shroud design is often employed in lifting ducted fans to benefit from the thrust augmentation; however, such shroud designs produce significant drag penalties in axial flight, thus are unsuitable for efficient forward flight applications. Decelerating, or diffusing, duct designs are employed for higher speed forward flight configurations. The lower circulation on the shroud tends to decelerate the flow into the face of the fan, which is detrimental to static thrust development; however, net thrust is developed on the shroud while the benefits of finite blade loading are retained. With judicious shroud design for intended flight speeds, a net increase in efficiency can be obtained over an open propeller. In this experiment, conducted under contract to NASA LaRC (contract NAG-1-02093) circulation control is being applied to a mildly diffusing shroud design, intended for improved forward flight performance, to generate circulation in the sense of an accelerating duct design. The intent is to improve static thrust performance of a ducted fan tailored for high speed axial flight, while at the same time significantly reduce the pressure signature on the ground plane. Circulation control on the fan shroud is achieved by the Coanda effect.

  6. Using PDV to Understand Damage in Rocket Motor Propellants

    NASA Astrophysics Data System (ADS)

    Tear, Gareth; Chapman, David; Ottley, Phillip; Proud, William; Gould, Peter; Cullis, Ian

    2017-06-01

    There is a continuing requirement to design and manufacture insensitive munition (IM) rocket motors for in-service use under a wide range of conditions, particularly due to shock initiation and detonation of damaged propellant spalled across the central bore of the rocket motor (XDT). High speed photography has been crucial in determining this behaviour, however attempts to model the dynamic behaviour are limited by the lack of precision particle and wave velocity data with which to validate against. In this work Photonic Doppler Velocimetery (PDV) has been combined with high speed video to give accurate point velocity and timing measurements of the rear surface of a propellant block impacted by a fragment travelling upto 1.4 km s-1. By combining traditional high speed video with PDV through a dichroic mirror, the point of velocity measurement within the debris cloud has been determined. This demonstrates a new capability to characterise the damage behaviour of a double base rocket motor propellant and hence validate the damage and fragmentation algorithms used in the numerical simulations.

  7. An Investigation into the Aerodynamics Surrounding Vertical-Axis Wind Turbines

    NASA Astrophysics Data System (ADS)

    Parker, Colin M.

    The flow surrounding a scaled model vertical-axis wind turbine (VAWT) at realistic operating conditions was studied. The model closely matches geometric and dynamic properties--tip-speed ratio and Reynolds number--of a full-size turbine. The flowfield is measured using particle imaging velocimetry (PIV) in the mid-plane upstream, around, and after (up to 4 turbine diameters downstream) the turbine, as well as a vertical plane behind the turbine. Ensemble-averaged results revealed an asymmetric wake behind the turbine, regardless of tip-speed ratio, with a larger velocity deficit for a higher tip-speed ratio. For the higher tip-speed ratio, an area of averaged flow reversal is present with a maximum reverse flow of -0.04Uinfinity. Phase-averaged vorticity fields--achieved by syncing the PIV system with the rotation of the turbine--show distinct structures form from each turbine blade. There are distinct differences in the structures that are shed into the wake for tip-speed ratios of 0.9, 1.3 and 2.2--switching from two pairs to a single pair of shed vortices--and how they convect into the wake--the middle tip-speed ratio vortices convect downstream inside the wake, while the high tip-speed ratio pair is shed into the shear layer of the wake. The wake structure is found to be much more sensitive to changes in tip-speed ratio than to changes in Reynolds number. The geometry of a turbine can influence tip-speed ratio, but the precise relationship among VAWT geometric parameters and VAWT wake characteristics remains unknown. Next, we characterize the wakes of three VAWTs that are geometrically similar except for the ratio of the turbine diameter (D), to blade chord (c), which was chosen to be D/c = 3, 6, and 9, for a fixed freestream Reynolds number based on the blade chord of Rec =16,000. In addition to two-component PIV and single-component constant temperature anemometer measurements are made at the horizontal mid-plane in the wake of each turbine. Hot-wire measurement locations are selected to coincide with the edge of the shear layer of each turbine wake, as deduced from the PIV data, which allows for an analysis of the frequency content of the wake due to vortex shedding by the turbine. Changing the tip-speed ratio leads to substantial wake variation possibly because changing the tip-speed ratio changes the dynamic solidity. In this work, we achieve a similar change in dynamic solidity by varying the D/c ratio and holding the tip-speed ratio constant. This change leads to very similar characteristic shifts in the wake, such as a greater blockage effect, including averaged flow reversal in the case of high dynamic solidity (D/c = 3). The phase-averaged vortex identification shows that both the blockage effect and the wake structures are similarly affected by a change in dynamic solidity. At lower dynamic solidity, pairs of vortices are shed into the wake directly downstream of the turbine. For all three models, a vortex chain is shed into the shear layer at the edge of the wake where the blade is processing into the freestream.

  8. Ultra high tip speed (670.6 m/sec) fan stage with composite rotor: Aerodynamic and mechanical design

    NASA Technical Reports Server (NTRS)

    Halle, J. E.; Burger, G. D.; Dundas, R. E.

    1977-01-01

    A highly loaded, single-stage compressor having a tip speed of 670.6 m/sec was designed for the purpose of investigating very high tip speeds and high aerodynamic loadings to obtain high stage pressure ratios at acceptable levels of efficiency. The design pressure ratio is 2.8 at an adiabatic efficiency of 84.4%. Corrected design flow is 83.4 kg/sec; corrected design speed is 15,200 rpm; and rotor inlet tip diameter is 0.853 m. The rotor uses multiple-circular-arc airfoils from 0 to 15% span, precompression airfoils assuming single, strong oblique shocks from 21 to 43% span, and precompression airfoils assuming multiple oblique shocks from 52% span to the tip. Because of the high tip speeds, the rotor blades are designed to be fabricated of composite materials. Two composite materials were investigated: Courtaulds HTS graphite fiber in a Kerimid 601 polyimide matrix and the same fibers in a PMR polyimide matrix. In addition to providing a description of the aerodynamic and mechanical design of the 670.0 m/sec fan, discussion is presented of the results of structural tests of blades fabricated with both types of matrices.

  9. Mathematical model of marine diesel engine simulator for a new methodology of self propulsion tests

    NASA Astrophysics Data System (ADS)

    Izzuddin, Nur; Sunarsih, Priyanto, Agoes

    2015-05-01

    As a vessel operates in the open seas, a marine diesel engine simulator whose engine rotation is controlled to transmit through propeller shaft is a new methodology for the self propulsion tests to track the fuel saving in a real time. Considering the circumstance, this paper presents the real time of marine diesel engine simulator system to track the real performance of a ship through a computer-simulated model. A mathematical model of marine diesel engine and the propeller are used in the simulation to estimate fuel rate, engine rotating speed, thrust and torque of the propeller thus achieve the target vessel's speed. The input and output are a real time control system of fuel saving rate and propeller rotating speed representing the marine diesel engine characteristics. The self-propulsion tests in calm waters were conducted using a vessel model to validate the marine diesel engine simulator. The simulator then was used to evaluate the fuel saving by employing a new mathematical model of turbochargers for the marine diesel engine simulator. The control system developed will be beneficial for users as to analyze different condition of vessel's speed to obtain better characteristics and hence optimize the fuel saving rate.

  10. A wind-tunnel investigation of the effects of thrust-axis inclination on propeller first-order vibration

    NASA Technical Reports Server (NTRS)

    Gray, W H; Hallissy, J M , Jr

    1950-01-01

    Data on the aerodynamic excitation of first-order vibration occurring in a representative three-blade propeller having its thrust axis inclined to the air stream at angles of 0 degrees, 4.55 degrees, and 9.8 degrees are included in this paper. For several representative conditions the aerodynamic excitation has been computed and compared with the measured values. Blade stresses also were measured to permit the evaluation of the blade stress resulting from a given blade aerodynamic excitation. It was concluded that the section aerodynamic exciting force of a pitched propeller may be computed accurately at low rotational speeds. As section velocities approach the speed of sound, the accuracy of computation of section aerodynamic exciting force is not always so satisfactory. First-order blade vibratory stresses were computed with satisfactory accuracy from untilted-propeller loading data. A stress prediction which assumes a linear relation between first-order vibratory stress and the product of pitch angle and dynamic pressure and which is based on stresses at low rotational speeds will be conservative when the outer portions of the blade are in the transonic and low supersonic speed range.

  11. 14 CFR 25.149 - Minimum control speed.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... (7) If applicable, the propeller of the inoperative engine— (i) Windmilling; (ii) In the most..., the propeller of the inoperative engine in the position it achieves without pilot action, assuming the... propeller of the more critical inoperative engine in the position it achieves without pilot action, assuming...

  12. 40 CFR 94.105 - Duty cycles.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...) General cycle. Propulsion engines that are used with (or intended to be used with) fixed-pitch propellers, propeller-law auxiliary engines, and any other engines for which the other duty cycles of this section do... value. (c) Variable-pitch and electrically coupled propellers. (1) Constant-speed propulsion engines...

  13. 14 CFR 25.149 - Minimum control speed.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... (7) If applicable, the propeller of the inoperative engine— (i) Windmilling; (ii) In the most..., the propeller of the inoperative engine in the position it achieves without pilot action, assuming the... propeller of the more critical inoperative engine in the position it achieves without pilot action, assuming...

  14. 40 CFR 94.105 - Duty cycles.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...) General cycle. Propulsion engines that are used with (or intended to be used with) fixed-pitch propellers, propeller-law auxiliary engines, and any other engines for which the other duty cycles of this section do... value. (c) Variable-pitch and electrically coupled propellers. (1) Constant-speed propulsion engines...

  15. 40 CFR 94.105 - Duty cycles.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...) General cycle. Propulsion engines that are used with (or intended to be used with) fixed-pitch propellers, propeller-law auxiliary engines, and any other engines for which the other duty cycles of this section do... value. (c) Variable-pitch and electrically coupled propellers. (1) Constant-speed propulsion engines...

  16. 14 CFR 25.149 - Minimum control speed.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... (7) If applicable, the propeller of the inoperative engine— (i) Windmilling; (ii) In the most..., the propeller of the inoperative engine in the position it achieves without pilot action, assuming the... propeller of the more critical inoperative engine in the position it achieves without pilot action, assuming...

  17. 40 CFR 94.105 - Duty cycles.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...) General cycle. Propulsion engines that are used with (or intended to be used with) fixed-pitch propellers, propeller-law auxiliary engines, and any other engines for which the other duty cycles of this section do... value. (c) Variable-pitch and electrically coupled propellers. (1) Constant-speed propulsion engines...

  18. Online monitoring of dynamic tip clearance of turbine blades in high temperature environments

    NASA Astrophysics Data System (ADS)

    Han, Yu; Zhong, Chong; Zhu, Xiaoliang; Zhe, Jiang

    2018-04-01

    Minimized tip clearance reduces the gas leakage over turbine blade tips and improves the thrust and efficiency of turbomachinery. An accurate tip clearance sensor, measuring the dynamic clearances between blade tips and the turbine case, is a critical component for tip clearance control. This paper presents a robust inductive tip clearance sensor capable of monitoring dynamic tip clearances of turbine machines in high-temperature environments and at high rotational speeds. The sensor can also self-sense the temperature at a blade tip in situ such that temperature effect on tip clearance measurement can be estimated and compensated. To evaluate the sensor’s performance, the sensor was tested for measuring the tip clearances of turbine blades under various working temperatures ranging from 700 K to 1300 K and at turbine rotational speeds ranging from 3000 to 10 000 rpm. The blade tip clearance was varied from 50 to 2000 µm. The experiment results proved that the sensor can accurately measure the blade tip clearances with a temporal resolution of 10 µm. The capability of accurately measuring the tip clearances at high temperatures (~1300 K) and high turbine rotation speeds (~30 000 rpm), along with its compact size, makes it promising for online monitoring and active control of blade tip clearances of high-temperature turbomachinery.

  19. Understanding the Benefits and Limitations of Increasing Maximum Rotor Tip Speed for Utility-Scale Wind Turbines

    NASA Astrophysics Data System (ADS)

    Ning, A.; Dykes, K.

    2014-06-01

    For utility-scale wind turbines, the maximum rotor rotation speed is generally constrained by noise considerations. Innovations in acoustics and/or siting in remote locations may enable future wind turbine designs to operate with higher tip speeds. Wind turbines designed to take advantage of higher tip speeds are expected to be able to capture more energy and utilize lighter drivetrains because of their decreased maximum torque loads. However, the magnitude of the potential cost savings is unclear, and the potential trade-offs with rotor and tower sizing are not well understood. A multidisciplinary, system-level framework was developed to facilitate wind turbine and wind plant analysis and optimization. The rotors, nacelles, and towers of wind turbines are optimized for minimum cost of energy subject to a large number of structural, manufacturing, and transportation constraints. These optimization studies suggest that allowing for higher maximum tip speeds could result in a decrease in the cost of energy of up to 5% for land-based sites and 2% for offshore sites when using current technology. Almost all of the cost savings are attributed to the decrease in gearbox mass as a consequence of the reduced maximum rotor torque. Although there is some increased energy capture, it is very minimal (less than 0.5%). Extreme increases in tip speed are unnecessary; benefits for maximum tip speeds greater than 100-110 m/s are small to nonexistent.

  20. An Overview of Autogyros and The McDonnell XV-1 Convertiplane

    NASA Technical Reports Server (NTRS)

    Harris, Franklin D.

    2003-01-01

    This report and its lengthy appendix first reviews early autogyro history. The period from Juan de la Cierva's invention in the early1920s through to the U. S. Army Air Corps' choice, in 1943, of the helicopter instead of the more fully developed autogyro, is examined from a technical point of view. With this historical background in hand, simple aerodynamic technology for rotors, wings, propeller, and fuselages is provided for reference. The McDonnell XV-1 convertiplane development and its program are discussed in detail, with particular emphasis on the wind tunnel and flight testing that was accomplished with two prototype aircraft in the early 1950s. The tip drive rotor system with its ingeniously designed hub was well suited to high speed rotorcraft. The configuration was conceived by Kurt Hohenemser and Fred Dubloff. Many photographs taken of the XV-1 stored at Fort Rucker are included in this report's appendix.

  1. Propeller Flaps: A Review of Indications, Technique, and Results

    PubMed Central

    D'Arpa, Salvatore; Toia, Francesca; Pirrello, Roberto; Moschella, Francesco; Cordova, Adriana

    2014-01-01

    In the last years, propeller flaps have become an appealing option for coverage of a large range of defects. Besides having a more reliable vascular pedicle than traditional flap, propeller flaps allow for great freedom in design and for wide mobilization that extend the possibility of reconstructing difficult wounds with local tissues and minimal donor-site morbidity. They also allow one-stage reconstruction of defects that usually require multiple procedures. Harvesting of a propeller flap requires accurate patient selection, preoperative planning, and dissection technique. Complication rate can be kept low, provided that potential problems are prevented, promptly recognized, and adequately treated. This paper reviews current knowledge on propeller flaps. Definition, classification, and indications in the different body regions are discussed based on a review of the literature and on the authors' experience. Details about surgical technique are provided, together with tips to avoid and manage complications. PMID:24971367

  2. High Speed Imaging of Cavitation around Dental Ultrasonic Scaler Tips.

    PubMed

    Vyas, Nina; Pecheva, Emilia; Dehghani, Hamid; Sammons, Rachel L; Wang, Qianxi X; Leppinen, David M; Walmsley, A Damien

    2016-01-01

    Cavitation occurs around dental ultrasonic scalers, which are used clinically for removing dental biofilm and calculus. However it is not known if this contributes to the cleaning process. Characterisation of the cavitation around ultrasonic scalers will assist in assessing its contribution and in developing new clinical devices for removing biofilm with cavitation. The aim is to use high speed camera imaging to quantify cavitation patterns around an ultrasonic scaler. A Satelec ultrasonic scaler operating at 29 kHz with three different shaped tips has been studied at medium and high operating power using high speed imaging at 15,000, 90,000 and 250,000 frames per second. The tip displacement has been recorded using scanning laser vibrometry. Cavitation occurs at the free end of the tip and increases with power while the area and width of the cavitation cloud varies for different shaped tips. The cavitation starts at the antinodes, with little or no cavitation at the node. High speed image sequences combined with scanning laser vibrometry show individual microbubbles imploding and bubble clouds lifting and moving away from the ultrasonic scaler tip, with larger tip displacement causing more cavitation.

  3. High Speed Imaging of Cavitation around Dental Ultrasonic Scaler Tips

    PubMed Central

    Vyas, Nina; Pecheva, Emilia; Dehghani, Hamid; Sammons, Rachel L.; Wang, Qianxi X.; Leppinen, David M.; Walmsley, A. Damien

    2016-01-01

    Cavitation occurs around dental ultrasonic scalers, which are used clinically for removing dental biofilm and calculus. However it is not known if this contributes to the cleaning process. Characterisation of the cavitation around ultrasonic scalers will assist in assessing its contribution and in developing new clinical devices for removing biofilm with cavitation. The aim is to use high speed camera imaging to quantify cavitation patterns around an ultrasonic scaler. A Satelec ultrasonic scaler operating at 29 kHz with three different shaped tips has been studied at medium and high operating power using high speed imaging at 15,000, 90,000 and 250,000 frames per second. The tip displacement has been recorded using scanning laser vibrometry. Cavitation occurs at the free end of the tip and increases with power while the area and width of the cavitation cloud varies for different shaped tips. The cavitation starts at the antinodes, with little or no cavitation at the node. High speed image sequences combined with scanning laser vibrometry show individual microbubbles imploding and bubble clouds lifting and moving away from the ultrasonic scaler tip, with larger tip displacement causing more cavitation. PMID:26934340

  4. High speed propeller performance and noise predictions at takeoff/landing conditions

    NASA Technical Reports Server (NTRS)

    Nallasamy, M.; Woodward, R. P.; Groeneweg, J. F.

    1988-01-01

    The performance and noise of a high speed SR-7A model propeller under takeoff/landing conditions are considered. The blade loading distributions are obtained by solving the three-dimensional Euler equations and the sound pressure levels are computed using a time domain approach. At the nominal takeoff operating point, the blade sections near the hub are lightly or negatively loaded. The chordwise loading distributions are distinctly different from those of cruise conditions. The noise of the SR-7A model propeller at takeoff is dominated by the loading noise, similar to that at cruise conditions. The waveforms of the acoustic pressure signature are nearly sinusoidal in the plane of the propeller. The computed directivity of the blade passing frequency tone agrees fairly well with the data at nominal takeoff blade angle.

  5. High speed propeller performance and noise predictions at takeoff/landing conditions

    NASA Technical Reports Server (NTRS)

    Nallasamy, M.; Woodward, R. P.; Groeneweg, J. F.

    1987-01-01

    The performance and noise of a high speed SR-7A model propeller under takeoff/landing conditions are considered. The blade loading distributions are obtained by solving the three-dimensional Euler equations and the sound pressure levels are computed using a time domain approach. At the nominal takeoff operating point, the blade sections near the hub are lightly or negatively loaded. The chordwise loading distributions are distinctly different from those of cruise conditions. The noise of the SR-7A model propeller at takeoff is dominated by the loading noise, similar to that at cruise conditions. The waveforms of the acoustic pressure signature are nearly sinusoidal in the plane of the propeller. The computed directivity of the blade passing frequency tone agrees fairly well with the data at nominal takeoff blade angle.

  6. Advanced turboprop noise prediction based on recent theoretical results

    NASA Technical Reports Server (NTRS)

    Farassat, F.; Padula, S. L.; Dunn, M. H.

    1987-01-01

    The development of a high speed propeller noise prediction code at Langley Research Center is described. The code utilizes two recent acoustic formulations in the time domain for subsonic and supersonic sources. The structure and capabilities of the code are discussed. Grid size study for accuracy and speed of execution on a computer is also presented. The code is tested against an earlier Langley code. Considerable increase in accuracy and speed of execution are observed. Some examples of noise prediction of a high speed propeller for which acoustic test data are available are given. A brisk derivation of formulations used is given in an appendix.

  7. Transitions induced by speed in self-propelled particles system with attractive interactions

    NASA Astrophysics Data System (ADS)

    Cambui, Dorilson. S.; Rosas, Alexandre

    2018-05-01

    In this work, we consider a system of self-propelled particles with attractive interactions in two dimensions. The model presents an order-disorder transition with the speed playing the role of the control parameter. In order to characterize the transition, we investigate the behavior of the order parameter and the Binder cumulant as a function of the speed. Our main finding is that the transition can be either continuous or discontinuous depending on two parameter of the model: the strength of the noise and the radius of attraction.

  8. Progress in Open Rotor Research: A U.S. Perspective

    NASA Technical Reports Server (NTRS)

    Van Zante, Dale E.

    2015-01-01

    In response to the 1970s oil crisis, NASA created the Advanced Turboprop Project (ATP) to mature technologies for high-speed propellers to enable large reductions in fuel burn relative to turbofan engines of that era. Both single rotation and contra- rotation concepts were designed and tested in ground based facilities as well as flight. Some novel concepts/configurations were proposed as part of the effort. The high-speed propeller concepts did provide fuel burn savings, albeit with some acoustics and structural challenges to overcome. When fuel prices fell, the business case for radical new engine configurations collapsed and the research emphasis returned to high bypass ducted configurations. With rising oil prices and increased environmental concerns there is renewed interest in high-speed propeller based engine architectures. Contemporary analysis tools for aerodynamics and aeroacoustics have enabled a new era of blade designs that have both high efficiency and lower noise characteristics. A recent series of tests in the U.S. have characterized the aerodynamic performance and noise from these modern contra-rotating propeller designs. Additionally the installation and noise shielding aspects for conventional airframes and blended wing bodies have been studied. Historical estimates of 'propfan' performance have relied on legacy propeller performance and acoustics data. Current system studies make use of the modern propeller data and higher fidelity installation effects data to estimate the performance of a contemporary aircraft system. Contemporary designs have demonstrated high net efficiency, approximately 86%, at 0.78 Mach, and low noise, greater than 15 EPNdB cumulative margin to Chapter 4 when analyzed on a NASA derived aircraft/mission. This paper presents the current state of high-speed propeller/open rotor research within the U.S. from an overall viewpoint of the various efforts ongoing. The remaining technical challenges to a production engine include propulsion airframe integration, acoustic sensitivity to aircraft weight and certification issues.

  9. Solar powered aircraft

    NASA Technical Reports Server (NTRS)

    Phillips, W. H. (Inventor)

    1983-01-01

    A cruciform wing structure for a solar powered aircraft is disclosed. Solar cells are mounted on horizontal wing surfaces. Wing surfaces with spanwise axis perpendicular to surfaces maintain these surfaces normal to the Sun's rays by allowing aircraft to be flown in a controlled pattern at a large bank angle. The solar airplane may be of conventional design with respect to fuselage, propeller and tail, or may be constructed around a core and driven by propeller mechanisms attached near the tips of the airfoils.

  10. Measurement of Rotating Blade Tip Clearance with Fibre-Optic Probe

    NASA Astrophysics Data System (ADS)

    Cao, S. Z.; Duan, F. J.; Zhang, Y. G.

    2006-10-01

    This paper described a tip clearance measuring system with fibre-optic probe. The system is based on a novel tip clearance sensor of optical fibre-bundle mounted on the casing, rotating speed synchronization sensor mounted on the rotating shaft, the tip clearance preamplification processing circuit followed by high speed data-acquisition unit. A novel tip clearance sensor of trifurcated optical fibre bundle was proposed and demonstrated. It is independent of material of measured surface but capacitive probe demands target conductive. Measurements can be taken under severe conditions such as ionization. Sensor circuitry and data acquisition circuit were successfully designed. With the help of Rotation synchronized sensor, all the blades can be detected in real-time. Because of fibre-optic sensor, the measuring system has commendably frequency response, which can work well in high rotating speed from 0-15000rpm.The measurement range of tip clearance is 0-3mm with 25um precision.

  11. General Theory of the Steady Motion of an Airplane

    NASA Technical Reports Server (NTRS)

    De Bothezat, George

    1921-01-01

    The writer points out briefly the history of the method proposed for the study of steady motion of an airplane, which is different from other methods now used. M. Paul Painleve has shown how convenient the drag-lift curve was for the study of airplane steady motion. The author later added to the drift-lift curve the curve called the "speed curve" which permits a direct checking of the speed of the airplane under all flying conditions. But the speed curve was plotted in the same quadrant as the drag-lift curve. Later, with the progressive development of aeronautical science, and with the continually increasing knowledge concerning engines and propellers, the author was brought to add the three other quadrants to the original quadrant, and thus was obtained the steady motion chart which is described in detail in this report. This charts permits one to read directly for a given airplane its horizontal speed at any altitude, its rate of climb at any altitude, its apparent inclination to the horizon at any moment, its ceiling, its propeller thrust, revolutions, efficiency, and power absorbed, that is the complete set of quantities involved in the subject, and to follow the variations of all these quantities both for variable altitude and for variable throttle. The chart also permits one to follow the variation of all of the above in flight as a function of the lift coefficient and of the speed. The author also discusses the interaction of the airplane and propeller through the slipstream and the question of the properties of the engine-propeller system and its dependence upon the properties of the engine considered alone and of the propeller considered alone. There is also a discussion of a standard atmosphere.

  12. Influence of fluid dynamics on anaerobic digestion of food waste for biogas production.

    PubMed

    Wang, Fengping; Zhang, Cunsheng; Huo, Shuhao

    2017-05-01

    To enhance the stability and efficiency of an anaerobic process, the influences of fluid dynamics on the performance of anaerobic digestion and sludge granulation were investigated using computational fluid dynamics (CFD). Four different propeller speeds (20, 60, 100, 140 r/min) were adopted for anaerobic digestion of food waste in a 30 L continuously stirred tank reactor (CSTR). Experimental results indicated that the methane yield increased with increasing the propeller speed within the experimental range. Results from CFD simulation and sludge granulation showed that the optimum propeller speed for anaerobic digestion was 100 r/min. Lower propeller speed (20 r/min) inhibited mass transfer and resulted in the failure of anaerobic digestion, while higher propeller speed (140 r/min) would lead to higher energy loss and system instability. Under this condition, anaerobic digestion could work effectively with higher efficiency of mass transfer which facilitated sludge granulation and biogas production. The corresponding mean liquid velocity and shear strain rate were 0.082 m/s and 10.48 s -1 , respectively. Moreover, compact granular sludge could be formed, with lower energy consumption. CFD was successfully used to study the influence of fluid dynamics on the anaerobic digestion process. The key parameters of the optimum mixing condition for anaerobic digestion of food waste in a 30 L CSTR including liquid velocity and shear strain rate were obtained using CFD, which were of paramount significance for the scale-up of the bioreactor. This study provided a new way for the optimization and scale-up of the anaerobic digestion process in CSTR based on the fluid dynamics analysis.

  13. Shock Characteristics Measured Upstream of Both a Forward-Swept and an Aft-Swept Fan

    NASA Technical Reports Server (NTRS)

    Podboy, Gary G.; Krupar, Martin J.; Sutliff, Daniel L.; Horvath, Csaba

    2007-01-01

    Three different types of diagnostic data-blade surface flow visualization, shroud unsteady pressure, and laser Doppler velocimeter (LDV)--were obtained on two fans, one forward-swept and one aft-swept, in order to learn more about the shocks which propagate upstream of these rotors when they are operated at transonic tip speeds. Flow visualization data are presented for the forward-swept fan operating at 13831 rpm(sub c), and for the aft-swept fan operating at 12500 and 13831 rpm(sub c) (corresponding to tip rotational Mach numbers of 1.07 and 1.19, respectively). The flow visualization data identify where the shocks occur on the suction side of the rotor blades. These data show that at the takeoff speed, 13831 rpm(sub c), the shocks occurring in the tip region of the forward-swept fan are further downstream in the blade passage than with the aft-swept fan. Shroud unsteady pressure measurements were acquired using a linear array of 15 equally-spaced pressure transducers extending from two tip axial chords upstream to 0.8 tip axial chords downstream of the static position of the tip leading edge of each rotor. Such data are presented for each fan operating at one subsonic and five transonic tip speeds. The unsteady pressure data show relatively strong detached shocks propagating upstream of the aft-swept rotor at the three lowest transonic tip speeds, and weak, oblique pressure disturbances attached to the tip of the aft-swept fan at the two highest transonic tip speeds. The unsteady pressure measurements made with the forward-swept fan do not show strong shocks propagating upstream of that rotor at any of the tested speeds. A comparison of the forward-swept and aft-swept shroud unsteady pressure measurements indicates that at any given transonic speed the pressure disturbance just upstream of the tip of the forward-swept fan is much weaker than that of the aft-swept fan. The LDV data suggest that at 12500 and 13831 rpm(sub c), the forward-swept fan swallowed the passage shocks occurring in the tip region of the blades, whereas the aft-swept fan did not. Due to this difference, the flows just upstream of the two fans were found to be quite different at both of these transonic speeds. Nevertheless, despite distinct differences just upstream of the two rotors, the two fan flows were much more alike about one axial blade chord further upstream. As a result, the LDV data suggest that it is unwise to attempt to determine the effect that the shocks have on far field noise by focusing only on measurements (or CFD predictions) made very near the rotor. Instead, these data suggest that it is important to track the shocks throughout the inlet.

  14. Flight Test of the Lateral Stability of a 0.133-Scale Model of the Convair XFY-1 Airplane with Windmilling Propellers at Mach Numbers from 0.70 to 1.12 (TED No. NACA DE 369)

    NASA Technical Reports Server (NTRS)

    Hollinger, James A.; Mitcham, Grady L.

    1955-01-01

    A flight test of a rocket-propelled model of the Convair XFY-1 airplane was conducted to determine the lateral stability and control characteristics, The 0.133-scale model had windmilling propellers for this test, which covered a Mach number range of O.70 to 1.12. The center of gravity was located at 13.9 percent of the mean aerodynamic chord. The methods of analysis included both a solution by vector diagrams and simple one- and two-degree-of-freedom methods. The model was both statically and dynamically stable throughout the speed range of the testa The roll damping was good, and the slope of the side-force curve varied little with speed. The rudder was effective throughout the test speed range, although it was reduced to about 43 percent of its subsonic value at supersonic speeds.

  15. Sources, control, and effects of noise from aircraft propellers and rotors

    NASA Technical Reports Server (NTRS)

    Mixson, J. S.; Greene, G. C.; Dempsey, T. K.

    1981-01-01

    Recent NASA and NASA sponsored research on the prediction and control of propeller and rotor source noise, on the analysis and design of fuselage sidewall noise control treatments, and on the measurement and quantification of the response of passengers to aircraft noise is described. Source noise predictions are compared with measurements for conventional low speed propellers, for new high speed propellers (propfans), and for a helicopter. Results from a light aircraft demonstration program are considered which indicates that about 5 dB reduction of flyover noise can be obtained without significant performance penalty. Sidewall design studies are examined for interior noise control in light general aviation aircraft and in large transports using propfan propulsion. The weight of the added acoustic treatment is estimated and tradeoffs between weight and noise reduction are discussed. A laboratory study of passenger response to combined broadband and tonal propeller-like noise is described. Subject discomfort ratings of combined tone broadband noises are compared with ratings of broadband (boundary layer) noise alone and the relative importance of the propeller tones is examined.

  16. Interior noise considerations for advanced high-speed turboprop aircraft

    NASA Technical Reports Server (NTRS)

    Mixson, J. S.; Farassat, F.; Leatherwood, J. D.; Prydz, R.; Revell, J. D.

    1982-01-01

    This paper describes recent research on noise generated by high-speed propellers, on noise transmission through acoustically treated aircraft sidewalls and on subjective response to simulated turboprop noise. Propeller noise discussion focuses on theoretical prediction methods for complex blade shapes designed for low noise at Mach = 0.8 flight and on comparisons with experimental test results. Noise transmission experiments using a 168 cm. diameter aircraft fuselage model and scaled heavy-double-wall treatments indicate that the treatments perform well and that the predictions are usually conservative. Studies of subjective comfort response in an anechoic environment are described for noise signatures having combinations of broadband and propeller-type tone components.

  17. An analysis for high speed propeller-nacelle aerodynamic performance prediction. Volume 2: User's manual

    NASA Technical Reports Server (NTRS)

    Egolf, T. Alan; Anderson, Olof L.; Edwards, David E.; Landgrebe, Anton J.

    1988-01-01

    A user's manual for the computer program developed for the prediction of propeller-nacelle aerodynamic performance reported in, An Analysis for High Speed Propeller-Nacelle Aerodynamic Performance Prediction: Volume 1 -- Theory and Application, is presented. The manual describes the computer program mode of operation requirements, input structure, input data requirements and the program output. In addition, it provides the user with documentation of the internal program structure and the software used in the computer program as it relates to the theory presented in Volume 1. Sample input data setups are provided along with selected printout of the program output for one of the sample setups.

  18. Investigation of dynamic characteristics of a turbine-propeller engine

    NASA Technical Reports Server (NTRS)

    Oppenheimer, Frank L; Jacques, James R

    1951-01-01

    Time constants that characterize engine speed response of a turbine-propeller engine over the cruising speed range for various values of constant fuel flow and constant blade angle were obtained both from steady-state characteristics and from transient operation. Magnitude of speed response to changes in fuel flow and blade angle was investigated and is presented in the form of gain factors. Results indicate that at any given value of speed in the engine cruising speed range, time constants obtained both from steady-state characteristics and from transient operation agree satisfactorily for any given constant fuel flow, whereas time constants obtained from transient operation exceed time constants obtained from steady-state characteristics by approximately 14 percent for any given blade angle.

  19. Studies on an aerial propellant transfer space plane (APTSP)

    NASA Astrophysics Data System (ADS)

    Jayan, N.; Biju Kumar, K. S.; Gupta, Anish Kumar; Kashyap, Akhilesh Kumar; Venkatraman, Kartik; Mathew, Joseph; Mukunda, H. S.

    2004-04-01

    This paper presents a study of a fully reusable earth-to-orbit launch vehicle concept with horizontal take-off and landing, employing a turbojet engine for low speed, and a rocket for high-speed acceleration and space operations. This concept uses existing technology to the maximum possible extent, thereby reducing development time, cost and effort. It uses the experience in aerial filling of military aircrafts for propellant filling at an altitude of 13 km at a flight speed of M=0.85. Aerial filling of propellant reduces the take-off weight significantly thereby minimizing the structural weight of the vehicle. The vehicle takes off horizontally and uses turbojet engines till the end of the propellant filling operation. The rocket engines provide thrust for the next phase till the injection of a satellite at LEO. A sensitivity analysis of the mission with respect to rocket engine specific impulse and overall vehicle structural factor is also presented in this paper. A conceptual design of space plane with a payload capability of 10 ton to LEO is carried out. The study shows that the realization of an aerial propellant transfer space plane is possible with limited development of new technology thus reducing the demands on the finances required for achieving the objectives.

  20. 14 CFR Appendix G to Part 36 - Takeoff Noise Requirements for Propeller-Driven Small Airplane and Propeller-Driven, Commuter...

