Sample records for proper muscle development

  1. The Toll pathway is required in the epidermis for muscle development in the Drosophila embryo

    NASA Technical Reports Server (NTRS)

    Halfon, M. S.; Keshishian, H.

    1998-01-01

    The Toll signaling pathway functions in several Drosophila processes, including dorsal-ventral pattern formation and the immune response. Here, we demonstrate that this pathway is required in the epidermis for proper muscle development. Previously, we showed that the zygotic Toll protein is necessary for normal muscle development; in the absence of zygotic Toll, close to 50% of hemisegments have muscle patterning defects consisting of missing, duplicated and misinserted muscle fibers (Halfon, M.S., Hashimoto, C., and Keshishian, H., Dev. Biol. 169, 151-167, 1995). We have now also analyzed the requirements for easter, spatzle, tube, and pelle, all of which function in the Toll-mediated dorsal-ventral patterning pathway. We find that spatzle, tube, and pelle, but not easter, are necessary for muscle development. Mutations in these genes give a phenotype identical to that seen in Toll mutants, suggesting that elements of the same pathway used for Toll signaling in dorsal-ventral development are used during muscle development. By expressing the Toll cDNA under the control of distinct Toll enhancer elements in Toll mutant flies, we have examined the spatial requirements for Toll expression during muscle development. Expression of Toll in a subset of epidermal cells that includes the epidermal muscle attachment cells, but not Toll expression in the musculature, is necessary for proper muscle development. Our results suggest that signals received by the epidermis early during muscle development are an important part of the muscle patterning process.

  2. Identification and characterization of MicroRNAs expressed in chicken skeletal muscle

    USDA-ARS?s Scientific Manuscript database

    MicroRNAs (miRNAs, miRs) encompass a class of small noncoding RNAs that negatively regulate gene expression. MicroRNAs play an essential role in skeletal muscle, determining the proper development and maintenance of this tissue. In comparison to other organs and tissues, the full set of muscle miRNA...

  3. Role of cranial neural crest cells in visceral arch muscle positioning and morphogenesis in the Mexican axolotl, Ambystoma mexicanum.

    PubMed

    Ericsson, Rolf; Cerny, Robert; Falck, Pierre; Olsson, Lennart

    2004-10-01

    The role of cranial neural crest cells in the formation of visceral arch musculature was investigated in the Mexican axolotl, Ambystoma mexicanum. DiI (1,1'-dioctadecyl-3,3,3',3'-tetramethylindocarbocyanine, perchlorate) labeling and green fluorescent protein (GFP) mRNA injections combined with unilateral transplantations of neural folds showed that neural crest cells contribute to the connective tissues but not the myofibers of developing visceral arch muscles in the mandibular, hyoid, and branchial arches. Extirpations of individual cranial neural crest streams demonstrated that neural crest cells are necessary for correct morphogenesis of visceral arch muscles. These do, however, initially develop in their proper positions also in the absence of cranial neural crest. Visceral arch muscles forming in the absence of neural crest cells start to differentiate at their origins but fail to extend toward their insertions and may have a frayed appearance. Our data indicate that visceral arch muscle positioning is controlled by factors that do not have a neural crest origin. We suggest that the cranial neural crest-derived connective tissues provide directional guidance important for the proper extension of the cranial muscles and the subsequent attachment to the insertion on the correct cartilage. In a comparative context, our data from the Mexican axolotl support the view that the cranial neural crest plays a fundamental role in the development of not only the skeleton of the vertebrate head but also in the morphogenesis of the cranial muscles and that this might be a primitive feature of cranial development in vertebrates. 2004 Wiley-Liss, Inc.

  4. Development of Non-Invasive Deep Tissue pH Sensor.

    DTIC Science & Technology

    1995-10-01

    gas samples were used to adjust ventilation during the experiment to maintain proper acid-base balance. First, the right latissimus dorsi muscle flap...of skin approximately 1 inch by 2 inches was cut from the rabbit from the area which was over the latissimus dorsi muscle. The skin was shaved of fur

  5. Membrane traffic and muscle: lessons from human disease.

    PubMed

    Dowling, James J; Gibbs, Elizabeth M; Feldman, Eva L

    2008-07-01

    Like all mammalian tissues, skeletal muscle is dependent on membrane traffic for proper development and homeostasis. This fact is underscored by the observation that several human diseases of the skeletal muscle are caused by mutations in gene products of the membrane trafficking machinery. An examination of these diseases and the proteins that underlie them is instructive both in terms of determining disease pathogenesis and of understanding the normal aspects of muscle biology regulated by membrane traffic. This review highlights our current understanding of the trafficking genes responsible for human myopathies.

  6. Nanopatterned muscle cell patches for enhanced myogenesis and dystrophin expression in a mouse model of muscular dystrophy.

    PubMed

    Yang, Hee Seok; Ieronimakis, Nicholas; Tsui, Jonathan H; Kim, Hong Nam; Suh, Kahp-Yang; Reyes, Morayma; Kim, Deok-Ho

    2014-02-01

    Skeletal muscle is a highly organized tissue in which the extracellular matrix (ECM) is composed of highly-aligned cables of collagen with nanoscale feature sizes, and provides structural and functional support to muscle fibers. As such, the transplantation of disorganized tissues or the direct injection of cells into muscles for regenerative therapy often results in suboptimal functional improvement due to a failure to integrate with native tissue properly. Here, we present a simple method in which biodegradable, biomimetic substrates with precisely controlled nanotopography were fabricated using solvent-assisted capillary force lithography (CFL) and were able to induce the proper development and differentiation of primary mononucleated cells to form mature muscle patches. Cells cultured on these nanopatterned substrates were highly-aligned and elongated, and formed more mature myotubes as evidenced by up-regulated expression of the myogenic regulatory factors Myf5, MyoD and myogenin (MyoG). When transplanted into mdx mice models for Duchenne muscular dystrophy (DMD), the proposed muscle patches led to the formation of a significantly greater number of dystrophin-positive muscle fibers, indicating that dystrophin replacement and myogenesis is achievable in vivo with this approach. These results demonstrate the feasibility of utilizing biomimetic substrates not only as platforms for studying the influences of the ECM on skeletal muscle function and maturation, but also to create transplantable muscle cell patches for the treatment of chronic and acute muscle diseases or injuries. Copyright © 2013 Elsevier Ltd. All rights reserved.

  7. Coordinated Development of Muscles and Tendon-Like Structures: Early Interactions in the Drosophila Leg.

    PubMed

    Soler, Cedric; Laddada, Lilia; Jagla, Krzysztof

    2016-01-01

    The formation of the musculoskeletal system is a remarkable example of tissue assembly. In both vertebrates and invertebrates, precise connectivity between muscles and skeleton (or exoskeleton) via tendons or equivalent structures is fundamental for movement and stability of the body. The molecular and cellular processes underpinning muscle formation are well-established and significant advances have been made in understanding tendon development. However, the mechanisms contributing to proper connection between these two tissues have received less attention. Observations of coordinated development of tendons and muscles suggest these tissues may interact during the different steps in their development. There is growing evidence that, depending on animal model and muscle type, these interactions can take place from progenitor induction to the final step of the formation of the musculoskeletal system. Here, we briefly review and compare the mechanisms behind muscle and tendon interaction throughout the development of vertebrates and Drosophila before going on to discuss our recent findings on the coordinated development of muscles and tendon-like structures in Drosophila leg. By altering apodeme formation (the functional Drosophila equivalent of tendons in vertebrates) during the early steps of leg development, we affect the spatial localization of subsequent myoblasts. These findings provide the first evidence of the developmental impact of early interactions between muscle and tendon-like precursors, and confirm the appendicular Drosophila muscle system as a valuable model for studying these processes.

  8. Coordinated Development of Muscles and Tendon-Like Structures: Early Interactions in the Drosophila Leg

    PubMed Central

    Soler, Cedric; Laddada, Lilia; Jagla, Krzysztof

    2016-01-01

    The formation of the musculoskeletal system is a remarkable example of tissue assembly. In both vertebrates and invertebrates, precise connectivity between muscles and skeleton (or exoskeleton) via tendons or equivalent structures is fundamental for movement and stability of the body. The molecular and cellular processes underpinning muscle formation are well-established and significant advances have been made in understanding tendon development. However, the mechanisms contributing to proper connection between these two tissues have received less attention. Observations of coordinated development of tendons and muscles suggest these tissues may interact during the different steps in their development. There is growing evidence that, depending on animal model and muscle type, these interactions can take place from progenitor induction to the final step of the formation of the musculoskeletal system. Here, we briefly review and compare the mechanisms behind muscle and tendon interaction throughout the development of vertebrates and Drosophila before going on to discuss our recent findings on the coordinated development of muscles and tendon-like structures in Drosophila leg. By altering apodeme formation (the functional Drosophila equivalent of tendons in vertebrates) during the early steps of leg development, we affect the spatial localization of subsequent myoblasts. These findings provide the first evidence of the developmental impact of early interactions between muscle and tendon-like precursors, and confirm the appendicular Drosophila muscle system as a valuable model for studying these processes. PMID:26869938

  9. Requirement of myomaker-mediated stem cell fusion for skeletal muscle hypertrophy.

    PubMed

    Goh, Qingnian; Millay, Douglas P

    2017-02-10

    Fusion of skeletal muscle stem/progenitor cells is required for proper development and regeneration, however the significance of this process during adult muscle hypertrophy has not been explored. In response to muscle overload after synergist ablation in mice, we show that myomaker, a muscle specific membrane protein essential for myoblast fusion, is activated mainly in muscle progenitors and not myofibers. We rendered muscle progenitors fusion-incompetent through genetic deletion of myomaker in muscle stem cells and observed a complete reduction of overload-induced hypertrophy. This blunted hypertrophic response was associated with a reduction in Akt and p70s6k signaling and protein synthesis, suggesting a link between myonuclear accretion and activation of pro-hypertrophic pathways. Furthermore, fusion-incompetent muscle exhibited increased fibrosis after muscle overload, indicating a protective role for normal stem cell activity in reducing myofiber strain associated with hypertrophy. These findings reveal an essential contribution of myomaker-mediated stem cell fusion during physiological adult muscle hypertrophy.

  10. Induction of functional tissue-engineered skeletal muscle constructs by defined electrical stimulation.

    PubMed

    Ito, Akira; Yamamoto, Yasunori; Sato, Masanori; Ikeda, Kazushi; Yamamoto, Masahiro; Fujita, Hideaki; Nagamori, Eiji; Kawabe, Yoshinori; Kamihira, Masamichi

    2014-04-24

    Electrical impulses are necessary for proper in vivo skeletal muscle development. To fabricate functional skeletal muscle tissues in vitro, recapitulation of the in vivo niche, including physical stimuli, is crucial. Here, we report a technique to engineer skeletal muscle tissues in vitro by electrical pulse stimulation (EPS). Electrically excitable tissue-engineered skeletal muscle constructs were stimulated with continuous electrical pulses of 0.3 V/mm amplitude, 4 ms width, and 1 Hz frequency, resulting in a 4.5-fold increase in force at day 14. In myogenic differentiation culture, the percentage of peak twitch force (%Pt) was determined as the load on the tissue constructs during the artificial exercise induced by continuous EPS. We optimized the stimulation protocol, wherein the tissues were first subjected to 24.5%Pt, which was increased to 50-60%Pt as the tissues developed. This technique may be a useful approach to fabricate tissue-engineered functional skeletal muscle constructs.

  11. Cellular self-organization by autocatalytic alignment feedback

    PubMed Central

    Junkin, Michael; Leung, Siu Ling; Whitman, Samantha; Gregorio, Carol C.; Wong, Pak Kin

    2011-01-01

    Myoblasts aggregate, differentiate and fuse to form skeletal muscle during both embryogenesis and tissue regeneration. For proper muscle function, long-range self-organization of myoblasts is required to create organized muscle architecture globally aligned to neighboring tissue. However, how the cells process geometric information over distances considerably longer than individual cells to self-organize into well-ordered, aligned and multinucleated myofibers remains a central question in developmental biology and regenerative medicine. Using plasma lithography micropatterning to create spatial cues for cell guidance, we show a physical mechanism by which orientation information can propagate for a long distance from a geometric boundary to guide development of muscle tissue. This long-range alignment occurs only in differentiating myoblasts, but not in non-fusing myoblasts perturbed by microfluidic disturbances or other non-fusing cell types. Computational cellular automata analysis of the spatiotemporal evolution of the self-organization process reveals that myogenic fusion in conjunction with rotational inertia functions in a self-reinforcing manner to enhance long-range propagation of alignment information. With this autocatalytic alignment feedback, well-ordered alignment of muscle could reinforce existing orientations and help promote proper arrangement with neighboring tissue and overall organization. Such physical self-enhancement might represent a fundamental mechanism for long-range pattern formation during tissue morphogenesis. PMID:22193956

  12. Ultrastructure and development of Pleistophora ronneafiei n. sp., a microsporidium (Protista) in the skeletal muscle of an immune-compromised individual.

    PubMed

    Cali, Ann; Takvorian, Peter M

    2003-01-01

    This report provides a detailed ultrastructural study of the life cycle, including proliferative and sporogonic developmental stages, of the first Pleistophora species (microsporidium) obtained from an immune-incompetent patient. In 1985, the organism obtained from a muscle biopsy was initially identified as belonging to the genus Pleistophora, based on spore morphology and its location in a sporophorous vesicle. Since that initial report, at least two new microsporidial genera, Trachipleistophora and Brachiola, have been reported to infect the muscle tissue of immunologically compromised patients. Because Trachipleistophora development is similar to Pleistophora, and as Pleistophora was only known to occur in cold-blooded hosts, the question of the proper classification of this microsporidium arose. The information acquired in this study makes it possible to compare Pleistophora sp. (Ledford et al. 1985) to the known human infections and properly determine its correct taxonomic position. Our ultrastructural data have revealed the formation of multinucleate sporogonial plasmodia, a developmental characteristic of the genus Pleistophora and not Trachipleistophora. A comparison with other species of the genus supports the establishment of a new species. This parasite is given the name Pleistophora ronneafiei n. sp.

  13. Requirement of myomaker-mediated stem cell fusion for skeletal muscle hypertrophy

    PubMed Central

    Goh, Qingnian; Millay, Douglas P

    2017-01-01

    Fusion of skeletal muscle stem/progenitor cells is required for proper development and regeneration, however the significance of this process during adult muscle hypertrophy has not been explored. In response to muscle overload after synergist ablation in mice, we show that myomaker, a muscle specific membrane protein essential for myoblast fusion, is activated mainly in muscle progenitors and not myofibers. We rendered muscle progenitors fusion-incompetent through genetic deletion of myomaker in muscle stem cells and observed a complete reduction of overload-induced hypertrophy. This blunted hypertrophic response was associated with a reduction in Akt and p70s6k signaling and protein synthesis, suggesting a link between myonuclear accretion and activation of pro-hypertrophic pathways. Furthermore, fusion-incompetent muscle exhibited increased fibrosis after muscle overload, indicating a protective role for normal stem cell activity in reducing myofiber strain associated with hypertrophy. These findings reveal an essential contribution of myomaker-mediated stem cell fusion during physiological adult muscle hypertrophy. DOI: http://dx.doi.org/10.7554/eLife.20007.001 PMID:28186492

  14. [Reparative regeneration of muscle fibers of the skeletal type and reasons for its delay in local x-ray irradiation].

    PubMed

    Dmitrieva, E V

    1975-06-01

    Under study was the reparative regeneration of the frog's tibial muscle and the reason of its delay under local X-ray irradiation in dosage of 800 and 3000 r. The irradiated animals were shown to have the same type of regeneration as non-irradiated animals. Both pale proper muscle nuclei and dark subsarcolemma nuclei belonging, to the author's mind, to cell-satellites, took part in it. The buds and "primary" myosymplasts playing mainly a subsidiary supporting role developed from the formers (which were not labeled with H-3-thymidine and did not divide mitotically). From the latters (labeled with H-3-thymidine and dividing mitotically) developed myoblasts and "secondary" myosymplasts forming young muscle fibres when merging with one another and then differentiating. At early stages of the process the delay in the muscle fibres regeneration was related with their radiation damage, at later stages - with a damage of the connective tissue.

  15. Development of Photographic Dynamic Measurements Applicable to Evaluation of Flapping Wing Micro Air Vehicles

    DTIC Science & Technology

    2011-12-01

    deformation is passive, because there are no control muscles to actively change the wing shape[2].   2    1.2 The Problem The overall...properly under flapping conditions to generate lift. This is key because the insect lacks muscles to actively change the wing shape[2]. For a...millimeters with the origin at the center of the left camera. During these tests, there was still glare off the carbon fiber , although it did not obscure

  16. Dynamic simulation of perturbation responses in a closed-loop virtual arm model.

    PubMed

    Du, Yu-Fan; He, Xin; Lan, Ning

    2010-01-01

    A closed-loop virtual arm (VA) model has been developed in SIMULINK environment by adding spinal reflex circuits and propriospinal neural networks to the open-loop VA model developed in early study [1]. An improved virtual muscle model (VM4.0) is used to speed up simulation and to generate more precise recruitment of muscle force at low levels of muscle activation. Time delays in the reflex loops are determined by their synaptic connections and afferent transmission back to the spinal cord. Reflex gains are properly selected so that closed-loop responses are stable. With the closed-loop VA model, we are developing an approach to evaluate system behaviors by dynamic simulation of perturbation responses. Joint stiffness is calculated based on simulated perturbation responses by a least-squares algorithm in MATLAB. This method of dynamic simulation will be essential for further evaluation of feedforward and reflex control of arm movement and position.

  17. STIM1 as a key regulator for Ca2+ homeostasis in skeletal-muscle development and function

    PubMed Central

    2011-01-01

    Stromal interaction molecules (STIM) were identified as the endoplasmic-reticulum (ER) Ca2+ sensor controlling store-operated Ca2+ entry (SOCE) and Ca2+-release-activated Ca2+ (CRAC) channels in non-excitable cells. STIM proteins target Orai1-3, tetrameric Ca2+-permeable channels in the plasma membrane. Structure-function analysis revealed the molecular determinants and the key steps in the activation process of Orai by STIM. Recently, STIM1 was found to be expressed at high levels in skeletal muscle controlling muscle function and properties. Novel STIM targets besides Orai channels are emerging. Here, we will focus on the role of STIM1 in skeletal-muscle structure, development and function. The molecular mechanism underpinning skeletal-muscle physiology points toward an essential role for STIM1-controlled SOCE to drive Ca2+/calcineurin/nuclear factor of activated T cells (NFAT)-dependent morphogenetic remodeling programs and to support adequate sarcoplasmic-reticulum (SR) Ca2+-store filling. Also in our hands, STIM1 is transiently up-regulated during the initial phase of in vitro myogenesis of C2C12 cells. The molecular targets of STIM1 in these cells likely involve Orai channels and canonical transient receptor potential (TRPC) channels TRPC1 and TRPC3. The fast kinetics of SOCE activation in skeletal muscle seem to depend on the triad-junction formation, favoring a pre-localization and/or pre-formation of STIM1-protein complexes with the plasma-membrane Ca2+-influx channels. Moreover, Orai1-mediated Ca2+ influx seems to be essential for controlling the resting Ca2+ concentration and for proper SR Ca2+ filling. Hence, Ca2+ influx through STIM1-dependent activation of SOCE from the T-tubule system may recycle extracellular Ca2+ losses during muscle stimulation, thereby maintaining proper filling of the SR Ca2+ stores and muscle function. Importantly, mouse models for dystrophic pathologies, like Duchenne muscular dystrophy, point towards an enhanced Ca2+ influx through Orai1 and/or TRPC channels, leading to Ca2+-dependent apoptosis and muscle degeneration. In addition, human myopathies have been associated with dysfunctional SOCE. Immunodeficient patients harboring loss-of-function Orai1 mutations develop myopathies, while patients suffering from Duchenne muscular dystrophy display alterations in their Ca2+-handling proteins, including STIM proteins. In any case, the molecular determinants responsible for SOCE in human skeletal muscle and for dysregulated SOCE in patients of muscular dystrophy require further examination. PMID:21798093

  18. A general-purpose framework to simulate musculoskeletal system of human body: using a motion tracking approach.

    PubMed

    Ehsani, Hossein; Rostami, Mostafa; Gudarzi, Mohammad

    2016-02-01

    Computation of muscle force patterns that produce specified movements of muscle-actuated dynamic models is an important and challenging problem. This problem is an undetermined one, and then a proper optimization is required to calculate muscle forces. The purpose of this paper is to develop a general model for calculating all muscle activation and force patterns in an arbitrary human body movement. For this aim, the equations of a multibody system forward dynamics, which is considered for skeletal system of the human body model, is derived using Lagrange-Euler formulation. Next, muscle contraction dynamics is added to this model and forward dynamics of an arbitrary musculoskeletal system is obtained. For optimization purpose, the obtained model is used in computed muscle control algorithm, and a closed-loop system for tracking desired motions is derived. Finally, a popular sport exercise, biceps curl, is simulated by using this algorithm and the validity of the obtained results is evaluated via EMG signals.

  19. Ageing and muscular dystrophy differentially affect murine pharyngeal muscles in a region-dependent manner

    PubMed Central

    Randolph, Matthew E; Luo, Qingwei; Ho, Justin; Vest, Katherine E; Sokoloff, Alan J; Pavlath, Grace K

    2014-01-01

    The inability to swallow, or dysphagia, is a debilitating and life-threatening condition that arises with ageing or disease. Dysphagia results from neurological or muscular impairment of one or more pharyngeal muscles, which function together to ensure proper swallowing and prevent the aspiration of food or liquid into the lungs. Little is known about the effects of age or disease on pharyngeal muscles as a group. Here we show ageing affected pharyngeal muscle growth and atrophy in wild-type mice depending on the particular muscle analysed. Furthermore, wild-type mice also developed dysphagia with ageing. Additionally, we studied pharyngeal muscles in a mouse model for oculopharyngeal muscular dystrophy, a dysphagic disease caused by a polyalanine expansion in the RNA binding protein, PABPN1. We examined pharyngeal muscles of mice overexpressing either wild-type A10 or mutant A17 PABPN1. Overexpression of mutant A17 PABPN1 differentially affected growth of the palatopharyngeus muscle dependent on its location within the pharynx. Interestingly, overexpression of wild-type A10 PABPN1 was protective against age-related muscle atrophy in the laryngopharynx and prevented the development of age-related dysphagia. These results demonstrate that pharyngeal muscles are differentially affected by both ageing and muscular dystrophy in a region-dependent manner. These studies lay important groundwork for understanding the molecular and cellular mechanisms that regulate pharyngeal muscle growth and atrophy, which may lead to novel therapies for individuals with dysphagia. PMID:25326455

  20. Proper muscle layer damage affects ulcer healing after gastric endoscopic submucosal dissection.

    PubMed

    Horikawa, Yohei; Mimori, Nobuya; Mizutamari, Hiroya; Kato, Yuhei; Shimazu, Kazuhiro; Sawaguchi, Masayuki; Tawaraya, Shin; Igarashi, Kimihiro; Okubo, Syunji

    2015-11-01

    Endoscopic submucosal dissection (ESD) is the established therapy for superficial gastrointestinal neoplasms. However, management of the artificial ulcers associated with ESD has become important and the relationship between ulcer healing factors and treatment is still unclear. We aimed to evaluate ESD-related artificial ulcer reduction ratio at 4 weeks to assess factors associating with ulcer healing after ESD that may lead to optimal treatment. Between January 2009 and December 2013, a total of 375 lesions fulfilled the expanded criteria for ESD. We defined ulcer reduction rate <90% as (A) poor-healing group; and rate ≥90% as (B) well-healing group. After exclusion, 328 lesions were divided into two groups and analyzed. These two groups were compared based on clinicopathological/endoscopic features, concomitant drugs, and treatment. Ulcer reduction rate was significantly correlated with factors related to the ESD procedure (i.e. procedure time, submucosal fibrosis, and injury of the proper muscle layer, in univariate analysis. Multivariate logistic regression analysis showed that submucosal fibrosis (F2) (P = 0.03; OR, 16.46; 95% CI, 1.31-206.73) and injury of the proper muscle layer (P = 0.01; OR, 4.27; 95% CI, 2.04-8.92) were statistically significant predictors of delayed healing. This single-center retrospective study indicated that ESD-induced artificial ulcer healing was affected by submucosal fibrosis and injury of the proper muscle layer, which induced damage to the muscle layer. Therefore, the preferable pharmacotherapy can be determined on completion of the ESD procedure. © 2015 The Authors Digestive Endoscopy © 2015 Japan Gastroenterological Endoscopy Society.

  1. Oxybutynin

    MedlinePlus

    ... does not close properly before birth), or other nervous system conditions that affect the bladder muscles. Oxybutynin is ... the body); myasthenia gravis (a disorder of the nervous system that causes muscle weakness); fast or irregular heartbeat; ...

  2. Physical exercise stimulates autophagy in normal skeletal muscles but is detrimental for collagen VI-deficient muscles

    PubMed Central

    Grumati, Paolo; Coletto, Luisa; Schiavinato, Alvise; Castagnaro, Silvia; Bertaggia, Enrico

    2011-01-01

    Autophagy is a catabolic process that provides the degradation of altered/damaged organelles through the fusion between autophagosomes and lysosomes. Proper regulation of the autophagic flux is fundamental for the homeostasis of skeletal muscles in physiological conditions and in response to stress. Defective as well as excessive autophagy is detrimental for muscle health and has a pathogenic role in several forms of muscle diseases. Recently, we found that defective activation of the autophagic machinery plays a key role in the pathogenesis of muscular dystrophies linked to collagen VI. Impairment of the autophagic flux in collagen VI null (Col6a1–/–) mice causes accumulation of dysfunctional mitochondria and altered sarcoplasmic reticulum, leading to apoptosis and degeneration of muscle fibers. Here we show that physical exercise activates autophagy in skeletal muscles. Notably, physical training exacerbated the dystrophic phenotype of Col6a1–/– mice, where autophagy flux is compromised. Autophagy was not induced in Col6a1–/– muscles after either acute or prolonged exercise, and this led to a marked increase of muscle wasting and apoptosis. These findings indicate that proper activation of autophagy is important for muscle homeostasis during physical activity. PMID:22024752

  3. Stable expression of calpain 3 from a muscle transgene in vivo: Immature muscle in transgenic mice suggests a role for calpain 3 in muscle maturation

    PubMed Central

    Spencer, M. J.; Guyon, J. R.; Sorimachi, H.; Potts, A.; Richard, I.; Herasse, M.; Chamberlain, J.; Dalkilic, I.; Kunkel, L. M.; Beckmann, J. S.

    2002-01-01

    Limb-girdle muscular dystrophy, type 2A (LGMD 2A), is an autosomal recessive disorder that causes late-onset muscle-wasting, and is due to mutations in the muscle-specific protease calpain 3 (C3). Although LGMD 2A would be a feasible candidate for gene therapy, the reported instability of C3 in vitro raised questions about the potential of obtaining a stable, high-level expression of C3 from a transgene in vivo. We have generated transgenic (Tg) mice with muscle-specific overexpression of full-length C3 or C3 isoforms, which arise from alternative splicing, to test whether stable expression of C3 transgenes could occur in vivo. Unexpectedly, we found that full-length C3 can be overexpressed at high levels in vivo, without toxicity. In addition, we found that Tg expressing C3 lacking exon 6, an isoform expressed embryonically, have muscles that resemble regenerating or developing muscle. Tg expressing C3 lacking exon 15 shared this morphology in the soleus, but not other muscles. Assays of inflammation or muscle membrane damage indicated that the Tg muscles were not degenerative, suggesting that the immature muscle resulted from a developmental block rather than degeneration and regeneration. These studies show that C3 can be expressed stably in vivo from a transgene, and indicate that alternatively spliced C3 isoforms should not be used in gene-therapy applications because they impair proper muscle development. PMID:12084932

  4. Atrogin-1 Deficiency Leads to Myopathy and Heart Failure in Zebrafish.

    PubMed

    Bühler, Anja; Kustermann, Monika; Bummer, Tiziana; Rottbauer, Wolfgang; Sandri, Marco; Just, Steffen

    2016-01-30

    Orchestrated protein synthesis and degradation is fundamental for proper cell function. In muscle, impairment of proteostasis often leads to severe cellular defects finally interfering with contractile function. Here, we analyze for the first time the role of Atrogin-1, a muscle-specific E3 ubiquitin ligase known to be involved in the regulation of protein degradation via the ubiquitin proteasome and the autophagy/lysosome systems, in the in vivo model system zebrafish (Danio rerio). We found that targeted inactivation of zebrafish Atrogin-1 leads to progressive impairment of heart and skeletal muscle function and disruption of muscle structure without affecting early cardiogenesis and skeletal muscle development. Autophagy is severely impaired in Atrogin-1-deficient zebrafish embryos resulting in the disturbance of the cytoarchitecture of cardiomyocytes and skeletal muscle cells. These observations are consistent with molecular and ultrastructural findings in an Atrogin-1 knockout mouse and demonstrate that the zebrafish is a suitable vertebrate model to study the molecular mechanisms of Atrogin-1-mediated autophagic muscle pathologies and to screen for novel therapeutically active substances in high-throughput in vivo small compound screens (SCS).

  5. microRNA-133: expression, function and therapeutic potential in muscle diseases and cancer.

    PubMed

    Yu, Hao; Lu, Yinhui; Li, Zhaofa; Wang, Qizhao

    2014-01-01

    microRNAs (miRNAs) are a class of small non-coding RNAs that are 18-25 nucleotides (nt) in length and negatively regulate gene expression post-transcriptionally. miRNAs are known to mediate myriad processes and pathways. While many miRNAs are expressed ubiquitously, some are expressed in a tissue specific manner. miR-133 is one of the most studied and best characterized miRNAs to date. Specifically expressed in muscles, it has been classified as myomiRNAs and is necessary for proper skeletal and cardiac muscle development and function. Genes encoding miR-133 (miR-133a-1, miR-133a-2 and miR-133b) are transcribed as bicistronic transcripts together with miR-1-2, miR-1-1, and miR-206, respectively. However, they exhibit opposing impacts on muscle development. miR-133 gets involved in muscle development by targeting a lot of genes, including SFR, HDAC4, cyclin D2 and so on. Its aberrant expression has been linked to many diseases in skeletal muscle and cardiac muscle such as cardiac hypertrophy, muscular dystrophy, heart failure, cardiac arrhythmia. Beyond the study in muscle, miR-133 has been implicated in cancer and identified as a key factor in cancer development, including bladder cancer, prostate cancer and so on. Much more attention has been drawn to the versatile molecular functions of miR-133, making it a truly valuable therapeutic gene in miRNA-based gene therapy. In this review, we identified and summarized the results of studies of miR-133 with emphasis on its function in human diseases in muscle and cancer, and highlighted its therapeutic value. It might provide researchers a new insight into the biological significance of miR-133.

  6. Research on the adaptation of skeletal muscle to hypogravity: Past and future directions

    NASA Astrophysics Data System (ADS)

    Riley, D. A.; Ellis, S.

    Our current understanding of hypogravity-induced atrophy of skeletal muscles is based primarily on studies comparing pre- and post-flight properties of muscles. Interpretations are necessarily qualified by the assumption that the stress of reentry and readjustment to terrestrial gravity do not alter the parameters being analyzed. The neuromuscular system is highly responsive to changes in functional demands and capable of rapid adaptation, making this assumption questionable. A reexamination of the changes in the connective tissue and synaptic terminals of soleus muscles from rats orbited in biosatellites and sampled postflight indicates that these structural alterations represent adaptative responses of the atrophic muscles to the increased workload of returning to 1 G, rather than hypogravity per se. The atrophy of weightlessness is postulated to result because muscles are both underloaded and used less often. Proper testing of this hypothesis requires quantitation of muscle function by monitoring electromyography, force output and length changes during the flight. Experiments conducted in space laboratories, like those being developed for the Space Shuttle, will avoid the complications of reentry before tissue sampling and allow time course studies of the rate of development of adaptive changes to zero gravity. Another area of great importance for future studies of muscle atrophy is inflight measurement of plasma levels of hormones and tissue receptor levels. Glucocorticoids, thyroid hormone and insulin exert dramatic regulatory influences on muscle structure. Prevention of neuromuscular atrophy becomes increasingly more important as spaceflights increase in duration. Definition of the atrophic mechanism is essential to developing means of preventing neuromuscular atrophy.

  7. Drosophila small heat shock protein CryAB ensures structural integrity of developing muscles, and proper muscle and heart performance.

    PubMed

    Wójtowicz, Inga; Jabłońska, Jadwiga; Zmojdzian, Monika; Taghli-Lamallem, Ouarda; Renaud, Yoan; Junion, Guillaume; Daczewska, Malgorzata; Huelsmann, Sven; Jagla, Krzysztof; Jagla, Teresa

    2015-03-01

    Molecular chaperones, such as the small heat shock proteins (sHsps), maintain normal cellular function by controlling protein homeostasis in stress conditions. However, sHsps are not only activated in response to environmental insults, but also exert developmental and tissue-specific functions that are much less known. Here, we show that during normal development the Drosophila sHsp CryAB [L(2)efl] is specifically expressed in larval body wall muscles and accumulates at the level of Z-bands and around myonuclei. CryAB features a conserved actin-binding domain and, when attenuated, leads to clustering of myonuclei and an altered pattern of sarcomeric actin and the Z-band-associated actin crosslinker Cheerio (filamin). Our data suggest that CryAB and Cheerio form a complex essential for muscle integrity: CryAB colocalizes with Cheerio and, as revealed by mass spectrometry and co-immunoprecipitation experiments, binds to Cheerio, and the muscle-specific attenuation of cheerio leads to CryAB-like sarcomeric phenotypes. Furthermore, muscle-targeted expression of CryAB(R120G), which carries a mutation associated with desmin-related myopathy (DRM), results in an altered sarcomeric actin pattern, in affected myofibrillar integrity and in Z-band breaks, leading to reduced muscle performance and to marked cardiac arrhythmia. Taken together, we demonstrate that CryAB ensures myofibrillar integrity in Drosophila muscles during development and propose that it does so by interacting with the actin crosslinker Cheerio. The evidence that a DRM-causing mutation affects CryAB muscle function and leads to DRM-like phenotypes in the fly reveals a conserved stress-independent role of CryAB in maintaining muscle cell cytoarchitecture. © 2015. Published by The Company of Biologists Ltd.

  8. FGF signaling supports Drosophila fertility by regulating development of ovarian muscle tissues

    PubMed Central

    Irizarry, Jihyun; Stathopoulos, Angelike

    2015-01-01

    The thisbe (ths) gene encodes a Drosophila fibroblast growth factor (FGF), and mutant females are viable but sterile suggesting a link between FGF signaling and fertility. Ovaries exhibit abnormal morphology including lack of epithelial sheaths, muscle tissues that surround ovarioles. Here we investigated how FGF influences Drosophila ovary morphogenesis and identified several roles. Heartless (Htl) FGF receptor was found expressed within somatic cells at the larval and pupal stages, and phenotypes were uncovered using RNAi. Differentiation of terminal filament cells was affected, but this effect did not alter ovariole number. In addition, proliferation of epithelial sheath progenitors, the apical cells, was decreased in both htl and ths mutants, while ectopic expression of the Ths ligand led to these cells’ over-proliferation suggesting that FGF signaling supports ovarian muscle sheath formation by controlling apical cell number in the developing gonad. Additionally, live imaging of adult ovaries was used to show that htl RNAi mutants, hypomorphic mutants in which epithelial sheaths are present, exhibit abnormal muscle contractions. Collectively, our results demonstrate that proper formation of ovarian muscle tissues is regulated by FGF signaling in the larval and pupal stages through control of apical cell proliferation and is required to support fertility. PMID:25958090

  9. Identification of the essential protein domains for Mib2 function during the development of the Drosophila larval musculature and adult flight muscles.

    PubMed

    Domsch, Katrin; Acs, Andreas; Obermeier, Claudia; Nguyen, Hanh T; Reim, Ingolf

    2017-01-01

    The proper differentiation and maintenance of myofibers is fundamental to a functional musculature. Disruption of numerous mostly structural factors leads to perturbations of these processes. Among the limited number of known regulatory factors for these processes is Mind bomb2 (Mib2), a muscle-associated E3 ubiquitin ligase, which was previously established to be required for maintaining the integrity of larval muscles. In this study, we have examined the mechanistic aspects of Mib2 function by performing a detailed functional dissection of the Mib2 protein. We show that the ankyrin repeats, in its entirety, and the hitherto uncharacterized Mib-specific domains (MIB), are important for the major function of Mib2 in skeletal and visceral muscles in the Drosophila embryo. Furthermore, we characterize novel mib2 alleles that have arisen from a forward genetic screen aimed at identifying regulators of myogenesis. Two of these alleles are viable, but flightless hypomorphic mib2 mutants, and harbor missense mutations in the MIB domain and RING finger, respectively. Functional analysis of these new alleles, including in vivo imaging, demonstrates that Mib2 plays an additional important role in the development of adult thorax muscles, particularly in maintaining the larval templates for the dorsal longitudinal indirect flight muscles during metamorphosis.

  10. Regulation of skeletal muscle blood flow during exercise in ageing humans

    PubMed Central

    Hearon, Christopher M.

    2015-01-01

    Abstract The regulation of skeletal muscle blood flow and oxygen delivery to contracting skeletal muscle is complex and involves the mechanical effects of muscle contraction; local metabolic, red blood cell and endothelium‐derived substances; and the sympathetic nervous system (SNS). With advancing age in humans, skeletal muscle blood flow is typically reduced during dynamic exercise and this is due to a lower vascular conductance, which could ultimately contribute to age‐associated reductions in aerobic exercise capacity, a primary predictor of mortality in both healthy and diseased ageing populations. Recent findings have highlighted the contribution of endothelium‐derived substances to blood flow control in contracting muscle of older adults. With advancing age, impaired nitric oxide availability due to scavenging by reactive oxygen species, in conjunction with elevated vasoconstrictor signalling via endothelin‐1, reduces the local vasodilatory response to muscle contraction. Additionally, ageing impairs the ability of contracting skeletal muscle to blunt sympathetic vasoconstriction (i.e. ‘functional sympatholysis’), which is critical for the proper regulation of tissue blood flow distribution and oxygen delivery, and could further reduce skeletal muscle perfusion during high intensity and/or large muscle mass exercise in older adults. We propose that initiation of endothelium‐dependent hyperpolarization is the underlying signalling event necessary to properly modulate sympathetic vasoconstriction in contracting muscle, and that age‐associated impairments in red blood cell adenosine triphosphate release and stimulation of endothelium‐dependent vasodilatation may explain impairments in both local vasodilatation and functional sympatholysis with advancing age in humans. PMID:26332887

  11. A role for FoxN3 in the development of cranial cartilages and muscles in Xenopus laevis (Amphibia: Anura: Pipidae) with special emphasis on the novel rostral cartilages

    PubMed Central

    Schmidt, Jennifer; Schuff, Maximilian; Olsson, Lennart

    2011-01-01

    The origin of morphological novelties is a controversial topic in evolutionary developmental biology. The heads of anuran larvae have several unique structures, including the supra- and infrarostral cartilages, the specialised structure of the gill basket (used for filtration), and novel cranial muscle arrangements. FoxN3, a member of the forkhead/winged helix family of transcription factors, has been implicated as important for normal craniofacial development in the pipid anuran Xenopus laevis. We have investigated the effects of functional knockdown of FoxN3 (using antisense oligonucleotide morpholino) on the development of the larval head skeleton and the associated cranial muscles in X. laevis. Our data complement earlier studies and provide a more complete account of the requirement of FoxN3 in chondrocranium development. In addition, we analyse the effects of FoxN3 knockdown on cranial muscle development. We show that FoxN3 knockdown primarily affects the novel skeletal structures unique to anuran larvae, i.e. the rostralia or the fine structure of the gill apparatus. The articulation between the infrarostral and Meckel's cartilage is malformed and the filigreed processes of the gill basket do not develop. Because these features do not develop after FoxN3 knockdown, the head morphology resembles that in the less specialised larvae of salamanders. Furthermore, the development of all cartilages derived from the neural crest is delayed and cranial muscle fibre development incomplete. The cartilage precursors initially condense in their proper position but later differentiate incompletely; several visceral arch muscles start to differentiate at their origin but fail to extend toward their insertion. Our findings indicate that FoxN3 is essential for the development of novel cartilages such as the infrarostral and other cranial tissues derived from the neural crest and, indirectly, also for muscle morphogenesis. PMID:21050205

  12. The MADD-3 LAMMER Kinase Interacts with a p38 MAP Kinase Pathway to Regulate the Display of the EVA-1 Guidance Receptor in Caenorhabditis elegans.

    PubMed

    D'Souza, Serena A; Rajendran, Luckshika; Bagg, Rachel; Barbier, Louis; van Pel, Derek M; Moshiri, Houtan; Roy, Peter J

    2016-04-01

    The proper display of transmembrane receptors on the leading edge of migrating cells and cell extensions is essential for their response to guidance cues. We previously discovered that MADD-4, which is an ADAMTSL secreted by motor neurons in Caenorhabditis elegans, interacts with an UNC-40/EVA-1 co-receptor complex on muscles to attract plasma membrane extensions called muscle arms. In nematodes, the muscle arm termini harbor the post-synaptic elements of the neuromuscular junction. Through a forward genetic screen for mutants with disrupted muscle arm extension, we discovered that a LAMMER kinase, which we call MADD-3, is required for the proper display of the EVA-1 receptor on the muscle's plasma membrane. Without MADD-3, EVA-1 levels decrease concomitantly with a reduction of the late-endosomal marker RAB-7. Through a genetic suppressor screen, we found that the levels of EVA-1 and RAB-7 can be restored in madd-3 mutants by eliminating the function of a p38 MAP kinase pathway. We also found that EVA-1 and RAB-7 will accumulate in madd-3 mutants upon disrupting CUP-5, which is a mucolipin ortholog required for proper lysosome function. Together, our data suggests that the MADD-3 LAMMER kinase antagonizes the p38-mediated endosomal trafficking of EVA-1 to the lysosome. In this way, MADD-3 ensures that sufficient levels of EVA-1 are present to guide muscle arm extension towards the source of the MADD-4 guidance cue.

  13. An Investigation of Jogging Biomechanics using the Full-Body Lumbar Spine Model: Model Development and Validation

    PubMed Central

    Raabe, Margaret E.; Chaudhari, Ajit M.W.

    2016-01-01

    The ability of a biomechanical simulation to produce results that can translate to real-life situations is largely dependent on the physiological accuracy of the musculoskeletal model. There are a limited number of freely-available, full-body models that exist in OpenSim, and those that do exist are very limited in terms of trunk musculature and degrees of freedom in the spine. Properly modeling the motion and musculature of the trunk is necessary to most accurately estimate lower extremity and spinal loading. The objective of this study was to develop and validate a more physiologically accurate OpenSim full-body model. By building upon three previously developed OpenSim models, the Full-Body Lumbar Spine (FBLS) model, comprised of 21 segments, 30 degrees-of-freedom, and 324 musculotendon actuators, was developed. The five lumbar vertebrae were modeled as individual bodies, and coupled constraints were implemented to describe the net motion of the spine. The eight major muscle groups of the lumbar spine were modeled (rectus abdominis, external and internal obliques, erector spinae, multifidus, quadratus lumborum, psoas major, and latissimus dorsi), and many of these muscle groups were modeled as multiple fascicles allowing the large muscles to act in multiple directions. The resulting FBLS model's trunk muscle geometry, maximal isometric joint moments, and simulated muscle activations compare well to experimental data. The FBLS model will be made freely available (https://simtk.org/home/fullbodylumbar) for others to perform additional analyses and develop simulations investigating full-body dynamics and contributions of the trunk muscles to dynamic tasks. PMID:26947033

  14. Newly developed surface coil for endoluminal MRI, depiction of pig gastric wall layers and vascular architecture in ex vivo study.

    PubMed

    Morita, Yoshinori; Kutsumi, Hiromu; Yoshinaka, Hayato; Matsuoka, Yuichiro; Kuroda, Kagayaki; Gotanda, Masakazu; Sekino, Naomi; Kumamoto, Etsuko; Yoshida, Masaru; Inokuchi, Hideto; Azuma, Takeshi

    2009-01-01

    The purpose of this study was to visualize the gastric wall layers and to depict the vascular architecture in vitro by using resected porcine stomachs studied with high-spatial resolution magnetic resonance (MR) imaging. Normal dissected porcine stomach samples (n = 4) were examined with a 3 Tesla MR system using a newly developed surface coil. MR images were obtained by the surface coil as receiver and a head coil as transmitter. High-spatial-resolution spin-echo MR images were obtained with a field of view of 8 x 8 cm, a matrix of 256 x 128 and slice thicknesses of 3 and 5 mm. T1 and T2-weighted MR images clearly depicted the normal porcine gastric walls as consisting of four distinct layers. In addition, vascular architectures in proper muscle layers were also visualized, which were confirmed by histological examinations to correspond to blood vessels. High-spatial-resolution MR imaging using a surface coil placed closely to the gastric wall enabled the differentiation of porcine gastric wall layers and the depiction of the blood vessels in proper muscle layer in this experimental study.

  15. FOXP3+ T Cells Recruited to Sites of Sterile Skeletal Muscle Injury Regulate the Fate of Satellite Cells and Guide Effective Tissue Regeneration

    PubMed Central

    Castiglioni, Alessandra; Basso, Veronica; Vezzoli, Michela; Monno, Antonella; Almada, Albert E.; Mondino, Anna; Wagers, Amy J.; Manfredi, Angelo A.; Rovere-Querini, Patrizia

    2015-01-01

    Muscle injury induces a classical inflammatory response in which cells of the innate immune system rapidly invade the tissue. Macrophages are prominently involved in this response and required for proper healing, as they are known to be important for clearing cellular debris and supporting satellite cell differentiation. Here, we sought to assess the role of the adaptive immune system in muscle regeneration after acute damage. We show that T lymphocytes are transiently recruited into the muscle after damage and appear to exert a pro-myogenic effect on muscle repair. We observed a decrease in the cross-sectional area of regenerating myofibers after injury in Rag2-/- γ-chain-/- mice, as compared to WT controls, suggesting that T cell recruitment promotes muscle regeneration. Skeletal muscle infiltrating T lymphocytes were enriched in CD4+CD25+FOXP3+ cells. Direct exposure of muscle satellite cells to in vitro induced Treg cells effectively enhanced their expansion, and concurrently inhibited their myogenic differentiation. In vivo, the recruitment of Tregs to acutely injured muscle was limited to the time period of satellite expansion, with possibly important implications for situations in which inflammatory conditions persist, such as muscular dystrophies and inflammatory myopathies. We conclude that the adaptive immune system, in particular T regulatory cells, is critically involved in effective skeletal muscle regeneration. Thus, in addition to their well-established role as regulators of the immune/inflammatory response, T regulatory cells also regulate the activity of skeletal muscle precursor cells, and are instrumental for the proper regeneration of this tissue. PMID:26039259

  16. A short-term statin treatment changes the contractile properties of fast-twitch skeletal muscles.

    PubMed

    Piette, Antoine Boulanger; Dufresne, Sébastien S; Frenette, Jérôme

    2016-10-28

    Cumulative evidence indicates that statins induce myotoxicity. However, the lack of understanding of how statins affect skeletal muscles at the structural, functional, and physiological levels hampers proper healthcare management. The purpose of the present study was to investigate the early after-effects of lovastatin on the slow-twitch soleus (Sol) and fast-twitch extensor digitorum longus (EDL) muscles. Adult C57BL/6 mice were orally administrated with placebo or lovastatin [50 mg/kg/d] for 28 days. At the end of the treatment, the isometric ex vivo contractile properties of the Sol and EDL muscles were measured. Subtetanic and tetanic contractions were assessed and contraction kinetics were recorded. The muscles were then frozen for immunohistochemical analyses. Data were analyzed by two-way ANOVA followed by an a posteriori Tukey's test. The short-term lovastatin treatment did not induce muscle mass loss, muscle fiber atrophy, or creatine kinase (CK) release. It had no functional impact on slow-twitch Sol muscles. However, subtetanic stimulations at 10 Hz provoked greater force production in fast-twitch EDL muscles. The treatment also decreased the maximal rate of force development (dP/dT) of twitch contractions and prolonged the half relaxation time (1/2RT) of tetanic contractions of EDL muscles. An early short-term statin treatment induced subtle but significant changes in some parameters of the contractile profile of EDL muscles, providing new insights into the selective initiation of statin-induced myopathy in fast-twitch muscles.

  17. Identification of the essential protein domains for Mib2 function during the development of the Drosophila larval musculature and adult flight muscles

    PubMed Central

    Domsch, Katrin; Acs, Andreas; Obermeier, Claudia; Nguyen, Hanh T.

    2017-01-01

    The proper differentiation and maintenance of myofibers is fundamental to a functional musculature. Disruption of numerous mostly structural factors leads to perturbations of these processes. Among the limited number of known regulatory factors for these processes is Mind bomb2 (Mib2), a muscle-associated E3 ubiquitin ligase, which was previously established to be required for maintaining the integrity of larval muscles. In this study, we have examined the mechanistic aspects of Mib2 function by performing a detailed functional dissection of the Mib2 protein. We show that the ankyrin repeats, in its entirety, and the hitherto uncharacterized Mib-specific domains (MIB), are important for the major function of Mib2 in skeletal and visceral muscles in the Drosophila embryo. Furthermore, we characterize novel mib2 alleles that have arisen from a forward genetic screen aimed at identifying regulators of myogenesis. Two of these alleles are viable, but flightless hypomorphic mib2 mutants, and harbor missense mutations in the MIB domain and RING finger, respectively. Functional analysis of these new alleles, including in vivo imaging, demonstrates that Mib2 plays an additional important role in the development of adult thorax muscles, particularly in maintaining the larval templates for the dorsal longitudinal indirect flight muscles during metamorphosis. PMID:28282454

  18. The Scaffolding Protein, Grb2-associated Binder-1, in Skeletal Muscles and Terminal Schwann Cells Regulates Postnatal Neuromuscular Synapse Maturation

    PubMed Central

    Park, So Young; Jang, So Young; Shin, Yoon Kyoung; Jung, Dong Keun; Yoon, Byeol A; Kim, Jong Kook; Jo, Young Rae; Lee, Hye Jeong

    2017-01-01

    The vertebrate neuromuscular junction (NMJ) is considered as a “tripartite synapse” consisting of a motor axon terminal, a muscle endplate, and terminal Schwann cells that envelope the motor axon terminal. The neuregulin 1 (NRG1)-ErbB2 signaling pathway plays an important role in the development of the NMJ. We previously showed that Grb2-associated binder 1 (Gab1), a scaffolding mediator of receptor tyrosine kinase signaling, is required for NRG1-induced peripheral nerve myelination. Here, we determined the role of Gab1 in the development of the NMJ using muscle-specific conditional Gab1 knockout mice. The mutant mice showed delayed postnatal maturation of the NMJ. Furthermore, the selective loss of the gab1 gene in terminal Schwann cells produced delayed synaptic elimination with abnormal morphology of the motor endplate, suggesting that Gab1 in both muscles and terminal Schwann cells is required for proper NMJ development. Gab1 in terminal Schwann cells appeared to regulate the number and process elongation of terminal Schwann cells during synaptic elimination. However, Gab2 knockout mice did not show any defects in the development of the NMJ. Considering the role of Gab1 in postnatal peripheral nerve myelination, our findings suggest that Gab1 is a pleiotropic and important component of NRG1 signals during postnatal development of the peripheral neuromuscular system. PMID:28680299

  19. The Scaffolding Protein, Grb2-associated Binder-1, in Skeletal Muscles and Terminal Schwann Cells Regulates Postnatal Neuromuscular Synapse Maturation.

    PubMed

    Park, So Young; Jang, So Young; Shin, Yoon Kyoung; Jung, Dong Keun; Yoon, Byeol A; Kim, Jong Kook; Jo, Young Rae; Lee, Hye Jeong; Park, Hwan Tae

    2017-06-01

    The vertebrate neuromuscular junction (NMJ) is considered as a "tripartite synapse" consisting of a motor axon terminal, a muscle endplate, and terminal Schwann cells that envelope the motor axon terminal. The neuregulin 1 (NRG1)-ErbB2 signaling pathway plays an important role in the development of the NMJ. We previously showed that Grb2-associated binder 1 (Gab1), a scaffolding mediator of receptor tyrosine kinase signaling, is required for NRG1-induced peripheral nerve myelination. Here, we determined the role of Gab1 in the development of the NMJ using muscle-specific conditional Gab1 knockout mice. The mutant mice showed delayed postnatal maturation of the NMJ. Furthermore, the selective loss of the gab1 gene in terminal Schwann cells produced delayed synaptic elimination with abnormal morphology of the motor endplate, suggesting that Gab1 in both muscles and terminal Schwann cells is required for proper NMJ development. Gab1 in terminal Schwann cells appeared to regulate the number and process elongation of terminal Schwann cells during synaptic elimination. However, Gab2 knockout mice did not show any defects in the development of the NMJ. Considering the role of Gab1 in postnatal peripheral nerve myelination, our findings suggest that Gab1 is a pleiotropic and important component of NRG1 signals during postnatal development of the peripheral neuromuscular system.

  20. Hox control of Drosophila larval anatomy; The Alary and Thoracic Alary-Related Muscles.

    PubMed

    Bataillé, Laetitia; Frendo, Jean-Louis; Vincent, Alain

    2015-11-01

    The body plan of arthropods and vertebrates involves the formation of repetitive segments, which subsequently diversify to give rise to different body parts along the antero-posterior/rostro-caudal body axis. Anatomical variations between body segments are crucial for organ function and organismal fitness. Pioneering work in Drosophila has established that Hox transcription factors play key roles both in endowing initially identical segments with distinct identities and organogenesis. The focus of this review is on Alary Muscles (AMs) and the newly discovered Thoracic Alary-Related Muscles (TARMs). AMs and TARMs are thin muscles which together connect the circulatory system and different midgut regions to the exoskeleton, while intertwining with the respiratory tubular network. They were hypothesized to represent a new type of muscles with spring-like properties, maintaining internal organs in proper anatomical positions during larval locomotion. Both the morphology of TARMs relative to AMs, and morphogenesis of connected tissues is under Hox control, emphasizing the key role of Hox proteins in coordinating the anatomical development of the larva. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Muscle Stem Cells Undergo Extensive Clonal Drift during Tissue Growth via Meox1-Mediated Induction of G2 Cell-Cycle Arrest.

