Volume 31, Issue 1, Pages 1-406(15 September 1999)
Preface
Preface
NASA Astrophysics Data System (ADS)
Oden, J. T.; Prudhomme, S.
1999-09-01
We present a new approach to deliver reliable approximations of the norm of the residuals resulting from finite element solutions to the Stokes and Oseen equations. The method is based upon a global solve in a bubble space using iterative techniques. This provides an alternative to the classical equilibrated element residual methods for which it is necessary to construct proper boundary conditions for each local problem. The method is first used to develop a global a posteriori error estimator. It is then applied in a strategy to control the numerical error in specific outputs or quantities of interest which are functions of the solutions to the Stokes and Oseen equations. Copyright
TELEPHONIC PRESENTATION: MERCURY MEASUREMENTS FOR SOLIDS MADE RAPIDLY, SIMPLY, AND INEXPENSIVELY
While traditional methods for determining mercury in solid samples involve the use of aggressive chemicals to dissolve the matrix and the use of other chemicals to properly reduce the mercury to the volatile elemental form, pyrolysis-based analyzers can be used by directly weighi...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-08-14
... conducting this comparative effectiveness review pursuant to Section 1013 of the Medicare Prescription Drug... summary, including the following elements: study number, study period, design, methodology, indication and... period, design, methodology, indication and diagnosis, proper use instructions, inclusion and exclusion...
Irrigation scheduling: When, where, and how much?
USDA-ARS?s Scientific Manuscript database
Irrigation scheduling, a key element of proper water management, is the accurate forecasting of water application (amount and timing) for optimal crop production (yield and fruit quality). The goal is to apply the correct amount of water at the right time to minimize irrigation costs and maximize cr...
49 CFR 236.526 - Roadway element not functioning properly.
Code of Federal Regulations, 2010 CFR
2010-10-01
..., INSPECTION, MAINTENANCE, AND REPAIR OF SIGNAL AND TRAIN CONTROL SYSTEMS, DEVICES, AND APPLIANCES Automatic Train Stop, Train Control and Cab Signal Systems Rules and Instructions; Roadway § 236.526 Roadway..., train control or cab signal system is not functioning as intended, the signal associated with such...
49 CFR 236.526 - Roadway element not functioning properly.
Code of Federal Regulations, 2011 CFR
2011-10-01
..., INSPECTION, MAINTENANCE, AND REPAIR OF SIGNAL AND TRAIN CONTROL SYSTEMS, DEVICES, AND APPLIANCES Automatic Train Stop, Train Control and Cab Signal Systems Rules and Instructions; Roadway § 236.526 Roadway..., train control or cab signal system is not functioning as intended, the signal associated with such...
Safety in Riding Programs: A Director's Guide.
ERIC Educational Resources Information Center
Kpachavi, Teresa
1996-01-01
Camp riding programs should be examined regularly for liability and risk management issues. Elements of a basic safety assessment include requiring proper safety apparel, removing obstructions from riding rings, ensuring doors and gates are closed, requiring use of lead ropes, securing equine medications, banning smoking, posting written…
Simulating Space Capsule Water Landing with Explicit Finite Element Method
NASA Technical Reports Server (NTRS)
Wang, John T.; Lyle, Karen H.
2007-01-01
A study of using an explicit nonlinear dynamic finite element code for simulating the water landing of a space capsule was performed. The finite element model contains Lagrangian shell elements for the space capsule and Eulerian solid elements for the water and air. An Arbitrary Lagrangian Eulerian (ALE) solver and a penalty coupling method were used for predicting the fluid and structure interaction forces. The space capsule was first assumed to be rigid, so the numerical results could be correlated with closed form solutions. The water and air meshes were continuously refined until the solution was converged. The converged maximum deceleration predicted is bounded by the classical von Karman and Wagner solutions and is considered to be an adequate solution. The refined water and air meshes were then used in the models for simulating the water landing of a capsule model that has a flexible bottom. For small pitch angle cases, the maximum deceleration from the flexible capsule model was found to be significantly greater than the maximum deceleration obtained from the corresponding rigid model. For large pitch angle cases, the difference between the maximum deceleration of the flexible model and that of its corresponding rigid model is smaller. Test data of Apollo space capsules with a flexible heat shield qualitatively support the findings presented in this paper.