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... aircraft noise when the wind speed is in excess of 5 knots (9 km/hr). Sec. G36.107Noise Measurement... OF TRANSPORTATION AIRCRAFT NOISE STANDARDS: AIRCRAFT TYPE AND AIRWORTHINESS CERTIFICATION Pt. 36, App..., inclusively; (4) Wind speed may not exceed 10 knots (19 km/h) and cross wind may not exceed 5 knots (9 km/h...

  1. 14 CFR Appendix G to Part 36 - Takeoff Noise Requirements for Propeller-Driven Small Airplane and Propeller-Driven, Commuter...

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... aircraft noise when the wind speed is in excess of 5 knots (9 km/hr). Sec. G36.107Noise Measurement... OF TRANSPORTATION AIRCRAFT NOISE STANDARDS: AIRCRAFT TYPE AND AIRWORTHINESS CERTIFICATION Pt. 36, App..., inclusively; (4) Wind speed may not exceed 10 knots (19 km/h) and cross wind may not exceed 5 knots (9 km/h...

  2. Range Performance of Bombers Powered by Turbine-Propeller Power Plants

    NASA Technical Reports Server (NTRS)

    Cline, Charles W.

    1950-01-01

    Calculations have been made to find range? attainable by bombers of gross weights from l40,000 to 300,000 pounds powered by turbine-propeller power plants. Only conventional configurations were considered and emphasis was placed upon using data for structural and aerodynamic characteristics which are typical of modern military airplanes. An effort was made to limit the various parameters invoked in the airplane configuration to practical values. Therefore, extremely high wing loadings, large amounts of sweepback, and very high aspect ratios have not been considered. Power-plant performance was based upon the performance of a typical turbine-propeller engine equipped with propellers designed to maintain high efficiencies at high-subsonic speeds. Results indicated, in general, that the greatest range, for a given gross weight, is obtained by airplanes of high wing loading, unless the higher cruising speeds associated with the high-wing-loading airplanes require-the use of thinner wing sections. Further results showed the effect of cruising at-high speeds, of operation at very high altitudes, and of carrying large bomb loads.

  3. Langley Full-Scale Tunnel Investigation of a 1/3-Scale Model of the Chance Vought XF5U-1 Airplane

    NASA Technical Reports Server (NTRS)

    Lange, Roy H.; Cocke, Bennie W., Jr.; Proterra, Anthony J.

    1946-01-01

    The results of an investigation of a 1/3-scale model of the Chance Vought XF5U-1 airplane in the Langley full-scale tunnel are presented in this report. The maximum lift and stalling characteristics of several model configurations, the longitudinal stability characteristics of the model, and the effectiveness of the control surfaces were determined with the propellers removed. The propulsive characteristics, the effect of propeller operation on the lift, and the static thrust of the model propellers were determined at several propeller-blade angles. The results with the propellers removed showed that the maximum lift coefficient of the complete model configuration was only 0.97 was compared with the value of 1.31 for the model configuration in which the engine-air ducts and canopy are removed. The model with the propellers removed (normal center-of-gravity position) has a positive static margin, stick fixed, varying from 5 to 13 percent of the mean aerodynamic chord throughout the unstalled range of lift coefficients. The unit horizontal tail is sufficiently powerful to trim the airplane with the propellers removed throughout the unstalled range of lift coefficients. The peak propulsive efficiencies for beta = 20 degrees and beta = 30 degrees were increased 7 percent at C(sub L) congruent to 0.67 and 20 percent at C(sub L) congruent to 0.74, respectively, with the propellers rotating upward in the center than with the propellers rotating downward in the center. Indications are that the minimum forward-flight speed of the airplane for full-power operation at sea level will be about 90 miles per hour. Decreasing the weight and increasing the power reduced this value of minimum speed and there were no indications from the results of a lower limit to the minimum speed.

  4. Mathematical model of marine diesel engine simulator for a new methodology of self propulsion tests

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Izzuddin, Nur; Sunarsih,; Priyanto, Agoes

    As a vessel operates in the open seas, a marine diesel engine simulator whose engine rotation is controlled to transmit through propeller shaft is a new methodology for the self propulsion tests to track the fuel saving in a real time. Considering the circumstance, this paper presents the real time of marine diesel engine simulator system to track the real performance of a ship through a computer-simulated model. A mathematical model of marine diesel engine and the propeller are used in the simulation to estimate fuel rate, engine rotating speed, thrust and torque of the propeller thus achieve the targetmore » vessel’s speed. The input and output are a real time control system of fuel saving rate and propeller rotating speed representing the marine diesel engine characteristics. The self-propulsion tests in calm waters were conducted using a vessel model to validate the marine diesel engine simulator. The simulator then was used to evaluate the fuel saving by employing a new mathematical model of turbochargers for the marine diesel engine simulator. The control system developed will be beneficial for users as to analyze different condition of vessel’s speed to obtain better characteristics and hence optimize the fuel saving rate.« less

  5. Evaluation of range and distortion tolerance for high Mach number transonic fan stages. Task 2: Performance of a 1500-foot-per-second tip speed transonic fan stage with variable geometry inlet guide vanes and stator

    NASA Technical Reports Server (NTRS)

    Bilwakesh, K. R.; Koch, C. C.; Prince, D. C.

    1972-01-01

    A 0.5 hub/tip radius ratio compressor stage consisting of a 1500 ft/sec tip speed rotor, a variable camber inlet guide vane and a variable stagger stator was designed and tested with undistorted inlet flow, flow with tip radial distortion, and flow with 90 degrees, one-per-rev, circumferential distortion. At the design speed and design IGV and stator setting the design stage pressure ratio was achieved at a weight within 1% of the design flow. Analytical results on rotor tip shock structure, deviation angle and part-span shroud losses at different operating conditions are presented. The variable geometry blading enabled efficient operation with adequate stall margin at the design condition and at 70% speed. Closing the inlet guide vanes to 40 degrees changed the speed-versus-weight flow relationship along the stall line and thus provided the flexibility of operation at off-design conditions. Inlet flow distortion caused considerable losses in peak efficiency, efficiency on a constant throttle line through design pressure ratio at design speed, stall pressure ratio, and stall margin at the 0 degrees IGV setting and high rotative speeds. The use of the 40 degrees inlet guide vane setting enabled partial recovery of the stall margin over the standard constant throttle line.

  6. The Effect of Negative Dihedral, Tip Droop, and Wing-tip Shape on the Low-speed Aerodynamic Characteristics of a Complete Model Having a 45 Degrees Sweptback Wing

    NASA Technical Reports Server (NTRS)

    Spearman, M Leroy; Becht, Robert E

    1948-01-01

    An investigation has been conducted in the Langley 300 MPH 7- by 10-foot tunnel to determine the effect of negative dihedral, tip droop, and wing-tip shape on the low-speed aerodynamic characteristics of a complete model having a 45 degrees sweptback wing. Longitudinal and lateral stability characteristics were obtained for the model with and without tail surfaces.

  7. Two-stage fan. 3: Data and performance with rotor tip casing treatment, uniform and distorted inlet flows

    NASA Technical Reports Server (NTRS)

    Burger, G. D.; Hodges, T. R.; Keenan, M. J.

    1975-01-01

    A two stage fan with a 1st-stage rotor design tip speed of 1450 ft/sec, a design pressure ratio of 2.8, and corrected flow of 184.2 lbm/sec was tested with axial skewed slots in the casings over the tips of both rotors. The variable stagger stators were set in the nominal positions. Casing treatment improved stall margin by nine percentage points at 70 percent speed but decreased stall margin, efficiency, and flow by small amounts at design speed. Treatment improved first stage performance at low speed only and decreased second stage performance at all operating conditions. Casing treatment did not affect the stall line with tip radially distorted flow but improved stall margin with circumferentially distorted flow. Casing treatment increased the attenuation for both types of inlet flow distortion.

  8. Comparison of calculated and measured velocities near the tip of a model rotor blade at transonic speeds

    NASA Technical Reports Server (NTRS)

    Tauber, M. E.; Owen, F. K.; Langhi, R. G.; Palmer, G. E.

    1985-01-01

    The ability of the ROT22 code to predict accurately the transonic flow field in the crucial region around and beyond the tip of a high speed rotor blade was assessed. The computations were compared with extensive laser velocimetry measurements made at zero advance ratio and tip Mach numbers of 0.85, 0.88, 0.90, and 0.95. The comparison between theory and experiment was made using 300 scans for the three orthogonal velocity components covering a volume having a height of over one blade chord, a width of nearly two chords, and a length ranging from about 1 to 1.6 chords, depending on the tip speeds. The good agreement between the calculated and measured velocities established the ability of the code to predict the off blade flow field at high tip speeds. This supplements previous comparisons where surface pressures were shown to be well predicted on two different tips at advance ratios to 0.45, especially at the critical 90 deg azimuth blade position. These results demonstrate that the ROT22 code can be used with confidence to predict the important tip region flow field including the occurrence, strength, and location of shock waves causing high drag and noise.

  9. Orbital simulations of laser-propelled spacecraft

    NASA Astrophysics Data System (ADS)

    Zhang, Qicheng; Lubin, Philip M.; Hughes, Gary B.; Melis, Carl; Walsh, Kevin J.

    2015-09-01

    Spacecraft accelerate by directing propellant in the opposite direction. In the traditional approach, the propellant is carried on board in the form of material fuel. This approach has the drawback of being limited in Delta v by the amount of fuel launched with the craft, a limit that does not scale well to high Delta v due to the massive nature of the fuel. Directed energy photon propulsion solves this problem by eliminating the need for on-board fuel storage. We discuss our system which uses a phased array of lasers to propel the spacecraft which contributes no mass to the spacecraft beyond that of the reflector, enabling a prolonged acceleration and much higher final speeds. This paper compares the effectiveness of such a system for propelling spacecraft into interplanetary and interstellar space across various laser and sail configurations. Simulated parameters include laser power, optics size and orbit as well as payload mass, reflector size and the trajectory of the spacecraft. As one example, a 70 GW laser with 10 km optics could propel a 1 kg craft past Neptune (~30 au) in 5 days at 4% the speed of light, or a 1 g "wafer-sat" past Mars (~0.5 au) in 20 minutes at 21% the speed of light. However, even lasers down to 2 kW power and 1 m optics show noticeable effect on gram-class payloads, boosting their altitude in low Earth orbits by several kilometers per day which is already sufficient to be of practical use.

  10. Rotor redesign for a highly loaded 1800 ft/sec tip speed fan. 3: Laser Doppler velocimeter report

    NASA Technical Reports Server (NTRS)

    Harvey, W. B.; Hobbs, D. E.; Lee, D.; Williams, M. C.; Williams, K. F.

    1982-01-01

    Laser Doppler velocimeter (LDV) techniques were employed for testing a highly loaded, 550 m/sec (1800 ft/sec) tip speed, test fan stage, the objective to provide detailed mapping of the upstream, intrablade, and downstream flowfields of the rotor. Intrablade LDV measurements of velocity and flow angle were obtained along four streamlines passing through the leading edge at 45%, 69%, 85%, and 95% span measured from hub to tip, at 100% of design speed, peak efficiency; 100% speed, near surge; and 95% speed, peak efficiency. At the design point, most passages appeared to have a strong leading edge shock, which moved forward with increasing strength near surge and at part speeds. The flow behind the shock was of a complex mixed subsonic and supersonic form. The intrablade flowfields were found to be significantly nonperiodic at 100% design speed, peak efficiency.

  11. The acoustic response of a propeller subjected to gusts incident from various inflow angles

    NASA Technical Reports Server (NTRS)

    Jonkouski, G. C.; Horne, W. C.; Soderman, P. T.

    1983-01-01

    The acoustic effect of perturbing the inflow field of a propeller was studied. The perturbation was caused by a jet of air blowing into the propeller disc from various angles, creating spanwise and chordwise flow disturbances along the blades. The effects of the gust angle, speed and turbulence, and propeller rpm and thrust are shown with narrowband spectra and directivity plots of the acoustic field. A prediction method for the peaks of the harmonics of the blade passing frequency for various gust and propeller conditions is presented.

  12. A Method to Further Reduce the Perceived Noise of Low Tip Speed Fans

    NASA Technical Reports Server (NTRS)

    Dittmar, James H.

    2000-01-01

    The use of low tip speed, high bypass ratio fans is a method for reducing the noise of turbofan jet engines. These fans typically have a low number of rotor blades and a number of stator vanes sufficient to achieve cut-off of the blade passing tone. Their perceived noise levels are typically dominated by broadband noise caused by the rotor wake turbulence - stator interaction mechanism. A 106 bladed, 1100 ft/sec takeoff tip speed fan, the Alternative Low Noise Fan, has been tested and shown to have reduced broadband noise. This reduced noise is believed to be the result of the high rotor blade number. Although this fan with 106 blades would not be practical with materials as they exist today, a fan with 50 or so blades could be practically realized. A noise estimate has indicated that such a 50 bladed, low tip speed fan could be 2 to 3 EPNdB quieter than an 18 bladed fan. If achieved, this level of noise reduction would be significant and points to the use of a high blade number, low tip speed fan as a possible configuration for reduced fan noise.

  13. Advanced turboprop noise prediction: Development of a code at NASA Langley based on recent theoretical results

    NASA Technical Reports Server (NTRS)

    Farassat, F.; Dunn, M. H.; Padula, S. L.

    1986-01-01

    The development of a high speed propeller noise prediction code at Langley Research Center is described. The code utilizes two recent acoustic formulations in the time domain for subsonic and supersonic sources. The structure and capabilities of the code are discussed. Grid size study for accuracy and speed of execution on a computer is also presented. The code is tested against an earlier Langley code. Considerable increase in accuracy and speed of execution are observed. Some examples of noise prediction of a high speed propeller for which acoustic test data are available are given. A brisk derivation of formulations used is given in an appendix.

  14. LES of a ducted propeller with rotor and stator in crashback

    NASA Astrophysics Data System (ADS)

    Jang, Hyunchul; Mahesh, Krishnan

    2012-11-01

    A sliding interface method is developed for large eddy simulation (LES) of flow past ducted propellers with both rotor and stator. The method is developed for arbitrarily shaped unstructured elements on massively parallel computing platforms. Novel algorithms for searching sliding elements, interpolation at the sliding interface, and data structures for message passing are developed. We perform LES of flow past a ducted propeller with stator blades in the crashback mode of operation, where a marine vessel is quickly decelerated by rotating the propeller in reverse. The unsteady loads predicted by LES are in good agreement with experiments. A highly unsteady vortex ring is observed outside the duct. High pressure fluctuations are observed near the blade tips, which significantly contribute to the side-force. This work is supported by the United States Office of Naval Research.

  15. Effect of wing-tip dihedral on the longitudinal and lateral aerodynamic characteristics of a supersonic cruise configuration at subsonic speeds

    NASA Technical Reports Server (NTRS)

    Washburn, K. E.; Gloss, B. B.

    1976-01-01

    Force and moment data studies were conducted to determine the effect of wing-tip dihedral on the longitudinal and lateral aerodynamic characteristics of a supersonic cruise fighter configuration. Oil flow studies were also performed to investigate the model surface flow. Three models were tested: a flat (0 deg dihedral) wing tip, a dihedral, and an anhedral wing tip. The tests were conducted at the NASA Langley high-speed 7- by 10-foot wind tunnel.

  16. Aerospace Laser Ignition/Ablation Variable High Precision Thruster

    NASA Technical Reports Server (NTRS)

    Campbell, Jonathan W. (Inventor); Edwards, David L. (Inventor); Campbell, Jason J. (Inventor)

    2015-01-01

    A laser ignition/ablation propulsion system that captures the advantages of both liquid and solid propulsion. A reel system is used to move a propellant tape containing a plurality of propellant material targets through an ignition chamber. When a propellant target is in the ignition chamber, a laser beam from a laser positioned above the ignition chamber strikes the propellant target, igniting the propellant material and resulting in a thrust impulse. The propellant tape is advanced, carrying another propellant target into the ignition chamber. The propellant tape and ignition chamber are designed to ensure that each ignition event is isolated from the remaining propellant targets. Thrust and specific impulse may by precisely controlled by varying the synchronized propellant tape/laser speed. The laser ignition/ablation propulsion system may be scaled for use in small and large applications.

  17. Light controlled 3D micromotors powered by bacteria

    NASA Astrophysics Data System (ADS)

    Vizsnyiczai, Gaszton; Frangipane, Giacomo; Maggi, Claudio; Saglimbeni, Filippo; Bianchi, Silvio; di Leonardo, Roberto

    2017-06-01

    Self-propelled bacteria can be integrated into synthetic micromachines and act as biological propellers. So far, proposed designs suffer from low reproducibility, large noise levels or lack of tunability. Here we demonstrate that fast, reliable and tunable bio-hybrid micromotors can be obtained by the self-assembly of synthetic structures with genetically engineered biological propellers. The synthetic components consist of 3D interconnected structures having a rotating unit that can capture individual bacteria into an array of microchambers so that cells contribute maximally to the applied torque. Bacterial cells are smooth swimmers expressing a light-driven proton pump that allows to optically control their swimming speed. Using a spatial light modulator, we can address individual motors with tunable light intensities allowing the dynamic control of their rotational speeds. Applying a real-time feedback control loop, we can also command a set of micromotors to rotate in unison with a prescribed angular speed.

  18. Fast Magnetic Micropropellers with Random Shapes

    PubMed Central

    2015-01-01

    Studying propulsion mechanisms in low Reynolds number fluid has implications for many fields, ranging from the biology of motile microorganisms and the physics of active matter to micromixing in catalysis and micro- and nanorobotics. The propulsion of magnetic micropropellers can be characterized by a dimensionless speed, which solely depends on the propeller geometry for a given axis of rotation. However, this dependence has so far been only investigated for helical propeller shapes, which were assumed to be optimal. In order to explore a larger variety of shapes, we experimentally studied the propulsion properties of randomly shaped magnetic micropropellers. Surprisingly, we found that their dimensionless speeds are high on average, comparable to previously reported nanofabricated helical micropropellers. The highest dimensionless speed we observed is higher than that of any previously reported propeller moving in a low Reynolds number fluid, proving that physical random shape generation can be a viable optimization strategy. PMID:26383225

  19. Light controlled 3D micromotors powered by bacteria

    PubMed Central

    Vizsnyiczai, Gaszton; Frangipane, Giacomo; Maggi, Claudio; Saglimbeni, Filippo; Bianchi, Silvio; Di Leonardo, Roberto

    2017-01-01

    Self-propelled bacteria can be integrated into synthetic micromachines and act as biological propellers. So far, proposed designs suffer from low reproducibility, large noise levels or lack of tunability. Here we demonstrate that fast, reliable and tunable bio-hybrid micromotors can be obtained by the self-assembly of synthetic structures with genetically engineered biological propellers. The synthetic components consist of 3D interconnected structures having a rotating unit that can capture individual bacteria into an array of microchambers so that cells contribute maximally to the applied torque. Bacterial cells are smooth swimmers expressing a light-driven proton pump that allows to optically control their swimming speed. Using a spatial light modulator, we can address individual motors with tunable light intensities allowing the dynamic control of their rotational speeds. Applying a real-time feedback control loop, we can also command a set of micromotors to rotate in unison with a prescribed angular speed. PMID:28656975

  20. Concept and performance study of turbocharged solid propellant ramjet

    NASA Astrophysics Data System (ADS)

    Li, Jiang; Liu, Kai; Liu, Yang; Liu, Shichang

    2018-06-01

    This study proposes a turbocharged solid propellant ramjet (TSPR) propulsion system that integrates a turbocharged system consisting of a solid propellant (SP) air turbo rocket (ATR) and the fuel-rich gas generator of a solid propellant ramjet (SPR). First, a suitable propellant scheme was determined for the TSPR. A solid hydrocarbon propellant is used to generate gas for driving the turbine, and a boron-based fuel-rich propellant is used to provide fuel-rich gas to the afterburner. An appropriate TSPR structure was also determined. The TSPR's thermodynamic cycle was analysed to prove its theoretical feasibility. The results showed that the TSPR's specific cycle power was larger than those of SP-ATR and SPR and thermal efficiency was slightly less than that of SP-ATR. Overall, TSPR showed optimal performance in a wide flight envelope. The specific impulses and specific thrusts of TSPR, SP-ATR, and SPR in the flight envelope were calculated and compared. TSPR's flight envelope roughly overlapped that of SP-ATR, its specific impulse was larger than that of SP-ATR, and its specific thrust was larger than those of SP-ATR and SPR. Attempts to improve the TSPR off-design performance prompted our proposal of a control plan for off-design codes in which both the turbocharger corrected speed and combustor excess gas coefficient are kept constant. An off-design performance model was established by analysing the TSPR working process. We concluded that TSPR with a constant corrected speed had wider flight envelope, higher thrust, and higher specific impulse than TSPR with a constant physical speed determined by calculating the performance of off-design TSPR codes under different control plans. The results of this study can provide a reference for further studies on TSPRs.

  1. Influence of wing tip morphology on vortex dynamics of flapping flight

    NASA Astrophysics Data System (ADS)

    Krishna, Swathi; Mulleners, Karen

    2013-11-01

    The mechanism of flapping wing flight provides insects with extraordinary flight capabilities. The uniquely shaped wing tips give insects an edge in flight performance and the interaction between the leading edge vortices and wing tip vortices enhance their propelling efficiencies and manoeuvrability. These are qualities that are sought after in current-day Micro Air Vehicles. A detailed understanding of the vortex dynamics of flapping flight and the influence of the wing tip planform is imperative for technical application. An experimental study is conducted to investigate the effects of different wing tip planforms on the formation, evolution and interaction of vortical structures. We thereby focus on the interaction between the coherent structures evolving from the leading edge and the wing tip during pitching and flapping motions.The spatial and temporal evolution of the three-dimensional flow structures are determined using Scanning (Stereo) Particle Image Velocimetry and an in-depth coherent structure analysis. By comparing the vortex dynamics, the aerodynamic performance of various wing tip planforms are evaluated.

  2. A Nuclear Ramjet Flyer for Exploration of Jovian Atmosphere

    NASA Astrophysics Data System (ADS)

    Maise, G.; Powell, J.; Paniagua, J.; Lecat, R.

    2001-01-01

    We investigated the design, operation, and data gathering possibilities of a nuclear-powered ramjet flyer in the Jovian atmosphere. The MITEE nuclear rocket engine can be modified to operate as a ramjet in planetary atmospheres. (Note: MITEE is a compact, ultra-light-weight thermal nuclear rocket which uses hydrogen as the propellant.) To operate as a ramjet, MITEE requires a suitable inlet and diffuser to substitute for the propellant that is pumped from the supply tanks in a nuclear rocket engine. Such a ramjet would fly in the upper Jovian atmosphere, mapping in detail temperatures, pressures, compositions, lightning activity, and wind speeds in the highly turbulent equatorial zone and the Great Red Spot. The nuclear ramjet could operate for months because: (1) the Jovian atmosphere has unlimited propellant, (2) the MITEE nuclear reactor is a (nearly) unlimited power source, and (3) with few moving parts, mechanical wear should be minimal. This paper presents a conceptual design of a ramjet flyer and its nuclear engine. The flyer incorporates a swept-wing design with instruments located in the twin wing-tip pods (away from the radiation source and readily shielded, if necessary). The vehicle is 2 m long with a 2 m wingspan. Its mass is 220 kg, and its nominal flight Mach number is 1.5. Based on combined neutronic and thermal/hydraulic analyses, we calculated that the ambient pressure range over which the flyer can operate to be from about 0.04 to 4 (terrestrial) atmospheres. This altitude range encompasses the three uppermost cloud layers in the Jovian atmosphere: (1) the entire uppermost visible NH3 ice cloud layer (where lightning has been observed), (2) the entire NH4HS ice cloud layer, and (3) the upper portion of the H2O ice cloud layer.

  3. Interior noise levels of two propeller-driven light aircraft

    NASA Technical Reports Server (NTRS)

    Catherines, J. J.; Mayes, W. H.

    1975-01-01

    The relationships between aircraft operating conditions and interior noise and the degree to which ground testing can be used in lieu of flight testing for performing interior noise research were studied. The results show that the noise inside light aircraft is strongly influenced by the rotational speed of the engine and propeller. Both the overall noise and low frequency spectra levels were observed to decrease with increasing high speed rpm operations during flight. This phenomenon and its significance is not presently understood. Comparison of spectra obtained in flight with spectra obtained on the ground suggests that identification of frequency components and relative amplitude of propeller and engine noise sources may be evaluated on stationary aircraft.

  4. Towards a renewal of the propeller in aeronautics

    NASA Technical Reports Server (NTRS)

    Berger, D.; Jacquet, P.

    1985-01-01

    The reasons for reconsidering the propeller for aircraft propulsion, the areas of application, and necessary developments are considered. Rising fuel costs and an increasing theoretical and experimental data base for turboprop engines have demonstrated that significant cost savings can be realized by the use of propellers. Propellers are well-suited to powering aircraft traveling at speeds up to Mach 0.65. Work is progressing on the development of a 150 seat aircraft which has a cruise speed of Mach 0.8, powered by a turboprop attached to an engine of 15,000 shp. Aeroelasticity analyses ae necessary in order to characterize the behavior of thin profile propfan blades, particularly to predict the oscillations through the entire functional range. High-power reducers must be developed, and the level of cabin noise must be controlled to less than 90 dB. Commercial applications are predicted for turboprops in specific instances.

  5. Low-speed stability and control characteristics of a transport model with aft-fuselage-mounted advanced turboprops

    NASA Technical Reports Server (NTRS)

    Applin, Z. T.; Coe, P. L., Jr.

    1986-01-01

    A limited experimental investigation was conducted in the Langley 4- by 7-Meter Tunnel to explore the effects of aft-fuselage-mounted advanced turboprop installations on the low-speed stability and control characteristics of a representative transport aircraft in a landing configuration. In general, the experimental results indicate that the longitudinal and lateral-directional stability characteristics for the aft-fuselage-mounted single-rotation tractor and counter-rotation pusher propeller configurations tested during this investigation are acceptable aerodynamically. For the single-rotation tractor configuration, the propeller-induced aerodynamics are significantly influenced by the interaction of the propeller slipstream with the pylon and nacelle. The stability characteristics for the counter-rotation pusher configuration are strongly influenced by propeller normal forces. The longitudinal and directional control effectiveness, engine-out characteristics, and ground effects are also presented. In addition, a tabulated presentation of all aerodynamic data presented in this report is included as an appendix.

  6. In-flight measurements of aircraft propeller deformation by means of an autarkic fast rotating imaging system

    NASA Astrophysics Data System (ADS)

    Stasicki, Boleslaw; Boden, Fritz

    2015-03-01

    The non-intrusive in-flight measurement of the deformation and pitch of the aircraft propeller is a demanding task. The idea of an imaging system integrated and rotating with the aircraft propeller has been presented on the 30th International Congress on High-Speed Imaging and Photonics (ICHSIP30) in 2012. Since then this system has been constructed and tested in the laboratory as well as on the real aircraft. In this paper we outline the principle of Image Pattern Correlation Technique (IPCT) based on Digital Image Correlation (DIC) and describe the construction of a dedicated autarkic 3D camera system placed on the investigated propeller and rotating at its full speed. Furthermore, the results of the first ground and in-flight tests are shown and discussed. This development has been found by the European Commission within the 7th frame project AIM2 (contract no. 266107).

  7. Small Propeller and Rotor Testing Capabilities of the NASA Langley Low Speed Aeroacoustic Wind Tunnel

    NASA Technical Reports Server (NTRS)

    Zawodny, Nikolas S.; Haskin, Henry H.

    2017-01-01

    The Low Speed Aeroacoustic Wind Tunnel (LSAWT) at NASA Langley Research Center has recently undergone a configuration change. This change incorporates an inlet nozzle extension meant to serve the dual purposes of achieving lower free-stream velocities as well as a larger core flow region. The LSAWT, part of the NASA Langley Jet Noise Laboratory, had historically been utilized to simulate realistic forward flight conditions of commercial and military aircraft engines in an anechoic environment. The facility was modified starting in 2016 in order to expand its capabilities for the aerodynamic and acoustic testing of small propeller and unmanned aircraft system (UAS) rotor configurations. This paper describes the modifications made to the facility, its current aerodynamic and acoustic capabilities, the propeller and UAS rotor-vehicle configurations to be tested, and some preliminary predictions and experimental data for isolated propeller and UAS rotor con figurations, respectively. Isolated propeller simulations have been performed spanning a range of advance ratios to identify the theoretical propeller operational limits of the LSAWT. Performance and acoustic measurements of an isolated UAS rotor in hover conditions are found to compare favorably with previously measured data in an anechoic chamber and blade element-based acoustic predictions.

  8. Low-speed wind tunnel investigation of the static stability and control characteristics of an advanced turboprop configuration with the propellers placed over the tail. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Rhodes, Graham Scott

    1990-01-01

    An exploratory wind tunnel investigation was performed in the 30 x 60 foot wind tunnel to determine the low speed static stability and control characteristics into the deep stall regime of an advanced turboprop aircraft with the propellers located over the horizontal tail. By this arrangement, the horizontal tail could potentially provide acoustic shielding to reduce the high community noise caused by the propeller blades. The current configuration was a generic turboprop model equipped with 1 foot diameter single rotating eight bladed propellers that were designed for efficient cruise operation at a Mach number of 0.8. The data presented is static force data. The effects of power on the configuration characteristics were generally favorable. An arrangement with the propellers rotating with the outboard blades moving down was found to have significantly higher installed thrust than an arrangement with the propellers rotating with the inboard blades moving down. The primary unfavorable effect was a large pitch trim change which occurred with power, but the trim change could be minimized with a proper configuration design.

  9. Aerodynamics of tip-reversal upstroke in a revolving pigeon wing.

    PubMed

    Crandell, Kristen E; Tobalske, Bret W

    2011-06-01

    During slow flight, bird species vary in their upstroke kinematics using either a 'flexed wing' or a distally supinated 'tip-reversal' upstroke. Two hypotheses have been presented concerning the function of the tip-reversal upstroke. The first is that this behavior is aerodynamically inactive and serves to minimize drag. The second is that the tip-reversal upstroke is capable of producing significant aerodynamic forces. Here, we explored the aerodynamic capabilities of the tip-reversal upstroke using a well-established propeller method. Rock dove (Columba livia, N=3) wings were spread and dried in postures characteristic of either mid-upstroke or mid-downstroke and spun at in vivo Reynolds numbers to simulate forces experienced during slow flight. We compared 3D wing shape for the propeller and in vivo kinematics, and found reasonable kinematic agreement between methods (mean differences 6.4% of wing length). We found that the wing in the upstroke posture is capable of producing substantial aerodynamic forces. At in vivo angles of attack (66 deg at mid-upstroke, 46 deg at mid-downstroke), the upstroke wings averaged for three birds produced a lift-to-drag ratio of 0.91, and the downstroke wings produced a lift-to-drag ratio of 3.33. Peak lift-to-drag ratio was 2.5 for upstroke and 6.3 for downstroke. Our estimates of total force production during each half-stroke suggest that downstroke produces a force that supports 115% of bodyweight, and during upstroke a forward-directed force (thrust) is produced at 36% of body weight.

  10. Performance and noise of a low pressure ratio variable pitch fan designed for general aviation applications. [Langley 30 x 60 Tunnel

    NASA Technical Reports Server (NTRS)

    Metzger, F. B.; Menthe, R. W.; Mccolgan, C. J.

    1980-01-01

    A limited study has been conducted to establish the performance and noise characteristics of a low design tip speed (168 m/s, 550 ft/sec) low pressure ratio (1.04) variable pitch fan which was tested in the Langley 30 X 60 tunnel. This fan was designed for minimum noise when installed in the tail mount location of a twin engine aircraft which normally has both nose and tail mounted propulsors. Measurements showed the fan noise to be very close to predictions made during the design of the fan and extremely low in level (65 dBA at 1000 ft) with no acoustic treatment. This is about 8 dB lower than the unshrouded 2 blade propeller normally used in this installation. On the basis of tests conducted during this program, it appears that this level could be further reduced by 2 dBA if optimized acoustic treatments were installed in the fan duct. Even the best of the shrouded propellers tested previously were 7 dB higher in level than the Q-Fan without acoustic treatment. It was found that the cruise performance of this fan was within 5% of the predicted efficiency of 72%. Evaluation of the performance data indicated that disturbances in the inflow to the fan were the probable cause of the reduced performance.

  11. Tip clearance effects on loads and performances of semi-open impeller centrifugal pumps at different specific speeds

    NASA Astrophysics Data System (ADS)

    Boitel, G.; Fedala, D.; Myon, N.

    2016-11-01

    Relevant industrial standards or customer's specifications could strictly forbid any device adjusting the axial rotor/stator position, so that tip clearance between semi-open impeller and casing might become a result of the pump machining tolerances and assembling process, leading to big tip clearance variations compared to its nominal value. Consequently, large disparities of global performances (head, power, efficiency) and axial loads are observed with high risk of both specifications noncompliance and bearing damages. This work aims at quantifying these variations by taking into account tip clearance value and pump specific speed. Computational Fluid Dynamics is used to investigate this phenomenon by means of steady simulations led on a semi-open centrifugal pump numerical model including secondary flows, based on a k-omega SST turbulence model. Four different specific speed pump sizes are simulated (from 8 to 50, SI units), with three tip clearances for each size on a wide flow range (from 40% to 120% of the best efficiency point). The numerical results clearly show that head, power and efficiency increase as the tip clearance decreases for the whole flow range. This effect is more significant when the specific speed is low. Meanwhile, the resulting axial thrust on the impeller is very sensitive to the tip clearance and can even lead to direction inversion.

  12. Holographic Investigation of Solid Propellant Particulates.

    DTIC Science & Technology

    1981-12-01

    4~ .A*4 ~.Zwe SOUMVV Ch.&4 0IVC&TIN 0 e*9 066so. 4 evt’ o R..e High speed, high resolution motion pictures were taken to compare the cinematic data...propellant. High speed, high resolution motion pictures were taken to compare the cinematic data with that available from the holograms. TABLE OF...of the motor ignition system, the repeatability of the pressure-time trace, and the timing of the cinematic /holographic obser- vation. The current

  13. Approach Considerations in Aircraft with High-Lift Propeller Systems

    NASA Technical Reports Server (NTRS)

    Patterson, Michael D.; Borer, Nicholas K.

    2017-01-01

    NASA's research into distributed electric propulsion (DEP) includes the design and development of the X-57 Maxwell aircraft. This aircraft has two distinct types of DEP: wingtip propellers and high-lift propellers. This paper focuses on the unique opportunities and challenges that the high-lift propellers--i.e., the small diameter propellers distributed upstream of the wing leading edge to augment lift at low speeds--bring to the aircraft performance in approach conditions. Recent changes to the regulations related to certifying small aircraft (14 CFR x23) and these new regulations' implications on the certification of aircraft with high-lift propellers are discussed. Recommendations about control systems for high-lift propeller systems are made, and performance estimates for the X-57 aircraft with high-lift propellers operating are presented.