    PubMed

    Nguyen, Phong Dang; Gurevich, David Baruch; Sonntag, Carmen; Hersey, Lucy; Alaei, Sara; Nim, Hieu Tri; Siegel, Ashley; Hall, Thomas Edward; Rossello, Fernando Jaime; Boyd, Sarah Elizabeth; Polo, Jose Maria; Currie, Peter David

    2017-07-06

    Organ growth requires a careful balance between stem cell self-renewal and lineage commitment to ensure proper tissue expansion. The cellular and molecular mechanisms that mediate this balance are unresolved in most organs, including skeletal muscle. Here we identify a long-lived stem cell pool that mediates growth of the zebrafish myotome. This population exhibits extensive clonal drift, shifting from random deployment of stem cells during development to reliance on a small number of dominant clones to fuel the vast majority of muscle growth. This clonal drift requires Meox1, a homeobox protein that directly inhibits the cell-cycle checkpoint gene ccnb1. Meox1 initiates G 2 cell-cycle arrest within muscle stem cells, and disrupting this G 2 arrest causes premature lineage commitment and the resulting defects in muscle growth. These findings reveal that distinct regulatory mechanisms orchestrate stem cell dynamics during organ growth, beyond the G 0 /G 1 cell-cycle inhibition traditionally associated with maintaining tissue-resident stem cells. Copyright © 2017. Published by Elsevier Inc.

  2. An investigation of jogging biomechanics using the full-body lumbar spine model: Model development and validation.

    PubMed

    Raabe, Margaret E; Chaudhari, Ajit M W

    2016-05-03

    The ability of a biomechanical simulation to produce results that can translate to real-life situations is largely dependent on the physiological accuracy of the musculoskeletal model. There are a limited number of freely-available, full-body models that exist in OpenSim, and those that do exist are very limited in terms of trunk musculature and degrees of freedom in the spine. Properly modeling the motion and musculature of the trunk is necessary to most accurately estimate lower extremity and spinal loading. The objective of this study was to develop and validate a more physiologically accurate OpenSim full-body model. By building upon three previously developed OpenSim models, the full-body lumbar spine (FBLS) model, comprised of 21 segments, 30 degrees-of-freedom, and 324 musculotendon actuators, was developed. The five lumbar vertebrae were modeled as individual bodies, and coupled constraints were implemented to describe the net motion of the spine. The eight major muscle groups of the lumbar spine were modeled (rectus abdominis, external and internal obliques, erector spinae, multifidus, quadratus lumborum, psoas major, and latissimus dorsi), and many of these muscle groups were modeled as multiple fascicles allowing the large muscles to act in multiple directions. The resulting FBLS model׳s trunk muscle geometry, maximal isometric joint moments, and simulated muscle activations compare well to experimental data. The FBLS model will be made freely available (https://simtk.org/home/fullbodylumbar) for others to perform additional analyses and develop simulations investigating full-body dynamics and contributions of the trunk muscles to dynamic tasks. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Role of imaging techniques in the diagnosis and follow-up of muscle-invasive bladder carcinoma.

    PubMed

    Mesa, A; Nava, E; Fernández Del Valle, A; Argüelles, B; Menéndez-Del Llano, R; Sal de Rellán, S

    2017-10-10

    Muscle-invasive bladder malignancies represent 20-30% of all bladder cancers. These patients require imaging tests to determine the regional and distant staging. To describe the role of various imaging tests in the diagnosis, staging and follow-up of muscle-invasive bladder cancer. To assess recent developments in radiology aimed at improving the sensitivity and specificity of local staging and treatment response. We conducted an updated literature review. Computed tomography and magnetic resonance imaging (MRI) are the tests of choice for performing proper staging prior to surgery. Computed tomography urography is currently the most widely used technique, although it has limitations in local staging. Ultrasonography still has a limited role. Recent developments in MRI have improved its capacity for local staging. MRI has been suggested as the test of choice for the follow-up, with promising results in assessing treatment response. Positron emission tomography could improve the detection of adenopathies and extrapelvic metastatic disease. Imaging tests are essential for the diagnosis, staging and follow-up of muscle-invasive bladder cancer. Recent technical developments represent important improvements in local staging and have opened the possibility of assessing treatment response. Copyright © 2017 AEU. Publicado por Elsevier España, S.L.U. All rights reserved.

  4. [Perioperative management of a patient with myotonic dystrophy developing the cardiac symptoms initially prior to the neuromuscular symptoms].

    PubMed

    Wake, M; Matsushita, M; Aono, H; Matsumoto, M; Kohri, Y

    1994-08-01

    The authors anesthetized a 48-year-old woman with endometrial cancer and a large ovarian cyst. She developed cardiac failure initially followed by the sick sinus syndrome and A-V block from hypertrophic cardiomyopathy, prior to neuromuscular symptoms. Epidural anesthesia assisted by general anesthesia was carried out safely without intravenous administration of any muscle relaxants. From this experience, it is considered that epidural anesthesia assisted with some other proper methods is suitable for surgery of lower abdomen.

  5. The MADD-3 LAMMER Kinase Interacts with a p38 MAP Kinase Pathway to Regulate the Display of the EVA-1 Guidance Receptor in Caenorhabditis elegans

    PubMed Central

    D’Souza, Serena A.; Rajendran, Luckshika; Bagg, Rachel; van Pel, Derek M.; Moshiri, Houtan; Roy, Peter J.

    2016-01-01

    The proper display of transmembrane receptors on the leading edge of migrating cells and cell extensions is essential for their response to guidance cues. We previously discovered that MADD-4, which is an ADAMTSL secreted by motor neurons in Caenorhabditis elegans, interacts with an UNC-40/EVA-1 co-receptor complex on muscles to attract plasma membrane extensions called muscle arms. In nematodes, the muscle arm termini harbor the post-synaptic elements of the neuromuscular junction. Through a forward genetic screen for mutants with disrupted muscle arm extension, we discovered that a LAMMER kinase, which we call MADD-3, is required for the proper display of the EVA-1 receptor on the muscle’s plasma membrane. Without MADD-3, EVA-1 levels decrease concomitantly with a reduction of the late-endosomal marker RAB-7. Through a genetic suppressor screen, we found that the levels of EVA-1 and RAB-7 can be restored in madd-3 mutants by eliminating the function of a p38 MAP kinase pathway. We also found that EVA-1 and RAB-7 will accumulate in madd-3 mutants upon disrupting CUP-5, which is a mucolipin ortholog required for proper lysosome function. Together, our data suggests that the MADD-3 LAMMER kinase antagonizes the p38-mediated endosomal trafficking of EVA-1 to the lysosome. In this way, MADD-3 ensures that sufficient levels of EVA-1 are present to guide muscle arm extension towards the source of the MADD-4 guidance cue. PMID:27123983

  6. [Vojta's method as the early neurodevelopmental diagnosis and therapy concept].

    PubMed

    Banaszek, Grazyna

    2010-01-01

    Vaclav Vojta (1917-2000) developed an early diagnostic method of the neurodevelopmental disorder of infants and came up with therapeutic concept consisting in releasing of global motor complexes by means of the stimulation of proper areas on patients body. In the diagnostics apart from very careful observation of the spontaneous movement of the infant and examination of the reflexes that are characteristic for the first weeks of human's life, Vojta applied the examination of the 7 postural reactions. Presence of the trouble in patterns and dynamics of the postural reactions Vojta called Central Nervous Coordination Disorder--CNCD and regarded as work diagnosis or alarm signal indicating necessity of application of the therapy, especially when asymmetry of the muscle tone and primitive reflexes beyond their physiological appearance period are observed or the number of the abnormal reactions exceeds 5. Global motor complexes as reflex locomotion--crawling and rotation--consist of all the partial motion patterns, which are gradually used by healthy infant in the process of postural and motor ontogenesis. Providing the central nervous system with proper external stimulation allows to, using neuronal plasticity, recreate an access to the human's postural development program and gradually replace pathological motor patterns by those more regular. Exercises repeated several times a day rebuilt support, erectile and vertical mechanisms, improve automatic postural control and phase lower limb movement. Affecting especially on autochtonic muscles of the spine exercises balance synergic cooperation of muscle groups in the trunk and those surrounding key body joints. This way they correct body's posture and peripheral motion and pathology of the outlasted primitive reflexes gradually withdraws.

  7. Position of pelvis in the 3rd month of life predicts further motor development.

    PubMed

    Gajewska, Ewa; Sobieska, Magdalena; Moczko, Jerzy

    2018-06-01

    The aim of the study is to select elements of motor skills assessed at 3 months that provide the best predictive properties for motor development at 9 months. In all children a physiotherapeutic assessment of the quantitative and qualitative development at the age of 3 months was performed in the prone and supine positions, which was presented in previous papers as the quantitative and qualitative assessment sheet of motor development. The neurological examination at the age of 9 months was based on the Denver Development Screening Test II and the evaluation of reflexes, muscle tone (hypotony and hypertony), and symmetry. The particular elements of motor performance assessment were shown to have distinct predictive value for further motor development (as assessed at 9 months), and the pelvis position was the strongest predictive element. Irrespective of the symptomatic and anamnestic factors the inappropriate motor performance may already be detected in the 3rd month of life and is predictive for further motor development. The assessment of the motor performance should be performed in both supine and prone positions. The proper position of pelvis summarizes the proper positioning of the whole spine and ensures proper further motor development. To our knowledge, the presented motor development assessment sheet allows the earliest prediction of motor disturbances. Copyright © 2018 Elsevier B.V. All rights reserved.

  8. The developing shoulder has a limited capacity to recover after a short duration of neonatal paralysis

    PubMed Central

    Potter, Ryan; Havlioglu, Necat; Thomopoulos, Stavros

    2014-01-01

    Mechanical stimuli are required for the proper development of the musculoskeletal system. Removal of muscle forces during fetal or early post-natal timepoints impairs the formation of bone, tendon, and their attachment (the enthesis). The goal of the current study was to examine the capacity of the shoulder to recover after a short duration of neonatal rotator cuff paralysis, a condition mimicking the clinical condition neonatal brachial plexus palsy. We asked if reapplication of muscle load to a transiently paralyzed muscle would allow for full recovery of tissue properties. CD-1 mice were injected with botulinum toxin A to paralyze the supraspinatus muscle from birth through 2 weeks and subsequently allowed to recover. The biomechanics of the enthesis was determined using tensile testing and the morphology of the shoulder joint was determined using micro computed tomography and histology. A recovery period of at least 10 weeks was required to achieve control properties, demonstrating a limited capacity of the shoulder to recover after only two weeks of muscle paralysis. Although care must be taken when extrapolating results from an animal model to the human condition, the results of the current study imply that treatment of neonatal brachial plexus palsy should be aggressive, as even short periods of paralysis could lead to long-term deficiencies in enthesis biomechanics and shoulder morphology. PMID:24831237

  9. The Him gene inhibits the development of Drosophila flight muscles during metamorphosis.

    PubMed

    Soler, Cédric; Taylor, Michael V

    2009-07-01

    During Drosophila metamorphosis some larval tissues escape the general histolysis and are remodelled to form adult tissues. One example is the dorso-longitudinal muscles (DLMs) of the indirect flight musculature. They are formed by an intriguing process in which residual larval oblique muscles (LOMs) split and fuse with imaginal myoblasts associated with the wing disc. These myoblasts arise in the embryo, but remain undifferentiated throughout embryogenesis and larval life, and thus share characteristics with mammalian satellite cells. However, the mechanisms that maintain the Drosophila myoblasts in an undifferentiated state until needed for LOM remodelling are not understood. Here we show that the Him gene is expressed in these myoblasts, but is undetectable in developing DLM fibres. Consistent with this, we found that Him could inhibit DLM development: it inhibited LOM splitting and resulted in fibre degeneration. We then uncovered a balance between mef2, a positive factor required for proper DLM development, and the inhibitory action of Him. Mef2 suppressed the inhibitory effect of Him on DLM development, while Him could suppress the premature myosin expression induced by mef2 in myoblasts. Furthermore, either decreased Him function or increased mef2 function disrupted DLM development. These findings, together with the co-expression of Him and Mef2 in myoblasts, indicate that Him may antagonise mef2 function during normal DLM development and that Him participates in a balance of signals that controls adult myoblast differentiation and remodelling of these muscle fibres. Lastly, we provide evidence for a link between Notch function and Him and mef2 in this balance.

  10. A gravity exercise system. [for muscle conditioning during manned space flight

    NASA Technical Reports Server (NTRS)

    Brandt, W. E.; Clark, A. L.

    1973-01-01

    An effective method for muscle conditioning during weightlessness flight is derived from isometric exercise. The basic principle of gravity exercise is to periodically displace the human body upon reactionless rollers so that spacial equilibrium can only be maintained by the proper tension and relaxation of the body's muscles. A rotating platform mounted upon two degrees of freedom rollers provides such a condition of gravitational reaction stress throughout each of its 360 deg rotation.

  11. Musculoskeletal Modeling of the Lumbar Spine to Explore Functional Interactions between Back Muscle Loads and Intervertebral Disk Multiphysics

    PubMed Central

    Toumanidou, Themis; Noailly, Jérôme

    2015-01-01

    During daily activities, complex biomechanical interactions influence the biophysical regulation of intervertebral disks (IVDs), and transfers of mechanical loads are largely controlled by the stabilizing action of spine muscles. Muscle and other internal forces cannot be easily measured directly in the lumbar spine. Hence, biomechanical models are important tools for the evaluation of the loads in those tissues involved in low-back disorders. Muscle force estimations in most musculoskeletal models mainly rely, however, on inverse calculations and static optimizations that limit the predictive power of the numerical calculations. In order to contribute to the development of predictive systems, we coupled a predictive muscle model with the passive resistance of the spine tissues, in a L3–S1 musculoskeletal finite element model with osmo-poromechanical IVD descriptions. The model included 46 fascicles of the major back muscles that act on the lower spine. The muscle model interacted with activity-related loads imposed to the osteoligamentous structure, as standing position and night rest were simulated through distributed upper body mass and free IVD swelling, respectively. Calculations led to intradiscal pressure values within ranges of values measured in vivo. Disk swelling led to muscle activation and muscle force distributions that seemed particularly appropriate to counterbalance the anterior body mass effect in standing. Our simulations pointed out a likely existence of a functional balance between stretch-induced muscle activation and IVD multiphysics toward improved mechanical stability of the lumbar spine understanding. This balance suggests that proper night rest contributes to mechanically strengthen the spine during day activity. PMID:26301218

  12. Active and passive characteristics of muscle tone and their relationship to models of subluxation/joint dysfunction

    PubMed Central

    Knutson, Gary A.; Owens, Edward F.

    2003-01-01

    The relationship of muscles to the causes and effects of the pathophysiologic entity referred to as chiropractic subluxation or joint dysfunction is critical. Part I of this paper reviewed the complexities of skeletal muscle in regards to anatomy, active and passive tone, detection of muscle tone, neurophysiology, and how muscle function fits into a variety of subluxation/joint dysfunction models. The concluding part of the review culminates in a hypothesis to describe and explain varying degrees of muscle tone that may be encountered clinically. It is hoped that knowledge of the differing levels of muscle tone and their causes will help the clinician to better determine the underlying cause of a neuromusculoskeletal problem allowing application of necessary and proper intervention.

  13. Application of biospeckles for assessment of structural and cellular changes in muscle tissue

    NASA Astrophysics Data System (ADS)

    Maksymenko, Oleksandr P.; Muravsky, Leonid I.; Berezyuk, Mykola I.

    2015-09-01

    A modified spatial-temporal speckle correlation technique for operational assessment of structural changes in muscle tissues after slaughtering is considered. Coefficient of biological activity as a quantitative indicator of structural changes of biochemical processes in biological tissues is proposed. The experimental results have shown that this coefficient properly evaluates the biological activity of pig and chicken muscle tissue samples. Studying the degradation processes in muscle tissue during long-time storage in a refrigerator by measuring the spatial-temporal dynamics of biospeckle patterns is carried out. The reduction of the bioactivity level of refrigerated muscle tissue samples connected with the initiation of muscle fiber cracks and ruptures, reduction of sarcomeres, nuclei deformation, nuclear chromatin diminishing, and destruction of mitochondria is analyzed.

  14. Adaptation of rat jaw muscle fibers in postnatal development with a different food consistency: an immunohistochemical and electromyographic study.

    PubMed

    Kawai, Nobuhiko; Sano, Ryota; Korfage, Joannes A M; Nakamura, Saika; Kinouchi, Nao; Kawakami, Emi; Tanne, Kazuo; Langenbach, Geerling E J; Tanaka, Eiji

    2010-06-01

    The development of the craniofacial system occurs, among other reasons, as a response to functional needs. In particular, the deficiency of the proper masticatory stimulus affects the growth. The purpose of this study was to relate alterations of muscle activity during postnatal development to adaptational changes in the muscle fibers. Fourteen 21-day-old Wistar strain male rats were randomly divided into two groups and fed on either a solid (hard-diet group) or a powder (soft-diet group) diet for 63 days. A radio-telemetric device was implanted to record muscle activity continuously from the superficial masseter, anterior belly of digastric and anterior temporalis muscles. The degree of daily muscle use was quantified by the total duration of muscle activity per day (duty time), the total burst number and their average length exceeding specified levels of the peak activity (5, 20 and 50%). The fiber type composition of the muscles was examined by the myosin heavy chain content of fibers by means of immunohistochemical staining and their cross-sectional area was measured. All muscle fibers were identified as slow type I and fast type IIA, IIX or IIB (respectively, with increasing twitch contraction speed and fatigability). At lower activity levels (exceeding 5% of the peak activity), the duty time of the anterior belly of the digastric muscle was significantly higher in the soft-diet group than in the hard-diet group (P < 0.05). At higher activity levels (exceeding 20 and 50% of the peak activity), the duty time of the superficial masseter muscle in the soft-diet group was significantly lower than that in the hard-diet group (P < 0.05). There was no difference in the duty time of the anterior temporalis muscle at any muscle activity level. The percentage of type IIA fibers of the superficial masseter muscle in the soft-diet group was significantly lower than that in the hard-diet group (P < 0.01) and the opposite was true with regard to type IIB fibers (P < 0.05). The cross-sectional area of type IIX and type IIB fibers of the superficial masseter muscle was significantly smaller in the soft-diet group than in the hard-diet group (P < 0.05). There was no difference in the muscle fiber composition and the cross-sectional area of the anterior belly of the digastric and anterior temporalis muscles. In conclusion, for the jaw muscles of male rats reared on a soft diet, the slow-to-fast transition of muscle fiber was shown in only the superficial masseter muscle. Therefore, the reduction in the amount of powerful muscle contractions could be important for the slow-to-fast transition of the myosin heavy chain isoform in muscle fibers.

  15. Posturedontics: How does dentistry fit you?

    PubMed

    Jodalli, Praveen S; Kurana, Suchi; Shameema; Ragher, Mallikarjuna; Khed, Jaishree; Prabhu, Vishnu

    2015-08-01

    Dentists are at high risk for musculoskeletal disorders (MSD's) due to their work. MSD's is an umbrella term for number of injuries affecting different parts of the body, including joints, muscles, tendons, nerves that can arise from sudden exertion or making the same motions repeatedly. These injuries can develop over time and can lead to long-term disability. Dental professional often develop musculoskeletal problems due to bad working habits, uncomfortable physical posture causing unnecessary musculoskeletal loading, discomfort and fatigue. Ergonomic principles when it is applied, it will help to reduce stress and eliminate many potential injuries and disorders associated with the overuse of muscles, bad posture, and repeated tasks. This can be accomplished by using a proper dental chair, lighting and the selection of ergonomically-friendly equipment to fit the dental professionals physical capabilities and limitations. This review addresses about the basics of ergonomics, positioning, viewing, handling, and prevention of MSD's.

  16. Posturedontics: How does dentistry fit you?

    PubMed Central

    Jodalli, Praveen S.; Kurana, Suchi; Shameema; Ragher, Mallikarjuna; Khed, Jaishree; Prabhu, Vishnu

    2015-01-01

    Dentists are at high risk for musculoskeletal disorders (MSD's) due to their work. MSD's is an umbrella term for number of injuries affecting different parts of the body, including joints, muscles, tendons, nerves that can arise from sudden exertion or making the same motions repeatedly. These injuries can develop over time and can lead to long-term disability. Dental professional often develop musculoskeletal problems due to bad working habits, uncomfortable physical posture causing unnecessary musculoskeletal loading, discomfort and fatigue. Ergonomic principles when it is applied, it will help to reduce stress and eliminate many potential injuries and disorders associated with the overuse of muscles, bad posture, and repeated tasks. This can be accomplished by using a proper dental chair, lighting and the selection of ergonomically-friendly equipment to fit the dental professionals physical capabilities and limitations. This review addresses about the basics of ergonomics, positioning, viewing, handling, and prevention of MSD's. PMID:26538885

  17. Cranial muscles in amphibians: development, novelties and the role of cranial neural crest cells

    PubMed Central

    Schmidt, Jennifer; Piekarski, Nadine; Olsson, Lennart

    2013-01-01

    Our research on the evolution of the vertebrate head focuses on understanding the developmental origins of morphological novelties. Using a broad comparative approach in amphibians, and comparisons with the well-studied quail-chicken system, we investigate how evolutionarily conserved or variable different aspects of head development are. Here we review research on the often overlooked development of cranial muscles, and on its dependence on cranial cartilage development. In general, cranial muscle cell migration and the spatiotemporal pattern of cranial muscle formation appears to be very conserved among the few species of vertebrates that have been studied. However, fate-mapping of somites in the Mexican axolotl revealed differences in the specific formation of hypobranchial muscles (tongue muscles) in comparison to the chicken. The proper development of cranial muscles has been shown to be strongly dependent on the mostly neural crest-derived cartilage elements in the larval head of amphibians. For example, a morpholino-based knock-down of the transcription factor FoxN3 in Xenopus laevis has drastic indirect effects on cranial muscle patterning, although the direct function of the gene is mostly connected to neural crest development. Furthermore, extirpation of single migratory streams of cranial neural crest cells in combination with fate-mapping in a frog shows that individual cranial muscles and their neural crest-derived connective tissue attachments originate from the same visceral arch, even when the muscles attach to skeletal components that are derived from a different arch. The same pattern has also been found in the chicken embryo, the only other species that has been thoroughly investigated, and thus might be a conserved pattern in vertebrates that reflects the fundamental nature of a mechanism that keeps the segmental order of the head in place despite drastic changes in adult anatomy. There is a need for detailed comparative fate-mapping of pre-otic paraxial mesoderm in amphibians, to determine developmental causes underlying the complicated changes in cranial muscle development and architecture within amphibians, and in particular how the novel mouth apparatus in frog tadpoles evolved. This will also form a foundation for further research into the molecular mechanisms that regulate rostral head morphogenesis. Our empirical studies are discussed within a theoretical framework concerned with the evolutionary origin and developmental basis of novel anatomical structures in general. We argue that a common developmental origin is not a fool-proof guide to homology, and that a view that sees only structures without homologs as novel is too restricted, because novelties must be produced by changes in the same framework of developmental processes. At the level of developmental processes and mechanisms, novel structures are therefore likely to have homologs, and we need to develop a hierarchical concept of novelty that takes this into account. PMID:22780231

  18. Image, imagination, and reality: on effectiveness of introductory work with vocalists.

    PubMed

    Gullaer, Irene; Walker, Robert; Badin, Pierre; Lamalle, Laurent

    2006-01-01

    Fifty-four sung tokens, each consisting of eight images were generated with the help of magnetic resonance imaging (MRI) technique to demonstrate the work of intrapharyngeal muscles when singing and speaking, and to help the educational process. The MRI images can be used as a part of a visualization feed-back method in vocal education and contribute to creation of proper mental images. The use of visualization (pictures, drafts, graphs, spectra, MRI images, etc.), along with mental images, facilitates simplification and acceleration of the process of understanding and learning how to master the basics of vocal technique, especially in the initial period of study. It is shown that work on muscle development and use of imagination should progress with close interaction between the two. For higher effectiveness and tangible results, mental images used by a vocal pedagogue should correspond to the technical and emotional level of a student. Therefore, mental images have to undertake the same evolution as articulation technique-from simplified and comprehensible to complex and abstract. Our integrated approach suggests continuing the work on muscle development and use of imagination in singing classes, employing the experience of voice-speech teachers. Their exercises are modified using the empirical method and other techniques developed creatively by singing teachers. In this method, sensitivity towards the state of the tissues becomes increasingly refined; students acquire a conscious control over the muscle work, students gain full awareness of both sensation and muscle activity. As a result, a complex of professional conditioned reflexes is being developed. A case study of the New Zealand experience was conducted with groups of Maori and European students. Unique properties and trends in the voices of Maori people are discussed.

  19. Galectin-3 and N-acetylglucosamine promote myogenesis and improve skeletal muscle function in the mdx model of Duchenne muscular dystrophy.

    PubMed

    Rancourt, Ann; Dufresne, Sébastien S; St-Pierre, Guillaume; Lévesque, Julie-Christine; Nakamura, Haruka; Kikuchi, Yodai; Satoh, Masahiko S; Frenette, Jérôme; Sato, Sachiko

    2018-06-12

    The muscle membrane, sarcolemma, must be firmly attached to the basal lamina. The failure of proper attachment results in muscle injury, which is the underlying cause of Duchenne muscular dystrophy (DMD), in which mutations in the dystrophin gene disrupts the firm adhesion. In patients with DMD, even moderate contraction causes damage, leading to progressive muscle degeneration. The damaged muscles are repaired through myogenesis. Consequently, myogenesis is highly active in patients with DMD, and the repeated activation of myogenesis leads to the exhaustion of the myogenic stem cells. Therefore, approaches to reducing the risk of the exhaustion are to develop a treatment that strengthens the interaction between the sarcolemma and the basal lamina and increases the efficiency of the myogenesis. Galectin-3 is an oligosaccharide-binding protein and is known to be involved in cell-cell interactions and cell-matrix interactions. Galectin-3 is expressed in myoblasts and skeletal muscle, although its function in muscle remains elusive. In this study, we found evidence that galectin-3 and the monosaccharide N-acetylglucosamine, which increases the synthesis of binding partners (oligosaccharides) of galectin-3, promote myogenesis in vitro. Moreover, in the mdx mouse model of DMD, treatment with N-acetylglucosamine increased muscle-force production. The results suggest that treatment with N-acetylglucosamine might mitigate the burden of DMD.-Rancourt, A., Dufresne, S. S., St-Pierre, G., Lévesque, J.-C., Nakamura, H., Kikuchi, Y., Satoh, M. S., Frenette, J., Sato, S. Galectin-3 and N-acetylglucosamine promote myogenesis and improve skeletal muscle function in the mdx model of Duchenne muscular dystrophy.

  20. Modeling and simulation of fish swimming with active muscles.

    PubMed

    Curatolo, Michele; Teresi, Luciano

    2016-11-21

    Our goal is to reproduce the key features of carangiform swimming by modeling muscle functioning using the notion of active distortions, thus emphasizing the kinematical role of muscle, the generation of movement, rather than the dynamical one, the production of force. This approach, already proposed to model the action of muscles in different contexts, is here tested again for the problem of developing an effective and reliable framework to model and simulate swimming. A proper undulatory movement of a fish-like body is reproduced by defining a pattern of distortions, tuned in both space and time, meant to model the muscles activation which produce the flexural motion of body fish; eventually, interactions with the surrounding water yields the desired thrust. Carangiform swimmers have a relatively inflexible anterior body section and a generally flat, flexible posterior section. Because of this configuration, undulations sent rearward along the body attain a significant amplitude only in the posterior section. We compare the performances of different swimming gaits, and we are able to find some important relations between key parameters such as frequencies, wavelength, tail amplitude, and the achieved swim velocity, or the generated thrust, which summarize the swimming performance. In particular, an interesting relation is found between the Strouhal number and the wavelength of muscles activation. We highlight the muscle function during fish locomotion describing the activation of muscles and the relation between the force production and the shortening-lengthening cycle of muscle. We found a great accordance between results and empirical relations, giving an implicit validation of our models. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. MOR23 promotes muscle regeneration and regulates cell adhesion and migration

    PubMed Central

    Griffin, Christine A.; Kafadar, Kimberly A.; Pavlath, Grace K.

    2009-01-01

    Summary Odorant receptors (ORs) in the olfactory epithelium bind to volatile small molecules leading to the perception of smell. ORs are expressed in many tissues but their functions are largely unknown. We show multiple ORs display distinct mRNA expression patterns during myogenesis in vitro and muscle regeneration in vivo. Mouse OR23 (MOR23) expression is induced during muscle regeneration when muscle cells are extensively fusing and plays a key role in regulating migration and adhesion of muscle cells in vitro, two processes common during tissue repair. A soluble ligand for MOR23 is secreted by muscle cells in vitro and muscle tissue in vivo. MOR23 is necessary for proper skeletal muscle regeneration as loss of MOR23 leads to increased myofiber branching, commonly associated with muscular dystrophy. Together these data identify a functional role for an OR outside of the nose and suggest a larger role for ORs during tissue repair. PMID:19922870

  2. [Simultaneous Traumatic Rupture of Patellar Ligament and Contralateral Rupture of Quadriceps Femoris Muscle].

    PubMed

    Hladký, V; Havlas, V

    2017-01-01

    Our paper presents a unique case of a 64-year-old patient after a fall, treated with oral antidiabetic drugs for type II diabetes mellitus. Following a series of examinations, a bilateral injury was diagnosed - patellar ligament tear on the right side and rupture of quadriceps femoris muscle on the left side. It is a rare injury, complicated by simultaneous involvement of both knee joints. The used therapy consisted of a bilateral surgery followed by gradual verticalisation, first with the support of a walking frame and later with the use of forearm crutches. During the final examination, the patient demonstrated full flexion at both knees, while an extension deficit of approx. 5 degrees was still present on the left side. The right knee X-ray showed a proper position of the patella after the removal of temporary tension band wire. Although the clinical results of operative treatment of both the patellar ligament rupture and rupture of quadriceps femoris muscle are in most cases good, early operative treatment, proper technique and post-operative rehabilitation are a prerequisite for success. Key words: knee injuries, patellar ligament, quadriceps muscle, rupture.

  3. Effects of physical and mental stressors on muscle pain.

    PubMed

    Westgaard, R H

    1999-01-01

    Physical and mental stressors as risk factors for pain development are discussed. These multifaceted stressor terms are narrowed down so that physical stressors are represented by muscle activity recorded by electromyography (EMG), while mental stress is considered synonymous with psychosocial stress in vocational studies; in experimental studies cognitive stress is used as a model. Pain in the shoulder and neck are focused and related to EMG recordings of activity in the trapezius muscle. Major challenges in this field include proper risk assessment at low physical work loads and criteria for evaluating stress as a risk factor. A 3-factor conceptual model is presented in which the independent dimensions physical work load, mental stress, and individual sensitivity determine the risk of shoulder and neck complaints. It is pointed out that a predominant reduction in physical work load for many jobs and an increasing interaction between work conditions and the general life situation of workers pose particular challenges for risk assessment.

  4. Ipsilateral hip abductor weakness after inversion ankle sprain.

    PubMed

    Friel, Karen; McLean, Nancy; Myers, Christine; Caceres, Maria

    2006-01-01

    Hip stability and strength are important for proper gait mechanics and foot position during heel strike. To determine the relationships between hip muscle strength and chronic ankle sprains and hip muscle strength and ankle range of motion. Ex post facto design with the uninvolved limb serving as the control. Laboratory. A total of 23 subjects with unilateral chronic ankle sprain were recruited. Subjects had at least 2 ipsilateral ankle sprains and were bearing full weight, with the most recent injury occurring at least 3 months earlier. They were not undergoing formal or informal rehabilitation at the time of the study. We obtained goniometric measurements for all planes of motion at the ankle. Handheld dynamometry was used to assess the strength of the hip abductor and hip extensor muscles in both limbs. Hip abductor muscle strength and plantar flexion were significantly less on the involved side than the uninvolved side (P < .001 in each case). Strength of the involved hip abductor and hip extensor muscles was significantly correlated (r = 0.539, P < .01). No significant difference was noted in hip extensor muscle strength between sides (P = .19). Our subjects with unilateral chronic ankle sprains had weaker hip abduction strength and less plantar-flexion range of motion on the involved sides. Clinicians should consider exercises to increase hip abduction strength when developing rehabilitation programs for patients with ankle sprains.

  5. Regenerating muscle with arginine methylation

    PubMed Central

    Blanc, Roméo S.; Richard, Stéphane

    2017-01-01

    ABSTRACT Protein arginine methyltransferase (PRMT) is a family of nine proteins catalyzing the methylation of arginine residues. They were recently shown to be essential for proper regeneration of skeletal muscles. However, the mechanisms triggering the methylation event, as well as how the methylated substrates regulate muscle stem cell function and fate decision remain to be determined. This point-of-view will discuss the recent findings on the specific role of PRMT1, CARM1/PRMT4, PRMT5, and PRMT7 in muscle stem cell fate guidance, and shed light on the future challenges which could help defining the therapeutic potential of PRMT inhibitors against muscular disorders and aging. PMID:28301308

  6. Regenerating muscle with arginine methylation.

    PubMed

    Blanc, Roméo S; Richard, Stéphane

    2017-05-27

    Protein arginine methyltransferase (PRMT) is a family of nine proteins catalyzing the methylation of arginine residues. They were recently shown to be essential for proper regeneration of skeletal muscles. However, the mechanisms triggering the methylation event, as well as how the methylated substrates regulate muscle stem cell function and fate decision remain to be determined. This point-of-view will discuss the recent findings on the specific role of PRMT1, CARM1/PRMT4, PRMT5, and PRMT7 in muscle stem cell fate guidance, and shed light on the future challenges which could help defining the therapeutic potential of PRMT inhibitors against muscular disorders and aging.

  7. An Old Problem: Aging and Skeletal-Muscle-Strain Injury.

    PubMed

    Baker, Brent A

    2017-04-01

    Clinical Scenario: Even though chronological aging is an inevitable phenomenological consequence occurring in every living organism, it is biological aging that may be the most significant factor challenging our quality of life. Development of functional limitations, resulting from improper maintenance and restoration of various organ systems, ultimately leads to reduced health and independence. Skeletal muscle is an organ system that, when challenged, is often injured in response to varying stimuli. Overt muscle-strain injury can be traumatic, clinically diagnosable, properly managed, and a remarkably common event, yet our contemporary understanding of how age and environmental stressors affect the initial and subsequent induction of injury and how the biological processes resulting from this event are modifiable and, eventually, lead to functional restoration and healing of skeletal muscle and adjacent tissues is presently unclear. Even though the secondary injury response to and recovery from "contraction-induced" skeletal-muscle injury are impaired with aging, there is no scientific consensus as to the exact mechanism responsible for this event. Given the multitude of investigative approaches, particular consideration given to the appropriateness of the muscle-injury model, or research paradigm, is critical so that outcomes may be physiologically relevant and translational. In this case, methods implementing stretch-shortening contractions, the most common form of muscle movements used by all mammals during physical movement, work, and activity, are highlighted. Understanding the fundamental evidence regarding how aging influences the responsivity of skeletal muscle to strain injury is vital for informing how clinicians approach and implement preventive strategies, as well as therapeutic interventions. From a practical perspective, maintaining or improving the overall health and tissue quality of skeletal muscle as one ages will positively affect skeletal muscle's safety threshold and responsivity, which may reduce incidence of injury, improve recovery time, and lessen overall fiscal burdens.

  8. Distinct regulation of Snail in two muscle lineages of the ascidian embryo achieves temporal coordination of muscle development.

    PubMed

    Tokuoka, Miki; Kobayashi, Kenji; Satou, Yutaka

    2018-06-06

    The transcriptional repressor Snail is required for proper differentiation of the tail muscle of ascidian tadpole larvae. Two muscle lineages (B5.1 and B6.4) contribute to the anterior tail muscle cells, and are consecutively separated from a transcriptionally quiescent germ cell lineage at the 16- and 32-cell stages. Concomitantly, cells of these lineages begin to express Tbx6.b ( Tbx6-r.b ) at the 16- and 32-cell stages, respectively. Meanwhile, Snail expression begins in these two lineages simultaneously at the 32-cell stage. Here, we show that Snail expression is regulated differently between these two lineages. In the B5.1 lineage, Snail was activated through Tbx6.b , which is activated by maternal factors, including Zic-r.a. In the B6.4 lineage, the MAPK pathway was cell-autonomously activated by a constitutively active form of Raf, enabling Zic-r.a to activate Snail independently of Tbx6.b As a result, Snail begins to be expressed at the 32-cell stage simultaneously in these two lineages. Such shortcuts might be required for coordinating developmental programs in embryos in which cells become separated progressively from stem cells, including germline cells. © 2018. Published by The Company of Biologists Ltd.

  9. Essential roles of LEM-domain protein MAN1 during organogenesis in Xenopus laevis and overlapping functions of emerin.

    PubMed

    Reil, Michael; Dabauvalle, Marie-Christine

    2013-01-01

    Mutations in nuclear envelope proteins are linked to an increasing number of human diseases, called envelopathies. Mutations in the inner nuclear membrane protein emerin lead to X-linked Emery-Dreifuss muscular dystrophy, characterized by muscle weakness or wasting. Conversely, mutations in nuclear envelope protein MAN1 are linked to bone and skin disorders. Both proteins share a highly conserved domain, called LEM-domain. LEM proteins are known to interact with Barrier-to-autointegration factor and several transcription factors. Most envelopathies are tissue-specific, but knowledge on the physiological roles of related LEM proteins is still unclear. For this reason, we investigated the roles of MAN1 and emerin during Xenopus laevis organogenesis. Morpholino-mediated knockdown of MAN1 revealed that MAN1 is essential for the formation of eye, skeletal and cardiac muscle tissues. The MAN1 knockdown could be compensated by ectopic expression of emerin, leading to a proper organ development. Further investigations revealed that MAN1 is involved in regulation of genes essential for organ development and tissue homeostasis. Thereby our work supports that LEM proteins might be involved in signalling essential for organ development during early embryogenesis and suggests that loss of MAN1 may cause muscle and retina specific diseases. Copyright © 2013 Elsevier GmbH. All rights reserved.

  10. Muscle profiling to improve the value of retail meat cuts.

    PubMed

    Jung, E Y; Hwang, Y H; Joo, S T

    2016-10-01

    Nutrition and meat quality are always important to consumers, but vary by individual muscle or muscle groups in retail meat cuts. Muscle profiling of nutrient content and palatability for all retail beef cuts is necessary to suggest healthy and tasty beef cuts and to inform consumers of the benefits of beef consumption. The current paper reviews numerous studies that provide muscle profiles for nutrients and palatability attributes of muscles or muscle groups in retail beef cuts. The composition of nutrients including protein, fat, moisture, vitamins, and minerals in beef cuts is documented as well as the nutritive role as a part of a healthy diet. In addition, this review presents knowledge in relation to innovative carcass fabrication and value-added cuts to improve the value of beef carcass. Finally, the current work emphasize the palatability assessment of individual beef muscles, and concludes that all retail beef cuts should be merchandised for proper cooking according to the palatability profiles of beef muscles. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Recognition and treatment of muscle dysmorphia and related body image disorders.

    PubMed

    Leone, James E; Sedory, Edward J; Gray, Kimberly A

    2005-01-01

    To present the reader with various psychobehavioral characteristics of muscle dysmorphia, discuss recognition of the disorder, and describe treatment and referral options. We conducted a comprehensive review of the relevant literature in CINAHL, MEDLINE, SPORT Discus, EBSCO, PsycINFO, and PubMed. All years from 1985 to the present were searched for the terms muscle dysmorphia, bigorexia, and reverse anorexia. The incidence of muscle dysmorphia is increasing, both in the United States and in other regions of the world, perhaps because awareness and recognition of the condition have increased. Although treatment options are limited, therapy and medication do work. The primary issue is identifying the disorder, because it does not present like other psychobehavioral conditions such as anorexia or bulimia nervosa. Not only do patients see themselves as healthy, most look very healthy from an outward perspective. The causes of muscle dysmorphia are not well understood, which reinforces the need for continued investigation. Muscle dysmorphia is an emerging phenomenon in society. Pressure on males to appear more muscular and lean has prompted a trend in the area of psychobehavioral disorders often likened to anorexia and bulimia nervosa. Athletes are particularly susceptible to developing body image disorders because of the pressures surrounding sport performance and societal trends promoting muscularity and leanness. Health care professionals need to become more familiar with the common signs and symptoms of muscle dysmorphia, as well as the treatment and referral options, in order to assist in providing appropriate care. In the future, authors should continue to properly measure and document the incidence of muscle dysmorphia in athletic populations, both during and after participation.

  12. Physiotherapy treatment of the diabetic shoulder: a longitudinal study following patients with diabetes and shoulder pain using a pre-post treatment design.

    PubMed

    Kyhlbäck, Maria; Schröder Winter, Helena; Thierfelder, Tomas; Söderlund, Anne

    2014-01-01

    The aim of this study was to describe and evaluate a physiotherapy program targeted to reduce pain intensity and improve the daily functioning of diabetics with shoulder problems. It was hypothesized that patients receiving specific physiotherapy treatment improved more frequently and rapidly than diabetic patients followed up without specific physiotherapeutic intervention. A pre-post treatment design was completed for a group of 10 subjects. The treatment protocol, also applied during the daily activities of the subjects, was aiming at reducing pain intensity and shoulder stiffness and improving impaired functioning in daily activities by muscle relaxation, light-load exercise and enhancing proper shoulder co-ordination. The group analysis showed significant decrease of pain intensity level as well as improved shoulder functioning and sustained level of subject self-efficacy beliefs throughout the study period. The results suggest that it is possible to relieve shoulder pain intensity and improve daily activities of patients with diabetes-related shoulder problems by employing a physiotherapy program focusing on muscle relaxation, light-load exercise and on the enhancement of proper shoulder co-ordination in daily activities. A physiotherapy program can be effective in reducing pain and improving shoulder function in diabetics with shoulder problems. The treatment should focus on muscle relaxation, light-load exercise and on the enhancement of proper shoulder co-ordination in daily activities.

  13. TGFβ regulates epithelial-mesenchymal interactions through WNT signaling activity to control muscle development in the soft palate.

    PubMed

    Iwata, Jun-ichi; Suzuki, Akiko; Yokota, Toshiaki; Ho, Thach-Vu; Pelikan, Richard; Urata, Mark; Sanchez-Lara, Pedro A; Chai, Yang

    2014-02-01

    Clefting of the soft palate occurs as a congenital defect in humans and adversely affects the physiological function of the palate. However, the molecular and cellular mechanism of clefting of the soft palate remains unclear because few animal models exhibit an isolated cleft in the soft palate. Using three-dimensional microCT images and histological reconstruction, we found that loss of TGFβ signaling in the palatal epithelium led to soft palate muscle defects in Tgfbr2(fl/fl);K14-Cre mice. Specifically, muscle mass was decreased in the soft palates of Tgfbr2 mutant mice, following defects in cell proliferation and differentiation. Gene expression of Dickkopf (Dkk1 and Dkk4), negative regulators of WNT-β-catenin signaling, is upregulated in the soft palate of Tgfbr2(fl/fl);K14-Cre mice, and WNT-β-catenin signaling is disrupted in the palatal mesenchyme. Importantly, blocking the function of DKK1 and DKK4 rescued the cell proliferation and differentiation defects in the soft palate of Tgfbr2(fl/fl);K14-Cre mice. Thus, our findings indicate that loss of TGFβ signaling in epithelial cells compromises activation of WNT signaling and proper muscle development in the soft palate through tissue-tissue interactions, resulting in a cleft soft palate. This information has important implications for prevention and non-surgical correction of cleft soft palate.

  14. Leiomyoma of the sternothyroid muscle.

    PubMed

    Rowe, Meghan E; Khorsandi, Azita S; Guerrero, Dominick R; Brett, Elise M; Sarlin, Jonathan; Urken, Mark L

    2016-01-01

    Leiomyomas are benign cutaneous tumors of smooth muscle origin. Only a small percentage of leiomyomas arise in the head and neck region. We present the first case of leiomyoma arising in the sternothyroid muscle of the neck. We analyze the clinical presentation, pathology, and histology for a single case study. The histologic findings of the tumor located in the sternothyroid muscle support the diagnosis of leiomyoma. This is the first case of leiomyoma arising in the sternothyroid muscle, and only the second reported case of leiomyoma in the strap muscles of the neck. Leiomyoma should be included in the differential diagnosis of soft tissue tumors in the head and neck region. A histological analysis is essential in determining both tumor type and subtype, which will inform the proper course of treatment. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. Dynamic Model of Applied Facial Anatomy with Emphasis on Teaching of Botulinum Toxin A

    PubMed Central

    2017-01-01

    Background: The use of botulinum toxin type A is considered one of the most revolutionary and promising face rejuvenation methods. Although rare, most of the complications secondary to the use of botulinum toxin A are technician dependent. Among the major shortcomings identified in the toxin administration education is unfamiliarity with applied anatomy. This article proposes the use of body painting as an innovative method of teaching the application of botulinum toxin A. Methods: Using the body painting technique, facial anatomy was represented on the face of a model showing the major muscle groups of botulinum toxin A targets. Photographic records and films were made for documentation of represented muscles at rest and contraction. Results: Using the body painting technique, each of the muscles involved in facial expression and generation of hyperkinetic wrinkles can be faithfully reproduced on the model’s face. The documentation of the exact position of the points of application, the distribution of the feature points in the muscular area, the proper angulation and syringe grip, as well as the correlation of the points of application with the presence of hyperkinetic wrinkles, could be properly registered, providing professional training with information of great practical importance, development of highly effective treatments, and low complication rates. Conclusion: By making it possible to interrelate anatomy of a function, body painting is proposed in the present study as an innovative method, which in a demonstrative and highly didactic manner presents great potential as a teaching tool in the application of botulinum toxin A. PMID:29263949

  16. Effectiveness of the Wavelet Transform on the Surface EMG to Understand the Muscle Fatigue During Walk

    NASA Astrophysics Data System (ADS)

    Hussain, M. S.; Mamun, Md.

    2012-01-01

    Muscle fatigue is the decline in ability of a muscle to create force. Electromyography (EMG) is a medical technique for measuring muscle response to nervous stimulation. During a sustained muscle contraction, the power spectrum of the EMG shifts towards lower frequencies. These effects are due to muscle fatigue. Muscle fatigue is often a result of unhealthy work practice. In this research, the effectiveness of the wavelet transform applied to the surface EMG (SEMG) signal as a means of understanding muscle fatigue during walk is presented. Power spectrum and bispectrum analysis on the EMG signal getting from right rectus femoris muscle is executed utilizing various wavelet functions (WFs). It is possible to recognize muscle fatigue appreciably with the proper choice of the WF. The outcome proves that the most momentous changes in the EMG power spectrum are symbolized by WF Daubechies45. Moreover, this research has compared bispectrum properties to the other WFs. To determine muscle fatigue during gait, Daubechies45 is used in this research to analyze the SEMG signal.

  17. Muscle activity characterization by laser Doppler Myography

    NASA Astrophysics Data System (ADS)

    Scalise, Lorenzo; Casaccia, Sara; Marchionni, Paolo; Ercoli, Ilaria; Primo Tomasini, Enrico

    2013-09-01

    Electromiography (EMG) is the gold-standard technique used for the evaluation of muscle activity. This technique is used in biomechanics, sport medicine, neurology and rehabilitation therapy and it provides the electrical activity produced by skeletal muscles. Among the parameters measured with EMG, two very important quantities are: signal amplitude and duration of muscle contraction, muscle fatigue and maximum muscle power. Recently, a new measurement procedure, named Laser Doppler Myography (LDMi), for the non contact assessment of muscle activity has been proposed to measure the vibro-mechanical behaviour of the muscle. The aim of this study is to present the LDMi technique and to evaluate its capacity to measure some characteristic features proper of the muscle. In this paper LDMi is compared with standard superficial EMG (sEMG) requiring the application of sensors on the skin of each patient. sEMG and LDMi signals have been simultaneously acquired and processed to test correlations. Three parameters has been analyzed to compare these techniques: Muscle activation timing, signal amplitude and muscle fatigue. LDMi appears to be a reliable and promising measurement technique allowing the measurements without contact with the patient skin.

  18. Dystonia: Physical Therapy

    MedlinePlus

    ... straight. Soft, sunken chairs and sofas do not foster proper alignment and may affect the position of ... dystonia, one should consider modifying the task to foster posture and muscle control. A person with trouble ...

  19. Restless Legs Syndrome

    MedlinePlus

    ... caused by an imbalance of the brain chemical dopamine, which sends messages to control muscle movement. Heredity ... deficiency, often with anemia. When kidneys don't function properly, iron stores in your blood can decrease. ...

  20. Minerals

    MedlinePlus

    Minerals are important for your body to stay healthy. Your body uses minerals for many different jobs, including keeping your bones, muscles, heart, and brain working properly. Minerals are also important for making enzymes and hormones. ...

  1. [Overactive muscles: it can be more serious than common myalgia or cramp].

    PubMed

    Molenaar, Joery P F; Snoeck, Marc M J; Voermans, Nicol C; van Engelen, Baziel G M

    2016-01-01

    Positive muscle phenomena are due to muscle overactivity. Examples are cramp, myalgia, and stiffness. These manifestations have mostly acquired causes, e.g. side-effects of medication, metabolic disorders, vitamin deficiency, excessive caffeine intake or neurogenic disorders. We report on three patients with various positive muscle phenomena, to illustrate the clinical signs that indicate an underlying myopathy. Patient A, a 56-year-old man, was diagnosed with muscle cramp in the context of excessive coffee use and previous lumbosacral radiculopathy. Patient B, a 71-year-old man, was shown to have RYR1-related myopathy. Patient C, a 42-year-old man, suffered from Brody myopathy. We propose for clinicians to look out for a number of 'red flags' that can point to an underlying myopathy, and call for referral to neurology if indicated. Red flags include second wind phenomenon, familial occurrence of similar complaints, marked muscle stiffness, myotonia, muscle weakness, muscle hypertrophy, and myoglobinuria. Establishing a correct diagnosis is important for proper treatment. Certain myopathies call for cardiac or respiratory screening.

  2. Drebrin-like protein DBN-1 is a sarcomere component that stabilizes actin filaments during muscle contraction.

    PubMed

    Butkevich, Eugenia; Bodensiek, Kai; Fakhri, Nikta; von Roden, Kerstin; Schaap, Iwan A T; Majoul, Irina; Schmidt, Christoph F; Klopfenstein, Dieter R

    2015-07-06

    Actin filament organization and stability in the sarcomeres of muscle cells are critical for force generation. Here we identify and functionally characterize a Caenorhabditis elegans drebrin-like protein DBN-1 as a novel constituent of the muscle contraction machinery. In vitro, DBN-1 exhibits actin filament binding and bundling activity. In vivo, DBN-1 is expressed in body wall muscles of C. elegans. During the muscle contraction cycle, DBN-1 alternates location between myosin- and actin-rich regions of the sarcomere. In contracted muscle, DBN-1 is accumulated at I-bands where it likely regulates proper spacing of α-actinin and tropomyosin and protects actin filaments from the interaction with ADF/cofilin. DBN-1 loss of function results in the partial depolymerization of F-actin during muscle contraction. Taken together, our data show that DBN-1 organizes the muscle contractile apparatus maintaining the spatial relationship between actin-binding proteins such as α-actinin, tropomyosin and ADF/cofilin and possibly strengthening actin filaments by bundling.

  3. Injury Prevention and Performance Enhancement in 101st Airbourne Soldiers

    DTIC Science & Technology

    2013-02-01

    associated with tactical operations training. These muscle groups contribute to the dissipation of forces imposed on and neuromuscular control of the...flexibility in one or both of these muscle groups may contribute to acute or chronic injuries affecting the proper functioning of the knee and jeopardizing...continuous NP (non-pain group : 91 pilots) on several factors: work-related, personal demographics, and health-related. The pain group had significantly

  4. Modeling and dynamic simulation of astronaut's upper limb motions considering counter torques generated by the space suit.

    PubMed

    Li, Jingwen; Ye, Qing; Ding, Li; Liao, Qianfang

    2017-07-01

    Extravehicular activity (EVA) is an inevitable task for astronauts to maintain proper functions of both the spacecraft and the space station. Both experimental research in a microgravity simulator (e.g. neutral buoyancy tank, zero-g aircraft or a drop tower/tube) and mathematical modeling were used to study EVA to provide guidance for the training on Earth and task design in space. Modeling has become more and more promising because of its efficiency. Based on the task analysis, almost 90% of EVA activity is accomplished through upper limb motions. Therefore, focusing on upper limb models of the body and space suit is valuable to this effort. In previous modeling studies, some multi-rigid-body systems were developed to simplify the human musculoskeletal system, and the space suit was mostly considered as a part of the astronaut body. With the aim to improve the reality of the models, we developed an astronauts' upper limb model, including a torque model and a muscle-force model, with the counter torques from the space suit being considered as a boundary condition. Inverse kinematics and the Maggi-Kane's method was applied to calculate the joint angles, joint torques and muscle force given that the terminal trajectory of upper limb motion was known. Also, we validated the muscle-force model using electromyogram (EMG) data collected in a validation experiment. Muscle force calculated from our model presented a similar trend with the EMG data, supporting the effectiveness and feasibility of the muscle-force model we established, and also, partially validating the joint model in kinematics aspect.