High-order polygonal discontinuous Petrov-Galerkin (PolyDPG) methods using ultraweak formulations
NASA Astrophysics Data System (ADS)
Vaziri Astaneh, Ali; Fuentes, Federico; Mora, Jaime; Demkowicz, Leszek
2018-04-01
This work represents the first endeavor in using ultraweak formulations to implement high-order polygonal finite element methods via the discontinuous Petrov-Galerkin (DPG) methodology. Ultraweak variational formulations are nonstandard in that all the weight of the derivatives lies in the test space, while most of the trial space can be chosen as copies of $L^2$-discretizations that have no need to be continuous across adjacent elements. Additionally, the test spaces are broken along the mesh interfaces. This allows one to construct conforming polygonal finite element methods, termed here as PolyDPG methods, by defining most spaces by restriction of a bounding triangle or box to the polygonal element. The only variables that require nontrivial compatibility across elements are the so-called interface or skeleton variables, which can be defined directly on the element boundaries. Unlike other high-order polygonal methods, PolyDPG methods do not require ad hoc stabilization terms thanks to the crafted stability of the DPG methodology. A proof of convergence of the form $h^p$ is provided and corroborated through several illustrative numerical examples. These include polygonal meshes with $n$-sided convex elements and with highly distorted concave elements, as well as the modeling of discontinuous material properties along an arbitrary interface that cuts a uniform grid. Since PolyDPG methods have a natural a posteriori error estimator a polygonal adaptive strategy is developed and compared to standard adaptivity schemes based on constrained hanging nodes. This work is also accompanied by an open-source $\\texttt{PolyDPG}$ software supporting polygonal and conventional elements.
1981-01-01
A Space Shuttle Main Engine undergoes test-firing at the National Space Technology Laboratories (now the Sternis Space Center) in Mississippi. The Marshall Space Flight Center had management responsibility of Space Shuttle propulsion elements, including the Main Engines.
NASA's new university engineering space research programs
NASA Technical Reports Server (NTRS)
Sadin, Stanley R.
1988-01-01
The objective of a newly emerging element of NASA's university engineering programs is to provide a more autonomous element that will enhance and broaden the capabilities in academia, enabling them to participate more effectively in the U.S. civil space program. The programs utilize technical monitors at NASA centers to foster collaborative arrangements, exchange of personnel, and the sharing of facilities between NASA and the universities. The elements include: the university advanced space design program, which funds advanced systems study courses at the senior and graduate levels; the university space engineering research program that supports cross-disciplinary research centers; the outreach flight experiments program that offers engineering research opportunities to universities; and the planned university investigator's research program to provide grants to individuals with outstanding credentials.
Self-supporting method; an alternative method for steel truss bridge element replacement
NASA Astrophysics Data System (ADS)
Arsyad, Muhammad; Sangadji, Senot; As'ad, Sholihin
2017-11-01
Steel truss bridge often requires replacement of its element due to serious damage caused by traffic accidents. This replacement is carried out using temporary supporting structure. It would be difficult when the available space for the temporary structure is quite limited and or the position of work is at a high elevation. The self-supporting method is proposed instead of temporary supporting structure. This paper will discuss an innovative method of bridge rehabilitation by utilizing the existing bridge structure. It requires such temporary connecting structure that installed on the existing bridge element, therefore, the forces during replacement process could be transferred to the bridge foundation directly. By taking the case on a steel truss bridge Jetis Salatiga which requires element replacement due to its damages on two main diagonals, a modeling is carried out to get a proper repair method. Structural analysis is conducted for three temporary connecting structure models: “I,” “V,” and triangular model. Stresses and translations that occur in the structure are used as constraints. Bridge bearings are modeled in two different modes: fixed-fixed system and fixed-free one. Temperature load is given in each condition to obtain the appropriate time for execution. The triangular model is chosen as the best one. In the fixed-fixed mode, this method can be carried out in a temperature range 27-28.8° C, while in fixed-free one, the temperature it is allowed between 27-43.4 °C. The D4 is dismantled first by cutting the D4 leaving an area of 1140.2 mm2 or 127 mm web length to enable plastic condition until the D4 collapses. At the beginning of elongation occurs, immediately performed a slowly jacking on a temporary connecting structure so that the force on D4 is gradually transferred to the temporary connecting structure then the D4 and D5 are set in their place.