  14. Resonance vibrations of aircraft propellers

    NASA Technical Reports Server (NTRS)

    Liebers, Fritz

    1932-01-01

    On the basis of the consideration of various possible kinds of propeller vibrations, the resonance vibrations caused by unequal impacts of the propeller blades appear to be the most important. Their theoretical investigation is made by separate analysis of torsional and bending vibrations. This method is justified by the very great difference in the two natural frequencies of aircraft propeller blades. The calculated data are illustrated by practical examples. Thereby the observed vibration phenomenon in the given examples is explained by a bending resonance, for which the bending frequency of the propeller is equal to twice the revolution speed.

  15. Evaluation of aero commander propeller acoustic data: Taxi operations

    NASA Technical Reports Server (NTRS)

    Piersol, A. G.; Wilby, E. G.; Wilby, J. F.

    1979-01-01

    The acoustic data from ground tests performed on an Aero Commander propeller driven aircraft are analyzed. An array of microphones flush mounted on the side of the fuselage were used to record data. The propeller blade passage noise during operations at several different taxi speeds is considered and calculations of the magnitude and phase of the blade passage tones, the amplitude stability of the tones, and the spatial phase and coherence of the tones are included. The measured results are compared to theoretical predictions for propeller noise and various evaluations which reveal important details of propeller noise characteristics are presented.

  16. On the prediction of far field computational aeroacoustics of advanced propellers

    NASA Technical Reports Server (NTRS)

    Jaeger, Stephen M.; Korkan, Kenneth D.

    1990-01-01

    A numerical method for determining the acoustic far field generated by a high-speed subsonic aircraft propeller was developed. The approach used in this method was to generate the entire three-dimensional pressure field about the propeller (using an Euler flowfield solver) and then to apply a solution of the wave equation on a cylindrical surface enveloping the propeller. The method is applied to generate the three-dimensional flowfield between two blades of an advanced propeller. The results are compared with experimental data obtained in a wind-tunnel test at a Mach number of 0.6.

  17. Liquid-metal-fed Pulsed Plasma Thrusters for In-space Propulsion

    NASA Technical Reports Server (NTRS)

    Markusic, Thomas E.

    2004-01-01

    Liquid metal propellants may provide a path toward more reliable and efficient pulsed plasma thrusters (PPTs). Conceptual thruster designs which eliminate the need for high current switches and propellant metering valves are described. Propellant loading techniques are suggested that show promise to increase thruster propellant utilization, dynamic, and electrical efficiency. Calibration results from a compact, electromagnetically-pumped propellant feed system are presented. Results for lithium and gallium propellants show capability to meter propellant at flow rates up to 10 +/- 0.1 mg/s. Experiments investigating the initiation of arc discharges using liquid metal droplets are presented. High speed photography and laser interferometry provide spatially and temporally resolved information on the decomposition of liquid metal droplets , and the evolution of the accelerating current channel.

  18. Speedboat Propeller Injuries

    PubMed Central

    Sleight, M. W.

    1974-01-01

    Six patients are reported who were severely injured by high-speed boat propellers. With reasonable precautions such accidents need never occur, and people should be more aware of these and ensure that safety measures are enforced. ImagesFIG. 1FIG. 2 PMID:4835301

  19. Flow prediction for propfan engine installation effects on transport aircraft at transonic speeds

    NASA Technical Reports Server (NTRS)

    Samant, S. S.; Yu, N. J.

    1986-01-01

    An Euler-based method for aerodynamic analysis of turboprop transport aircraft at transonic speeds has been developed. In this method, inviscid Euler equations are solved over surface-fitted grids constructed about aircraft configurations. Propeller effects are simulated by specifying sources of momentum and energy on an actuator disc located in place of the propeller. A stripwise boundary layer procedure is included to account for the viscous effects. A preliminary version of an approach to embed the exhaust plume within the global Euler solution has also been developed for more accurate treatment of the exhaust flow. The resulting system of programs is capable of handling wing-body-nacelle-propeller configurations. The propeller disks may be tractors or pushers and may represent single or counterrotation propellers. Results from analyses of three test cases of interest (a wing alone, a wing-body-nacelle model, and a wing-nacelle-endplate model) are presented. A user's manual for executing the system of computer programs with formats of various input files, sample job decks, and sample input files is provided in appendices.

  20. Aerodynamic characteristics of a propeller-powered high-lift semispan wing

    NASA Technical Reports Server (NTRS)

    Gentry, Garl L., Jr.; Takallu, M. A.; Applin, Zachary T.

    1994-01-01

    A small-scale semispan high-lift wing-flap system equipped under the wing with a turboprop engine assembly was tested in the LaRC 14- by 22-Foot Subsonic Tunnel. Experimental data were obtained for various propeller rotational speeds, nacelle locations, and nacelle inclinations. To isolate the effects of the high lift system, data were obtained with and without the flaps and leading-edge device. The effects of the propeller slipstream on the overall longitudinal aerodynamic characteristics of the wing-propeller assembly were examined. Test results indicated that the lift coefficient of the wing could be increased by the propeller slipstream when the rotational speed was increased and high-lift devices were deployed. Decreasing the nacelle inclination (increased pitch down) enhanced the lift performance of the system much more than varying the vertical or horizontal location of the nacelle. Furthermore, decreasing the nacelle inclination led to higher lift curve slope values, which indicated that the powered wing could sustain higher angles of attack near maximum lift performance. Any lift augmentation was accompanied by a drag penalty due to the increased wing lift.

  1. Optimum acoustic design of free-running low speed propellers

    NASA Technical Reports Server (NTRS)

    Ormsbee, A. I.; Woan, C. J.

    1977-01-01

    A theoretical analysis is conducted concerning the effect of blade loading on the noise output of a free-running propeller in axial motion. The minimization of the mean square sound pressure at a point in space is considered, taking into account constraints on propeller thrust and torque. Attention is given to aerodynamic equations, acoustic equations, the expansion of the aerodynamic variables, and the nonlinear programming formulation.

  2. The screw propeller

    NASA Astrophysics Data System (ADS)

    Larrabee, E. E.

    1980-07-01

    Marine and air screw propellers are considered in terms of theoretical hydrodynamics as developed by Joukowsky, Prandtl, and Betz. Attention is given to the flow around wings of finite span where spanwise flow exists and where lift and the bound vorticity must all go smoothly to zero at the wing tips. The concept of a trailing vortex sheet made up of infinitesimal line vortexes roughly aligned with the direction of flight is discussed in this regard. Also considered is induced velocity, which tends to convect the sheet downward at every stage in the roll-up process, the vortex theory of propellers and the Betz-Prandtl circulation distribution. The performance of the Gossamer Albatross and of a pedal-driven biplane called the Chrysalis are also discussed.

  3. Design Study of Propulsion and Drive Systems for the Large Civil TiltRotor (LCTR2) Rotorcraft

    NASA Technical Reports Server (NTRS)

    Robuck, Mark; Wilkerson, Joseph; Zhang, Yiyi; Snyder, Christopher A.; Vonderwell, Daniel

    2013-01-01

    Boeing, Rolls Royce, and NASA have worked together to complete a parametric sizing study for NASA's Large Civil Tilt Rotor (LCTR2) concept 2nd iteration. Vehicle gross weight and fuel usage were evaluated as propulsion and drive system characteristics were varied to maximize the benefit of reduced rotor tip speed during cruise conditions. The study examined different combinations of engine and gearbox variability to achieve rotor cruise tip speed reductions down to 54% of the hover tip speed. Previous NASA studies identified that a 54% rotor speed reduction in cruise minimizes vehicle gross weight and fuel burn. The LCTR2 was the study baseline for initial sizing. This study included rotor tip speed ratios (cruise to hover) of 100%, 77% and 54% at different combinations of engine RPM and gearbox speed reductions, which were analyzed to achieve the lightest overall vehicle gross weight (GW) at the chosen rotor tip speed ratio. Different engine and gearbox technology levels are applied ranging from commercial off-the-shelf (COTS) engines and gearbox technology to entry-in-service (EIS) dates of 2025 and 2035 to assess the benefits of advanced technology on vehicle gross weight and fuel burn. Interim results were previously reported1. This technical paper extends that work and summarizes the final study results including additional engine and drive system study accomplishments. New vehicle sizing data is presented for engine performance at a single operating speed with a multispeed drive system. Modeling details for LCTR2 vehicle sizing and subject engine and drive sub-systems are presented as well. This study was conducted in support of NASA's Fundamental Aeronautics Program, Subsonic Rotary Wing Project.

  4. Preliminary Results of an Altitude-Wind-Tunnel Investigation of a TG-100A Gas Turbine-Propeller Engine. 3; Pressure and Temperature Distributions

    NASA Technical Reports Server (NTRS)

    Geisenheyner, Robert M.; Berdysz, Joseph J.

    1947-01-01

    An altitude-wind-tunnel investigation of a TG-100A gas turbine-propeller engine was performed. Pressure and temperature data were obtained at altitudes from 5000 to 35000 feet, compressor inlet ram-pressure ratios from 1.00 to 1.17, and engine speeds from 800 to 13000 rpm. The effect of engine speed, shaft horsepower, and compressor-inlet ram-pressure ratio on pressure and temperature distribution at each measuring station are presented graphically.

  5. Self-Propelled Motion of Monodisperse Underwater Oil Droplets Formed by a Microfluidic Device.

    PubMed

    Ueno, Naoko; Banno, Taisuke; Asami, Arisa; Kazayama, Yuki; Morimoto, Yuya; Osaki, Toshihisa; Takeuchi, Shoji; Kitahata, Hiroyuki; Toyota, Taro

    2017-06-06

    We evaluated the speed profile of self-propelled underwater oil droplets comprising a hydrophobic aldehyde derivative in terms of their diameter and the surrounding surfactant concentration using a microfluidic device. We found that the speed of the oil droplets is dependent on not only the surfactant concentration but also the droplet size in a certain range of the surfactant concentration. This tendency is interpreted in terms of combination of the oil and surfactant affording spontaneous emulsification in addition to the Marangoni effect.

  6. [Characteristics and mechanism of boat propeller injuries].

    PubMed

    Yu, Song; Shen, Yi-Wen; Xue, Ai-Min

    2008-02-01

    To summarize the characteristics and investigate the mechanisms of boat propeller injuries so as to explore the identification methods between boat propeller injuries and corpse dismemberment. More than 100 autopsy cases of boat propeller injuries were collected in a period between 1994 and 2005 in Huzhou district, Zhejiang province. The characteristics of injuries caused by propeller, including abrasion, wound, fracture and severed wound, and the characteristics of clothing, were retrospectively studied and summarized. The severed cross wound section of boat propeller injuries was compared with that caused by corpse dismemberment. The boat propeller injuries were resulted from high-speed propellers with enormous splitting power and mechanical cutting, while corpse dismemberment were resulted from cutting and dismembering the body with sharp instruments. Due to the different mechanisms, the different strength of force and recoil force, the severed wound cross section had different characteristics. Wounds caused by boat propeller injuries have their unique characteristics, distinguished from wounds of dismembered corpse.

  7. A Brief Study of the Speed Reduction of Overtaking Airplanes by Means of Air Brakes, Special Report

    NASA Technical Reports Server (NTRS)

    Pearson, H. A.; Amderspm. R. F.

    1942-01-01

    As an aid to airplane designers interested in providing pursuit airplanes with decelerating devices intended to increase the firing time when overtaking another airplane, formulas are given relating the pertinent distances and speeds in horizontal flight to the drag increase required. Charts are given for a representative parasite-drag coefficient from which the drag increase, the time gained, and the closing distance may be found. The charts are made up for three values of the ratio of the final speed of the pursuing airplane to the speed of the pursued airplane and for several values of the ratio of the speed of the pursued airplane to the initial speed of the pursuing airplane. Charts are also given indicating the drag increases obtainable with double split flaps and with conventional propellers. The use of the charts is illustrated by an example in which it is indicated that either double split flaps or, under certain ideal conditions, reversible propellers should provide the speed reductions required.

  8. High loading, 1800 ft/sec tip speed, transonic compressor fan stage. 2: Final report

    NASA Technical Reports Server (NTRS)

    Morris, A. L.; Sulam, D. H.

    1972-01-01

    Tests were conducted on a 0.5 hub/tip ratio, single-stage fan-compressor designed to produce a pressure ratio of 2.285 an efficiency of 84 percent with a rotor tip speed of 1800 feet per second. A peak efficiency of 82 percent was achieved by the stage at a stall margin of 6.5 percent. Tests showed that stall-limit line was slightly sensitive to tip-radial distortion, but stall-line improvements were noted when the stage was subjected to circumferential and hub-radial flow distortions. Rotor blade passage and trailing edge shock positions were inferred from static pressure contours over the rotor tips.

  9. Note: High-speed Z tip scanner with screw cantilever holding mechanism for atomic-resolution atomic force microscopy in liquid

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reza Akrami, Seyed Mohammad; Miyata, Kazuki; Asakawa, Hitoshi

    High-speed atomic force microscopy has attracted much attention due to its unique capability of visualizing nanoscale dynamic processes at a solid/liquid interface. However, its usability and resolution have yet to be improved. As one of the solutions for this issue, here we present a design of a high-speed Z-tip scanner with screw holding mechanism. We perform detailed comparison between designs with different actuator size and screw arrangement by finite element analysis. Based on the design giving the best performance, we have developed a Z tip scanner and measured its performance. The measured frequency response of the scanner shows a flatmore » response up to ∼10 kHz. This high frequency response allows us to achieve wideband tip-sample distance regulation. We demonstrate the applicability of the scanner to high-speed atomic-resolution imaging by visualizing atomic-scale calcite crystal dissolution process in water at 2 s/frame.« less

  10. Hydrogen test of a small, low specific speed centrifugal pump stage

    NASA Technical Reports Server (NTRS)

    1991-01-01

    A small, low specific speed centrifugal pump stage with a 2 inch tip diameter, .030 inch tip width shrouded impeller and volute collector was tested with liquid hydrogen as the pumped fluid. The hydrodynamic design of the pump stage is summarized and the noncavitating and cavitating performance results are presented. Test speeds were 60 and 80 percent of the 77,000 rpm design speed. Liquid hydrogen test results are compared with data from previous tests of the stage in water.

  11. Fiber-optic laser Doppler turbine tip clearance probe

    NASA Astrophysics Data System (ADS)

    Büttner, Lars; Pfister, Thorsten; Czarske, Jürgen

    2006-05-01

    A laser Doppler based method for in situ single blade tip clearance measurements of turbomachines with high precision is presented for what we believe is the first time. The sensor is based on two superposed fanlike interference fringe systems generated by two laser wavelengths from a fiber-coupled, passive, and therefore compact measurement head employing diffractive optics. Tip clearance measurements at a transonic centrifugal compressor performed during operation at 50,000 rpm (833 Hz, 586 m/s tip speed) are reported. At these speeds the measured uncertainty of the tip position was less than 20 μm, a factor of 2 more accurate than that of capacitive probes. The sensor offers great potential for in situ and online high-precision tip clearance measurements of metallic and nonmetallic turbine blades.

  12. Fiber-optic laser Doppler turbine tip clearance probe.

    PubMed

    Büttner, Lars; Pfister, Thorsten; Czarske, Jürgen

    2006-05-01

    A laser Doppler based method for in situ single blade tip clearance measurements of turbomachines with high precision is presented for what we believe is the first time. The sensor is based on two superposed fanlike interference fringe systems generated by two laser wavelengths from a fiber-coupled, passive, and therefore compact measurement head employing diffractive optics. Tip clearance measurements at a transonic centrifugal compressor performed during operation at 50,000 rpm (833 Hz, 586 m/s tip speed) are reported. At these speeds the measured uncertainty of the tip position was less than 20 microm, a factor of 2 more accurate than that of capacitive probes. The sensor offers great potential for in situ and online high-precision tip clearance measurements of metallic and nonmetallic turbine blades.

  13. Effects of a Forward-swept Front Rotor on the Flowfield of a Counterrotation Propeller

    NASA Technical Reports Server (NTRS)

    Nallasamy, M.; Podboy, Gary G.

    1994-01-01

    The effects of a forward-swept front rotor on the flowfield of a counterrotation model propeller at takeoff conditions at zero degree angle of attack are studied by solving the unsteady three-dimensional Euler equations. The configuration considered is an uneven blade count counterrotation model with twelve forward-swept blades on the fore rotor and ten aft-swept blades on the aft rotor. The flowfield is compared with that of a reference aft-swept counterrotation geometry and Laser Doppler Velocimeter (LDV) measurements. At the operating conditions considered, the forward-swept blade experiences a higher tip loading and produces a stronger tip vortex compared to the aft-swept blade, consistent with the LDV and acoustic measurements. Neither the solution nor the LDV data indicated the formation of a leading edge vortex. The predicted radial distribution of the circumferentially averaged axial velocity at the measurement station agreed very closely with LDV data, while crossflow velocities showed poor agreement. The discrepancy between prediction and LDV data of tangential and radial velocities is due in part to the insufficient mesh resolution in the region between the rotors and in the tip region to track the tip vortex. The vortex is diffused by the time it arrives at the measurement station. The uneven blade count configuration requires the solution to be carried out for six blade passages of the fore rotor and five passages of the aft rotor, thus making grid refinement prohibitive.

  14. Far-field noise and internal modes from a ducted propeller at simulated aircraft takeoff conditions

    NASA Astrophysics Data System (ADS)

    Woodward, Richard P.; Bock, Lawrence A.; Heidelberg, Laurence J.; Hall, David G.

    1992-01-01

    The ducted propeller offers structural and acoustic benefits typical of conventional turbofan engines while retaining much of the aeroacoustic benefits of the unducted propeller. A model Advanced Ducted Propeller (ADP) was tested in the NASA Lewis Low-Speed Anechoic Wind Tunnel at a simulated takeoff velocity of Mach 0.2. The ADP model was designed and manufactured by the Pratt and Whitney Division of United Technologies. The 16-blade rotor ADP was tested with 22- and 40-vane stators to achieve cut-on and cut-off criterion with respect to propagation of the fundamental rotor-stator interaction tone. Additional test parameters included three inlet lengths, three nozzle sizes, two spinner configurations, and two rotor rub strip configurations. The model was tested over a range of rotor blade setting angles and propeller axis angles-of-attack. Acoustic data were taken with a sideline translating microphone probe and with a unique inlet microphone probe which identified inlet rotating acoustic modes. The beneficial acoustic effects of cut-off were clearly demonstrated. A 5 dB fundamental tone reduction was associated with the long inlet and 40-vane sector, which may relate to inlet propeller axis angle-of-attack at rotor speeds of at least 96 percent design.

  15. Far-field noise and internal modes from a ducted propeller at simulated aircraft takeoff conditions

    NASA Astrophysics Data System (ADS)

    Woodward, Richard P.; Bock, Lawrence A.; Heidelberg, Laurence J.; Hall, David G.

    The ducted propeller offers structural and acoustic benefits typical of conventional turbofan engines while retaining much of the aeroacoustic benefits of the unducted propeller. A model Advanced Ducted Propeller (ADP) was tested in the NASA Lewis Low-Speed Anechoic Wind Tunnel at a simulated takeoff velocity of Mach 0.2. The ADP model was designed and manufactured by the Pratt and Whitney Division of United Technologies. The 16-blade rotor ADP was tested with 22- and 40-vane stators to achieve cut-on and cut-off criterion with respect to propagation of the fundamental rotor-stator interaction tone. Additional test parameters included three inlet lengths, three nozzle sizes, two spinner configurations, and two rotor rub strip configurations. The model was tested over a range of rotor blade setting angles and propeller axis angles-of-attack. Acoustic data were taken with a sideline translating microphone probe and with a unique inlet microphone probe which identified inlet rotating acoustic modes. The beneficial acoustic effects of cut-off were clearly demonstrated. A 5 dB fundamental tone reduction was associated with the long inlet and 40-vane sector, which may relate to inlet duct geometry. The fundamental tone level was essentially unaffected by propeller axis angle-of-attack at rotor speeds of at least 96 percent design.

  16. Far-field noise and internal modes from a ducted propeller at simulated aircraft takeoff conditions

    NASA Technical Reports Server (NTRS)

    Woodward, Richard P.; Bock, Lawrence A.; Heidelberg, Laurence J.; Hall, David G.

    1992-01-01

    The ducted propeller offers structural and acoustic benefits typical of conventional turbofan engines while retaining much of the aeroacoustic benefits of the unducted propeller. A model Advanced Ducted Propeller (ADP) was tested in the NASA Lewis Low-Speed Anechoic Wind Tunnel at a simulated takeoff velocity of Mach 0.2. The ADP model was designed and manufactured by the Pratt and Whitney Division of United Technologies. The 16-blade rotor ADP was tested with 22- and 40-vane stators to achieve cut-on and cut-off criterion with respect to propagation of the fundamental rotor-stator interaction tone. Additional test parameters included three inlet lengths, three nozzle sizes, two spinner configurations, and two rotor rub strip configurations. The model was tested over a range of rotor blade setting angles and propeller axis angles-of-attack. Acoustic data were taken with a sideline translating microphone probe and with a unique inlet microphone probe which identified inlet rotating acoustic modes. The beneficial acoustic effects of cut-off were clearly demonstrated. A 5 dB fundamental tone reduction was associated with the long inlet and 40-vane sector, which may relate to inlet duct geometry. The fundamental tone level was essentially unaffected by propeller axis angle-of-attack at rotor speeds of at least 96 percent design.

  17. The Characteristics of Two Model Six-blade Counterrotating Pusher Propellers of Conventional and Improved Aerodynamic Design

    NASA Technical Reports Server (NTRS)

    Pepper, Edward; McHugh, James G.

    1942-01-01

    Two airfoil plans were used for propeller blades. One is modified Clark Y section designed for structural reliability and the second an NACA 16 airfoil section designed to produce minimum aerodynamic losses. At low air speeds, the propeller designed for aerodynamic effects showed a gain of from 1.5 to 4.0 percent in propulsive efficiency over the conventional type depending on the pitch. Because of the numerous variables involved, the effect of each one on the aerodynamic characteristics of the propellers could not be isolated.

  18. Some design philosophy for reducing the community noise of advanced counter-rotation propellers

    NASA Technical Reports Server (NTRS)

    Dittmar, J. H.

    1985-01-01

    Advanced counter-rotation propellers have been indicated as possibly generating an unacceptable amount of noise for the people living near an airport. This report has explored ways to reduce this noise level, which is treated as being caused by the interaction of the upstream propeller wakes and vortices with the downstream propeller. The noise reduction techniques fall into two categories: (1) reducing the strength of the wakes and vortices, and (2) reducing the response of the downstream blades to them. The noise from the wake interaction was indicated as being reduced by increased propeller spacing and decreased blade drag coefficient. The vortex-interaction noise could be eliminated by having the vortex pass over the tips of the downstream blade, and it could be reduced by increased spacing or decreased initial circulation. The downstream blade response could be lessened by increasing the reduced frequency parameter omega or by phasing of the response from different sections to have a mutual cancellation effect. Uneven blade to blade spacing for the downstream blading was indicated as having a possible effect on the annoyance of counter-rotation propeller noise. Although there are undoubtedly additional methods of noise reduction not covered in this report, the inclusion of the design methods discussed would potentially result in a counter-rotation propeller that is acceptably quiet.

  19. Effects of superhydrophobic surface on the propeller wake

    NASA Astrophysics Data System (ADS)

    Choi, Hongseok; Lee, Jungjin; Park, Hyungmin

    2017-11-01

    This study investigates the change in propeller wake when the superhydrophobic surface is applied on the propeller blade. The propeller rotates in a quiescent water tank, facing its bottom, with a rotational Reynolds number of 96000. To measure the three-dimensional flow fields, we use stereo PIV and a water prism is installed at the camera-side tank wall. Two cameras are tilted 30 degrees from the normal axis of the tank wall, satisfying schiempflug condition. Superhydrophobic surface is made by coating hydrophobic nanoparticles on the propeller blade. Measurements are done on two vertical planes (at the center of propeller hub and the blade tip), and are ensemble averaged being classified by blade phase of 0 and 90 degrees. Velocity fluctuation, turbulent kinetic energy, and vorticity are evaluated. With superhydrophobic surface, it is found that the turbulence level is significantly (20 - 30 %) reduced with a small penalty (less than 5%) in the streamwise momentum (i.e., thrust) generation. This is because the cone shaped propeller wake gets narrower and organized vortex structures are broken with the superhydrophobic surfaces. More detailed flow analysis will be given. Supported by NRF (NRF-2016R1C1B2012775, NRF-2016M2B2A9A02945068) programs of Korea government.

  20. Reconstruction of pressure sores with perforator-based propeller flaps.

    PubMed

    Jakubietz, Rafael G; Jakubietz, Danni F; Zahn, Robert; Schmidt, Karsten; Meffert, Rainer H; Jakubietz, Michael G

    2011-03-01

    Perforator flaps have been successfully used for reconstruction of pressure sores. Although V-Y advancement flaps approximate debrided wound edges, perforator-based propeller flaps allow rotation of healthy tissue into the defect. Perforator-based propeller flaps were planned in 13 patients. Seven pressure sores were over the sacrum, five over the ischial tuberosity, and one on the tip of the scapula. Three patients were paraplegic, six were bedridden, and five were ambulatory. In three patients, no perforators were found. In 10 patients, propeller flaps were transferred. In two patients, total flap necrosis occurred, which was reconstructed with local advancement flaps. In two cases, a wound dehiscence occurred and had to be revised. One hematoma required evacuation. No further complications were noted. No recurrence at the flap site occurred. Local perforator flaps allow closure of pressure sores without harvesting muscle. The propeller version has the added benefit of transferring tissue from a distant site, avoiding reapproximation of original wound edges. Twisting of the pedicle may cause torsion and venous obstruction. This can be avoided by dissecting a pedicle of at least 3 cm. Propeller flaps are a safe option for soft tissue reconstruction of pressure sores. © Thieme Medical Publishers.

  1. Evaluation of wind tunnel performance testings of an advanced 45 deg swept 8-bladed propeller at Mach numbers from 0.45 to 0.85

    NASA Technical Reports Server (NTRS)

    Rohrbach, C.; Metzger, F. B.; Black, D. M.; Ladden, R. M.

    1982-01-01

    The increased emphasis of fuel conservation in the world and the rapid increase in the cost of jet fuel has stimulated a series of studies of both conventional and unconventional propulsion systems for commercial aircraft. The results of these studies indicate that a fuel saving of 15 to 30 percent may be realized by the use of an advanced high-speed turboprop (Prop-Fan) compared to aircraft equipped with high bypass turbofan engines of equivalent technology. The Prop-Fan propulsion system is being investigated as part of the NASA Aircraft Energy Efficient Program. This effort includes the wind tunnel testing of a series of 8 and 10-blade Prop-Fan models incorporate swept blades. Test results indicate efficiency levels near the goal of 80 percent at Mach 0.8 cruise and an altitude of 10.67 km (35,000 ft). Each successive swept model has shown improved efficiency relative to the straight blade model. The fourth model, with 45 deg swept blades reported herein, shows a net efficiency of 78.2 at the design point with a power loading of 301 kW/sq meter and a tip speed of 243.8 m/sec (800 ft/sec.).

  2. Localization of incipient tip vortex cavitation using ray based matched field inversion method

    NASA Astrophysics Data System (ADS)

    Kim, Dongho; Seong, Woojae; Choo, Youngmin; Lee, Jeunghoon

    2015-10-01

    Cavitation of marine propeller is one of the main contributing factors of broadband radiated ship noise. In this research, an algorithm for the source localization of incipient vortex cavitation is suggested. Incipient cavitation is modeled as monopole type source and matched-field inversion method is applied to find the source position by comparing the spatial correlation between measured and replicated pressure fields at the receiver array. The accuracy of source localization is improved by broadband matched-field inversion technique that enhances correlation by incoherently averaging correlations of individual frequencies. Suggested localization algorithm is verified through known virtual source and model test conducted in Samsung ship model basin cavitation tunnel. It is found that suggested localization algorithm enables efficient localization of incipient tip vortex cavitation using a few pressure data measured on the outer hull above the propeller and practically applicable to the typically performed model scale experiment in a cavitation tunnel at the early design stage.

  3. Experimental investigation of the combustion products in an aluminised solid propellant

    NASA Astrophysics Data System (ADS)

    Liu, Zhu; Li, Shipeng; Liu, Mengying; Guan, Dian; Sui, Xin; Wang, Ningfei

    2017-04-01

    Aluminium is widely used as an important additive to improve ballistic and energy performance in solid propellants, but the unburned aluminium does not contribute to the specific impulse and has both thermal and momentum two-phase flow losses. So understanding of aluminium combustion behaviour during solid propellant burning is significant when improving internal ballistic performance. Recent developments and experimental results reported on such combustion behaviour are presented in this paper. A variety of experimental techniques ranging from quenching and dynamic measurement, to high-speed CCD video recording, were used to study aluminium combustion behaviour and the size distribution of the initial agglomerates. This experimental investigation also provides the size distribution of the condensed phase products. Results suggest that the addition of an organic fluoride compound to solid propellant will generate smaller diameter condensed phase products due to sublimation of AlF3. Lastly, a physico-chemical picture of the agglomeration process was also developed based on the results of high-speed CCD video analysis.

  4. Measurement and prediction of propeller flow field on the PTA aircraft at speeds of up to Mach 0.85. [Propfan Test Assessment

    NASA Technical Reports Server (NTRS)

    Aljabri, Abdullah S.

    1988-01-01

    High speed subsonic transports powered by advanced propellers provide significant fuel savings compared to turbofan powered transports. Unfortunately, however, propfans must operate in aircraft-induced nonuniform flow fields which can lead to high blade cyclic stresses, vibration and noise. To optimize the design and installation of these advanced propellers, therefore, detailed knowledge of the complex flow field is required. As part of the NASA Propfan Test Assessment (PTA) program, a 1/9 scale semispan model of the Gulfstream II propfan test-bed aircraft was tested in the NASA-Lewis 8 x 6 supersonic wind tunnel to obtain propeller flow field data. Detailed radial and azimuthal surveys were made to obtain the total pressure in the flow and the three components of velocity. Data was acquired for Mach numbers ranging from 0.6 to 0.85. Analytical predictions were also made using a subsonic panel method, QUADPAN. Comparison of wind-tunnel measurements and analytical predictions show good agreement throughout the Mach range.

  5. Relativistic Spacecraft Propelled by Directed Energy

    NASA Astrophysics Data System (ADS)

    Kulkarni, Neeraj; Lubin, Philip; Zhang, Qicheng

    2018-04-01

    Achieving relativistic flight to enable extrasolar exploration is one of the dreams of humanity and the long-term goal of our NASA Starlight program. We derive a relativistic solution for the motion of a spacecraft propelled by radiation pressure from a directed energy (DE) system. Depending on the system parameters, low-mass spacecraft can achieve relativistic speeds, thus enabling interstellar exploration. The diffraction of the DE system plays an important role and limits the maximum speed of the spacecraft. We consider “photon recycling” as a possible method to achieving higher speeds. We also discuss recent claims that our previous work on this topic is incorrect and show that these claims arise from an improper treatment of causality.

  6. Design and performance of a 427-meter-per-second-tip-speed two-stage fan having a 2.40 pressure ratio

    NASA Technical Reports Server (NTRS)

    Cunnan, W. S.; Stevans, W.; Urasek, D. C.

    1978-01-01

    The aerodynamic design and the overall and blade-element performances are presented of a 427-meter-per-second-tip-speed two-stage fan designed with axially spaced blade rows to reduce noise transmitted upstream of the fan. At design speed the highest recorded adiabatic efficiency was 0.796 at a pressure of 2.30. Peak efficiency was not established at design speed because of a damper failure which terminated testing prematurely. The overall efficiencies, at 60 and 80 percent of design speed, peaked at approximately 0.83.

  7. 46 CFR 154.1862 - Posting of speed reduction.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Posting of speed reduction. 154.1862 Section 154.1862... STANDARDS FOR SELF-PROPELLED VESSELS CARRYING BULK LIQUEFIED GASES Operations § 154.1862 Posting of speed reduction. If a speed reduction is specially approved by the Commandant under § 154.409, the master shall...

  8. 46 CFR 154.1862 - Posting of speed reduction.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 5 2011-10-01 2011-10-01 false Posting of speed reduction. 154.1862 Section 154.1862... STANDARDS FOR SELF-PROPELLED VESSELS CARRYING BULK LIQUEFIED GASES Operations § 154.1862 Posting of speed reduction. If a speed reduction is specially approved by the Commandant under § 154.409, the master shall...

  9. Numerical and experimental investigation of conventional and un-conventional preswirl duct for VLCC

    NASA Astrophysics Data System (ADS)

    Shin, Hyun-Joon; Lee, Jong-Seung; Lee, Kang-Hoon; Han, Myung-Ryun; Hur, Eui-Beom; Shin, Sung-Chul

    2013-09-01

    This paper shows the study of preswirl duct as an effective energy saving devices that have been devised and reviewed to support the propeller performance, especially for the ship of VLCC with large block coefficients. From the bare hull wake measurements, typical upper/lower asymmetry of hull wake at the propeller disk was found. The 2 kinds of pre-swirl duct, Unconventional half circular duct and Conventional circular pre-swirl duct have been designed and reviewed to recover the loss of propeller running in that condition. The general function of the pre-swirl duct was set to work against this asymmetry of wake and generate pre-swirled flow into the propeller against the propeller rotating direction. The optimum self propulsion tests with various angle configurations were carried out and the best configuration was decided. Accordingly, cavitation test was carried out with best configuration of unconventional half circular duct. The blade surface and tip vortex cavitation behaved smoother when the duct was mounted. The hull pressure amplitudes reflected this difference, so the hull pressure amplitude with duct was smaller than that of without duct.

  10. High-speed microprobe for roughness measurements in high-aspect-ratio microstructures

    NASA Astrophysics Data System (ADS)

    Doering, Lutz; Brand, Uwe; Bütefisch, Sebastian; Ahbe, Thomas; Weimann, Thomas; Peiner, Erwin; Frank, Thomas

    2017-03-01

    Cantilever-type silicon microprobes with an integrated tip and a piezoresistive signal read out have successfully proven to bridge the gap between scanning force microscopy and stylus profilometry. Roughness measurements in high-aspect-ratio microstructures (HARMS) with depths down to 5 mm and widths down to 50 µm have been demonstrated. To improve the scanning speed up to 15 mm s-1, the wear of the tip has to be reduced. The atomic layer deposition (ALD) technique with alumina (Al2O3) has been tested for this purpose. Repeated wear measurements with coated and uncoated microprobe cantilevers have been carried out on a roughness standard at a speed of 15 mm s-1. The tip shape and the wear have been measured using a new probing tip reference standard containing rectangular silicon grooves with widths from 0.3 µm to 3 µm. The penetration depth of the microprobe allows one to measure the wear of the tip as well as the tip width and the opening angle of the tip. The roughness parameters obtained on the roughness standard during wear experiments agree well with the reference values measured with a calibrated stylus instrument, nevertheless a small amount of wear still is observable. Further research is necessary in order to obtain wear resistant microprobe tips for non-destructive inspection of microstructures in industry and microform measurements, for example in injection nozzles.