  5. Ipsilateral Hip Abductor Weakness After Inversion Ankle Sprain

    PubMed Central

    Friel, Karen; McLean, Nancy; Myers, Christine; Caceres, Maria

    2006-01-01

    Context: Hip stability and strength are important for proper gait mechanics and foot position during heel strike. Objective: To determine the relationships between hip muscle strength and chronic ankle sprains and hip muscle strength and ankle range of motion. Design: Ex post facto design with the uninvolved limb serving as the control. Setting: Laboratory. Patients or Other Participants: A total of 23 subjects with unilateral chronic ankle sprain were recruited. Subjects had at least 2 ipsilateral ankle sprains and were bearing full weight, with the most recent injury occurring at least 3 months earlier. They were not undergoing formal or informal rehabilitation at the time of the study. Main Outcome Measure(s): We obtained goniometric measurements for all planes of motion at the ankle. Handheld dynamometry was used to assess the strength of the hip abductor and hip extensor muscles in both limbs. Results: Hip abductor muscle strength and plantar flexion were significantly less on the involved side than the uninvolved side (P < .001 in each case). Strength of the involved hip abductor and hip extensor muscles was significantly correlated (r = 0.539, P < .01). No significant difference was noted in hip extensor muscle strength between sides (P = .19). Conclusions: Our subjects with unilateral chronic ankle sprains had weaker hip abduction strength and less plantar-flexion range of motion on the involved sides. Clinicians should consider exercises to increase hip abduction strength when developing rehabilitation programs for patients with ankle sprains. PMID:16619098

  6. Test-Retest Reliability of Innovated Strength Tests for Hip Muscles

    PubMed Central

    Meyer, Christophe; Corten, Kristoff; Wesseling, Mariska; Peers, Koen; Simon, Jean-Pierre; Jonkers, Ilse; Desloovere, Kaat

    2013-01-01

    The burden of hip muscles weakness and its relation to other impairments has been well documented. It is therefore a pre-requisite to have a reliable method for clinical assessment of hip muscles function allowing the design and implementation of a proper strengthening program. Motor-driven dynamometry has been widely accepted as the gold-standard for lower limb muscle strength assessment but is mainly related to the knee joint. Studies focusing on the hip joint are less exhaustive and somewhat discrepant with regard to optimal participants position, consequently influencing outcome measures. Thus, we aimed to develop a standardized test setup for the assessment of hip muscles strength, i.e. flexors/extensors and abductors/adductors, with improved participant stability and to define its psychometric characteristics. Eighteen participants performed unilateral isokinetic and isometric contractions of the hip muscles in the sagittal and coronal plane at two separate occasions. Peak torque and normalized peak torque were measured for each contraction. Relative and absolute measures of reliability were calculated using the intraclass correlation coefficient and standard error of measurement, respectively. Results from this study revealed higher levels of between-day reliability of isokinetic/isometric hip abduction/flexion peak torque compared to existing literature. The least reliable measures were found for hip extension and adduction, which could be explained by a less efficient stabilization technique. Our study additionally provided a first set of reference normalized data which can be used in future research. PMID:24260550

  7. Leg lengthening and shortening

    MedlinePlus

    ... to match its length. Proper timing of this treatment is important for best results. Certain health conditions can lead to very unequal leg lengths. They include: Poliomyelitis Cerebral palsy Small, weak muscles or short, tight ( ...

  8. Application of cellular mechanisms to growth and development of food producing animals.

    PubMed

    Chung, K Y; Johnson, B J

    2008-04-01

    Postnatal skeletal muscle growth is a result of hypertrophy of existing skeletal muscle fibers in food producing animals. Accumulation of additional nuclei, as a source of DNA, to the multinucleated skeletal muscle fiber aids in fiber hypertrophy during periods of rapid skeletal muscle growth. Muscle satellite cells are recognized as the source of nuclei to support muscle hypertrophy. Exogenous growth-enhancing compounds have been used to modulate growth rate and efficiency in meat animals for over a half century. In cattle, these compounds enhance efficiency of growth by preferentially stimulating skeletal muscle growth compared with adipose tissue. There are 2 main classes of compounds approved for use in cattle in the United States, anabolic steroids and beta-adrenergic agonists (beta-AA). Administration of both trenbolone acetate and estradiol-17beta, as implants, increased carcass protein accumulation 8 to 10% in yearling steers. Muscle satellite cells isolated from steers implanted with trenbolone acetate/ estradiol-17beta had a shorter lag phase in culture compared with satellite cells isolated from control steers. Collectively, these data indicate that activation, increased proliferation, and subsequent fusion of satellite cells in muscles of implanted cattle may be an important mechanism by which anabolic steroids enhance muscle hypertrophy. Oral administration of beta-AA to ruminants does not alter DNA accumulation in skeletal muscle over a typical feeding period (28 to 42 d). Enhanced muscle hypertrophy observed due to beta-AA feeding occurs by direct, receptor-mediated changes in protein synthesis and degradation rates of skeletal muscle tissue. Proper timing of anabolic steroid administration when coupled with beta-AA feeding could result in a synergistic response in skeletal muscle growth due to the effects of anabolic steroids at increasing satellite cell activity, which then can support the rapid hypertrophic changes of the muscle fiber when exposed to beta-AA. At the same time each of these classes of compounds are stimulating lean tissue deposition, they appear to repress adipogenesis in meat animals. Increased knowledge of the mechanism by which growth promoters regulate lean tissue deposition and adipogenesis in meat animals will allow for effective application of these techniques to optimize lean tissue growth and minimize the negative effects on meat quality.

  9. Muscle activation patterns of the upper and lower extremity during the windmill softball pitch.

    PubMed

    Oliver, Gretchen D; Plummer, Hillary A; Keeley, David W

    2011-06-01

    Fast-pitch softball has become an increasingly popular sport for female athletes. There has been little research examining the windmill softball pitch in the literature. The purpose of this study was to describe the muscle activation patterns of 3 upper extremity muscles (biceps, triceps, and rhomboids [scapular stabilizers]) and 2 lower extremity muscles (gluteus maximus and medius) during the 5 phases of the windmill softball pitch. Data describing muscle activation were collected on 7 postpubescent softball pitchers (age 17.7 ± 2.6 years; height 169 ± 5.4 cm; mass 69.1 ± 5.4 kg). Surface electromyographic data were collected using a Myopac Jr 10-channel amplifier (RUN Technologies Scientific Systems, Laguna Hills, CA, USA) synchronized with The MotionMonitor™ motion capture system (Innovative Sports Training Inc, Chicago IL, USA) and presented as a percent of maximum voluntary isometric contraction. Gluteus maximus activity reached (196.3% maximum voluntary isometric contraction [MVIC]), whereas gluteus medius activity was consistent during the single leg support of phase 3 (101.2% MVIC). Biceps brachii activity was greatest during phase 4 of the pitching motion. Triceps brachii activation was consistently >150% MVIC throughout the entire pitching motion, whereas the scapular stabilizers were most active during phase 2 (170.1% MVIC). The results of this study indicate the extent to which muscles are activated during the windmill softball pitch, and this knowledge can lead to the development of proper preventative and rehabilitative muscle strengthening programs. In addition, clinicians will be able to incorporate strengthening exercises that mimic the timing of maximal muscle activation most used during the windmill pitching phases.

  10. Recognition and Treatment of Muscle Dysmorphia and Related Body Image Disorders

    PubMed Central

    Leone, James E; Sedory, Edward J; Gray, Kimberly A

    2005-01-01

    Objective: To present the reader with various psychobehavioral characteristics of muscle dysmorphia, discuss recognition of the disorder, and describe treatment and referral options. Data Sources: We conducted a comprehensive review of the relevant literature in CINAHL, MEDLINE, SPORT Discus, EBSCO, PsycINFO, and PubMed. All years from 1985 to the present were searched for the terms muscle dysmorphia, bigorexia, and reverse anorexia. Data Synthesis: The incidence of muscle dysmorphia is increasing, both in the United States and in other regions of the world, perhaps because awareness and recognition of the condition have increased. Although treatment options are limited, therapy and medication do work. The primary issue is identifying the disorder, because it does not present like other psychobehavioral conditions such as anorexia or bulimia nervosa. Not only do patients see themselves as healthy, most look very healthy from an outward perspective. The causes of muscle dysmorphia are not well understood, which reinforces the need for continued investigation. Conclusions: Muscle dysmorphia is an emerging phenomenon in society. Pressure on males to appear more muscular and lean has prompted a trend in the area of psychobehavioral disorders often likened to anorexia and bulimia nervosa. Athletes are particularly susceptible to developing body image disorders because of the pressures surrounding sport performance and societal trends promoting muscularity and leanness. Health care professionals need to become more familiar with the common signs and symptoms of muscle dysmorphia, as well as the treatment and referral options, in order to assist in providing appropriate care. In the future, authors should continue to properly measure and document the incidence of muscle dysmorphia in athletic populations, both during and after participation. PMID:16404458

  11. Low sodium level

    MedlinePlus

    ... for nerves, muscles, and other body tissues to work properly. When the amount of sodium in fluids outside cells drops below normal, water moves into the cells to balance the levels. This causes the cells to swell ...

  12. Inhibition of 5-LOX, COX-1, and COX-2 increases tendon healing and reduces muscle fibrosis and lipid accumulation after rotator cuff repair.

    PubMed

    Oak, Nikhil R; Gumucio, Jonathan P; Flood, Michael D; Saripalli, Anjali L; Davis, Max E; Harning, Julie A; Lynch, Evan B; Roche, Stuart M; Bedi, Asheesh; Mendias, Christopher L

    2014-12-01

    The repair and restoration of function after chronic rotator cuff tears are often complicated by muscle atrophy, fibrosis, and fatty degeneration of the diseased muscle. The inflammatory response has been implicated in the development of fatty degeneration after cuff injuries. Licofelone is a novel anti-inflammatory drug that inhibits 5-lipoxygenase (5-LOX), as well as cyclooxygenase (COX)-1 and COX-2 enzymes, which play important roles in inducing inflammation after injuries. While previous studies have demonstrated that nonsteroidal anti-inflammatory drugs and selective inhibitors of COX-2 (coxibs) may prevent the proper healing of muscles and tendons, studies about bone and cartilage have demonstrated that drugs that inhibit 5-LOX concurrently with COX-1 and COX-2 may enhance tissue regeneration. After the repair of a chronic rotator cuff tear in rats, licofelone would increase the load to failure of repaired tendons and increase the force production of muscle fibers. Controlled laboratory study. Rats underwent supraspinatus release followed by repair 28 days later. After repair, rats began a treatment regimen of either licofelone or a vehicle for 14 days, at which time animals were euthanized. Supraspinatus muscles and tendons were then subjected to contractile, mechanical, histological, and biochemical analyses. Compared with controls, licofelone-treated rats had a grossly apparent decrease in inflammation and increased fibrocartilage formation at the enthesis, along with a 62% increase in the maximum load to failure and a 51% increase in peak stress to failure. Licofelone resulted in a marked reduction in fibrosis and lipid content in supraspinatus muscles as well as reduced expression of several genes involved in fatty infiltration. Despite the decline in fibrosis and fat accumulation, muscle fiber specific force production was reduced by 23%. The postoperative treatment of cuff repair with licofelone may reduce fatty degeneration and enhance the development of a stable bone-tendon interface, although decreases in muscle fiber specific force production were observed, and force production in fact declined. This study demonstrates that the inhibition of 5-LOX, COX-1, and COX-2 modulates the healing process of repaired rotator cuff tendons. Although further studies are necessary, the treatment of patients with licofelone after cuff repair may improve the development of a stable enthesis and enhance postoperative outcomes. © 2014 The Author(s).

  13. Calcium Influx and Release Cooperatively Regulate AChR Patterning and Motor Axon Outgrowth during Neuromuscular Junction Formation.

    PubMed

    Kaplan, Mehmet Mahsum; Sultana, Nasreen; Benedetti, Ariane; Obermair, Gerald J; Linde, Nina F; Papadopoulos, Symeon; Dayal, Anamika; Grabner, Manfred; Flucher, Bernhard E

    2018-06-26

    Formation of synapses between motor neurons and muscles is initiated by clustering of acetylcholine receptors (AChRs) in the center of muscle fibers prior to nerve arrival. This AChR patterning is considered to be critically dependent on calcium influx through L-type channels (Ca V 1.1). Using a genetic approach in mice, we demonstrate here that either the L-type calcium currents (LTCCs) or sarcoplasmic reticulum (SR) calcium release is necessary and sufficient to regulate AChR clustering at the onset of neuromuscular junction (NMJ) development. The combined lack of both calcium signals results in loss of AChR patterning and excessive nerve branching. In the absence of SR calcium release, the severity of synapse formation defects inversely correlates with the magnitude of LTCCs. These findings highlight the importance of activity-dependent calcium signaling in early neuromuscular junction formation and indicate that both LTCC and SR calcium release individually support proper innervation of muscle by regulating AChR patterning and motor axon outgrowth. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.

  14. The T-box factor MLS-1 acts as a molecular switch during specification of nonstriated muscle in C. elegans

    PubMed Central

    Kostas, Stephen A.; Fire, Andrew

    2002-01-01

    We have isolated mutations in a gene mls-1 that is required for proper specification of nonstriated muscle fates in Caenorhabditis elegans. Loss of MLS-1 activity causes uterine muscle precursors to forego their normal fates, instead differentiating as vulval muscles. We have cloned mls-1 and shown that the product is a member of the T-box family of transcriptional regulators. MLS-1 acts as a cell fate determinant in that ectopic expression can transform other cell types to uterine muscle precursors. Uterine muscle patterning is executed by regulation of MLS-1 at several different levels. The mls-1 promoter is activated by the C. elegans orthologs of Twist and Daughterless, but is only active in a subset of the lineage where these two transcription factors are present. mls-1 activity also appears to be regulated by posttranscriptional processes, as expression occurs in both uterine and vulval muscle precursors. PMID:11799068

  15. [Importance of the obstructive sleep apnea disorder for perioperative medicine].

    PubMed

    Covarrubias-Gómez, Alfredo; Guevara-López, Uriah; Haro-Valencia, Reyes; Alvarado-Suárez, Mariela

    2007-01-01

    Obstructive sleep apnea (OSA) is a common sleep-related disorder among the general population. This disorder occurs in all sleep stages, although is more intense during the REM sleep (rapid eye movement). In this stage appears generalized muscle atony, which includes the hypopharyngeal muscles; this causes narrowing of the upper airway lumen, difficult inside/outside air movement and mechanical obstruction. OSA is considered a risk for: a) difficult airway intubation/ventilation; b) increase of cardiovascular morbidity; c) development of hypoxia and hypercarbia during spontaneous or assisted ventilation techniques. For these reasons, it is possible to assume that OSA may increase the perioperative risk and should be timely and properly ascertained. The main objective of this paper is to review the effect of OSA in patients undergoing anesthetic and surgical procedures, whether it increases the perioperative risk, and the advantages of its timely identification and assessment when carrying out the pre-anesthetic evaluation.

  16. Ghrelin knockout mice display defective skeletal muscle regeneration and impaired satellite cell self-renewal.

    PubMed

    Angelino, Elia; Reano, Simone; Bollo, Alessandro; Ferrara, Michele; De Feudis, Marilisa; Sustova, Hana; Agosti, Emanuela; Clerici, Sara; Prodam, Flavia; Tomasetto, Catherine-Laure; Graziani, Andrea; Filigheddu, Nicoletta

    2018-05-30

    Muscle regeneration depends on satellite cells (SCs), quiescent precursors that, in consequence of injury or pathological states such as muscular dystrophies, activate, proliferate, and differentiate to repair the damaged tissue. A subset of SCs undergoes self-renewal, thus preserving the SC pool and its regenerative potential. The peptides produced by the ghrelin gene, i.e., acylated ghrelin (AG), unacylated ghrelin (UnAG), and obestatin (Ob), affect skeletal muscle biology in several ways, not always with overlapping effects. In particular, UnAG and Ob promote SC self-renewal and myoblast differentiation, thus fostering muscle regeneration. To delineate the endogenous contribution of preproghrelin in muscle regeneration, we evaluated the repair process in Ghrl -/- mice upon CTX-induced injury. Although muscles from Ghrl -/- mice do not visibly differ from WT muscles in term of weight, structure, and SCs content, muscle regeneration after CTX-induced injury is impaired in Ghrl -/- mice, indicating that ghrelin-derived peptides actively participate in muscle repair. Remarkably, the lack of ghrelin gene impacts SC self-renewal during regeneration. Although we cannot discern the specific Ghrl-derived peptide responsible for such activities, these data indicate that Ghrl contributes to a proper muscle regeneration.

  17. Imaging of athletic pubalgia and core muscle injuries: clinical and therapeutic correlations.

    PubMed

    Palisch, Andrew; Zoga, Adam C; Meyers, William C

    2013-07-01

    Athletes frequently injure their hips and core muscles. Accurate diagnosis and proper treatment of groin pain in the athlete can be tricky, frequently posing vexing problem for trainers and physicians. Clinical presentations of the various hip problems overlap with respect to history and physical examination. This article reviews clinical presentations and magnetic resonance imaging findings specific to the various causes of groin pain in the athlete. The focus is on the core muscle injuries (athletic pubalgia or "sports hernia"). The goal is to raise awareness about the variety of injuries that occur and therapeutic options. Copyright © 2013 Elsevier Inc. All rights reserved.

  18. Selection of reference genes for gene expression studies related to intramuscular fat deposition in Capra hircus skeletal muscle.

    PubMed

    Zhu, Wuzheng; Lin, Yaqiu; Liao, Honghai; Wang, Yong

    2015-01-01

    The identification of suitable reference genes is critical for obtaining reliable results from gene expression studies using quantitative real-time PCR (qPCR) because the expression of reference genes may vary considerably under different experimental conditions. In most cases, however, commonly used reference genes are employed in data normalization without proper validation, which may lead to incorrect data interpretation. Here, we aim to select a set of optimal reference genes for the accurate normalization of gene expression associated with intramuscular fat (IMF) deposition during development. In the present study, eight reference genes (PPIB, HMBS, RPLP0, B2M, YWHAZ, 18S, GAPDH and ACTB) were evaluated by three different algorithms (geNorm, NormFinder and BestKeeper) in two types of muscle tissues (longissimus dorsi muscle and biceps femoris muscle) across different developmental stages. All three algorithms gave similar results. PPIB and HMBS were identified as the most stable reference genes, while the commonly used reference genes 18S and GAPDH were the most variably expressed, with expression varying dramatically across different developmental stages. Furthermore, to reveal the crucial role of appropriate reference genes in obtaining a reliable result, analysis of PPARG expression was performed by normalization to the most and the least stable reference genes. The relative expression levels of PPARG normalized to the most stable reference genes greatly differed from those normalized to the least stable one. Therefore, evaluation of reference genes must be performed for a given experimental condition before the reference genes are used. PPIB and HMBS are the optimal reference genes for analysis of gene expression associated with IMF deposition in skeletal muscle during development.

  19. Redox signaling in skeletal muscle: role of aging and exercise.

    PubMed

    Ji, Li Li

    2015-12-01

    Skeletal muscle contraction is associated with the production of ROS due to altered O2 distribution and flux in the cell. Despite a highly efficient antioxidant defense, a small surplus of ROS, such as hydrogen peroxide and nitric oxide, may serve as signaling molecules to stimulate cellular adaptation to reach new homeostasis largely due to the activation of redox-sensitive signaling pathways. Recent research has highlighted the important role of NF-κB, MAPK, and peroxisome proliferator-activated receptor-γ coactivator-1α, along with other newly discovered signaling pathways, in some of the most vital biological functions, such as mitochondrial biogenesis, antioxidant defense, inflammation, protein turnover, apoptosis, and autophagy. There is evidence that the inability of the cell to maintain proper redox signaling underlies some basic mechanisms of biological aging, during which inflammatory and catabolic pathways eventually predominate. Physical exercise has been shown to activate various redox signaling pathways that control the adaptation and remodeling process. Although this stimulatory effect of exercise declines with aging, it is not completed abolished. Thus, aged people can still benefit from regular physical activity in the appropriate forms and at proper intensity to preserve muscle function. Copyright © 2015 The American Physiological Society.

  20. Obesity Impairs Skeletal Muscle Regeneration Through Inhibition of AMPK.

    PubMed

    Fu, Xing; Zhu, Meijun; Zhang, Shuming; Foretz, Marc; Viollet, Benoit; Du, Min

    2016-01-01

    Obesity is increasing rapidly worldwide and is accompanied by many complications, including impaired muscle regeneration. The obese condition is known to inhibit AMPK activity in multiple tissues. We hypothesized that the loss of AMPK activity is a major reason for hampered muscle regeneration in obese subjects. We found that obesity inhibits AMPK activity in regenerating muscle, which was associated with impeded satellite cell activation and impaired muscle regeneration. To test the mediatory role of AMPKα1, we knocked out AMPKα1 and found that both proliferation and differentiation of satellite cells are reduced after injury and that muscle regeneration is severely impeded, reminiscent of hampered muscle regeneration seen in obese subjects. Transplanted satellite cells with AMPKα1 deficiency had severely impaired myogenic capacity in regenerating muscle fibers. We also found that attenuated muscle regeneration in obese mice is rescued by AICAR, a drug that specifically activates AMPK, but AICAR treatment failed to improve muscle regeneration in obese mice with satellite cell-specific AMPKα1 knockout, demonstrating the importance of AMPKα1 in satellite cell activation and muscle regeneration. In summary, AMPKα1 is a key mediator linking obesity and impaired muscle regeneration, providing a convenient drug target to facilitate muscle regeneration in obese populations. © 2016 by the American Diabetes Association. Readers may use this article as long as the work is properly cited, the use is educational and not for profit, and the work is not altered.

  1. Evaluation of the Hip: History and Physical Examination

    PubMed Central

    2007-01-01

    Examination of a painful hip is fairly concise and reliable at detecting the presence of a hip joint problem. Hip joint disorders often go undetected, leading to the development of secondary disorders. Using a thoughtful approach and methodical examination techniques, most hip joint problems can be detected and a proper treatment strategy can then be implemented based on an accurate diagnosis. The purpose of this clinical commentary is to present a systematic examination process that outlines important components in each of the evaluation areas of history and physical examination (including inspection, measurements, symptom localization, muscle strength, and special tests). PMID:21509142

  2. Chronic inflammation in skeletal muscle impairs satellite cells function during regeneration: can physical exercise restore the satellite cell niche?

    PubMed

    Perandini, Luiz Augusto; Chimin, Patricia; Lutkemeyer, Diego da Silva; Câmara, Niels Olsen Saraiva

    2018-06-01

    Chronic inflammation impairs skeletal muscle regeneration. Although many cells are involved in chronic inflammation, macrophages seem to play an important role in impaired muscle regeneration since these cells are associated with skeletal muscle stem cell (namely, satellite cells) activation and fibro-adipogenic progenitor cell (FAP) survival. Specifically, an imbalance of M1 and M2 macrophages seems to lead to impaired satellite cell activation, and these are the main cells that function during skeletal muscle regeneration, after muscle damage. Additionally, this imbalance leads to the accumulation of FAPs in skeletal muscle, with aberrant production of pro-fibrotic factors (e.g., extracellular matrix components), impairing the niche for proper satellite cell activation and differentiation. Treatments aiming to block the inflammatory pro-fibrotic response are partially effective due to their side effects. Therefore, strategies reverting chronic inflammation into a pro-regenerative pattern are required. In this review, we first describe skeletal muscle resident macrophage ontogeny and homeostasis, and explain how macrophages are replenished after muscle injury. We next discuss the potential role of chronic physical activity and exercise in restoring the M1 and M2 macrophage balance and consequently, the satellite cell niche to improve skeletal muscle regeneration after injury. © 2018 Federation of European Biochemical Societies.

  3. Rhabdomyolysis After Crawling Military Training.

    PubMed

    Atias-Varon, Danit; Sherman, Haggai; Yanovich, Ran; Heled, Yuval

    2017-07-01

    Rhabdomyolysis is a syndrome characterized by muscle necrosis followed by release of intracellular muscle contents into the circulation. Exertional rhabdomyolysis (ER) occurs in response to nonfamiliar and/or excessive, prolonged, or repetitive exercises, with eccentric characteristics. In military populations, due to the type of intense, all out physical loads, ER is a significant threat, particularly when training under heat stress. However, many other etiologies exist, and clinical presentations vary greatly. This heterogeneity may result in difficulty in prevention, diagnosis, and return-to-duty decision. The purpose of this report is to point to a new potential risk factor to an extreme muscle breakdown and ER. In this article, we describe three cases of ER in army recruits after strenuous acts of crawling over hard surfaces during an intense military selection process. The soldiers' creatine phosphokinase levels were markedly raised (44,000, 123,500, and 176,599 IU/L), but none of them developed any significant medical complication. There are two major mechanisms leading to ER: the mechanical pathway which is associated with muscle tension, and the metabolic pathway which is associated with cellular energy depletion. During this military selection process, the intensity of the exercises, and cycles of work and rest are highly controlled, and so are the timings of meals and fluids consumption. Moreover, the soldiers were all at least moderately fit and had participated in strenuous exercise events before. According to years of experience with this military selection process, under similar conditions (exercise volumes and loads) we have experienced along the years minimal medical events. At the same time, and this was the unique part in these case, all patients suffered significantly from mechanical injuries caused by crawling on hard surface which were not a part of the planned selection program. Thus, we suggest that the significant muscle breakdown in the presented cases occurred mostly due to crush injury and was not solely a result of the metabolic strain. Thus, we suggest that the extreme creatine phosphokinase levels may be attributed to a synergistic interaction between low-energy trauma, caused by crawling on hard soil and stones, and exertion. We also emphasize the fact that proper physiological support such as proper hydration may assist in prevention of ER complication such as acute renal failure. Reprint & Copyright © 2017 Association of Military Surgeons of the U.S.

  4. Achieving ideal donor site aesthetics with autologous breast reconstruction

    PubMed Central

    2015-01-01

    The appearance of the donor site following breast reconstruction with abdominal flaps has become an important topic for study. Given the variety of flaps that are derived from the abdomen, decisions are often based on how much muscle and fascia will be harvested. Comparisons between muscle sparing and non-muscle sparing techniques have been performed with outcomes related to function and contour. Closure techniques will vary and include primary fascial closure, mesh reinforcement and additional fascial plication all of which can produce natural and sometimes improved abdominal contours. Proper patient selection however is important. This manuscript will describe various techniques in order to achieve ideal abdominal contour following autologous reconstruction. PMID:26005646

  5. Charley horse

    MedlinePlus

    ... If drinking water alone is not enough, salt tablets or sports drinks may help replace minerals in your body. Outlook (Prognosis) Muscle spasms will get better with rest and time. The outlook is excellent for most people. Learning how to exercise properly with the right training ...

  6. Benefits of dietary phytochemical supplementation on eccentric exercise-induced muscle damage: Is including antioxidants enough?

    PubMed

    Pereira Panza, Vilma Simões; Diefenthaeler, Fernando; da Silva, Edson Luiz

    2015-09-01

    The purpose of this review was to critically discuss studies that investigated the effects of supplementation with dietary antioxidant phytochemicals on recovery from eccentric exercise-induced muscle damage. The performance of physical activities that involve unaccustomed eccentric muscle actions-such as lowering a weight or downhill walking-can result in muscle damage, oxidative stress, and inflammation. These events may be accompanied by muscle weakness and delayed-onset muscle soreness. According to the current evidences, supplementation with dietary antioxidant phytochemicals appears to have the potential to attenuate symptoms associated with eccentric exercise-induced muscle damage. However, there are inconsistencies regarding the relationship between muscle damage and blood markers of oxidative stress and inflammation. Furthermore, the effectiveness of strategies appear to depend on a number of aspects inherent to phytochemical compounds as well as its food matrix. Methodological issues also may interfere with the proper interpretation of supplementation effects. Thus, the study may contribute to updating professionals involved in sport nutrition as well as highlighting the interest of scientists in new perspectives that can widen dietary strategies applied to training. Copyright © 2015 Elsevier Inc. All rights reserved.

  7. Design and fuzzy logic control of an active wrist orthosis.

    PubMed

    Kilic, Ergin; Dogan, Erdi

    2017-08-01

    People who perform excessive wrist movements throughout the day because of their professions have a higher risk of developing lateral and medial epicondylitis. If proper precautions are not taken against these diseases, serious consequences such as job loss and early retirement can occur. In this study, the design and control of an active wrist orthosis that is mobile, powerful and lightweight is presented as a means to avoid the occurrence and/or for the treatment of repetitive strain injuries in an effective manner. The device has an electromyography-based control strategy so that the user's intention always comes first. In fact, the device-user interaction is mainly activated by the electromyography signals measured from the forearm muscles that are responsible for the extension and flexion wrist movements. Contractions of the muscles are detected using surface electromyography sensors, and the desired quantity of the velocity value of the wrist is extracted from a fuzzy logic controller. Then, the actuator system of the device comes into play by conveying the necessary motion support to the wrist. Experimental studies show that the presented device actually reduces the demand on the muscles involved in repetitive strain injuries while performing challenging daily life activities including extension and flexion wrist motions.

  8. Sensory synergy as environmental input integration

    PubMed Central

    Alnajjar, Fady; Itkonen, Matti; Berenz, Vincent; Tournier, Maxime; Nagai, Chikara; Shimoda, Shingo

    2015-01-01

    The development of a method to feed proper environmental inputs back to the central nervous system (CNS) remains one of the challenges in achieving natural movement when part of the body is replaced with an artificial device. Muscle synergies are widely accepted as a biologically plausible interpretation of the neural dynamics between the CNS and the muscular system. Yet the sensorineural dynamics of environmental feedback to the CNS has not been investigated in detail. In this study, we address this issue by exploring the concept of sensory synergy. In contrast to muscle synergy, we hypothesize that sensory synergy plays an essential role in integrating the overall environmental inputs to provide low-dimensional information to the CNS. We assume that sensor synergy and muscle synergy communicate using these low-dimensional signals. To examine our hypothesis, we conducted posture control experiments involving lateral disturbance with nine healthy participants. Proprioceptive information represented by the changes on muscle lengths were estimated by using the musculoskeletal model analysis software SIMM. Changes on muscles lengths were then used to compute sensory synergies. The experimental results indicate that the environmental inputs were translated into the two dimensional signals and used to move the upper limb to the desired position immediately after the lateral disturbance. Participants who showed high skill in posture control were found to be likely to have a strong correlation between sensory and muscle signaling as well as high coordination between the utilized sensory synergies. These results suggest the importance of integrating environmental inputs into suitable low-dimensional signals before providing them to the CNS. This mechanism should be essential when designing the prosthesis' sensory system to make the controller simpler. PMID:25628523

  9. Improving understanding of trigger points and widespread pressure pain sensitivity in tension-type headache patients: clinical implications.

    PubMed

    Fernández-De-Las-Peñas, César; Arendt-Nielsen, Lars

    2017-09-01

    The underlying etiology of tension type headache (TTH) is not understood. The current paper highlights the etiologic role of muscle trigger points (TrPs) to the development and maintenance of central sensitization in TTH and its clinical repercussion for proper management of these patients. Areas covered: A literature search on Pub Med for English-language published papers between 1990 and May 2017 to provide the most updated data on the topic was conducted. Current literature suggests that the referred pain elicited by active trigger points (TrPs) contributes to the manifestations of TTH. There is also evidence supporting that TrPs represent a peripheral source of nociception and thereby a driver in the development of central sensitization. In fact, TrPs have been found to be associated with widespread pressure pain sensitivity in TTH. Temporal and spatial summation of TrP nociception suggests that inactivating TrP in the neck, head and shoulder muscles could help these patients; however, current evidence supporting the therapeutic role of TrPs in TTH is conflicting. Expert commentary: Understanding the role of TrPs in TTH in widespread pain sensitization may help to develop better management regimes and possibly prevent TTH from developing into more chronic conditions.

  10. The laminar structure of the common opossum masseter (Didelphis marsupialis).

    PubMed

    Deguchi, T; Takemura, A; Suwa, F

    2001-03-01

    Using three heads of the common opossum (Didelphis marsupialis), which may be considered to have a primitive mammalian form and therefore be appropriate for this study, the laminar structure of the masseter was investigated. We also attempted a comparative anatomical study of the relationships of food habits to the laminar structures of the masseter, zygomatic arch and mandibular ramus. In the common opossum masseter, a total of six layers, the primary and secondary sublayers of the superficial layer, the intermediate layer, and the primary, secondary and third sublayers of the deep layer as a proper masseter, were observed. These layers showed a typical reverse laminar structure, with the layers of tendons and muscles alternating. The maxillomandibularis and zygomaticomandibularis muscles were observed in one layer each, as an improper masseter. The laminar structure of the common opossum masseter was shown to be more similar to that of carnivorous placental animals than that of the herbivorous red kangaroo, a similar marsupial. In regard to the number of layers in the laminar structure of the masseter, the results of both this study and those of our predecessors' showed that differences in food habits affect the deep layer in the proper masseter of marsupials and placental mammals, and that of the maxillomandibularis muscle of placental mammals in the improper masseter.

  11. Muscle trigger point therapy in tension-type headache.

    PubMed

    Alonso-Blanco, Cristina; de-la-Llave-Rincón, Ana Isabel; Fernández-de-las-Peñas, César

    2012-03-01

    Recent evidence suggests that active trigger points (TrPs) in neck and shoulder muscles contribute to tension-type headache. Active TrPs within the suboccipital, upper trapezius, sternocleidomastoid, temporalis, superior oblique and lateral rectus muscles have been associated with chronic and episodic tension-type headache forms. It seems that the pain profile of this headache may be provoked by referred pain from active TrPs in the posterior cervical, head and shoulder muscles. In fact, the presence of active TrPs has been related to a higher degree of sensitization in tension-type headache. Different therapeutic approaches are proposed for proper TrP management. Preliminary evidence indicates that inactivation of TrPs may be effective for the management of tension-type headache, particularly in a subgroup of patients who may respond positively to this approach. Different treatment approaches targeted to TrP inactivation are discussed in the current paper, focusing on tension-type headache. New studies are needed to further delineate the relationship between muscle TrP inactivation and tension-type headache.

  12. MMP inhibition as a potential method to augment the healing of skeletal muscle and tendon extracellular matrix

    PubMed Central

    Davis, Max E.; Gumucio, Jonathan P.; Sugg, Kristoffer B.; Bedi, Asheesh

    2013-01-01

    The extracellular matrix (ECM) of skeletal muscle and tendon is composed of different types of collagen molecules that play important roles in the transmission of forces throughout the body, and in the repair and regeneration of injured tissues. Fibroblasts are the primary cells in muscle and tendon that maintain, repair, and modify the ECM in response to mechanical loading, injury, and inactivity. Matrix metalloproteinases (MMPs) are enzymes that digest collagen and other structural molecules, which are synthesized and excreted by fibroblasts. MMPs are required for baseline ECM homeostasis, but disruption of MMP regulation due to injury or disease can alter the normal ECM architecture and prevent proper force transmission. Chronic injuries and diseases of muscles and tendons can be severely debilitating, and current therapeutic modalities to enhance healing are quite limited. This review will discuss the mechanobiology of MMPs, and the potential use of MMP inhibitors to improve the treatment of injured and diseased skeletal muscle and tendon tissue. PMID:23640595

  13. Inhibition of the Activin Receptor Type-2B Pathway Restores Regenerative Capacity in Satellite Cell-Depleted Skeletal Muscle.

    PubMed

    Formicola, Luigi; Pannérec, Alice; Correra, Rosa Maria; Gayraud-Morel, Barbara; Ollitrault, David; Besson, Vanessa; Tajbakhsh, Shahragim; Lachey, Jennifer; Seehra, Jasbir S; Marazzi, Giovanna; Sassoon, David A

    2018-01-01

    Degenerative myopathies typically display a decline in satellite cells coupled with a replacement of muscle fibers by fat and fibrosis. During this pathological remodeling, satellite cells are present at lower numbers and do not display a proper regenerative function. Whether a decline in satellite cells directly contributes to disease progression or is a secondary result is unknown. In order to dissect these processes, we used a genetic model to reduce the satellite cell population by ~70-80% which leads to a nearly complete loss of regenerative potential. We observe that while no overt tissue damage is observed following satellite cell depletion, muscle fibers atrophy accompanied by changes in the stem cell niche cellular composition. Treatment of these mice with an Activin receptor type-2B (AcvR2B) pathway blocker reverses muscle fiber atrophy as expected, but also restores regenerative potential of the remaining satellite cells. These findings demonstrate that in addition to controlling fiber size, the AcvR2B pathway acts to regulate the muscle stem cell niche providing a more favorable environment for muscle regeneration.

  14. Notch signal reception is required in vascular smooth muscle cells for ductus arteriosus closure

    PubMed Central

    Krebs, Luke T.; Norton, Christine R.; Gridley, Thomas

    2017-01-01

    Summary The ductus arteriosus is an arterial vessel that shunts blood flow away from the lungs during fetal life, but normally occludes after birth to establish the adult circulation pattern. Failure of the ductus arteriosus to close after birth is termed patent ductus arteriosus, and is one of the most common congenital heart defects. Our previous work demonstrated that vascular smooth muscle cell expression of the Jag1 gene, which encodes a ligand for Notch family receptors, is essential for postnatal closure of the ductus arteriosus in mice. However, it was not known what cell population was responsible for receiving the Jag1-mediated signal. Here we show, using smooth muscle cell-specific deletion of the Rbpj gene, which encodes a transcription factor that mediates all canonical Notch signaling, that Notch signal reception in the vascular smooth muscle cell compartment is required for ductus arteriosus closure. These data indicate that homotypic vascular smooth muscle cell interactions are required for proper contractile smooth muscle cell differentiation and postnatal closure of the ductus arteriosus in mice. PMID:26742650

  15. Soft tissue injury of the lower extremity complicated by type II necrotising fasciitis highlighting the need for astute clinical practices and proper treatment

    PubMed Central

    Sabre, Alexander; Robles, Carlos G; Krisar-White, Patricia; Farricielli, Laurie

    2014-01-01

    Necrotising fasciitis (NF) is a soft tissue bacterial-derived infection characterised clinically by fulminant tissue destruction of the poorly blood-supplied muscle fascia and overlying subcutaneous fat. Although these infections first appear as minor superficial manifestations, they are capricious in nature and often lead to sepsis, organ failure and high mortality. We report a case of type II necrotising fasciitis in a 39-year-old Caucasian female patient who presented to the emergency department with cellulitis of her right foot and lower leg that rapidly developed into tissue necrosis. The patient course is of unique interest due to progressive history over a 104 days time frame with complications following surgical treatments and outpatient follow-up. We highlight the importance of early detection and pertinent clinical awareness from a wide range of medical specialties that were involved in this case, and how this process is critical, in order to properly diagnose and treat NF-derived tissue infections. PMID:24973350

  16. Excess TGF-β mediates muscle weakness associated with bone metastases in mice

    PubMed Central

    Reiken, Steven; Xie, Wenjun; Andersson, Daniel C.; John, Sutha; Chiechi, Antonella; Wright, Laura E.; Umanskaya, Alisa; Niewolna, Maria; Trivedi, Trupti; Charkhzarrin, Sahba; Khatiwada, Pooja; Wronska, Anetta; Haynes, Ashley; Benassi, Maria Serena; Witzmann, Frank A.; Zhen, Gehua; Wang, Xiao; Cao, Xu; Roodman, G. David; Marks, Andrew R.; Guise, Theresa A.

    2015-01-01

    Cancer-associated muscle weakness is poorly understood and there is no effective treatment. Here, we find that seven different mouse models of human osteolytic bone metastases, representing breast, lung and prostate cancers, as well as multiple myeloma exhibited impaired muscle function, implicating a role for the tumor-bone microenvironment in cancer-associated muscle weakness. We found that TGF-β, released from the bone surface as a result of metastasis-induced bone destruction upregulated NADPH oxidase 4 (Nox4), resulting in elevated oxidization of skeletal muscle proteins, including the ryanodine receptor/calcium (Ca2+) release channel (RyR1). The oxidized RyR1 channels leaked Ca2+, resulting in lower intracellular signaling required for proper muscle contraction. We found that inhibiting RyR1 leak, TGF-β signaling, TGF-β release from bone or Nox4 all improved muscle function in mice with MDA-MB-231 bone metastases. Humans with breast cancer- or lung cancer-associated bone metastases also had oxidized skeletal muscle RyR1 that is not seen in normal muscle. Similarly, skeletal muscle weakness, higher levels of Nox4 protein and Nox4 binding to RyR1, and oxidation of RyR1 were present in a mouse model of Camurati-Engelmann disease, a non-malignant metabolic bone disorder associated with increased TGF-β activity. Thus, metastasis-induced TGF-β release from bone contributes to muscle weakness by decreasing Ca2+-induced muscle force production. PMID:26457758

  17. Fatigue and Muscle Atrophy in a Mouse Model of Myasthenia Gravis Is Paralleled by Loss of Sarcolemmal nNOS

    PubMed Central

    Meinen, Sarina; Lin, Shuo; Rüegg, Markus A.; Punga, Anna Rostedt

    2012-01-01

    Myasthenia Gravis (MG) patients suffer from chronic fatigue of skeletal muscles, even after initiation of proper immunosuppressive medication. Since the localization of neuronal nitric oxide synthase (nNOS) at the muscle membrane is important for sustained muscle contraction, we here study the localization of nNOS in muscles from mice with acetylcholine receptor antibody seropositive (AChR+) experimental autoimmune MG (EAMG). EAMG was induced in 8 week-old male mice by immunization with AChRs purified from torpedo californica. Sham-injected wild type mice and mdx mice, a model for Duchenne muscular dystrophy, were used for comparison. At EAMG disease grade 3 (severe myasthenic weakness), the triceps, sternomastoid and masseter muscles were collected for analysis. Unlike in mdx muscles, total nNOS expression as well as the presence of its binding partner syntrophin α-1, were not altered in EAMG. Immunohistological and biochemical analysis showed that nNOS was lost from the muscle membrane and accumulated in the cytosol, which is likely the consequence of blocked neuromuscular transmission. Atrophy of all examined EAMG muscles were supported by up-regulated transcript levels of the atrogenes atrogin-1 and MuRF1, as well as MuRF1 protein, in combination with reduced muscle fiber diameters. We propose that loss of sarcolemmal nNOS provides an additional mechanism for the chronic muscle fatigue and secondary muscle atrophy in EAMG and MG. PMID:22952904

  18. Effect of mat pilates exercise on postural alignment and body composition of middle-aged women.

    PubMed

    Lee, Hyo Taek; Oh, Hyun Ok; Han, Hui Seung; Jin, Kwang Youn; Roh, Hyo Lyun

    2016-06-01

    [Purpose] This study attempted to examine whether Pilates is an effective exercise for improving the postural alignment and health of middle-aged women. [Subjects and Methods] The participants in this study were 36 middle-aged women (20 in the experimental group, 16 in the control group). The experimental group participated in Pilates exercise sessions three times a week for 12 weeks. Body alignment and composition measurements before and after applying the Pilates exercise program were performed with a body composition analyzer and a three-dimensional scanner. [Results] Postural alignment in the sagittal and horizontal planes was enhanced in the Pilates exercise group. Trunk alignment showed correlations with body fat and muscle mass. [Conclusion] The Pilates exercises are performed symmetrically and strengthen the deep muscles. Moreover, the results showed that muscle mass was correlated with trunk postural alignment and that the proper amount of muscle is critical in maintaining trunk postural alignment.

  19. A literature review of studies evaluating gluteus maximus and gluteus medius activation during rehabilitation exercises.

    PubMed

    Reiman, Michael P; Bolgla, Lori A; Loudon, Janice K

    2012-05-01

    Recently, clinicians have focused much attention on the importance of hip strength for the rehabilitation of not only patients with low back pain but also lower extremity pathology. Properly designing a rehabilitation program for the gluteal muscles requires careful consideration of biomechanical principles, such as length of the external moment arm, gravity, and subject positioning. Understanding the anatomy and function of these muscles also is essential. Electromyography (EMG) provides a useful means to determine muscle activation levels during specific exercises. Descriptions of specific exercises, as they relate to the gluteal muscles, are described. The specific performance of these exercises, the reliability of such EMG measures, and descriptive figures are also detailed. Of utmost importance to practicing clinicians is the interpretation of such data and how it can be best used in exercise prescription when formulating a treatment plan.

  20. Nrk2b-mediated NAD+ production regulates cell adhesion and is required for muscle morphogenesis in vivo

    PubMed Central

    Goody, Michelle F.; Kelly, Meghan W.; Lessard, Kevin N.; Khalil, Andre; Henry, Clarissa A.

    2010-01-01

    Cell-matrix adhesion complexes (CMACs) play fundamental roles during morphogenesis. Given the ubiquitous nature of CMACs and their roles in many cellular processes, one question is how specificity of CMAC function is modulated. The clearly defined cell behaviors that generate segmentally reiterated axial skeletal muscle during zebrafish development comprise an ideal system with which to investigate CMAC function during morphogenesis. We found that Nicotinamide riboside kinase 2b (Nrk2b) cell autonomously modulates the molecular composition of CMACs in vivo. Nrk2b is required for normal Laminin polymerization at the myotendinous junction (MTJ). In Nrk2b-deficient embryos, at MTJ loci where Laminin is not properly polymerized, muscle fibers elongate into adjacent myotomes and are abnormally long. In yeast and human cells, Nrk2 phosphorylates Nicotinamide Riboside and generates NAD+ through an alternative salvage pathway. Exogenous NAD+ treatment rescues MTJ development in Nrk2b-deficient embryos, but not in laminin mutant embryos. Both Nrk2b and Laminin are required for localization of Paxillin, but not β-Dystroglycan, to CMACs at the MTJ. Overexpression of Paxillin in Nrk2b-deficient embryos is sufficient to rescue MTJ integrity. Taken together, these data show that Nrk2b plays a specific role in modulating subcellular localization of discrete CMAC components that in turn play roles in musculoskeletal development. Furthermore, these data suggest that Nrk2b-mediated synthesis of NAD+ is functionally upstream of Laminin adhesion and Paxillin subcellular localization during MTJ development. These results indicate a previously unrecognized complexity to CMAC assembly in vivo and also elucidate a novel role for NAD+ during morphogenesis. PMID:20566368

  1. Non-linear dynamics in muscle fatigue and strength model during maximal self-perceived elbow extensors training.

    PubMed

    Gacesa, Jelena Popadic; Ivancevic, Tijana; Ivancevic, Nik; Paljic, Feodora Popic; Grujic, Nikola

    2010-08-26

    Our aim was to determine the dynamics in muscle strength increase and fatigue development during repetitive maximal contraction in specific maximal self-perceived elbow extensors training program. We will derive our functional model for m. triceps brachii in spirit of traditional Hill's two-component muscular model and after fitting our data, develop a prediction tool for this specific training system. Thirty-six healthy young men (21 +/- 1.0 y, BMI 25.4 +/- 7.2 kg/m(2)), who did not take part in any formal resistance exercise regime, volunteered for this study. The training protocol was performed on the isoacceleration dynamometer, lasted for 12 weeks, with a frequency of five sessions per week. Each training session included five sets of 10 maximal contractions (elbow extensions) with a 1 min resting period between each set. The non-linear dynamic system model was used for fitting our data in conjunction with the Levenberg-Marquardt regression algorithm. As a proper dynamical system, our functional model of m. triceps brachii can be used for prediction and control. The model can be used for the predictions of muscular fatigue in a single series, the cumulative daily muscular fatigue and the muscular growth throughout the training process. In conclusion, the application of non-linear dynamics in this particular training model allows us to mathematically explain some functional changes in the skeletal muscle as a result of its adaptation to programmed physical activity-training. 2010 Elsevier Ltd. All rights reserved.

  2. Upper extremity weightlifting injuries: Diagnosis and management.

    PubMed

    Golshani, Kayvon; Cinque, Mark E; O'Halloran, Peter; Softness, Kenneth; Keeling, Laura; Macdonell, J Ryan

    2018-03-01

    Common upper extremity injuries in resistance training athletes include muscle strains, ligament sprains, pectoralis major tendon ruptures, distal biceps tendon ruptures, and chronic shoulder pain and capsulolabral injuries. While each injury is unique in its specific anatomic location and mechanism, each is preventable with proper exercise technique, safety and maintenance of muscle balance. Conservative treatment is the therapeutic modality of choice and these injuries generally resolve with workout modification, appropriate recovery, anti-inflammatory medication, and physical therapy. If conservative treatment fails, surgical intervention is often successful and can return the weightlifter to a level of performance near their pre-injury level.

  3. Diversification of the muscle proteome through alternative splicing.

    PubMed

    Nakka, Kiran; Ghigna, Claudia; Gabellini, Davide; Dilworth, F Jeffrey

    2018-03-06

    Skeletal muscles express a highly specialized proteome that allows the metabolism of energy sources to mediate myofiber contraction. This muscle-specific proteome is partially derived through the muscle-specific transcription of a subset of genes. Surprisingly, RNA sequencing technologies have also revealed a significant role for muscle-specific alternative splicing in generating protein isoforms that give specialized function to the muscle proteome. In this review, we discuss the current knowledge with respect to the mechanisms that allow pre-mRNA transcripts to undergo muscle-specific alternative splicing while identifying some of the key trans-acting splicing factors essential to the process. The importance of specific splicing events to specialized muscle function is presented along with examples in which dysregulated splicing contributes to myopathies. Though there is now an appreciation that alternative splicing is a major contributor to proteome diversification, the emergence of improved "targeted" proteomic methodologies for detection of specific protein isoforms will soon allow us to better appreciate the extent to which alternative splicing modifies the activity of proteins (and their ability to interact with other proteins) in the skeletal muscle. In addition, we highlight a continued need to better explore the signaling pathways that contribute to the temporal control of trans-acting splicing factor activity to ensure specific protein isoforms are expressed in the proper cellular context. An understanding of the signal-dependent and signal-independent events driving muscle-specific alternative splicing has the potential to provide us with novel therapeutic strategies to treat different myopathies.

  4. Disruption of both nesprin 1 and desmin results in nuclear anchorage defects and fibrosis in skeletal muscle

    PubMed Central

    Chapman, Mark A.; Zhang, Jianlin; Banerjee, Indroneal; Guo, Ling T.; Zhang, Zhiwei; Shelton, G. Diane; Ouyang, Kunfu; Lieber, Richard L.; Chen, Ju

    2014-01-01

    Proper localization and anchorage of nuclei within skeletal muscle is critical for cellular function. Alterations in nuclear anchoring proteins modify a number of cellular functions including mechanotransduction, nuclear localization, chromatin positioning/compaction and overall organ function. In skeletal muscle, nesprin 1 and desmin are thought to link the nucleus to the cytoskeletal network. Thus, we hypothesize that both of these factors play a key role in skeletal muscle function. To examine this question, we utilized global ablation murine models of nesprin 1, desmin or both nesprin 1 and desmin. Herein, we have created the nesprin-desmin double-knockout (DKO) mouse, eliminating a major fraction of nuclear-cytoskeletal connections and enabling understanding of the importance of nuclear anchorage in skeletal muscle. Globally, DKO mice are marked by decreased lifespan, body weight and muscle strength. With regard to skeletal muscle, DKO myonuclear anchorage was dramatically decreased compared with wild-type, nesprin 1−/− and desmin−/− mice. Additionally, nuclear-cytoskeletal strain transmission was decreased in DKO skeletal muscle. Finally, loss of nuclear anchorage in DKO mice coincided with a fibrotic response as indicated by increased collagen and extracellular matrix deposition and increased passive mechanical properties of muscle bundles. Overall, our data demonstrate that nesprin 1 and desmin serve redundant roles in nuclear anchorage and that the loss of nuclear anchorage in skeletal muscle results in a pathological response characterized by increased tissue fibrosis and mechanical stiffness. PMID:24943590

  5. Calmodulin Methyltransferase Is Required for Growth, Muscle Strength, Somatosensory Development and Brain Function

    PubMed Central

    Haziza, Sitvanit; Magnani, Roberta; Lan, Dima; Keinan, Omer; Saada, Ann; Hershkovitz, Eli; Yanay, Nurit; Cohen, Yoram; Nevo, Yoram; Houtz, Robert L.; Sheffield, Val C.; Golan, Hava; Parvari, Ruti

    2015-01-01

    Calmodulin lysine methyl transferase (CaM KMT) is ubiquitously expressed and highly conserved from plants to vertebrates. CaM is frequently trimethylated at Lys-115, however, the role of CaM methylation in vertebrates has not been studied. CaM KMT was found to be homozygously deleted in the 2P21 deletion syndrome that includes 4 genes. These patients present with cystinuria, severe intellectual disabilities, hypotonia, mitochondrial disease and facial dysmorphism. Two siblings with deletion of three of the genes included in the 2P21 deletion syndrome presented with cystinuria, hypotonia, a mild/moderate mental retardation and a respiratory chain complex IV deficiency. To be able to attribute the functional significance of the methylation of CaM in the mouse and the contribution of CaM KMT to the clinical presentation of the 2p21deletion patients, we produced a mouse model lacking only CaM KMT with deletion borders as in the human 2p21deletion syndrome. No compensatory activity for CaM methylation was found. Impairment of complexes I and IV, and less significantly III, of the mitochondrial respiratory chain was more pronounced in the brain than in muscle. CaM KMT is essential for normal body growth and somatosensory development, as well as for the proper functioning of the adult mouse brain. Developmental delay was demonstrated for somatosensory function and for complex behavior, which involved both basal motor function and motivation. The mutant mice also had deficits in motor learning, complex coordination and learning of aversive stimuli. The mouse model contributes to the evaluation of the role of methylated CaM. CaM methylation appears to have a role in growth, muscle strength, somatosensory development and brain function. The current study has clinical implications for human patients. Patients presenting slow growth and muscle weakness that could result from a mitochondrial impairment and mental retardation should be considered for sequence analysis of the CaM KMT gene. PMID:26247364

  6. Calmodulin Methyltransferase Is Required for Growth, Muscle Strength, Somatosensory Development and Brain Function.

    PubMed

    Haziza, Sitvanit; Magnani, Roberta; Lan, Dima; Keinan, Omer; Saada, Ann; Hershkovitz, Eli; Yanay, Nurit; Cohen, Yoram; Nevo, Yoram; Houtz, Robert L; Sheffield, Val C; Golan, Hava; Parvari, Ruti

    2015-08-01

    Calmodulin lysine methyl transferase (CaM KMT) is ubiquitously expressed and highly conserved from plants to vertebrates. CaM is frequently trimethylated at Lys-115, however, the role of CaM methylation in vertebrates has not been studied. CaM KMT was found to be homozygously deleted in the 2P21 deletion syndrome that includes 4 genes. These patients present with cystinuria, severe intellectual disabilities, hypotonia, mitochondrial disease and facial dysmorphism. Two siblings with deletion of three of the genes included in the 2P21 deletion syndrome presented with cystinuria, hypotonia, a mild/moderate mental retardation and a respiratory chain complex IV deficiency. To be able to attribute the functional significance of the methylation of CaM in the mouse and the contribution of CaM KMT to the clinical presentation of the 2p21deletion patients, we produced a mouse model lacking only CaM KMT with deletion borders as in the human 2p21deletion syndrome. No compensatory activity for CaM methylation was found. Impairment of complexes I and IV, and less significantly III, of the mitochondrial respiratory chain was more pronounced in the brain than in muscle. CaM KMT is essential for normal body growth and somatosensory development, as well as for the proper functioning of the adult mouse brain. Developmental delay was demonstrated for somatosensory function and for complex behavior, which involved both basal motor function and motivation. The mutant mice also had deficits in motor learning, complex coordination and learning of aversive stimuli. The mouse model contributes to the evaluation of the role of methylated CaM. CaM methylation appears to have a role in growth, muscle strength, somatosensory development and brain function. The current study has clinical implications for human patients. Patients presenting slow growth and muscle weakness that could result from a mitochondrial impairment and mental retardation should be considered for sequence analysis of the CaM KMT gene.