Gordon, Kacy L.; Arthur, Robert K.; Ruvinsky, Ilya
2015-01-01
Gene regulatory information guides development and shapes the course of evolution. To test conservation of gene regulation within the phylum Nematoda, we compared the functions of putative cis-regulatory sequences of four sets of orthologs (unc-47, unc-25, mec-3 and elt-2) from distantly-related nematode species. These species, Caenorhabditis elegans, its congeneric C. briggsae, and three parasitic species Meloidogyne hapla, Brugia malayi, and Trichinella spiralis, represent four of the five major clades in the phylum Nematoda. Despite the great phylogenetic distances sampled and the extensive sequence divergence of nematode genomes, all but one of the regulatory elements we tested are able to drive at least a subset of the expected gene expression patterns. We show that functionally conserved cis-regulatory elements have no more extended sequence similarity to their C. elegans orthologs than would be expected by chance, but they do harbor motifs that are important for proper expression of the C. elegans genes. These motifs are too short to be distinguished from the background level of sequence similarity, and while identical in sequence they are not conserved in orientation or position. Functional tests reveal that some of these motifs contribute to proper expression. Our results suggest that conserved regulatory circuitry can persist despite considerable turnover within cis elements. PMID:26020930
NASA Astrophysics Data System (ADS)
Mourtzios, Ch.; Siakavara, K.
2015-08-01
A method to design hybrid antenna configurations with very low profile, suitable for smart and Multiple Input-Multiple Output antenna systems is proposed. The antennas are incorporated with novel Electromagnetic Band Gap (EBG) surfaces with non-similar cells. These non-uniform EBG surfaces have been properly designed to cause focusing, of the incident waves, thus enhancing the characteristics of operation of antenna elements positioned in close proximity to the surface and also to increase the isolation between them. Theoretical analysis of the reflection mechanism of this type of lattices as well as the prediction of the resulting performance of the antenna is presented. All these considerations are validated with implementation and simulation of the hybrid structures inside the Universal Mobile Telecommunications System frequency band. The results show that increment of the gain and isolation between the antenna elements can be obtained. Moreover, results for the correlation coefficient between the elements, for Gaussian distribution of the incoming waves have been received and the tolerance of the antennas to the variation of the polarization characteristics of the incoming waves has been investigated. A Genetic Algorithm has been constructed and applied to find the proper geometry of the hybrid antennas in order the correlation coefficient to be minimized and get almost independent from the polarization of incident waves.
Secular resonances with massive asteroids and their impact on the dynamics of small bodies
NASA Astrophysics Data System (ADS)
Tsirvoulis, Georgios; Novaković, Bojan; Djošović, Valdimir
2015-08-01
The quest for understanding the dynamical structure of the main belt has been a long-lasting endeavor. From the discovery of the Kirkwood gaps and the Hirayama families, to the more recent advances in secular perturbation theory, the refinement of the proper elements and the discovery of the three-body mean-motion resonances, only to name a few, the progress has been immense. Dynamical models coupled with the outbursts in computational power and observations have greatly improved our knowledge of the dynamical evolution of the small bodies in the Solar System.While our set of tools for studying the dynamical porperties of the main belt is believed to be sufficiently complete, our assumptions on how to use them seem to have hindered this effort.The concensus has been that, judging by their mass, only the planets, especially the giant ones, can act as efficient perturbers of the orbits of asteroids. Thus a lot of studies have been made on the locations and effects of secular resonances with the giant planets in different parts of the main belt, explaining among other things the presence of gaps in the distribution of asteroids, strange shapes of some asteroid families and transport mechanisms of asteroids to the near-Earth region.Our work is motivated by the first discovery that a secular resonance with the most massive asteroid, Ceres, is the dominant dynamical mechanism responsible for the post-impact evolution of the Hoffmeister family members. Thus the concensus is wrong. Knowing now, that secular resonances with massive asteroids can be effective on asteroid dynamics, we set out to construct a dynamical map of these resonances across the main belt.Our study is focused on the linear and degree four non-linear secular resonances with the two most massive asteroids (1) Ceres and (4) Vesta. First we determine the locations of these secular resonances in the proper elements space, acquiring an understanding of the potentially affected regions, and then we perform numerical simulations to investigate the importance of each secular resonance on the dynamical evolution of asteroid orbits in the different parts of the main belt.