  11. Experimental study of a generic high-speed civil transport: Tabulated data

    NASA Technical Reports Server (NTRS)

    Belton, Pamela S.; Campbell, Richard L.

    1992-01-01

    An experimental study of a generic high-speed civil transport was conducted in LaRC's 8-Foot Transonic Pressure Tunnel. The data base was obtained for the purpose of assessing the accuracy of various levels of computational analysis. Two models differing only in wing tip geometry were tested with and without flow-through nacelles. The baseline model has a curved or crescent wing tip shape while the second model has a more conventional straight wing tip shape. The study was conducted at Mach numbers from 0.30-1.19. Force data were obtained on both the straight and curved wing tip models. Only the curved wing tip model was instrumented for measuring pressures. Longitudinal and lateral-directional aerodynamic data are presented without analysis in tabulated form. Pressure coefficients for the curved wing tip model are also presented in tabulated form.

  12. Development of a Passively Varying Pitch Propeller

    NASA Astrophysics Data System (ADS)

    Heinzen, Stearns Beamon

    Small general aviation aircraft and unmanned aerial systems are often equipped with sophisticated navigation, control, and other avionics, but retain propulsion systems consisting of retrofitted radio control and ultralight equipment. Consequently, new high performance airframes often rely on relatively primitive propulsive technology. This trend is beginning to shift with recent advances in small turboprop engines, fuel injected reciprocating engines, and improved electric technologies. Although these systems are technologically advanced, they are often paired with standard fixed pitch propellers. To fully realize the potential of these aircraft and the new generation of engines, small propellers which can efficiently transmit power over wide flight envelopes and a variety of power settings must be developed. This work demonstrates a propeller which passively adjusts to incoming airflow at a low penalty to aircraft weight and complexity. This allows the propeller to operate in an efficient configuration over a wide flight envelope, and can prevent blade stall in low-velocity / highly-loaded thrust cases and over-speeding at high flight speeds. The propeller incorporates blades which pivot freely on a radial axis and are aerodynamically tailored to attain and maintain a pitch angle yielding favorable local blade angles of attack, matched to changing inflow conditions. This blade angle is achieved through the use of reflexed airfoils designed for a positive pitching moment, comparable to those used on many tailless flying wings. By setting the axis of rotation at a point forward of the blade aerodynamic center, the blades will naturally adjust to a predetermined positive lift 'trim' condition. Then, as inflow conditions change, the blade angle will automatically pivot to maintain the same angle with respect to incoming air. Computational, wind tunnel, and flight test results indicate that the extent of efficient propeller operation can be increased dramatically as compared to the fixed pitch propellers currently used on most light aircraft and small unmanned systems, making significant improvements in aircraft performance possible. These improvements may yield aircraft with reduced takeoff distances, improved climb rates, increased range and endurance, and higher top speeds, without sacrificing on-design performance.

  13. Method for the prediction of the installation aerodynamics of a propfan at subsonic speeds: User manual

    NASA Technical Reports Server (NTRS)

    Chandrasekaran, B.

    1986-01-01

    This document is the user's guide for the method developed earlier for predicting the slipstream wing interaction at subsonic speeds. The analysis involves a subsonic panel code (HESS code) modified to handle the propeller onset flow. The propfan slipstream effects are superimposed on the normal flow boundary condition and are applied over the surface washed by the slipstream. The effects of the propeller slipstream are to increase the axial induced velocity, tangential velocity, and a total pressure rise in the wake of the propeller. Principles based on blade performance theory, momentum theory, and vortex theory were used to evaluate the slipstream effects. The code can be applied to any arbitrary three dimensional geometry, expressed in the form of HESS input format. The code can handle a propeller alone configuration or a propeller/nacelle/airframe configuration, operating up to high subcritical Mach numbers over a range of angles of attack. Inclusion of a viscous modelling is briefly outlined. Wind tunnel results/theory comparisons are included as examples for the application of the code to a generic supercritical wing/overwing Nacelle with a powered propfan. A sample input/output listing is provided.

  14. Flyover noise characteristics of a tilt-wing V/STOL aircraft (XC-142A)

    NASA Technical Reports Server (NTRS)

    Pegg, R. J.; Henderson, H. R.; Hilton, D. A.

    1974-01-01

    A field noise measurement investigation was conducted during the flight testing of an XC-142A tilt-wing V/STOL aircraft to define its external noise characteristics. Measured time histories of overall sound pressure level show that noise levels are higher at lower airspeeds and decrease with increased speed up to approximately 160 knots. The primary noise sources were the four high-speed, main propellers. Flyover-noise time histories calculated by existing techniques for propeller noise prediction are in reasonable agreement with the experimental data.

  15. Studying the internal ballistics of a combustion-driven potato cannon using high-speed video

    NASA Astrophysics Data System (ADS)

    Courtney, E. D. S.; Courtney, M. W.

    2013-07-01

    A potato cannon was designed to accommodate several different experimental propellants and have a transparent barrel so the movement of the projectile could be recorded on high-speed video (at 2000 frames per second). Five experimental propellants were tested: propane (C3H8), acetylene (C2H2), ethanol (C2H6O), methanol (CH4O) and butane (C4H10). The quantity of each experimental propellant was calculated to approximate a stoichometric mixture and considering the upper and lower flammability limits, which in turn were affected by the volume of the combustion chamber. Cylindrical projectiles were cut from raw potatoes so that there was an airtight fit, and each weighed 50 (± 0.5) g. For each trial, position as a function of time was determined via frame-by-frame analysis. Five trials were made for each experimental propellant and the results analyzed to compute velocity and acceleration as functions of time. Additional quantities, including force on the potato and the pressure applied to the potato, were also computed. For each experimental propellant average velocity versus barrel position curves were plotted. The most effective experimental propellant was defined as that which accelerated the potato to the highest muzzle velocity. The experimental propellant acetylene performed the best on average (138.1 m s-1), followed by methanol (48.2 m s-1), butane (34.6 m s-1), ethanol (33.3 m s-1) and propane (27.9 m s-1), respectively.

  16. Reduced Perceived Noise Low Tip Speed Fans as a Result of Abandoning Cutoff Stator Vane Numbers

    NASA Technical Reports Server (NTRS)

    Dittmar, James

    1998-01-01

    As fan tip speeds are reduced, broadband noise is becoming more important in the calculation of perceived noise. Past experience indicates that lower vane number stators with either constant chord or constant solidity may be a way to reduce broadband noise caused by the interaction of the rotor wake turbulence with the stators. A baseline fan and a low blade number fan were investigated to determine if a noise reduction was possible. The low vane number fan showed a 2 PndB and a 1.5 PNLT noise reduction. These reductions show that this is a viable technique for reducing the perceived noise of low tip speed fans.

  17. The effect of front-to-rear propeller spacing on the interaction noise at cruise conditions of a model counterrotation propeller having a reduced diameter aft propeller

    NASA Technical Reports Server (NTRS)

    Dittmar, James H.; Gordon, Eliott B.; Jeracki, Robert J.

    1988-01-01

    The effect of forward-to-aft propeller spacing on the interaction noise of a counterrotation propeller with reduced aft diameter was measured at cruise conditions. In general, the tones at 100 percent speed decreased from close to nominal spacing as expected from a wake decay model. However, when the spacing was further increased to the far position, the noise did not decrease as expected and in some cases increased. The behavior at the far spacing was attributed to changing forward propeller performance, which produced larger wakes. The results of this experiment indicate that simple wake decay model is sufficient to describe the behavior of the interaction noise only if the aerodynamic coupling of the two propellers does not change with spacing. If significant coupling occurs such that the loading of the forward propeller is altered, the interaction noise does not necessarily decrease with larger forward-to-aft propeller spacing.

  18. Lateral-directional aerodynamic characteristics of light, twin-engine, propeller driven airplanes

    NASA Technical Reports Server (NTRS)

    Wolowicz, C. H.; Yancey, R. B.

    1972-01-01

    Analytical procedures and design data for predicting the lateral-directional static and dynamic stability and control characteristics of light, twin engine, propeller driven airplanes for propeller-off and power-on conditions are reported. Although the consideration of power effects is limited to twin engine airplanes, the propeller-off considerations are applicable to single engine airplanes as well. The procedures are applied to a twin engine, propeller driven, semi-low-wing airplane in the clean configuration through the linear lift range. The calculated derivative characteristics are compared with wind tunnel and flight data. Included in the calculated characteristics are the spiral mode, roll mode, and Dutch roll mode over the speed range of the airplane.

  19. Study on the laser irradiation characteristics of NEPE propellant in different oxygen concentrations

    NASA Astrophysics Data System (ADS)

    Xiang, Hengsheng; Chen, Xiong; Zhou, Changsheng

    2016-01-01

    The ignition and combustion characteristics of nitrate ester plasticized polyether (NEPE) propellant in different oxygen concentrations ambient gases were studied by the application of CO2 laser, infrared thermometer and high speed camera. The flame intensity data of the propellant was collected by the photodiode; propellant flame temperature was measured by infrared thermometer. The experimental results show that the time which NEPE propellant spend to be stable combustion will get shorter with the increase of oxygen concentration; the flame peak temperature measured by infrared thermometer increases with the increase of oxygen concentration when the oxygen concentration is less than 30% by volume, then decreases with the increase of oxygen concentration.

  20. Some observations of the effects of radial distortions on performance of a transonic rotating blade row

    NASA Technical Reports Server (NTRS)

    Sandercock, D. M.; Sanger, N. L.

    1974-01-01

    A single rotating blade row was tested with two magnitudes of tip radial distortion and two magnitudes of hub radial distortion imposed on the inlet flow. The rotor was about 50 centimeters (20 in.) in diameter and had a design operating tip speed of approximately 420 meters per second (1380 ft/sec). Overall performance at 60, 80, and 100 percent of equivalent design speed generally showed a decrease (compared to undistorted flow) in rotor stall margin with tip radial distortion but no change, or a slight increase, in rotor stall margin with hub radial distortion. At design speed there was a decrease in rotor overall total pressure ratio and choke flow with all inlet flow distortions. Radial distributions of blade element parameters are presented for selected operating conditions at design speed.

  1. Acoustic testing of a supersonic tip speed fan with acoustic treatment and rotor casting slots. Quiet engine program scale model fan C

    NASA Technical Reports Server (NTRS)

    Kazin, S. B.

    1973-01-01

    Acoustic tests were conducted on a high tip speed (1550 ft/sec, 472.44 m/sec) single stage fan with varying amounts of wall acoustic treatment and with circumferential slots over the rotor blade tips. The slots were also tested with acoustic treatment placed behind the slots. The wall treatment results show that the inlet treatment is more effective at high fan speeds and aft duct treatment is more effective at low fan speeds. Maximum PNL's on a 200-foot (60.96 m) sideline show the untreated slots to have increased the rear radiated noise at approach. However, when the treatment was added to the slots inlet radiated noise was decreased, resulting in little change relative to the solid casing on an EPNL basis.

  2. En route noise of two turboprop aircraft

    NASA Technical Reports Server (NTRS)

    Dobrzynski, Werner

    1990-01-01

    In order to weigh en route noise emissions originating from future propfan powered aircraft, a data base of emission levels from conventional turboprop aircraft is needed. For this reason flyover noise measurements on two twin-engine turboprop aircraft were conducted at flight heights between 17,000 and 21,000 ft. Acoustic data are presented together with propeller operational parameters and environmental meteorological data. Narrowband spectral analyses demonstrate the characteristic features of the measured propeller noise signatures: Noise spectra are dominated by the propeller rotational noise fundamental frequency and pronounced noise beats occur as a consequence of different rotational speeds of the propellers.

  3. The Damage Law of HTPB Propellant under Thermomechanical Loading

    NASA Astrophysics Data System (ADS)

    Liu, Cheng-wu; Yang, Jian-hong; Wang, Xian-meng; Ma, Yong-kang

    2016-01-01

    By way of measuring the acoustic emission (AE) signals of Hydroxyl-terminated polybutadiene (HTPB) propellant in condition of uniform speed, and combined with the scanning electron microscopy (SEM) fracture surface observation, the damage law of HTPB composite solid propellant under thermomechanical loading was studied. The results show that the effects of thermomechanical loading on HTPB propellant are related to the time and can be divided into three different stages. In the first stage, thermal air aging dominates; in the second stage, interface damage is dominant; and in the third stage, thermal air aging is once again dominant.

  4. Propeller swirl effect on single-engine general-aviation aircraft stall-spin tendencies

    NASA Technical Reports Server (NTRS)

    Katz, Joseph; Feistel, Terry W.

    1987-01-01

    An investigation is conducted of the effect of a single engine, untapered low wing general aviation aircraft propeller's swirl on the craft's stall pattern. The asymmetrical character of the propeller's swirl can trigger an early stall of one of the wings, aggravating the spin-entry condition. It is shown that the combination of this propeller-induced effect with adverse sideslip can result in large and abrupt changes in the rolling moment, in such conditions as uncoordinated low speed turning maneuvers where the pilot yaws the aircraft with wings level, rather than rolling it.

  5. Holographic investigation of solid propellant particulates

    NASA Astrophysics Data System (ADS)

    Gillespie, T. R.

    1981-12-01

    The investigation completed the development process to establish a technique to obtain holographic recordings of particulate behavior during the combustion process of solid propellants in a two-dimensional rocket motor. Holographic and photographic recordings were taken in a crossflow environment using various compositions of metallized propellants. The reconstructed holograms are used to provide data on the behavior of aluminum/aluminum oxide particulates in a steady state combustion environment as a function of the initial aluminum size cast into the propellant. High speed, high resolution motion pictures were taken to compare the cinematic data with that available from the holograms.

  6. Calculations of Wall Effects on Propeller Noise

    NASA Technical Reports Server (NTRS)

    Baumeister, Kenneth J.; Eversman, Walter

    1987-01-01

    Reverberations affect sound levels in wind tunnels. Report describes calculations of acoustic field of propeller in wind tunnel having walls of various degrees of softness. Understanding provided by this and related studies necessary for correct interpretation of wind-tunnel measurements of noise generated by high speed, highly loaded, multiple-blade turbopropellers.

  7. Wind-Tunnel Investigation of the Effect of Angle of Attack and Flapping-Hinge Offset on Periodic Bending Moments and Flapping of a Small Rotor

    NASA Technical Reports Server (NTRS)

    McCarty, John Locke; Brooks, George W.; Maglieri, Domenic J.

    1959-01-01

    A two-blade rotor having a diameter of 4 feet and a solidity of 0.037 was tested in the Langley 300-MPH 7- by 10-foot tunnel to obtain information on the effect of certain rotor variables on the blade periodic bending moments and flapping angles during the various stages of transformation between the helicopter and autogiro configuration. Variables studied included collective pitch angle, flapping-hinge offset, rotor angle of attack, and tip-speed ratio. The results show that the blade periodic bending moments generally increase with tip-speed ratio up into the transition region, diminish over a certain range of tip-speed ratio, and increase again at higher tip-speed ratios. Above the transition region, the bending moments increase with collective pitch angle and rotor angle of attack. The absence of a flapping hinge results in a significant amplification of the periodic bending moments, the magnitudes of which increase with tip-speed ratio. When the flapping hinge is used, an increase in flapping-hinge offset results in reduced period bending moments. The aforementioned trends exhibited by the bending moments for changes in the variables are essentially duplicated by the periodic flapping motions. The existence of substantial amounts of blade stall increased both the periodic bending moments and the flapping angles. Harmonic analysis of the bending moments shows significant contributions of the higher harmonics, particularly in the transition region.

  8. Studies on Decomposition and Combustion Mechanism of Solid Fuel Rich Propellants

    DTIC Science & Technology

    2010-08-30

    thrust to cruise at supersonic speed. This was followed by the test of large diameter ramjet called burner test vehicle (BTV). Advanced low volume...propellant surface. Vernekar et al (43) found that in pressed AP-Al pellets , maximum burn rate is obtained at intermediate metal content. Jain et al...conjunction with high pressure window strand burner . They found that the propellant combustion was irregular and regression rate varied from 0.3 to 3

  9. Investigation of the Discharge Characteristics of the T6 Hollow Cathode Operating on Several Inert Gases and a Kr/Xe Mixture

    NASA Astrophysics Data System (ADS)

    Ahmed Rudwan, M.; Gabriel, S. B.

    2002-01-01

    Investigation of the discharge characteristics of the T6 hollow cathode operating on several inert Xenon is currently the propellant of choice for gridded ion thrusters. But in order to make deep space missions feasible, an increase in the Specific Impulse (SI) that these thrusters can achieve is necessary. One method of achieving this is to use a propellant with a lower atomic mass (e.g. argon), as the propellant exhaust velocity is inversely proportional to the square root of the propellant mass. However, the feasibility of operating the hollow cathode using these alternative propellants has to be demonstrated. Moreover, interest in decreasing the propellant cost in missions and ground testing (especially life tests) have led to the comprehensive discharge characterisation of several gases that will be presented in this paper. A Kr/Xe mixture in the naturally occurring ratio, for example, could offer a 15 times cost saving when compared to pure xenon and 2-3 times cost saving when compared to pure krypton. The T6 hollow cathode discharge behaviour as well as its initiation characteristics have been studied. The tests were carried out in diode configuration using a T6 hollow cathode with an enclosed keeper design employing xenon, krypton, argon and a Kr/Xe mix. The discharge initiation tests were undertaken with a view to investigate some of the factors thought to influence the starting potential such as mass flow rate and tip temperature. It was found that, for mass flow rates ranging from 0.2-1.1 mg/s and cathode tip temperatures ranging from 900-1300oC, the breakdown potential was less than 50V for argon, less than 25V for krypton, less than 21V for xenon and less than 35V for the Kr/Xe mix. The discharge initiation results were then compared to those obtained by Fearn et al. with a T5 cathode operating on mercury and with a T6 cathode utilising an open keeper design using xenon propellant. The xenon breakdown potentials were found to be lower than those obtained with an open keeper design by as much as 4V. Steady state discharge behaviour was also investigated in a range of operating conditions. Spot to plume mode transitions were observed in argon, krypton and Kr/Xe discharges for the first time.

  10. Two-stage, low noise advanced technology fan. 4: Aerodynamic final report

    NASA Technical Reports Server (NTRS)

    Harley, K. G.; Keenan, M. J.

    1975-01-01

    A two-stage research fan was tested to provide technology for designing a turbofan engine for an advanced, long range commercial transport having a cruise Mach number of 0.85 -0.9 and a noise level 20 EPNdB below current requirements. The fan design tip speed was 365.8m/sec (1200ft/sec);the hub/tip ratio was 0.4; the design pressure ratio was 1.9; and the design specific flow was 209.2 kg/sec/sq m(42.85lbm/sec/sq ft). Two fan-versions were tested: a baseline configuration, and an acoustically treated configuration with a sonic inlet device. The baseline version was tested with uniform inlet flow and with tip-radial and hub-radial inlet flow distortions. The baseline fan with uniform inlet flow attained an efficiency of 86.4% at design speed, but the stall margin was low. Tip-radial distortion increased stall margin 4 percentage points at design speed and reduced peak efficiency one percentage point. Hub-radial distortion decreased stall margin 4 percentage points at all speeds and reduced peak efficiency at design speed 8 percentage points. At design speed, the sonic inlet in the cruise position reduced stall margin one percentage point and efficiency 1.5 to 4.5 percentage points. The sonic inlet in the approach position reduced stall margin 2 percentage points.

  11. Instantaneous and Time Averaged Flow Fields of Multiple Vortices in the Tip Region of a Ducted Propulsor

    NASA Astrophysics Data System (ADS)

    Oweis, Ghanem; Steven, Ceccio

    2003-11-01

    PIV data of the flow field in the immediate vicinity of the trailing edge of a ducted propeller at the tip revealed the existence of multiple vorticity concentrations. The multiple vortices in each instantaneous PIV field were identified and individually characterized. The measurements of the multiple vortices were combined with a Gaussian vortex model to reconstruct the vorticity and velocity fields. The major features of the original experimental field were recovered, and the correlation between the two fields was good. The time averaged field and velocity fluctuations were also measured. We will discuss why the "typical" instantaneous tip vortex and the tip vortex from the time averaged field are substantially different. We attempt to explain the cause of these differences. Knowledge of the instantaneous flow field variability is used to understand the causes of the measured velocity fluctuations. The results from this study have an impact on the understanding of the roll-up of tip vortices, and the dynamics of multiple vortices.

  12. Measurement and prediction of model-rotor flow fields

    NASA Technical Reports Server (NTRS)

    Owen, F. K.; Tauber, M. E.

    1985-01-01

    This paper shows that a laser velocimeter can be used to measure accurately the three-component velocities induced by a model rotor at transonic tip speeds. The measurements, which were made at Mach numbers from 0.85 to 0.95 and at zero advance ratio, yielded high-resolution, orthogonal velocity values. The measured velocities were used to check the ability of the ROT22 full-potential rotor code to predict accurately the transonic flow field in the crucial region around and beyond the tip of a high-speed rotor blade. The good agreement between the calculated and measured velocities established the code's ability to predict the off-blade flow field at transonic tip speeds. This supplements previous comparisons in which surface pressures were shown to be well predicted on two different tips at advance ratios to 0.45, especially at the critical 90 deg azimuthal blade position. These results demonstrate that the ROT22 code can be used with confidence to predict the important tip-region flow field, including the occurrence, strength, and location of shock waves causing high drag and noise.

  13. Pressure of air on coming to rest from various speeds

    NASA Technical Reports Server (NTRS)

    Zahm, A F

    1927-01-01

    The text gives theoretical formulas from which is computed a table for the pressure of air on coming to rest from various speeds, such as those of aircraft and propeller blades. Pressure graphs are given for speeds from 1 cm. Sec. up to those of swift projectiles.

  14. Memory effects in funnel ratchet of self-propelled particles

    NASA Astrophysics Data System (ADS)

    Hu, Cai-Tian; Wu, Jian-Chun; Ai, Bao-Quan

    2017-05-01

    The transport of self-propelled particles with memory effects is investigated in a two-dimensional periodic channel. Funnel-shaped barriers are regularly arrayed in the channel. Due to the asymmetry of the barriers, the self-propelled particles can be rectified. It is found that the memory effects of the rotational diffusion can strongly affect the rectified transport. The memory effects do not always break the rectified transport, and there exists an optimal finite value of correlation time at which the rectified efficiency takes its maximal value. We also find that the optimal values of parameters (the self-propulsion speed, the translocation diffusion coefficient, the rotational noise intensity, and the self-rotational diffusion coefficient) can facilitate the rectified transport. When introducing a finite load, particles with different self-propulsion speeds move to different directions and can be separated.

  15. A Design Tool for Matching UAV Propeller and Power Plant Performance

    NASA Astrophysics Data System (ADS)

    Mangio, Arion L.

    A large body of knowledge is available for matching propellers to engines for large propeller driven aircraft. Small UAV's and model airplanes operate at much lower Reynolds numbers and use fixed pitch propellers so the information for large aircraft is not directly applicable. A design tool is needed that takes into account Reynolds number effects, allows for gear reduction, and the selection of a propeller optimized for the airframe. The tool developed in this thesis does this using propeller performance data generated from vortex theory or wind tunnel experiments and combines that data with an engine power curve. The thrust, steady state power, RPM, and tip Mach number vs. velocity curves are generated. The Reynolds number vs. non dimensional radial station at an operating point is also found. The tool is then used to design a geared power plant for the SAE Aero Design competition. To measure the power plant performance, a purpose built engine test stand was built. The characteristics of the engine test stand are also presented. The engine test stand was then used to characterize the geared power plant. The power plant uses a 26x16 propeller, 100/13 gear ratio, and an LRP 0.30 cubic inch engine turning at 28,000 RPM and producing 2.2 HP. Lastly, the measured power plant performance is presented. An important result is that 17 lbf of static thrust is produced.

  16. Large Eddy Simulation of Crashback in Marine Propulsors

    NASA Astrophysics Data System (ADS)

    Jang, Hyunchul

    Crashback is an operating condition to quickly stop a propelled vehicle, where the propeller is rotated in the reverse direction to yield negative thrust. The crashback condition is dominated by the interaction of the free stream flow with the strong reverse flow. This interaction forms a highly unsteady vortex ring, which is a very prominent feature of crashback. Crashback causes highly unsteady loads and flow separation on the blade surface. The unsteady loads can cause propulsor blade damage, and also affect vehicle maneuverability. Crashback is therefore well known as one of the most challenging propeller states to analyze. This dissertation uses Large-Eddy Simulation (LES) to predict the highly unsteady flow field in crashback. A non-dissipative and robust finite volume method developed by Mahesh et al. (2004) for unstructured grids is applied to flow around marine propulsors. The LES equations are written in a rotating frame of reference. The objectives of this dissertation are: (1) to understand the flow physics of crashback in marine propulsors with and without a duct, (2) to develop a finite volume method for highly skewed meshes which usually occur in complex propulsor geometries, and (3) to develop a sliding interface method for simulations of rotor-stator propulsor on parallel platforms. LES is performed for an open propulsor in crashback and validated against experiments performed by Jessup et al. (2004). The LES results show good agreement with experiments. Effective pressures for thrust and side-force are introduced to more clearly understand the physical sources of thrust and side-force. Both thrust and side-force are seen to be mainly generated from the leading edge of the suction side of the propeller. This implies that thrust and side-force have the same source---the highly unsteady leading edge separation. Conditional averaging is performed to obtain quantitative information about the complex flow physics of high- or low-amplitude events. The events for thrust and side force show the same tendency. The conditional averages show that during high amplitude events, the vortex ring core is closer to the propeller blades, the reverse flow induced by the propeller rotation is lower, the forward flow is higher at the root of the blades, and leading and trailing edge flow separations are larger. The instantaneous flow field shows that during low amplitude events, the vortex ring is more axisymmetric and the stronger reverse flow induced by the vortex ring suppresses the forward flow so that flow separation on the blades is smaller. During high amplitude events, the vortex ring is less coherent and the weaker reverse flow cannot overcome the forward flow. The stronger forward flow makes flow separation on the blades larger. The effect of a duct on crashback is studied with LES. Thrust mostly arises from the blade surface, but most of side-force is generated from the duct surface. Both mean and RMS of pressure are much higher on inner surface of duct, especially near blade tips. This implies that side-force on the ducted propulsor is caused by the blade-duct interaction. Strong tip leakage flow is observed behind the suction side at the tip gap. The physical source of the tip leakage flow is seen to be the large pressure difference between pressure and suction sides. The conditional average for high amplitude event shows consistent results; the tip leakage flow and pressure difference are significantly higher when thrust and side-force are higher. A sliding interface method is developed to allow simulations of rotor-stator propulsor in crashback. The method allows relative rotations between different parts of the computational grid. Search algorithm for sliding elements, data structures for message passing, and accurate interpolation scheme at the sliding interface are developed for arbitrary shaped unstructured grids on parallel computing platforms. Preliminary simulations of open propulsor in crashback show reasonable performance.

  17. Experimental and theoretical investigation of HT-S/PMR-PI composites for application to advanced aircraft engines. [High-Tip-Speed/Polymerization of Monomeric Reactant

    NASA Technical Reports Server (NTRS)

    Hanson, M. P.; Chamis, C. C.

    1974-01-01

    A combined experimental and theoretical investigation was performed in order to: (1) demonstrate that high quality angleplied laminates can be made from HT-S/PMR-PI (PMR in situ polymerization of monomeric reactants), (2) characterize the PMR-PI material and to determine the HT-S unidirectional composite properties required for composite micro and macromechanics and laminate analyses, (3) select HT-S/PMR laminate configurations to meet the general design requirements for high-tip-speed compressor blades. The results of the investigation showed that: HT-S/PMR laminate configurations can be fabricated which satisfy the high-tip-speed compressor blade design requirements when operating within the temperature capability of the polymide matrix.

  18. High-loading low-speed fan study. 4: Data and performance with redesign stator and including a rotor tip casing treatment

    NASA Technical Reports Server (NTRS)

    Harley, K. G.; Odegard, P. A.; Burdsall, E. A.

    1972-01-01

    A single stage fan with a rotor tip speed of 1000 ft/sec(304.8 m/sec) and a hub-to-tip ratio of 0.392 was retested with a redesigned stator. Tests were conducted with uniform inlet, tip-radial, hub-radial, and circumferential inlet distortions. With uniform inlet flow, stall margin was improved 12 percentage points above that with the original stator. The fan demonstrated an efficiency of 0.883 and a stall margin of 15 percent at a pressure ratio of 1.488 and a specific flow of 41.17 lb/sec/sq ft. Tests were also made with a redesigned casing treatment consisting of skewed slots over the rotor blade tips. This casing treatment gave a 7 percentage point improvement in stall margin when tested with tip radial distortion (when the rotor tip initiated stall). Noise measurements at the fan inlet and exit indicate no effect from closing the stator 10 degrees, nor were there measurable effects from adding skewed slots over the blade tips.

  19. A study of the noise radiation from four helicopter rotor blades. [tests in Ames 40 by 20 foot wind tunnel

    NASA Technical Reports Server (NTRS)

    Lee, A.; Mosher, M.

    1978-01-01

    Acoustic measurements were taken of a modern helicopter rotor with four blade tip shapes in the NASA Ames 40-by-80-Foot Wind Tunnel. The four tip shapes are: rectangular, swept, trapezoidal, and swept tapered in platform. Acoustic effects due to tip shape changes were studied based on the dBA level, peak noise pressure, and subjective rating. The swept tapered blade was found to be the quietest above an advancing tip Mach number of about 0.9, and the swept blade was the quietest at low speed. The measured high speed impulsive noise was compared with theoretical predictions based on thickness effects; good agreement was found.

  20. Hydrodynamic investigation of a self-propelled robotic fish based on a force-feedback control method.

    PubMed

    Wen, L; Wang, T M; Wu, G H; Liang, J H

    2012-09-01

    We implement a mackerel (Scomber scombrus) body-shaped robot, programmed to display the three most typical body/caudal fin undulatory kinematics (i.e. anguilliform, carangiform and thunniform), in order to biomimetically investigate hydrodynamic issues not easily tackled experimentally with live fish. The robotic mackerel, mounted on a servo towing system and initially at rest, can determine its self-propelled speed by measuring the external force acting upon it and allowing for the simultaneous measurement of power, flow field and self-propelled speed. Experimental results showed that the robotic swimmer with thunniform kinematics achieved a faster final swimming speed (St = 0.424) relative to those with carangiform (St = 0.43) and anguilliform kinematics (St = 0.55). The thrust efficiency, estimated from a digital particle image velocimetry (DPIV) flow field, showed that the robotic swimmer with thunniform kinematics is more efficient (47.3%) than those with carangiform (31.4%) and anguilliform kinematics (26.6%). Furthermore, the DPIV measurements illustrate that the large-scale characteristics of the flow pattern generated by the robotic swimmer with both anguilliform and carangiform kinematics were wedge-like, double-row wake structures. Additionally, a typical single-row reverse Karman vortex was produced by the robotic swimmer using thunniform kinematics. Finally, we discuss this novel force-feedback-controlled experimental method, and review the relative self-propelled hydrodynamic results of the robot when utilizing the three types of undulatory kinematics.

  1. STOL Characteristics of a Propeller-Driven, Aspect-Ratio-10, Straight-Wing Airplane with Boundary-Layer Control Flaps, as Estimated from Large-Scale Wind-Tunnel Tests

    NASA Technical Reports Server (NTRS)

    Weiberg, James A; Holzhauser, Curt A.

    1961-01-01

    A study is presented of the improvements in take-off and landing distances possible with a conventional propeller-driven transport-type airplane when the available lift is increased by propeller slipstream effects and by very effective trailing-edge flaps and ailerons. This study is based on wind-tunnel tests of a 45-foot span, powered model, with BLC on the trailing-edge flaps and controls. The data were applied to an assumed airplane with four propellers and a wing loading of 50 pounds per square foot. Also included is an examination of the stability and control problems that may result in the landing and take-off speed range of such a vehicle. The results indicated that the landing and take-off distances could be more than halved by the use of highly effective flaps in combination with large amounts of engine power to augment lift (STOL). At the lowest speeds considered (about 50 knots), adequate longitudinal stability was obtained but the lateral and directional stability were unsatisfactory. At these low speeds, the conventional aerodynamic control surfaces may not be able to cope with the forces and moments produced by symmetric, as well as asymmetric, engine operation. This problem was alleviated by BLC applied to the control surfaces.

  2. High-loading, 1800 ft/sec tip speed transonic compressor fan stage. 1: Aerodynamic and mechanical design

    NASA Technical Reports Server (NTRS)

    Morris, A. L.; Halle, J. E.; Kennedy, E. E.

    1972-01-01

    A single stage fan with a tip speed of 1800 ft/sec (548.6m/sec) and hub/tip ratio of 0.5 was designed to produce a pressure ratio of 2.285:1 with an adiabatic efficiency of 84.0%. The design flow per inlet annulus area is 38.7 lbm/sq ft-sec (188.9KG/sqm-sec). Rotor blades have modified multiple-circular-arc and precompression airfoil sections. The stator vanes have multiple-circular-arc airfoil sections.

  3. State-of-the-art of high-speed propeller noise prediction - A multidisciplinary approach and comparison with measured data

    NASA Technical Reports Server (NTRS)

    Dunn, Mark H.; Farassat, F.

    1990-01-01

    The results of NASA's Propeller Test Assessment program involving extensive flight tests of a large-scale advanced propeller are presented. This has provided the opportunity to evaluate the current capability of advanced propeller noise prediction utilizing principally the exterior acoustic measurements for the prediction of exterior noise. The principal object of this study was to evaluate the state-of-the-art of noise prediction for advanced propellers utilizing the best available codes of the disciplines involved. The effects of blade deformation on the aerodynamics and noise of advanced propellers were also studied. It is concluded that blade deformation can appreciably influence propeller noise and aerodynamics, and that, in general, centrifugal and blade forces must both be included in the calculation of blade forces. It is noted that the present capability for free-field noise prediction of the first three harmonics for advanced propellers is fairly good. Detailed data and diagrams of the test results are presented.

  4. AGARD Index of Publications 1983-1985

    DTIC Science & Technology

    1987-06-01

    a high performance high speed General Aviation propeller the advent of the highly loaded program...distribution data at high speed and CLmax data at low speed are NS3-3036# Saab-.;cania, Linkoping (Sweden). described. A flight wing pressure survey which...also well with predictions based on wind tunnel data. flight at high speed and wind tunnel measurements on a half Reynolds Number and transition

  5. Performance and Operational Characteristics of a Python Turbine-propeller Engine at Simulated Altitude Conditions / Carl L. Meyer and Lavern A. Johnson

    NASA Technical Reports Server (NTRS)

    Meyer, Carl L; Johnson, Lavern A

    1952-01-01

    The performance and operational characteristics of a Python turbine-propeller engine were investigated at simulated altitude conditions in the NACA Lewis altitude wind tunnel. In the performance phase, data were obtained over a range of engine speeds and exhaust nozzle areas at altitudes from 10,000 to 40,000 feet at a single cowl-inlet ram pressure ratio; independent control of engine speed and fuel flow was used to obtain a range of powers at each engine speed. Engine performance data obtained at a given altitude could not be used to predict performance accurately at other altitudes by use of the standard air pressure and temperature generalizing factors. At a given engine speed and turbine-inlet total temperature, a greater portion of the total available energy was converted to propulsive power as the altitude increased.