  7. Organohalogen concentrations and feeding status in Atlantic salmon (Salmo salar L.) of the Baltic Sea during the spawning run.

    PubMed

    Vuorinen, Pekka J; Kiviranta, Hannu; Koistinen, Jaana; Pöyhönen, Outi; Ikonen, Erkki; Keinänen, Marja

    2014-01-15

    Changes in the concentrations of polychlorinated dibenzo-p-dioxins (PCDDs), dibenzofurans (PCDFs), and biphenyls (PCBs) and polybrominated diphenyl ethers (PBDEs) in Baltic salmon muscle were studied during the spawning migration from the southern Baltic Sea to rivers flowing into the northern Gulf of Bothnia and during the spawning period. The aim was to obtain information to facilitate the arrangement of salmon fisheries such that the human dioxin intake is taken into account. The EC maximum allowable total toxic equivalent concentration (WHO-TEQPCDD/F+PCB) was exceeded in the muscle of the majority of the migrating salmon, except in the Baltic Proper. The fresh-weight-based concentrations of all toxicant groups in salmon tended to be the lowest in the Baltic Proper and the Northern Quark, and all toxicant concentrations, except PCDDs and PCDFs, were significantly higher in the spawning salmon than in the salmon caught during the spawning run. The fat content of the salmon muscle decreased by 60% during the spawning run, and the lipid-based total toxicant concentrations were consequently 4.2-6.2 times higher during the spawning period than during the spawning migration. However, the toxicants were concentrated just before spawning, and thus there is no essential difference related to whether the salmon are caught in the sea or the recreational river fishery. © 2013.

  8. Implications of Anomalous Pectoralis Muscle in Reconstructive Breast Surgery: The Oblique Pectoralis Anterior

    PubMed Central

    Huber, Katherine Marie; Boyd, Travis Guthrie; Quillo, Amy R; Wilhelmi, Bradon J

    2012-01-01

    Introduction: Many case reports have described anatomical variants of the pectoralis muscles. However, there is a paucity of published literature on the consequence of such presentations in reconstructive breast surgery. Methods: A 45-year-old female patient with breast cancer presented for left mastectomy and immediate reconstruction with tissue expander. During mastectomy, she was noted to have an extra muscle anterior to her pectoralis major muscle. This variant had not previously been described in the literature and was therefore named the oblique pectoralis anterior. After inspection of the aberrant musculature, the decision was made to release the inferolateral insertion of the accessory muscle with the inferior edge of pectoralis major. An adequate pocket for the expander was created. Results: After routine expansion and implant exchange, muscular coverage of the implant from pectoralis major and the oblique pectoralis anterior muscle approximated 70%. The patient was left with good symmetry and a cosmetic result, despite the challenges presented by her anomalous chest wall musculature. Discussion: Prior knowledge of the various anatomic aberrations described in the literature can prepare a surgeon to properly incorporate and utilize the variant anatomy, should it be encountered, to benefit the outcome of the operation. PMID:22977679

  9. Inhibition of the Activin Receptor Type-2B Pathway Restores Regenerative Capacity in Satellite Cell-Depleted Skeletal Muscle

    PubMed Central

    Formicola, Luigi; Pannérec, Alice; Correra, Rosa Maria; Gayraud-Morel, Barbara; Ollitrault, David; Besson, Vanessa; Tajbakhsh, Shahragim; Lachey, Jennifer; Seehra, Jasbir S.; Marazzi, Giovanna; Sassoon, David A.

    2018-01-01

    Degenerative myopathies typically display a decline in satellite cells coupled with a replacement of muscle fibers by fat and fibrosis. During this pathological remodeling, satellite cells are present at lower numbers and do not display a proper regenerative function. Whether a decline in satellite cells directly contributes to disease progression or is a secondary result is unknown. In order to dissect these processes, we used a genetic model to reduce the satellite cell population by ~70–80% which leads to a nearly complete loss of regenerative potential. We observe that while no overt tissue damage is observed following satellite cell depletion, muscle fibers atrophy accompanied by changes in the stem cell niche cellular composition. Treatment of these mice with an Activin receptor type-2B (AcvR2B) pathway blocker reverses muscle fiber atrophy as expected, but also restores regenerative potential of the remaining satellite cells. These findings demonstrate that in addition to controlling fiber size, the AcvR2B pathway acts to regulate the muscle stem cell niche providing a more favorable environment for muscle regeneration. PMID:29881353

  10. Exercise in muscle glycogen storage diseases.

    PubMed

    Preisler, Nicolai; Haller, Ronald G; Vissing, John

    2015-05-01

    Glycogen storage diseases (GSD) are inborn errors of glycogen or glucose metabolism. In the GSDs that affect muscle, the consequence of a block in skeletal muscle glycogen breakdown or glucose use, is an impairment of muscular performance and exercise intolerance, owing to 1) an increase in glycogen storage that disrupts contractile function and/or 2) a reduced substrate turnover below the block, which inhibits skeletal muscle ATP production. Immobility is associated with metabolic alterations in muscle leading to an increased dependence on glycogen use and a reduced capacity for fatty acid oxidation. Such changes may be detrimental for persons with GSD from a metabolic perspective. However, exercise may alter skeletal muscle substrate metabolism in ways that are beneficial for patients with GSD, such as improving exercise tolerance and increasing fatty acid oxidation. In addition, a regular exercise program has the potential to improve general health and fitness and improve quality of life, if executed properly. In this review, we describe skeletal muscle substrate use during exercise in GSDs, and how blocks in metabolic pathways affect exercise tolerance in GSDs. We review the studies that have examined the effect of regular exercise training in different types of GSD. Finally, we consider how oral substrate supplementation can improve exercise tolerance and we discuss the precautions that apply to persons with GSD that engage in exercise.

  11. Slit2 as a β-catenin/Ctnnb1-dependent retrograde signal for presynaptic differentiation

    PubMed Central

    Wu, Haitao; Barik, Arnab; Lu, Yisheng; Shen, Chengyong; Bowman, Andrew; Li, Lei; Sathyamurthy, Anupama; Lin, Thiri W; Xiong, Wen-Cheng; Mei, Lin

    2015-01-01

    Neuromuscular junction formation requires proper interaction between motoneurons and muscle cells. β-Catenin (Ctnnb1) in muscle is critical for motoneuron differentiation; however, little is known about the relevant retrograde signal. In this paper, we dissected which functions of muscle Ctnnb1 are critical by an in vivo transgenic approach. We show that Ctnnb1 mutant without the transactivation domain was unable to rescue presynaptic deficits of Ctnnb1 mutation, indicating the involvement of transcription regulation. On the other hand, the cell-adhesion function of Ctnnb1 is dispensable. We screened for proteins that may serve as a Ctnnb1-directed retrograde factor and identified Slit2. Transgenic expression of Slit2 specifically in the muscle was able to diminish presynaptic deficits by Ctnnb1 mutation in mice. Slit2 immobilized on beads was able to induce synaptophysin puncta in axons of spinal cord explants. Together, these observations suggest that Slit2 serves as a factor utilized by muscle Ctnnb1 to direct presynaptic differentiation. DOI: http://dx.doi.org/10.7554/eLife.07266.001 PMID:26159615

  12. Double muscling in cattle due to mutations in the myostatin gene

    PubMed Central

    McPherron, Alexandra C.; Lee, Se-Jin

    1997-01-01

    Myostatin (GDF-8) is a member of the transforming growth factor β superfamily of secreted growth and differentiation factors that is essential for proper regulation of skeletal muscle mass in mice. Here we report the myostatin sequences of nine other vertebrate species and the identification of mutations in the coding sequence of bovine myostatin in two breeds of double-muscled cattle, Belgian Blue and Piedmontese, which are known to have an increase in muscle mass relative to conventional cattle. The Belgian Blue myostatin sequence contains an 11-nucleotide deletion in the third exon which causes a frameshift that eliminates virtually all of the mature, active region of the molecule. The Piedmontese myostatin sequence contains a missense mutation in exon 3, resulting in a substitution of tyrosine for an invariant cysteine in the mature region of the protein. The similarity in phenotypes of double-muscled cattle and myostatin null mice suggests that myostatin performs the same biological function in these two species and is a potentially useful target for genetic manipulation in other farm animals. PMID:9356471

  13. Ultrasonography of the cervical muscles: a critical review of the literature.

    PubMed

    Javanshir, Khodabakhsh; Amiri, Mohsen; Mohseni-Bandpei, Mohammad Ali; Rezasoltani, Asghar; Fernández-de-las-Peñas, César

    2010-10-01

    This article presents a review of the literature concerning size measurement of cervical muscles using real-time ultrasound imaging (RUSI) in patients with neck pain and in healthy populations. A literature search from 1996 to December 2009 making use of Science Direct and PubMed databases was conducted. Medical Subject Headings and other terms were as follows: ultrasonography, cervical, muscle, neck, size, pain, validity, reliability, neck pain, and healthy subjects. We included studies using RUSI for assessing cervical paraspinal muscles both in healthy subjects and in patients with neck pain. We assessed muscles investigated and the reliability and validity of the method used. The literature search yielded 16 studies. Twelve (75%) studies assessed the posterior muscles, whereas in the remaining 4 (25%), the anterior muscles were studied. Three studies quantified the size of the muscles during contraction; 3 assessed the relationship between cross-sectional area, linear dimensions, and anthropometric variables; 1 evaluated the training-induced changes in muscle size; 1 assessed the differences in muscle shape and cross-sectional area of cervical multifidus between patients with chronic neck pain and controls; 8 studies looked at the reliability of using RUSI in patients with neck pain or healthy subjects; and 3 studies evaluated the validity of RUSI compared with magnetic resonance imaging. This literature review has shown that there are not sufficient studies for assessing neck muscles with RUSI. It seems that using constant landmarks, knowledge of anatomy and function of target muscle, and a proper definition of muscle borders can help to take a clear image. Standardized position of the subject, correct placement of the transducer, and using multiple RUSI for statistical analyses may improve results. Copyright © 2010 National University of Health Sciences. Published by Mosby, Inc. All rights reserved.

  14. Muscle activation timing and balance response in chronic lower back pain patients with associated radiculopathy.

    PubMed

    Frost, Lydia R; Brown, Stephen H M

    2016-02-01

    Patients with chronic low back pain and associated radiculopathy present with neuromuscular symptoms both in their lower back and down their leg; however, investigations of muscle activation have so far been isolated to the lower back. During balance perturbations, it is necessary that lower limb muscles activate with proper timing and sequencing along with the lower back musculature to efficiently regain balance control. Patients with chronic low back pain and radiculopathy and matched controls completed a series of balance perturbations (rapid bilateral arm raise, unanticipated and anticipated sudden loading, and rapid rise to toe). Muscle activation timing and sequencing as well as kinetic response to the perturbations were analyzed. Patients had significantly delayed lower limb muscle activation in rapid arm raise trials as compared to controls. In sudden loading trials, muscle activation timing was not delayed in patients; however, some differences in posterior chain muscle activation sequencing were present. Patients demonstrated less anterior-posterior movement in unanticipated sudden loading trials, and greater medial-lateral movement in rise to toe trials. Patients with low back pain and radiculopathy demonstrated some significant differences from control participants in terms of muscle activation timing, sequencing, and overall balance control. The presence of differences between patients and controls, specifically in the lower limb, indicates that radiculopathy may play a role in altering balance control in these patients. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Effects of exercise on obesity-induced mitochondrial dysfunction in skeletal muscle

    PubMed Central

    Heo, Jun-Won; No, Mi-Hyun; Park, Dong-Ho; Kang, Ju-Hee; Seo, Dae Yun; Han, Jin; Neufer, P. Darrell

    2017-01-01

    Obesity is known to induce inhibition of glucose uptake, reduction of lipid metabolism, and progressive loss of skeletal muscle function, which are all associated with mitochondrial dysfunction in skeletal muscle. Mitochondria are dynamic organelles that regulate cellular metabolism and bioenergetics, including ATP production via oxidative phosphorylation. Due to these critical roles of mitochondria, mitochondrial dysfunction results in various diseases such as obesity and type 2 diabetes. Obesity is associated with impairment of mitochondrial function (e.g., decrease in O2 respiration and increase in oxidative stress) in skeletal muscle. The balance between mitochondrial fusion and fission is critical to maintain mitochondrial homeostasis in skeletal muscle. Obesity impairs mitochondrial dynamics, leading to an unbalance between fusion and fission by favorably shifting fission or reducing fusion proteins. Mitophagy is the catabolic process of damaged or unnecessary mitochondria. Obesity reduces mitochondrial biogenesis in skeletal muscle and increases accumulation of dysfunctional cellular organelles, suggesting that mitophagy does not work properly in obesity. Mitochondrial dysfunction and oxidative stress are reported to trigger apoptosis, and mitochondrial apoptosis is induced by obesity in skeletal muscle. It is well known that exercise is the most effective intervention to protect against obesity. Although the cellular and molecular mechanisms by which exercise protects against obesity-induced mitochondrial dysfunction in skeletal muscle are not clearly elucidated, exercise training attenuates mitochondrial dysfunction, allows mitochondria to maintain the balance between mitochondrial dynamics and mitophagy, and reduces apoptotic signaling in obese skeletal muscle. PMID:29200899

  16. Myogenic Progenitor Cells Control Extracellular Matrix Production by Fibroblasts during Skeletal Muscle Hypertrophy.

    PubMed

    Fry, Christopher S; Kirby, Tyler J; Kosmac, Kate; McCarthy, John J; Peterson, Charlotte A

    2017-01-05

    Satellite cells, the predominant stem cell population in adult skeletal muscle, are activated in response to hypertrophic stimuli and give rise to myogenic progenitor cells (MPCs) within the extracellular matrix (ECM) that surrounds myofibers. This ECM is composed largely of collagens secreted by interstitial fibrogenic cells, which influence satellite cell activity and muscle repair during hypertrophy and aging. Here we show that MPCs interact with interstitial fibrogenic cells to ensure proper ECM deposition and optimal muscle remodeling in response to hypertrophic stimuli. MPC-dependent ECM remodeling during the first week of a growth stimulus is sufficient to ensure long-term myofiber hypertrophy. MPCs secrete exosomes containing miR-206, which represses Rrbp1, a master regulator of collagen biosynthesis, in fibrogenic cells to prevent excessive ECM deposition. These findings provide insights into how skeletal stem and progenitor cells interact with other cell types to actively regulate their extracellular environments for tissue maintenance and adaptation. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. MEF2 responds to multiple calcium-regulated signals in the control of skeletal muscle fiber type

    PubMed Central

    Wu, Hai; Naya, Francisco J.; McKinsey, Timothy A.; Mercer, Brian; Shelton, John M.; Chin, Eva R.; Simard, Alain R.; Michel, Robin N.; Bassel-Duby, Rhonda; Olson, Eric N.; Williams, R. Sanders

    2000-01-01

    Different patterns of motor nerve activity drive distinctive programs of gene transcription in skeletal muscles, thereby establishing a high degree of metabolic and physiological specialization among myofiber subtypes. Recently, we proposed that the influence of motor nerve activity on skeletal muscle fiber type is transduced to the relevant genes by calcineurin, which controls the functional activity of NFAT (nuclear family of activated T cell) proteins. Here we demonstrate that calcineurin-dependent gene regulation in skeletal myocytes is mediated also by MEF2 transcription factors, and is integrated with additional calcium-regulated signaling inputs, specifically calmodulin-dependent protein kinase activity. In skeletal muscles of transgenic mice, both NFAT and MEF2 binding sites are necessary for properly regulated function of a slow fiber-specific enhancer, and either forced expression of activated calcineurin or motor nerve stimulation up-regulates a MEF2-dependent reporter gene. These results provide new insights into the molecular mechanisms by which specialized characteristics of skeletal myofiber subtypes are established and maintained. PMID:10790363

  18. Effect of mat pilates exercise on postural alignment and body composition of middle-aged women

    PubMed Central

    Lee, Hyo Taek; Oh, Hyun Ok; Han, Hui Seung; Jin, Kwang Youn; Roh, Hyo Lyun

    2016-01-01

    [Purpose] This study attempted to examine whether Pilates is an effective exercise for improving the postural alignment and health of middle-aged women. [Subjects and Methods] The participants in this study were 36 middle-aged women (20 in the experimental group, 16 in the control group). The experimental group participated in Pilates exercise sessions three times a week for 12 weeks. Body alignment and composition measurements before and after applying the Pilates exercise program were performed with a body composition analyzer and a three-dimensional scanner. [Results] Postural alignment in the sagittal and horizontal planes was enhanced in the Pilates exercise group. Trunk alignment showed correlations with body fat and muscle mass. [Conclusion] The Pilates exercises are performed symmetrically and strengthen the deep muscles. Moreover, the results showed that muscle mass was correlated with trunk postural alignment and that the proper amount of muscle is critical in maintaining trunk postural alignment. PMID:27390396

  19. Dealing with time-varying recruitment and length in Hill-type muscle models.

    PubMed

    Hamouda, Ahmed; Kenney, Laurence; Howard, David

    2016-10-03

    Hill-type muscle models are often used in muscle simulation studies and also in the design and virtual prototyping of functional electrical stimulation systems. These models have to behave in a sufficiently realistic manner when recruitment level and contractile element (CE) length change continuously. For this reason, most previous models have used instantaneous CE length in the muscle׳s force vs. length (F-L) relationship, but thereby neglect the instability problem on the descending limb (i.e. region of negative slope) of the F-L relationship. Ideally CE length at initial recruitment should be used but this requires a multiple-motor-unit muscle model to properly account for different motor-units having different initial lengths when recruited. None of the multiple-motor-unit models reported in the literature have used initial CE length in the muscle׳s F-L relationship, thereby also neglecting the descending limb instability problem. To address the problem of muscle modelling for continuously varying recruitment and length, and hence different values of initial CE length for different motor-units, a new multiple-motor-unit muscle model is presented which considers the muscle to comprise 1000 individual Hill-type virtual motor-units, which determine the total isometric force. Other parts of the model (F-V relationship and passive elements) are not dependent on the initial CE length and, therefore, they are implemented for the muscle as a whole rather than for the individual motor-units. The results demonstrate the potential errors introduced by using a single-motor-unit model and also the instantaneous CE length in the F-L relationship, both of which are common in FES control studies. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Transcriptional response of skeletal muscle to a low-protein gestation diet in porcine offspring accumulates in growth- and cell cycle-regulating pathways.

    PubMed

    Oster, Michael; Murani, Eduard; Metges, Cornelia C; Ponsuksili, Siriluck; Wimmers, Klaus

    2012-08-17

    Inadequate maternal protein supply during gestation represents an environmental factor that affects physiological signaling pathways with long-term consequences for growth, function, and structure of various tissues. Hypothesizing that the offspring's transcriptome is persistently altered by maternal diets, we used a porcine model to monitor the longitudinal expression changes in muscle to identify pathways relevant to fetal initiation of postnatal growth and development. German Landrace gilts were fed isoenergetic gestational diets containing 6.5% (LP) or 12.1% protein. The longissimus dorsi samples were collected from offspring at 94 days postconception (dpc) and 1, 28, and 188 days postnatum (dpn) for expression profiling. At 94 dpc, 1 dpn, and 28 dpn relatively few transcripts (<130) showed an altered abundance between the dietary groups. In fact, at 94 dpc genes of G2/M checkpoint regulation and mitotic roles of Polo-like kinases showed lowered transcript abundance in LP. At 188 dpn 677 transcripts were altered including those related to oxidative phosphorylation, citrate cycle, fatty acid metabolism (higher abundance in LP) and cell cycle regulation (lower abundance in LP). Correspondingly, transcriptional alterations during pre and postnatal development differed considerably among dietary groups, particularly for genes related to cell cycle regulation (G1/S and G2/M checkpoint regulation; cyclines), growth factor signaling (GH, IGF1, mTOR, RAN, VEGF, INSR), lipid metabolism, energy metabolism, and nucleic acid metabolism. In skeletal muscle, fetal programming related to maternal LP diets disturbed gene expression in growth-related pathways into adulthood. Diet-dependent gene expression may hamper proper development, thereby affecting signaling pathways related to energy utilization.

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pavlin, C.J.; Japp, B.; Simpson, E.R.

    There is an assumption that radioactive plaques placed at surgery are, and will remain, in proper relationship to the base of the tumor. The plaque dose is calculated based on this assumption. In fact, factors such as loose sutures, improper diameter estimations, pressure from adjacent rectus muscles, and intervening tissue (oblique muscles) can compromise this relationship. Ultrasound provides a practical method of imaging the tumor and plaque simultaneously. The authors have used postoperative ultrasound to monitor the accuracy of iodine-125 plaque placement in nine cases. Detection of eccentrically placed and malpositioned plaques provides valuable insight which can be used tomore » refine surgical technique. Detection of plaque tilting by oblique muscles can serve as a basis for recalculating dosage. The relationship of plaque margins to vital ocular structures such as the optic nerve can also be determined by ultrasound.« less

  2. [Post-Lyme disease syndrome].

    PubMed

    Błaut-Jurkowska, Justyna; Jurkowski, Marcin

    2016-02-01

    Lyme disease is a chronic infectious disease caused by the bacteria, spirochete of the Borrelia type. Skin, nervous system, musculoskeletal system and heart may be involved in the course of the disease. The prognosis for properly treated Lyme disease is usually good. However, in about 5% of patients so called Post-Lyme disease syndrome (PLSD) develops. It is defined as a syndrome of subjective symptoms persisting despite proper treatment of Borrelia burgdorferi infection. The most common symptoms include: fatigue, muscle and joint pain, and problems with memory and concentration. Pathogenesis of PLDS remains unknown. The differential diagnosis should include neurological, rheumatic and mental diseases. Till now there is no causative treatment of PLDS. In relieving symptom rehabilitation, painkillers, anti-inflammatory and antidepressants medicines are recommended. Emotional and psychological supports are also necessary. Non-specific symptoms reported by patients with post- Lyme disease syndrome raise the suspicion of other pathologies. This can lead to misdiagnosis and implementation of unnecessary, potentially harmful to the patient's therapy. An increase in tick-borne diseases needs to increase physicians awareness of these issues. © 2016 MEDPRESS.

  3. Soft tissue injury of the lower extremity complicated by type II necrotising fasciitis highlighting the need for astute clinical practices and proper treatment.

    PubMed

    Sabre, Alexander; Robles, Carlos G; Krisar-White, Patricia; Farricielli, Laurie

    2014-06-27

    Necrotising fasciitis (NF) is a soft tissue bacterial-derived infection characterised clinically by fulminant tissue destruction of the poorly blood-supplied muscle fascia and overlying subcutaneous fat. Although these infections first appear as minor superficial manifestations, they are capricious in nature and often lead to sepsis, organ failure and high mortality. We report a case of type II necrotising fasciitis in a 39-year-old Caucasian female patient who presented to the emergency department with cellulitis of her right foot and lower leg that rapidly developed into tissue necrosis. The patient course is of unique interest due to progressive history over a 104 days time frame with complications following surgical treatments and outpatient follow-up. We highlight the importance of early detection and pertinent clinical awareness from a wide range of medical specialties that were involved in this case, and how this process is critical, in order to properly diagnose and treat NF-derived tissue infections. 2014 BMJ Publishing Group Ltd.

  4. Photobiomodulation effects on mRNA levels from genomic and chromosome stabilization genes in injured muscle.

    PubMed

    da Silva Neto Trajano, Larissa Alexsandra; Trajano, Eduardo Tavares Lima; da Silva Sergio, Luiz Philippe; Teixeira, Adilson Fonseca; Mencalha, Andre Luiz; Stumbo, Ana Carolina; de Souza da Fonseca, Adenilson

    2018-04-26

    Muscle injuries are the most prevalent type of injury in sports. A great number of athletes have relapsed in muscle injuries not being treated properly. Photobiomodulation therapy is an inexpensive and safe technique with many benefits in muscle injury treatment. However, little has been explored about the infrared laser effects on DNA and telomeres in muscle injuries. Thus, the aim of this study was to evaluate photobiomodulation effects on mRNA relative levels from genes related to telomere and genomic stabilization in injured muscle. Wistar male rats were randomly divided into six groups: control, laser 25 mW, laser 75 mW, injury, injury laser 25 mW, and injury laser 75 mW. Photobiomodulation was performed with 904 nm, 3 J/cm 2 at 25 or 75 mW. Cryoinjury was induced by two applications of a metal probe cooled in liquid nitrogen directly on the tibialis anterior muscle. After euthanasia, skeletal muscle samples were withdrawn and total RNA extracted for evaluation of mRNA levels from genomic (ATM and p53) and chromosome stabilization (TRF1 and TRF2) genes by real-time quantitative polymerization chain reaction. Data show that photobiomodulation reduces the mRNA levels from ATM and p53, as well reduces mRNA levels from TRF1 and TRF2 at 25 and 75 mW in injured skeletal muscle. In conclusion, photobiomodulation alters mRNA relative levels from genes related to genomic and telomere stabilization in injured skeletal muscle.

  5. Disruption of both nesprin 1 and desmin results in nuclear anchorage defects and fibrosis in skeletal muscle.

    PubMed

    Chapman, Mark A; Zhang, Jianlin; Banerjee, Indroneal; Guo, Ling T; Zhang, Zhiwei; Shelton, G Diane; Ouyang, Kunfu; Lieber, Richard L; Chen, Ju

    2014-11-15

    Proper localization and anchorage of nuclei within skeletal muscle is critical for cellular function. Alterations in nuclear anchoring proteins modify a number of cellular functions including mechanotransduction, nuclear localization, chromatin positioning/compaction and overall organ function. In skeletal muscle, nesprin 1 and desmin are thought to link the nucleus to the cytoskeletal network. Thus, we hypothesize that both of these factors play a key role in skeletal muscle function. To examine this question, we utilized global ablation murine models of nesprin 1, desmin or both nesprin 1 and desmin. Herein, we have created the nesprin-desmin double-knockout (DKO) mouse, eliminating a major fraction of nuclear-cytoskeletal connections and enabling understanding of the importance of nuclear anchorage in skeletal muscle. Globally, DKO mice are marked by decreased lifespan, body weight and muscle strength. With regard to skeletal muscle, DKO myonuclear anchorage was dramatically decreased compared with wild-type, nesprin 1(-/-) and desmin(-/-) mice. Additionally, nuclear-cytoskeletal strain transmission was decreased in DKO skeletal muscle. Finally, loss of nuclear anchorage in DKO mice coincided with a fibrotic response as indicated by increased collagen and extracellular matrix deposition and increased passive mechanical properties of muscle bundles. Overall, our data demonstrate that nesprin 1 and desmin serve redundant roles in nuclear anchorage and that the loss of nuclear anchorage in skeletal muscle results in a pathological response characterized by increased tissue fibrosis and mechanical stiffness. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  6. Skeletal Muscle Function during Exercise—Fine-Tuning of Diverse Subsystems by Nitric Oxide

    PubMed Central

    Suhr, Frank; Gehlert, Sebastian; Grau, Marijke; Bloch, Wilhelm

    2013-01-01

    Skeletal muscle is responsible for altered acute and chronic workload as induced by exercise. Skeletal muscle adaptations range from immediate change of contractility to structural adaptation to adjust the demanded performance capacities. These processes are regulated by mechanically and metabolically induced signaling pathways, which are more or less involved in all of these regulations. Nitric oxide is one of the central signaling molecules involved in functional and structural adaption in different cell types. It is mainly produced by nitric oxide synthases (NOS) and by non-enzymatic pathways also in skeletal muscle. The relevance of a NOS-dependent NO signaling in skeletal muscle is underlined by the differential subcellular expression of NOS1, NOS2, and NOS3, and the alteration of NO production provoked by changes of workload. In skeletal muscle, a variety of highly relevant tasks to maintain skeletal muscle integrity and proper signaling mechanisms during adaptation processes towards mechanical and metabolic stimulations are taken over by NO signaling. The NO signaling can be mediated by cGMP-dependent and -independent signaling, such as S-nitrosylation-dependent modulation of effector molecules involved in contractile and metabolic adaptation to exercise. In this review, we describe the most recent findings of NO signaling in skeletal muscle with a special emphasis on exercise conditions. However, to gain a more detailed understanding of the complex role of NO signaling for functional adaptation of skeletal muscle (during exercise), additional sophisticated studies are needed to provide deeper insights into NO-mediated signaling and the role of non-enzymatic-derived NO in skeletal muscle physiology. PMID:23538841

  7. Prmt7 Deficiency Causes Reduced Skeletal Muscle Oxidative Metabolism and Age-Related Obesity.

    PubMed

    Jeong, Hyeon-Ju; Lee, Hye-Jin; Vuong, Tuan Anh; Choi, Kyu-Sil; Choi, Dahee; Koo, Sung-Hoi; Cho, Sung Chun; Cho, Hana; Kang, Jong-Sun

    2016-07-01

    Maintenance of skeletal muscle function is critical for metabolic health and the disruption of which exacerbates many chronic diseases such as obesity and diabetes. Skeletal muscle responds to exercise or metabolic demands by a fiber-type switch regulated by signaling-transcription networks that remains to be fully defined. Here, we report that protein arginine methyltransferase 7 (Prmt7) is a key regulator for skeletal muscle oxidative metabolism. Prmt7 is expressed at the highest levels in skeletal muscle and decreased in skeletal muscles with age or obesity. Prmt7(-/-) muscles exhibit decreased oxidative metabolism with decreased expression of genes involved in muscle oxidative metabolism, including PGC-1α. Consistently, Prmt7(-/-) mice exhibited significantly reduced endurance exercise capacities. Furthermore, Prmt7(-/-) mice exhibit decreased energy expenditure, which might contribute to the exacerbated age-related obesity of Prmt7(-/-) mice. Similarly to Prmt7(-/-) muscles, Prmt7 depletion in myoblasts also reduces PGC-1α expression and PGC-1α-promoter driven reporter activities. Prmt7 regulates PGC-1α expression through interaction with and activation of p38 mitogen-activated protein kinase (p38MAPK), which in turn activates ATF2, an upstream transcriptional activator for PGC-1α. Taken together, Prmt7 is a novel regulator for muscle oxidative metabolism via activation of p38MAPK/ATF2/PGC-1α. © 2016 by the American Diabetes Association. Readers may use this article as long as the work is properly cited, the use is educational and not for profit, and the work is not altered.

  8. [Body composition and constitution: a constitutional syndrome (1st of 2 parts)].

    PubMed

    Terán Díaz, E

    1999-04-01

    Constitutional syndrome alters body constitution modifying (usually decreasing) two of its dimensions--weight and perimeters--by changing the composition of one, several or every body levels. Apart of the cause, the basic physiopathological process that characterizes this new syndrome is the amino acid mobilization from the muscle (proteolysis). As soon as fat loss has no consequence to the organism, proteolysis reduces the muscle mass and life is in danger. Actually, there is no effective treatment to improve the nitrogen balance by medication or hormones in speed catabolic states but it can also approach us to more proper therapeutics for these so frequent processes in clinic.

  9. Eletromyography of abdominal muscles in different physical exercises: An update protocol for systematic review and meta-analysis.

    PubMed

    Fidale, Thiago Montes; Borges, Felipe Farnesi Ribeiro; Roever, Leonardo; Souza, Gilmar da Cunha; Gonçalves, Alexandre; Chacur, Eduardo Paul; Pimenta, Cristhyano; Haddad, Eduardo Gasparetto; Agostini, Guilherme Gularte de; Gregório, Fábio Clemente; Guimarães, Fabrício Cardoso Ribeiro; Arantes, Franciel José; Santos, Lázaro Antônio Dos; Pereira, Adriano Alves; Antunes, Hanna Karen Moreira; Puga, Guilherme Morais; Lizardo, Frederico Balbino

    2018-04-01

    The abdominal muscles are extremely important because they are directly involved in the functions of support, containment of viscera, and help in the process of expiration, defecation, urination, vomiting, and also at the time of childbirth. Many exercises and equipment are used to strengthen the abdominal muscles, and the workouts are proposed for a variety of purposes, such as preventing and rehabilitating low back pain, improving sports performance, achieving aesthetic standards, among others. Exercises that potentiate the electromyographic activity promote a greater recruitment of muscle fibers and are more effective to improve or maintain of the force. The electromyographic activity analysis allows us to reflect on the quality of the exercises proposed, consequently, to choose and order the exercises properly in a training session. Our systematic review protocol will developed following the reporting items for the systematic review. To identify relevant studies, we sought articles on the following bases: MEDLINE, PubMed, Europubmed, SciELO, Physiotherapy Evidences Data Base (PEDro), Cochrane, and Google Scholar. The methodological quality of the studies included in the review will evaluated using a checklist and quality assessment. For intervention studies, risk of bias will estimated using the Cochrane Collaboration tool. The results of this study will show the electromyographic activation of the abdomen in the different types of exercises. Ethics approval was not required for this study because it was based on published studies. The results and findings of this study will be submitted and published in a scientific peer-reviewed journal. PROSPERO CRD42018086172.

  10. Double-stranded RNA delivery through soaking mediates silencing of the muscle protein 20 and increases mortality to the Asian citrus psyllid, Diaphorina citri.

    PubMed

    Yu, Xiudao; Gowda, Siddarame; Killiny, Nabil

    2017-09-01

    Asian citrus psyllid, Diaphorina citri Kuwayama, is the most important economic pest of citrus because it transmits Candidatus Liberibacter asiaticus (CLas), the causal agent of huanglongbing (HLB). Silencing genes by RNA interference (RNAi) is a promising approach for controlling D. citri. RNAi-based insect management strategies depend on the selection of suitable target genes. The muscle protein 20 gene DcMP20 was characterized from D. citri in an effort to impair proper muscle development through RNAi. Phylogenetic analysis showed that DcMP20 was more closely related to MP20 from Drosophila compared with its counterpart from other insect species. Developmental expression analysis revealed that transcription of DcMP20 was development dependent and reached a maximum level in the last instar (fourth-fifth) of the nymphal stage. The extent of RNAi in D. citri was dose dependent, with dsRNA-DcMP20 at 75 ng µL -1 being sufficient to knock down endogenous DcMP20 expression, which resulted in significant mortality and reduced body weight that positively correlated with the silencing of DcMP20. No effect was found when dsRNA-GFP or water was used, indicating the specific effect of dsRNA-DcMP20. Our results suggest that dsRNA can be delivered to D. citri through soaking, and DcMP20 is an effective RNAi target to be used in the management of D. citri. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  11. Proteolysis in meat tenderization from the point of view of each single protein: A proteomic perspective.

    PubMed

    Lana, Alessandro; Zolla, Lello

    2016-09-16

    Muscle has to undergo a number of biochemical changes to become the final product, and, once become meat, needs to develop the proper organoleptic peculiarities, including tenderness. Tenderness depends on multiple factors, intervening throughout the production chain, from animal's birth till the end of meat aging. Given the striking number of variables, it is not an exaggeration to affirm that meat coming from each individual is a 'unique' meat. So, the process of meat tenderization follows different paths; meat derived from different animals shows its own evolution, but underneath the wide variability, all these individual developments follow a standard template: in other words, there are some boundaries that limit the possible variations. This review wants to give a comprehensive idea of the concept of meat tenderness, in particular focusing on the two protein classes that are among the most important direct responsibles for tenderization: sarcomeric proteins and proteolytic enzymes. We will review the most recent and significant data acquired on each protein, pointing the attention on the results collected by means of the 'omics' technologies, and underlining the possible role of markers in the frame of meat tenderness. Our review discusses the evidences collected by means of the 'omics' technologies about the proteolytic mechanisms that act in the muscle-to-meat conversion process, leading the muscle to reach the acceptable tenderness of the eatable meat. We consider the proteolytic enzymes and their substrate individually, summarizing the most significant data from the omic approach, and discussing their possible role of marker of tenderness. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Intramuscular architecture of the autochthonous back muscles in humans

    PubMed Central

    Stark, Heiko; Fröber, Rosemarie; Schilling, Nadja

    2013-01-01

    Many training concepts take muscle properties such as contraction speed or muscle topography into account to achieve an optimal training outcome. Thus far, the internal architecture of muscles has largely been neglected, although it is well known that parameters such as pennation angles or the lengths of fascicles but also the proportions of fleshy and tendinous fascicle parts have a major impact on the contraction behaviour of a muscle. Here, we present the most detailed description of the intramuscular fascicle architecture of the human perivertebral muscles available so far. For this, one adult male cadaver was studied. Our general approach was to digitize the geometry of each fascicle of the muscles of back proper (Erector spinae) – the Spinalis thoracis, Iliocostalis lumborum, Longissimus thoracis and the Multifidus thoracis et lumborum – and of the deep muscles of the abdomen – Psoas minor, Psoas major and Quadratus lumborum – during a layerwise dissection. Architectural parameters such as fascicle angles to the sagittal and the frontal planes as well as fascicle lengths were determined for each fascicle, and are discussed regarding their consequences for the function of the muscle. For example, compared with the other dorsovertebral muscles, the Longissimus thoracis can produce greater shortening distances because of its relatively long fleshy portions, and it can store more elastic energy due to both its relatively long fleshy and tendinous fascicle portions. The Quadratus lumborum was outstanding because of its many architectural subunits defined by distinct attachment sites and fascicle lengths. The presented database will improve biomechanical models of the human trunk by allowing the incorporation of anisotropic muscle properties such as the fascicle direction into finite element models. This information will help to increase our understanding of the functionality of the human back musculature, and may thereby improve future training concepts. PMID:23121477

  13. Org-1, the Drosophila ortholog of Tbx1, is a direct activator of known identity genes during muscle specification

    PubMed Central

    Schaub, Christoph; Nagaso, Hideyuki; Jin, Hong; Frasch, Manfred

    2012-01-01

    Members of the T-Box gene family of transcription factors are important players in regulatory circuits that generate myogenic and cardiogenic lineage diversities in vertebrates. We show that during somatic myogenesis in Drosophila, the single ortholog of vertebrate Tbx1, optomotor-blind-related-gene-1 (org-1), is expressed in a small subset of muscle progenitors, founder cells and adult muscle precursors, where it overlaps with the products of the muscle identity genes ladybird (lb) and slouch (slou). In addition, org-1 is expressed in the lineage of the heart-associated alary muscles. org-1 null mutant embryos lack Lb and Slou expression within the muscle lineages that normally co-express org-1. As a consequence, the respective muscle fibers and adult muscle precursors are either severely malformed or missing, as are the alary muscles. To address the mechanisms that mediate these regulatory interactions between Org-1, Lb and Slou, we characterized distinct enhancers associated with somatic muscle expression of lb and slou. We demonstrate that these lineage- and stage-specific cis-regulatory modules (CRMs) bind Org-1 in vivo, respond to org-1 genetically and require T-box domain binding sites for their activation. In summary, we propose that org-1 is a common and direct upstream regulator of slou and lb in the developmental pathway of these two neighboring muscle lineages. Cross-repression between slou and lb and combinatorial activation of lineage-specific targets by Org-1–Slou and Org-1–Lb, respectively, then leads to the distinction between the two lineages. These findings provide new insights into the regulatory circuits that control the proper pattering of the larval somatic musculature in Drosophila. PMID:22318630

  14. Org-1, the Drosophila ortholog of Tbx1, is a direct activator of known identity genes during muscle specification.

    PubMed

    Schaub, Christoph; Nagaso, Hideyuki; Jin, Hong; Frasch, Manfred

    2012-03-01

    Members of the T-Box gene family of transcription factors are important players in regulatory circuits that generate myogenic and cardiogenic lineage diversities in vertebrates. We show that during somatic myogenesis in Drosophila, the single ortholog of vertebrate Tbx1, optomotor-blind-related-gene-1 (org-1), is expressed in a small subset of muscle progenitors, founder cells and adult muscle precursors, where it overlaps with the products of the muscle identity genes ladybird (lb) and slouch (slou). In addition, org-1 is expressed in the lineage of the heart-associated alary muscles. org-1 null mutant embryos lack Lb and Slou expression within the muscle lineages that normally co-express org-1. As a consequence, the respective muscle fibers and adult muscle precursors are either severely malformed or missing, as are the alary muscles. To address the mechanisms that mediate these regulatory interactions between Org-1, Lb and Slou, we characterized distinct enhancers associated with somatic muscle expression of lb and slou. We demonstrate that these lineage- and stage-specific cis-regulatory modules (CRMs) bind Org-1 in vivo, respond to org-1 genetically and require T-box domain binding sites for their activation. In summary, we propose that org-1 is a common and direct upstream regulator of slou and lb in the developmental pathway of these two neighboring muscle lineages. Cross-repression between slou and lb and combinatorial activation of lineage-specific targets by Org-1-Slou and Org-1-Lb, respectively, then leads to the distinction between the two lineages. These findings provide new insights into the regulatory circuits that control the proper pattering of the larval somatic musculature in Drosophila.

  15. Regulation of cortical contractility and spindle positioning by the protein phosphatase 6 PPH-6 in one-cell stage C. elegans embryos

    PubMed Central

    Afshar, Katayoun; Werner, Michael E.; Tse, Yu Chung; Glotzer, Michael; Gönczy, Pierre

    2010-01-01

    Modulation of the microtubule and the actin cytoskeleton is crucial for proper cell division. Protein phosphorylation is known to be an important regulatory mechanism modulating these cytoskeletal networks. By contrast, there is a relative paucity of information regarding how protein phosphatases contribute to such modulation. Here, we characterize the requirements for protein phosphatase PPH-6 and its associated subunit SAPS-1 in one-cell stage C. elegans embryos. We establish that the complex of PPH-6 and SAPS-1 (PPH-6/SAPS-1) is required for contractility of the actomyosin network and proper spindle positioning. Our analysis demonstrates that PPH-6/SAPS-1 regulates the organization of cortical non-muscle myosin II (NMY-2). Accordingly, we uncover that PPH-6/SAPS-1 contributes to cytokinesis by stimulating actomyosin contractility. Furthermore, we demonstrate that PPH-6/SAPS-1 is required for the proper generation of pulling forces on spindle poles during anaphase. Our results indicate that this requirement is distinct from the role in organizing the cortical actomyosin network. Instead, we uncover that PPH-6/SAPS-1 contributes to the cortical localization of two positive regulators of pulling forces, GPR-1/2 and LIN-5. Our findings provide the first insights into the role of a member of the PP6 family of phosphatases in metazoan development. PMID:20040490

  16. Post-transcriptional regulation of Pabpn1 by the RNA binding protein HuR.

    PubMed

    Phillips, Brittany L; Banerjee, Ayan; Sanchez, Brenda J; Di Marco, Sergio; Gallouzi, Imed-Eddine; Pavlath, Grace K; Corbett, Anita H

    2018-06-25

    RNA processing is critical for proper spatial and temporal control of gene expression. The ubiquitous nuclear polyadenosine RNA binding protein, PABPN1, post-transcriptionally regulates multiple steps of gene expression. Mutations in the PABPN1 gene expanding an N-terminal alanine tract in the PABPN1 protein from 10 alanines to 11-18 alanines cause the muscle-specific disease oculopharyngeal muscular dystrophy (OPMD), which affects eyelid, pharynx, and proximal limb muscles. Previous work revealed that the Pabpn1 transcript is unstable, contributing to low steady-state Pabpn1 mRNA and protein levels in vivo, specifically in skeletal muscle, with even lower levels in muscles affected in OPMD. Thus, low levels of PABPN1 protein could predispose specific tissues to pathology in OPMD. However, no studies have defined the mechanisms that regulate Pabpn1 expression. Here, we define multiple cis-regulatory elements and a trans-acting factor, HuR, which regulate Pabpn1 expression specifically in mature muscle in vitro and in vivo. We exploit multiple models including C2C12 myotubes, primary muscle cells, and mice to determine that HuR decreases Pabpn1 expression. Overall, we have uncovered a mechanism in mature muscle that negatively regulates Pabpn1 expression in vitro and in vivo, which could provide insight to future studies investigating therapeutic strategies for OPMD treatment.

  17. Dystrophin Is Required for Proper Functioning of Luminance and Red-Green Cone Opponent Mechanisms in the Human Retina.

    PubMed

    Barboni, Mirella Telles Salgueiro; Martins, Cristiane Maria Gomes; Nagy, Balázs Vince; Tsai, Tina; Damico, Francisco Max; da Costa, Marcelo Fernandes; de Cassia, Rita; Pavanello, M; Lourenço, Naila Cristina Vilaça; de Cerqueira, Antonia Maria Pereira; Zatz, Mayana; Kremers, Jan; Ventura, Dora Fix

    2016-07-01

    Visual information is processed in parallel pathways in the visual system. Parallel processing begins at the synapse between the photoreceptors and their postreceptoral neurons in the human retina. The integrity of this first neural connection is vital for normal visual processing downstream. Of the numerous elements necessary for proper functioning of this synaptic contact, dystrophin proteins in the eye play an important role. Deficiency of muscle dystrophin causes Duchenne muscular dystrophy (DMD), an X-linked disease that affects muscle function and leads to decreased life expectancy. In DMD patients, postreceptoral retinal mechanisms underlying scotopic and photopic vision and ON- and OFF-pathway responses are also altered. In this study, we recorded the electroretinogram (ERG) while preferentially activating the (red-green) opponent or the luminance pathway, and compared data from healthy participants (n = 16) with those of DMD patients (n = 10). The stimuli were heterochromatic sinusoidal modulations at a mean luminance of 200 cd/m2. The recordings allowed us also to analyze ON and OFF cone-driven retinal responses. We found significant differences in 12-Hz response amplitudes and phases between controls and DMD patients, with conditions with large luminance content resulting in larger response amplitudes in DMD patients compared to controls, whereas responses of DMD patients were smaller when pure chromatic modulation was given. The results suggest that dystrophin is required for the proper function of luminance and red-green cone opponent mechanisms in the human retina.

  18. MEF2 Transcription Factors Regulate Distinct Gene Programs in Mammalian Skeletal Muscle Differentiation*

    PubMed Central

    Estrella, Nelsa L.; Desjardins, Cody A.; Nocco, Sarah E.; Clark, Amanda L.; Maksimenko, Yevgeniy; Naya, Francisco J.

    2015-01-01

    Skeletal muscle differentiation requires precisely coordinated transcriptional regulation of diverse gene programs that ultimately give rise to the specialized properties of this cell type. In Drosophila, this process is controlled, in part, by MEF2, the sole member of an evolutionarily conserved transcription factor family. By contrast, vertebrate MEF2 is encoded by four distinct genes, Mef2a, -b, -c, and -d, making it far more challenging to link this transcription factor to the regulation of specific muscle gene programs. Here, we have taken the first step in molecularly dissecting vertebrate MEF2 transcriptional function in skeletal muscle differentiation by depleting individual MEF2 proteins in myoblasts. Whereas MEF2A is absolutely required for proper myoblast differentiation, MEF2B, -C, and -D were found to be dispensable for this process. Furthermore, despite the extensive redundancy, we show that mammalian MEF2 proteins regulate a significant subset of nonoverlapping gene programs. These results suggest that individual MEF2 family members are able to recognize specific targets among the entire cohort of MEF2-regulated genes in the muscle genome. These findings provide opportunities to modulate the activity of MEF2 isoforms and their respective gene programs in skeletal muscle homeostasis and disease. PMID:25416778

  19. Preventing ACL Injuries in Females: What Physical Educators Need to Know

    ERIC Educational Resources Information Center

    Toscano, Lisa; Carroll, Brianne

    2015-01-01

    Anterior cruciate ligament (ACL) injuries happen at a frequent rate, especially in girls and women. While there are many factors that contribute to ACL tears, teaching proper landing techniques and strengthening certain muscles can decrease the incidence of ACL tears, especially in women. This article reviews some of the high-risk factors that…

  20. Repair of tracheo-oesophageal fistula.

    PubMed

    Muniappan, Ashok; Mathisen, Douglas J

    2016-01-01

    Acquired non-malignant tracheo-oesophageal fistula (TOF) most commonly develops after prolonged intubation or tracheostomy. It may also develop after trauma, oesophagectomy, laryngectomy and other disparate conditions. TOF leads to respiratory compromise secondary to chronic aspiration and pulmonary sepsis. Difficulty with oral intake usually leads to nutritional compromise. After diagnosis, the goals are to eliminate or reduce ongoing pulmonary contamination and to restore proper nutrition. Operative repair of benign TOF is generally performed through a cervical approach. The majority of patients require tracheal resection and reconstruction to address concomitant tracheal or laryngotracheal stenosis. Muscle flap interposition between tracheal and oesophageal repairs reduces the risk of fistula recurrence. Operative repair of the fistula is associated with generally good outcomes with a minimal risk of mortality. © The Author 2016. Published by Oxford University Press on behalf of the European Association for Cardio-Thoracic Surgery. All rights reserved.

  1. Cadaveric validation of dry needle placement in the lateral pterygoid muscle.

    PubMed

    Mesa-Jiménez, Juan A; Sánchez-Gutiérrez, Jesús; de-la-Hoz-Aizpurua, José L; Fernández-de-las-Peñas, César

    2015-02-01

    The aim of this anatomical study was to determine if a needle is able to reach the lateral pterygoid muscle during the application of dry needling technique. A dry needling approach using 2 needles of 50 to 60 mm in length, one inserted over the zygomatic process posterior at the obituary arch (for the superior head) and other inserted below the zygomatic process between the mandibular condyle and the coronoid process (for the inferior head), was proposed. A progressive dissection into 3 stages was conducted into 2 heads of fresh male cadavers. First, dry needling of the lateral pterygoid muscle was applied on the cadaver. Second, a block dissection containing the lateral pterygoid was harvested. Finally, the ramus of the mandible was sectioned by osteotomy to visualize the lateral pterygoid muscle with the needle placements. With the needles inserted into the cadaver, the block dissection revealed that the superior needle reached the superior (sphenoid) head of the lateral pterygoid muscle and the inferior needle reached the inferior (pterygoid) head of the muscle. At the final stage of the dissection, when the ramus of the mandible was sectioned by osteotomy, it was revealed that the superior needle entered into the belly of the superior head of the lateral pterygoid muscle. This anatomical study supports that dry needling technique for the lateral pterygoid muscle can be properly conducted with the proposed approach. Copyright © 2015 National University of Health Sciences. Published by Elsevier Inc. All rights reserved.

  2. Color image analysis technique for measuring of fat in meat: an application for the meat industry

    NASA Astrophysics Data System (ADS)

    Ballerini, Lucia; Hogberg, Anders; Lundstrom, Kerstin; Borgefors, Gunilla

    2001-04-01

    Intramuscular fat content in meat influences some important meat quality characteristics. The aim of the present study was to develop and apply image processing techniques to quantify intramuscular fat content in beefs together with the visual appearance of fat in meat (marbling). Color images of M. longissimus dorsi meat samples with a variability of intramuscular fat content and marbling were captured. Image analysis software was specially developed for the interpretation of these images. In particular, a segmentation algorithm (i.e. classification of different substances: fat, muscle and connective tissue) was optimized in order to obtain a proper classification and perform subsequent analysis. Segmentation of muscle from fat was achieved based on their characteristics in the 3D color space, and on the intrinsic fuzzy nature of these structures. The method is fully automatic and it combines a fuzzy clustering algorithm, the Fuzzy c-Means Algorithm, with a Genetic Algorithm. The percentages of various colors (i.e. substances) within the sample are then determined; the number, size distribution, and spatial distributions of the extracted fat flecks are measured. Measurements are correlated with chemical and sensory properties. Results so far show that advanced image analysis is useful for quantify the visual appearance of meat.

  3. THE EFFECT OF DOUBLE VERSUS SINGLE OSCILLATING EXERCISE DEVICES ON TRUNK AND LIMB MUSCLE ACTIVATION

    PubMed Central

    Arora, Shruti; Button, Duane C.; Basset, Fabien A.