On the ages of resonant, eroded and fossil asteroid families
NASA Astrophysics Data System (ADS)
Milani, Andrea; Knežević, Zoran; Spoto, Federica; Cellino, Alberto; Novaković, Bojan; Tsirvoulis, Georgios
2017-05-01
In this work we have estimated 10 collisional ages of 9 families for which for different reasons our previous attempts failed. In general, these are difficult cases that required dedicated effort, such as a new family classifications for asteroids in mean motion resonances, in particular the 1/1 and 2/1 with Jupiter, as well as a revision of the classification inside the 3/2 resonance. Of the families locked in mean motion resonances, by employing a numerical calibration to estimate the Yarkovsky effect in proper eccentricity, we succeeded in determining ages of the families of (1911) Schubart and of the "super-Hilda" family, assuming this is actually a severely eroded original family of (153) Hilda. In the Trojan region we found families with almost no Yarkovsky evolution, for which we could compute only physically implausible ages. Hence, we interpreted their modest dispersions of proper elements as implying that the Trojan asteroid families are fossil families, frozen at their proper elements determined by the original ejection velocity field. We have found a new family, among the Griquas locked in the 2/1 resonance with Jupiter, the family of (11097) 1994 UD1. We have estimated the ages of 6 families affected by secular resonances: families of (5) Astraea, (25) Phocaea, (283) Emma, (363) Padua, (686) Gersuind, and (945) Barcelona. By using in all these cases a numerical calibration method, we have shown that the secular resonances do not affect significantly the secular change of proper a. We have confirmed the existence of the family resulting from cratering on (5) Astraea by computing a new set of resonant proper elements adapted to the resonance g +g5 - 2g6 : this new family has a much larger membership and has a shape compatible with simple collisional models. For the family of (145) Adeona we could estimate the age only after removal of a number of assumed interlopers. With the present paper we have concluded the series dedicated to the determination of asteroid ages with a uniform method. Overall we computed 53 ages for a total of 49 families. For the future work there remain families too small at present to provide reliable estimates, as well as some complex families (221, 135, 298) which may have more ages than we could currently estimate. Future improvement of some already determined family ages is also possible by increasing family membership, revising the calibrations, and using more reliable physical data.
NASA Technical Reports Server (NTRS)
Melis, Matthew E.
2003-01-01
NASA Glenn Research Center s Structural Mechanics Branch has years of expertise in using explicit finite element methods to predict the outcome of ballistic impact events. Shuttle engineers from the NASA Marshall Space Flight Center and NASA Kennedy Space Flight Center required assistance in assessing the structural loads that a newly proposed thrust vector control system for the space shuttle solid rocket booster (SRB) aft skirt would expect to see during its recovery splashdown.
Structural Margins Assessment Approach
NASA Technical Reports Server (NTRS)
Ryan, Robert S.
1988-01-01
A general approach to the structural design and verification used to determine the structural margins of the space vehicle elements under Marshall Space Flight Center (MSFC) management is described. The Space Shuttle results and organization will be used as illustrations for techniques discussed. Given also are: (1) the system analyses performed or to be performed by, and (2) element analyses performed by MSFC and its contractors. Analysis approaches and their verification will be addressed. The Shuttle procedures are general in nature and apply to other than Shuttle space vehicles.
2007-07-31
David L. Iverson of NASA Ames Research Center, Moffett Field, California (in foreground) led development of computer software to monitor the conditions of the gyroscopes that keep the International Space Station (ISS) properly oriented in space as the ISS orbits Earth. Also, Charles Lee is pictured. During its develoment, researchers used the software to analyze archived gyroscope records. In these tests, users noticed problems with the gyroscopes long before the current systems flagged glitches. Testers trained using several months of normal space station gyroscope data collected by the International Space Station Mission Control Center at NASA Johnson Space Center, Houston. Promising tests results convinced officials to start using the software in 2007.