  6. Joint High Speed Sealift (JHSS) Baseline Shaft & Strut (BSS) Model 5653-3: Series 2, Propeller Disk LDV Wake Survey; and Series 3, Stock Propeller Powering and Stern Flap Evaluation Experiments

    DTIC Science & Technology

    2007-09-01

    B27 B3b. Open water performance characteristics, stock propellers 5234 and 5235 ................... B28 B4. Principal dimensions of...n~nu~ .. *ASA B27 B3b. Open water performance characteristics, stock propellers 5234 and 5235 5234 5235 FAMED OPEN WATER COEFFICIENTS FOR PROPELLER...LA V 00 H MN 0𔃾 LAW M 00 MN4 0 ( LA M 4. ~ ~ ~ ~ r 4. LALA (0 m N 0 0 H H- H H H Hm H H vN( N( N((((m 4 HmmN N4 L 0 .( N ( ( HW H HLA mL (n(mNHO H

  7. Transport of underdamped self-propelled particles in active density waves

    NASA Astrophysics Data System (ADS)

    Zhu, Wei-jing; Huang, Xiao-qun; Ai, Bao-quan

    2018-03-01

    Transport of underdamped self-propelled particles is numerically investigated in active density waves. From numerical simulations, it is found that the inertia can strongly affect the transport of self-propelled particles. By changing the wave speed or the friction coefficient, the average velocity can change its direction. The direction of the transport is also determined by the competition between the inertia effect and the traveling waves. Therefore, underdamped active particles can move in different directions and can be separated by suitably tailoring the parameters.

  8. Colloidal Microworms Propelling via a Cooperative Hydrodynamic Conveyor Belt.

    PubMed

    Martinez-Pedrero, Fernando; Ortiz-Ambriz, Antonio; Pagonabarraga, Ignacio; Tierno, Pietro

    2015-09-25

    We study propulsion arising from microscopic colloidal rotors dynamically assembled and driven in a viscous fluid upon application of an elliptically polarized rotating magnetic field. Close to a confining plate, the motion of this self-assembled microscopic worm results from the cooperative flow generated by the spinning particles which act as a hydrodynamic "conveyor belt." Chains of rotors propel faster than individual ones, until reaching a saturation speed at distances where induced-flow additivity vanishes. By combining experiments and theoretical arguments, we elucidate the mechanism of motion and fully characterize the propulsion speed in terms of the field parameters.

  9. Experimental investigation of atomization characteristics of swirling spray by ADN gelled propellant

    NASA Astrophysics Data System (ADS)

    Guan, Hao-Sen; Li, Guo-Xiu; Zhang, Nai-Yuan

    2018-03-01

    Due to the current global energy shortage and increasingly serious environmental issues, green propellants are attracting more attention. In particular, the ammonium dinitramide (ADN)-based monopropellant thruster is gaining world-wide attention as a green, non-polluting and high specific impulse propellant. Gel propellants combine the advantages of liquid and solid propellants, and are becoming popular in the field of spaceflight. In this paper, a swirling atomization experimental study was carried out using an ADN aqueous gel propellant under different injection pressures. A high-speed camera and a Malvern laser particle size analyzer were used to study the spray process. The flow coefficient, cone angle of swirl atomizing spray, breakup length of spray membrane, and droplet size distribution were analyzed. Furthermore, the effects of different injection pressures on the swirling atomization characteristics were studied.

  10. Observations of long delays to detonation in propellant for tests with marginal card gaps

    NASA Technical Reports Server (NTRS)

    Olinger, B.

    1980-01-01

    Using the large-scale card gap tests with pin and high-speed framing camera techniques, VRP propellant, and presumably others, were found to transit to detonation at marginal gaps after a long delay. In addition, manganin-constantan gauge measurements were made in the card gap stack.

  11. Helicopter far-field acoustic levels as a function of reduced rotor speeds

    NASA Technical Reports Server (NTRS)

    Mueller, Arnold W.; Lemasurier, Philip; Smith, Charles D.

    1990-01-01

    This paper will present far-field measured noise levels relative to tests conducted with a model S-76A helicopter. The project was designed to provide supplemental experimental flight data which may be used to further study reduced helicopter rotor speeds (and thus, advancing blade-tip Mach number) effects on far-field acoustic levels. The aircraft was flown in straight and level flight while operating with both the rotor speed and flight speed as test variables. The rotor speed was varied over the range of 107 percent of the main-rotor speed (NR) to 90 percent NR and with the forward flight speed varied over the range of 155 to 35 knots indicated air speed. These conditions produced a wide range of advancing blade-tip Mach numbers to which the noise data are related.

  12. Experimental active control of sound in the ATR 42

    NASA Astrophysics Data System (ADS)

    Paonessa, A.; Sollo, A.; Paxton, M.; Purver, M.; Ross, C. F.

    Passenger comfort is becoming day by day an important issue for the market of the regional turboprop aircraft and also for the future high speed propeller driven aircraft. In these aircraft the main contribution to the passenger annoyance is due to the propeller noise blade passing frequency (BPF) and its harmonics. In the recent past a detailed theoretical and experimental work has been done by Alenia Aeronautica in order to reduce the noise level in the ATR aircraft passenger cabin by means of conventional passive treatments: synchrophasing of propellers, dynamic vibration absorbers, structural reinforcements, damping materials. The application of these treatments has been introduced on production aircraft with a remarkable improvement of noise comfort but with a significant weight increase. For these reasons, a major technology step is required for reaching passenger comfort comparable to that of jet aircraft with the minimum weight increase. The most suitable approach to this problem has been envisaged in the active noise control which consists in generating an anti-sound field in the passenger cabin to reduce the noise at propeller BPF and its harmonics. The attenuation is reached by means of a control system which acquires information about the cabin noise distribution and the propeller speed during flight and simultaneously generates the signals to drive the speakers.

  13. Self-propulsion of a pitching foil

    NASA Astrophysics Data System (ADS)

    Das, Anil; Shukla, Ratnesh; Govardhan, Raghuraman

    2017-11-01

    Undulatory motions serve as a fundamental mechanism for bio-locomotion at moderate and high Reynolds numbers. An understanding of the interactions between self-propelling undulatory motions and the surrounding fluid, not only provides insight into the efficiency of bio-locomotion, but also yields valuable pointers for the design of autonomous under-water and micro-aerial vehicles. Here, we investigate a simplified model of a self-propelling pitching foil that undergoes time-periodic oscillations about its quarter chord. We consider two-dimensional configurations in which the foil is free to propel along only longitudinal and both transverse and longitudinal directions. In both the configurations, the time-averaged self-propelling velocity increases monotonically with the Reynolds number Re (based on trailing edge speed and chord as the characteristic velocity and length). The rate of increase is particularly pronounced in the low Re regime (Re <400) over which the closely-spaced wake vortices dissipate within a few chord lengths. At moderate and high Re, the wake exhibits increasingly complex structure in both the configurations. For a fixed Re, the foil with a single translational degree of freedom propels at a higher speed for a higher input power requirement. Differences between the two configurations will be discussed within the context of undulatory self-propulsion observed in nature.

  14. Gaussian memory in kinematic matrix theory for self-propellers.

    PubMed

    Nourhani, Amir; Crespi, Vincent H; Lammert, Paul E

    2014-12-01

    We extend the kinematic matrix ("kinematrix") formalism [Phys. Rev. E 89, 062304 (2014)], which via simple matrix algebra accesses ensemble properties of self-propellers influenced by uncorrelated noise, to treat Gaussian correlated noises. This extension brings into reach many real-world biological and biomimetic self-propellers for which inertia is significant. Applying the formalism, we analyze in detail ensemble behaviors of a 2D self-propeller with velocity fluctuations and orientation evolution driven by an Ornstein-Uhlenbeck process. On the basis of exact results, a variety of dynamical regimes determined by the inertial, speed-fluctuation, orientational diffusion, and emergent disorientation time scales are delineated and discussed.

  15. Blade-to-Blade Variations in Shocks Upstream of Both a Forward-Swept and an Aft-Swept Fan

    NASA Technical Reports Server (NTRS)

    Podboy, Gary G.; Krupar, Martin J.

    2006-01-01

    Detailed laser Doppler velocimeter (LDV) flow field measurements were made upstream of two fans, one forward-swept and one aft-swept, in order to learn more about the shocks which propagate upstream of these rotors when they are operated at supersonic tip speeds. The blade-to-blade variations in the flows associated with these shocks are thought to be responsible for generating Multiple Pure Tone (MPT) noise. The measured blade-to-blade variations are documented in this report through a series of slideshows which show relative Mach number contours computed from the velocity measurements. Data are presented for the forward-swept fan operating at three speeds (corresponding to tip relative Mach numbers of 0.817, 1.074, and 1.189), and for the aft-swept fan operating at two (tip relative Mach numbers of 1.074 and 1.189). These LDV data illustrate how the perturbations in the upstream flow field created by the rotating blades vary with axial position, radial position and rotor speed. As expected, at the highest tested speed the forward-swept fan swallowed the shocks which occur in the tip region, whereas the aftswept fan did not. This resulted in a much smaller flow disturbance just upstream of the tip of the forward-swept fan. Nevertheless, further upstream the two fan flows were much more similar.

  16. 46 CFR 113.37-5 - General requirements.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... SYSTEMS AND EQUIPMENT Shaft Speed and Thrust Indicators § 113.37-5 General requirements. (a) A vessel... station a propeller speed and direction indicator for each shaft. (b) A vessel equipped with controllable... speed and pitch position indicator for each shaft. [CGD 74-125A, 47 FR 15272, Apr. 8, 1982, as amended...

  17. 46 CFR 113.37-5 - General requirements.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... SYSTEMS AND EQUIPMENT Shaft Speed and Thrust Indicators § 113.37-5 General requirements. (a) A vessel... station a propeller speed and direction indicator for each shaft. (b) A vessel equipped with controllable... speed and pitch position indicator for each shaft. [CGD 74-125A, 47 FR 15272, Apr. 8, 1982, as amended...

  18. Flight Investigation at High Speeds of the Drag of Three Airfoils and a Circular Cylinder Representing Full-Scale Propeller Shanks

    NASA Technical Reports Server (NTRS)

    Barlow, William H

    1946-01-01

    Tests have been made at high speeds to determine the drag of models, simulating propeller shanks, in the form of a circular cylinder and three airfoils, the NACA 16-025, the NACA 16-040, and the NACA 16-040 with the rear 25 percent chord cut off. All the models had a maximum thickness of 4 1/2 inches to conform with average propeller-shank dimensions and a span of 20 1/4 inches. For the tests the models were supported perpendicular to the lower surface of the wing of an XP-51 airplane. A wake-survey rake mounted below the wing directly behind the models was used to determine profile drag of Mach numbers of 0.3 to 0.8 over a small range of angle of attack. The drag of the cylinder was also determined from pressure-distribution and force measurements.

  19. Hydrodynamic capture of microswimmers into sphere-bound orbits.

    PubMed

    Takagi, Daisuke; Palacci, Jérémie; Braunschweig, Adam B; Shelley, Michael J; Zhang, Jun

    2014-03-21

    Self-propelled particles can exhibit surprising non-equilibrium behaviors, and how they interact with obstacles or boundaries remains an important open problem. Here we show that chemically propelled micro-rods can be captured, with little change in their speed, into close orbits around solid spheres resting on or near a horizontal plane. We show that this interaction between sphere and particle is short-range, occurring even for spheres smaller than the particle length, and for a variety of sphere materials. We consider a simple model, based on lubrication theory, of a force- and torque-free swimmer driven by a surface slip (the phoretic propulsion mechanism) and moving near a solid surface. The model demonstrates capture, or movement towards the surface, and yields speeds independent of distance. This study reveals the crucial aspects of activity–driven interactions of self-propelled particles with passive objects, and brings into question the use of colloidal tracers as probes of active matter.

  20. Measured far-field flight noise of a counterrotation turboprop at cruise conditions

    NASA Technical Reports Server (NTRS)

    Woodward, Richard P.; Loeffler, Irvin J.; Dittmar, James H.

    1989-01-01

    Modern high speed propeller (advanced turboprop) aircraft are expected to operate on 50 to 60 percent less fuel than the 1980 vintage turbofan fleet while at the same time matching the flight speed and performance of those aircraft. Counterrotation turboprop engines offer additional fuel savings by means of upstream propeller swirl recovery. This paper presents acoustic sideline results for a full-scale counterrotation turboprop engine at cruise conditions. The engine was installed on a Boeing 727 aircraft in place of the right-side turbofan engine. Acoustic data were taken from an instrumented Learjet chase plane. Sideline acoustic results are presented for 0.50 and 0.72 Mach cruise conditions. A scale model of the engine propeller was tested in a wind tunnel at 0.72 Mach cruise conditions. The model data were adjusted to flight acquisition conditions and were in general agreement with the flight results.

  1. Propeller performance analysis and multidisciplinary optimization using a genetic algorithm

    NASA Astrophysics Data System (ADS)

    Burger, Christoph

    A propeller performance analysis program has been developed and integrated into a Genetic Algorithm for design optimization. The design tool will produce optimal propeller geometries for a given goal, which includes performance and/or acoustic signature. A vortex lattice model is used for the propeller performance analysis and a subsonic compact source model is used for the acoustic signature determination. Compressibility effects are taken into account with the implementation of Prandtl-Glauert domain stretching. Viscous effects are considered with a simple Reynolds number based model to account for the effects of viscosity in the spanwise direction. An empirical flow separation model developed from experimental lift and drag coefficient data of a NACA 0012 airfoil is included. The propeller geometry is generated using a recently introduced Class/Shape function methodology to allow for efficient use of a wide design space. Optimizing the angle of attack, the chord, the sweep and the local airfoil sections, produced blades with favorable tradeoffs between single and multiple point optimizations of propeller performance and acoustic noise signatures. Optimizations using a binary encoded IMPROVE(c) Genetic Algorithm (GA) and a real encoded GA were obtained after optimization runs with some premature convergence. The newly developed real encoded GA was used to obtain the majority of the results which produced generally better convergence characteristics when compared to the binary encoded GA. The optimization trade-offs show that single point optimized propellers have favorable performance, but circulation distributions were less smooth when compared to dual point or multiobjective optimizations. Some of the single point optimizations generated propellers with proplets which show a loading shift to the blade tip region. When noise is included into the objective functions some propellers indicate a circulation shift to the inboard sections of the propeller as well as a reduction in propeller diameter. In addition the propeller number was increased in some optimizations to reduce the acoustic blade signature.

  2. Rotor design of high tip speed low loading transonic fan.

    NASA Technical Reports Server (NTRS)

    Erwin, J. R.; Vitale, N. G.

    1972-01-01

    This paper describes the design concepts, principles and details of a high tip speed transonic rotor having low aerodynamic loading. The purpose of the NASA sponsored investigation was to determine whether good efficiency and large stall margin could be obtained by designing a rotor to avoid flow separation associated with strong normal shocks. Fully supersonic flow through the outboard region of the rotor with compression accomplished by weak oblique shocks were major design concepts employed. Computer programs were written and used to derive blade sections consistent from the all-supersonic tip region to the all-subsonic hub region. Preliminary test results indicate attainment of design pressure ratio and design flow at design speed with about a 1.6 point decrement in efficiency and large stall margin.

  3. The Effect of Rotor Cruise Tip Speed, Engine Technology and Engine/Drive System RPM on the NASA Large Civil Tiltrotor (LCTR2) Size and Performance

    NASA Technical Reports Server (NTRS)

    Robuck, Mark; Wilkerson, Joseph; Maciolek, Robert; Vonderwell, Dan

    2012-01-01

    A multi-year study was conducted under NASA NNA06BC41C Task Order 10 and NASA NNA09DA56C task orders 2, 4, and 5 to identify the most promising propulsion system concepts that enable rotor cruise tip speeds down to 54% of the hover tip speed for a civil tiltrotor aircraft. Combinations of engine RPM reduction and 2-speed drive systems were evaluated. Three levels of engine and the drive system advanced technology were assessed; 2015, 2025 and 2035. Propulsion and drive system configurations that resulted in minimum vehicle gross weight were identified. Design variables included engine speed reduction, drive system speed reduction, technology, and rotor cruise propulsion efficiency. The NASA Large Civil Tiltrotor, LCTR, aircraft served as the base vehicle concept for this study and was resized for over thirty combinations of operating cruise RPM and technology level, quantifying LCTR2 Gross Weight, size, and mission fuel. Additional studies show design sensitivity to other mission ranges and design airspeeds, with corresponding relative estimated operational cost. The lightest vehicle gross weight solution consistently came from rotor cruise tip speeds between 422 fps and 500 fps. Nearly equivalent results were achieved with operating at reduced engine RPM with a single-speed drive system or with a two-speed drive system and 100% engine RPM. Projected performance for a 2025 engine technology provided improved fuel flow over a wide range of operating speeds relative to the 2015 technology, but increased engine weight nullified the improved fuel flow resulting in increased aircraft gross weights. The 2035 engine technology provided further fuel flow reduction and 25% lower engine weight, and the 2035 drive system technology provided a 12% reduction in drive system weight. In combination, the 2035 technologies reduced aircraft takeoff gross weight by 14% relative to the 2015 technologies.

  4. Study on unsteady hydrodynamic performance of propeller in waves

    NASA Astrophysics Data System (ADS)

    Zhao, Qingxin; Guo, Chunyu; Su, Yumin; Liu, Tian; Meng, Xiangyin

    2017-09-01

    The speed of a ship sailing in waves always slows down due to the decrease in efficiency of the propeller. So it is necessary and essential to analyze the unsteady hydrodynamic performance of propeller in waves. This paper is based on the numerical simulation and experimental research of hydrodynamics performance when the propeller is under wave conditions. Open-water propeller performance in calm water is calculated by commercial codes and the results are compared to experimental values to evaluate the accuracy of the numerical simulation method. The first-order Volume of Fluid (VOF) wave method in STAR CCM+ is utilized to simulate the three-dimensional numerical wave. According to the above prerequisite, the numerical calculation of hydrodynamic performance of the propeller under wave conditions is conducted, and the results reveal that both thrust and torque of the propeller under wave conditions reveal intense unsteady behavior. With the periodic variation of waves, ventilation, and even an effluent phenomenon appears on the propeller. Calculation results indicate, when ventilation or effluent appears, the numerical calculation model can capture the dynamic characteristics of the propeller accurately, thus providing a significant theory foundation for further studying the hydrodynamic performance of a propeller in waves.

  5. Installation noise measurements of model SR and CR propellers

    NASA Technical Reports Server (NTRS)

    Block, P. J. W.

    1984-01-01

    Noise measurements on a 0.1 scale SR-2 propeller in a single and counter rotation mode, in a pusher and tractor configuration, and operating at non-zero angles of attack are summarized. A measurement scheme which permitted 143 measurements of each of these configurations in the Langley 4- by 7-meter low speed tunnel is also described.

  6. Preliminary Results of an Altitude-Wind-Tunnel Investigation of an Axial-Flow Gas Turbine-Propeller Engine. 1; Performance Characteristics

    NASA Technical Reports Server (NTRS)

    Saari, Martin J.; Wallner, Lewis E.

    1948-01-01

    A preliminary investigation of an axial-flow gas turbine-propeller engine was conduxted. Performance data were obtained for engine speeds from 8000 to 13,000 rpm and altitudes from 5000 to 35,000 feet and compressor inlet ram pressure ratios from 1.00 to 1.17.

  7. Dynamics of arbitrary shaped propellers driven by a rotating magnetic field

    NASA Astrophysics Data System (ADS)

    Morozov, Konstantin I.; Mirzae, Yoni; Kenneth, Oded; Leshansky, Alexander M.

    2017-04-01

    Motion in fluids at the micro(nano)metric scale is dominated by viscosity. One efficient propulsion method relies on a weak uniform rotating magnetic field that drives a chiral object. From bacterial flagella to artificial magnetic micro- or nanohelices, rotation of a corkscrew is considered as a universally efficient propulsion gait in viscous environments. However, recent experimental studies have demonstrated that geometrically achiral microscale objects or random-shaped magnetic aggregates can propel similarly to helical micromotors. Although approximate theories concerning dynamics of helical magnetic propellers are available, propulsion of achiral particles or objects with complex shapes is not understood. Here we present a general theory of rotation and propulsion of magnetized object of arbitrary shape driven by a rotating magnetic field. Intrinsic symmetries of the viscous mobility tensors yield compact classification of stable rotational states depending on the orientation of the magnetic moment with respect to principal rotation axes of the object. Propulsion velocity can be written in terms of geometry-dependent chirality matrix Ch , where both the diagonal elements (owing to orientation-dependent handedness) and off-diagonal entries (that do not necessitate handedness) contribute in a similar way. In general, the theory anticipates multiplicity of stable rotational states corresponding to two (complimentary to π ) angles the magnetization forms with the field rotation axis. Thus, two identical magnetic objects may propel with different speeds or even in opposite directions. However, for a class of simple achiral objects, there is a particular magnetization whereas the pair of symmetric rotational states gives rise to a unique chiral-like propulsion gait, closely resembling that of an ideal helical propeller. In other words, a geometrically achiral object can acquire apparent chirality due to its interaction with the external magnetic field. The developed theory is further applied to study the dynamics of achiral, chiral, and random-shaped magnetic propellers, rationalizing previously unexplained experimental observations. The genetic search algorithm based on the proposed theory reveals that an arc-shaped segment is the optimal (fastest) achiral propeller, while the optimal skew-symmetric shape deviates considerably from a helix. Remarkably, an optimized arc-shaped propeller warrants propulsion speeds comparable to those of the optimally magnetized helix. Although random shaped magnetic aggregates appear to be poor swimmers at low actuation frequency, at higher frequency, whereas the helical propeller ceases to rotate in-sync with the field, the propulsion speed of the aggregates could be comparable, or even higher, than that of a helix.

  8. Evaluation of aero Commander propeller acoustic data: Static operations

    NASA Technical Reports Server (NTRS)

    Piersol, A. G.; Wilby, E. G.; Wilby, J. F.

    1978-01-01

    Acoustic data are analyzed from a series of ground tests performed on an Aero Commander propeller-driven aircraft with an array of microphones flush-mounted on one side of the fuselage. The analyses were concerned with the propeller blade passage noise during static operation at several different engine speeds and included calculations of the magnitude and phase of the blade passage tones, the amplitude stability of the tones, and the spatial phase and coherence of the tones. The results indicate that the pressure field impinging on the fuselage represents primarily aerodynamic (near field) effects in the plane of the propeller at all frequencies. Forward and aft of the propeller plane aerodynamic effects still dominate the pressure field at frequencies below 200 Hz; but at higher frequencies, the pressure field is due to acoustic propagation from an equivalent center located about 0.15 to 0.30 blade diameters inboard from the propeller hub.

  9. Uniaxial alignment of triisopropylsilylethynyl pentacene via zone-casting technique.

    PubMed

    Su, Yajun; Gao, Xiang; Liu, Jiangang; Xing, Rubo; Han, Yanchun

    2013-09-14

    Uniaxially aligned triisopropylsilylethynyl pentacene (TIPS-pentacene) crystals over a large area were fabricated using zone-casting technique. The array of TIPS-pentacene displayed a high orientation degree with a dichroic ratio (DR) of 0.80. The crystals were arranged with c axis perpendicular to the substrate and the long axis of the ribbon corresponded to the a axis of TIPS-pentacene. The properties of the solutions and the processing parameters were shown to influence the formation of the oriented TIPS-pentacene crystalline array. Solvent with a low boiling point (such as chloroform) favoured the orientation of the ribbon-like crystals. The concentration of the solution should be appropriate, ensuring the crystallization velocity of TIPS-pentacene matching with the receding of the meniscus. Besides, we proved that the casting speed should be large enough to induce a sufficient concentration gradient. The orientation mechanism of TIPS-pentacene was attributed to a synergy of the ordered nuclei and a match between the crystallization velocity and the casting speed. Field effect transistors (FETs) based on the oriented TIPS-pentacene crystalline array showed a mobility of 0.67 cm(2) V(-1) s(-1).

  10. Feasibility Study on Cutting HTPB Propellants with Abrasive Water Jet

    NASA Astrophysics Data System (ADS)

    Jiang, Dayong; Bai, Yun

    2018-01-01

    Abrasive water jet is used to carry out the experiment research on cutting HTPB propellants with three components, which will provide technical support for the engineering treatment of waste rocket motor. Based on the reliability theory and related scientific research results, the safety and efficiency of cutting sensitive HTPB propellants by abrasive water jet were experimentally studied. The results show that the safety reliability is not less than 99.52% at 90% confidence level, so the safety is adequately ensured. The cooling and anti-friction effect of high-speed water jet is the decisive factor to suppress the detonation of HTPB propellant. Compared with pure water jet, cutting efficiency was increased by 5% - 87%. The study shows that abrasive water jets meet the practical use for cutting HTPB propellants.

  11. Computational methods in the prediction of advanced subsonic and supersonic propeller induced noise: ASSPIN users' manual

    NASA Technical Reports Server (NTRS)

    Dunn, M. H.; Tarkenton, G. M.

    1992-01-01

    This document describes the computational aspects of propeller noise prediction in the time domain and the use of high speed propeller noise prediction program ASSPIN (Advanced Subsonic and Supersonic Propeller Induced Noise). These formulations are valid in both the near and far fields. Two formulations are utilized by ASSPIN: (1) one is used for subsonic portions of the propeller blade; and (2) the second is used for transonic and supersonic regions on the blade. Switching between the two formulations is done automatically. ASSPIN incorporates advanced blade geometry and surface pressure modelling, adaptive observer time grid strategies, and contains enhanced numerical algorithms that result in reduced computational time. In addition, the ability to treat the nonaxial inflow case has been included.

  12. Characteristics of propeller noise on an aircraft fuselage related to interior noise transmission

    NASA Technical Reports Server (NTRS)

    Mixson, J. S.; Barton, C. K.; Piersol, A. G.; Wilby, J. F.

    1979-01-01

    Exterior noise was measured on the fuselage of a twin-engine, light aircraft at four values of engine rpm in ground static tests and at forward speeds up to 36 m/s in taxi tests. Propeller noise levels, spectra, and correlations were determined using a horizontal array of seven flush-mounted microphones and a vertical array of four flush-mounted microphones in the propeller plane. The measured levels and spectra are compared with predictions based on empirical and analytical methods for static and taxi conditions. Trace wavelengths of the propeller noise field, obtained from point-to-point correlations, are compared with the aircraft sidewall structural dimensions, and some analytical results are presented that suggest the sensitivity of interior noise transmission to variations of the propeller noise characteristics.

  13. Effects of pressure angle and tip relief on the life of speed increasing gearbox: a case study.

    PubMed

    Shanmugasundaram, Sankar; Kumaresan, Manivarma; Muthusamy, Nataraj

    2014-01-01

    This paper examines failure of helical gear in speed increasing gearbox used in the wind turbine generator (WTG). In addition, an attempt has been made to get suitable gear micro-geometry such as pressure angle and tip relief to minimize the gear failure in the wind turbines. As the gear trains in the wind turbine gearbox is prearranged with higher speed ratio and the gearboxes experience shock load due to atmospheric turbulence, gust wind speed, non-synchronization of pitching, frequent grid drops and failure of braking, the gear failure occurs either in the intermediate or high speed stage pinion. KISS soft gear calculation software was used to determine the gear specifications and analysis is carried out in ANSYS software version.11.0 for the existing and the proposed gear to evaluate the performance of bending stress tooth deflection and stiffness. The main objective of this research study is to propose suitable gear micro-geometry that is tip relief and pressure angle blend for increasing tooth strength of the helical gear used in the wind turbine for trouble free operation.

  14. Helicopter far-field acoustic levels as a function of reduced main-rotor advancing blade-tip Mach number

    NASA Technical Reports Server (NTRS)

    Mueller, Arnold W.; Smith, Charles D.; Lemasurier, Philip

    1990-01-01

    During the design of a helicopter, the weight, engine, rotor speed, and rotor geometry are given significant attention when considering the specific operations for which the helicopter will be used. However, the noise radiated from the helicopter and its relationship to the design variables is currently not well modeled with only a limited set of full-scale field test data to study. In general, limited field data have shown that reduced main-rotor advancing blade-tip Mach numbers result in reduced far-field noise levels. The status of a recent helicopter noise research project is reviewed. It is designed to provide flight experimental data which may be used to further understand helicopter main-rotor advancing blade-tip Mach number effects on far-field acoustic levels. Preliminary results are presented relative to tests conducted with a Sikorsky S-76A helicopter operating with both the rotor speed and the flight speed as the control variable. The rotor speed was operated within the range of 107 to 90 percent NR at nominal forward speeds of 35, 100, and 155 knots.

  15. Wind-tunnel measurement of noise emitted by helicopter rotors at high speed

    NASA Astrophysics Data System (ADS)

    Prieur, J.

    Measurements of high-speed impulsive helicopter rotor noise in a wind-tunnel are presented. High-speed impulsive noise measurements have been performed in 1988 in the ONERA S2ch wind-tunnel, fitted with an acoustic lining, on two types of rotors. They show that substantial noise reduction is obtained with sweptback tips, initially designed for aerodynamic purposes, which lower transonic effects on the advancing blade tip. Emphasis is placed on the necessity of taking into account the acoustic annoyance problem, using noise prediction tools, when designing new helicopter blades.

  16. Multiple pure tone noise generated by fans at supersonic tip speeds

    NASA Technical Reports Server (NTRS)

    Sofrin, T. G.; Pickett, G. F.

    1974-01-01

    The existence of clusters of pure tones at integral multiples of shaft speed has been noted for supersonic-tip-speed operation of fans and compressors. A continuing program to explore this phenomenon, often called combination-tone noise, has been in effect for several years. This paper reviews the research program, which involves a wide range of engines, compressor rigs, and special apparatus. Elements of the aerodynamics of the blade-associated shock waves are outlined and causes of blade-to-blade shock inequalities, responsible for the multiple tones, are described.

  17. Noise control prediction for high-speed, propeller-driven aircraft

    NASA Technical Reports Server (NTRS)

    Wilby, J. F.; Rennison, D. C.; Wilby, E. G.; Marsh, A. H.

    1980-01-01

    An analytical study is described which explores add-on treatments and advanced concepts for the reduction of noise levels in three high-speed aircraft driven by propellers. Noise reductions of 25 to 28 dB are required to achieve a goal of an A-weighted sound level not greater than 80 dB. It is found that only a double-wall system, with a limp inner wall or trim panel, can achieve the required noise reductions. Weight penalties are estimated for the double-wall treatments. These penalties are 0.75% to 1.51% of the aircraft takeoff weight for the particular baseline designs selected.

  18. Forced transport of self-propelled particles in a two-dimensional separate channel.

    PubMed

    Wu, Jian-chun; Ai, Bao-quan

    2016-04-01

    Transport of self-propelled particles in a two-dimensional (2D) separate channel is investigated in the presence of the combined forces. By applying an ac force, the particles will be trapped by the separate walls. A dc force produces the asymmetry of the system and induces the longitudinal directed transport. Due to the competition between self-propulsion and the combined external forces, the transport is sensitive to the self-propelled speed and the particle radius, thus one can separate the particles based on these properties.

  19. Influence of a non-uniform free stream velocity distribution on performance/acoustics of counterrotating propeller configurations

    NASA Astrophysics Data System (ADS)

    Allen, C. S.; Korkan, K. D.

    1991-01-01

    A methodology for predicting the performance and acoustics of counterrotating propeller configurations was modified to take into account the effects of a non-uniform free stream velocity distribution entering the disk plane. The method utilizes the analytical techniques of Lock and Theodorson as described by Davidson to determine the influence of the non-uniform free stream velocity distribution in the prediction of the steady aerodynamic loads. The unsteady load contribution is determined according to the procedure of Leseture with rigid helical tip vortices simulating the previous rotations of each propeller. The steady and unsteady loads are combined to obtain the total blade loading required for acoustic prediction employing the Ffowcs Williams-Hawking equation as simplified by Succi with the assumption of compact sources. The numerical method is used to redesign the previous commuter class counterrotating propeller configuration of Denner. The specifications, performance, and acoustics of the new design are compared with the results of Denner thereby determining the influence of the non-uniform free stream velocity distribution on these metrics.

  20. Measurements of Free-Space Oscillating Pressures Near Propellers at Flight Mach Numbers to 0.72

    NASA Technical Reports Server (NTRS)

    Kurbjun, Max C; Vogeley, Arthur W

    1958-01-01

    In the course of a short flight program initiated to check the theory of Garrick and Watkins (NACA rep. 1198), a series of measurements at three stations were made of the oscillating pressures near a tapered-blade plan-form propeller and rectangular-blade plan form propeller at flight Mach numbers up to 0.72. In contradiction to the results for the propeller studied in NACA rep. 1198, the oscillating pressures in the plane ahead of the propeller were found to be higher than those immediately behind the propeller. Factors such as variation in torque and thrust distribution, since the blades of the present investigation were operating above their design forward speed, may account for this contradiction. The effect of blade plan form shows that a tapered-blade plan-form propeller will produce lower sound-pressure levels than a rectangular-blade plan-form propeller for the low blade-passage harmonics (the frequencies where structural considerations are important) and produce higher sound-pressure levels for the higher blade-passage harmonics (frequencies where passenger comfort is important).

  1. SPINS-IND: Pellet injector for fuelling of magnetically confined fusion systems.

    PubMed

    Gangradey, R; Mishra, J; Mukherjee, S; Panchal, P; Nayak, P; Agarwal, J; Saxena, Y C

    2017-06-01

    Using a Gifford-McMahon cycle cryocooler based refrigeration system, a single barrel hydrogen pellet injection (SPINS-IND) system is indigenously developed at Institute for Plasma Research, India. The injector is based on a pipe gun concept, where a pellet formed in situ in the gun barrel is accelerated to high speed using high pressure light propellant gas. The pellet size is decided by considering the Greenwald density limit and its speed is decided by considering a neutral gas shielding model based scaling law. The pellet shape is cylindrical of dimension (1.6 mm ℓ × 1.8 mm φ). For pellet ejection and acceleration, a fast opening valve of short opening duration is installed at the breech of the barrel. A three-stage differential pumping system is used to restrict the flow of the propellant gas into the plasma vacuum vessel. Diagnostic systems such as light gate and fast imaging camera (240 000 frames/s) are employed to measure the pellet speed and size, respectively. A trigger circuit and a programmable logic controller based integrated control system developed on LabVIEW enables to control the pellet injector remotely. Using helium as a propellant gas, the pellet speed is varied in the range 650 m/s-800 m/s. The reliability of pellet formation and ejection is found to be more than 95%. This paper describes the details of SPINS-IND and its test results.