    2013-01-01

    Purpose/Background: Proper strengthening of the core and upper extremities is important for muscular health, performance, and rehabilitation. Exercise devices have been developed that attempt to disrupt the center of gravity in order to activate the trunk stabilizing muscles. The objective of this study was to analyze the trunk and shoulder girdle muscle activation with double and single oscillating exercise devices (DOD and SOD respectively) in various planes. Methods: Twelve male subjects performed three interventions using both devices under randomized conditions: single-handed vertical orientation of DOD and SOD to produce 1) medio-lateral oscillation in the frontal plane 2) dorso-ventral oscillation in the sagittal plane and 3) single-handed horizontal orientation for superior and inferior oscillation in the transverse plane. Electromyographic (EMG) activity during the interventions of the anterior deltoid, triceps brachii, biceps brachii, forearm flexors as well as lower abdominal and back stabilizer muscles was collected, and were normalized to maximal voluntary contractions. A two way repeated measures ANOVA (2x3) was conducted to assess the influence of the devices and movement planes on muscle activation. Results: The DOD provided 35.9%, 40.8%, and 52.3% greater anterior deltoid, transverse abdominus (TA)/internal oblique (IO) and lumbo-sacral erector spinae (LSES) activation than did the SOD respectively. Effect size calculations revealed that these differences were of moderate to large magnitude (0.86, 0.48, and 0.61 respectively). There were no significant differences in muscular activation achieved between devices for the triceps brachii, biceps brachii and forearm flexor muscles. Exercise in the transverse plane resulted in 30.5%, 29.5%, and 19.5% greater activation than the sagittal and 21.8%, 17.2%, and 26.3% greater activation than the frontal plane for the anterior deltoid, TA/IO and LSES respectively. Conclusions: A DOD demonstrated greater muscular activity for trunk and shoulder muscle activation but does not provide an advantage for limb activation. Overall, oscillating the devices in the transverse plane provided greater muscular activation of the anterior deltoid, TA/IO and LSES than use of the devices during frontal or sagittal plane movements. Level of evidence: 2c: Outcomes research. PMID:24175124

  4. Ground reaction forces, kinematics, and muscle activations during the windmill softball pitch.

    PubMed

    Oliver, Gretchen D; Plummer, Hillary

    2011-07-01

    The aims of the present study were to examine quantitatively ground reaction forces, kinematics, and muscle activations during the windmill softball pitch, and to determine relationships between knee valgus and muscle activations, ball velocity and muscle activation as well as ball velocity and ground reaction forces. It was hypothesized that there would be an inverse relationship between degree of knee valgus and muscle activation, a direct relationship between ground reaction forces and ball velocity, and non-stride leg muscle activations and ball velocity. Ten female windmill softball pitchers (age 17.6 ± 3.47 years, stature 1.67 ± 0.07 m, weight 67.4 ± 12.2 kg) participated. Dependent variables were ball velocity, surface electromyographic (sEMG), kinematic, and kinetic data while the participant was the independent variable. Stride foot contact reported peak vertical forces of 179% body weight. There were positive relationships between ball velocity and ground reaction force (r = 0.758, n = 10, P = 0.029) as well as ball velocity and non-stride leg gluteus maximus (r = 0.851, n = 10, P = 0.007) and medius (r = 0.760, n = 10, P = 0.029) muscle activity, while there was no notable relationship between knee valgus and muscle activation. As the windmill softball pitcher increased ball velocity, her vertical ground reaction forces also increased. Proper conditioning of the lumbopelvic-hip complex, including the gluteals, is essential for injury prevention. From the data presented, it is evident that bilateral strength and conditioning of the gluteal muscle group is salient in the windmill softball pitch as an attempt to decrease incidence of injury.

  5. Serratus anterior and lower trapezius muscle activities during multi-joint isotonic scapular exercises and isometric contractions.

    PubMed

    Tsuruike, Masaaki; Ellenbecker, Todd S

    2015-02-01

    Proper scapular function during humeral elevation, such as upward rotation, external rotation, and posterior tilting of the scapula, is necessary to prevent shoulder injury. However, the appropriate intensity of rehabilitation exercise for the periscapular muscles has yet to be clarified. To identify the serratus anterior, lower trapezius, infraspinatus, and posterior deltoid muscle activities during 2 free-motion exercises using 3 intensities and to compare these muscle activities with isometric contractions during quadruped shoulder flexion and external rotation and abduction of the glenohumeral joint. Cross-sectional study. Health Science Laboratory. A total of 16 uninjured, healthy, active, male college students (age = 19.5 ± 1.2 years, height = 173.1 ± 6.5 cm, weight = 68.8 ± 6.6 kg). Mean electromyographic activity normalized by the maximal voluntary isometric contraction was analyzed across 3 intensities and 5 exercises. Intraclass correlation coefficients were calculated for electromyographic activity of the 4 muscles in each free-motion exercise. Significant interactions in electromyographic activity were observed between intensities and exercises (P < .05). The quadruped shoulder-flexion exercise activated all 4 muscles compared with other exercises. Also, the modified robbery free-motion exercise activated the serratus anterior, lower trapezius, and infraspinatus compared with the lawn-mower free-motion exercise. However, neither exercise showed a difference in posterior deltoid electromyographic activity. Three intensities exposed the nature of the periscapular muscle activities across the different exercises. The free-motion exercise in periscapular muscle rehabilitation may not modify serratus anterior, lower trapezius, and infraspinatus muscle activities unless knee-joint extension is limited.

  6. Protein O-Mannosyltransferases Affect Sensory Axon Wiring and Dynamic Chirality of Body Posture in the Drosophila Embryo.

    PubMed

    Baker, Ryan; Nakamura, Naosuke; Chandel, Ishita; Howell, Brooke; Lyalin, Dmitry; Panin, Vladislav M

    2018-02-14

    Genetic defects in protein O-mannosyltransferase 1 (POMT1) and POMT2 underlie severe muscular dystrophies. POMT genes are evolutionarily conserved in metazoan organisms. In Drosophila , both male and female POMT mutants show a clockwise rotation of adult abdominal segments, suggesting a chirality of underlying pathogenic mechanisms. Here we described and analyzed a similar phenotype in POMT mutant embryos that shows left-handed body torsion. Our experiments demonstrated that coordinated muscle contraction waves are associated with asymmetric embryo rolling, unveiling a new chirality marker in Drosophila development. Using genetic and live-imaging approaches, we revealed that the torsion phenotype results from differential rolling and aberrant patterning of peristaltic waves of muscle contractions. Our results demonstrated that peripheral sensory neurons are required for normal contractions that prevent the accumulation of torsion. We found that POMT mutants show abnormal axonal connections of sensory neurons. POMT transgenic expression limited to sensory neurons significantly rescued the torsion phenotype, axonal connectivity defects, and abnormal contractions in POMT mutant embryos. Together, our data suggested that protein O-mannosylation is required for normal sensory feedback to control coordinated muscle contractions and body posture. This mechanism may shed light on analogous functions of POMT genes in mammals and help to elucidate the etiology of neurological defects in muscular dystrophies. SIGNIFICANCE STATEMENT Protein O-mannosyltransferases (POMTs) are evolutionarily conserved in metazoans. Mutations in POMTs cause severe muscular dystrophies associated with pronounced neurological defects. However, neurological functions of POMTs remain poorly understood. We demonstrated that POMT mutations in Drosophila result in abnormal muscle contractions and cause embryo torsion. Our experiments uncovered a chirality of embryo movements and a unique POMT -dependent mechanism that maintains symmetry of a developing system affected by chiral forces. Furthermore, POMTs were found to be required for proper axon connectivity of sensory neurons, suggesting that O-mannosylation regulates the sensory feedback controlling muscle contractions. This novel POMT function in the peripheral nervous system may shed light on analogous functions in mammals and help to elucidate pathomechanisms of neurological abnormalities in muscular dystrophies. Copyright © 2018 the authors 0270-6474/18/381850-16$15.00/0.

  7. Scapulothoracic bursitis in a patient with quadriparesis: a case report.

    PubMed

    Seol, Seung Jun; Han, Seung Hoon

    2015-04-01

    Scapulothoracic bursitis is a rare disease and presents as pain or swelling around the bursa of the scapulothoracic articulation. It has been reported to be related to chronic repetitive mechanical stress of the periscapular tissue, trauma, overuse, and focal muscle weakness. The authors experienced an atypical case of scapulothoracic bursitis with shoulder and periscapular pain after quadriparesis.This case implies that muscular atrophy around the scapula and chest wall from quadriparesis may contribute to the development of scapulothoracic bursitis with shoulder and periscapular pain. In addition, clinician should be alert to it as a possible cause when a patient with quadriparesis complains of shoulder and periscapular pain and consider proper diagnostic options such as ultrasonography or magnetic resonance imaging.

  8. Scapulothoracic Bursitis in a Patient With Quadriparesis

    PubMed Central

    Seol, Seung Jun; Han, Seung Hoon

    2015-01-01

    Abstract Scapulothoracic bursitis is a rare disease and presents as pain or swelling around the bursa of the scapulothoracic articulation. It has been reported to be related to chronic repetitive mechanical stress of the periscapular tissue, trauma, overuse, and focal muscle weakness. The authors experienced an atypical case of scapulothoracic bursitis with shoulder and periscapular pain after quadriparesis. This case implies that muscular atrophy around the scapula and chest wall from quadriparesis may contribute to the development of scapulothoracic bursitis with shoulder and periscapular pain. In addition, clinician should be alert to it as a possible cause when a patient with quadriparesis complains of shoulder and periscapular pain and consider proper diagnostic options such as ultrasonography or magnetic resonance imaging. PMID:25906107

  9. Morphological dynamics of mitochondria--a special emphasis on cardiac muscle cells.

    PubMed

    Hom, Jennifer; Sheu, Shey-Shing

    2009-06-01

    Mitochondria play a critical role in cellular energy metabolism, Ca(2+) homeostasis, reactive oxygen species generation, apoptosis, aging, and development. Many recent publications have shown that a continuous balance of fusion and fission of these organelles is important in maintaining their proper function. Therefore, there is a steep correlation between the form and function of mitochondria. Many major proteins involved in mitochondrial fusion and fission have been identified in different cell types, including heart. However, the functional role of mitochondrial dynamics in the heart remains, for the most part, unexplored. In this review we will cover the recent field of mitochondrial dynamics and its physiological and pathological implications, with a particular emphasis on the experimental and theoretical basis of mitochondrial dynamics in the heart.

  10. Ergonomic applications to dental practice.

    PubMed

    Gupta, Shipra

    2011-01-01

    The term "work-related musculoskeletal disorders (WMSDs)," refers to musculoskeletal disorders to which the work environment contributes significantly, or to musculoskeletal disorders that are made worse or longer lasting by work conditions or workplace risk factors. In recent years, there has been an increase in reporting WMSDs for dental persons. Risk factors of WMSDs with specific reference to dentistry include - stress, poor flexibility, improper positioning, infrequent breaks, repetitive movements, weak postural muscles, prolonged awkward postures and improper adjustment of equipment. Ergonomics is the science of designing jobs, equipment and workplaces to fit workers. Proper ergonomic design is necessary to prevent repetitive strain injuries, which can develop over time and can lead to long-term disability. In this article, 20 strategies to prevent WMSDs in the dental operatory are discussed.

  11. [Physical activity diminishes aging-related decline of physical and cognitive performance].

    PubMed

    Apor, Péter; Babai, László

    2014-05-25

    Aging-related decline of muscle force, walking speed, locomotor coordination, aerobic capacity and endurance exert prognostic impact on life expectancy. Proper use of training may diminish the aging process and it may improve the quality of life of elderly persons. This paper provides a brief summary on the impact of training on aging-related decline of physical and cognitive functions.

  12. Electrospun silk fibroin/poly (L-lactide-ε-caplacton) graft with platelet-rich growth factor for inducing smooth muscle cell growth and infiltration

    PubMed Central

    Yin, Anlin; Bowlin, Gary L.; Luo, Rifang; Zhang, Xingdong; Wang, Yunbing; Mo, Xiumei

    2016-01-01

    The construction of a smooth muscle layer for blood vessel through electrospinning method plays a key role in vascular tissue engineering. However, smooth muscle cells (SMCs) penetration into the electrospun graft to form a smooth muscle layer is limited due to the dense packing of fibers and lack of inducing factors. In this paper, silk fibroin/poly (L-lactide-ε-caplacton) (SF/PLLA-CL) vascular graft loaded with platelet-rich growth factor (PRGF) was fabricated by electrospinning. The in vitro results showed that SMCs cultured in the graft grew fast, and the incorporation of PRGF could induce deeper SMCs infiltrating compared to the SF/PLLA-CL graft alone. Mechanical properties measurement showed that PRGF-incorporated graft had proper tensile stress, suture retention strength, burst pressure and compliance which could match the demand of native blood vessel. The success in the fabrication of PRGF-incorporated SF/PLLA-CL graft to induce fast SMCs growth and their strong penetration into graft has important application for tissue-engineered blood vessels. PMID:27482466

  13. Electrospun silk fibroin/poly (L-lactide-ε-caplacton) graft with platelet-rich growth factor for inducing smooth muscle cell growth and infiltration.

    PubMed

    Yin, Anlin; Bowlin, Gary L; Luo, Rifang; Zhang, Xingdong; Wang, Yunbing; Mo, Xiumei

    2016-12-01

    The construction of a smooth muscle layer for blood vessel through electrospinning method plays a key role in vascular tissue engineering. However, smooth muscle cells (SMCs) penetration into the electrospun graft to form a smooth muscle layer is limited due to the dense packing of fibers and lack of inducing factors. In this paper, silk fibroin/poly (L-lactide-ε-caplacton) (SF/PLLA-CL) vascular graft loaded with platelet-rich growth factor (PRGF) was fabricated by electrospinning. The in vitro results showed that SMCs cultured in the graft grew fast, and the incorporation of PRGF could induce deeper SMCs infiltrating compared to the SF/PLLA-CL graft alone. Mechanical properties measurement showed that PRGF-incorporated graft had proper tensile stress, suture retention strength, burst pressure and compliance which could match the demand of native blood vessel. The success in the fabrication of PRGF-incorporated SF/PLLA-CL graft to induce fast SMCs growth and their strong penetration into graft has important application for tissue-engineered blood vessels.

  14. Assessing reproductive status in elasmobranch fishes using steroid hormones extracted from skeletal muscle tissue

    PubMed Central

    Prohaska, Bianca K.; Tsang, Paul C. W.; Driggers, William B.; Hoffmayer, Eric R.; Wheeler, Carolyn R.; Brown, A. Christine; Sulikowski, James A.

    2013-01-01

    Elasmobranch fishes (sharks, skates, and rays) are particularly susceptible to anthropogenic threats, making a thorough understanding of their life history characteristics essential for proper management. Historically, elasmobranch reproductive data have been collected by lethal sampling, an approach that is problematic for threatened and endangered species. However, recent studies have demonstrated that non-lethal approaches can be as effective as lethal ones for assessment of the reproductive status of an animal. For example, plasma has been used to examine concentrations of steroid hormones. Additionally, skeletal muscle tissue, which can be obtained non-lethally and with minimal stress, can also be used to quantify concentrations of steroid hormones. Skeletal muscle progesterone, testosterone, and estradiol concentrations were determined to be statistically significant indicators of reproductive status in the oviparous Leucoraja erinacea, the yolk-dependent viviparous Squalus acanthias, and the yolk-sac placental viviparous Rhizoprionodon terraenovae. The results of the present study demonstrate that steroid hormones present in non-lethally harvested skeletal muscle tissue can be used as reliable indicators of reproductive status in elasmobranchs. PMID:27293612

  15. Transcriptome Profiles of Isolated Murine Achilles Tendon Proper- and Peritenon- Derived Progenitor Cells.

    PubMed

    Mienaltowski, Michael J; Cánovas, Angela; Fates, Valerie A; Hampton, Angela R; Pechanec, Monica Y; Islas-Trejo, Alma; Medrano, Juan F

    2018-06-21

    Progenitor cells of the tendon proper and peritenon have unique properties that could impact their utilization in tendon repair strategies. While a few markers have been found to aid in distinguishing progenitors cells from each region, there is great value in identifying more markers. In this study, we hypothesized that RNAseq could be used to improve our understanding of those markers that define these cell types. Transcriptome profiles were generated for pools of mouse Achilles tendon progenitor cells from both regions and catalogues of potential markers were generated. Moreover, common (e.g., glycoprotein, signaling, and proteinaceous extracellular matrix) and unique (e.g., cartilage development versus angiogenesis and muscle contraction) biological processes and molecular functions were described for progenitors from each region. Real-time quantitative PCR of a subset of genes was used to gain insight into the heterogeneity amongst individual progenitor colonies from each region. Markers like Scx, Mkx, Thbs4, and Wnt10a were consistently able to distinguish tendon proper progenitors from peritenon progenitors; expression variability for other genes suggested greater cell type complexity for potential peritenon progenitor markers. This is the first effort to define Achilles tendon progenitor markers by region. Further efforts to investigate the value of these catalogued markers are required by screening more individual colonies of progenitors for more markers. Findings from this study advance efforts in the discernment of cell type specific markers for tendon proper and peritenon progenitor cells; insight into marker sets could improve tracking and sorting strategies for these cells for future therapeutic strategies. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  16. Groin injuries in sports medicine.

    PubMed

    Tyler, Timothy F; Silvers, Holly J; Gerhardt, Michael B; Nicholas, Stephen J

    2010-05-01

    An in-season groin injury may be debilitating for the athlete. Proper diagnosis and identification of the pathology are paramount in providing appropriate intervention. Furthermore, an adductor strain that is treated improperly can become chronic and career threatening. Any one of the 6 muscles of the adductor muscle group can be involved. The degree of injury can range from a minor strain (grade 1), where minimal playing time is lost, to a severe strain (grade 3), in which there is complete loss of muscle function. Persistent groin pain and muscle imbalance may lead to athletic pubalgia. Relevant studies were identified through a literature search of MEDLINE and the Cochrane database from 1990 to 2009, as well as a manual review of reference lists of identified sources. Ice hockey and soccer players seem particularly susceptible to adductor muscle strains. In professional ice hockey and soccer players throughout the world, approximately 10% to 11% of all injuries are groin strains. These injuries have been linked to hip muscle weakness, a previous injury to that area, preseason practice sessions, and level of experience. This injury may be prevented if these risk factors are addressed before each season. Despite the identification of risk factors and strengthening intervention for athletes, adductor strains continue to occur throughout sport. If groin pain persists, the possibility of athletic pubalgia needs to be explored, because of weakening or tears in the abdominal wall muscles. A diagnosis is confirmed by exclusion of other pathology.

  17. Groin Injuries in Sports Medicine

    PubMed Central

    Tyler, Timothy F.; Silvers, Holly J.; Gerhardt, Michael B.; Nicholas, Stephen J.

    2010-01-01

    Context: An in-season groin injury may be debilitating for the athlete. Proper diagnosis and identification of the pathology are paramount in providing appropriate intervention. Furthermore, an adductor strain that is treated improperly can become chronic and career threatening. Any one of the 6 muscles of the adductor muscle group can be involved. The degree of injury can range from a minor strain (grade 1), where minimal playing time is lost, to a severe strain (grade 3), in which there is complete loss of muscle function. Persistent groin pain and muscle imbalance may lead to athletic pubalgia. Evidence Acquisition: Relevant studies were identified through a literature search of MEDLINE and the Cochrane database from 1990 to 2009, as well as a manual review of reference lists of identified sources. Results: Ice hockey and soccer players seem particularly susceptible to adductor muscle strains. In professional ice hockey and soccer players throughout the world, approximately 10% to 11% of all injuries are groin strains. These injuries have been linked to hip muscle weakness, a previous injury to that area, preseason practice sessions, and level of experience. This injury may be prevented if these risk factors are addressed before each season. Conclusion: Despite the identification of risk factors and strengthening intervention for athletes, adductor strains continue to occur throughout sport. If groin pain persists, the possibility of athletic pubalgia needs to be explored, because of weakening or tears in the abdominal wall muscles. A diagnosis is confirmed by exclusion of other pathology. PMID:23015943

  18. Smooth muscle-like tissue constructs with circumferentially oriented cells formed by the cell fiber technology.

    PubMed

    Hsiao, Amy Y; Okitsu, Teru; Onoe, Hiroaki; Kiyosawa, Mahiro; Teramae, Hiroki; Iwanaga, Shintaroh; Kazama, Tomohiko; Matsumoto, Taro; Takeuchi, Shoji

    2015-01-01

    The proper functioning of many organs and tissues containing smooth muscles greatly depends on the intricate organization of the smooth muscle cells oriented in appropriate directions. Consequently controlling the cellular orientation in three-dimensional (3D) cellular constructs is an important issue in engineering tissues of smooth muscles. However, the ability to precisely control the cellular orientation at the microscale cannot be achieved by various commonly used 3D tissue engineering building blocks such as spheroids. This paper presents the formation of coiled spring-shaped 3D cellular constructs containing circumferentially oriented smooth muscle-like cells differentiated from dedifferentiated fat (DFAT) cells. By using the cell fiber technology, DFAT cells suspended in a mixture of extracellular proteins possessing an optimized stiffness were encapsulated in the core region of alginate shell microfibers and uniformly aligned to the longitudinal direction. Upon differentiation induction to the smooth muscle lineage, DFAT cell fibers self-assembled to coiled spring structures where the cells became circumferentially oriented. By changing the initial core-shell microfiber diameter, we demonstrated that the spring pitch and diameter could be controlled. 21 days after differentiation induction, the cell fibers contained high percentages of ASMA-positive and calponin-positive cells. Our technology to create these smooth muscle-like spring constructs enabled precise control of cellular alignment and orientation in 3D. These constructs can further serve as tissue engineering building blocks for larger organs and cellular implants used in clinical treatments.

  19. Smooth Muscle-Like Tissue Constructs with Circumferentially Oriented Cells Formed by the Cell Fiber Technology

    PubMed Central

    Hsiao, Amy Y.; Okitsu, Teru; Onoe, Hiroaki; Kiyosawa, Mahiro; Teramae, Hiroki; Iwanaga, Shintaroh; Kazama, Tomohiko; Matsumoto, Taro; Takeuchi, Shoji

    2015-01-01

    The proper functioning of many organs and tissues containing smooth muscles greatly depends on the intricate organization of the smooth muscle cells oriented in appropriate directions. Consequently controlling the cellular orientation in three-dimensional (3D) cellular constructs is an important issue in engineering tissues of smooth muscles. However, the ability to precisely control the cellular orientation at the microscale cannot be achieved by various commonly used 3D tissue engineering building blocks such as spheroids. This paper presents the formation of coiled spring-shaped 3D cellular constructs containing circumferentially oriented smooth muscle-like cells differentiated from dedifferentiated fat (DFAT) cells. By using the cell fiber technology, DFAT cells suspended in a mixture of extracellular proteins possessing an optimized stiffness were encapsulated in the core region of alginate shell microfibers and uniformly aligned to the longitudinal direction. Upon differentiation induction to the smooth muscle lineage, DFAT cell fibers self-assembled to coiled spring structures where the cells became circumferentially oriented. By changing the initial core-shell microfiber diameter, we demonstrated that the spring pitch and diameter could be controlled. 21 days after differentiation induction, the cell fibers contained high percentages of ASMA-positive and calponin-positive cells. Our technology to create these smooth muscle-like spring constructs enabled precise control of cellular alignment and orientation in 3D. These constructs can further serve as tissue engineering building blocks for larger organs and cellular implants used in clinical treatments. PMID:25734774

  20. The effects of breathing exercise types on respiratory muscle activity and body function in patients with mild chronic obstructive pulmonary disease.

    PubMed

    Kang, Jeong-Il; Jeong, Dae-Keun; Choi, Hyun

    2016-01-01

    [Purpose] Fragmentary studies on characteristics of respiratory muscles are being done to increase respiratory capacity by classifying exercises into voluntary respiratory exercise which relieves symptoms and prevents COPD and exercise using breathing exercise equipment. But this study found changes on respiratory pattern through changes on the activity pattern of agonist and synergist respiratory muscles and studied what effect they can have on body function improvement. [Subjects and Methods] Fifteen subjects in experimental group I that respiratory exercise of diaphragm and 15 subjects in experimental group II that feedback respiratory exercise were randomly selected among COPD patients to find the effective intervention method for COPD patients. And intervention program was conducted for 5 weeks, three times a week, once a day and 30 minutes a session. They were measured with BODE index using respiratory muscle activity, pulmonary function, the six-minute walking test, dyspnea criteria and BMI Then the results obtained were compared and analyzed. [Results] There was a significant difference in sternocleidomastoid muscle and scalene muscle and in 6-minute walk and BODE index for body function. Thus the group performing feedback respiratory had more effective results for mild COPD patients. [Conclusion] Therefore, the improvement was significant regarding the activity of respiratory muscles synergists when breathing before doing breathing exercise. Although, it is valuable to reduce too much mobilization of respiratory muscles synergists through the proper intervention it is necessary to study body function regarding improvement of respiratory function for patients with COPD.

  1. Defining Exercise Performance Metrics for Flight Hardware Development

    NASA Technical Reports Server (NTRS)

    Beyene, Nahon M.

    2004-01-01

    The space industry has prevailed over numerous design challenges in the spirit of exploration. Manned space flight entails creating products for use by humans and the Johnson Space Center has pioneered this effort as NASA's center for manned space flight. NASA Astronauts use a suite of flight exercise hardware to maintain strength for extravehicular activities and to minimize losses in muscle mass and bone mineral density. With a cycle ergometer, treadmill, and the Resistive Exercise Device available on the International Space Station (ISS), the Space Medicine community aspires to reproduce physical loading schemes that match exercise performance in Earth s gravity. The resistive exercise device presents the greatest challenge with the duty of accommodating 20 different exercises and many variations on the core set of exercises. This paper presents a methodology for capturing engineering parameters that can quantify proper resistive exercise performance techniques. For each specified exercise, the method provides engineering parameters on hand spacing, foot spacing, and positions of the point of load application at the starting point, midpoint, and end point of the exercise. As humans vary in height and fitness levels, the methodology presents values as ranges. In addition, this method shows engineers the proper load application regions on the human body. The methodology applies to resistive exercise in general and is in use for the current development of a Resistive Exercise Device. Exercise hardware systems must remain available for use and conducive to proper exercise performance as a contributor to mission success. The astronauts depend on exercise hardware to support extended stays aboard the ISS. Future plans towards exploration of Mars and beyond acknowledge the necessity of exercise. Continuous improvement in technology and our understanding of human health maintenance in space will allow us to support the exploration of Mars and the future of space exploration.

  2. Neuromuscular partitioning in the extensor carpi radialis longus and brevis based on intramuscular nerve distribution patterns: A three-dimensional modeling study.

    PubMed

    Ravichandiran, Mayoorendra; Ravichandiran, Nisanthini; Ravichandiran, Kajeandra; McKee, Nancy H; Richardson, Denyse; Oliver, Michele; Agur, Anne M

    2012-04-01

    Differential activation of specific regions within a skeletal muscle has been linked to the presence of neuromuscular compartments. However, few studies have investigated the extra- or intramuscular innervation throughout the muscle volume of extensor carpi radialis longus (ECRL) and brevis (ECRB). The aim of this study was to determine the presence of neuromuscular partitions in ECRL and ECRB based on the extra- and intramuscular innervation using three-dimensional modeling. The extra- and intramuscular nerve distribution was digitized and reconstructed in 3D in all the muscle volumes using Autodesk Maya in seven formalin embalmed cadaveric specimens (mean age, 75.7 ± 15.2 years). The intramuscular nerve distribution was modeled in all the muscle volumes. ECRL was found to have two neuromuscular compartments, superficial and deep. One branch from the radial nerve proper was found to innervate ECRL. This branch was divided into anterior and posterior branches to the superficial and deep compartments, respectively. Five innervation patterns were identified in ECRB with partitioning of the muscle belly into two, three, or four compartments, in a proximal to distal direction depending on the number of nerve branches entering the muscle belly. The ECRL and ECRB both demonstrated neuromuscular compartmentalization based on intramuscular innervation. According to the partitioning hypothesis, a muscle may be differentially activated depending on the required function of the muscle, thus allowing multifunctional muscles to contribute to a variety of movements. Therefore, the increased number of neuromuscular partitions in ECRB when compared with ECRL could be due to the need for more differential recruitment in the ECRB depending on force requirements. Copyright © 2011 Wiley Periodicals, Inc.

  3. Serratus Anterior and Lower Trapezius Muscle Activities During Multi-Joint Isotonic Scapular Exercises and Isometric Contractions.

    PubMed

    Tsuruike, Masaaki; Ellenbecker, Todd

    2014-11-14

    Context :  Proper scapular function during humeral elevation, such as upward rotation, external rotation, and posterior tilting of the scapula, is necessary to prevent shoulder injury. However, the appropriate intensity of rehabilitation exercise for the periscapular muscles has yet to be clarified. Objective :  To identify the serratus anterior, lower trapezius, infraspinatus, and posterior deltoid muscle activities during 2 free-motion exercises using 3 intensities and to compare these muscle activities with isometric contractions during quadruped shoulder flexion and external rotation and abduction of the glenohumeral joint. Design :  Cross-sectional study. Setting :  Health Science Laboratory. Patients or Other Participants :  A total of 16 uninjured, healthy, active, male college students (age = 19.5 ± 1.2 years, height = 173.1 ± 6.5 cm, weight = 68.8 ± 6.6 kg). Main Outcome Measure(s) :  Mean electromyographic activity normalized by the maximal voluntary isometric contraction was analyzed across 3 intensities and 5 exercises. Intraclass correlation coefficients were calculated for electromyographic activity of the 4 muscles in each free-motion exercise. Results :  Significant interactions in electromyographic activity were observed between intensities and exercises (P < .05). The quadruped shoulder-flexion exercise activated all 4 muscles compared with other exercises. Also, the modified robbery free-motion exercise activated the serratus anterior, lower trapezius, and infraspinatus compared with the lawn-mower free-motion exercise. However, neither exercise showed a difference in posterior deltoid electromyographic activity. Conclusions :  Three intensities exposed the nature of the periscapular muscle activities across the different exercises. The free-motion exercise in periscapular muscle rehabilitation may not modify serratus anterior, lower trapezius, and infraspinatus muscle activities unless knee-joint extension is limited.

  4. Serratus Anterior and Lower Trapezius Muscle Activities During Multi-Joint Isotonic Scapular Exercises and Isometric Contractions

    PubMed Central

    Tsuruike, Masaaki; Ellenbecker, Todd S.

    2015-01-01

    Context: Proper scapular function during humeral elevation, such as upward rotation, external rotation, and posterior tilting of the scapula, is necessary to prevent shoulder injury. However, the appropriate intensity of rehabilitation exercise for the periscapular muscles has yet to be clarified. Objective: To identify the serratus anterior, lower trapezius, infraspinatus, and posterior deltoid muscle activities during 2 free-motion exercises using 3 intensities and to compare these muscle activities with isometric contractions during quadruped shoulder flexion and external rotation and abduction of the glenohumeral joint. Design: Cross-sectional study. Setting: Health Science Laboratory. Patients or Other Participants: A total of 16 uninjured, healthy, active, male college students (age = 19.5 ± 1.2 years, height = 173.1 ± 6.5 cm, weight = 68.8 ± 6.6 kg). Main Outcome Measure(s): Mean electromyographic activity normalized by the maximal voluntary isometric contraction was analyzed across 3 intensities and 5 exercises. Intraclass correlation coefficients were calculated for electromyographic activity of the 4 muscles in each free-motion exercise. Results: Significant interactions in electromyographic activity were observed between intensities and exercises (P < .05). The quadruped shoulder-flexion exercise activated all 4 muscles compared with other exercises. Also, the modified robbery free-motion exercise activated the serratus anterior, lower trapezius, and infraspinatus compared with the lawn-mower free-motion exercise. However, neither exercise showed a difference in posterior deltoid electromyographic activity. Conclusions: Three intensities exposed the nature of the periscapular muscle activities across the different exercises. The free-motion exercise in periscapular muscle rehabilitation may not modify serratus anterior, lower trapezius, and infraspinatus muscle activities unless knee-joint extension is limited. PMID:25689561

  5. The comparative morphology of the muscle tissues and changes in constituents in the pig types.

    PubMed

    Fehér, G; Fazekas, S; Sándor, I; Kollár, N

    1990-09-01

    The authors have revealed the main value characteristics of pork production by testing in five different types of pig the volume of contractile and collagen proteins, that of proteoglycans, the constituents of blood and the enzymes of the blood plasma. The contractile proteins of the muscle tissues basically determine the quality of pork. The same applies to the water retention capacity, colloidal characteristics and glycogen content of meat. The amount of contractile proteins has decreased in the best meat producing types of pig. Parallel with the decrease of white meat, and with the increase in the volume of ham, chop and chuck the contractile protein content of muscles decreased. The scientific fact according to which there is a certain correlation among the changes in the volume of contractile proteins, blood sugar level, blood serum CPK and the intensity of activity of the LDH enzymes promotes the qualifying of live animals and the work of the geneticists aiming at the increasing of the contractile protein content of the muscle tissues of pigs by selection. According to tests carried out by us the primary cause of PSE changes is a decreased volume of contractile proteins. Increased stress sensitivity and all the other factors have but a secondary importance and are all consequential. The decrease in the quantity of contractile proteins or--it is better to put it this way--the lack of the proper amount of such proteins characterizing a fully developed pig's organism is caused by the nowadays usual breeding technologies and can be well explained by those selection activities which aim at a one-sided kind of pork production.

  6. Hair organ regeneration via the bioengineered hair follicular unit transplantation

    PubMed Central

    Asakawa, Kyosuke; Toyoshima, Koh-ei; Ishibashi, Naoko; Tobe, Hirofumi; Iwadate, Ayako; Kanayama, Tatsuya; Hasegawa, Tomoko; Nakao, Kazuhisa; Toki, Hiroshi; Noguchi, Shotaro; Ogawa, Miho; Sato, Akio; Tsuji, Takashi

    2012-01-01

    Organ regenerative therapy aims to reproduce fully functional organs to replace organs that have been lost or damaged as a result of disease, injury, or aging. For the fully functional regeneration of ectodermal organs, a concept has been proposed in which a bioengineered organ is developed by reproducing the embryonic processes of organogenesis. Here, we show that a bioengineered hair follicle germ, which was reconstituted with embryonic skin-derived epithelial and mesenchymal cells and ectopically transplanted, was able to develop histologically correct hair follicles. The bioengineered hair follicles properly connected to the host skin epithelium by intracutaneous transplantation and reproduced the stem cell niche and hair cycles. The bioengineered hair follicles also autonomously connected with nerves and the arrector pili muscle at the permanent region and exhibited piloerection ability. Our findings indicate that the bioengineered hair follicles could restore physiological hair functions and could be applicable to surgical treatments for alopecia. PMID:22645640

  7. The role of series ankle elasticity in bipedal walking

    PubMed Central

    Zelik, Karl E.; Huang, Tzu-Wei P.; Adamczyk, Peter G.; Kuo, Arthur D.

    2014-01-01

    The elastic stretch-shortening cycle of the Achilles tendon during walking can reduce the active work demands on the plantarflexor muscles in series. However, this does not explain why or when this ankle work, whether by muscle or tendon, needs to be performed during gait. We therefore employ a simple bipedal walking model to investigate how ankle work and series elasticity impact economical locomotion. Our model shows that ankle elasticity can use passive dynamics to aid push-off late in single support, redirecting the body's center-of-mass (COM) motion upward. An appropriately timed, elastic push-off helps to reduce dissipative collision losses at contralateral heelstrike, and therefore the positive work needed to offset those losses and power steady walking. Thus, the model demonstrates how elastic ankle work can reduce the total energetic demands of walking, including work required from more proximal knee and hip muscles. We found that the key requirement for using ankle elasticity to achieve economical gait is the proper ratio of ankle stiffness to foot length. Optimal combination of these parameters ensures proper timing of elastic energy release prior to contralateral heelstrike, and sufficient energy storage to redirect the COM velocity. In fact, there exist parameter combinations that theoretically yield collision-free walking, thus requiring zero active work, albeit with relatively high ankle torques. Ankle elasticity also allows the hip to power economical walking by contributing indirectly to push-off. Whether walking is powered by the ankle or hip, ankle elasticity may aid walking economy by reducing collision losses. PMID:24365635

  8. The role of series ankle elasticity in bipedal walking.

    PubMed

    Zelik, Karl E; Huang, Tzu-Wei P; Adamczyk, Peter G; Kuo, Arthur D

    2014-04-07

    The elastic stretch-shortening cycle of the Achilles tendon during walking can reduce the active work demands on the plantarflexor muscles in series. However, this does not explain why or when this ankle work, whether by muscle or tendon, needs to be performed during gait. We therefore employ a simple bipedal walking model to investigate how ankle work and series elasticity impact economical locomotion. Our model shows that ankle elasticity can use passive dynamics to aid push-off late in single support, redirecting the body's center-of-mass (COM) motion upward. An appropriately timed, elastic push-off helps to reduce dissipative collision losses at contralateral heelstrike, and therefore the positive work needed to offset those losses and power steady walking. Thus, the model demonstrates how elastic ankle work can reduce the total energetic demands of walking, including work required from more proximal knee and hip muscles. We found that the key requirement for using ankle elasticity to achieve economical gait is the proper ratio of ankle stiffness to foot length. Optimal combination of these parameters ensures proper timing of elastic energy release prior to contralateral heelstrike, and sufficient energy storage to redirect the COM velocity. In fact, there exist parameter combinations that theoretically yield collision-free walking, thus requiring zero active work, albeit with relatively high ankle torques. Ankle elasticity also allows the hip to power economical walking by contributing indirectly to push-off. Whether walking is powered by the ankle or hip, ankle elasticity may aid walking economy by reducing collision losses. Copyright © 2013 Elsevier Ltd. All rights reserved.

  9. On the anatomy and histology of the pubovisceral muscle enthesis in women.

    PubMed

    Kim, Jinyong; Ramanah, Rajeev; DeLancey, John O L; Ashton-Miller, James A

    2011-09-01

    The origin of the pubovisceral muscle (PVM) from the pubic bone is known to be at elevated risk for injury during difficult vaginal births. We examined the anatomy and histology of its enthesial origin to classify its type and see if it differs from appendicular entheses. Parasagittal sections of the pubic bone, PVM enthesis, myotendinous junction, and muscle proper were harvested from five female cadavers (51-98 years). Histological sections were prepared with hematoxylin and eosin, Masson's trichrome, and Verhoeff-Van Gieson stains. The type of enthesis was identified according to a published enthesial classification scheme. Quantitative imaging analysis was performed in sampling bands 2 mm apart along the enthesis to determine its cross-sectional area and composition. The PVM enthesis can be classified as a fibrous enthesis. The PVM muscle fibers terminated in collagenous fibers that insert tangentially onto the periosteum of the pubic bone for the most part. Sharpey's fibers were not observed. In a longitudinal cross-section, the area of the connective tissue and muscle becomes equal approximately 8 mm from the pubic bone. The PVM originates bilaterally from the pubic bone via fibrous entheses whose collagen fibers arise tangentially from the periosteum of the pubic bone. Copyright © 2010 Wiley-Liss, Inc.

  10. On the Anatomy and Histology of the Pubovisceral Muscle Enthesis in Women

    PubMed Central

    Kim, Jinyong; Ramanah, Rajeev; DeLancey, John O. L.; Ashton-Miller, James A.

    2012-01-01

    Aims The origin of the pubovisceral muscle (PVM) from the pubic bone is known to be at elevated risk for injury during difficult vaginal births. We examined the anatomy and histology of its enthesial origin to classify its type and see if it differs from appendicular entheses. Methods Parasagittal sections of the pubic bone, PVM enthesis, myotendinous junction and muscle proper were harvested from five female cadavers (51 - 98 years). Histological sections were prepared with hematoxylin and eosin, Masson’s trichrome, and Verhoeff-Van Gieson stains. The type of enthesis was identified according to a published enthesial classification scheme. Quantitative imaging analysis was performed in sampling bands 2 mm apart along the enthesis to determine its cross-sectional area and composition. Results The PVM enthesis can be classified as a fibrous enthesis. The PVM muscle fibers terminated in collagenous fibers that insert tangentially onto the periosteum of the pubic bone for the most part. Sharpey’s fibers were not observed. In a longitudinal cross-section, the area of the connective tissue and muscle becomes equal approximately 8 mm from the pubic bone. Conclusion The PVM originates bilaterally from the pubic bone via fibrous entheses whose collagen fibers arise tangentially from the periosteum of the pubic bone. PMID:21567449

  11. Neo-epitope Peptides as Biomarkers of Disease Progression for Muscular Dystrophies and Other Myopathies

    PubMed Central

    Arvanitidis, A.; Henriksen, K.; Karsdal, M.A.; Nedergaard, A.

    2016-01-01

    For several decades, serological biomarkers of neuromuscular diseases as dystrophies, myopathies and myositis have been limited to routine clinical biochemistry panels. Gauging the pathological progression is a prerequisite for proper treatment and therefore identifying accessible, easy to monitor biomarkers that can predict the disease progression would be an important advancement. Most muscle diseases involve accelerated muscle fiber degradation, inflammation, fatty tissue substitution and/or fibrosis. All these pathological traits have been shown to give rise to serological peptide biomarkers in other tissues, underlining the potential application of existing biomarkers of such traits in muscle disorders. A significant quantity of tissue is involved in these pathological mechanisms alongside with qualitative changes in protein turnover in myofibrillar, extra-cellular matrix and immunological cell protein fractions accompanied by alterations in body fluids. We propose that protein and peptides can leak out of the afflicted muscles and can be of use in diagnosis, prediction of pathology trajectory and treatment efficacy. Proteolytic cleavage systems are especially modulated during a range of muscle pathologies, thereby giving rise to peptides that are differentially released during disease manifestation. Therefore, we believe that pathology-specific post-translational modifications like cleavages can give rise to neoepitope peptides that may represent a promising class of peptides for discovery of biomarkers pertaining to neuromuscular diseases. PMID:27854226

  12. Skeletal muscle O-GlcNAc transferase is important for muscle energy homeostasis and whole-body insulin sensitivity.

    PubMed

    Shi, Hao; Munk, Alexander; Nielsen, Thomas S; Daughtry, Morgan R; Larsson, Louise; Li, Shize; Høyer, Kasper F; Geisler, Hannah W; Sulek, Karolina; Kjøbsted, Rasmus; Fisher, Taylor; Andersen, Marianne M; Shen, Zhengxing; Hansen, Ulrik K; England, Eric M; Cheng, Zhiyong; Højlund, Kurt; Wojtaszewski, Jørgen F P; Yang, Xiaoyong; Hulver, Matthew W; Helm, Richard F; Treebak, Jonas T; Gerrard, David E

    2018-05-01

    Given that cellular O-GlcNAcylation levels are thought to be real-time measures of cellular nutrient status and dysregulated O-GlcNAc signaling is associated with insulin resistance, we evaluated the role of O-GlcNAc transferase (OGT), the enzyme that mediates O-GlcNAcylation, in skeletal muscle. We assessed O-GlcNAcylation levels in skeletal muscle from obese, type 2 diabetic people, and we characterized muscle-specific OGT knockout (mKO) mice in metabolic cages and measured energy expenditure and substrate utilization pattern using indirect calorimetry. Whole body insulin sensitivity was assessed using the hyperinsulinemic euglycemic clamp technique and tissue-specific glucose uptake was subsequently evaluated. Tissues were used for histology, qPCR, Western blot, co-immunoprecipitation, and chromatin immunoprecipitation analyses. We found elevated levels of O-GlcNAc-modified proteins in obese, type 2 diabetic people compared with well-matched obese and lean controls. Muscle-specific OGT knockout mice were lean, and whole body energy expenditure and insulin sensitivity were increased in these mice, consistent with enhanced glucose uptake and elevated glycolytic enzyme activities in skeletal muscle. Moreover, enhanced glucose uptake was also observed in white adipose tissue that was browner than that of WT mice. Interestingly, mKO mice had elevated mRNA levels of Il15 in skeletal muscle and increased circulating IL-15 levels. We found that OGT in muscle mediates transcriptional repression of Il15 by O-GlcNAcylating Enhancer of Zeste Homolog 2 (EZH2). Elevated muscle O-GlcNAc levels paralleled insulin resistance and type 2 diabetes in humans. Moreover, OGT-mediated signaling is necessary for proper skeletal muscle metabolism and whole-body energy homeostasis, and our data highlight O-GlcNAcylation as a potential target for ameliorating metabolic disorders. Copyright © 2018 The Authors. Published by Elsevier GmbH.. All rights reserved.

  13. In situ macrophage phenotypic transition is affected by altered cellular composition prior to acute sterile muscle injury.

    PubMed

    Patsalos, Andreas; Pap, Attila; Varga, Tamas; Trencsenyi, Gyorgy; Contreras, Gerardo Alvarado; Garai, Ildiko; Papp, Zoltan; Dezso, Balazs; Pintye, Eva; Nagy, Laszlo

    2017-09-01

    The in situ phenotypic switch of macrophages is delayed in acute injury following irradiation. The combination of bone marrow transplantation and local muscle radiation protection allows for the identification of a myeloid cell contribution to tissue repair. PET-MRI allows monitoring of myeloid cell invasion and metabolism. Altered cellular composition prior to acute sterile injury affects the in situ phenotypic transition of invading myeloid cells to repair macrophages. There is reciprocal intercellular communication between local muscle cell compartments, such as PAX7 positive cells, and recruited macrophages during skeletal muscle regeneration. Skeletal muscle regeneration is a complex interplay between various cell types including invading macrophages. Their recruitment to damaged tissues upon acute sterile injuries is necessary for clearance of necrotic debris and for coordination of tissue regeneration. This highly dynamic process is characterized by an in situ transition of infiltrating monocytes from an inflammatory (Ly6C high ) to a repair (Ly6C low ) macrophage phenotype. The importance of the macrophage phenotypic shift and the cross-talk of the local muscle tissue with the infiltrating macrophages during tissue regeneration upon injury are not fully understood and their study lacks adequate methodology. Here, using an acute sterile skeletal muscle injury model combined with irradiation, bone marrow transplantation and in vivo imaging, we show that preserved muscle integrity and cell composition prior to the injury is necessary for the repair macrophage phenotypic transition and subsequently for proper and complete tissue regeneration. Importantly, by using a model of in vivo ablation of PAX7 positive cells, we show that this radiosensitive skeletal muscle progenitor pool contributes to macrophage phenotypic transition following acute sterile muscle injury. In addition, local muscle tissue radioprotection by lead shielding during irradiation preserves normal macrophage transition dynamics and subsequently muscle tissue regeneration. Taken together, our data suggest the existence of a more extensive and reciprocal cross-talk between muscle tissue compartments, including satellite cells, and infiltrating myeloid cells upon tissue damage. These interactions shape the macrophage in situ phenotypic shift, which is indispensable for normal muscle tissue repair dynamics. © 2017 The Authors. The Journal of Physiology © 2017 The Physiological Society.

  14. Retest reliability of force-time variables of neck muscles under isometric conditions.

    PubMed

    Almosnino, Sivan; Pelland, Lucie; Stevenson, Joan M

    2010-01-01

    Proper conditioning of the neck muscles may play a role in reducing the risk of neck injury and, possibly, concussions in contact sports. However, the ability to reliably measure the force-time-based variables that might be relevant for this purpose has not been addressed. To assess the between-days reliability of discrete force-time-based variables of neck muscles during maximal voluntary isometric contractions in 5 directions. Cohort study. University research center. Twenty-six highly physically active men (age  =  21.6 ± 2.1 years, height  =  1.85 ± 0.09 m, mass  =  81.6 ± 9.9 kg, head circumference  =  0.58 ± 0.01 m, neck circumference  =  0.39 ± 0.02 m). We used a custom-built testing apparatus to measure maximal voluntary isometric contractions of the neck muscles in 5 directions (extension, flexion, protraction, left lateral bending, and right lateral bending) on 2 separate occasions separated by 7 to 8 days. Variables measured were peak force (PF), rate of force development (RFD), and time to 50% of PF (T(50)PF). Reliability indices calculated for each variable comprised the difference in scores between the testing sessions, with corresponding 95% confidence intervals, the coefficient of variation of the typical error of measurement (CV(TE)), and intraclass correlation coefficients (ICC [3,3]). No evidence of systematic bias was detected for the dependent measures across any movement direction; retest differences in measurements were between 1.8% and 2.7%, with corresponding 95% confidence interval ranges of less than 10% and overlapping zero. The CV(TE) was lowest for PF (range, 2.4%-6.3%) across all testing directions, followed by RFD (range, 4.8%-9.0%) and T(50)PF (range, 7.1%-9.3%). The ICC score range for all dependent measures was 0.90 to 0.99. Discrete variables representative of the force-generating capacity of neck muscles under isometric conditions can be measured with an acceptable degree of reliability. This finding has possible applications for investigating the role of neck muscle strength-training programs in reducing the risk of injuries in sport settings.

  15. Development of a Compact Wireless Laplacian Electrode Module for Electromyograms and Its Human Interface Applications

    PubMed Central

    Fukuoka, Yutaka; Miyazawa, Kenji; Mori, Hiroki; Miyagi, Manabi; Nishida, Masafumi; Horiuchi, Yasuo; Ichikawa, Akira; Hoshino, Hiroshi; Noshiro, Makoto; Ueno, Akinori

    2013-01-01

    In this study, we developed a compact wireless Laplacian electrode module for electromyograms (EMGs). One of the advantages of the Laplacian electrode configuration is that EMGs obtained with it are expected to be sensitive to the firing of the muscle directly beneath the measurement site. The performance of the developed electrode module was investigated in two human interface applications: character-input interface and detection of finger movement during finger Braille typing. In the former application, the electrode module was combined with an EMG-mouse click converter circuit. In the latter, four electrode modules were used for detection of finger movements during finger Braille typing. Investigation on the character-input interface indicated that characters could be input stably by contraction of (a) the masseter, (b) trapezius, (c) anterior tibialis and (d) flexor carpi ulnaris muscles. This wide applicability is desirable when the interface is applied to persons with physical disabilities because the disability differs one to another. The investigation also demonstrated that the electrode module can work properly without any skin preparation. Finger movement detection experiments showed that each finger movement was more clearly detectable when comparing to EMGs recorded with conventional electrodes, suggesting that the Laplacian electrode module is more suitable for detecting the timing of finger movement during typing. This could be because the Laplacian configuration enables us to record EMGs just beneath the electrode. These results demonstrate the advantages of the Laplacian electrode module. PMID:23396194

  16. The effect of spinal curvature on the photogrammetric assessment on static balance in elderly women.

    PubMed

    Drzał-Grabiec, Justyna; Rachwał, Maciej; Podgórska-Bednarz, Justyna; Rykała, Justyna; Snela, Sławomir; Truszczyńska, Aleksandra; Trzaskoma, Zbigniew

    2014-05-29

    Involutional changes to the body in elderly patients affect the shape of the spine and the activity of postural muscles. The purpose of this study was to assess the influence of age-related changes in spinal curvature on postural balance in elderly women. The study population consisted of 90 women, with a mean age of 70 ± 8.01 years. Static balance assessments were conducted on a tensometric platform, and posturographic assessments of body posture were performed using a photogrammetric method based on the Projection Moiré method. The results obtained were analysed using the Spearman's rank correlation coefficient test. We found a statistically significant correlation between body posture and the quality of the balance system response based on the corrective function of the visual system. The shape of the spinal curvature influenced postural stability, as measured by static posturography. Improvement in the quality of the balance system response depended on corrective information from the visual system and proprioceptive information from the paraspinal muscles. The sensitivity of the balance system to the change of centre of pressure location was influenced by the direction of the change in rotation of the shoulder girdle and spine. Development of spinal curvature in the sagittal plane and maintenance of symmetry in the coronal and transverse planes are essential for correct balance control, which in turn is essential for the development of a properly proportioned locomotor system.

  17. Sartorius muscle tear presenting as acute meralgia paresthetica.

    PubMed

    Lee, Brian; Stubbs, Euan

    2018-05-29

    We present an unusual case of sartorius muscle tear presenting as acute meralgia paresthetica. A healthy 67-year old male was referred to our department with a one-week history of pain, numbness and bruising over his hip and anterolateral thigh. Extended ultrasound assessment revealed an intramuscular tear of sartorius, with acute hematoma surrounding the adjacent lateral femoral cutaneous nerve. Meralgia paresthetica from acute trauma is rare, with only three published cases relating to fractures of the anterior superior iliac spine. To our knowledge, this is the first case caused by muscular tear in the literature. The presence of features attributable to neuropraxia of the lateral femoral cutaneous nerve allowed for proper localization and diagnosis of the patient's injury. Copyright © 2018. Published by Elsevier Inc.

  18. Morphological Dynamics of Mitochondria – A Special Emphasis on Cardiac Muscle Cells

    PubMed Central

    Hom, Jennifer; Sheu, Shey-Shing

    2010-01-01

    Mitochondria play a critical role in cellular energy metabolism, Ca2+ homeostasis, reactive oxygen species generation, apoptosis, aging, and development. Many recent publications have shown that a continuous balance of fusion and fission of these organelles is important in maintaining their proper function. Therefore, there is a steep correlation between the form and function of mitochondria. Many major proteins involved in mitochondrial fusion and fission have been identified in different cell types, including heart. However, the functional role of mitochondrial dynamics in the heart remains, for the most part, unexplored. In this review we will cover the recent field of mitochondrial dynamics and its physiological and pathological implications, with a particular emphasis on the experimental and theoretical basis of mitochondrial dynamics in the heart. PMID:19281816

  19. The effects of whole body vibration on EMG activity of the upper extremity muscles in static modified push up position.

    PubMed

    Ashnagar, Zinat; Shadmehr, Azadeh; Hadian, Mohammadreza; Talebian, Saeed; Jalaei, Shohreh

    2016-08-10

    Whole Body Vibration (WBV) has been reported to change neuromuscular activity which indirectly assessed by electromyography (EMG). Although researches regarding the influence of WBV on EMG activity of the upper extremity muscles are in their infancy, contradictory findings have been reported as a result of dissimilar protocols. The purpose of this study was to investigate the effects of WBV on electromyography (EMG) activity of upper extremity muscles in static modified push up position. Forty recreationally active females were randomly assigned in WBV and control groups. Participants in WBV group received 5 sets of 30 seconds vibration at 5 mm (peak to peak) and 30 Hz by using vibratory platform. No vibration stimulus was used in the control group. Surface EMG was recorded from Upper Trapezius (UT), Serratus Anterior (SA), Biceps Brachii (BB) and Triceps Brachii (TB) muscles before, during and after the vibration protocol while the subjects maintained the static modified push up position. EMG signals were expressed as root mean square (EMGrms) and normalized by maximum voluntary exertion (MVE). EMGrms activity of the studied muscles increased significantly during the vibration protocol in the WBV group comparing to the control group (P ≤ 0.05). The results indicated that vibration stimulus transmitting via hands increased muscle activity of UT, SA, BB and TB muscles by an average of 206%, 60%, 106% and 120%, respectively, comparing to pre vibration values. These findings suggest that short exposure to the WBV could increase the EMGrms activity of the upper extremity muscles in the static modified push-up position. However, more sessions of WBV application require for a proper judgment.