  2. Response of a Rotating Propeller to Aerodynamic Excitation

    NASA Technical Reports Server (NTRS)

    Arnoldi, Walter E.

    1949-01-01

    The flexural vibration of a rotating propeller blade with clamped shank is analyzed with the object of presenting, in matrix form, equations for the elastic bending moments in forced vibration resulting from aerodynamic forces applied at a fixed multiple of rotational speed. Matrix equations are also derived which define the critical speeds end mode shapes for any excitation order and the relation between critical speed and blade angle. Reference is given to standard works on the numerical solution of matrix equations of the forms derived. The use of a segmented blade as an approximation to a continuous blade provides a simple means for obtaining the matrix solution from the integral equation of equilibrium, so that, in the numerical application of the method presented, the several matrix arrays of the basic physical characteristics of the propeller blade are of simple form, end their simplicity is preserved until, with the solution in sight, numerical manipulations well-known in matrix algebra yield the desired critical speeds and mode shapes frame which the vibration at any operating condition may be synthesized. A close correspondence between the familiar Stodola method and the matrix method is pointed out, indicating that any features of novelty are characteristic not of the analytical procedure but only of the abbreviation, condensation, and efficient organization of the numerical procedure made possible by the use of classical matrix theory.

  3. SPINS-IND: Pellet injector for fuelling of magnetically confined fusion systems

    NASA Astrophysics Data System (ADS)

    Gangradey, R.; Mishra, J.; Mukherjee, S.; Panchal, P.; Nayak, P.; Agarwal, J.; Saxena, Y. C.

    2017-06-01

    Using a Gifford-McMahon cycle cryocooler based refrigeration system, a single barrel hydrogen pellet injection (SPINS-IND) system is indigenously developed at Institute for Plasma Research, India. The injector is based on a pipe gun concept, where a pellet formed in situ in the gun barrel is accelerated to high speed using high pressure light propellant gas. The pellet size is decided by considering the Greenwald density limit and its speed is decided by considering a neutral gas shielding model based scaling law. The pellet shape is cylindrical of dimension (1.6 mm ℓ × 1.8 mm φ). For pellet ejection and acceleration, a fast opening valve of short opening duration is installed at the breech of the barrel. A three-stage differential pumping system is used to restrict the flow of the propellant gas into the plasma vacuum vessel. Diagnostic systems such as light gate and fast imaging camera (240 000 frames/s) are employed to measure the pellet speed and size, respectively. A trigger circuit and a programmable logic controller based integrated control system developed on LabVIEW enables to control the pellet injector remotely. Using helium as a propellant gas, the pellet speed is varied in the range 650 m/s-800 m/s. The reliability of pellet formation and ejection is found to be more than 95%. This paper describes the details of SPINS-IND and its test results.

  4. Generalized Advanced Propeller Analysis System (GAPAS). Volume 2: Computer program user manual

    NASA Technical Reports Server (NTRS)

    Glatt, L.; Crawford, D. R.; Kosmatka, J. B.; Swigart, R. J.; Wong, E. W.

    1986-01-01

    The Generalized Advanced Propeller Analysis System (GAPAS) computer code is described. GAPAS was developed to analyze advanced technology multi-bladed propellers which operate on aircraft with speeds up to Mach 0.8 and altitudes up to 40,000 feet. GAPAS includes technology for analyzing aerodynamic, structural, and acoustic performance of propellers. The computer code was developed for the CDC 7600 computer and is currently available for industrial use on the NASA Langley computer. A description of all the analytical models incorporated in GAPAS is included. Sample calculations are also described as well as users requirements for modifying the analysis system. Computer system core requirements and running times are also discussed.

  5. Optimal Parameters for Intervertebral Disk Resection Using Aqua-Plasma Beams.

    PubMed

    Yoon, Sung-Young; Kim, Gon-Ho; Kim, Yushin; Kim, Nack Hwan; Lee, Sangheon; Kawai, Christina; Hong, Youngki

    2018-06-14

     A minimally invasive procedure for intervertebral disk resection using plasma beams has been developed. Conventional parameters for the plasma procedure such as voltage and tip speed mainly rely on the surgeon's personal experience, without adequate evidence from experiments. Our objective was to determine the optimal parameters for plasma disk resection.  Rate of ablation was measured at different procedural tip speeds and voltages using porcine nucleus pulposi. The amount of heat formation during experimental conditions was also measured to evaluate the thermal safety of the plasma procedure.  The ablation rate increased at slower procedural speeds and higher voltages. However, for thermal safety, the optimal parameters for plasma procedures with minimal tissue damage were an electrical output of 280 volts root-mean-square (V rms ) and a procedural tip speed of 2.5 mm/s.  Our findings provide useful information for an effective and safe plasma procedure for disk resection in a clinical setting. Georg Thieme Verlag KG Stuttgart · New York.

  6. Exact Relativistic `Antigravity' Propulsion

    NASA Astrophysics Data System (ADS)

    Felber, Franklin S.

    2006-01-01

    The Schwarzschild solution is used to find the exact relativistic motion of a payload in the gravitational field of a mass moving with constant velocity. At radial approach or recession speeds faster than 3-1/2 times the speed of light, even a small mass gravitationally repels a payload. At relativistic speeds, a suitable mass can quickly propel a heavy payload from rest nearly to the speed of light with negligible stresses on the payload.

  7. Determination of fish swimming speed by ultrasonic telemetry.

    PubMed

    Voegeli, F A; Pincock, D G

    1980-01-01

    Design of a small and simple sensor for direct measurement of swimming speed of fish and its incorporation into ultrasonic telemetry transmitters is described. The sensor used measures the speed of rotation of a free-wheeling propeller which is exposed to water flow. Two transmitters incorporating this sensor are described. The first is a very simple one providing swimming speed while the second incorporates two temperature sensors as well.

  8. Wind-tunnel acoustic results of two rotor models with several tip designs

    NASA Technical Reports Server (NTRS)

    Martin, R. M.; Connor, A. B.

    1986-01-01

    A three-phase research program has been undertaken to study the acoustic signals due to the aerodynamic interaction of rotorcraft main rotors and tail rotors. During the first phase, two different rotor models with several interchangeable tips were tested in the Langley 4- by 7-Meter Tunnel on the U.S. Army rotor model system. An extensive acoustic data base was acquired, with special emphasis on blade-vortex interaction (BVI) noise. The details of the experimental procedure, acoustic data acquisition, and reduction are documented. The overall sound pressure level (OASPL) of the high-twist rotor systems is relatively insensitive to flight speed but generally increases with rotor tip-path-plane angle. The OASPL of the high-twist rotors is dominated by acoustic energy in the low-frequency harmonics. The OASPL of the low-twist rotor systems shows more dependence on flight speed than the high-twist rotors, in addition to being quite sensitive to tip-path-plane angle. An integrated band-limited sound pressure level, limited by 500 to 3000 Hz, is a useful metric to quantify the occurrence of BVI noise. The OASPL of the low-twist rotors is strongly influenced by the band-limited sound levels, indicating that the blade-vortex impulsive noise is a dominant noise source for this rotor design. The midfrequency acoustic levels for both rotors show a very strong dependence on rotor tip-path-plane angle. The tip-path-plane angle at which the maximum midfrequency sound level occurs consistently decreases with increasing flight speed. The maximum midfrequency sound level measured at a given location is constant regardless of the flight speed.

  9. The lateral/directional stability characteristics of a four-propeller tilt-wing V/STOL model in low-speed steep descent. M.S. Thesis - Princeton Univ., N.J.

    NASA Technical Reports Server (NTRS)

    Dicarlo, D. J.

    1971-01-01

    Lateral-directional dynamic stability derivatives are presented for a O.1-scale model of the XC-142A tilt-wing transport. The tests involved various descending flight conditions achieved at constant speed and wing incidence by varying the vehicle angle of attack. The propeller blade angle and the speed were also changed in the steepest descent case. The experimental data were analyzed assuming that the dynamic motions of the vehicle may be described by linearized equations, with the lateral-directional characteristics of the full-scale aircraft also presented and discussed. Results from this experimental investigation indicated that the full-scale aircraft would have a stable lateral-directional motion in level flight, with the dynamic motion becoming less stable as the descent angle was increased.

  10. Computation of transonic flow about helicopter rotor blades

    NASA Technical Reports Server (NTRS)

    Arieli, R.; Tauber, M. E.; Saunders, D. A.; Caughey, D. A.

    1986-01-01

    An inviscid, nonconservative, three-dimensional full-potential flow code, ROT22, has been developed for computing the quasi-steady flow about a lifting rotor blade. The code is valid throughout the subsonic and transonic regime. Calculations from the code are compared with detailed laser velocimeter measurements made in the tip region of a nonlifting rotor at a tip Mach number of 0.95 and zero advance ratio. In addition, comparisons are made with chordwise surface pressure measurements obtained in a wind tunnel for a nonlifting rotor blade at transonic tip speeds at advance ratios from 0.40 to 0.50. The overall agreement between theoretical calculations and experiment is very good. A typical run on a CRAY X-MP computer requires about 30 CPU seconds for one rotor position at transonic tip speed.

  11. Comparison of Far-Field Noise for Three Significantly Different Model Turbofans

    NASA Technical Reports Server (NTRS)

    Woodward, Richard P.

    2008-01-01

    Far-field noise sound power level (PWL) spectra and overall sound pressure level (OASPL) directivities were compared for three significantly different model fan stages which were tested in the NASA Glenn 9x15 Low Speed Wind Tunnel. The test fans included the Advanced Ducted Propulsor (ADP) Fan1, the baseline Source Diagnostic Test (SDT) fan, and the Quiet High Speed Fan2 (QHSF2) These fans had design rotor tangential tip speeds from 840 to 1474 ft/s and stage pressure ratios from 1.29 to 1.82. Additional parameters included rotor-stator spacing, stator sweep, and downstream support struts. Acoustic comparison points were selected on the basis of stage thrust. Acoustic results for the low tip speed/low pressure ratio fan (ADP Fan1) were thrust-adjusted to show how a geometrically-scaled version of this fan might compare at the higher design thrust levels of the other two fans. Lowest noise levels were typically observed for ADP Fan1 (which had a radial stator) and for the intermediate tip speed fan (Source Diagnostics Test, SDT, R4 rotor) with a swept stator. Projected noise levels for the ADP fan to the SDT swept stator configuration at design point conditions showed the fans to have similar noise levels. However, it is possible that the ADP fan could be 2 to 3 dB quieter with incorporation of a swept stator. Benefits of a scaled ADP fan include avoidance of multiple pure tones associated with transonic and higher blade tip speeds. Penalties of a larger size ADP fan would include increased nacelle size and drag.

  12. Comparison of Far-field Noise for Three Significantly Different Model Turbofans

    NASA Technical Reports Server (NTRS)

    Woodward, Richard P.

    2008-01-01

    Far-field noise sound power level (PWL) spectra and overall sound pressure level (OASPL) directivities were compared for three significantly different model fan stages which were tested in the NASA Glenn 9 15 Low Speed Wind Tunnel. The test fans included the Advanced Ducted Propulsor (ADP) Fan1, the baseline Source Diagnostic Test (SDT) fan, and the Quiet High Speed Fan2 (QHSF2). These fans had design rotor tangential tip speeds from 840 to 1474 ft/s and stage pressure ratios from 1.29 to 1.82. Additional parameters included rotor-stator spacing, stator sweep, and downstream support struts. Acoustic comparison points were selected on the basis of stage thrust. Acoustic results for the low tip speed/low pressure ratio fan (ADP Fan1) were thrust-adjusted to show how a geometrically-scaled version of this fan might compare at the higher design thrust levels of the other two fans. Lowest noise levels were typically observed for ADP Fan1 (which had a radial stator) and for the intermediate tip speed fan (Source Diagnostics Test, SDT, R4 rotor) with a swept stator. Projected noise levels for the ADP fan to the SDT swept stator configuration at design point conditions showed the fans to have similar noise levels. However, it is possible that the ADP fan could be 2 to 3 dB quieter with incorporation of a swept stator. Benefits of a scaled ADP fan include avoidance of multiple pure tones associated with transonic and higher blade tip speeds. Penalties of a larger size ADP fan would include increased nacelle size and drag.

  13. RSA/Legacy Wind Sensor Comparison. Part 2; Eastern Range

    NASA Technical Reports Server (NTRS)

    Short, David A.; Wheeler, Mark M.

    2006-01-01

    This report describes a comparison of data from ultrasonic and propeller-and-vane anemometers on 5 wind towers at Kennedy Space Center and Cape Canaveral Air Force Station. The ultrasonic sensors are scheduled to replace the Legacy propeller-and-vane sensors under the Range Standardization and Automation (RSA) program. Because previous studies have noted differences between peak wind speeds reported by mechanical and ultrasonic wind sensors, the latter having no moving parts, the 30th and 45th Weather Squadrons wanted to understand possible differences between the two sensor types. The period-of-record was 13-30 May 2005, A total of 357,626 readings of 1-minute average and peak wind speed/direction from each sensor type were used. Statistics of differences in speed and direction were used to identify 15 out of 19 RSA sensors having the most consistent performance, with respect to the Legacy sensors. RSA average wind speed data from these 15 showed a small positive bias of 0.38 kts. A slightly larger positive bias of 0.94 kts was found in the RSA peak wind speed.

  14. An Assessment of Current Fan Noise Prediction Capability

    NASA Technical Reports Server (NTRS)

    Envia, Edmane; Woodward, Richard P.; Elliott, David M.; Fite, E. Brian; Hughes, Christopher E.; Podboy, Gary G.; Sutliff, Daniel L.

    2008-01-01

    In this paper, the results of an extensive assessment exercise carried out to establish the current state of the art for predicting fan noise at NASA are presented. Representative codes in the empirical, analytical, and computational categories were exercised and assessed against a set of benchmark acoustic data obtained from wind tunnel tests of three model scale fans. The chosen codes were ANOPP, representing an empirical capability, RSI, representing an analytical capability, and LINFLUX, representing a computational aeroacoustics capability. The selected benchmark fans cover a wide range of fan pressure ratios and fan tip speeds, and are representative of modern turbofan engine designs. The assessment results indicate that the ANOPP code can predict fan noise spectrum to within 4 dB of the measurement uncertainty band on a third-octave basis for the low and moderate tip speed fans except at extreme aft emission angles. The RSI code can predict fan broadband noise spectrum to within 1.5 dB of experimental uncertainty band provided the rotor-only contribution is taken into account. The LINFLUX code can predict interaction tone power levels to within experimental uncertainties at low and moderate fan tip speeds, but could deviate by as much as 6.5 dB outside the experimental uncertainty band at the highest tip speeds in some case.

  15. Wind-tunnel modelling of the tip-speed ratio influence on the wake evolution

    NASA Astrophysics Data System (ADS)

    Stein, Victor P.; Kaltenbach, Hans-Jakob

    2016-09-01

    Wind-tunnel measurements on the near-wake evolution of a three bladed horizontal axis wind turbine model (HAWT) in the scale 1:O(350) operating in uniform flow conditions and within a turbulent boundary layer at different tip speed ratios are presented. Operational conditions are chosen to exclude Reynolds number effects regarding the turbulent boundary layer as well as the rotor performance. Triple-wire anemometry is used to measure all three velocity components in the mid-vertical and mid-horizontal plane, covering the range from the near- to the far-wake region. In order to analyse wake properties systematically, power and thrust coefficients of the turbine were measured additionally. It is confirmed that realistic modelling of the wake evolution is not possible in a low-turbulence uniform approach flow. Profiles of mean velocity and turbulence intensity exhibit large deviations between the low-turbulence uniform flow and the turbulent boundary layer, especially in the far-wake region. For nearly constant thrust coefficients differences in the evolution of the near-wake can be identified for tip speed ratios in the range from 6.5 to 10.5. It is shown that with increasing downstream distances mean velocity profiles become indistinguishable whereas for turbulence statistics a subtle dependency on the tip speed ratio is still noticeable in the far-wake region.

  16. The migration and growth of nuclei in an ideal vortex flow

    NASA Astrophysics Data System (ADS)

    Zhang, Lingxin; Chen, Linya; Shao, Xueming

    2016-12-01

    Tip vortex cavitation occurs on ship propellers which can cause significant noise compared to the wet flow. In order to predict the inception of tip vortex cavitation, numerous researches have been investigated about the detailed flow field around the tip. According to informed studies, the inception of tip vortex cavitation is affected by many factors. To understand the effect of water quality on cavitation inception, the motion of nuclei in an ideal vortex flow, i.e., the Rankine vortex flow, was investigated. The one-way coupling point-particle tracking model was employed to simulate the trajectory of nuclei. Meanwhile, Rayleigh-Plesset equation was introduced to describe the growth of nuclei. The results show that the nucleus size has a significant effect on nucleus' trajectory. The capture time of a nucleus is approximately inversely proportional to its radius. The growth of nucleus accelerates its migration in the vortex flow and shortens its capture time, especially for the case of explosive growth.

  17. External And Internal Work Of A T-6 Paraplegic Propelling A Wheelchair And Arm Cranking A Cycle Ergometer: Case Study

    NASA Astrophysics Data System (ADS)

    Novak, Charles W.

    1982-02-01

    In this, the International Year of the Disabled, attention is directed among other areas toward rehabilitation and sports participation of wheelchair users. As an application of movement analysis in medicine and rehabilitation and as an application of sports research using biomechanics, this investigation was performed to compare the results of two methods of gathering data on the stress of wheelchair propelling at equivalent work loads and to account for differences in physiological responses with a mechanical analysis of wheelchair propelling. Physiological data collected were heart rate, systolic blood pressure, and rate-pressure product. A biomechanical cinematography analysis was used to determine external work in wheelchair propelling and to determine the extent to which modifications in segment actionsoccurred during increasing magnitude of work. A cycle ergometer was adjusted to replicate external work loads performed during wheelchair propelling. A t-test of equivalent external work loads indicated that heart rate was not different between the two exercise modes at the .05 level of significance. The t-test did indicate a significant difference in systolic blood pressure and rate-pressure product at the .05 level of significance. The biomechanical analysis of wheelchair propelling established that an increase in external work was accomplished by a decrease in the range of motion and an increase in the speed of movement. During cycle ergometry the range and speed of movement remained the same while resistance was increased. Results of the study established that while heart rate for equivalent external work loads was the same for wheelchair propelling and arm cranking cycle ergometry, systolic blood pressure and rate-pressure product were not the same. The suggestion was that some means of propelling a wheelchair other than that which is con-sidered "standard" might be considered which produces less stressful responses in wheelchair users.

  18. Performance of a 1.15-pressure-ratio axial-flow fan stage with a blade tip solidity of 0.5

    NASA Technical Reports Server (NTRS)

    Osborn, W. M.; Steinke, R. J.

    1974-01-01

    The overall and blade-element performance of a low-solidity, low-pressure-ratio, low-tip-speed fan stage is presented over the stable operating range at rotative speeds from 90 to 120 percent of design speed. At design speed a stage peak efficiency of 0.836 was obtained at a weight flow of 30.27 kilograms per second and a pressure ratio of 1.111. The pressure ratio was less than design pressure ratio, and the design energy input into the rotor was not achieved. A mismatch of the rotor and stator blade elements resulted due to the lower than design pressure ratio of the rotor.

  19. ECN-15655

    NASA Image and Video Library

    1981-05-21

    In this photograph, the C-140 JetStar is fitted with a model of a high-speed propeller. Three different designs were tested at NASA's Dryden Flight Research Facility in 1981-1982. Their swept-back blades were intended to increase the speed and fuel efficiency of turboprop aircraft. Speeds of Mach 0.8 were thought possible, while using 20 to 30 percent less fuel than standard jet engines.

  20. Low speed hybrid generalized predictive control of a gasoline-propelled car.

    PubMed

    Romero, M; de Madrid, A P; Mañoso, C; Milanés, V

    2015-07-01

    Low-speed driving in traffic jams causes significant pollution and wasted time for commuters. Additionally, from the passengers׳ standpoint, this is an uncomfortable, stressful and tedious scene that is suitable to be automated. The highly nonlinear dynamics of car engines at low-speed turn its automation in a complex problem that still remains as unsolved. Considering the hybrid nature of the vehicle longitudinal control at low-speed, constantly switching between throttle and brake pedal actions, hybrid control is a good candidate to solve this problem. This work presents the analytical formulation of a hybrid predictive controller for automated low-speed driving. It takes advantage of valuable characteristics supplied by predictive control strategies both for compensating un-modeled dynamics and for keeping passengers security and comfort analytically by means of the treatment of constraints. The proposed controller was implemented in a gas-propelled vehicle to experimentally validate the adopted solution. To this end, different scenarios were analyzed varying road layouts and vehicle speeds within a private test track. The production vehicle is a commercial Citroën C3 Pluriel which has been modified to automatically act over its throttle and brake pedals. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.

  1. Large-Scale Advanced Prop-Fan (LAP) pitch change actuator and control design report

    NASA Technical Reports Server (NTRS)

    Schwartz, R. A.; Carvalho, P.; Cutler, M. J.

    1986-01-01

    In recent years, considerable attention has been directed toward improving aircraft fuel consumption. Studies have shown that the high inherent efficiency previously demonstrated by low speed turboprop propulsion systems may now be extended to today's higher speed aircraft if advanced high-speed propeller blades having thin airfoils and aerodynamic sweep are utilized. Hamilton Standard has designed a 9-foot diameter single-rotation Large-Scale Advanced Prop-Fan (LAP) which will be tested on a static test stand, in a high speed wind tunnel and on a research aircraft. The major objective of this testing is to establish the structural integrity of large-scale Prop-Fans of advanced construction in addition to the evaluation of aerodynamic performance and aeroacoustic design. This report describes the operation, design features and actual hardware of the (LAP) Prop-Fan pitch control system. The pitch control system which controls blade angle and propeller speed consists of two separate assemblies. The first is the control unit which provides the hydraulic supply, speed governing and feather function for the system. The second unit is the hydro-mechanical pitch change actuator which directly changes blade angle (pitch) as scheduled by the control.

  2. "Fan-Tip-Drive" High-Power-Density, Permanent Magnet Electric Motor and Test Rig Designed for a Nonpolluting Aircraft Propulsion Program

    NASA Technical Reports Server (NTRS)

    Brown, Gerald V.; Kascak, Albert F.

    2004-01-01

    A scaled blade-tip-drive test rig was designed at the NASA Glenn Research Center. The rig is a scaled version of a direct-current brushless motor that would be located in the shroud of a thrust fan. This geometry is very attractive since the allowable speed of the armature is approximately the speed of the blade tips (Mach 1 or 1100 ft/s). The magnetic pressure generated in the motor acts over a large area and, thus, produces a large force or torque. This large force multiplied by the large velocity results in a high-power-density motor.

  3. An Investigation into the Potential Benefits of Distributed Electric Propulsion on Small UAVs at Low Reynolds Numbers

    NASA Astrophysics Data System (ADS)

    Baris, Engin

    Distributed electric propulsion systems benefit from the inherent scale independence of electric propulsion. This property allows the designer to place multiple small electric motors along the wing of an aircraft instead of using a single or several internal combustion motors with gear boxes or other power train components. Aircraft operating at low Reynolds numbers are ideal candidates for benefiting from increased local flow velocities as provided by distributed propulsion systems. In this study, a distributed electric propulsion system made up of eight motor/propellers was integrated into the leading edge of a small fixed wing-body model to investigate the expected improvements on the aerodynamics available to small UAVs operating at low Reynolds numbers. Wind tunnel tests featuring a Design of Experiments (DOE) methodology were used for aerodynamic characterization. Experiments were performed in four modes: all-propellers-on, wing-tip-propellers-alone-on, wing-alone mode, and two-inboard-propellers-on-alone mode. In addition, the all-propeller-on, wing-alone, and a single-tractor configuration were analyzed using VSPAERO, a vortex lattice code, to make comparisons between these different configurations. Results show that the distributed propulsion system has higher normal force, endurance, and range features, despite a potential weight penalty.

  4. Design and Development of a Two-Axis Thruster Gimbal with Xenon Propellant Lines

    NASA Technical Reports Server (NTRS)

    Asadurian, Armond

    2010-01-01

    A Two-Axis Thruster Gimbal was developed for a two degree-of-freedom tip-tilt gimbal application. This light weight gimbal mechanism is equipped with flexible xenon propellant lines and features numerous thermal control features for all its critical components. Unique thermal profiles and operating environments have been the key design drivers for this mechanism which is fully tolerant of extreme space environmental conditions. Providing thermal controls that are compatible with flexible components and are also capable of surviving launch vibration within this gimbal mechanism has proven to be especially demanding, requiring creativity and significant development effort. Some of these features, design drivers, and lessons learned will be examined herein.

  5. Air Launch Instrumented Vehicles Evaluation (ALIVE).

    DTIC Science & Technology

    1977-02-01

    propellant .s. The study addressed aging of two 12—inch—diamete r , SRBDM—type motors cast with mode ra te—burning—rate prope l l a n t . The propel lan t...s Ii t ttiis j t .y Factor vs Half Crack Length 86 30 Stress Intensity Factor /Load vs I1~ l 1 Crack Length 87 31 Log Stress I n t c r t s t t y... Factor vs Log Crac k Tip V e l o c i ty for S t r ip Biaxial Specimen 88 32 Log Stress I t i t i n s i t v Factor A d j u s t e d for Stra in

  6. Takeoff/approach noise for a model counterrotation propeller with a forward-swept upstream rotor

    NASA Technical Reports Server (NTRS)

    Woodward, Richard P.; Hall, David G.; Podboy, Gary G.; Jeracki, Robert J.

    1993-01-01

    A scale model of a counterrotating propeller with forward-swept blades in the forward rotor and aft-swept blades in the aft rotor (designated F39/A31) has been tested in the NASA Lewis 9- by 15-Foot Anechoic Wind Tunnel. This paper presents aeroacoustic results at a takeoff/approach condition of Mach 0.20. Laser Doppler Velocimeter results taken in a plane between the two rotors are also included to quantify the interaction flow field. The intention of the forward-swept design is to reduce the magnitude of the forward rotor tip vortex and/or wakes which impinge on the aft rotor, thus lowering the interaction tone levels.

  7. Cold-air performance of a tip turbine designed to drive a lift fan

    NASA Technical Reports Server (NTRS)

    Haas, J. E.; Kofskey, M. G.; Hotz, G. M.

    1978-01-01

    Performance was obtained over a range of speeds and pressure ratios for a 0.4 linear scale version of the LF460 lift fan turbine with the rotor radial tip clearance reduced to about 2.5 percent of the rotor blade height. These tests covered a range of speeds from 60 to 140 percent of design equivalent speed and a range of scroll inlet total to diffuser exit static pressure ratios from 2.6 to 4.2. Results are presented in terms of equivalent mass flow, equivalent torque, equivalent specific work, and efficiency.

  8. An Experimental Investigation of the Effect of Propellers Used as Aerodynamic Brakes on Stability and Control

    NASA Technical Reports Server (NTRS)

    Hanson, Frederick H

    1945-01-01

    Tests were made of a model representative of a single-engine tractor-type airplane for the purpose of determining the stability and control effects of a propeller used as an aerodynamic brake. The tests were made with single-and dual-rotation propellers to show the effect of type of propeller rotation, and with positive thrust to provide basic data with which to compare the effects of negative thrust. Four configurations of the model were used to give the effects of tilting the propeller thrust axis down 5 deg., raising the horizontal tail, and combining both tilt and raised tail. Results of the tests are reported herein. The effects of negative thrust were found to be significant. The longitudinal stability was increased because of the loss of wing lift and increase of the angle of attack of the tail. Directional stability and both longitudinal and directional control were decreased because of the reduced velocity at the tail. These effects are moderate for moderate braking but become pronounced with full-power braking, particularly at high values of lift coefficient. The effects of model configuration changes were small when compared with the over-all effects of negative-thrust operation; however, improved stability and control characteristics were exhibited by the model with the tilted thrust axis. Raising the horizontal tail improved the longitudinal characteristics, but was detrimental to directional characteristics. The use of dual-rotation propeller reduced the directional trim charges resulting from the braking operation. A prototype airplane was assumed and handling qualities were computed and analyzed for normal (positive thrust) and braking operation with full and partial power. The results of these analyses are presented for the longitudinal characteristics in steady and accelerated flight, and for the directional characteristics in high- and low-speed flight. It was found that by limiting the power output of the engine (assuming the constant-speed propeller will function in the range of blade angles required for negative thrust) the stability and control characteristics may be held within the limits required for safe operation. Braking with full power, particularly at low speeds, is dangerous, but braking with very small power output is satisfactory from the standpoint of control. The amount of braking produced with zero power output is equal to or better than that produced by conventional spoiler-type brakes.

  9. TDAP: Island versus propeller.

    PubMed

    Angrigiani, Claudio; Rancati, Alberto; Artero, Guillermo; Escudero, Ezequiel; Khouri, Roger K

    2016-04-01

    Thoracodorsal artery perforator (TDAP) island flap is a safe and reliable method for breast reconstruction. TDAP propeller flap has been described as a modification of the conventional island technique that saves time and does not require microsurgical skills. However, a substantial portion of the propeller flap remains under the axilla and is not used for breast augmentation. The aim of this study is to identify the differences in the reaching distances between the propeller and island TDAP flaps. In five cadaveric specimens and 10 breast reconstruction patients, an initial propeller flap was harvested and rotated to the anterior thorax; the distance from the tip of the flap to the anterior midline was recorded as the "midline-reaching deficit;" the flap was then converted into a conventional island flap, and the new midline-reaching deficit was recorded. Differences between groups were compared with paired two-tailed t-tests (α = 0.05). In the cadaveric specimens, the mean midline-reaching deficit was 4.8 ± 2.4 cm with the propeller TDAP and -0.6 ± 2.0 cm with the conventional island TDAP (P < 0.001). In the clinical cases, the mean midline-reaching deficit was 8.1 ± 1.0 cm with the propeller TDAP and -0.3 ± 1.1 cm with the island TDAP (P < 0.000000001). We observed that the midline-reaching deficit could be reduced by 7-9 cm with the conventional island TDAP in comparison to the propeller TDAP. This should be considered when reconstructing the medial inner part of the breast. Copyright © 2015 British Association of Plastic, Reconstructive and Aesthetic Surgeons. Published by Elsevier Ltd. All rights reserved.

  10. Australian Air Breathing Propulsion Research for Hypersonic, Beamed Energy-Propelled Vehicles

    NASA Astrophysics Data System (ADS)

    Froning, David

    2010-05-01

    A three year laser-propelled vehicle analysis and design investigation has been begun in June, 2009 by Faculty and graduate students at the University of Adelaide under a Grant/Cooperative Agreement Award to the University of Adelaide by the Asian Office of Aerospace Research and Development (AOARD). The major objectives of thsis investigation are: (a) development of hypersonic, air breathing "lightcraft" with innovative air inlets that enable acceptable airflow capture and combustion, and acceptable cowl-lip heating rates during hot, high-speed, high angle-of-attack hypersonic flight; (b) yest of the most promising lightcraft and inlet design in the high power laser beam that is part of the shock tunnel facility at CTO Instituto in Brazil; and (c) plan a series of laser guided and propelled flights that achieve supersonic or higher speed at the Woomera Test Facility (WTF) in South Australia—using the existing WTF launching and tracking facilities and sponsor-provided laser pointing and tracking and illumination systems.

  11. Motion analysis and trials of the deep sea hybrid underwater glider Petrel-II

    NASA Astrophysics Data System (ADS)

    Liu, Fang; Wang, Yan-hui; Wu, Zhi-liang; Wang, Shu-xin

    2017-03-01

    A hybrid underwater glider Petrel-II has been developed and field tested. It is equipped with an active buoyancy unit and a compact propeller unit. Its working modes have been expanded to buoyancy driven gliding and propeller driven level-flight, which can make the glider work in strong currents, as well as many other complicated ocean environments. Its maximal gliding speed reaches 1 knot and the propelling speed is up to 3 knots. In this paper, a 3D dynamic model of Petrel-II is derived using linear momentum and angular momentum equations. According to the dynamic model, the spiral motion in the underwater space is simulated for the gliding mode. Similarly the cycle motion on water surface and the depth-keeping motion underwater are simulated for the level-flight mode. These simulations are important to the performance analysis and parameter optimization for the Petrel-II underwater glider. The simulation results show a good agreement with field trials.

  12. Methods and apparatus for twist bend coupled (TCB) wind turbine blades

    DOEpatents

    Moroz, Emilian Mieczyslaw; LeMieux, David Lawrence; Pierce, Kirk Gee

    2006-10-10

    A method for controlling a wind turbine having twist bend coupled rotor blades on a rotor mechanically coupled to a generator includes determining a speed of a rotor blade tip of the wind turbine, measuring a current twist distribution and current blade loading, and adjusting a torque of a generator to change the speed of the rotor blade tip to thereby increase an energy capture power coefficient of the wind turbine.

  13. Infrared Imaging Of Flows Seeded With SF6

    NASA Technical Reports Server (NTRS)

    Manuel, Gregory S.; Daryabeigi, Kamran; Alderfer, David W.; Obara, Clifford J.

    1993-01-01

    Novel technique enables repeated measurements of flow patterns during flight. Wing-tip vorticity studied in flight by observing infrared emissions from SF6 gas entrained in wing-tip flow. System makes vortical flows visible throughout all altitude and speed ranges of all subsonic aircraft. Also useful for transonic and supersonic speeds. Primary application is testing of aircraft in flight, also proves useful in testing fast land vehicles and structures or devices subject to strong winds.

  14. Preliminary Results of an Altitude-Wind-Tunnel Investigation of an Axial-Flow Gas Turbine-Propeller Engine. 3; Pressure and Temperature Distributions

    NASA Technical Reports Server (NTRS)

    Geisenheyner, Robert M.; Berdysz, Joseph J.

    1948-01-01

    Performance properties and operational characteristics of an axial-flow gas turbine-propeller engine were determined. Data are presented for a range of simulated altitudes from 5,000 to 35,0000 feet, compressor inlet- ram pressure ratios from 1.00 to 1.17, and engine speeds from 8000 to 13,000 rpm.

  15. 14 CFR Appendix G to Part 36 - Takeoff Noise Requirements for Propeller-Driven Small Airplane and Propeller-Driven, Commuter...

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... aircraft noise when the wind speed is in excess of 5 knots (9 km/hr). Sec. G36.107 Noise Measurement... OF TRANSPORTATION AIRCRAFT NOISE STANDARDS: AIRCRAFT TYPE AND AIRWORTHINESS CERTIFICATION Pt. 36, App....201 Corrections to Test Results. G36.203 Validity of results. part d—noise limits G36.301 Aircraft...

  16. Prediction of the interior noise levels of high-speed propeller-driven aircraft

    NASA Technical Reports Server (NTRS)

    Rennison, D. C.; Wilby, J. F.; Wilby, E. G.

    1980-01-01

    The theoretical basis for an analytical model developed to predict the interior noise levels of high-speed propeller-driven airplanes is presented. Particular emphasis is given to modeling the transmission of discrete tones through a fuselage element into a cavity, estimates for the mean and standard deviation of the acoustic power flow, the coupling between a non-homogeneous excitation and the fuselage vibration response, and the prediction of maximum interior noise levels. The model allows for convenient examination of the various roles of the excitation and fuselage structural characteristics on the fuselage vibration response and the interior noise levels, as is required for the design of model or prototype noise control validation tests.

  17. Analysis of Experimental Sea-level Transient Data and Analog Method of Obtaining Altitude Response for Turbine-propeller Engine with Relay-type Speed Control

    NASA Technical Reports Server (NTRS)

    Vasu, George; Pack, George J

    1951-01-01

    Correlation has been established between transient engine and control data obtained experimentally and data obtained by simulating the engine and control with an analog computer. This correlation was established at sea-level conditions for a turbine-propeller engine with a relay-type speed control. The behavior of the controlled engine at altitudes of 20,000 and 35,000 feet was determined with an analog computer using the altitude pressure and temperature generalization factors to calculate the new engine constants for these altitudes. Because the engine response varies considerably at altitude some type of compensation appears desirable and four methods of compensation are discussed.

  18. Periodic acoustic radiation from a low aspect ratio propeller

    NASA Astrophysics Data System (ADS)

    Muench, John David

    An experimental program was conducted with the objective of providing high fidelity measurements of propeller inflow, unsteady blade surface pressures, and discrete acoustic radiation over a wide range of speeds. Anechoic wind tunnel experiments were preformed using the SISUP propeller. The upstream stator blades generate large wake deficits that result in periodic unsteady blade forces that acoustically radiate at blade passing frequency and higher harmonics. The experimental portion of this research successfully measured the inflow velocity, blade span unsteady pressures and directive characteristics of the blade-rate radiated noise associated with this complex propeller geometry while the propeller was operating on design. The spatial harmonic decomposition of the inflow revealed significant coefficients at 8, 16 and 24. The magnitude of the unsteady blade forces scale as U4 and linearly shift in frequency with speed. The magnitude of the discrete frequency acoustic levels associated with blade rate scale as U6 and also shift linearly with speed. At blade-rate, the far-field acoustic directivity has a dipole-like directivity oriented perpendicular to the inflow. At the first harmonic of blade-rate, the far-field directivity is not as well defined. The experimental inflow and blade surface pressure results were used to generate an acoustic prediction at blade rate based on a blade strip theory model developed by Blake (1986). The predicted acoustic levels were compared to the experimental results. The model adequately predicts the measured sound field at blade rate at 120 ft/sec. Radiated noise at blade-rate for 120 ft/s can be described by a dipole, whose orientation is perpendicular to the flow and is generated by the interaction of the rotating propeller with the 8th harmonic of the inflow. At blade-rate for 60 ft/s, the model under predicts measured levels. At the first harmonic of blade-rate, for 120 ft/s, the sound field is described as a combination of dipole sources, one generated by the 16 th harmonic, perpendicular to the inflow, and the other generated by the 12th harmonic of the inflow parallel to the inflow. At the first harmonic of blade-rate for 60 ft/s, the model under predicts measured levels.

  19. CFD simulations of a wind turbine for analysis of tip vortex breakdown

    NASA Astrophysics Data System (ADS)

    Kimura, K.; Tanabe, Y.; Aoyama, T.; Matsuo, Y.; Arakawa, C.; Iida, M.

    2016-09-01

    This paper discusses about the wake structure of wind turbine via the use of URANS and Quasi-DNS, focussing on the tip vortex breakdown. The moving overlapped structured grids CFD Solver based on a fourth-order reconstruction and an all-speed scheme, rFlow3D is used for capturing the characteristics of tip vortices. The results from the Model Experiments in Controlled Conditions project (MEXICO) was accordingly selected for executing wake simulations through the variation of tip speed ratio (TSR); in an operational wind turbine, TSR often changes in value. Therefore, it is important to assess the potential effects of TSR on wake characteristics. The results obtained by changing TSR show the variations of the position of wake breakdown and wake expansion. The correspondence between vortices and radial/rotational flow is also confirmed.

  20. Analysis of Aerodynamic Load of LSU-03 (LAPAN Surveillance UAV-03) Propeller

    NASA Astrophysics Data System (ADS)

    Rahmadi Nuranto, Awang; Jamaludin Fitroh, Ahmad; Syamsudin, Hendri

    2018-04-01

    The existing propeller of the LSU-03 aircraft is made of wood. To improve structural strength and obtain better mechanical properties, the propeller will be redesigned usingcomposite materials. It is necessary to simulate and analyze the design load. This research paper explainsthe simulation and analysis of aerodynamic load prior to structural design phase of composite propeller. Aerodynamic load calculations are performed using both the Blade Element Theory(BET) and the Computational Fluid Dynamic (CFD)simulation. The result of both methods show a close agreement, the different thrust forces is only 1.2 and 4.1% for two type mesh. Thus the distribution of aerodynamic loads along the surface of the propeller blades of the 3-D CFD simulation results are considered valid and ready to design the composite structure. TheCFD results is directly imported to the structure model using the Direct Import CFD / One-Way Fluid Structure Interaction (FSI) method. Design load of propeller is chosen at the flight condition at speed of 20 km/h at 7000 rpm.

  1. Prediction of added noise due to the effect of unsteady flow on pusher propellers

    NASA Technical Reports Server (NTRS)

    Takallu, M. A.; Block, P. J. W.

    1987-01-01

    An analytical/computational study has been conducted to predict the effect of an upstream wing or pylon on the noise of an operating propeller. The wing trailing edge was placed at variable distances (0.1 and 0.3 chord) upstream of a scaled model propeller (SR-2). The wake was modeled using a similarity formulation. The instantaneous pressure distribution on the propeller blades during the passage through the wake was formulated in terms of a time-dependent variation of each blade section's angle of attack and in terms of the shed vortices from the blade trailing edge. It was found that the final expressions for the unsteady loads considerably altered the radiated noise pattern. Predicted noise for various observer positions, rotational speeds and propeller/pylon distances were computed and are presented in terms of the pressure time history. It has been shown that the positioning of a pylon upstream of a propeller indeed increases the noise. Some comparisons with experimental results are also given.

  2. Reusable cryogenic foam insulation for advanced aerospace vehicles

    NASA Technical Reports Server (NTRS)

    Mcauliffe, Patrick S.; Taylor, Allan H.; Sparks, Larry L.; Dube, William P.

    1991-01-01

    Future high-speed aircraft and aerospace vehicles using cryogenic propellants will require an advanced reusable insulation system for the propellant tank structure. This cryogenic insulation system must be lightweight, structurally and thermally efficient, and capable of multiple reuse without cracking or degraded performance. This paper presents recent progress in the development of a reusable cryogenic foam insulation system having a maximum service temperature of 400 F. The system consists of preshaped, precut blocks of rigid polymethacrylimide foam insulation, wrapped with a high-temperature Kapton and aluminum foil vapor barrier which is adhesively bonded to the propellant tank wall.

  3. Longitudinal Stability Characteristics of the Consolidated Vultee XFY-1 Airplane with Windmilling Propellers as Obtained from Flight of 0.133-Scale Rocket-Propelled Model at Mach Numbers from 0.70 to 1.13

    NASA Technical Reports Server (NTRS)

    Hastings, Earl C.; Mitcham, Grady L.

    1954-01-01

    A flight test has been conducted to determine the longitudinal stability and control characteristics of a 0.133-scale model of the Consolidated Vultee XFY-1 airplane with windmilling propellers for the Mach number range between 0.70 and 1.13. The variation of lift-curve slope C(sub L(sub alpha) with Mach number was gradual with a maximum value of 0.074 occurring at a Mach number of 0.97. Propellers had little effect upon the values of lift-curve slope or the linearity of lift coefficient with angle of attack. At lift coefficients between approximately 0.25 and 0.45 with an elevon angle of approximately -l0 deg, there was a region of neutral longitudinal stability at Mach numbers below 0.93 introduced by the addition of windmilling propellers. Below a lift coefficient of 0.10 and above a lift coefficient of 0.45, the model was longitudinally stable throughout the Mach number range of the test. There was a forward shift in the aerodynamic center of about 3-percent mean aerodynamic chord introduced by the addition of propellers. The aerodynamic center as determined at low lift moved gradually from a value of 28.5-percent mean aerodynamic chord at a Mach number of 0.75 to a value of 47-percent mean aerodynamic chord at a Mach number of 1.10. There was an abrupt decrease in pitch damping between Mach numbers of 0.88 and 0.99 followed by a rapid increase in damping to a Mach number of 1.06. The propellers had little effect upon the pitch damping characteristics . The transonic trim change was a large pitching-down tendency with and without windmilling propellers. The elevons were effective pitch controls throughout the speed range; however, their effectiveness was reduced about 50 percent at supersonic speeds. The propellers had no appreciable effect upon the control effectiveness.

  4. Small axial compressor technology, volume 1

    NASA Technical Reports Server (NTRS)

    Holman, F. F.; Kidwell, J. R.; Ware, T. C.

    1976-01-01

    A scaled single-stage, highly-loaded, axial-flow transonic compressor was tested at speeds from 70 to 110% design equivalent speed to evaluate the effects of scaling compromises and the individual and combined effects of rotor tip running clearance and rotor shroud casing treatment on the overall and blade element performance. At design speed and 1% tip clearance the stage demonstrated an efficiency of 83.2% at 96.4% design flow and a pressure ratio of 1.865. Casing treatment increased design speed surge margin 2.0 points to 12.8%. Overall performance was essentially unchanged. An increase in rotor running clearance to 2.2%, with smooth casing, reduced design speed peak efficiency 5.7 points, flow by 7.4%, pressure ratio to 1.740, and surge margin to 5.4%. Reinstalling casing treatment regained 3.5 points in design speed peak efficiency, 4.7% flow, increased pressure ratio to 1.800 and surge margin to 8.7%.

  5. Counter-rotating propeller noise directivity and trends

    NASA Technical Reports Server (NTRS)

    Block, P. J. W.; Klatte, R. J.; Druez, P. M.

    1986-01-01

    The effects of power loading on the far field noise spectra and directivity of counter-rotating propellers (CRP) were studied using a model scale SR-2 propeller in a low-speed anechoic wind tunnel. Approximately 264 far field noise measurements were obtained for each CRP configuration (pusher and tractor) and operating conditions covering from 30 to 140 deg to the flight direction and up to 340 deg circumferentially. Data indicated that the CRP tractor produced higher levels in the second and third harmonics which propagated axially; in effect, the noise exposure time increased over that of a single single-rotation propeller. The effects of pylon-to-propeller spacing, type of pylon attachment and reduced rear-blade row radius are considered and it is found that the 0.3 chord radial pylon produces less additional noise than the 0.1 chord radial pylon and that the 0.2 chord tangential pylon is the quietest pusher configuration.

  6. Simulated propeller slipstream effects on a supercritical wing

    NASA Technical Reports Server (NTRS)

    Welge, H. R.; Crowder, J. P.

    1978-01-01

    To quantify the installed performance of high speed (M = 0.8) turboprop propulsion systems, an experimental program designed to assess the magnitude of the aerodynamic interference of a propeller slipstream on a supercritical wing has been conducted. The test was conducted in the NASA Ames 14-foot wind tunnel. An ejector-nacelle propeller slipstream simulator was used to produce a slipstream with characteristics typical of advanced propellers presently being investigated. A supercritical wing-body configuration was used to evaluate the interference effects. A traversing total pressure rake was used to make flow field measurements behind the wing and to calibrate the slipstream simulator. The force results indicated that the interference drag amounted to an increase of ten counts or about 3% of the wing-body drag for a two engine configuration at the nominal propeller operating conditions. However, at the higher swirl angles (11 deg vs. 7 deg nominally) the interference drag was favorable by about the same magnitude.

  7. New Method of Determining the Polar Curve of an Airplane in Flight

    NASA Technical Reports Server (NTRS)

    Yegorov, B. N.

    1945-01-01

    A fundamental defect of existing methods for the determination of the polar of an airplane in flight is the impossibility of obtaining the thrust or the resistance of the propeller for any type airplane with any type engine. The new method is based on the premise that for zero propeller thrust the mean angle of attack of the blade is approximately the same for all propellers if this angle is reckoned from the aerodynamic chord of the profile section. This angle was determined from flight tests. Knowing the mean angle of the blade setting the angle of attack of the propeller blade at zero thrust can be found and the propeller speed in gliding obtained. The experimental check of the new method carried out on several airplanes gave positive results. The basic assumptions for the construction of the polars and the method of analyzing the flight data are given.

  8. Design and preliminary evaluation of a self-steering, pneumatically driven colonoscopy robot.

    PubMed

    Dehghani, Hossein; Welch, C Ross; Pourghodrat, Abolfazl; Nelson, Carl A; Oleynikov, Dmitry; Dasgupta, Prithviraj; Terry, Benjamin S

    2017-04-01

    Colonoscopy is a diagnostic procedure to detect pre-cancerous polyps and tumours in the colon, and is performed by inserting a long tube equipped with a camera and biopsy tools. Despite the medical benefits, patients undergoing this procedure often complain about the associated pain and discomfort. This discomfort is mostly due to the rough handling of the tube and the creation of loops during the insertion. The overall goal of this work is to minimise the invasiveness of traditional colonoscopy. In pursuit of this goal, this work presents the development of a semi-autonomous colonoscopic robot with minimally invasive locomotion. The proposed robotic approach allows physicians to concentrate mainly on the diagnosis rather than the mechanics of the procedure. In this paper, an innovative locomotion approach for robotic colonoscopy is addressed. Our locomotion approach takes advantage of longitudinal expansion of a latex tube to propel the robot's tip along the colon. This soft and compliant propulsion mechanism, in contrast to minimally invasive mechanisms used in, for example, inchworm-like robots, has shown promising potential. In the preliminary ex vivo experiments, the robot successfully advanced 1.5 metres inside an excised curvilinear porcine colon with average speed of 28 mm/s, and was capable of traversing bends up to 150 degrees. The robot creates less than 6 N of normal force at its tip when it is pressurised with 90 kPa. This maximum force generates pressure of 44.17 mmHg at the tip, which is significantly lower than safe intraluminal human colonic pressure of 80 mmHg. The robot design inherently prevents loop formation in the colon, which is recognised as the main cause of post procedural pain in patients. Overall, the robot has shown great promise in an ex vivo experimental setup. The design of an autonomous control system and in vivo experiments are left as future work.

  9. Quiet High Speed Fan II (QHSF II): Final Report

    NASA Technical Reports Server (NTRS)

    Kontos, Karen; Weir, Don; Ross, Dave

    2012-01-01

    This report details the aerodynamic, mechanical, structural design and fabrication of a Honey Engines Quiet High Speed Fan II (lower hub/tip ratio and higher specific flow than the Baseline I fan). This fan/nacelle system incorporates features such as advanced forward sweep and an advanced integrated fan/fan exit guide vane design that provides for the following characteristics: (1) Reduced noise at supersonic tip speeds, in comparison to current state-of-the-art fan technology; (2) Improved aeroelastic stability within the anticipated operating envelope; and (3) Aerodynamic performance consistent with current state-of-the-art fan technology. This fan was fabricated by Honeywell and tested in the NASA Glenn 9- by 15-Ft Low Speed Wind Tunnel for aerodynamic, aeromechanical, and acoustic performance.

  10. Design and Performance of the NASA SCEPTOR Distributed Electric Propulsion Flight Demonstrator

    NASA Technical Reports Server (NTRS)

    Borer, Nicholas K.; Patterson, Michael D.; Viken, Jeffrey K.; Moore, Mark D.; Clarke, Sean; Redifer, Matthew E.; Christie, Robert J.; Stoll, Alex M.; Dubois, Arthur; Bevirt, JoeBen; hide

    2016-01-01

    Distributed Electric Propulsion (DEP) technology uses multiple propulsors driven by electric motors distributed about the airframe to yield beneficial aerodynamic-propulsion interaction. The NASA SCEPTOR flight demonstration project will retrofit an existing internal combustion engine-powered light aircraft with two types of DEP: small "high-lift" propellers distributed along the leading edge of the wing which accelerate the flow over the wing at low speeds, and larger cruise propellers co-located with each wingtip for primary propulsive power. The updated high-lift system enables a 2.5x reduction in wing area as compared to the original aircraft, reducing drag at cruise and shifting the velocity for maximum lift-to-drag ratio to a higher speed, while maintaining low-speed performance. The wingtip-mounted cruise propellers interact with the wingtip vortex, enabling a further efficiency increase that can reduce propulsive power by 10%. A tradespace exploration approach is developed that enables rapid identification of salient trades, and subsequent creation of SCEPTOR demonstrator geometries. These candidates were scrutinized by subject matter experts to identify design preferences that were not modeled during configuration exploration. This exploration and design approach is used to create an aircraft that consumes an estimated 4.8x less energy at the selected cruise point when compared to the original aircraft.

  11. Fabrication of Nanoscale Pits with High Throughput on Polymer Thin Film Using AFM Tip-Based Dynamic Plowing Lithography

    NASA Astrophysics Data System (ADS)

    He, Yang; Geng, Yanquan; Yan, Yongda; Luo, Xichun

    2017-09-01

    We show that an atomic force microscope (AFM) tip-based dynamic plowing lithography (DPL) approach can be used to fabricate nanoscale pits with high throughput. The method relies on scratching with a relatively large speed over a sample surface in tapping mode, which is responsible for the separation distance of adjacent pits. Scratching tests are carried out on a poly(methyl methacrylate) (PMMA) thin film using a diamond-like carbon coating tip. Results show that 100 μm/s is the critical value of the scratching speed. When the scratching speed is greater than 100 μm/s, pit structures can be generated. In contrast, nanogrooves can be formed with speeds less than the critical value. Because of the difficulty of breaking the molecular chain of glass-state polymer with an applied high-frequency load and low-energy dissipation in one interaction of the tip and the sample, one pit requires 65-80 penetrations to be achieved. Subsequently, the forming process of the pit is analyzed in detail, including three phases: elastic deformation, plastic deformation, and climbing over the pile-up. In particular, 4800-5800 pits can be obtained in 1 s using this proposed method. Both experiments and theoretical analysis are presented that fully determine the potential of this proposed method to fabricate pits efficiently.

  12. Closed-loop ARS mode for scanning ion conductance microscopy with improved speed and stability for live cell imaging applications.

    PubMed

    Jung, Goo-Eun; Noh, Hanaul; Shin, Yong Kyun; Kahng, Se-Jong; Baik, Ku Youn; Kim, Hong-Bae; Cho, Nam-Joon; Cho, Sang-Joon

    2015-07-07

    Scanning ion conductance microscopy (SICM) is an increasingly useful nanotechnology tool for non-contact, high resolution imaging of live biological specimens such as cellular membranes. In particular, approach-retract-scanning (ARS) mode enables fast probing of delicate biological structures by rapid and repeated approach/retraction of a nano-pipette tip. For optimal performance, accurate control of the tip position is a critical issue. Herein, we present a novel closed-loop control strategy for the ARS mode that achieves higher operating speeds with increased stability. The algorithm differs from that of most conventional (i.e., constant velocity) approach schemes as it includes a deceleration phase near the sample surface, which is intended to minimize the possibility of contact with the surface. Analysis of the ion current and tip position demonstrates that the new mode is able to operate at approach speeds of up to 250 μm s(-1). As a result of the improved stability, SICM imaging with the new approach scheme enables significantly improved, high resolution imaging of subtle features of fixed and live cells (e.g., filamentous structures & membrane edges). Taken together, the results suggest that optimization of the tip approach speed can substantially improve SICM imaging performance, further enabling SICM to become widely adopted as a general and versatile research tool for biological studies at the nanoscale level.

  13. Fabrication of Nanoscale Pits with High Throughput on Polymer Thin Film Using AFM Tip-Based Dynamic Plowing Lithography.

    PubMed

    He, Yang; Geng, Yanquan; Yan, Yongda; Luo, Xichun

    2017-09-22

    We show that an atomic force microscope (AFM) tip-based dynamic plowing lithography (DPL) approach can be used to fabricate nanoscale pits with high throughput. The method relies on scratching with a relatively large speed over a sample surface in tapping mode, which is responsible for the separation distance of adjacent pits. Scratching tests are carried out on a poly(methyl methacrylate) (PMMA) thin film using a diamond-like carbon coating tip. Results show that 100 μm/s is the critical value of the scratching speed. When the scratching speed is greater than 100 μm/s, pit structures can be generated. In contrast, nanogrooves can be formed with speeds less than the critical value. Because of the difficulty of breaking the molecular chain of glass-state polymer with an applied high-frequency load and low-energy dissipation in one interaction of the tip and the sample, one pit requires 65-80 penetrations to be achieved. Subsequently, the forming process of the pit is analyzed in detail, including three phases: elastic deformation, plastic deformation, and climbing over the pile-up. In particular, 4800-5800 pits can be obtained in 1 s using this proposed method. Both experiments and theoretical analysis are presented that fully determine the potential of this proposed method to fabricate pits efficiently.

  14. Investigation of Effectiveness of Air-Heating a Hollow Steel Propeller for Protection Against Icing. 1: Unpartitioned Blades

    NASA Technical Reports Server (NTRS)

    Mulholland, Donald R.; Perkins, Porter J.

    1948-01-01

    An investigation to determine the effectiveness of icing protection afforded by air-heating hollow steel unpartitioned propeller blades has been conducted In the NACA Cleveland icing research tunnel. The propeller used was a production model modified with blade shank and tip openings to permit internal passage of heated air. Blade-surface and heated-air temperatures were obtained and photographic observations of Ice formations were made with variations In icing intensity and heating rate to the blades. For the conditions of Icing to which the propeller was subjected, it was found that adequate ice protection was afforded with a heating rate of 40 1 000 Btu per hour per blade. With less than 40,000 Btu per hour per blade, ice protection failed because of significant ice accretions on the leading edge. The chordwise distribution of heat was unsatisfactory with most of the available heat dissipated well back of the leading edge on both the thrust and camber face's instead of at the leading edge where it was most needed. A low utilization of available heat for icing protection is indicated by a beat-exchanger effectiveness of approximately 47 percent.

  15. NASA advanced propeller research

    NASA Technical Reports Server (NTRS)

    Groeneweg, John F.; Bober, Lawrence J.

    1988-01-01

    Acoustic and aerodynamic research at NASA Lewis Research Center on advanced propellers is reviewed including analytical and experimental results on both single and counterrotation. Computational tools used to calculate the detailed flow and acoustic fields are described along with wind tunnel tests to obtain data for code verification. Results from two kinds of experiments are reviewed: (1) performance and near field noise at cruise conditions as measured in the NASA Lewis 8- by 6-foot Wind Tunnel; and (2) far field noise and performance for takeoff/approach conditions as measured in the NASA Lewis 9- by 15-foot Anechoic Wind Tunnel. Detailed measurements of steady blade surface pressures are described along with vortex flow phenomena at off-design conditions. Near field noise at cruise is shown to level out or decrease as tip relative Mach number is increased beyond 1.15. Counterrotation interaction noise is shown to be a dominant source at takeoff but a secondary source at cruise. Effects of unequal rotor diameters and rotor-to-rotor spacing on interaction noise are also illustrated. Comparisons of wind tunnel acoustic measurements to flight results are made. Finally, some future directions in advanced propeller research such as swirl recovery vanes, higher sweep, forward sweep, and ducted propellers are discussed.

  16. Calculation and design of a ramjet missile

    NASA Astrophysics Data System (ADS)

    Schubert, Johannes

    The fundamentals for the design of a ramjet missile are treated. The chemical fundamentals of the solid rocket propellants used for ramjet missiles are outlined. The determination of the most favorable flying speed is discussed. The thermodynamic fundamentals (calculation of the solid propellant missile, calculation of the mixing procedure and the after burning in the pressure nozzle, and power calculation) are presented. The design specifications of the propulsion system are given.

  17. Optimization design of submerged propeller in oxidation ditch by computational fluid dynamics and comparison with experiments.

    PubMed

    Zhang, Yuquan; Zheng, Yuan; Fernandez-Rodriguez, E; Yang, Chunxia; Zhu, Yantao; Liu, Huiwen; Jiang, Hao

    The operating condition of a submerged propeller has a significant impact on flow field and energy consumption of the oxidation ditch. An experimentally validated numerical model, based on the computational fluid dynamics (CFD) tool, is presented to optimize the operating condition by considering two important factors: flow field and energy consumption. Performance demonstration and comparison of different operating conditions were carried out in a Carrousel oxidation ditch at the Yingtang wastewater treatment plants in Anhui Province, China. By adjusting the position and rotating speed together with the number of submerged propellers, problems of sludge deposit and the low velocity in the bend could be solved in a most cost-effective way. The simulated results were acceptable compared with the experimental data and the following results were obtained. The CFD model characterized flow pattern and energy consumption in the full-scale oxidation ditch. The predicted flow field values were within -1.28 ± 7.14% difference from the measured values. By determining three sets of propellers under the rotating speed of 6.50 rad/s with one located 5 m from the first curved wall, after numerical simulation and actual measurement, not only the least power density but also the requirement of the flow pattern could be realized.

  18. DES Prediction of Cavitation Erosion and Its Validation for a Ship Scale Propeller

    NASA Astrophysics Data System (ADS)

    Ponkratov, Dmitriy, Dr

    2015-12-01

    Lloyd's Register Technical Investigation Department (LR TID) have developed numerical functions for the prediction of cavitation erosion aggressiveness within Computational Fluid Dynamics (CFD) simulations. These functions were previously validated for a model scale hydrofoil and ship scale rudder [1]. For the current study the functions were applied to a cargo ship's full scale propeller, on which the severe cavitation erosion was reported. The performed Detach Eddy Simulation (DES) required a fine computational mesh (approximately 22 million cells), together with a very small time step (2.0E-4 s). As the cavitation for this type of vessel is primarily caused by a highly non-uniform wake, the hull was also included in the simulation. The applied method under predicted the cavitation extent and did not fully resolve the tip vortex; however, the areas of cavitation collapse were captured successfully. Consequently, the developed functions showed a very good prediction of erosion areas, as confirmed by comparison with underwater propeller inspection results.

  19. Investigation of Unsteady Flow Field in a Low-Speed One and a Half Stage Axial Compressor. Part 2; Effects of Tip Gap Size On the Tip Clearance Flow Structure at Near Stall Operation

    NASA Technical Reports Server (NTRS)

    Hah, Chunill; Hathaway, Michael; Katz, Joseph

    2014-01-01

    The primary focus of this paper is to investigate the effect of rotor tip gap size on how the rotor unsteady tip clearance flow structure changes in a low speed one and half stage axial compressor at near stall operation (for example, where maximum pressure rise is obtained). A Large Eddy Simulation (LES) is applied to calculate the unsteady flow field at this flow condition with both a small and a large tip gaps. The numerically obtained flow fields at the small clearance matches fairly well with the available initial measurements obtained at the Johns Hopkins University with 3-D unsteady PIV in an index-matched test facility which renders the compressor blades and casing optically transparent. With this setup, the unsteady velocity field in the entire flow domain, including the flow inside the tip gap, can be measured. The numerical results are also compared with previously published measurements in a low speed single stage compressor (Maerz et al. [2002]). The current study shows that, with the smaller rotor tip gap, the tip clearance vortex moves to the leading edge plane at near stall operating condition, creating a nearly circumferentially aligned vortex that persists around the entire rotor. On the other hand, with a large tip gap, the clearance vortex stays inside the blade passage at near stall operation. With the large tip gap, flow instability and related large pressure fluctuation at the leading edge are observed in this one and a half stage compressor. Detailed examination of the unsteady flow structure in this compressor stage reveals that the flow instability is due to shed vortices near the leading edge, and not due to a three-dimensional separation vortex originating from the suction side of the blade, which is commonly referred to during a spike-type stall inception. The entire tip clearance flow is highly unsteady. Many vortex structures in the tip clearance flow, including the sheet vortex system near the casing, interact with each other. The core tip clearance vortex, which is formed with the rotor tip gap flows near the leading edge, is also highly unsteady or intermittent due to pressure oscillations near the leading edge and varies from passage to passage. For the current compressor stage, the evidence does not seem to support that a classical vortex breakup occurs in any organized way, even with the large tip gap. Although wakes from the IGV influence the tip clearance flow in the rotor, the major characteristics of rotor tip clearance flows in isolated or single stage rotors are observed in this one and a half stage axial compressor.

  20. Preliminary Results of an Altitude-Wind-Tunnel Investigation of an Axial-Flow Gas Turbine-Propeller Engine. 5; Combustion-Chamber Characterisitcs

    NASA Technical Reports Server (NTRS)

    Geisenheyner, Robert M.; Berdysz, Joseph J.

    1948-01-01

    An investigation to determine the performance and operational characteristics of an axial-flow gas turbine-propeller engine was conducted in the Cleveland altitude wind tunnel. As part of this investigation, the combustion-chamber performance was determined at pressure altitudes from 5000 to 35,000 feet, compressor-inlet ram-pressure ratios of 1.00 and 1.09, and engine speeds from 8000 to 13,000 rpm. Combustion-chamber performance is presented as a function of corrected engine speed and corrected horsepower. For the range of corrected engine speeds investigated, overall total-pressure-loss ratio, cycle efficiency, and the fractional loss in cycle efficiency resulting from pressure losses in the combustion chambers were unaffected by a change in altitude or compressor-inlet ram-pressure ratio. For the range of corrected horsepowers investigated, the total-pressure-loss ratio and the fractional loss in cycle efficiency resulting from pressure losses in the combustion chambers decreased with an increase in corrected horsepower at a constant corrected engine speed. The combustion efficiency remained constant for the range of corrected horsepowers investigated at all corrected engine speeds.

  1. Method and apparatus for electrospark deposition

    DOEpatents

    Bailey, Jeffrey A.; Johnson, Roger N.; Park, Walter R.; Munley, John T.

    2004-12-28

    A method and apparatus for controlling electrospark deposition (ESD) comprises using electrical variable waveforms from the ESD process as a feedback parameter. The method comprises measuring a plurality of peak amplitudes from a series of electrical energy pulses delivered to an electrode tip. The maximum peak value from among the plurality of peak amplitudes correlates to the contact force between the electrode tip and a workpiece. The method further comprises comparing the maximum peak value to a set point to determine an offset and optimizing the contact force according to the value of the offset. The apparatus comprises an electrode tip connected to an electrical energy wave generator and an electrical signal sensor, which connects to a high-speed data acquisition card. An actuator provides relative motion between the electrode tip and a workpiece by receiving a feedback drive signal from a processor that is operably connected to the actuator and the high-speed data acquisition card.

  2. Ramp-integration technique for capacitance-type blade-tip clearance measurement

    NASA Astrophysics Data System (ADS)

    Sarma, Garimella R.; Barranger, John P.

    The analysis of a proposed new technique for capacitance type blade tip clearance measurement is presented. The capacitance between the blade tip and a mounted capacitance electrode within a guard ring forms one of the feedback elements of a high speed operational amplifier. The differential equation governing the operational amplifier circuit is formulated and solved for two types of inputs to the amplifier - a constant voltage and a ramp. The resultant solution shows an output that contains a term that is proportional to the derivative of the product of the input voltage and the time constant of the feedback network. The blade tip clearance capacitance is obtained by subtracting the output of a balancing reference channel followed by integration. The proposed sampled data algorithm corrects for environmental effects and varying rotor speeds on-line, making the system suitable for turbine instrumentation. System requirements, block diagrams, and a typical application are included.

  3. Ramp-integration technique for capacitance-type blade-tip clearance measurement

    NASA Astrophysics Data System (ADS)

    Sarma, G. R.; Barranger, J. P.

    1986-05-01

    The analysis of a proposed new technique for capacitance type blade tip clearance measurement is presented. The capacitance between the blade tip and a mounted capacitance electrode within a guard ring forms one of the feedback elements of a high speed operational amplifier. The differential equation governing the operational amplifier circuit is formulated and solved for two types of inputs to the amplifier - a constant voltage and a ramp. The resultant solutions shows an output that contains a term that is proportional to the derivative of the product of the input voltage and the time constant of the feedback network. The blade tip clearance capacitance is obtained by subtracting the output of a balancing reference channel followed by integration. The proposed sampled data algorithm corrects the environmental effects and varying rotor speeds on-line, making the system suitable for turbine instrumentation. System requirements, block diagrams, and typical application are included.

  4. Ramp-integration technique for capacitance-type blade-tip clearance measurement

    NASA Technical Reports Server (NTRS)

    Sarma, Garimella R.; Barranger, John P.

    1986-01-01

    The analysis of a proposed new technique for capacitance type blade tip clearance measurement is presented. The capacitance between the blade tip and a mounted capacitance electrode within a guard ring forms one of the feedback elements of a high speed operational amplifier. The differential equation governing the operational amplifier circuit is formulated and solved for two types of inputs to the amplifier - a constant voltage and a ramp. The resultant solution shows an output that contains a term that is proportional to the derivative of the product of the input voltage and the time constant of the feedback network. The blade tip clearance capacitance is obtained by subtracting the output of a balancing reference channel followed by integration. The proposed sampled data algorithm corrects for environmental effects and varying rotor speeds on-line, making the system suitable for turbine instrumentation. System requirements, block diagrams, and a typical application are included.

  5. Ramp-integration technique for capacitance-type blade-tip clearance measurement

    NASA Technical Reports Server (NTRS)

    Sarma, G. R.; Barranger, J. P.

    1986-01-01

    The analysis of a proposed new technique for capacitance type blade tip clearance measurement is presented. The capacitance between the blade tip and a mounted capacitance electrode within a guard ring forms one of the feedback elements of a high speed operational amplifier. The differential equation governing the operational amplifier circuit is formulated and solved for two types of inputs to the amplifier - a constant voltage and a ramp. The resultant solutions shows an output that contains a term that is proportional to the derivative of the product of the input voltage and the time constant of the feedback network. The blade tip clearance capacitance is obtained by subtracting the output of a balancing reference channel followed by integration. The proposed sampled data algorithm corrects the environmental effects and varying rotor speeds on-line, making the system suitable for turbine instrumentation. System requirements, block diagrams, and typical application are included.

  6. Generalization of turbojet and turbine-propeller engine performance in windmilling condition

    NASA Technical Reports Server (NTRS)

    Wallner, Ewis E; Welna, Henry J

    1951-01-01

    Windmilling characteristics of several turbojet and turbine-propeller engines were investigated individually over a wide range of flight conditions in the NACA Lewis altitude wind tunnel. A study was made of all these data and windmilling performance of gas turbine engines was generalized. Although internal-drag, air-flow, and total-pressure-drop parameters were generalized to a single curve for both the axial-flow type engines and another for the centrifugal-flow engine. The engine speed, component pressure changes, and windmilling-propeller drag were generalized to single curves for the two turbine-propeller-type engines investigated. By the use of these curves the windmilling performance can be estimated for axial-flow type gas turbine engines similar to the types investigated over a wide range of flight conditions.