  20. Early- and later-phases satellite cell responses and myonuclear content with resistance training in young men.

    PubMed

    Damas, Felipe; Libardi, Cleiton A; Ugrinowitsch, Carlos; Vechin, Felipe C; Lixandrão, Manoel E; Snijders, Tim; Nederveen, Joshua P; Bacurau, Aline V; Brum, Patricia; Tricoli, Valmor; Roschel, Hamilton; Parise, Gianni; Phillips, Stuart M

    2018-01-01

    Satellite cells (SC) are associated with skeletal muscle remodelling after muscle damage and/or extensive hypertrophy resulting from resistance training (RT). We recently reported that early increases in muscle protein synthesis (MPS) during RT appear to be directed toward muscle damage repair, but MPS contributes to hypertrophy with progressive muscle damage attenuation. However, modulations in acute-chronic SC content with RT during the initial (1st-wk: high damage), early (3rd-wk: attenuated damage), and later (10th-wk: no damage) stages is not well characterized. Ten young men (27 ± 1 y, 23.6 ± 1.0 kg·m-2) underwent 10-wks of RT and muscle biopsies (vastus-lateralis) were taken before (Pre) and post (48h) the 1st (T1), 5th (T2) and final (T3) RT sessions to evaluate fibre type specific SC content, cross-sectional area (fCSA) and myonuclear number by immunohistochemistry. We observed RT-induced hypertrophy after 10-wks of RT (fCSA increased ~16% in type II, P < 0.04; ~8% in type I [ns]). SC content increased 48h post-exercise at T1 (~69% in type I [P = 0.014]; ~42% in type II [ns]), and this increase was sustained throughout RT (pre T2: ~65%, ~92%; pre T3: ~30% [ns], ~87%, for the increase in type I and II, respectively, vs. pre T1 [P < 0.05]). Increased SC content was not coupled with changes in myonuclear number. SC have a more pronounced role in muscle repair during the initial phase of RT than muscle hypertrophy resulted from 10-wks RT in young men. Chronic elevated SC pool size with RT is important providing proper environment for future stresses or larger fCSA increases.

  1. Oligonol, a Low-Molecular Weight Polyphenol Derived from Lychee, Alleviates Muscle Loss in Diabetes by Suppressing Atrogin-1 and MuRF1.

    PubMed

    Liu, Hung-Wen; Chen, Yen-Ju; Chang, Yun-Ching; Chang, Sue-Joan

    2017-09-20

    Stimulation of the ubiquitin-proteasome pathway-especially E3 ubiquitin ligases Atrogin-1 and MuRF1-is associated with muscle loss in diabetes. Elevated lipid metabolites impair myogenesis. Oligonol, a low molecular weight polyphenol derived from lychee, exhibited anti-diabetic and anti-obesity properties, suggesting it could be a proper supplement for attenuating muscle loss. Dietary (10 weeks) oligonol supplementation (20 or 200 mg/kg diet) on the skeletal muscle loss was investigated in diabetic db/db mice. Transcription factors NF-κB and FoxO3a involved in regulation of Atrogin-1 and MuRF1 were also investigated. Attenuation of muscle loss by oligonol (both doses) was associated with down-regulation of Atrogin-1 and MuRF1 gene expression. Oligonol supplementation decreased NF-κB expression in the nuclear fraction compared with db/db mice without oligonol supplement. Upregulation of sirtuin1 (SIRT1) expression prevented FoxO3a nuclear localization in db/db mice supplemented with oligonol. Marked increases in AMPKα activity and Ppara mRNA expression leading to lower lipid accumulation by oligonol provided additional benefits for attenuating muscle loss. Oligonol limited palmitate-induced senescent phenotype and cell cycle arrest and suppressed Atrogin-1 and MuRF1 mRNA expression in palmitate-treated C2C12 muscle cells, thus contributing to improving the impaired myotube formation. In conclusion, oligonol-mediated downregulation of Atrogin-1 and MuRF1 gene expression alleviates muscle loss and improves the impaired myotube formation, indicating that oligonol supplementation may be useful for the attenuation of myotube loss.

  2. Compartmentalized acyl-CoA metabolism in skeletal muscle regulates systemic glucose homeostasis.

    PubMed

    Li, Lei O; Grevengoed, Trisha J; Paul, David S; Ilkayeva, Olga; Koves, Timothy R; Pascual, Florencia; Newgard, Christopher B; Muoio, Deborah M; Coleman, Rosalind A

    2015-01-01

    The impaired capacity of skeletal muscle to switch between the oxidation of fatty acid (FA) and glucose is linked to disordered metabolic homeostasis. To understand how muscle FA oxidation affects systemic glucose, we studied mice with a skeletal muscle-specific deficiency of long-chain acyl-CoA synthetase (ACSL)1. ACSL1 deficiency caused a 91% loss of ACSL-specific activity and a 60-85% decrease in muscle FA oxidation. Acsl1(M-/-) mice were more insulin sensitive, and, during an overnight fast, their respiratory exchange ratio was higher, indicating greater glucose use. During endurance exercise, Acsl1(M-/-) mice ran only 48% as far as controls. At the time that Acsl1(M-/-) mice were exhausted but control mice continued to run, liver and muscle glycogen and triacylglycerol stores were similar in both genotypes; however, plasma glucose concentrations in Acsl1(M-/-) mice were ∼40 mg/dL, whereas glucose concentrations in controls were ∼90 mg/dL. Excess use of glucose and the likely use of amino acids for fuel within muscle depleted glucose reserves and diminished substrate availability for hepatic gluconeogenesis. Surprisingly, the content of muscle acyl-CoA at exhaustion was markedly elevated, indicating that acyl-CoAs synthesized by other ACSL isoforms were not available for β-oxidation. This compartmentalization of acyl-CoAs resulted in both an excessive glucose requirement and severely compromised systemic glucose homeostasis. © 2015 by the American Diabetes Association. Readers may use this article as long as the work is properly cited, the use is educational and not for profit, and the work is not altered.

  3. Telemetered electromyography of the supinators and pronators of the forearm in gibbons and chimpanzees: implications for the fundamental positional adaptation of hominoids.

    PubMed

    Stern, J T; Larson, S G

    2001-07-01

    Extant apes are similar to one another, and different from monkeys, in features granting them greater range of forearm rotation and greater size of the muscles that produce this motion. Although these traits may have been independently acquired by the various apes, the possibility arises that such features reflect adaptation to the stem behavior of the hominoid lineage. Anticipating that knowledge of forearm rotatory muscle recruitment during brachiation, vertical climbing, arm-hanging during feeding, and voluntary reaching might point to this stem behavior, we undertook telemetered electromyographic experiments on the supinator, pronator quadratus, ulnar head of pronator teres, and a variety of other upper limb muscles in two gibbons and four chimpanzees. The primary rotator muscles of the hominoid forearm were recruited at high levels in a variety of behaviors. As had been suspected by previous researchers, the supinator is usually active during the support phase of armswinging, but we observed numerous instances of this behavior during which the muscle was inactive. No other muscle took over its role. Kinetic analyses are required to determine how apes can execute body rotation of armswinging without active muscular effort. The one behavior that is common to most extant apes, is rare in monkeys, and which places a consistently great demand on the primary forearm rotatory muscles, is hang-feeding. The muscles of the supporting limb are essential to properly position the body; those of the free limb are essential for grasping food. Since the greater range of forearm rotation characterizing apes is also best explained by adaptation to this behavior, we join previous authors who assert that it lies at the very origin of the Hominoidea. Copyright 2001 Wiley-Liss, Inc.

  4. Nfix Regulates Temporal Progression of Muscle Regeneration through Modulation of Myostatin Expression.

    PubMed

    Rossi, Giuliana; Antonini, Stefania; Bonfanti, Chiara; Monteverde, Stefania; Vezzali, Chiara; Tajbakhsh, Shahragim; Cossu, Giulio; Messina, Graziella

    2016-03-08

    Nfix belongs to a family of four highly conserved proteins that act as transcriptional activators and/or repressors of cellular and viral genes. We previously showed a pivotal role for Nfix in regulating the transcriptional switch from embryonic to fetal myogenesis. Here, we show that Nfix directly represses the Myostatin promoter, thus controlling the proper timing of satellite cell differentiation and muscle regeneration. Nfix-null mice display delayed regeneration after injury, and this deficit is reversed upon in vivo Myostatin silencing. Conditional deletion of Nfix in satellite cells results in a similar delay in regeneration, confirming the functional requirement for Nfix in satellite cells. Moreover, mice lacking Nfix show reduced myofiber cross sectional area and a predominant slow twitching phenotype. These data define a role for Nfix in postnatal skeletal muscle and unveil a mechanism for Myostatin regulation, thus providing insights into the modulation of its complex signaling pathway. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  5. Preservation of lower extremity amputation length using muscle perforator free flaps.

    PubMed

    Hallock, G G

    2008-06-01

    Coverage of any lower extremity amputation stump must be durable to resist external forces, well contoured, and thin enough for proper shoewear or prothesis fitting. Preservation of bone length to maximise the ability to ambulate is also of paramount importance. If local soft tissues are inadequate to fulfil these prerequisites, consideration of a microsurgical tissue transfer is a reasonable option, especially to cover bone or save a major joint. Muscle perforator free flaps, as shown in this series of eight patients using four different donor sites, are a versatile alternative for the necessary soft tissue augmentation. Multiple choices are available and often even from the involved lower extremity to minimise further morbidity. The vascular pedicles of this genré of flaps are relatively exceedingly long and of respectable calibre to facilitate reaching an appropriate recipient site. They can be sensate if desired. Of course, muscle function is by definition preserved. Complications are minimal and usually related to the reason for the amputation in the first place.

  6. A Pitx2-MicroRNA Pathway Modulates Cell Proliferation in Myoblasts and Skeletal-Muscle Satellite Cells and Promotes Their Commitment to a Myogenic Cell Fate

    PubMed Central

    Lozano-Velasco, Estefanía; Vallejo, Daniel; Esteban, Francisco J.; Doherty, Chris; Hernández-Torres, Francisco; Franco, Diego

    2015-01-01

    The acquisition of a proliferating-cell status from a quiescent state as well as the shift between proliferation and differentiation are key developmental steps in skeletal-muscle stem cells (satellite cells) to provide proper muscle regeneration. However, how satellite cell proliferation is regulated is not fully understood. Here, we report that the c-isoform of the transcription factor Pitx2 increases cell proliferation in myoblasts by downregulating microRNA 15b (miR-15b), miR-23b, miR-106b, and miR-503. This Pitx2c-microRNA (miRNA) pathway also regulates cell proliferation in early-activated satellite cells, enhancing Myf5+ satellite cells and thereby promoting their commitment to a myogenic cell fate. This study reveals unknown functions of several miRNAs in myoblast and satellite cell behavior and thus may have future applications in regenerative medicine. PMID:26055324

  7. Idiopathic Inflammatory Myopathies: Clinical Approach and Management

    PubMed Central

    Malik, Asma; Hayat, Ghazala; Kalia, Junaid S.; Guzman, Miguel A.

    2016-01-01

    Idiopathic inflammatory myopathies (IIM) are a group of chronic, autoimmune conditions affecting primarily the proximal muscles. The most common types are dermatomyositis (DM), polymyositis (PM), necrotizing autoimmune myopathy (NAM), and sporadic inclusion body myositis (sIBM). Patients typically present with sub-acute to chronic onset of proximal weakness manifested by difficulty with rising from a chair, climbing stairs, lifting objects, and combing hair. They are uniquely identified by their clinical presentation consisting of muscular and extramuscular manifestations. Laboratory investigations, including increased serum creatine kinase (CK) and myositis specific antibodies (MSA) may help in differentiating clinical phenotype and to confirm the diagnosis. However, muscle biopsy remains the gold standard for diagnosis. These disorders are potentially treatable with proper diagnosis and initiation of therapy. Goals of treatment are to eliminate inflammation, restore muscle performance, reduce morbidity, and improve quality of life. This review aims to provide a basic diagnostic approach to patients with suspected IIM, summarize current therapeutic strategies, and provide an insight into future prospective therapies. PMID:27242652

  8. Design, fabrication and characterization of oxidized alginate-gelatin hydrogels for muscle tissue engineering applications.

    PubMed

    Baniasadi, Hossein; Mashayekhan, Shohreh; Fadaoddini, Samira; Haghirsharifzamini, Yasamin

    2016-07-01

    In this study, we reported the preparation of self cross-linked oxidized alginate-gelatin hydrogels for muscle tissue engineering. The effect of oxidation degree (OD) and oxidized alginate/gelatin (OA/GEL) weight ratio were examined and the results showed that in the constant OA/GEL weight ratio, both cross-linking density and Young's modulus enhanced by increasing OD due to increment of aldehyde groups. Furthermore, the degradation rate was increased with increasing OD probably due to decrement in alginate molecular weight during oxidation reaction facilitated degradation of alginate chains. MTT cytotoxicity assays performed on Wharton's Jelly-derived umbilical cord mesenchymal stem cells cultured on hydrogels with OD of 30% showed that the highest rate of cell proliferation belong to hydrogel with OA/GEL weight ratio of 30/70. Overall, it can be concluded from all obtained results that the prepared hydrogel with OA/GEL weight ratio and OD of 30/70 and 30%, respectively, could be proper candidate for use in muscle tissue engineering. © The Author(s) 2016.

  9. A design concept of parallel elasticity extracted from biological muscles for engineered actuators.

    PubMed

    Chen, Jie; Jin, Hongzhe; Iida, Fumiya; Zhao, Jie

    2016-08-23

    Series elastic actuation that takes inspiration from biological muscle-tendon units has been extensively studied and used to address the challenges (e.g. energy efficiency, robustness) existing in purely stiff robots. However, there also exists another form of passive property in biological actuation, parallel elasticity within muscles themselves, and our knowledge of it is limited: for example, there is still no general design strategy for the elasticity profile. When we look at nature, on the other hand, there seems a universal agreement in biological systems: experimental evidence has suggested that a concave-upward elasticity behaviour is exhibited within the muscles of animals. Seeking to draw possible design clues for elasticity in parallel with actuators, we use a simplified joint model to investigate the mechanisms behind this biologically universal preference of muscles. Actuation of the model is identified from general biological joints and further reduced with a specific focus on muscle elasticity aspects, for the sake of easy implementation. By examining various elasticity scenarios, one without elasticity and three with elasticity of different profiles, we find that parallel elasticity generally exerts contradictory influences on energy efficiency and disturbance rejection, due to the mechanical impedance shift thus caused. The trade-off analysis between them also reveals that concave parallel elasticity is able to achieve a more advantageous balance than linear and convex ones. It is expected that the results could contribute to our further understanding of muscle elasticity and provide a theoretical guideline on how to properly design parallel elasticity behaviours for engineering systems such as artificial actuators and robotic joints.

  10. A study on muscle activity and ratio of the knee extensor depending on the types of squat exercise

    PubMed Central

    Kang, Jeong-Il; Park, Joon-Su; Choi, Hyun; Jeong, Dae-Keun; Kwon, Hye-Min; Moon, Young-Jun

    2017-01-01

    [Purpose] For preventing the patellofemoral pain syndrome, this study aims to suggest a proper squat method, which presents selective muscle activity of Vastus Medialis Oblique and muscle activity ratios of Vastus Medialis Oblique/Vastus Lateralis by applying squat that is a representative weight bearing exercise method in various ways depending on the surface conditions and knee bending angles. [Subjects and Methods] An isometric squat that was accompanied by hip adduction, depending on the surface condition and the knee joint flexion angle, was performed by 24 healthy students. The muscle activity and the ratio of muscle activity were measured. [Results] In a comparison of muscle activity depending on the knee joint flexion angle on a weight-bearing surface, the vastus medialis oblique showed a significant difference at 15° and 60°. Meanwhile, in a comparison of the muscle activity ratio between the vastus medialis oblique and the vastus lateralis depending on the knee joint flexion angle on a weight-bearing surface, significant differences were observed at 15° and 60°. [Conclusion] An efficient squat exercise posture for preventing the patellofemoral pain syndrome is to increase the knee joint bending angle on a stable surface. But it would be efficient for patients with difficulties in bending the knee joint to keep a knee joint bending angle of 15 degrees or less on an unstable surface. It is considered that in future, diverse studies on selective Vastus Medialis Oblique strengthening exercise methods would be needed after applying them to patients with the patellofemoral pain syndrome. PMID:28210036

  11. Histone H3.3 sub-variant H3mm7 is required for normal skeletal muscle regeneration.

    PubMed

    Harada, Akihito; Maehara, Kazumitsu; Ono, Yusuke; Taguchi, Hiroyuki; Yoshioka, Kiyoshi; Kitajima, Yasuo; Xie, Yan; Sato, Yuko; Iwasaki, Takeshi; Nogami, Jumpei; Okada, Seiji; Komatsu, Tetsuro; Semba, Yuichiro; Takemoto, Tatsuya; Kimura, Hiroshi; Kurumizaka, Hitoshi; Ohkawa, Yasuyuki

    2018-04-11

    Regulation of gene expression requires selective incorporation of histone H3 variant H3.3 into chromatin. Histone H3.3 has several subsidiary variants but their functions are unclear. Here we characterize the function of histone H3.3 sub-variant, H3mm7, which is expressed in skeletal muscle satellite cells. H3mm7 knockout mice demonstrate an essential role of H3mm7 in skeletal muscle regeneration. Chromatin analysis reveals that H3mm7 facilitates transcription by forming an open chromatin structure around promoter regions including those of myogenic genes. The crystal structure of the nucleosome containing H3mm7 reveals that, unlike the S57 residue of other H3 proteins, the H3mm7-specific A57 residue cannot form a hydrogen bond with the R40 residue of the cognate H4 molecule. Consequently, the H3mm7 nucleosome is unstable in vitro and exhibited higher mobility in vivo compared with the H3.3 nucleosome. We conclude that the unstable H3mm7 nucleosome may be required for proper skeletal muscle differentiation.

  12. [Upper digestive hemorrhage caused by ulcerated periampullary leiomyoma].

    PubMed

    Octavio de Toledo, J M; Gómez Lorenzo, F; Santiago, M P; Figueruela, B; Sierra, J A; Domínguez, J

    1991-02-01

    Duodenal leiomyoma represents a very unusual cause for acute gastrointestinal bleeding. The authors report the case of a 49-year-old male with a massive bleeding from an ulcerated duodenal leiomyoma involving the ampulla of Vater. An emergency Whipple's pancreaticoduodenectomy was carried out under suspicion of local malignancy. It is emphasized that the proper diagnosis of smooth muscle tumors is often difficult, both clinically and from the pathological point of view.

  13. Mechanisms of water-salt metabolism disturbances in dogs subjected to six month hypokinesia

    NASA Technical Reports Server (NTRS)

    Korolkov, V. I.; Kovalenko, Y. A.; Krotov, V. P.; Ilyushko, N. A.; Kondratyeva, V. A.; Kondratyev, Y. I.

    1980-01-01

    Water-salt metabolism in dogs during prolonged restricted motor activity (hypokinesia) was investigated. It was found that hydration occurred and fluid was redistributed between the extra- and intra-cellular sectors. Also, electrolyte excretion rose, and magnetism and calcium metabolism changed significantly. It is concluded that the forces caused by muscle strain proper (which was decreased under conditions of hypokinesia) influence the state of bone metabolism.

  14. Novel functions for the RNA-binding protein ETR-1 in Caenorhabditis elegans reproduction and engulfment of germline apoptotic cell corpses

    PubMed Central

    Boateng, Ruby; Nguyen, Ken C.Q.; Hall, David H.; Golden, Andy; Allen, Anna K.

    2017-01-01

    RNA-binding proteins (RBPs) are essential regulators of gene expression that act through a variety of mechanisms to ensure the proper post-transcriptional regulation of their target RNAs. RBPs in multiple species have been identified as playing crucial roles during development and as having important functions in various adult organ systems, including the heart, nervous, muscle, and reproductive systems. ETR-1, a highly conserved ELAV-Type RNA-binding protein belonging to the CELF/Bruno protein family, has been previously reported to be involved in C. elegans muscle development. Animals depleted of ETR-1 have been previously characterized as arresting at the two-fold stage of embryogenesis. In this study, we show that ETR-1 is expressed in the hermaphrodite somatic gonad and germ line, and that reduction of ETR-1 via RNA interference (RNAi) results in reduced hermaphrodite fecundity. Detailed characterization of this fertility defect indicates that ETR-1 is required in both the somatic tissue and the germ line to ensure wild-type reproductive levels. Additionally, the ability of ETR-1 depletion to suppress the published WEE-1.3-depletion infertility phenotype is dependent on ETR-1 being reduced in the soma. Within the germline of etr-1(RNAi) hermaphrodite animals, we observe a decrease in average oocyte size and an increase in the number of germline apoptotic cell corpses as evident by an increased number of CED-1::GFP and acridine orange positive apoptotic germ cells. Transmission Electron Microscopy (TEM) studies confirm the significant increase in apoptotic cells in ETR-1-depleted animals, and reveal a failure of the somatic gonadal sheath cells to properly engulf dying germ cells in etr-1(RNAi) animals. Through investigation of an established engulfment pathway in C. elegans, we demonstrate that co-depletion of CED-1 and ETR-1 suppresses both the reduced fecundity and the increase in the number of apoptotic cell corpses observed in etr-1(RNAi) animals. Combined, this data identifies a novel role for ETR-1 in hermaphrodite gametogenesis and in the process of engulfment of germline apoptotic cell corpses. PMID:28648844

  15. Impact of Aging on Proprioceptive Sensory Neurons and Intrafusal Muscle Fibers in Mice.

    PubMed

    Vaughan, Sydney K; Stanley, Olivia L; Valdez, Gregorio

    2017-06-01

    The impact of aging on proprioceptive sensory neurons and intrafusal muscle fibers (IMFs) remains largely unexplored despite the central function these cells play in modulating voluntary movements. Here, we show that proprioceptive sensory neurons undergo deleterious morphological changes in middle age (11- to 13-month-old) and old (15- to 21-month-old) mice. In the extensor digitorum longus and soleus muscles of middle age and old mice, there is a significant increase in the number of Ia afferents with large swellings that fail to properly wrap around IMFs compared with young adult (2- to 4-month-old) mice. Fewer II afferents were also found in the same muscles of middle age and old mice. Although these age-related changes in peripheral nerve endings were accompanied by degeneration of proprioceptive sensory neuron cell bodies in dorsal root ganglia (DRG), the morphology and number of IMFs remained unchanged. Our analysis also revealed normal levels of neurotrophin 3 (NT3) but dysregulated expression of the tyrosine kinase receptor C (TrkC) in aged muscles and DRGs, respectively. These results show that proprioceptive sensory neurons degenerate prior to atrophy of IMFs during aging, and in the presence of the NT3/TrkC signaling axis. © The Author 2016. Published by Oxford University Press on behalf of The Gerontological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  16. mTOR is necessary for proper satellite cell activity and skeletal muscle regeneration.

    PubMed

    Zhang, Pengpeng; Liang, Xinrong; Shan, Tizhong; Jiang, Qinyang; Deng, Changyan; Zheng, Rong; Kuang, Shihuan

    The serine/threonine kinase mammalian target of rapamycin (mTOR) is a key regulator of protein synthesis, cell proliferation and energy metabolism. As constitutive deletion of Mtor gene results in embryonic lethality, the function of mTOR in muscle stem cells (satellite cells) and skeletal muscle regeneration remains to be determined. In this study, we established a satellite cell specific Mtor conditional knockout (cKO) mouse model by crossing Pax7(CreER) and Mtor(flox/flox) mice. Skeletal muscle regeneration after injury was severely compromised in the absence of Mtor, indicated by increased number of necrotic myofibers infiltrated by Evans blue dye, and reduced number and size of regenerated myofibers in the Mtor cKO mice compared to wild type (WT) littermates. To dissect the cellular mechanism, we analyzed satellite cell-derived primary myoblasts grown on single myofibers or adhered to culture plates. The Mtor cKO myoblasts exhibited defective proliferation and differentiation kinetics when compared to myoblasts derived from WT littermates. At the mRNA and protein levels, the Mtor cKO myoblasts expressed lower levels of key myogenic determinant genes Pax7, Myf5, Myod, Myog than did the WT myoblasts. These results suggest that mTOR is essential for satellite cell function and skeletal muscle regeneration through controlling the expression of myogenic genes. Copyright © 2015 Elsevier Inc. All rights reserved.

  17. An isometric muscle force estimation framework based on a high-density surface EMG array and an NMF algorithm

    NASA Astrophysics Data System (ADS)

    Huang, Chengjun; Chen, Xiang; Cao, Shuai; Qiu, Bensheng; Zhang, Xu

    2017-08-01

    Objective. To realize accurate muscle force estimation, a novel framework is proposed in this paper which can extract the input of the prediction model from the appropriate activation area of the skeletal muscle. Approach. Surface electromyographic (sEMG) signals from the biceps brachii muscle during isometric elbow flexion were collected with a high-density (HD) electrode grid (128 channels) and the external force at three contraction levels was measured at the wrist synchronously. The sEMG envelope matrix was factorized into a matrix of basis vectors with each column representing an activation pattern and a matrix of time-varying coefficients by a nonnegative matrix factorization (NMF) algorithm. The activation pattern with the highest activation intensity, which was defined as the sum of the absolute values of the time-varying coefficient curve, was considered as the major activation pattern, and its channels with high weighting factors were selected to extract the input activation signal of a force estimation model based on the polynomial fitting technique. Main results. Compared with conventional methods using the whole channels of the grid, the proposed method could significantly improve the quality of force estimation and reduce the electrode number. Significance. The proposed method provides a way to find proper electrode placement for force estimation, which can be further employed in muscle heterogeneity analysis, myoelectric prostheses and the control of exoskeleton devices.

  18. Severe myopathy in mice lacking the MEF2/SRF-dependent gene leiomodin-3

    PubMed Central

    Cenik, Bercin K.; Garg, Ankit; McAnally, John R.; Shelton, John M.; Richardson, James A.; Bassel-Duby, Rhonda; Olson, Eric N.; Liu, Ning

    2015-01-01

    Maintenance of skeletal muscle structure and function requires a precise stoichiometry of sarcomeric proteins for proper assembly of the contractile apparatus. Absence of components of the sarcomeric thin filaments causes nemaline myopathy, a lethal congenital muscle disorder associated with aberrant myofiber structure and contractility. Previously, we reported that deficiency of the kelch-like family member 40 (KLHL40) in mice results in nemaline myopathy and destabilization of leiomodin-3 (LMOD3). LMOD3 belongs to a family of tropomodulin-related proteins that promote actin nucleation. Here, we show that deficiency of LMOD3 in mice causes nemaline myopathy. In skeletal muscle, transcription of Lmod3 was controlled by the transcription factors SRF and MEF2. Myocardin-related transcription factors (MRTFs), which function as SRF coactivators, serve as sensors of actin polymerization and are sequestered in the cytoplasm by actin monomers. Conversely, conditions that favor actin polymerization de-repress MRTFs and activate SRF-dependent genes. We demonstrated that the actin nucleator LMOD3, together with its stabilizing partner KLHL40, enhances MRTF-SRF activity. In turn, SRF cooperated with MEF2 to sustain the expression of LMOD3 and other components of the contractile apparatus, thereby establishing a regulatory circuit to maintain skeletal muscle function. These findings provide insight into the molecular basis of the sarcomere assembly and muscle dysfunction associated with nemaline myopathy. PMID:25774500

  19. Kon-tiki enhances PS2 integrin adhesion and localizes its ligand, Thrombospondin, in the myotendinous junction.

    PubMed

    Pérez-Moreno, Juan J; Espina-Zambrano, Agueda G; García-Calderón, Clara B; Estrada, Beatriz

    2017-03-01

    Cell-extracellular-matrix adhesion is mediated by cell receptors, mainly integrins and transmembrane proteoglycans, which can functionally interact. How these receptors are regulated and coordinated is largely unknown. We show that the conserved transmembrane Drosophila proteoglycan Kon-tiki (Kon, also known as Perdido) interacts with the αPS2βPS integrin (αPS2 is encoded by inflated and βPS by myospheroid ) to mediate muscle-tendon adhesion. kon and inflated double mutant embryos show a synergistic increase in muscle detachment. Furthermore, Kon modulates αPS2βPS signaling at the muscle attachment, since phosphorylated Fak is reduced in kon mutants. This reduction in integrin signaling can be rescued by the expression of a truncated Kon protein containing its transmembrane and extracellular domains, suggesting that these domains are sufficient to mediate this signaling. We show that these domains are sufficient to properly localize the αPS2βPS ligand, Thrombospondin, to the muscle attachment, and to partially rescue Kon-dependent muscle-tendon adhesion. We propose that Kon can engage in a protein complex with αPS2βPS and enhance integrin-mediated signaling and adhesion by recruiting its ligand, which would increase integrin-binding affinity to the extracellular matrix, resulting in the consolidation of the myotendinous junction. © 2017. Published by The Company of Biologists Ltd.

  20. Influence of the marine feeding area on the muscle and egg fatty-acid composition of Atlantic salmon Salmo salar spawners estimated from the scale stable isotopes.

    PubMed

    Torniainen, J; Kainz, M J; Jones, R I; Keinänen, M; Vuorinen, P J; Kiljunen, M

    2017-05-01

    Fatty acids in muscle tissue and eggs of female Atlantic salmon Salmo salar spawners were analysed to evaluate the dietary quality of their final feeding areas in the Baltic Sea. The final likely feeding area was identified by comparing stable carbon and nitrogen isotope composition of the outermost growth region (final annulus) of scales of returned S. salar with that of reference S. salar caught from different feeding areas. Some overlap of stable-isotope reference values among the three areas, in addition to prespawning fasting, decreased the ability of muscle tri-acylglycerols to discriminate the final likely feeding area and the area's dietary quality. Among three long-chained polyunsaturated fatty acids, docosahexaenoic acid (DHA; 22:6n-3), eicosapentaenoic acid (EPA; 20:5n-3) and arachidonic acid (ARA; 20:4n-6), the proportions of ARA in total lipids of spawning S. salar muscle and eggs showed a significant negative correlation with increasing probability of S. salar having returned from the Baltic Sea main basin (i.e. the Baltic Sea proper). The results suggest that ARA in muscle and eggs is the best dietary indicator for dietary characteristics of final marine feeding area dietary characteristics among S. salar in the Baltic Sea. © 2017 The Fisheries Society of the British Isles.

  1. Functional recovery of completely denervated muscle: implications for innervation of tissue-engineered muscle.

    PubMed

    Kang, Sung-Bum; Olson, Jennifer L; Atala, Anthony; Yoo, James J

    2012-09-01

    Tissue-engineered muscle has been proposed as a solution to repair volumetric muscle defects and to restore muscle function. To achieve functional recovery, engineered muscle tissue requires integration of the host nerve. In this study, we investigated whether denervated muscle, which is analogous to tissue-engineered muscle tissue, can be reinnervated and can recover muscle function using an in vivo model of denervation followed by neurotization. The outcomes of this investigation may provide insights on the ability of tissue-engineered muscle to integrate with the host nerve and acquire normal muscle function. Eighty Lewis rats were classified into three groups: a normal control group (n=16); a denervated group in which sciatic innervations to the gastrocnemius muscle were disrupted (n=32); and a transplantation group in which the denervated gastrocnemius was repaired with a common peroneal nerve graft into the muscle (n=32). Neurofunctional behavior, including extensor postural thrust (EPT), withdrawal reflex latency (WRL), and compound muscle action potential (CMAP), as well as histological evaluations using alpha-bungarotoxin and anti-NF-200 were performed at 2, 4, 8, and 12 weeks (n=8) after surgery. We found that EPT was improved by transplantation of the nerve grafts, but the EPT values in the transplanted animals at 12 weeks postsurgery were still significantly lower than those measured for the normal control group at 4 weeks (EPT, 155.0±38.9 vs. 26.3±13.8 g, p<0.001; WRL, 2.7±2.30 vs. 8.3±5.5 s, p=0.027). In addition, CMAP latency and amplitude significantly improved with time after surgery in the transplantation group (p<0.001, one-way analysis of variance), and at 12 weeks postsurgery, CMAP latency and amplitude were not statistically different from normal control values (latency, 0.9±0.0 vs. 1.3±0.7 ms, p=0.164; amplitude, 30.2±7.0 vs. 46.4±26.9 mV, p=0.184). Histologically, regeneration of neuromuscular junctions was seen in the transplantation group. This study indicates that transplanted nerve tissue is able to regenerate neuromuscular junctions within denervated muscle, and thus the muscle can recover partial function. However, the function of the denervated muscle remains in the subnormal range even at 12 weeks after direct nerve transplantation. These results suggest that tissue-engineered muscle, which is similarly denervated, could be innervated and become functional in vivo if it is properly integrated with the host nerve.

  2. Vegetarian Diet in Chronic Kidney Disease—A Friend or Foe

    PubMed Central

    Gluba-Brzózka, Anna; Franczyk, Beata; Rysz, Jacek

    2017-01-01

    Healthy diet is highly important, especially in patients with chronic kidney disease (CKD). Proper nutrition provides the energy to perform everyday activities, prevents infection, builds muscle, and helps to prevent kidney disease from getting worse. However, what does a proper diet mean for a CKD patient? Nutrition requirements differ depending on the level of kidney function and the presence of co-morbid conditions, including hypertension, diabetes, and cardiovascular disease. The diet of CKD patients should help to slow the rate of progression of kidney failure, reduce uremic toxicity, decrease proteinuria, maintain good nutritional status, and lower the risk of kidney disease-related secondary complications (cardiovascular disease, bone disease, and hypertension). It has been suggested that plant proteins may exert beneficial effects on blood pressure, proteinuria, and glomerular filtration rate, as well as results in milder renal tissue damage when compared to animal proteins. The National Kidney Foundation recommends vegetarianism, or part-time vegetarian diet as being beneficial to CKD patients. Their recommendations are supported by the results of studies demonstrating that a plant-based diet may hamper the development or progression of some complications of chronic kidney disease, such as heart disease, protein loss in urine, and the progression of kidney damage. However, there are sparse reports suggesting that a vegan diet is not appropriate for CKD patients and those undergoing dialysis due to the difficulty in consuming enough protein and in maintaining proper potassium and phosphorus levels. Therefore, this review will focus on the problem as to whether vegetarian diet and its modifications are suitable for chronic kidney disease patients. PMID:28394274

  3. Vegetarian Diet in Chronic Kidney Disease-A Friend or Foe.

    PubMed

    Gluba-Brzózka, Anna; Franczyk, Beata; Rysz, Jacek

    2017-04-10

    Healthy diet is highly important, especially in patients with chronic kidney disease (CKD). Proper nutrition provides the energy to perform everyday activities, prevents infection, builds muscle, and helps to prevent kidney disease from getting worse. However, what does a proper diet mean for a CKD patient? Nutrition requirements differ depending on the level of kidney function and the presence of co-morbid conditions, including hypertension, diabetes, and cardiovascular disease. The diet of CKD patients should help to slow the rate of progression of kidney failure, reduce uremic toxicity, decrease proteinuria, maintain good nutritional status, and lower the risk of kidney disease-related secondary complications (cardiovascular disease, bone disease, and hypertension). It has been suggested that plant proteins may exert beneficial effects on blood pressure, proteinuria, and glomerular filtration rate, as well as results in milder renal tissue damage when compared to animal proteins. The National Kidney Foundation recommends vegetarianism, or part-time vegetarian diet as being beneficial to CKD patients. Their recommendations are supported by the results of studies demonstrating that a plant-based diet may hamper the development or progression of some complications of chronic kidney disease, such as heart disease, protein loss in urine, and the progression of kidney damage. However, there are sparse reports suggesting that a vegan diet is not appropriate for CKD patients and those undergoing dialysis due to the difficulty in consuming enough protein and in maintaining proper potassium and phosphorus levels. Therefore, this review will focus on the problem as to whether vegetarian diet and its modifications are suitable for chronic kidney disease patients.

  4. Muscle organizers in Drosophila: the role of persistent larval fibers in adult flight muscle development

    NASA Technical Reports Server (NTRS)

    Farrell, E. R.; Fernandes, J.; Keshishian, H.

    1996-01-01

    In many organisms muscle formation depends on specialized cells that prefigure the pattern of the musculature and serve as templates for myoblast organization and fusion. These include muscle pioneers in insects and muscle organizing cells in leech. In Drosophila, muscle founder cells have been proposed to play a similar role in organizing larval muscle development during embryogenesis. During metamorphosis in Drosophila, following histolysis of most of the larval musculature, there is a second round of myogenesis that gives rise to the adult muscles. It is not known whether muscle founder cells organize the development of these muscles. However, in the thorax specific larval muscle fibers do not histolyze at the onset of metamorphosis, but instead serve as templates for the formation of a subset of adult muscles, the dorsal longitudinal flight muscles (DLMs). Because these persistent larval muscle fibers appear to be functioning in many respects like muscle founder cells, we investigated whether they were necessary for DLM development by using a microbeam laser to ablate them singly and in combination. We found that, in the absence of the larval muscle fibers, DLMs nonetheless develop. Our results show that the persistent larval muscle fibers are not required to initiate myoblast fusion, to determine DLM identity, to locate the DLMs in the thorax, or to specify the total DLM fiber volume. However, they are required to regulate the number of DLM fibers generated. Thus, while the persistent larval muscle fibers are not obligatory for DLM fiber formation and differentiation, they are necessary to ensure the development of the correct number of fibers.

  5. Dysfunctional Muscle and Liver Glycogen Metabolism in mdx Dystrophic Mice

    PubMed Central

    Stapleton, David I.; Lau, Xianzhong; Flores, Marcelo; Trieu, Jennifer; Gehrig, Stefan M.; Chee, Annabel; Naim, Timur; Lynch, Gordon S.; Koopman, René

    2014-01-01

    Background Duchenne muscular dystrophy (DMD) is a severe, genetic muscle wasting disorder characterised by progressive muscle weakness. DMD is caused by mutations in the dystrophin (dmd) gene resulting in very low levels or a complete absence of the dystrophin protein, a key structural element of muscle fibres which is responsible for the proper transmission of force. In the absence of dystrophin, muscle fibres become damaged easily during contraction resulting in their degeneration. DMD patients and mdx mice (an animal model of DMD) exhibit altered metabolic disturbances that cannot be attributed to the loss of dystrophin directly. We tested the hypothesis that glycogen metabolism is defective in mdx dystrophic mice. Results Dystrophic mdx mice had increased skeletal muscle glycogen (79%, (P<0.01)). Skeletal muscle glycogen synthesis is initiated by glycogenin, the expression of which was increased by 50% in mdx mice (P<0.0001). Glycogen synthase activity was 12% higher (P<0.05) but glycogen branching enzyme activity was 70% lower (P<0.01) in mdx compared with wild-type mice. The rate-limiting enzyme for glycogen breakdown, glycogen phosphorylase, had 62% lower activity (P<0.01) in mdx mice resulting from a 24% reduction in PKA activity (P<0.01). In mdx mice glycogen debranching enzyme expression was 50% higher (P<0.001) together with starch-binding domain protein 1 (219% higher; P<0.01). In addition, mdx mice were glucose intolerant (P<0.01) and had 30% less liver glycogen (P<0.05) compared with control mice. Subsequent analysis of the enzymes dysregulated in skeletal muscle glycogen metabolism in mdx mice identified reduced glycogenin protein expression (46% less; P<0.05) as a possible cause of this phenotype. Conclusion We identified that mdx mice were glucose intolerant, and had increased skeletal muscle glycogen but reduced amounts of liver glycogen. PMID:24626262

  6. Effects on G Tolerance While Biting Down on a Mandibular Orthopedic Repositioning Appliance (MORA) Levels.

    DTIC Science & Technology

    1990-10-01

    Repositioning Appliance (MORA) that properly aligns the temporo mandibular joint (TMJ) requires voluntary contraction of the masseter and temporal’s...growth, malocclusion, or bad oral posture may cause the Temporo Mandibular Joint (TMJ) to grad- ually become misaligned. The masseter and other muscles...books have been published on the use of a Mandibular Orthopedic Repositioning Appliance (MORA) to realign the joint (Figure 1). Realignment is claimed

  7. Fasting: a major limitation for resistance exercise training effects in rodents

    PubMed Central

    das Neves, W.; de Oliveira, L.F.; da Silva, R.P.; Alves, C.R.R.; Lancha, A.H.

    2017-01-01

    Protocols that mimic resistance exercise training (RET) in rodents present several limitations, one of them being the electrical stimulus, which is beyond the physiological context observed in humans. Recently, our group developed a conditioning system device that does not use electric shock to stimulate rats, but includes fasting periods before each RET session. The current study was designed to test whether cumulative fasting periods have some influence on skeletal muscle mass and function. Three sets of male Wistar rats were used in the current study. The first set of rats was submitted to a RET protocol without food restriction. However, rats were not able to perform exercise properly. The second and third sets were then randomly assigned into three experimental groups: 1) untrained control rats, 2) untrained rats submitted to fasting periods, and 3) rats submitted to RET including fasting periods before each RET session. While the second set of rats performed a short RET protocol (i.e., an adaptation protocol for 3 weeks), the third set of rats performed a longer RET protocol including overload (i.e., 8 weeks). After the short-term protocol, cumulative fasting periods promoted loss of weight (P<0.001). After the longer RET protocol, no difference was observed for body mass, extensor digitorum longus (EDL) morphology or skeletal muscle function (P>0.05 for all). Despite no effects on EDL mass, soleus muscle displayed significant atrophy in the fasting experimental groups (P<0.01). Altogether, these data indicate that fasting is a major limitation for RET in rats. PMID:29185588

  8. Intrinsic Properties Guide Proximal Abducens and Oculomotor Nerve Outgrowth in Avian Embryos

    PubMed Central

    Lance-Jones, Cynthia; Shah, Veeral; Noden, Drew M.; Sours, Emily

    2012-01-01

    Proper movement of the vertebrate eye requires the formation of precisely patterned axonal connections linking cranial somatic motoneurons, located at defined positions in the ventral midbrain and hindbrain, with extraocular muscles. The aim of this research was to assess the relative contributions of intrinsic, population-specific properties and extrinsic, outgrowth site-specific cues during the early stages of abducens and oculomotor nerve development in avian embryos. This was accomplished by surgically transposing midbrain and caudal hindbrain segments, which had been pre-labeled by electroporation with an EGFP construct. Graft-derived EGFP+ oculomotor axons entering a hindbrain microenvironment often mimicked an abducens initial pathway and coursed cranially. Similarly, some EGFP+ abducens axons entering a midbrain microenvironment mimicked an oculomotor initial pathway and coursed ventrally. Many but not all of these axons subsequently projected to extraocular muscles that they would not normally innervate. Strikingly, EGFP+ axons also took initial paths atypical for their new location. Upon exiting from a hindbrain position, most EGFP+ oculomotor axons actually coursed ventrally and joined host branchiomotor nerves, whose neurons share molecular features with oculomotor neurons. Similarly, upon exiting from a midbrain position, some EGFP+ abducens axons turned caudally, elongated parallel to the brainstem, and contacted the lateral rectus muscle, their originally correct target. These data reveal an interplay between intrinsic properties that are unique to oculomotor and abducens populations and shared ability to recognize and respond to extrinsic directional cues. The former play a prominent role in initial pathway choices, whereas the latter appear more instructive during subsequent directional choices. PMID:21739615

  9. Fasting: a major limitation for resistance exercise training effects in rodents.

    PubMed

    das Neves, W; de Oliveira, L F; da Silva, R P; Alves, C R R; Lancha, A H

    2017-11-17

    Protocols that mimic resistance exercise training (RET) in rodents present several limitations, one of them being the electrical stimulus, which is beyond the physiological context observed in humans. Recently, our group developed a conditioning system device that does not use electric shock to stimulate rats, but includes fasting periods before each RET session. The current study was designed to test whether cumulative fasting periods have some influence on skeletal muscle mass and function. Three sets of male Wistar rats were used in the current study. The first set of rats was submitted to a RET protocol without food restriction. However, rats were not able to perform exercise properly. The second and third sets were then randomly assigned into three experimental groups: 1) untrained control rats, 2) untrained rats submitted to fasting periods, and 3) rats submitted to RET including fasting periods before each RET session. While the second set of rats performed a short RET protocol (i.e., an adaptation protocol for 3 weeks), the third set of rats performed a longer RET protocol including overload (i.e., 8 weeks). After the short-term protocol, cumulative fasting periods promoted loss of weight (P<0.001). After the longer RET protocol, no difference was observed for body mass, extensor digitorum longus (EDL) morphology or skeletal muscle function (P>0.05 for all). Despite no effects on EDL mass, soleus muscle displayed significant atrophy in the fasting experimental groups (P<0.01). Altogether, these data indicate that fasting is a major limitation for RET in rats.

  10. Fully functional hair follicle regeneration through the rearrangement of stem cells and their niches

    PubMed Central

    Toyoshima, Koh-ei; Asakawa, Kyosuke; Ishibashi, Naoko; Toki, Hiroshi; Ogawa, Miho; Hasegawa, Tomoko; Irié, Tarou; Tachikawa, Tetsuhiko; Sato, Akio; Takeda, Akira; Tsuji, Takashi

    2012-01-01

    Organ replacement regenerative therapy is purported to enable the replacement of organs damaged by disease, injury or aging in the foreseeable future. Here we demonstrate fully functional hair organ regeneration via the intracutaneous transplantation of a bioengineered pelage and vibrissa follicle germ. The pelage and vibrissae are reconstituted with embryonic skin-derived cells and adult vibrissa stem cell region-derived cells, respectively. The bioengineered hair follicle develops the correct structures and forms proper connections with surrounding host tissues such as the epidermis, arrector pili muscle and nerve fibres. The bioengineered follicles also show restored hair cycles and piloerection through the rearrangement of follicular stem cells and their niches. This study thus reveals the potential applications of adult tissue-derived follicular stem cells as a bioengineered organ replacement therapy. PMID:22510689

  11. The minus-end actin capping protein, UNC-94/tropomodulin, regulates development of the Caenorhabditis elegans intestine

    PubMed Central

    Cox-Paulson, Elisabeth; Cannataro, Vincent; Gallagher, Thomas; Hoffman, Corey; Mantione, Gary; McIntosh, Matthew; Silva, Malan; Vissichelli, Nicole; Walker, Rachel; Simske, Jeffrey; Ono, Shoichiro; Hoops, Harold

    2014-01-01

    Background Tropomodulins are actin capping proteins that regulate the stability of the slow growing, minus-ends of actin filaments. The C. elegans tropomodulin homolog, UNC-94 has sequence and functional similarity to vertebrate tropomodulins. We investigated the role of UNC-94 in C. elegans intestinal morphogenesis. Results In the embryonic C. elegans intestine, UNC-94 localizes to the terminal web, an actin and intermediate filament rich structure that underlies the apical membrane. Loss of UNC-94 function results in areas of flattened intestinal lumen. In worms homozygous for the strong loss-of-function allele, unc-94(tm724), the terminal web is thinner and the amount of F-actin is reduced, pointing to a role for UNC-94 in regulating the structure of the terminal web. The non-muscle myosin, NMY-1, also localizes to the terminal web; and we present evidence that increasing actomyosin contractility by depleting the myosin phosphatase regulatory subunit, mel-11, can rescue the flattened lumen phenotype of unc-94 mutants. Conclusions The data support a model in which minus-end actin capping by UNC-94 promotes proper F-actin structure and contraction in the terminal web, yielding proper shape of the intestinal lumen. This establishes a new role for a tropomodulin in regulating lumen shape during tubulogenesis. PMID:24677443

  12. Light and Electron Microscopy of the European Beaver (Castor fiber) Stomach Reveal Unique Morphological Features with Possible General Biological Significance

    PubMed Central

    Petryński, Wojciech; Palkowska, Katarzyna; Prusik, Magdalena; Targońska, Krystyna; Giżejewski, Zygmunt; Przybylska-Gornowicz, Barbara

    2014-01-01

    Anatomical, histological, and ultrastructural studies of the European beaver stomach revealed several unique morphological features. The prominent attribute of its gross morphology was the cardiogastric gland (CGG), located near the oesophageal entrance. Light microscopy showed that the CGG was formed by invaginations of the mucosa into the submucosa, which contained densely packed proper gastric glands comprised primarily of parietal and chief cells. Mucous neck cells represented <0.1% of cells in the CGG gastric glands and 22–32% of cells in the proper gastric glands of the mucosa lining the stomach lumen. These data suggest that chief cells in the CGG develop from undifferentiated cells that migrate through the gastric gland neck rather than from mucous neck cells. Classical chief cell formation (i.e., arising from mucous neck cells) occurred in the mucosa lining the stomach lumen, however. The muscularis around the CGG consisted primarily of skeletal muscle tissue. The cardiac region was rudimentary while the fundus/corpus and pyloric regions were equally developed. Another unusual feature of the beaver stomach was the presence of specific mucus with a thickness up to 950 µm (in frozen, unfixed sections) that coated the mucosa. Our observations suggest that the formation of this mucus is complex and includes the secretory granule accumulation in the cytoplasm of pit cells, the granule aggregation inside cells, and the incorporation of degenerating cells into the mucus. PMID:24727802

  13. Potential roles for BMP and Pax genes in the development of iris smooth muscle.

    PubMed

    Jensen, Abbie M

    2005-02-01

    The embryonic optic cup generates four types of tissue: neural retina, pigmented epithelium, ciliary epithelium, and iris smooth muscle. Remarkably little attention has focused on the development of the iris smooth muscle since Lewis ([1903] J. Am. Anat. 2:405-416) described its origins from the anterior rim of the optic cup neuroepithelium. As an initial step toward understanding iris smooth muscle development, I first determined the spatial and temporal pattern of the development of the iris smooth muscle in the chick by using the HNK1 antibody, which labels developing iris smooth muscle. HNK1 labeling shows that iris smooth muscle development is correlated in time and space with the development of the ciliary epithelial folds. Second, because neural crest is the only other neural tissue that has been shown to generate smooth muscle (Le Lievre and Le Douarin [1975] J. Embryo. Exp. Morphol. 34:125-154), I sought to determine whether iris smooth muscle development shares similarities with neural crest development. Two members of the BMP superfamily, BMP4 and BMP7, which may regulate neural crest development, are highly expressed by cells at the site of iris smooth muscle generation. Third, because humans and mice that are heterozygous for Pax6 mutations have no irides (Hill et al. [1991] Nature 354:522-525; Hanson et al. [1994] Nat. Genet. 6:168-173), I determined the expression of Pax6. I also examined the expression of Pax3 in the developing anterior optic cup. The developing iris smooth muscle coexpresses Pax6 and Pax3. I suggest that some of the eye defects caused by mutations in Pax6, BMP4, and BMP7 may be due to abnormal iris smooth muscle. Copyright 2004 Wiley-Liss, Inc.

  14. Fatigue-enhanced hyperalgesia in response to muscle insult: induction and development occur in a sex-dependent manner

    PubMed Central

    Gregory, N. S.; Gibson-Corley, K.; Frey-Law, L.; Sluka, K. A.

    2014-01-01

    Chronic muscle pain affects 20–50% of the population, is more common in women than men, and is associated with increased pain during physical activity and exercise. Muscle fatigue is common in people with chronic muscle pain, occurs in response to exercise and is associated with release of fatigue metabolites. Fatigue metabolites can sensitize muscle nociceptors which could enhance pain with exercise. Using a mouse model we tested whether fatigue of a single muscle, induced by electrical stimulation, resulted in enhanced muscle hyperalgesia and if the enhanced hyperalgesia was more pronounced in female mice. Muscle fatigue was induced in combination with a sub-threshold muscle insult (2 injections of pH 5.0 saline) in male and female mice. We show that male and female mice, fatigued immediately prior to muscle insult in the same muscle, develop similar muscle hyperalgesia 24h later. However, female mice also develop hyperalgesia when muscle fatigue and muscle insult occur in different muscles, and when muscle insult is administered 24 hours after fatigue in the same muscle. Further, hyperalgesia lasts significantly longer in females. Finally, muscle insult with or without muscle fatigue results in minimal inflammatory changes in the muscle itself, and sex differences are not related to estradiol (ovariectomy) or changes in brainstem activity (pNR1). Thus, the current model mimics muscle fatigue-induced enhancement of pain observed in chronic muscle pain conditions in the human population. Interactions between fatigue and muscle insult may underlie the development of chronic widespread pain with an associated female predominance observed in human subjects. PMID:23906552

  15. Advances on microRNA in regulating mammalian skeletal muscle development.

    PubMed

    Li, Xin-Yun; Fu, Liang-Liang; Cheng, Hui-Jun; Zhao, Shu-Hong

    2017-11-20

    MicroRNA (miRNA) is a class of short non-coding RNA, which is about 22 bp in length. In mammals, miRNA exerts its funtion through binding with the 3°-UTR region of target genes and inhibiting their translation. Skeletal muscle development is a complex event, including: proliferation, migration and differentiation of skeletal muscle stem cells; proliferation, differentiation and fusion of myocytes; as well as hypertrophy, energy metabolism and conversion of muscle fiber types. The miRNA plays important roles in all processes of skeletal muscle development through targeting the key factors of different stages. Herein we summarize the miRNA related to muscle development, providing a better understanding of the skeletal muscle development.

  16. Nerve-muscle interactions during flight muscle development in Drosophila

    NASA Technical Reports Server (NTRS)

    Fernandes, J. J.; Keshishian, H.

    1998-01-01

    During Drosophila pupal metamorphosis, the motoneurons and muscles differentiate synchronously, providing an opportunity for extensive intercellular regulation during synapse formation. We examined the existence of such interactions by developmentally delaying or permanently eliminating synaptic partners during the formation of indirect flight muscles. When we experimentally delayed muscle development, we found that although adult-specific primary motoneuron branching still occurred, the higher order (synaptic) branching was suspended until the delayed muscle fibers reached a favourable developmental state. In reciprocal experiments we found that denervation caused a decrease in the myoblast pool. Furthermore, the formation of certain muscle fibers (dorsoventral muscles) was specifically blocked. Exceptions were the adult muscles that use larval muscle fibers as myoblast fusion targets (dorsal longitudinal muscles). However, when these muscles were experimentally compelled to develop without their larval precursors, they showed an absolute dependence on the motoneurons for their formation. These data show that the size of the myoblast pool and early events in fiber formation depend on the presence of the nerve, and that, conversely, peripheral arbor development and synaptogenesis is closely synchronized with the developmental state of the muscle.