  7. Comprehensive Report of Fan Performance From Duct Rake Instrumentation on 1.294 Pressure Ratio, 806 ft/sec Tip Speed Turbofan Simulator Models

    NASA Technical Reports Server (NTRS)

    Jeracki, Robert J.

    2006-01-01

    A large scale model representative of an advanced ducted propulsor-type, low-noise, very high bypass ratio turbofan engine was tested for acoustics, aerodynamic performance, and off-design operability in the NASA Glenn 9- by 15-Foot Low-Speed Wind Tunnel. The test was part of NASA s Advanced Subsonic Technology Noise Reduction Program. The low tip speed fan, nacelle, and un-powered core passage were simulated. As might be expected, the effect of stall management casing treatment was a performance penalty. Reducing the recirculating flow at the fan tip reduced the penalty while still providing sufficient stall margin. Two fans were tested with the same aerodynamic design; one with graphite composite material, and the other with solid titanium. There were surprising performance differences between the two fans, though both blades showed some indication of transitional flow near the tips. Though the pressure and temperature ratios were low for this fan design, the techniques used to improve thermocouple measurement accuracy gave repeatable data with adiabatic efficiencies agreeing within 1 percent. The measured fan adiabatic efficiency at simulated takeoff conditions was 93.7 percent and matched the design intent.

  8. Numerical Investigation on the Effects of Self-Excited Tip Flow Unsteadiness and Blade Row Interactions on the Performance Predictions of Low Speed and Transonic Compressor Rotors

    NASA Astrophysics Data System (ADS)

    Lee, Daniel H.

    The impact blade row interactions can have on the performance of compressor rotors has been well documented. It is also well known that rotor tip clearance flows can have a large effect on compressor performance and stall margin and recent research has shown that tip leakage flows can exhibit self-excited unsteadiness at near stall conditions. However, the impact of tip leakage flow on the performance and operating range of a compressor rotor, relative to other important flow features such as upstream stator wakes or downstream potential effects, has not been explored. To this end, a numerical investigation has been conducted to determine the effects of self-excited tip flow unsteadiness, upstream stator wakes, and downstream blade row interactions on the performance prediction of low speed and transonic compressor rotors. Calculations included a single blade-row rotor configuration as well as two multi-blade row configurations: one where the rotor was modeled with an upstream stator and a second where the rotor was modeled with a downstream stator. Steady-state and time accurate calculations were performed using a RANS solver and the results were compared with detailed experimental data obtained in the GE Low Speed Research Compressor and the Notre Dame Transonic Rig at several operating conditions including near stall. Differences in the performance predictions between the three configurations were then used to determine the effect of the upstream stator wakes and the downstream blade row interactions. Results obtained show that for both the low speed and transonic research compressors used in this investigation time-accurate RANS analysis is necessary to accurately predict the stalling character of the rotor. Additionally, for the first time it is demonstrated that capturing the unsteady tip flow can have a larger impact on rotor performance predictions than adjacent blade row interactions.

  9. Large scale prop-fan structural design study. Volume 1: Initial concepts

    NASA Technical Reports Server (NTRS)

    Billman, L. C.; Gruska, C. J.; Ladden, R. M.; Leishman, D. K.; Turnberg, J. E.

    1988-01-01

    In recent years, considerable attention has been directed toward improving aircraft fuel consumption. Studies have shown that the inherent efficiency advantage that turboprop propulsion systems have demonstrated at lower cruise speeds may now be extended to the higher speeds of today's turbofan and turbojet-powered aircraft. To achieve this goal, new propeller designs will require features such as thin, high speed airfoils and aerodynamic sweep, features currently found only in wing designs for high speed aircraft. This is Volume 1 of a 2 volume study to establish structural concepts for such advanced propeller blades, to define their structural properties, to identify any new design, analysis, or fabrication techniques which were required, and to determine the structural tradeoffs involved with several blade shapes selected primarily on the basis of aero/acoustic design considerations. The feasibility of fabricating and testing dynamically scaled models of these blades for aeroelastic testing was also established. The preliminary design of a blade suitable for flight use in a testbed advanced turboprop was conducted and is described in Volume 2.

  10. Large scale prop-fan structural design study. Volume 2: Preliminary design of SR-7

    NASA Technical Reports Server (NTRS)

    Billman, L. C.; Gruska, C. J.; Ladden, R. M.; Leishman, D. K.; Turnberg, J. E.

    1988-01-01

    In recent years, considerable attention has been directed toward improving aircraft fuel consumption. Studies have shown that the inherent efficiency advantage that turboprop propulsion systems have demonstrated at lower cruise speeds may now be extended to the higher speeds of today's turbofan and turbojet-powered aircraft. To achieve this goal, new propeller designs will require features such as thin, high speed airfoils and aerodynamic sweep, features currently found only in wing designs for high speed aircraft. This is Volume 2 of a 2 volume study to establish structural concepts for such advanced propeller blades, to define their structural properties, to identify any new design, analysis, or fabrication techniques which were required, and to determine the structural tradeoffs involved with several blade shapes selected primarily on the basis of aero/acoustic design considerations. The feasibility of fabricating and testing dynamically scaled models of these blades for aeroelastic testing was also established. The preliminary design of a blade suitable for flight use in a testbed advanced turboprop was conducted and is described.

  11. Control Performance of General Electric Fuel and Torque Regulator Operating on T31-3 Turbine-Propeller Engine in Sea-Level Test Stand

    NASA Technical Reports Server (NTRS)

    Oppenheimer, Frank L.; Lazar, James

    1951-01-01

    A .General Electric fuel and torque regulator was tested in conjunction with a T31-3 turbine-propeller engine in the sea-level static test stand at the NACA Lewis laboratory. The engine and control were operated over the entire speed range: 11,000 rpm, nominal flight idle, to 13,000 rpm, full power. Steady-state and transient data were recorded and are presented with a description of the four control loops being used in the system. Results of this investigation indicated that single-lever control operation was satisfactory under conditions of test. Transient data presented showed that turbine-outlet temperature did overshoot maximum operating value on acceleration but that the time duration of overshoot did not exceed approximately 1 second. This temperature limiting resulted from a control on fuel flow as a function of engine speed. Speed and torque first reached their desired values 0.4 second from the time of change in power-setting lever position. Maximum speed overshoot was 3 percent.

  12. A translational velocity command system for VTOL low speed flight

    NASA Technical Reports Server (NTRS)

    Merrick, V. K.

    1982-01-01

    A translational velocity flight controller, suitable for very low speed maneuvering, is described and its application to a large class of VTOL aircraft from jet lift to propeller driven types is analyzed. Estimates for the more critical lateral axis lead to the conclusion that the controller would provide a jet lift (high disk loading) VTOL aircraft with satisfactory "hands off" station keeping in operational conditions more stringent than any specified in current or projected requirements. It also seems likely that ducted fan or propeller driven (low disk loading) VTOL aircraft would have acceptable hovering handling qualities even in high turbulence, although in these conditions pilot intervention to maintain satisfactory station keeping would probably be required for landing in restricted areas.

  13. Surface viscosity effects on the motion of self-propelling boat in a channel

    NASA Astrophysics Data System (ADS)

    Aliperio, M. G.; Nolan Confesor, Mark

    2015-06-01

    Self-propelled droplets have been conceived as simple chemical toy models to mimic motile biological samples such as bacteria. The motion of these droplets is believe to be due to the surface tension gradient in the boundary of the droplet. We performed experiments to look at the effect of varying the medium viscosity to the speed of a circular boat that was soaked in Pentanol. We found that the boats undergo oscillatory type of motion inside a channel. Moreover we found the maximum speed of the boat is independent on the viscosity of the medium. On the other a time scale describing the width of the velocity profile of the boat was found to increase with increasing viscosity.

  14. Redesigned rotor for a highly loaded, 1800 ft/sec tip speed compressor fan stage 1: Aerodynamic and mechanical design

    NASA Technical Reports Server (NTRS)

    Halle, J. E.; Ruschak, J. T.

    1975-01-01

    A highly loaded, high tip-speed fan rotor was designed with multiple-circular-arc airfoil sections as a replacement for a marginally successful rotor which had precompression airfoil sections. The substitution of airfoil sections was the only aerodynamic change. Structural design of the redesigned rotor blade was guided by successful experience with the original blade. Calculated stress levels and stability parameters for the redesigned rotor are within limits demonstrated in tests of the original rotor.

  15. Understanding and Mitigating Vortex-Dominated, Tip-Leakage and End-Wall Losses in a Transonic Splittered Rotor Stage

    DTIC Science & Technology

    2015-04-23

    blade geometry parameters the TPL design 9   tool was initiated by running the MATLAB script (*.m) Main_SpeedLine_Auto. Main_SpeedLine_Auto...SolidWorks for solid model generation of the blade shapes. Computational Analysis With solid models generated of the gas -path air wedge, automated...287 mm (11.3 in) Constrained by existing TCR geometry Number of Passages 12 None A blade tip-down design approach was used. The outputs of the

  16. Fluid dynamics, cavitation, and tip-to-tissue interaction of longitudinal and torsional ultrasound modes during phacoemulsification.

    PubMed

    Zacharias, Jaime; Ohl, Claus-Dieter

    2013-04-01

    To describe the fluidic events that occur in a test chamber during phacoemulsification with longitudinal and torsional ultrasound (US) modalities. Pasteur Ophthalmic Clinic Phacodynamics Laboratory, Santiago, Chile, and Nanyang Technological University, Singapore. Experimental study. Ultra-high-speed videos of a phacoemulsifying tip were recorded while the tip operated in longitudinal and torsional US modalities using variable US power. Two high-speed video cameras were used to record videos up to 625,000 frames per second. A high-intensity spotlight source was used for illumination to engage shadowgraphy techniques. Particle image velocimetry was used to evaluate fluidic patterns while a hyperbaric environmental system allowed the evaluation of cavitation effects. Tip-to-tissue interaction at high speed was evaluated using human cataract fragments. Particle imaging velocimetry showed the following flow patterns for longitudinal and torsional modes at high US powers: forward-directed streaming with longitudinal mode and backward-directed streaming with torsional mode. The ultrasound power threshold for the appearance of cavitation was 60% for longitudinal mode and 80% for torsional mode. Cavitation was suppressed with pressure of 1.0 bar for longitudinal mode and 0.3 bar for torsional mode. Generation of previously unseen stable gaseous microbubbles was noted. Tip-to-tissue interaction analysis showed the presence of cavitation bubbles close to the site of fragmentation with no apparent effect on cutting. High-speed imaging and particle image velocimetry yielded a better understanding and differentiated the fluidic pattern behavior between longitudinal and torsional US during phacoemulsification. These recordings also showed more detailed aspects of cavitation that clarified its role in lens material cutting for both modalities. Copyright © 2013 ASCRS and ESCRS. Published by Elsevier Inc. All rights reserved.

  17. Cooling of Electric Motors Used for Propulsion on SCEPTOR

    NASA Technical Reports Server (NTRS)

    Christie, Robert; Dubois, Authur; Derlaga, Joseph

    2016-01-01

    Benefits of Electric Power: Reduced energy consumption, Lower emissions, Less noise. Traction motors: Permanent magnet, Synchronous, High torque at low rotational speeds, High power density, (High concentration of heat). Annular inlet: Very compatible with PM motors, (Provides cooling where needed, No need for complicated ducting, Leads to a larger motor diameter which is beneficial for motor torque) Effect of prop wash on heat transfer coefficients: Assumed propeller induced turbulence would increase heat transfer coefficients, Holmes, Obara Yip reported 'propeller slipstream showed little if any apparent effect of the slip stream', Derlaga @ LaRC also found little change in heat transfer in the wake of the propeller.

  18. [Evaluation of the cavity cleaning of ultrasonic instruments and slow-speed handpiece in posterior teeth root-end preparation].

    PubMed

    Zhang, Ping-juan; Chen, Wen-xia; Zeng, Qi-xin; Xie, Fang-fang

    2013-04-01

    To compare the cleanliness of root end preparations by using ultrasonic instrumentation and slow-speed handpiece. Thirty-two mesial roots of the first mandibular molars with two canals and mature root apices were assigned randomly to 2 groups, each group had 16 teeth. The root-end preparations were made respectively using ultrasonic diamond tip Berutti and NiTi tip RE2 and slow-speed handpiece with No.2 round bur. Root end cavities were examined under scanning electron microscope for further evaluation of the superficial debris and smear layer of the root end preparations. SPSS 13.0 software package was used for Kruskal Wallis test. Ultrasonic preparation had significantly less superficial debris and smear layer than slow-speed handpiece preparation (P<0.05). Ultrasonic instrument creates cleaner surfaces for root end cavities than slow-speed handpiece preparation in posterior teeth root end preparation.

  19. Effect of rotor design tip speed on noise of a 1.21 pressure ratio model fan under static conditions

    NASA Technical Reports Server (NTRS)

    Loeffler, I. J.; Lieblein, S.; Stockman, N. O.

    1973-01-01

    Preliminary results are presented for a reverberant-field noise investigation of three fan stages designed for the same overall total pressure ratio of 1.21 at different rotor tip speeds (750, 900, and 1050 ft/sec). The stages were tested statically in a 15-inch-diameter model lift fan installed in a wing pod located in the test section of a wind tunnel. Although the fan stages produced essentially the same design pressure ratio, marked differences were observed in the variation of fan noise with fan operating speed. At design speed, the forward-radiated sound power level was approximately the same for the 750 ft/sec and 900 ft/sec stages. For the 1050 ft/sec stage, the design-speed forward-radiated power level was about 7 db higher due to the generation of multiple pure tone noise.

  20. Effect of rotor design tip speed on noise of a 1.21 pressure ratio model fan under static conditions

    NASA Technical Reports Server (NTRS)

    Loeffler, I. J.; Lieblein, S.; Stockman, N. O.

    1973-01-01

    Preliminary results are presented for a reverberant-field noise investigation of three fan stages designed for the same overall total pressure ratio of 1.21 at different rotor tip speeds (750, 900, and 1050 fps). The stages were tested statically in a 15-in.-dia model lift fan installed in a wing pod located in the test section of a wind tunnel. Although the fan stages produced essentially the same design pressure ratio, marked differences were observed in the variation of fan noise with fan operating speed. At design speed, the forward-radiated sound power level was approximately the same for the 750 and 900 fps stages. For the 1050 fps stage, the design-speed forward-radiated power level was about 7 dB higher due to the generation of multiple pure tone noise.

  1. Investigation of the aerothermodynamics of hypervelocity reacting flows in the ram accelerator

    NASA Technical Reports Server (NTRS)

    Hertzberg, A.; Bruckner, A. P.; Mattick, A. T.; Knowlen, C.

    1992-01-01

    New diagnostic techniques for measuring the high pressure flow fields associated with high velocity ram accelerator propulsive modes was experimentally investigated. Individual propulsive modes are distinguished by their operating Mach number range and the manner in which the combustion process is initiated and stabilized. Operation of the thermally choked ram accelerator mode begins by injecting the projectile into the accelerator tube at a prescribed entrance velocity by means of a conventional light gas gun. A specially designed obturator, which is used to seal the bore of the gun, plays a key role in the ignition of the propellant gases in the subsonic combustion mode of the ram accelerator. Once ignited, the combustion process travels with the projectile and releases enough heat to thermally choke the flow within several tube diameters behind it, thereby stabilizing a high pressure zone on the rear of the projectile. When the accelerating projectile approaches the Chapman-Jouguet detonation speed of the propellant mixture, the combustion region is observed to move up onto the afterbody of the projectile as the pressure field evolves to a distinctively different form that implies the presence of supersonic combustion processes. Eventually, a high enough Mach number is reached that the ram effect is sufficient to cause the combustion process to occur entirely on the body. Propulsive cycles utilizing on-body heat release can be established either by continuously accelerating the projectile in a single propellant mixture from low initial in-tube Mach numbers (M less than 4) or by injecting the projectile at a speed above the propellant's Chapman-Jouguet detonation speed. The results of experimental and theoretical explorations of ram accelerator gas dynamic phenomena and the effectiveness of the new diagnostic techniques are presented in this report.

  2. Tip leakage vortex dynamics and inception

    NASA Astrophysics Data System (ADS)

    Oweis, Ghanem; Ceccio, Steven; Jessup, Stuart; Chesnakas, Christopher; Fry, David

    2002-11-01

    The McCormick rule for tip vortex cavitation scaling predicts that cavitation should take place in the vortex where the average core pressure deficit from the free stream is the largest along the vortex tube. The average core pressure deficit can be calculated from the vortex core size and circulation and these can be measured by LDV or hot wire, among other methods. The same rule applies to the tip vortex from a wall-bounded hydrofoil. Recent cavitation inception experiments on a ducted propeller in the NSWCCD 36 inch water tunnel combined with PIV and LDV measurements of the tip vortex flow are described. These tests reveal a disagreement between the actual inception location and that predicted by the McCormick rule. It is hypothesized that in this case the inception mechanism is related to local flow phenomena associated with local vortex unsteadiness, as opposed to the average vortex parameters (core size and circulation) used in the viscous scaling rule of McCormick. Discussion of the flow field measurements, bubble population, and the noise production from the inception events is given.

  3. Crack Propagation and Branching in Burning Solid Propellants and Ignition of Nitramine-Based Composite Propellants

    DTIC Science & Technology

    1986-01-01

    TAPE ), %V.. ,RECORDER], WAVEFORM ,DIGITIZER AND RECORDER RPLOTER CPUTER OSCILLOSCOPE Fig. 19 S&*tic Diagram of Dat Acqisition Sytem...signals from pressure transducers are amplified by charge atplifiers and then recoiJed on - high-speed magnetic tape recorder and a 2 MHz transient...R. A. Schapery, Dec. 1985 A 92 11. Erdogan , F., "Fracture Mechanics Notes," Department of Mechanical Engineering and Mechanics, Lehigh University

  4. 14 CFR Appendix G to Part 36 - Takeoff Noise Requirements for Propeller-Driven Small Airplane and Propeller-Driven, Commuter...

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... excessive sound absorption characteristics such as those caused by thick, matted, or tall grass, by shrubs..., inclusively; (4) Wind speed may not exceed 10 knots (19 km/h) and cross wind may not exceed 5 knots (9 km/h... level atmospheric pressure of 1013.25 mb (013.25 hPa); (2) Ambient air temperature of 59 °F (15 °C); (3...

  5. 14 CFR Appendix G to Part 36 - Takeoff Noise Requirements for Propeller-Driven Small Airplane and Propeller-Driven, Commuter...

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... excessive sound absorption characteristics such as those caused by thick, matted, or tall grass, by shrubs..., inclusively; (4) Wind speed may not exceed 10 knots (19 km/h) and cross wind may not exceed 5 knots (9 km/h... level atmospheric pressure of 1013.25 mb (013.25 hPa); (2) Ambient air temperature of 59 °F (15 °C); (3...

  6. Study of aerodynamic noise in low supersonic operation of an axial flow compressor

    NASA Technical Reports Server (NTRS)

    Arnoldi, R. A.

    1972-01-01

    A study of compressor noise is presented, based upon supersonic, part-speed operation of a high hub/tip ratio compressor designed for spanwise uniformity of aerodynamic conditions, having straight cylindrical inlet and exit passages for acoustic simplicity. Acoustic spectra taken in the acoustically-treated inlet plenum, are presented for five operating points at each of two speeds, corresponding to relative rotor tip Mach numbers of about 1.01 and 1.12 (60 and 67 percent design speed). These spectra are analyzed for low and high frequency broadband noise, blade passage frequency noise, combination tone noise and "haystack' noise (a very broad peak somewhat below blade passage frequency, which is occasionally observed in engines and fan test rigs). These types of noise are related to diffusion factor, total pressure ratio, and relative rotor tip Mach number. Auxiliary measurements of fluctuating wall static pressures and schlieren photographs of upstream shocks in the inlet are also presented and related to the acoustic and performance data.

  7. Experimental short-duration techniques. [gas turbine engine tests

    NASA Technical Reports Server (NTRS)

    Dunn, Michael G.

    1986-01-01

    Short-duration facilities used for gas turbine studies are described. Data recording techniques; and instruments (thin-film heat flux gages, high-frequency response pressure measurements, total temperature probes, measurement of rotor tip speed, active measurement of tip clearance) are presented.

  8. Study of scattering from turbulence structure generated by propeller with FLUENT

    NASA Astrophysics Data System (ADS)

    Luo, Gen

    2017-07-01

    In this article, the turbulence structure generated by a propeller is simulated with the computational fluid dynamics (CFD) software FLUENT. With the method of moments, the backscattering radar cross sections (RCS) of the turbulence structure are calculated. The scattering results can reflect the turbulent intensity of the wave profiles. For the wake turbulence with low rotating speed, the scattering intensity of HH polarization is much smaller than VV polarization at large incident angles. When the turbulence becomes stronger with high rotating speed, the scattering intensity of HH polarization also becomes stronger at large incident angles, which is almost the same with VV polarization. And also, the bistatic scattering of the turbulence structure has the similar situation. These scattering results indicate that the turbulence structure can also give rise to an anomaly compared with traditional sea surface. The study of electromagnetic (EM) scattering from turbulence structure generated by the propeller can help in better understanding of the scattering from different kinds of waves and provide more bases to explain the anomalies of EM scattering from sea surfaces.

  9. Propulsive machinery selection for repowering of an old patrol craft - A case study

    NASA Astrophysics Data System (ADS)

    Rahman, M. Muzibur; Mridha, A. H. Yusuf; Ahsan, Kazi Sakib

    2017-12-01

    This paper presents a case study of repowering peculiarities in relation to an old vessel. The vessel selected for study was designed for cruising speed of 15 knots. Over the years of operation the vessel's cruising speed reduced to about 8 knots. So, the owner wanted to repower it to have a fresh tenure of life and the work was given to a shipyard. But after replacement of old two engines by new engines of same power with different model, the performance of the vessel was not satisfactory. In the present paper, the problem is studied with comprehensive calculations of hydrostatic particulars and resistance of the ship. The analysis is carried out in respect of engine specifications, gear ratios, propeller design etc. and found that the operating ranges of new engines are not at par with the old engines. The new engine does not also match with old propeller. At this situation, comparative studies have determined that among all possible solutions redesign of propeller is the most suitable one and cost effective.

  10. Thrust augmentation in tandem flapping foils by foil-wake interaction

    NASA Astrophysics Data System (ADS)

    Anderson, Erik; Lauder, George

    2006-11-01

    Propulsion by pitching and heaving airfoils and hydrofoils has been a focus of much research in the field of biologically inspired propulsion. Organisms that use this sort of propulsion are self-propelled, so it is difficult to use standard experimental metrics such as thrust and drag to characterize performance. We have constructed a flapping foil robot mounted in a flume on air-bearings that allows for the determination of self-propelled speed as a metric of performance. We have used a pair of these robots to examine the impact of an upstream flapping foil on a downstream flapping foil as might apply to tandem fins of a swimming organism or in-line swimming of schooling organisms. Self-propelled speed and a force transducer confirmed significant thrust augmentation for particular foil-to-foil spacings, phase differences, and flapping frequencies. Flow visualization shows the mechanism to be related to the effective angle of attack of the downstream foil due to the structure of the wake of the upstream foil. This confirms recent computational work and the hypotheses by early investigators of fish fluid dynamics.

  11. Design and analysis of axial aspirated compressor stages

    NASA Astrophysics Data System (ADS)

    Merchant, Ali A.

    The pressure ratio of axial compressor stages can be significantly increased by controlling the development of blade and endwall boundary layers in regions of adverse pressure gradient by means of boundary layer suction. This concept is validated and demonstrated through the design and analysis of two unique aspirated compressor stages: a low-speed stage with a design pressure ratio of 1.6 at a tip speed of 750 ft/s, and a high-speed stage with a design pressure ratio of 3.5 at a tip speed of 1500 ft/s. The aspirated compressor stages were designed using a new procedure which is a synthesis of low speed and high speed blade design techniques combined with a flexible inverse design method which enabled precise independent control over the shape of the blade suction and pressure surfaces. Integration of the boundary layer suction calculation into the overall design process is an essential ingredient of the new procedure. The blade design system consists of two axisymmetric through-flow codes coupled with a quasi three-dimensional viscous cascade plane code with inverse design capability. Validation of the completed designs were carried out with three-dimensional Euler and Navier-Stokes calculations. A single spanwise slot on the blade suction surface is used to bleed the boundary layer. The suction mass flow requirement for the low-speed and high-speed stages are 1% and 4% of the inlet mass flow, respectively. Additional suction between 1-2% is also required on the compressor endwalls near shock impingement locations. The rotor is modeled with a tip shroud to eliminate tip clearance effects and to discharge the suction flow radially from the flowpath. Three-dimensional viscous evaluation of the designs showed good agreement with the quasi three-dimensional design intent, except in the endwall regions. The suction requirements predicted by the quasi three-dimensional calculation were confirmed by the three-dimensional viscous calculations. The three-dimensional viscous analysis predicted a peak pressure ratio of 1.59 at an isentropic efficiency of 89% for the low-speed stage, and a peak pressure ratio of 3.68 at an isentropic efficiency of 94% for the high-speed rotor. (Copies available exclusively from MIT Libraries, Rm. 14-0551, Cambridge, MA 02139-4307. Ph. 617-253-5668; Fax 617-253-1690.)

  12. A molecular dynamics investigation into the mechanisms of subsurface damage and material removal of monocrystalline copper subjected to nanoscale high speed grinding

    NASA Astrophysics Data System (ADS)

    Li, Jia; Fang, Qihong; Liu, Youwen; Zhang, Liangchi

    2014-06-01

    This paper investigates the mechanisms of subsurface damage and material removal of monocrystalline copper when it is under a nanoscale high speed grinding of a diamond tip. The analysis was carried out with the aid of three-dimensional molecular dynamics simulations. The key factors that would influence the deformation of the material were carefully explored by analyzing the chip, dislocation movement, and workpiece deformation, which include grinding speed, depth of cut, grid tip radius, crystal orientation and machining angle of copper. An analytical model was also established to predict the emission of partial dislocations during the nanoscale high speed grinding. The investigation showed that a higher grinding velocity, a larger tip radius or a larger depth of cut would result in a larger chipping volume and a greater temperature rise in the copper workpiece. A lower grinding velocity would produce more intrinsic stacking faults. It was also found that the transition of deformation mechanisms depends on the competition between the dislocations and deformation twinning. There is a critical machining angle, at which a higher velocity, a smaller tip radius, or a smaller depth of cut will reduce the subsurface damage and improve the smoothness of a ground surface. The established analytical model showed that the Shockley dislocation emission is most likely to occur with the crystal orientations of (0 0 1)[1 0 0] at 45° angle.

  13. Summary of model VTOL lift fan tests conducted at NASA Lewis Research Center

    NASA Technical Reports Server (NTRS)

    Diedrich, J. H.

    1975-01-01

    The purpose of the tests was to obtain overall performance and influencing factors as well as detailed measurements of the internal flow characteristics. The first experiment consisted of crossflow tests of a 15-inch diameter fan installed in a two-dimensional wing. Tests were run with and without exit louvers over a range of tunnel speeds, fan speeds, and wing angle of attack. The wing was used for a study of installation effects on lift fan performance. The model tested consisted of three 5.5-inch diameter tip-turbine driven model VTOL lift fans mounted chord-wise in the two-dimensional wing to simulate a pod-type array. Several inlet and exit cover door configurations and an adjacent fuselage panel were tested. For the third program, a pod was attached to the wing, and an investigation was conducted of the effect of design tip speed on the aerodynamic performance and noise of a 15-inch diameter lift fan-in-pod under static and crossflow conditions. Three single VTOL lift fan stages were designed for the same overall total pressure ratio but at three different rotor tip speeds.

  14. Annoyance caused by aircraft en route noise

    NASA Astrophysics Data System (ADS)

    McCurdy, David A.

    1992-03-01

    A laboratory experiment was conducted to quantify the annoyance response of people on the ground to enroute noise generated by aircraft at cruise conditions. The en route noises were ground level recordings of eight advanced turboprop aircraft flyovers and six conventional turbofan flyovers. The eight advanced turboprop enroute noises represented the NASA Propfan Test Assessment aircraft operating at different combinations of altitude, aircraft Mach number, and propeller tip speed. The conventional turbofan en route noises represented six different commercial airliners. The overall durations of the en route noises varied from approximately 40 to 160 sec. In the experiment, 32 subjects judged the annoyance of the en route noises as well as recordings of the takeoff and landing noises of each of 5 conventional turboprop and 5 conventional turbofan aircraft. Each of the noises was presented at three sound pressure levels to the subjects in an anechoic listening room. Analysis of the judgments found small differences in annoyance between three combinations of aircraft type and operation. Current tone and corrections did not significantly improve en route annoyance prediction. The optimum duration-correction magnitude for en route noise was approximately 1 dB per doubling of effective duration.

  15. Tone and Broadband Noise Separation from Acoustic Data of a Scale-Model Counter-Rotating Open Rotor

    NASA Technical Reports Server (NTRS)

    Sree, David; Stephens, David B.

    2014-01-01

    Renewed interest in contra-rotating open rotor technology for aircraft propulsion application has prompted the development of advanced diagnostic tools for better design and improved acoustical performance. In particular, the determination of tonal and broadband components of open rotor acoustic spectra is essential for properly assessing the noise control parameters and also for validating the open rotor noise simulation codes. The technique of phase averaging has been employed to separate the tone and broadband components from a single rotor, but this method does not work for the two-shaft contra-rotating open rotor. A new signal processing technique was recently developed to process the contra-rotating open rotor acoustic data. The technique was first tested using acoustic data taken of a hobby aircraft open rotor propeller, and reported previously. The intent of the present work is to verify and validate the applicability of the new technique to a realistic one-fifth scale open rotor model which has 12 forward and 10 aft contra-rotating blades operating at realistic forward flight Mach numbers and tip speeds. The results and discussions of that study are presented in this paper.

  16. Tone and Broadband Noise Separation from Acoustic Data of a Scale-Model Contra-Rotating Open Rotor

    NASA Technical Reports Server (NTRS)

    Sree, Dave; Stephens, David B.

    2014-01-01

    Renewed interest in contra-rotating open rotor technology for aircraft propulsion application has prompted the development of advanced diagnostic tools for better design and improved acoustical performance. In particular, the determination of tonal and broadband components of open rotor acoustic spectra is essential for properly assessing the noise control parameters and also for validating the open rotor noise simulation codes. The technique of phase averaging has been employed to separate the tone and broadband components from a single rotor, but this method does not work for the two-shaft contra-rotating open rotor. A new signal processing technique was recently developed to process the contra-rotating open rotor acoustic data. The technique was first tested using acoustic data taken of a hobby aircraft open rotor propeller, and reported previously. The intent of the present work is to verify and validate the applicability of the new technique to a realistic one-fifth scale open rotor model which has 12 forward and 10 aft contra-rotating blades operating at realistic forward flight Mach numbers and tip speeds. The results and discussions of that study are presented in this paper.

  17. Annoyance caused by aircraft en route noise

    NASA Technical Reports Server (NTRS)

    Mccurdy, David A.

    1992-01-01

    A laboratory experiment was conducted to quantify the annoyance response of people on the ground to enroute noise generated by aircraft at cruise conditions. The en route noises were ground level recordings of eight advanced turboprop aircraft flyovers and six conventional turbofan flyovers. The eight advanced turboprop enroute noises represented the NASA Propfan Test Assessment aircraft operating at different combinations of altitude, aircraft Mach number, and propeller tip speed. The conventional turbofan en route noises represented six different commercial airliners. The overall durations of the en route noises varied from approximately 40 to 160 sec. In the experiment, 32 subjects judged the annoyance of the en route noises as well as recordings of the takeoff and landing noises of each of 5 conventional turboprop and 5 conventional turbofan aircraft. Each of the noises was presented at three sound pressure levels to the subjects in an anechoic listening room. Analysis of the judgments found small differences in annoyance between three combinations of aircraft type and operation. Current tone and corrections did not significantly improve en route annoyance prediction. The optimum duration-correction magnitude for en route noise was approximately 1 dB per doubling of effective duration.

  18. Wetter for fine dry powder

    DOEpatents

    Hall, James E.; Williams, Everett H.

    1977-01-01

    A system for wetting fine dry powders such as bentonite clay with water or other liquids is described. The system includes a wetting tank for receiving water and a continuous flow of fine powder feed. The wetting tank has a generally square horizontal cross section with a bottom end closure in the shape of an inverted pyramid. Positioned centrally within the wetting tank is a flow control cylinder which is supported from the walls of the wetting tank by means of radially extending inclined baffles. A variable speed motor drives a first larger propeller positioned immediately below the flow control cylinder in a direction which forces liquid filling the tank to flow downward through the flow control cylinder and a second smaller propeller positioned below the larger propeller having a reverse pitch to oppose the flow of liquid being driven downward by the larger propeller.

  19. Design and performance of energy efficient propellers for Mach 0.8 cruise

    NASA Technical Reports Server (NTRS)

    Mikkelson, D. C.; Blaha, B. J.; Mitchell, G. A.; Wikete, J. E.

    1977-01-01

    The increased emphasis on fuel conservation in the world has stimulated a series of studies of both conventional and unconventional propulsion systems for commercial aircraft. Preliminary results from these studies indicate that a fuel saving of 14 to 40 percent may be realized by the use of an advanced high-speed turboprop. This turboprop must be capable of high efficiency at Mach 0.8 cruise above 9.144 km altitude if it is to compete with turbofan powered commercial aircraft. Several advanced aerodynamic concepts were investigated in recent wind tunnel tests under NASA sponsorship on two propeller models. These concepts included aerodynamically integrated propeller/nacelles, area ruling, blade sweep, reduced blade thickness and power (disk) loadings several times higher than conventional designs. The aerodynamic design methodology for these models is discussed. In addition, some of the preliminary test results are presented which indicate that propeller net efficiencies near 80 percent were obtained for high disk loading propellers operating at Mach 0.8.

  20. Design and performance of energy efficient propellers for Mach 0. 8 cruise

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mikkelson, D.C.; Blaha, B.J.; Mitchell, G.A.

    1977-01-01

    The increased emphasis on fuel conservation in the world has stimulated a series of studies of both conventional and unconventional propulsion systems for commercial aircraft. Preliminary results from these studies indicate that a fuel saving of 14 to 40 percent may be realized by the use of an advanced high-speed turboprop. This turboprop must be capable of high efficiency at Mach 0.8 cruise above 9.144 km altitude if it is to compete with turbofan powered commercial aircraft. Several advanced aerodynamic concepts were investigated in recent wind tunnel tests under NASA sponsorship on two propeller models. These concepts included aerodynamically integratedmore » propeller/nacelles, area ruling, blade sweep, reduced blade thickness and power (disk) loadings several times higher than conventional designs. The aerodynamic design methodology for these models is discussed. In addition, some of the preliminary test results are presented which indicate that propeller net efficiencies near 80 percent were obtained for high disk loading propellers operating at Mach 0.8.« less

Top