  17. Teaching a changing paradigm in physiology: a historical perspective on gut interstitial cells.

    PubMed

    Drumm, Bernard T; Baker, Salah A

    2017-03-01

    The study and teaching of gastrointestinal (GI) physiology necessitates an understanding of the cellular basis of contractile and electrical coupling behaviors in the muscle layers that comprise the gut wall. Our knowledge of the cellular origin of GI motility has drastically changed over the last 100 yr. While the pacing and coordination of GI contraction was once thought to be solely attributable to smooth muscle cells, it is now widely accepted that the motility patterns observed in the GI tract exist as a result of a multicellular system, consisting of not only smooth muscle cells but also enteric neurons and distinct populations of specialized interstitial cells that all work in concert to ensure proper GI functions. In this historical perspective, we focus on the emerging role of interstitial cells in GI motility and examine the key discoveries and experiments that led to a major shift in a paradigm of GI physiology regarding the role of interstitial cells in modulating GI contractile patterns. A review of these now classic experiments and papers will enable students and educators to fully appreciate the complex, multicellular nature of GI muscles as well as impart lessons on how shifting paradigms in physiology are fueled by new technologies that lead to new emerging discoveries. Copyright © 2017 the American Physiological Society.

  18. Promotion of Myogenic Maturation by Timely Application of Electric Field Along the Topographical Alignment.

    PubMed

    Ko, Ung Hyun; Park, Sukhee; Bang, Hyunseung; Kim, Mina; Shin, Hyunjun; Shin, Jennifer H

    2018-05-01

    Engineered muscular substitutes can restore the impaired muscle functions when integrated properly into the host tissue. To generate functional muscles with sufficient contractility at the site of transplant, the in vitro construction of fully differentiated muscle fibers would be desired. Many previous reports have identified either topographical alignment or electrical stimulation as an effective tool to promote myogenic differentiation. However, optimization of spatial and temporal arrangement of these two physical cues for better differentiation and maturation of skeletal muscles has not been investigated. In this article, we introduce a novel cell culture system that allows simultaneous application of these two independent directional cues at both orthogonal and parallel arrangements. We then show that the parallel arrangement of the aligned topography and the electric field synergistically facilitates better differentiation and maturation of C2C12, generating myotubes with more fused nuclei. Addition of the electric stimulation at the late stage of myogenic differentiation is found to further improve cell fusion to form multinucleate myotubes through a phosphatidylinositol-3-OH-kinase-dependent pathway. As such, we successfully demonstrated that the combined stimulation of topographical and electrical cues could effectively enhance both myogenic differentiation and maturation in a temporal and orientation-dependent manner, providing the basis for therapeutic strategies for regenerative tissue engineering.

  19. Wearing an Inflatable Vest Alters Muscle Activation and Trunk Angle While Paddling a Surfboard.

    PubMed

    Nessler, Jeff A; Hastings, Thomas; Greer, Kevin; Newcomer, Sean C

    2017-08-01

    Low back pain is a commonly reported problem among recreational surfers. Some individuals report that wearing a vest with an inflatable bladder that alters trunk angle may help to alleviate pain. The purpose of this study was to determine whether such a vest has an effect on muscle activation and extension of the lower back. Twelve recreational surfers completed 12 paddling trials at 1.1 m/s in a swim flume on both a shortboard and a longboard on 2 separate days. Three conditions of no vest, vest uninflated, and vest inflated were presented to participants in random order. Surface EMG and trunk angle were acquired via wireless sensors placed over the right erector spinae, mid-trapezius, upper trapezius, and latissimus dorsi. Wearing the inflated vest affected muscle activation: erector spinae and mid-trapezius demonstrated a significant decrease in activation relative to wearing no vest (12% and 18% respectively, p < .05). Trunk extension was also significantly reduced when the vest was inflated (18% reduction, p < .05). Results were similar for both the short and longboard, though this effect was greater while paddling the larger board. These results suggest that a properly inflated vest can alter trunk extension and muscle activity while paddling a surfboard in water.

  20. Development of the shoulder girdle musculature.

    PubMed

    Pu, Qin; Huang, Ruijin; Brand-Saberi, Beate

    2016-03-01

    The muscles of the shoulder region are important for movements of the upper limbs and for stabilizing the girdle elements by connecting them to the trunk. They have a triple embryonic origin. First, the branchiomeric shoulder girdle muscles (sternocleidomastoideus and trapezius muscles) develop from the occipital lateral plate mesoderm using Tbx1 over the course of this development. The second population of cells constitutes the superficial shoulder girdle muscles (pectoral and latissimus dorsi muscles), which are derived from the wing premuscle mass. This muscle group undergoes a two-step development, referred to as the "in-out" mechanism. Myogenic precursor cells first migrate anterogradely into the wing bud. Subsequently, they migrate in a retrograde manner from the wing premuscle mass to the trunk. SDF-1/CXCR4 signaling is involved in this outward migration. A third group of shoulder muscles are the rhomboidei and serratus anterior muscles, which are referred to as deep shoulder girdle muscles; they are thought to be derived from the myotomes. It is, however, not clear how myotome cells make contact to the scapula to form these two muscles. In this review, we discuss the development of the shoulder girdle muscle in relation to the different muscle groups. © 2015 Wiley Periodicals, Inc.

  1. Lumbar muscle structure and function in chronic versus recurrent low back pain: a cross-sectional study.

    PubMed

    Goubert, Dorien; De Pauw, Robby; Meeus, Mira; Willems, Tine; Cagnie, Barbara; Schouppe, Stijn; Van Oosterwijck, Jessica; Dhondt, Evy; Danneels, Lieven

    2017-09-01

    Heterogeneity exists within the low back pain (LBP) population. Some patients recover after every pain episode, whereas others suffer daily from LBP complaints. Until now, studies rarely make a distinction between recurrent low back pain (RLBP) and chronic low back pain (CLBP), although both are characterized by a different clinical picture. Clinical experiences also indicate that heterogeneity exists within the CLBP population. Muscle degeneration, like atrophy, fat infiltration, alterations in muscle fiber type, and altered muscle activity, compromises proper biomechanics and motion of the spinal units in LBP patients. The amount of alterations in muscle structure and muscle function of the paraspinal muscles might be related to the recurrence or chronicity of LBP. The aim of this experimental study is to evaluate differences in muscle structure (cross-sectional area and lean muscle fat index) and muscle activity of the multifidus (MF) and erector spinae (ES) during trunk extension, in patients with RLBP, non-continuous CLBP, and continuous CLBP. This cross-sectional study took place in the university hospital of Ghent, Belgium. Muscle structure characteristics and muscle activity were assessed by magnetic resonance imaging (MRI). Fifty-five adults with non-specific LBP (24 RLBP in remission, 15 non-continuous CLBP, 16 continuous CLBP) participated in this study. Total cross-sectional area, muscle cross-sectional area, fat cross-sectional area, lean muscle fat index, T2-rest and T2-shift were assessed. A T1-weighted Dixon MRI scan was used to evaluate spinal muscle cross-sectional area and fat infiltration in the lumbar MF and ES. Muscle functional MRI was used to evaluate the muscle activity of the lumbar MF and ES during a lumbar extension exercise. Before and after the exercise, a pain assessment was performed. This study was supported by grants from the Special Research Fund of Ghent University (DEF12/AOP/022) without potential conflict of interest-associated biases in the text of the paper. Fat cross-sectional area and lean muscle fat index were significantly higher in MF and ES in continuous CLBP compared with non-continuous CLBP and RLBP (p<.05). No differencesbetween groups were found for total cross-sectional area and muscle cross-sectional area in MF or ES (p>.05). Also, no significant differences between groups for T2-rest were established. T2-shift, however, was significantly lower in MF and ES in RLBP compared with, respectively, non-continuous CLBP and continuous CLBP (p<.05). These results indicate a higher amount of fat infiltration in the lumbar muscles, in the absence of clear atrophy, in continuous CLBP compared with RLBP. A lower metabolic activity of the lumbar muscles was seen in RLBP replicating a relative lower intensity in contractions performed by the lumbar muscles in RLBP compared with non-continuous and continuous CLBP. In conclusion, RLBP differs from continuous CLBP for both muscle structure and muscle function, whereas non-continuous CLBP seems comparable with RLBP for lumbar muscle structure and with continuous CLBP for lumbar muscle function. These results underline the differences in muscle structure and muscle function between different LBP populations. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Optimization and evaluation of a proportional derivative controller for planar arm movement.

    PubMed

    Jagodnik, Kathleen M; van den Bogert, Antonie J

    2010-04-19

    In most clinical applications of functional electrical stimulation (FES), the timing and amplitude of electrical stimuli have been controlled by open-loop pattern generators. The control of upper extremity reaching movements, however, will require feedback control to achieve the required precision. Here we present three controllers using proportional derivative (PD) feedback to stimulate six arm muscles, using two joint angle sensors. Controllers were first optimized and then evaluated on a computational arm model that includes musculoskeletal dynamics. Feedback gains were optimized by minimizing a weighted sum of position errors and muscle forces. Generalizability of the controllers was evaluated by performing movements for which the controller was not optimized, and robustness was tested via model simulations with randomly weakened muscles. Robustness was further evaluated by adding joint friction and doubling the arm mass. After optimization with a properly weighted cost function, all PD controllers performed fast, accurate, and robust reaching movements in simulation. Oscillatory behavior was seen after improper tuning. Performance improved slightly as the complexity of the feedback gain matrix increased. Copyright 2009 Elsevier Ltd. All rights reserved.

  3. Are non-muscle actin isoforms functionally equivalent?

    PubMed

    Simiczyjew, Aleksandra; Pietraszek-Gremplewicz, Katarzyna; Mazur, Antonina Joanna; Nowak, Dorota

    2017-11-01

    Actin is highly conserved and it is the most widespread protein in eukaryotic cells. One of the most important features of actin, which allows it to have many different functions, is its ability to polymerize and interact with many other proteins. Actins are the major constituent of the actin cytoskeleton, which is an important system that is involved in various aspects of cell function, including cell motility, structure, integrity, regulation of signal transduction and transcription. Six mammal actin isoforms are highly conserved and share common functions. Two of them, β and γ non-muscle actin isoforms, which differ only by four amino acids located at the N-terminus of the polypeptide chain, are required for survival and proper cell functioning. We also summarized data about actbl2, which is suggested to be a newly discovered isoactin. Here, we review the current knowledge about tissue-specific expression of the non-muscle actin isoforms and possible functional differences between them. We also discuss molecular tools, which in recent years have allowed for a better understanding of the role of these proteins in cell functioning.

  4. Optimization and evaluation of a proportional derivative controller for planar arm movement

    PubMed Central

    Jagodnik, Kathleen M.; van den Bogert, Antonie J.

    2013-01-01

    In most clinical applications of functional electrical stimulation (FES), the timing and amplitude of electrical stimuli have been controlled by open-loop pattern generators. The control of upper extremity reaching movements, however, will require feedback control to achieve the required precision. Here we present three controllers using proportional derivative (PD) feedback to stimulate six arm muscles, using two joint angle sensors. Controllers were first optimized and then evaluated on a computational arm model that includes musculoskeletal dynamics. Feedback gains were optimized by minimizing a weighted sum of position errors and muscle forces. Generalizability of the controllers was evaluated by performing movements for which the controller was not optimized, and robustness was tested via model simulations with randomly weakened muscles. Robustness was further evaluated by adding joint friction and doubling the arm mass. After optimization with a properly weighted cost function, all PD controllers performed fast, accurate, and robust reaching movements in simulation. Oscillatory behavior was seen after improper tuning. Performance improved slightly as the complexity of the feedback gain matrix increased. PMID:20097345

  5. Endocrine regulation of fetal skeletal muscle growth: impact on future metabolic health

    PubMed Central

    Brown, Laura D.

    2014-01-01

    Establishing sufficient skeletal muscle mass is essential for lifelong metabolic health. The intrauterine environment is a major determinant of the muscle mass that is present for the life course of an individual, because muscle fiber number is set at the time of birth. Thus, a compromised intrauterine environment from maternal nutrient restriction or placental insufficiency that restricts development of muscle fiber number can have permanent effects on the amount of muscle an individual will live with. Reduced muscle mass due to fewer muscle fibers persists even after compensatory or “catch up” postnatal growth occurs. Furthermore, muscle hypertrophy can only partially compensate for this limitation in fiber number. Compelling associations link low birth weight and decreased muscle mass to future insulin resistance, which can drive the development of the metabolic syndrome and type 2 diabetes, and risk for cardiovascular events later in life. There are gaps in knowledge about the origins of reduced muscle growth at the cellular level and how these patterns are set during fetal development. By understanding the nutrient and endocrine regulation of fetal skeletal muscle growth and development, we can direct research efforts towards improving muscle growth early in life in order to prevent the development of chronic metabolic disease later in life. PMID:24532817

  6. MicroRNA in Skeletal Muscle: Its Crucial Roles in Signal Proteins, Mus cle Fiber Type, and Muscle Protein Synthesis.

    PubMed

    Zhang, Jing; Liu, Yu Lan

    2017-01-01

    Pork is one of the most economical sources of animal protein for human consumption. Meat quality is an important economic trait for the swine industry, which is primarily determined by prenatal muscle development and postnatal growth. Identification of the molecular mechanisms underlying skeletal muscle development is a key priority. MicroRNAs (miRNAs) are a class of small noncoding RNAs that have emerged as key regulators of skeletal muscle development. A number of muscle-related miRNAs have been identified by functional gain and loss experiments in mouse model. However, determining miRNA-mRNA interactions involved in pig skeletal muscle still remains a significant challenge. For a comprehensive understanding of miRNA-mediated mechanisms underlying muscle development, miRNAome analyses of pig skeletal muscle have been performed by deep sequencing. Additionally, porcine miRNA single nucleotide polymorphisms have been implicated in muscle fiber types and meat quality. The present review provides an overview of current knowledge on recently identified miRNAs involved in myogenesis, muscle fiber type and muscle protein metabolism. Undoubtedly, further systematic understanding of the functions of miRNAs in pig skeletal muscle development will be helpful to expand the knowledge of basic skeletal muscle biology and be beneficial for the genetic improvement of meat quality traits. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  7. Development of Postural Muscles and Their Innervation

    PubMed Central

    IJkema-Paassen, J.; Gramsbergen, A.

    2005-01-01

    Control of posture is a prerequisite for efficient motor performance. Posture depends on muscles capable of enduring contractions, whereas movements often require quick, forceful muscle actions. To serve these different goals, muscles contain fibers that meet these different tasks. Muscles with strong postural functions mainly consist of slow muscle fibers with a great resistance against fatigue. Flexor muscles in the leg and arm muscles are mainly composed of fast muscle fibers producing relatively large forces that are rapidly fatigable. Development of the neuromuscular system continues after birth. We discuss in the human baby and in animal experiments changes in muscle fiber properties, regression from polyneural into mononeural innervation, and developmental changes in the motoneurons of postural muscles during that period. The regression of poly-neural innervation in postural muscles and the development of dendrite bundles of their motoneurons seem to be linked to the transition from the immature into the adult-like patterns of moving and postural control. PMID:16097482

  8. Kinesio arm taping as prophylaxis against the development of Erb's Engram.

    PubMed

    ElKhatib, Radwa S; ElNegmy, Emam H; Salem, Amina H; Sherief, AbdelAziz A

    2013-11-01

    An Erb's Engram is a common debility that develops in recovering children with Erb's palsy. The purpose of this study was to investigate the effect of kinesiotaping over the deltoid and the forearm on the development of proper upper extremity function in children recovering from Erb's palsy. Thirty patients with Erb's palsy participated for 3 months in this study and were equally divided into two groups; control group A and study group B. The two groups received the same designed physical therapy program, while group B along the program, received kinesiotaping over the deltoid and the forearm. The subjects were evaluated, pre and post-treatment, and scored functionally, using the Toronto Active Motion Scale, and objectively, using an EMG device utilized to obtain the percentages of degeneration of the deltoid and the biceps muscles. Post-treatment values of six out of nine measured variables, between the two groups, revealed significant difference in favor of group B. The obtained results strongly support the introduction of kinesiotaping of the deltoid and the forearm as an adjunct to the treatment program of Erb's palsied children.

  9. The DEAD-box RNA helicase Ddx39ab is essential for myocyte and lens development in zebrafish.

    PubMed

    Zhang, Linlin; Yang, Yuxi; Li, Beibei; Scott, Ian C; Lou, Xin

    2018-04-23

    RNA helicases from the DEAD-box family are found in almost all organisms and have important roles in RNA metabolism, including RNA synthesis, processing and degradation. The function and mechanism of action of most of these helicases in animal development and human disease remain largely unexplored. In a zebrafish mutagenesis screen to identify genes essential for heart development we identified a mutant that disrupts the gene encoding the RNA helicase DEAD-box 39ab ( ddx39ab ). Homozygous ddx39ab mutant embryos exhibit profound cardiac and trunk muscle dystrophy, along with lens abnormalities, caused by abrupt terminal differentiation of cardiomyocyte, myoblast and lens fiber cells. Loss of ddx39ab hindered splicing of mRNAs encoding epigenetic regulatory factors, including members of the KMT2 gene family, leading to misregulation of structural gene expression in cardiomyocyte, myoblast and lens fiber cells. Taken together, these results show that Ddx39ab plays an essential role in establishment of the proper epigenetic status during differentiation of multiple cell lineages. © 2018. Published by The Company of Biologists Ltd.

  10. Variants in EXOSC9 Disrupt the RNA Exosome and Result in Cerebellar Atrophy with Spinal Motor Neuronopathy.

    PubMed

    Burns, David T; Donkervoort, Sandra; Müller, Juliane S; Knierim, Ellen; Bharucha-Goebel, Diana; Faqeih, Eissa Ali; Bell, Stephanie K; AlFaifi, Abdullah Y; Monies, Dorota; Millan, Francisca; Retterer, Kyle; Dyack, Sarah; MacKay, Sara; Morales-Gonzalez, Susanne; Giunta, Michele; Munro, Benjamin; Hudson, Gavin; Scavina, Mena; Baker, Laura; Massini, Tara C; Lek, Monkol; Hu, Ying; Ezzo, Daniel; AlKuraya, Fowzan S; Kang, Peter B; Griffin, Helen; Foley, A Reghan; Schuelke, Markus; Horvath, Rita; Bönnemann, Carsten G

    2018-05-03

    The exosome is a conserved multi-protein complex that is essential for correct RNA processing. Recessive variants in exosome components EXOSC3, EXOSC8, and RBM7 cause various constellations of pontocerebellar hypoplasia (PCH), spinal muscular atrophy (SMA), and central nervous system demyelination. Here, we report on four unrelated affected individuals with recessive variants in EXOSC9 and the effect of the variants on the function of the RNA exosome in vitro in affected individuals' fibroblasts and skeletal muscle and in vivo in zebrafish. The clinical presentation was severe, early-onset, progressive SMA-like motor neuronopathy, cerebellar atrophy, and in one affected individual, congenital fractures of the long bones. Three affected individuals of different ethnicity carried the homozygous c.41T>C (p.Leu14Pro) variant, whereas one affected individual was compound heterozygous for c.41T>C (p.Leu14Pro) and c.481C>T (p.Arg161 ∗ ). We detected reduced EXOSC9 in fibroblasts and skeletal muscle and observed a reduction of the whole multi-subunit exosome complex on blue-native polyacrylamide gel electrophoresis. RNA sequencing of fibroblasts and skeletal muscle detected significant >2-fold changes in genes involved in neuronal development and cerebellar and motor neuron degeneration, demonstrating the widespread effect of the variants. Morpholino oligonucleotide knockdown and CRISPR/Cas9-mediated mutagenesis of exosc9 in zebrafish recapitulated aspects of the human phenotype, as they have in other zebrafish models of exosomal disease. Specifically, portions of the cerebellum and hindbrain were absent, and motor neurons failed to develop and migrate properly. In summary, we show that variants in EXOSC9 result in a neurological syndrome combining cerebellar atrophy and spinal motoneuronopathy, thus expanding the list of human exosomopathies. Copyright © 2018 The Author(s). Published by Elsevier Inc. All rights reserved.

  11. Robust Brain Hyperglycemia during General Anesthesia: Relationships with Metabolic Brain Inhibition and Vasodilation

    PubMed Central

    Bola, R. Aaron; Kiyatkin, Eugene A.

    2016-01-01

    Glucose is the main energetic substrate for the metabolic activity of brain cells and its proper delivery into the extracellular space is essential for maintaining normal neural functions. Under physiological conditions, glucose continuously enters the extracellular space from arterial blood via gradient-dependent facilitated diffusion governed by the GLUT-1 transporters. Due to this gradient-dependent mechanism, glucose levels rise in the brain after consumption of glucose-containing foods and drinks. Glucose entry is also accelerated due to local neuronal activation and neuro-vascular coupling, resulting in transient hyperglycemia to prevent any metabolic deficit. Here, we explored another mechanism that is activated during general anesthesia and results in significant brain hyperglycemia. By using enzyme-based glucose biosensors we demonstrate that glucose levels in the nucleus accumbens (NAc) strongly increase after iv injection of Equthesin, a mixture of chloral hydrate and sodium pentobarbital, which is often used for general anesthesia in rats. By combining electrochemical recordings with brain, muscle, and skin temperature monitoring, we show that the gradual increase in brain glucose occurring during the development of general anesthesia tightly correlate with decreases in brain-muscle temperature differentials, suggesting that this rise in glucose is related to metabolic inhibition. While the decreased consumption of glucose by brain cells could contribute to the development of hyperglycemia, an exceptionally strong positive correlation (r = 0.99) between glucose rise and increases in skin-muscle temperature differentials was also found, suggesting the strong vasodilation of cerebral vessels as the primary mechanism for accelerated entry of glucose into brain tissue. Our present data could explain drastic differences in basal glucose levels found in awake and anesthetized animal preparations. They also suggest that glucose entry into brain tissue could be strongly modulated by pharmacological drugs via drug-induced changes in metabolic activity and the tone of cerebral vessels. PMID:26913008

  12. Ethanol Exposure Causes Muscle Degeneration in Zebrafish

    PubMed Central

    Coffey, Elizabeth C.; Pasquarella, Maggie E.; Goody, Michelle F.

    2018-01-01

    Alcoholic myopathies are characterized by neuromusculoskeletal symptoms such as compromised movement and weakness. Although these symptoms have been attributed to neurological damage, EtOH may also target skeletal muscle. EtOH exposure during zebrafish primary muscle development or adulthood results in smaller muscle fibers. However, the effects of EtOH exposure on skeletal muscle during the growth period that follows primary muscle development are not well understood. We determined the effects of EtOH exposure on muscle during this phase of development. Strikingly, muscle fibers at this stage are acutely sensitive to EtOH treatment: EtOH induces muscle degeneration. The severity of EtOH-induced muscle damage varies but muscle becomes more refractory to EtOH as muscle develops. NF-kB induction in muscle indicates that EtOH triggers a pro-inflammatory response. EtOH-induced muscle damage is p53-independent. Uptake of Evans blue dye shows that EtOH treatment causes sarcolemmal instability before muscle fiber detachment. Dystrophin-null sapje mutant zebrafish also exhibit sarcolemmal instability. We tested whether Trichostatin A (TSA), which reduces muscle degeneration in sapje mutants, would affect EtOH-treated zebrafish. We found that TSA and EtOH are a lethal combination. EtOH does, however, exacerbate muscle degeneration in sapje mutants. EtOH also disrupts adhesion of muscle fibers to their extracellular matrix at the myotendinous junction: some detached muscle fibers retain beta-Dystroglycan indicating failure of muscle end attachments. Overexpression of Paxillin, which reduces muscle degeneration in zebrafish deficient for beta-Dystroglycan, is not sufficient to rescue degeneration. Taken together, our results suggest that EtOH exposure has pleiotropic deleterious effects on skeletal muscle. PMID:29615556

  13. Developmental changes in the activation properties and ultrastructure of fast- and slow-twitch muscles from fetal sheep.

    PubMed

    West, J M; Barclay, C J; Luff, A R; Walker, D W

    1999-04-01

    At early stages of muscle development, skeletal muscles contract and relax slowly, regardless of whether they are destined to become fast- or slow-twitch. In this study, we have characterised the activation profiles of developing fast- and slow-twitch muscles from a precocial species, the sheep, to determine if the activation profiles of the muscles are characteristically slow when both the fast- and slow-twitch muscles have slow isometric contraction profiles. Single skinned muscle fibres from the fast-twitch flexor digitorum longus (FDL) and slow-twitch soleus muscles from fetal (gestational ages 70, 90, 120 and 140 days; term 147 days) and neonatal (8 weeks old) sheep were used to determine the isometric force-pCa (pCa = -log10[Ca2+]) and force-pSr relations during development. Fast-twitch mammalian muscles generally have a greatly different sensitivity to Ca2+ and Sr2+ whereas slow-twitch muscles have a similar sensitivity to these divalent cations. At all ages studied, the force-pCa and force-pSr relations of the FDL muscle were widely separated. The mean separation of the mid-point of the curves (pCa50-pSr50) was approximately 1.1. This is typical of adult fast-twitch muscle. The force-pCa and force-pSr curves for soleus muscle were also widely separated at 70 and 90 days gestation (pCa50-pSr50 approximately 0.75); between 90 days and 140 days this separation decreased significantly to approximately 0.2. This leads to a paradoxical situation whereby at early stages of muscle development the fast muscles have contraction dynamics of slow muscles but the slow muscles have activation profiles more characteristic of fast muscles. The time course for development of the FDL and soleus is different, based on sarcomere structure with the soleus muscle developing clearly defined sarcomere structure earlier in gestation than the FDL. At 70 days gestation the FDL muscle had no clearly defined sarcomeres. Force (N cm-2) increased almost linearly between 70 and 140 days gestation in both muscle types and there was no difference between the Ca(2+)- and Sr(2+)-activated force throughout development.

  14. Development and characterization of a novel hydrogel adhesive for soft tissue applications

    NASA Astrophysics Data System (ADS)

    Sanders, Lindsey Kennedy

    With laparoscopic and robotic surgical techniques advancing, the need for an injectable surgical adhesive is growing. To be effective, surgical adhesives for internal organs require bulk strength and compliance to avoid rips and tears, and adhesive strength to avoid leakage at the application site, while not hindering the natural healing process. Although a number of tissue adhesives and sealants approved by the FDA for surgical use are currently available, attaining a useful balance in all of these qualities has proven difficult, particularly when considering applications involving highly expandable tissue, such as bladder and lung. The long-term goal of this project is to develop a hydrogel-based tissue adhesive that provides proper mechanical properties to eliminate the need for sutures in various soft tissue applications. Tetronic (BASF), a 4-arm poly(propylene oxide)-poly(ethylene oxide) (PPO-PEO) block copolymer, has been selected as the base material for the adhesive hydrogel system. Solutions of Tetronic T1107 can support reverse thermal gelation at physiological temperatures, which can be combined with covalent crosslinking to achieve a "tandem gelation" process making it ideal for use as a tissue adhesive. The objective of this doctoral thesis research is to improve the performance of the hydrogel based tissue adhesive developed previously by Cho and co-workers by applying a multi-functionalization of Tetronic. Specifically, this research aimed to improve bonding strength of Tetronic tissue adhesive using bi-functional modification, incorporate hemostatic function to the bi-functional Tetronic hydrogel, and evaluate the safety of bi-functional Tetronic tissue adhesive both in vitro and in vivo. In summary, we have developed a fast-curing, mechanically strong hemostatic tissue adhesive that can control blood loss in wet conditions during wound treatment applications (bladder, liver and muscle). Specifically, the bi-functional Tetronic adhesive (TAS) with a proper blend ratio may be used to achieve an accurate balance in bulk and tissue bond strengths, as well as the compliance and durability for expandable organ application, such as the bladder. Incorporation of chitosan expanded the utility of the bi-functional modified T1107 (TAS) adhesive to tissue wounds on highly vascularized organs (e.g., liver, kidney). Further, we demonstrated that the modified Tetronic adhesive is biocompatible and safe for treatment of small soft tissue wounds on rat's muscle using FDA requirements. The current findings helped our understanding of the material and mechanical properties of the modified Tetronic adhesive and ultimately progress the field of surgical adhesives and sealants by providing a tunable adhesive system for various internal soft tissue wound applications.

  15. MiR-27b Promotes Muscle Development by Inhibiting MDFI Expression.

    PubMed

    Hou, Lianjie; Xu, Jian; Jiao, Yiren; Li, Huaqin; Pan, Zhicheng; Duan, Junli; Gu, Ting; Hu, Chingyuan; Wang, Chong

    2018-01-01

    Skeletal muscle plays an essential role in the body movement. However, injuries to the skeletal muscle are common. Lifelong maintenance of skeletal muscle function largely depends on preserving the regenerative capacity of muscle. Muscle satellite cells proliferation, differentiation, and myoblast fusion play an important role in muscle regeneration after injury. Therefore, understanding of the mechanisms associated with muscle development during muscle regeneration is essential for devising the alternative treatments for muscle injury in the future. Edu staining, qRT-PCR and western blot were used to evaluate the miR-27b effects on pig muscle satellite cells (PSCs) proliferation and differentiation in vitro. Then, we used bioinformatics analysis and dual-luciferase reporter assay to predict and confirm the miR-27b target gene. Finally, we elucidate the target gene function on muscle development in vitro and in vivo through Edu staining, qRT-PCR, western blot, H&E staining and morphological observation. miR-27b inhibits PSCs proliferation and promotes PSCs differentiation. And the miR-27b target gene, MDFI, promotes PSCs proliferation and inhibits PSCs differentiation in vitro. Furthermore, interfering MDFI expression promotes mice muscle regeneration after injury. our results conclude that miR-27b promotes PSCs myogenesis by targeting MDFI. These results expand our understanding of muscle development mechanism in which miRNAs and genes work collaboratively in regulating skeletal muscle development. Furthermore, this finding has implications for obtaining the alternative treatments for patients with the muscle injury. © 2018 The Author(s). Published by S. Karger AG, Basel.

  16. Growth hormone therapy, muscle thickness, and motor development in Prader-Willi syndrome: an RCT.

    PubMed

    Reus, Linda; Pillen, Sigrid; Pelzer, Ben J; van Alfen-van der Velden, Janielle A A E M; Hokken-Koelega, Anita C S; Zwarts, Machiel; Otten, Barto J; Nijhuis-van der Sanden, Maria W G

    2014-12-01

    To investigate the effect of physical training combined with growth hormone (GH) on muscle thickness and its relationship with muscle strength and motor development in infants with Prader-Willi syndrome (PWS). In a randomized controlled trial, 22 infants with PWS (12.9 ± 7.1 months) were followed over 2 years to compare a treatment group (n = 10) with a waiting-list control group (n = 12). Muscle thickness of 4 muscle groups was measured by using ultrasound. Muscle strength was evaluated by using the Infant Muscle Strength meter. Motor performance was measured with the Gross Motor Function Measurement. Analyses of variance were used to evaluate between-group effects of GH on muscle thickness at 6 months and to compare pre- and posttreatment (after 12 months of GH) values. Multilevel analyses were used to evaluate effects of GH on muscle thickness over time, and multilevel bivariate analyses were used to test relationships between muscle thickness, muscle strength, and motor performance. A significant positive effect of GH on muscle thickness (P < .05) was found. Positive relationships were found between muscle thickness and muscle strength (r = 0.61, P < .001), muscle thickness and motor performance (r = 0.81, P < .001), and muscle strength and motor performance (r = 0.76, P < .001). GH increased muscle thickness, which was related to muscle strength and motor development in infants with PWS. Catch-up growth was faster in muscles that are most frequently used in early development. Because this effect was independent of GH, it suggests a training effect. Copyright © 2014 by the American Academy of Pediatrics.

  17. Relationship of Skeletal Muscle Development and Growth to Breast Muscle Myopathies: A Review.

    PubMed

    Velleman, Sandra G

    2015-12-01

    Selection in meat-type birds has focused on growth rate, muscling, and feed conversion. These strategies have made substantial improvements but have affected muscle structure, repair mechanisms, and meat quality, especially in the breast muscle. The increase in muscle fiber diameters has reduced available connective tissue spacing, reduced blood supply, and altered muscle metabolism in the breast muscle. These changes have increased muscle fiber degeneration and necrosis but have limited muscle repair mechanisms mediated by the adult myoblast (satellite cell) population of cells, likely resulting in the onset of myopathies. This review focuses on muscle growth mechanisms and how changes in the cellular development of the breast muscle may be associated with breast muscle myopathies occurring in meat-type birds.

  18. [Practical guideline for the management of adverse events associated with BCG installations].

    PubMed

    Rodríguez, Fernando; Palou, Juan; Martínez, R; Rodríguez, O; Rosales, A; Huguet, Jorge; Villavicencio, Humberto

    2008-06-01

    Morbidity secondary to intravesical Bacillus Calmette-Guèrin (BCG) may present both locally and systemically. Most patients suffer a self-limited irritative voiding syndrome. Often, there are not unified criteria for the management of BCG side effects. After treating more than 500 patients with BCG we developed a practical guideline for the management of its morbidity. We present clearly and schematically the practice guideline we follow in our Center when the patient presents symptoms and morbidity secondary to BCG intravesical installations. We analyze and describe, following the literature and our own experience, the management of adverse events experienced by patients treated with intravesical BCG, since the initial implementation of the protocol for its indication in patients with high risk non-muscle invasive bladder tumors and/or CIS. Irritative voiding symptoms are among the most frequent symptoms, generally self-limited; but if they persist (> 48 hours) will have the urologist treat them depending on intensity and duration. Macroscopic hematuria is not unfrequent and diminishes with an expectant approach and water intake. But, it may also be a urinary tract infection or residual tumor. A febrile syndrome, if present, is usually self-limited to the first 24-48 hours and below 38.5 degrees C without general status affectation. In cases of persistence and/or sepsis, tuberculostatic treatment and/or corticoids should be started. Other clinical pictures may appear, such as orchyoepididymitis, arthritis, etc. Proper diagnosis and treatment of adverse events after BCG therapy are basic to allow intravesical immunotherapy be properly prescribed and managed by urologists, enabling a proper treatment of patients and avoiding the possibility of more severe complications.

  19. Neuropathological aspects of conservative treatment of scoliosis. A theoretical view point.

    PubMed

    Czupryna, Krzysztof; Nowotny-Czupryna, Olga; Nowotny, Janusz

    2012-01-01

    An upright body posture cannot be maintained passively for reasons including a high location of the centre of gravity (COG) and a small support area. Proper alignment of body parts is maintained automatically, tending towards a pattern encoded in the CNS. A particularly important role in posture regulation is played by the short muscles of the back, which respond to being stretched with a contraction. During the early phase of scoliosis, the CNS automatically corrects abnormalities, but over time habituation occurs and the CNS treats them as something normal. Any attempt to restore proper body alignment is treated as an error and CNS automatically restores this abnormal pattern. With a prolonged deviation in body part alignment, CNS treats it as a defect and runs compensatory mechanisms to restore the balance of the body as a whole. Balance is ensured by postural compensation, but this does not restore proper body part alignment. In the treatment of scoliosis, it is important both to slow down progression and to prevent the development of abnormal postural habits, which are part of a vicious circle even without progression. Secondary prevention is therefore needed in all patients. Passive observation limits the possibilities for prevention and contradicts the principle of early implementation of rehabilitation. Depending on the size of the angle of curvature, recommended treatments of scoliosis comprise observation, corset bracing, and surgery. Physiotherapy is often treated as an unconventional and ineffective treatment. Often, the biggest problem is transferring the resulting correction to automatic maintenance of a correct posture in the vertical position. The aim of this paper was to discuss the conservative treatment of scoliosis with regard to difficulties maintaining the correct alignment of the body parts in the vertical position that accompany scoliosis.

  20. Gene and protein expressions of vimentin and desmin during embryonic development of the mylohyoid muscle.

    PubMed

    Kishi, Asuka; Yamamoto, Masahito; Kikuchi, Akihito; Iwanuma, Osamu; Watanabe, Yutaka; Ide, Yoshinobu; Abe, Shinichi

    2012-09-01

    Meckel's cartilage is known to be involved in formation of the prenatal mandible. However, the relationship between Meckel's cartilage and the embryonic mylohyoid muscle during growth and development has been investigated only rarely. This study examined the expression of intermediate filaments in Meckel's cartilage and the embryonic mylohyoid muscle in fetal mice during morphological development. Specimens of E12-16 ICR mice sectioned in the frontal direction were subjected to immunohistochemistry for vimentin and desmin. Hematoxylin and eosin sections showed that the immature mylohyoid muscle began to grow along Meckel's cartilage during fetal development. Weak vimentin expression was detected in the mylohyoid muscle and surrounding tissues at E12. Desmin expression was detected specifically in the mylohyoid, and strong expression was evident after E13, and increased with age. It was inferred that the mylohyoid muscle is one the tissues developing from Meckel's cartilage, the latter exerting a continuous influence on the growth of the former. In the early stage, the surrounding mesenchymal tissues expressing vimentin formed a scaffold for the developing mylohyoid muscle. Muscle attachment at E13 showed steady desmin expression, which continued until maturity. This study suggested the possibility that Meckel's cartilage has an influence not only on the mandibular bone, but also on the development of the mylohyoid muscle attached to the mandibular bone. Furthermore, it revealed a stage of the developmental process of the mylohyoid muscle in which the expression of vimentin, which is a common protein in the surrounding tissue such as muscle and bone, induces the morphological formation of the mylohyoid muscle, cooperating with the surrounding structures.

  1. [Congenital generalized lipodystrophy in a patient with Dandy Walker anomaly].

    PubMed

    Luna, Cecilia Inés; Fernández Cordero, Marisa; Escruela, Romina; Sierra, Valeria; Córdoba, Antonela; Goñi, Ignacio María; Berridi, Ricardo

    2014-10-01

    The objective of this study is to describe the unexpected association between the congenital generalized lipodystrophy (CGL) and Dandy Walker anomaly. We report the case of a 1-year-old infant who was hospitalized at her fourth month of life with Dandy Walker anomaly diagnosis and an increased social risk. During her hospitalization, she developed progressively: acromegaloid aspect, triangular fascia, hirsutism, lipoatrophy, muscle hypertrophy, clitoromegaly, abdominal distention, progressive hepatomegaly, and hypertriglyceridemia. This led to the clinical diagnosis of congenital generalized lipodystrophy. Importance should be given to the examination of clinical aspects as well as the interdisciplinary follow-up for proper detection of insulin resistance and diabetes, early puberty, cardiomyopathy, among others. In case of Dandy Walker anomaly, it should be checked the evolution to search intracranial hypertension signs. Due to its autosomal recessive nature, it is important to provide genetic counseling to the parents.

  2. Surgical repair of pectus excavatum and carinatum.

    PubMed

    Robicsek, Francis; Watts, Larry T; Fokin, Alexander A

    2009-01-01

    The author discusses different forms of pectus deformities and presents appropriate surgical methods he developed for their correction. For pectus excavatum, the surgical technique includes conservative sub-perichondral resection of deformed costal cartilages and detachment of the xiphoid process. A transverse sternotomy is performed at the upper level of the deformed sternum, which is then bent forward. The corrected sternal position is secured by a "hammock" of synthetic mesh, spread behind the sternum, and attached to the respective cartilage remnants. The pectoralis muscles are then united presternally. The initial steps of pectus carinatum correction are similar to that of pectus excavatum. The sternum, however, is not freed of its environment. A length of 3-4 cm is resected from the distal sternum and the xiphoid process is reattached in the proper anatomical direction. Measures to correct different anatomical varieties, such as pouter pigeon breast, asymmetrical pectus excavatum, and carinatum, are discussed individually.

  3. Triggered intravoxel incoherent motion MRI for the assessment of calf muscle perfusion during isometric intermittent exercise.

    PubMed

    Mastropietro, Alfonso; Porcelli, Simone; Cadioli, Marcello; Rasica, Letizia; Scalco, Elisa; Gerevini, Simonetta; Marzorati, Mauro; Rizzo, Giovanna

    2018-06-01

    The main aim of this paper was to propose triggered intravoxel incoherent motion (IVIM) imaging sequences for the evaluation of perfusion changes in calf muscles before, during and after isometric intermittent exercise. Twelve healthy volunteers were involved in the study. The subjects were asked to perform intermittent isometric plantar flexions inside the MRI bore. MRI of the calf muscles was performed on a 3.0 T scanner and diffusion-weighted (DW) images were obtained using eight different b values (0 to 500 s/mm 2 ). Acquisitions were performed at rest, during exercise and in the subsequent recovery phase. A motion-triggered echo-planar imaging DW sequence was implemented to avoid movement artifacts. Image quality was evaluated using the average edge strength (AES) as a quantitative metric to assess the motion artifact effect. IVIM parameters (diffusion D, perfusion fraction f and pseudo-diffusion D*) were estimated using a segmented fitting approach and evaluated in gastrocnemius and soleus muscles. No differences were observed in quality of IVIM images between resting state and triggered exercise, whereas the non-triggered images acquired during exercise had a significantly lower value of AES (reduction of more than 20%). The isometric intermittent plantar-flexion exercise induced an increase of all IVIM parameters (D by 10%; f by 90%; D* by 124%; fD* by 260%), in agreement with the increased muscle perfusion occurring during exercise. Finally, IVIM parameters reverted to the resting values within 3 min during the recovery phase. In conclusion, the IVIM approach, if properly adapted using motion-triggered sequences, seems to be a promising method to investigate muscle perfusion during isometric exercise. Copyright © 2018 John Wiley & Sons, Ltd.

  4. mTOR is necessary for proper satellite cell activity and skeletal muscle regeneration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Pengpeng; Department of Animal Sciences, Purdue University, West Lafayette, IN 47907; Liang, Xinrong

    The serine/threonine kinase mammalian target of rapamycin (mTOR) is a key regulator of protein synthesis, cell proliferation and energy metabolism. As constitutive deletion of Mtor gene results in embryonic lethality, the function of mTOR in muscle stem cells (satellite cells) and skeletal muscle regeneration remains to be determined. In this study, we established a satellite cell specific Mtor conditional knockout (cKO) mouse model by crossing Pax7{sup CreER} and Mtor{sup flox/flox} mice. Skeletal muscle regeneration after injury was severely compromised in the absence of Mtor, indicated by increased number of necrotic myofibers infiltrated by Evans blue dye, and reduced number andmore » size of regenerated myofibers in the Mtor cKO mice compared to wild type (WT) littermates. To dissect the cellular mechanism, we analyzed satellite cell-derived primary myoblasts grown on single myofibers or adhered to culture plates. The Mtor cKO myoblasts exhibited defective proliferation and differentiation kinetics when compared to myoblasts derived from WT littermates. At the mRNA and protein levels, the Mtor cKO myoblasts expressed lower levels of key myogenic determinant genes Pax7, Myf5, Myod, Myog than did the WT myoblasts. These results suggest that mTOR is essential for satellite cell function and skeletal muscle regeneration through controlling the expression of myogenic genes. - Highlights: • Pax7{sup CreER} was used to delete Mtor gene in satellite cells. • Satellite cell specific deletion of Mtor impairs muscle regeneration. • mTOR is necessary for satellite cell proliferation and differentiation. • Deletion of Mtor leads to reduced expression of key myogenic genes.« less

  5. Inhibition of muscle-specific gene expression by Id3: requirement of the C-terminal region of the protein for stable expression and function.

    PubMed

    Chen, B; Han, B H; Sun, X H; Lim, R W

    1997-01-15

    We have examined the role of an Id-like protein, Id3 (also known as HLH462), in the regulation of muscle-specific gene expression. Id proteins are believed to block expression of muscle-specific genes by preventing the dimerization between ubiquitous bHLH proteins (E proteins) and myogenic bHLH proteins such as MyoD. Consistent with its putative role as an inhibitor of differentiation, Id3 mRNA was detected in proliferating skeletal muscle cells, was further induced by basic fibroblast growth factor (bFGF) and was down-regulated in differentiated muscle cultures. Overexpression of Id3 efficiently inhibited the MyoD-mediated activation of the muscle-specific creatine kinase (MCK) reporter gene. Deletion analysis indicated that the C-terminal 15 amino acids of Id3 are critical for the full inhibitory activity while deleting up to 42 residues from the C-terminus of the related protein, Id2, did not affect its ability to inhibit the MCK reporter gene. Chimeric protein containing the N-terminal region of Id3 and the C-terminus of Id2 was also non-functional in transfected cells. In contrast, wild-type Id3, the C-terminal mutants, and the Id3/Id2 chimera could all interact with the E-protein E47in vitro. Additional studies indicated that truncation of the Id3 C-terminus might have adversely affected the expression level of the mutant proteins but the Id3/Id2 chimera was stably expressed. Taken together, our results revealed a more complex requirement for the expression and proper function of the Id family proteins than was hitherto expected.

  6. Inhibition of muscle-specific gene expression by Id3: requirement of the C-terminal region of the protein for stable expression and function.

    PubMed Central

    Chen, B; Han, B H; Sun, X H; Lim, R W

    1997-01-01

    We have examined the role of an Id-like protein, Id3 (also known as HLH462), in the regulation of muscle-specific gene expression. Id proteins are believed to block expression of muscle-specific genes by preventing the dimerization between ubiquitous bHLH proteins (E proteins) and myogenic bHLH proteins such as MyoD. Consistent with its putative role as an inhibitor of differentiation, Id3 mRNA was detected in proliferating skeletal muscle cells, was further induced by basic fibroblast growth factor (bFGF) and was down-regulated in differentiated muscle cultures. Overexpression of Id3 efficiently inhibited the MyoD-mediated activation of the muscle-specific creatine kinase (MCK) reporter gene. Deletion analysis indicated that the C-terminal 15 amino acids of Id3 are critical for the full inhibitory activity while deleting up to 42 residues from the C-terminus of the related protein, Id2, did not affect its ability to inhibit the MCK reporter gene. Chimeric protein containing the N-terminal region of Id3 and the C-terminus of Id2 was also non-functional in transfected cells. In contrast, wild-type Id3, the C-terminal mutants, and the Id3/Id2 chimera could all interact with the E-protein E47in vitro. Additional studies indicated that truncation of the Id3 C-terminus might have adversely affected the expression level of the mutant proteins but the Id3/Id2 chimera was stably expressed. Taken together, our results revealed a more complex requirement for the expression and proper function of the Id family proteins than was hitherto expected. PMID:9016574

  7. Changes in Systolic Blood Pressure during Isometric Contractions of Different Size Muscle Groups.

    DTIC Science & Technology

    1979-05-01

    and 7 bea’s/min in heart rate. The moan aortic pressure and heart rate of three of the four I subiec’s ramained in a steady skate condition during the...mass because of its relative ease of motor control. Even though it is fairly easy to isolate this movement, if stabilized properly, it Istill remains...flexion), fine motor control is required to produce index finger adduction as an isolated i contraction (37,38). with this in mind, one should

  8. Pathophysiology and animal modeling of underactive bladder.

    PubMed

    Tyagi, Pradeep; Smith, Phillip P; Kuchel, George A; de Groat, William C; Birder, Lori A; Chermansky, Christopher J; Adam, Rosalyn M; Tse, Vincent; Chancellor, Michael B; Yoshimura, Naoki

    2014-09-01

    While the symptomology of underactive bladder (UAB) may imply a primary dysfunction of the detrusor muscle, insights into pathophysiology indicate that both myogenic and neurogenic mechanisms need to be considered. Due to lack of proper animal models, the current understanding of the UAB pathophysiology is limited, and much of what is known about the clinical etiology of the condition has been derived from epidemiological data. We hereby review current state of the art in the understanding of the pathophysiology of and animal models used to study the UAB.

  9. EBF proteins participate in transcriptional regulation of Xenopus muscle development.

    PubMed

    Green, Yangsook Song; Vetter, Monica L

    2011-10-01

    EBF proteins have diverse functions in the development of multiple lineages, including neurons, B cells and adipocytes. During Drosophila muscle development EBF proteins are expressed in muscle progenitors and are required for muscle cell differentiation, but there is no known function of EBF proteins in vertebrate muscle development. In this study, we examine the expression of ebf genes in Xenopus muscle tissue and show that EBF activity is necessary for aspects of Xenopus skeletal muscle development, including somite organization, migration of hypaxial muscle anlagen toward the ventral abdomen, and development of jaw muscle. From a microarray screen, we have identified multiple candidate targets of EBF activity with known roles in muscle development. The candidate targets we have verified are MYOD, MYF5, M-Cadherin and SEB-4. In vivo overexpression of the ebf2 and ebf3 genes leads to ectopic expression of these candidate targets, and knockdown of EBF activity causes downregulation of the endogenous expression of the candidate targets. Furthermore, we found that MYOD and MYF5 are likely to be direct targets. Finally we show that MYOD can upregulate the expression of ebf genes, indicating the presence of a positive feedback loop between EBF and MYOD that we find to be important for maintenance of MYOD expression in Xenopus. These results suggest that EBF activity is important for both stabilizing commitment and driving aspects of differentiation in Xenopus muscle cells. Copyright © 2010 Elsevier Inc. All rights reserved.

  10. Hitherto unknown detailed muscle anatomy in an 8-week-old embryo.

    PubMed

    Warmbrunn, Moritz V; de Bakker, Bernadette S; Hagoort, Jaco; Alefs-de Bakker, Pauline B; Oostra, Roelof-Jan

    2018-05-03

    Congenital muscle diseases, such as myopathies or dystrophies, occur relatively frequently, with estimated incidences of up to 4.7 per 100 000 newborns. To diagnose congenital diseases in the early stages of pregnancy, and to interpret the results of increasingly advanced in utero imaging techniques, a profound knowledge of normal human morphological development of the locomotor system and the nervous system is necessary. Muscular development, however, is an often neglected topic or is only described in a general way in embryology textbooks and papers. To provide the required detailed and updated comprehensive picture of embryologic muscular anatomy, three-dimensional (3D) reconstructions were created based on serial histological sections of a human embryo at Carnegie stage 23 (8 weeks of development, crown-rump length of 23.8 mm), using Amira reconstruction software. Reconstructed muscles, tendons, bones and nerves were exported in a 3D-PDF file to permit interactive viewing. Almost all adult skeletal muscles of the trunk and limbs could be individually identified in their relative adult position. The pectoralis major muscle was divided in three separate muscle heads. The reconstructions showed remarkable highly developed extraocular, infrahyoid and suprahyoid muscles at this age but surprisingly also absence of the facial muscles that have been described to be present at this stage of development. The overall stage of muscle development suggests heterochrony of skeletal muscle development. Several individual muscle groups were found to be developed earlier and in more detail than described in current literature. © 2018 The Authors. Journal of Anatomy published by John Wiley & Sons Ltd on behalf of Anatomical Society.

  11. Endoscopic laser-induced steam generator: a new method of treatment for early gastric cancer

    NASA Astrophysics Data System (ADS)

    Hayashi, Takuya; Arai, Tsunenori; Tajiri, Hisao; Nogami, Yashiroh; Hino, Kunihiko; Kikuchi, Makoto

    1996-05-01

    The minimum invasive endoscopic treatment for early gastric cancer has been popular in Japan. The endoscopic mucosal resection and laser coagulation by Nd:YAG laser irradiation has been the popular treatment method in this field. However, the submucosal cancer has not been successfully treated by these methods. To treat the submucosal cancer endoscopically, we developed a new coagulation therapy using hot steam generated by Nd:YAG laser. The steam of which temperature was over 10 deg. in Celsius was generated by the laser power of 30 W with 5 ml/min. of saline. The steam was emitted to canine gastric wall under laparotomy or endoscopy for 50 s respectively. Follow up endoscopy was performed on 3, 7, 14, 28 days after the treatment. Histological examination was studied on 7, 28 days, and just after the emission. In the acute observation, the submucosal layer was totally coagulated. On the 7th day, ulceration with white coat was seen. The mucosal defect, submucosal coagulation, and marked edema without muscle degeneration were found by the histological study. On the 14th day, the ulcer advanced in the scar stage. On the 28th day, it completely healed into white scar with mucosal regeneration and mucosal muscle thickening. We could obtain reproducible coagulation up to deep submucosal layer with large area in a short operation time. Moreover there were no degeneration of proper muscle. This treatment effectiveness could be easily controlled by the steam temperature and emission duration. We think that this method can be applied to early gastric cancer including the submucosal cancer, in particular poor risk case for operation. Further study should be done to apply this method to clinical therapy.

  12. Expression of Pannexin 1 and Pannexin 3 during skeletal muscle development, regeneration, and Duchenne muscular dystrophy.

    PubMed

    Pham, Tammy L; St-Pierre, Marie-Eve; Ravel-Chapuis, Aymeric; Parks, Tara E C; Langlois, Stéphanie; Penuela, Silvia; Jasmin, Bernard J; Cowan, Kyle N

    2018-05-10

    Pannexin 1 (Panx1) and Pannexin 3 (Panx3) are single membrane channels recently implicated in myogenic commitment, as well as myoblast proliferation and differentiation in vitro. However, their expression patterns during skeletal muscle development and regeneration had yet to be investigated. Here, we show that Panx1 levels increase during skeletal muscle development becoming highly expressed together with Panx3 in adult skeletal muscle. In adult mice, Panx1 and Panx3 were differentially expressed in fast- and slow-twitch muscles. We also report that Panx1/PANX1 and Panx3/PANX3 are co-expressed in mouse and human satellite cells, which play crucial roles in skeletal muscle regeneration. Interestingly, Panx1 and Panx3 levels were modulated in muscle degeneration/regeneration, similar to the pattern seen during skeletal muscle development. As Duchenne muscular dystrophy is characterized by skeletal muscle degeneration and impaired regeneration, we next used mild and severe mouse models of this disease and found a significant dysregulation of Panx1 and Panx3 levels in dystrophic skeletal muscles. Together, our results are the first demonstration that Panx1 and Panx3 are differentially expressed amongst skeletal muscle types with their levels being highly modulated during skeletal muscle development, regeneration, and dystrophy. These findings suggest that Panx1 and Panx3 channels may play important and distinct roles in healthy and diseased skeletal muscles. © 2018 Wiley Periodicals, Inc.

  13. Diversity of Cnidarian Muscles: Function, Anatomy, Development and Regeneration

    PubMed Central

    Leclère, Lucas; Röttinger, Eric

    2017-01-01

    The ability to perform muscle contractions is one of the most important and distinctive features of eumetazoans. As the sister group to bilaterians, cnidarians (sea anemones, corals, jellyfish, and hydroids) hold an informative phylogenetic position for understanding muscle evolution. Here, we review current knowledge on muscle function, diversity, development, regeneration and evolution in cnidarians. Cnidarian muscles are involved in various activities, such as feeding, escape, locomotion and defense, in close association with the nervous system. This variety is reflected in the large diversity of muscle organizations found in Cnidaria. Smooth epithelial muscle is thought to be the most common type, and is inferred to be the ancestral muscle type for Cnidaria, while striated muscle fibers and non-epithelial myocytes would have been convergently acquired within Cnidaria. Current knowledge of cnidarian muscle development and its regeneration is limited. While orthologs of myogenic regulatory factors such as MyoD have yet to be found in cnidarian genomes, striated muscle formation potentially involves well-conserved myogenic genes, such as twist and mef2. Although satellite cells have yet to be identified in cnidarians, muscle plasticity (e.g., de- and re-differentiation, fiber repolarization) in a regenerative context and its potential role during regeneration has started to be addressed in a few cnidarian systems. The development of novel tools to study those organisms has created new opportunities to investigate in depth the development and regeneration of cnidarian muscle cells and how they contribute to the regenerative process. PMID:28168188

  14. Diversity of Cnidarian Muscles: Function, Anatomy, Development and Regeneration.

    PubMed

    Leclère, Lucas; Röttinger, Eric

    2016-01-01

    The ability to perform muscle contractions is one of the most important and distinctive features of eumetazoans. As the sister group to bilaterians, cnidarians (sea anemones, corals, jellyfish, and hydroids) hold an informative phylogenetic position for understanding muscle evolution. Here, we review current knowledge on muscle function, diversity, development, regeneration and evolution in cnidarians. Cnidarian muscles are involved in various activities, such as feeding, escape, locomotion and defense, in close association with the nervous system. This variety is reflected in the large diversity of muscle organizations found in Cnidaria. Smooth epithelial muscle is thought to be the most common type, and is inferred to be the ancestral muscle type for Cnidaria, while striated muscle fibers and non-epithelial myocytes would have been convergently acquired within Cnidaria. Current knowledge of cnidarian muscle development and its regeneration is limited. While orthologs of myogenic regulatory factors such as MyoD have yet to be found in cnidarian genomes, striated muscle formation potentially involves well-conserved myogenic genes, such as twist and mef2 . Although satellite cells have yet to be identified in cnidarians, muscle plasticity (e.g., de- and re-differentiation, fiber repolarization) in a regenerative context and its potential role during regeneration has started to be addressed in a few cnidarian systems. The development of novel tools to study those organisms has created new opportunities to investigate in depth the development and regeneration of cnidarian muscle cells and how they contribute to the regenerative process.

  15. Correcting lenticular astigmatism by reinstating the correct neuromuscular message.

    PubMed

    Yee, John William

    2013-07-01

    The spasm of the oblique muscles can contribute to lenticular astigmatism. The visual cortex interprets the tension of the oblique muscles as an eye that is in near focus mode. It overrides the response to the information generated by depth perception to bring a distant image into focus. Any excessive effort to bring it into focus will not be successful and continuing to make that effort can cause a misalignment in the tension of the rectus muscles. This in turn can directly induce corneal astigmatism and indirectly induce lenticular astigmatism. The astigmatic eye can still bring a near image into focus, but a distant image remains aberrant. The design of a special contact lens to treat lenticular astigmatism is similar to the design of a contact lens to treat corneal astigmatism by means of orthoculogy (or ortho C) as outlined in the paper Correcting Corneal Astigmatism by Reinstating the Correct Neuromuscular Message. The ortho C lens is worn for about two minutes to attend to the blur and distorted aspects of "simple myopic astigmatism". Both of these refractive errors are corrected simultaneously. Once the oblique muscles become "loose" due to a "contact lens draw", it triggers the visual cortex to reinstate the proper neuromotor message to stimulate the ciliary muscle (the muscle that controls the shape of the crystalline lens) to relax along a certain meridian-which in turn "flattens" the crystalline lens along that meridian to bring a blur and distorted image in the distance into focus. The correction only takes a few minutes because the ciliary muscle of an astigmatic eye was not compromised. The correction is not strictly due to an ortho C lens. Its design is the same for corneal astigmatism or lenticular astigmatism. The purpose of the design is to "loosen" the oblique muscles in a certain manner depending on the degree of astigmatism instead of a specific type of astigmatism. The visual cortex can discriminate whether to correct for corneal astigmatism or lenticular astigmatism after the "draw" from the lens relaxes the oblique muscles. Copyright © 2013 Elsevier Ltd. All rights reserved.

  16. Analysis of a Caenorhabditis elegans Twist homolog identifies conserved and divergent aspects of mesodermal patterning

    PubMed Central

    Harfe, Brian D.; Gomes, Ana Vaz; Kenyon, Cynthia; Liu, Jun; Krause, Michael; Fire, Andrew

    1998-01-01

    Mesodermal development is a multistep process in which cells become increasingly specialized to form specific tissue types. In Drosophila and mammals, proper segregation and patterning of the mesoderm involves the bHLH factor Twist. We investigated the activity of a Twist-related factor, CeTwist, during Caenorhabditis elegans mesoderm development. Embryonic mesoderm in C. elegans derives from a number of distinct founder cells that are specified during the early lineages; in contrast, a single blast cell (M) is responsible for all nongonadal mesoderm formation during postembryonic development. Using immunofluorescence and reporter fusions, we determined the activity pattern of the gene encoding CeTwist. No activity was observed during specification of mesodermal lineages in the early embryo; instead, the gene was active within the M lineage and in a number of mesodermal cells with nonstriated muscle fates. A role for CeTwist in postembryonic mesodermal cell fate specification was indicated by ectopic expression and genetic interference assays. These experiments showed that CeTwist was responsible for activating two target genes normally expressed in specific subsets of nonstriated muscles derived from the M lineage. In vitro and in vivo assays suggested that CeTwist cooperates with the C. elegans E/Daughterless homolog in directly activating these targets. The two target genes that we have studied, ceh-24 and egl-15, encode an NK-2 class homeodomain and an FGF receptor (FGFR) homolog, respectively. Twist activates FGFR and NK-homeodomain target genes during mesodermal patterning of Drosophila and similar target interactions have been proposed to modulate mesenchymal growth during closure of the vertebrate skull. These results suggest the possibility that a conserved pathway may be used for diverse functions in mesodermal specification. PMID:9716413

  17. Comparative muscle development of scyphozoan jellyfish with simple and complex life cycles.

    PubMed

    Helm, Rebecca R; Tiozzo, Stefano; Lilley, Martin K S; Lombard, Fabien; Dunn, Casey W

    2015-01-01

    Simple life cycles arise from complex life cycles when one or more developmental stages are lost. This raises a fundamental question - how can an intermediate stage, such as a larva, be removed, and development still produce a normal adult? To address this question, we examined the development in several species of pelagiid jellyfish. Most members of Pelagiidae have a complex life cycle with a sessile polyp that gives rise to ephyrae (juvenile medusae); but one species within Pelagiidae, Pelagia noctiluca, spends its whole life in the water column, developing from a larva directly into an ephyra. In many complex life cycles, adult features develop from cell populations that remain quiescent in larvae, and this is known as life cycle compartmentalization and may facilitate the evolution of direct life cycles. A second type of metamorphic processes, known as remodeling, occurs when adult features are formed through modification of already differentiated larval structures. We examined muscle morphology to determine which of these alternatives may be present in Pelagiidae. We first examined the structure and development of polyp and ephyra musculature in Chrysaora quinquecirrha, a close relative of P. noctiluca with a complex life cycle. Using phallotoxin staining and confocal microscopy, we verified that polyps have four to six cord muscles that persist in strobilae and discovered that cord muscles is physically separated from ephyra muscle. When cord muscle is removed from ephyra segments, normal ephyra muscle still develops. This suggests that polyp cord muscle is not necessary for ephyra muscle formation. We also found no evidence of polyp-like muscle in P. noctiluca. In both species, we discovered that ephyra muscle arises de novo in a similar manner, regardless of the life cycle. The separate origins of polyp and ephyra muscle in C. quinquecirrha and the absence of polyp-like muscle in P. noctiluca suggest that polyp muscle is not remodeled to form ephyra muscle in Pelagiidae. Life cycle stages in Scyphozoa may instead be compartmentalized. Because polyp muscle is not directly remodeled, this may have facilitated the loss of the polyp stage in the evolution of P. noctiluca.

  18. A different role of angiotensin II type 1a receptor in the development and hypertrophy of plantaris muscle in mice.

    PubMed

    Zempo, Hirofumi; Suzuki, Jun-Ichi; Ogawa, Masahito; Watanabe, Ryo; Isobe, Mitsuaki

    2016-02-01

    The role of angiotensin II type 1 (AT1) receptors in muscle development and hypertrophy remains unclear. This study was designed to reveal the effects that a loss of AT1 receptors has on skeletal muscle development and hypertrophy in mice. Eight-week-old male AT1a receptor knockout (AT1a(-/-)) mice were used for this experiment. The plantaris muscle to body weight ratio, muscle fiber cross-sectional area, and number of muscle fibers of AT1a(-/-) mice was significantly greater than wild type (WT) mice in the non-intervention condition. Next, the functional overload (OL) model was used to induce plantaris muscle hypertrophy by surgically removing the two triceps muscles consisting of the calf, soleus, and gastrocnemius muscles in mice. After 14 days of OL intervention, the plantaris muscle weight, the amount of fiber, and the fiber area increased. However, the magnitude of the increment of plantaris weight was not different between the two strains. Agtr1a mRNA expression did not change after OL in WT muscle. Actually, the Agt mRNA expression level of WT-OL was lower than WT-Control (C) muscle. An atrophy-related gene, atrogin-1 mRNA expression levels of AT1a(-/-)-C, WT-OL, and AT1a(-/-)-OL muscle were lower than that of WT-C muscle. Our findings suggest that AT1 receptor contributes to plantaris muscle development via atrogin-1 in mice.

  19. Resistance exercise-induced rhabdomyolysis: Need for immediate intervention and proper counselling.

    PubMed

    Khalil, Maysaa A; Saab, Basem R

    2016-12-01

    Rhabdomyolysis results from damage to skeletal muscle. Improper resistance training may result in rhabdomyolysis, which can cause acute kidney injury, serious metabolic abnormalities, compartmental syndrome and even death. Proper counselling for athletes may prevent this condition. We present two patients with unilateral swelling after resistance exercise. The workup revealed rhabdomyolysis. We highlight the importance of counselling to prevent rhabdomyolysis secondary to resistance exercise. Trainers and primary care physicians need to be educated about the main features of rhabdomyolysis and urgently refer trainees suspected of having this condition. Treatment consists mainly of hydration and correction of metabolic abnormalities. Primary care physicians need to counsel patients on ways to prevent rhabdomyolysis. Trainers and primary care physicians should instruct novice trainees who are performing resistance exercise to start low and gradually increase the load. Training with loads of 60-70% of one repetition maximum for 8-12 repetitions and use of one to three sets per exercise is recommended.

  20. Growth factor involvement in tension-induced skeletal muscle growth

    NASA Technical Reports Server (NTRS)

    Vandenburgh, H. H.

    1987-01-01

    Muscle tissue culture techniques were developed to grow skeletal myofibers which differentiate into more adult-like myofibers. Mechanical simulation studies of these muscle cells in a newly developed mechanical cell simulator can now be performed to study growth processes in skeletal muscle. Conditions in the mechanical cell simulator were defined where mechanical activity can either prevent muscle wasting or stimulate muscle growth. The role of endogenous and exogenous growth factors in tension-induced muscle growth is being investigated under the defined conditions of tissue culture.

  1. Canadian Society for Exercise Physiology position paper: resistance training in children and adolescents.

    PubMed

    Behm, David G; Faigenbaum, Avery D; Falk, Baraket; Klentrou, Panagiota

    2008-06-01

    Many position stands and review papers have refuted the myths associated with resistance training (RT) in children and adolescents. With proper training methods, RT for children and adolescents can be relatively safe and improve overall health. The objective of this position paper and review is to highlight research and provide recommendations in aspects of RT that have not been extensively reported in the pediatric literature. In addition to the well-documented increases in muscular strength and endurance, RT has been used to improve function in pediatric patients with cystic fibrosis and cerebral palsy, as well as pediatric burn victims. Increases in children's muscular strength have been attributed primarily to neurological adaptations due to the disproportionately higher increase in muscle strength than in muscle size. Although most studies using anthropometric measures have not shown significant muscle hypertrophy in children, more sensitive measures such as magnetic resonance imaging and ultrasound have suggested hypertrophy may occur. There is no minimum age for RT for children. However, the training and instruction must be appropriate for children and adolescents, involving a proper warm-up, cool-down, and appropriate choice of exercises. It is recommended that low- to moderate-intensity resistance exercise should be done 2-3 times/week on non-consecutive days, with 1-2 sets initially, progressing to 4 sets of 8-15 repetitions for 8-12 exercises. These exercises can include more advanced movements such as Olympic-style lifting, plyometrics, and balance training, which can enhance strength, power, co-ordination, and balance. However, specific guidelines for these more advanced techniques need to be established for youth. In conclusion, an RT program that is within a child's or adolescent's capacity and involves gradual progression under qualified instruction and supervision with appropriately sized equipment can involve more advanced or intense RT exercises, which can lead to functional (i.e., muscular strength, endurance, power, balance, and co-ordination) and health benefits.

  2. Human Autoantibodies Reveal Titin as a Chromosomal Protein

    PubMed Central

    Machado, Cristina; Sunkel, Claudio E.; Andrew, Deborah J.

    1998-01-01

    Assembly of the higher-order structure of mitotic chromosomes is a prerequisite for proper chromosome condensation, segregation and integrity. Understanding the details of this process has been limited because very few proteins involved in the assembly of chromosome structure have been discovered. Using a human autoimmune scleroderma serum that identifies a chromosomal protein in human cells and Drosophila embryos, we cloned the corresponding Drosophila gene that encodes the homologue of vertebrate titin based on protein size, sequence similarity, developmental expression and subcellular localization. Titin is a giant sarcomeric protein responsible for the elasticity of striated muscle that may also function as a molecular scaffold for myofibrillar assembly. Molecular analysis and immunostaining with antibodies to multiple titin epitopes indicates that the chromosomal and muscle forms of titin may vary in their NH2 termini. The identification of titin as a chromosomal component provides a molecular basis for chromosome structure and elasticity. PMID:9548712

  3. Concurrent respiratory resistance training and changes in respiratory muscle strength and sleep in an individual with spinal cord injury: case report

    PubMed Central

    Russian, Chris; Litchke, Lyn; Hudson, John

    2011-01-01

    Context Quality sleep possesses numerous benefits to normal nighttime and daytime functioning. High-level spinal cord injury (SCI) often impacts the respiratory muscles that can lead to poor respiratory function during sleep and negatively affect sleep quality. The impact of respiratory muscle training (RMT) on sleep quality, as assessed by overnight polysomnography (PSG), is yet to be determined among the spinal cord-injured population. This case report describes the effects of 10 weeks of RMT on the sleep quality of a 38-year-old male with cervical SCI. Methods Case report. Findings/results The subject completed overnight PSG, respiratory muscle strength assessment, and subjective sleepiness assessment before and after 10 weeks of RMT. The post-test results indicated improvements in sleep quality (e.g. fewer electroencephalographic (EEG) arousals during sleep) and daytime sleepiness scores following RMT. Conclusion/clinical relevance Respiratory activity has been proven to impact EEG arousal activity during sleep. Arousals during sleep lead to a fragmented sleeping pattern and affect sleep quality and daytime function. Our subject presented with a typical sleep complaint of snoring and excessive sleepiness. The subject's pre-test PSG demonstrated a large number of arousals during sleep. It is important for all individuals complaining of problems during sleep or daytime problems associated with sleep (i.e. excessive daytime sleepiness) to seek medical attention and proper evaluation. PMID:21675365

  4. Cadaveric and Ultrasonographic Validation of Needling Placement in the Cervical Multifidus Muscle.

    PubMed

    Fernández-de-Las-Peñas, César; Mesa-Jiménez, Juan A; Paredes-Mancilla, Jose A; Koppenhaver, Shane L; Fernández-Carnero, Samuel

    2017-06-01

    The aim of this study was to determine if a needle is able to reach the cervical multifidus during the application of dry needling or acupuncture. Dry needling and ultrasound imaging of cervical multifidi was conducted on 5 patients (age: 32 ± 5 years) with mechanical neck pain and on 2 fresh cadavers (age: 64 ± 1 years). Dry needling was done using a needle of 40 mm in length inserted perpendicular to the skin about 1 cm lateral to the spinous process at C3-C4. The needle was advanced from a posterior to anterior direction into the cervical multifidus with a slight inferior-medial angle (approximately 10°) to reach the vertebra lamina. For the cadaveric study, the multifidus was isolated by carefully resecting the superficial posterior cervical muscles: trapezius, splenius, and semispinalis. For the ultrasonographic study, a convex transducer was placed transversely over C3-C4 after the insertion of the needle into the muscle. The results of both the cadaveric and ultrasonic studies found that the needle does pierce the cervical multifidus muscle during insertion and that the tip of the needle rests properly against the vertebral laminae, thereby guarding the sensitive underlying spinal structures from damage. This anatomical and ultrasound imaging study supports that dry needling of the cervical multifidus could be conducted clinically. Copyright © 2017. Published by Elsevier Inc.

  5. POMK mutation in a family with congenital muscular dystrophy with merosin deficiency, hypomyelination, mild hearing deficit and intellectual disability.

    PubMed

    von Renesse, Anja; Petkova, Mina V; Lützkendorf, Susanne; Heinemeyer, Jan; Gill, Esther; Hübner, Christoph; von Moers, Arpad; Stenzel, Werner; Schuelke, Markus

    2014-04-01

    Congenital muscular dystrophies (CMD) with hypoglycosylation of α-dystroglycan are clinically and genetically heterogeneous disorders that are often associated with brain malformations and eye defects. Presently, 16 proteins are known whose dysfunction impedes glycosylation of α-dystroglycan and leads to secondary dystroglycanopathy. To identify the cause of CMD with secondary merosin deficiency, hypomyelination and intellectual disability in two siblings from a consanguineous family. Autozygosity mapping followed by whole exome sequencing and immunochemistry were used to discover and verify a new genetic defect in two siblings with CMD. We identified a homozygous missense mutation (c.325C>T, p.Q109*) in protein O-mannosyl kinase (POMK) that encodes a glycosylation-specific kinase (SGK196) required for function of the dystroglycan complex. The protein was absent from skeletal muscle and skin fibroblasts of the patients. In patient muscle, β-dystroglycan was normally expressed at the sarcolemma, while α-dystroglycan failed to do so. Further, we detected co-localisation of POMK with desmin at the costameres in healthy muscle, and a substantial loss of desmin from the patient muscle. Homozygous truncating mutations in POMK lead to CMD with secondary merosin deficiency, hypomyelination and intellectual disability. Loss of desmin suggests that failure of proper α-dystroglycan glycosylation impedes the binding to extracellular matrix proteins and also affects the cytoskeleton.

  6. Value of counting positive PHH3 cells in the diagnosis of uterine smooth muscle tumors

    PubMed Central

    Pang, Shu-Jie; Li, Cheng-Cheng; Shen, Yan; Liu, Yian-Zhu; Shi, Yi-Quan; Liu, Yi-Xin

    2015-01-01

    The diagnosis of uterine smooth muscle tumors including leiomyosarcomas (LMS), smooth muscle tumors of uncertain malignant potential (STUMP), bizarre (atypical) leiomyoma (BLM), mitotically active leiomyoma (MAL) and leiomyoma (LM) depends on a combination of microscopic features, such as mitoses, cytologic atypia, and coagulative tumor cell necrosis. However, a small number of these tumors still pose difficult diagnostic challenges. The assessment of accurate mitotic figures (MF) is one of the major parameters in the proper classification of uterine smooth muscle tumors. This assessment can be hampered by the presence of increased number of apoptotic bodies or pyknotic nuclei, which frequently mimic mitoses. Phospho-histone H3 (PHH3) is a recently described immunomarker specific for cells undergoing mitoses. In our study, we collected 132 cases of uterine smooth muscle tumors, including 26 LMSs, 16 STUMPs, 30 BLMs, 30 MALs and 30 LMs. We used mitosis specific marker PHH3 to count mitotic indexes (MI) of uterine smooth muscle tumors and compared with the mitotic indexes of hematoxylin and eosin (H&E). There is a positive correlation with the number of mitotic figures in H&E-stained sections and PHH3-stained sections (r=0.944, P<0.05). The ratio of PHH3-MI to H&E-MI has no statistically significant difference in each group except for LMs (P>0.05). The counting value of PHH3 in LMSs have significantly higher than STUMPs, BLMs, MALs and LMs (P<0.001) and the counting value of PHH3 is 1.5±0.5 times of the number of mitotic indexes in H&E. To conclude, our results show that counting PHH3 is a useful index in the diagnosis of uterine smooth muscle tumors and it can provide a more accurate index instead of the time-honored mitotic figure counts at a certain ratio. PMID:26191133

  7. Effect of Contralateral Strength Training on Muscle Weakness in People With Multiple Sclerosis: Proof-of-Concept Case Series.

    PubMed

    Manca, Andrea; Cabboi, Maria Paola; Ortu, Enzo; Ginatempo, Francesca; Dragone, Daniele; Zarbo, Ignazio Roberto; de Natale, Edoardo Rosario; Mureddu, Giovanni; Bua, Guido; Deriu, Franca

    2016-06-01

    The contralateral strength training (CST) effect is a transfer of muscle performance to the untrained limb following training of the contralateral side. The aim of this study was to explore, in individuals with multiple sclerosis (MS) presenting marked lower limb strength asymmetry, the effectiveness of CST on management of muscle weakness of the more-affected limb following training of the less-affected limb. A single-subject research design was used. Eight individuals with MS underwent 16 to 18 high-intensity training sessions of the less-affected ankle dorsiflexor muscles. The primary outcome measure of this single-system case series was maximal strength expressed as peak moment and maximal work. Secondary outcome measures were: Six-Minute-Walk Test, Timed "Up & Go" Test, 10-Meter Timed Walk Test, and Multiple Sclerosis Quality of Life-54 questionnaire. After the 6-week intervention, the contralateral more affected (untrained) limb showed a 22% to 24% increase in maximal strength. From pretest-posttest measurements, participants also performed significantly better on the clinical and functional secondary outcome measures. At the 12-week follow-up, the strength levels of the weaker untrained limb remained significantly superior to baseline levels in the majority (5 out of 8) of the outcome parameters. Considering the design used, the absence of a control group, and the sample size, these findings should be cautiously generalized and will need confirmation in a properly planned randomized controlled trial. The present proof-of-concept study shows, for the first time, the occurrence of the CST effect on muscle performance of ankle dorsiflexor muscles in people with MS. These preliminary findings reveal new potential implications for CST as a promising rehabilitation approach to those conditions where unilateral muscle weakness does not allow or makes difficult performing conventional strength training of the weaker limb. © 2016 American Physical Therapy Association.

  8. Objective Evaluation of Muscle Strength in Infants with Hypotonia and Muscle Weakness

    ERIC Educational Resources Information Center

    Reus, Linda; van Vlimmeren, Leo A.; Staal, J. Bart; Janssen, Anjo J. W. M.; Otten, Barto J.; Pelzer, Ben J.; Nijhuis-van der Sanden, Maria W. G.

    2013-01-01

    The clinical evaluation of an infant with motor delay, muscle weakness, and/or hypotonia would improve considerably if muscle strength could be measured objectively and normal reference values were available. The authors developed a method to measure muscle strength in infants and tested 81 typically developing infants, 6-36 months of age, and 17…

  9. Development of the NASA Digital Astronaut Project Muscle Model

    NASA Technical Reports Server (NTRS)

    Lewandowski, Beth E.; Pennline, James A.; Thompson, W. K.; Humphreys, B. T.; Ryder, J. W.; Ploutz-Snyder, L. L.; Mulugeta, L.

    2015-01-01

    This abstract describes development work performed on the NASA Digital Astronaut Project Muscle Model. Muscle atrophy is a known physiological response to exposure to a low gravity environment. The DAP muscle model computationally predicts the change in muscle structure and function vs. time in a reduced gravity environment. The spaceflight muscle model can then be used in biomechanical models of exercise countermeasures and spaceflight tasks to: 1) develop site specific bone loading input to the DAP bone adaptation model over the course of a mission; 2) predict astronaut performance of spaceflight tasks; 3) inform effectiveness of new exercise countermeasures concepts.

  10. Emerging new tools to study and treat muscle pathologies: genetics and molecular mechanisms underlying skeletal muscle development, regeneration, and disease.

    PubMed

    Crist, Colin

    2017-01-01

    Skeletal muscle is the most abundant tissue in our body, is responsible for generating the force required for movement, and is also an important thermogenic organ. Skeletal muscle is an enigmatic tissue because while on the one hand, skeletal muscle regeneration after injury is arguably one of the best-studied stem cell-dependent regenerative processes, on the other hand, skeletal muscle is still subject to many degenerative disorders with few therapeutic options in the clinic. It is important to develop new regenerative medicine-based therapies for skeletal muscle. Future therapeutic strategies should take advantage of rapidly developing technologies enabling the differentiation of skeletal muscle from human pluripotent stem cells, along with precise genome editing, which will go hand in hand with a steady and focused approach to understanding underlying mechanisms of skeletal muscle development, regeneration, and disease. In this review, I focus on highlighting the recent advances that particularly have relied on developmental and molecular biology approaches to understanding muscle development and stem cell function. Copyright © 2016 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd. Copyright © 2016 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.

  11. Effect of rocuronium on the level and mode of pre-synaptic acetylcholine release by facial and somatic nerves, and changes following facial nerve injury in rabbits.

    PubMed

    Tan, Jinghua; Xu, Jing; Xing, Yian; Chen, Lianhua; Li, Shitong

    2015-01-01

    Muscles innervated by the facial nerve show differential sensitivities to muscle relaxants than muscles innervated by somatic nerves. The evoked electromyography (EEMG) response is also proportionally reduced after facial nerve injury. This forms the theoretical basis for proper utilization of muscle relaxants to balance EEMG monitoring and immobility under general anesthesia. (1) To observe the relationships between the level and mode of acetylcholine (ACh) release and the duration of facial nerve injury, and the influence of rocuronium in an in vitro rabbit model. (2) To explore the pre-synaptic mechanisms of discrepant responses to a muscle relaxant. Quantal and non-quantal ACh release were measured by using intracellular microelectrode recording in the orbicularis oris 1 to 42 days after graded facial nerve injury and in the gastrocnemius with/without rocuronium. Quantal ACh release was significantly decreased by rocuronium in the orbicularis oris and gastrocnemius, but significantly more so in gastrocnemius. Quantal release was reduced after facial nerve injury, which was significantly correlated with the severity of nerve injury in the absence but not in the presence of rocuronium. Non-quantal ACh release was reduced after facial nerve injury, with many relationships observed depending on the extent of the injury. The extent of inhibition of non-quantal release by rocuronium correlated with the grade of facial nerve injury. These findings may explain why EEMG amplitude might be diminished after acute facial nerve injury but relatively preserved after chronic injury and differential responses in sensitivity to rocuronium.

  12. Effect of rocuronium on the level and mode of pre-synaptic acetylcholine release by facial and somatic nerves, and changes following facial nerve injury in rabbits

    PubMed Central

    Tan, Jinghua; Xu, Jing; Xing, Yian; Chen, Lianhua; Li, Shitong

    2015-01-01

    Muscles innervated by the facial nerve show differential sensitivities to muscle relaxants than muscles innervated by somatic nerves. The evoked electromyography (EEMG) response is also proportionally reduced after facial nerve injury. This forms the theoretical basis for proper utilization of muscle relaxants to balance EEMG monitoring and immobility under general anesthesia. (1) To observe the relationships between the level and mode of acetylcholine (ACh) release and the duration of facial nerve injury, and the influence of rocuronium in an in vitro rabbit model. (2) To explore the pre-synaptic mechanisms of discrepant responses to a muscle relaxant. Quantal and non-quantal ACh release were measured by using intracellular microelectrode recording in the orbicularis oris 1 to 42 days after graded facial nerve injury and in the gastrocnemius with/without rocuronium. Quantal ACh release was significantly decreased by rocuronium in the orbicularis oris and gastrocnemius, but significantly more so in gastrocnemius. Quantal release was reduced after facial nerve injury, which was significantly correlated with the severity of nerve injury in the absence but not in the presence of rocuronium. Non-quantal ACh release was reduced after facial nerve injury, with many relationships observed depending on the extent of the injury. The extent of inhibition of non-quantal release by rocuronium correlated with the grade of facial nerve injury. These findings may explain why EEMG amplitude might be diminished after acute facial nerve injury but relatively preserved after chronic injury and differential responses in sensitivity to rocuronium. PMID:25973033

  13. Reproducibility of gastrocnemius medialis muscle architecture during treadmill running.

    PubMed

    Giannakou, Erasmia; Aggeloussis, Nickos; Arampatzis, Adamantios

    2011-12-01

    The purpose of this study was to assess the reproducibility of fascicle length (FL) and pennation angle (PA) of gastrocnemius medialis (GM) muscle during running in vivo. Twelve male recreational long distance runners (mean±SD; age: 24±3 years, mass: 76±7kg) ran on a treadmill at a speed of 3.0m/s, wearing their own running shoes, for two different 10min sessions that were at least 2 days apart. For each test day 10 acceptable trials were recorded. Ankle and knee joint angle data were recorded by a Vicon 624 system with three cameras operating at 120Hz. B-mode ultrasonography was used to examine fascicle length and pennation angle of gastrocnemius medialis muscle. The ultrasound probe was firmly secured on the muscle belly using a lightweight foam fixation. The results indicated that fascicle length and pennation angle demonstrated high reproducibility values during treadmill running both for within and between test days. The root mean square scores between the repeated waveforms of pennation angle and fascicle length were small (∼2° and ∼3.5mm, respectively). However, ∼14 trials for pennation angle and ∼9 trials for fascicle length may be required in order to record accurate data from muscle architecture parameters. In conclusion, ultrasound measurements may be highly reproducible during dynamic movements such as treadmill running, provided that a proper fixation is used in order to assure the constant location and orientation of the ultrasound probe throughout the movement. Copyright © 2011 Elsevier Ltd. All rights reserved.

  14. Concurrent Label-Free Mass Spectrometric Analysis of Dystrophin Isoform Dp427 and the Myofibrosis Marker Collagen in Crude Extracts from mdx-4cv Skeletal Muscles

    PubMed Central

    Murphy, Sandra; Zweyer, Margit; Mundegar, Rustam R.; Henry, Michael; Meleady, Paula; Swandulla, Dieter; Ohlendieck, Kay

    2015-01-01

    The full-length dystrophin protein isoform of 427 kDa (Dp427), the absence of which represents the principal abnormality in X-linked muscular dystrophy, is difficult to identify and characterize by routine proteomic screening approaches of crude tissue extracts. This is probably related to its large molecular size, its close association with the sarcolemmal membrane, and its existence within a heterogeneous glycoprotein complex. Here, we used a careful extraction procedure to isolate the total protein repertoire from normal versus dystrophic mdx-4cv skeletal muscles, in conjunction with label-free mass spectrometry, and successfully identified Dp427 by proteomic means. In contrast to a considerable number of previous comparative studies of the total skeletal muscle proteome, using whole tissue proteomics we show here for the first time that the reduced expression of this membrane cytoskeletal protein is the most significant alteration in dystrophinopathy. This agrees with the pathobiochemical concept that the almost complete absence of dystrophin is the main defect in Duchenne muscular dystrophy and that the mdx-4cv mouse model of dystrophinopathy exhibits only very few revertant fibers. Significant increases in collagens and associated fibrotic marker proteins, such as fibronectin, biglycan, asporin, decorin, prolargin, mimecan, and lumican were identified in dystrophin-deficient muscles. The up-regulation of collagen in mdx-4cv muscles was confirmed by immunofluorescence microscopy and immunoblotting. Thus, this is the first mass spectrometric study of crude tissue extracts that puts the proteomic identification of dystrophin in its proper pathophysiological context. PMID:28248273

  15. Repeated Kicking Actions in Karate: Effect on Technical Execution in Elite Practitioners.

    PubMed

    Quinzi, Federico; Camomilla, Valentina; Di Mario, Alberto; Felici, Francesco; Sbriccoli, Paola

    2016-04-01

    Training in martial arts is commonly performed by repeating a technical action continuously for a given number of times. This study aimed to investigate if the repetition of the task alters the proper technical execution, limiting the training efficacy for the technical evaluation during competition. This aim was pursued analyzing lower-limb kinematics and muscle activation during repeated roundhouse kicks. Six junior karate practitioners performed continuously 20 repetitions of the kick. Hip and knee kinematics and sEMG of vastus lateralis, biceps (BF), and rectus femoris were recorded. For each repetition, hip abduction-adduction and flexion-extension and knee flexion-extension peak angular displacements and velocities, agonist and antagonist muscle activation were computed. Moreover, to monitor for the presence of myoelectric fatigue, if any, the median frequency of the sEMG was computed. All variables were normalized with respect to their individual maximum observed during the sequence of kicks. Linear regressions were fitted to each normalized parameter to test its relationship with the repetition number. Linear-regression analysis showed that, during the sequence, the athletes modified their technique: Knee flexion, BF median frequency, hip abduction, knee-extension angular velocity, and BF antagonist activation significantly decreased. Conversely, hip flexion increased significantly. Since karate combat competitions require proper technical execution, training protocols combining severe fatigue and technical actions should be carefully proposed because of technique adaptations. Moreover, trainers and karate masters should consider including specific strength exercises for the BF and more generally for knee flexors.

  16. The proposal of a clinical protocol to assess central and peripheral fatigue in myotonic dystrophy type 1.

    PubMed

    Baldanzi, S; Ricci, G; Bottari, M; Chico, L; Simoncini, C; Siciliano, G

    2017-07-01

    DM1 is an autosomal-dominant disorder characterized by muscle weakness, myotonia, and multisystemic involvement. According to current literature fatigue and daytime sleepiness are among the main symptoms of DM1. Oxidative stress has been proposed to be one of the pathogenic factors of fatigue consequent to DM1. In this study, we investigated the dimensions of experienced fatigue and  physiological fatigue in a sample of 26 DM1 patients (17 males, 9 females, mean age 41.6 years, SD±12.7); experienced fatigue has been studied through Fatigue Severity Scale (FSS), and physiological fatigue was measured through an intermittent incremental exercise of the forearm muscles using a myometer; oxidative stress balance markers trend during aerobic exercise test have been collected. The occurrence of central fatigue in the sample means that central activation worsens during the motor contraction; interestingly FSS score was significantly correlated to MVC (before and after the effort, r-before=-0.583, p<0.01, r-after= -0.534, p<0.05), and to motor disability measured by MRC (r=-0.496, p<0.05); moreover we found a strong tendency towards significance in the association to lactate baseline (r=0.378, p=0.057).Results are discussed to define whether or not, based on clinical and laboratory grounds, such exercise training protocol may be suitable for proper management of DM1 patients; proper assessment of fatigue should be included in algorithms for data collection in DM1 patient registries.

  17. A Robust Method to Generate Mechanically Anisotropic Vascular Smooth Muscle Cell Sheets for Vascular Tissue Engineering.

    PubMed

    Backman, Daniel E; LeSavage, Bauer L; Shah, Shivem B; Wong, Joyce Y

    2017-06-01

    In arterial tissue engineering, mimicking native structure and mechanical properties is essential because compliance mismatch can lead to graft failure and further disease. With bottom-up tissue engineering approaches, designing tissue components with proper microscale mechanical properties is crucial to achieve the necessary macroscale properties in the final implant. This study develops a thermoresponsive cell culture platform for growing aligned vascular smooth muscle cell (VSMC) sheets by photografting N-isopropylacrylamide (NIPAAm) onto micropatterned poly(dimethysiloxane) (PDMS). The grafting process is experimentally and computationally optimized to produce PNIPAAm-PDMS substrates optimal for VSMC attachment. To allow long-term VSMC sheet culture and increase the rate of VSMC sheet formation, PNIPAAm-PDMS surfaces were further modified with 3-aminopropyltriethoxysilane yielding a robust, thermoresponsive cell culture platform for culturing VSMC sheets. VSMC cell sheets cultured on patterned thermoresponsive substrates exhibit cellular and collagen alignment in the direction of the micropattern. Mechanical characterization of patterned, single-layer VSMC sheets reveals increased stiffness in the aligned direction compared to the perpendicular direction whereas nonpatterned cell sheets exhibit no directional dependence. Structural and mechanical anisotropy of aligned, single-layer VSMC sheets makes this platform an attractive microstructural building block for engineering a vascular graft to match the in vivo mechanical properties of native arterial tissue. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Biohybrid Control of General Linear Systems Using the Adaptive Filter Model of Cerebellum.

    PubMed

    Wilson, Emma D; Assaf, Tareq; Pearson, Martin J; Rossiter, Jonathan M; Dean, Paul; Anderson, Sean R; Porrill, John

    2015-01-01

    The adaptive filter model of the cerebellar microcircuit has been successfully applied to biological motor control problems, such as the vestibulo-ocular reflex (VOR), and to sensory processing problems, such as the adaptive cancelation of reafferent noise. It has also been successfully applied to problems in robotics, such as adaptive camera stabilization and sensor noise cancelation. In previous applications to inverse control problems, the algorithm was applied to the velocity control of a plant dominated by viscous and elastic elements. Naive application of the adaptive filter model to the displacement (as opposed to velocity) control of this plant results in unstable learning and control. To be more generally useful in engineering problems, it is essential to remove this restriction to enable the stable control of plants of any order. We address this problem here by developing a biohybrid model reference adaptive control (MRAC) scheme, which stabilizes the control algorithm for strictly proper plants. We evaluate the performance of this novel cerebellar-inspired algorithm with MRAC scheme in the experimental control of a dielectric electroactive polymer, a class of artificial muscle. The results show that the augmented cerebellar algorithm is able to accurately control the displacement response of the artificial muscle. The proposed solution not only greatly extends the practical applicability of the cerebellar-inspired algorithm, but may also shed light on cerebellar involvement in a wider range of biological control tasks.

  19. Objective evaluation of muscle strength in infants with hypotonia and muscle weakness.

    PubMed

    Reus, Linda; van Vlimmeren, Leo A; Staal, J Bart; Janssen, Anjo J W M; Otten, Barto J; Pelzer, Ben J; Nijhuis-van der Sanden, Maria W G

    2013-04-01

    The clinical evaluation of an infant with motor delay, muscle weakness, and/or hypotonia would improve considerably if muscle strength could be measured objectively and normal reference values were available. The authors developed a method to measure muscle strength in infants and tested 81 typically developing infants, 6-36 months of age, and 17 infants with Prader-Willi Syndrome (PWS) aged 24 months. The inter-rater reliability of the measurement method was good (ICC=.84) and the convergent validity was confirmed by high Pearson's correlations between muscle strength, age, height, and weight (r=.79-.85). A multiple linear regression model was developed to predict muscle strength based on age, height, and weight, explaining 73% of the variance in muscle strength. In infants with PWS, muscle strength was significantly decreased. Pearson's correlations showed that infants with PWS in which muscle strength was more severely affected also had a larger motor developmental delay (r=.75). Copyright © 2013 Elsevier Ltd. All rights reserved.

  20. Interface Prostheses With Classifier-Feedback-Based User Training.

    PubMed

    Fang, Yinfeng; Zhou, Dalin; Li, Kairu; Liu, Honghai

    2017-11-01

    It is evident that user training significantly affects performance of pattern-recognition-based myoelectric prosthetic device control. Despite plausible classification accuracy on offline datasets, online accuracy usually suffers from the changes in physiological conditions and electrode displacement. The user ability in generating consistent electromyographic (EMG) patterns can be enhanced via proper user training strategies in order to improve online performance. This study proposes a clustering-feedback strategy that provides real-time feedback to users by means of a visualized online EMG signal input as well as the centroids of the training samples, whose dimensionality is reduced to minimal number by dimension reduction. Clustering feedback provides a criterion that guides users to adjust motion gestures and muscle contraction forces intentionally. The experiment results have demonstrated that hand motion recognition accuracy increases steadily along the progress of the clustering-feedback-based user training, while conventional classifier-feedback methods, i.e., label feedback, hardly achieve any improvement. The result concludes that the use of proper classifier feedback can accelerate the process of user training, and implies prosperous future for the amputees with limited or no experience in pattern-recognition-based prosthetic device manipulation.It is evident that user training significantly affects performance of pattern-recognition-based myoelectric prosthetic device control. Despite plausible classification accuracy on offline datasets, online accuracy usually suffers from the changes in physiological conditions and electrode displacement. The user ability in generating consistent electromyographic (EMG) patterns can be enhanced via proper user training strategies in order to improve online performance. This study proposes a clustering-feedback strategy that provides real-time feedback to users by means of a visualized online EMG signal input as well as the centroids of the training samples, whose dimensionality is reduced to minimal number by dimension reduction. Clustering feedback provides a criterion that guides users to adjust motion gestures and muscle contraction forces intentionally. The experiment results have demonstrated that hand motion recognition accuracy increases steadily along the progress of the clustering-feedback-based user training, while conventional classifier-feedback methods, i.e., label feedback, hardly achieve any improvement. The result concludes that the use of proper classifier feedback can accelerate the process of user training, and implies prosperous future for the amputees with limited or no experience in pattern-recognition-based prosthetic device manipulation.

  1. Effects of basic calponin on the flexural mechanics and stability of F-actin.

    PubMed

    Jensen, Mikkel Herholdt; Watt, James; Hodgkinson, Julie L; Gallant, Cynthia; Appel, Sarah; El-Mezgueldi, Mohammed; Angelini, Thomas E; Morgan, Kathleen G; Lehman, William; Moore, Jeffrey R

    2012-01-01

    The cellular actin cytoskeleton plays a central role in the ability of cells to properly sense, propagate, and respond to external stresses and other mechanical stimuli. Calponin, an actin-binding protein found both in muscle and non-muscle cells, has been implicated in actin cytoskeletal organization and regulation. In this work, we studied the mechanical and structural interaction of actin with basic calponin, a differentiation marker in smooth muscle cells, on a single filament level. We imaged fluorescently labeled thermally fluctuating actin filaments and found that at moderate calponin binding densities, actin filaments were more flexible, evident as a reduction in persistence length from 8.0 to 5.8 μm. When calponin-decorated actin filaments were subjected to shear, we observed a marked reduction of filament lengths after decoration with calponin, which we argue was due to shear-induced filament rupture rather than depolymerization. This increased shear susceptibility was exacerbated with calponin concentration. Cryo-electron microscopy results confirmed previously published negative stain electron microscopy results and suggested alterations in actin involving actin subdomain 2. A weakening of F-actin intermolecular association is discussed as the underlying cause of the observed mechanical perturbations. Copyright © 2011 Wiley Periodicals, Inc.

  2. An overview of technical considerations when using quantitative real-time PCR analysis of gene expression in human exercise research

    PubMed Central

    Yan, Xu; Bishop, David J.

    2018-01-01

    Gene expression analysis by quantitative PCR in skeletal muscle is routine in exercise studies. The reproducibility and reliability of the data fundamentally depend on how the experiments are performed and interpreted. Despite the popularity of the assay, there is a considerable variation in experimental protocols and data analyses from different laboratories, and there is a lack of consistency of proper quality control steps throughout the assay. In this study, we present a number of experiments on various steps of quantitative PCR workflow, and demonstrate how to perform a quantitative PCR experiment with human skeletal muscle samples in an exercise study. We also tested some common mistakes in performing qPCR. Interestingly, we found that mishandling of muscle for a short time span (10 mins) before RNA extraction did not affect RNA quality, and isolated total RNA was preserved for up to one week at room temperature. Demonstrated by our data, use of unstable reference genes lead to substantial differences in the final results. Alternatively, cDNA content can be used for data normalisation; however, complete removal of RNA from cDNA samples is essential for obtaining accurate cDNA content. PMID:29746477

  3. Equine hyperkalemic periodic paralysis: review and implications.

    PubMed Central

    Naylor, J M

    1994-01-01

    The purpose of this review is to present an up-to-date summary of the signs, diagnosis, treatment, and implications of equine hyperkalemic periodic paralysis. The review encompasses all original articles published between 1986 and early 1993. Hyperkalemic periodic paralysis is the result of a genetic mutation in the skeletal muscle sodium channel gene. It is inherited as an autosomal dominant trait; most affected horses are heterozygotes. The classical signs are muscle fasciculation, spasm, and weakness associated with hyperkalemia. However, these signs are only rarely observed in affected horses. Potential sequelae to attacks are abrasions and involuntary recumbency; these problems are not specific for hyperkalemic periodic paralysis, but they occur more frequently in hyperkalemic periodic paralysis-affected horses. It is also likely that hyperkalemic periodic paralysis results in greater muscle mass. There are suggestions that homozygotes may be more severely affected and show signs of upper respiratory obstruction as foals. The practitioner needs to be aware of the tests for hyperkalemic periodic paralysis, and their limitations, so that he can properly diagnose this condition. The industry has the difficult problem of deciding whether or not testing should be mandatory and the fate of positive horses. Images Figure 2. PMID:8050073

  4. Femoral neck shortening after internal fixation of a femoral neck fracture.

    PubMed

    Zielinski, Stephanie M; Keijsers, Noël L; Praet, Stephan F E; Heetveld, Martin J; Bhandari, Mohit; Wilssens, Jean Pierre; Patka, Peter; Van Lieshout, Esther M M

    2013-07-01

    This study assesses femoral neck shortening and its effect on gait pattern and muscle strength in patients with femoral neck fractures treated with internal fixation. Seventy-six patients from a multicenter randomized controlled trial participated. Patient characteristics and Short Form 12 and Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC) scores were collected. Femoral neck shortening, gait parameters, and maximum isometric forces of the hip muscles were measured and differences between the fractured and contralateral leg were calculated. Variables of patients with little or no shortening, moderate shortening, and severe shortening were compared using univariate and multivariate analyses. Median femoral neck shortening was 1.1 cm. Subtle changes in gait pattern, reduced gait velocity, and reduced abductor muscle strength were observed. Age, weight, and Pauwels classification were risk factors for femoral neck shortening. Femoral neck shortening decreased gait velocity and seemed to impair gait symmetry and physical functioning. In conclusion, internal fixation of femoral neck fractures results in permanent physical limitations. The relatively young and healthy patients in our study seem capable of compensating. Attention should be paid to femoral neck shortening and proper correction with a heel lift, as inadequate correction may cause physical complaints and influence outcome. Copyright 2013, SLACK Incorporated.

  5. Efficacy of Carcass Electrical Stimulation in Meat Quality Enhancement: A Review

    PubMed Central

    Adeyemi, Kazeem Dauda; Sazili, Awis Qurni

    2014-01-01

    The use of electrical stimulation (ES) as a management tool to improve meat quality and efficiency of meat processing is reviewed. The basis of the efficacy of ES is its ability to fast track postmortem glycolysis, which in turn stimulates myriad histological, physical, biochemical, biophysical and physiological changes in the postmortem muscle. Electrical stimulation hastens the onset and resolution of rigor mortis thereby reducing processing time and labor and plays a vital role in improving meat tenderness and other meat quality traits. However, ES may have negative impacts on some meat quality traits such as color stability and water holding capacity in some animals. Electrical stimulation is not an end in itself. In order to achieve the desired benefits from its application, the technique must be properly used in conjunction with various intricate antemortem, perimortem and postmortem management practices. Despite extensive research on ES, the fundamental mechanisms and the appropriate commercial applications remained obscured. In addition, muscles differ in their response to ES. Thus, elementary knowledge of the various alterations with respect to muscle type is needed in order to optimize the effectiveness of ES in the improvement of meat quality. PMID:25049973

  6. An integral theory of female urinary incontinence. Experimental and clinical considerations.

    PubMed

    Petros, P E; Ulmsten, U I

    1990-01-01

    In this Theory paper, the complex interplay of the specific structures involved in female urinary continence are analyzed. In addition the effects of age, hormones, and iatrogenically induced scar tissue on these structures, are discussed specifically with regard to understanding the proper basis for treatment of urinary incontinence. According to the Theory stress and urge symptoms may both derive, for different reasons from the same anatomical defect, a lax vagina. This laxity may be caused by defects within the vaginal wall itself, or its supporting structures i.e. ligaments, muscles, and their connective tissue insertions. The vagina has a dual function. It mediates (transmits) the various muscle movements involved in bladder neck opening and closure through three separate closure mechanisms. It also has a structural function, and prevents urgency by supporting the hypothesized stretch receptors at the proximal urethra and bladder neck. Altered collagen/elastin in the vaginal connective tissue and/or its ligamentous supports may cause laxity. This dissipates the muscle contraction, causing stress incontinence, and/or activation of an inappropriate micturition reflex, ("bladder instability") by stimulation of bladder base stretch receptors. The latter is manifested by symptoms of frequency, urgency, nocturia with or without urine loss.

  7. Treatment of the idiopathic scoliosis with brace and physiotherapy.

    PubMed

    Hundozi-Hysenaj, Hajrije; Dallku, Iliriana Boshnjaku; Murtezani, Ardiana; Rrecaj, Shkurte

    2009-01-01

    Scoliosis is a three-dimensional deformation of the spine with a lateral curvature or deviation greater than 10 degrees and associated with vertebral rotation. Many conservative treatments are available for adolescents with idiopathic scoliosis, but the evidence for their effectiveness is still questioned. The objective of this study was to define the effectiveness of braces and individual physiotherapy for the comprehensive treatment of idiopathic scoliosis in adolescents. A retrospective study of 57 children with idiopathic thoracic dextroscoliosis with the magnitude of the thoracic curve between 20 degrees-35 degrees, treated in Orthopedic and Physiatrist Clinic as well as National Ortho-prosthetic Center within University Clinical Center of Kosova in Prishtina, during the period of 2003-2006. Inclusion of kinesitherapy in the comprehensive management of idiopathic scoliosis varied in the improvement of the muscle strength (satisfied and moderate) in almost 80% of the children while the correction of the curve was small in approximately 42.1% of cases. For children with idiopathic scoliosis, who require braces, an exercise program helps chest mobility, muscle strength, proper breathing flexibility in the spine, correct posture and keeps muscles in tone so that the transition period after brace removal is easier.

  8. Eye-related pain induced by visually demanding computer work.

    PubMed

    Thorud, Hanne-Mari Schiøtz; Helland, Magne; Aarås, Arne; Kvikstad, Tor Martin; Lindberg, Lars Göran; Horgen, Gunnar

    2012-04-01

    Eye strain during visually demanding computer work may include glare and increased squinting. The latter may be related to elevated tension in the orbicularis oculi muscle and development of muscle pain. The aim of the study was to investigate the development of discomfort symptoms in relation to muscle activity and muscle blood flow in the orbicularis oculi muscle during computer work with visual strain. A group of healthy young adults with normal vision was randomly selected. Eye-related symptoms were recorded during a 2-h working session on a laptop. The participants were exposed to visual stressors such as glare and small font. Muscle load and blood flow were measured by electromyography and photoplethysmography, respectively. During 2 h of visually demanding computer work, there was a significant increase in the following symptoms: eye-related pain and tiredness, blurred vision, itchiness, gritty eyes, photophobia, dry eyes, and tearing eyes. Muscle load in orbicularis oculi was significantly increased above baseline and stable at 1 to 1.5% maximal voluntary contraction during the working sessions. Orbicularis oculi muscle blood flow increased significantly during the first part of the working sessions before returning to baseline. There were significant positive correlations between eye-related tiredness and orbicularis oculi muscle load and eye-related pain and muscle blood flow. Subjects who developed eye-related pain showed elevated orbicularis oculi muscle blood flow during computer work, but no differences in muscle load, compared with subjects with minimal pain symptoms. Eyestrain during visually demanding computer work is related to the orbicularis oculi muscle. Muscle pain development during demanding, low-force exercise is associated with increased muscle blood flow, possible secondary to different muscle activity pattern, and/or increased mental stress level in subjects experiencing pain compared with subjects with minimal pain.

  9. bioLights: light emitting wear for visualizing lower-limb muscle activity.

    PubMed

    Igarashi, Naoto; Suzuki, Kenji; Kawamoto, Hiroaki; Sankai, Yoshiyuki

    2010-01-01

    Analysis of muscle activity by electrophysiological techniques is commonly used to analyze biomechanics. Although the simultaneous and intuitive understanding of both muscle activity and body motion is important in various fields, it is difficult to realize. This paper proposes a novel technique for visualizing physiological signals related to muscle activity by means of surface electromyography. We developed a wearable light-emitting interface that indicates lower-limb muscle activity or muscular tension on the surface of the body in real time by displaying the shape of the activated muscle. The developed interface allows users to perceive muscle activity in an intuitive manner by relating the level of the muscle activity to the brightness level of the glowing interface placed on the corresponding muscle. In order to verify the advantage of the proposed method, a cognitive experiment was conducted to evaluate the system performance. We also conducted an evaluation experiment using the developed interface in conjunction with an exoskeleton robot, in order to investigate the possible applications of the developed interface in the field of neurorehabilitation.

  10. An RNAi based screen in Drosophila larvae identifies fascin as a regulator of myoblast fusion and myotendinous junction structure.

    PubMed

    Camuglia, Jaclyn M; Mandigo, Torrey R; Moschella, Richard; Mark, Jenna; Hudson, Christine H; Sheen, Derek; Folker, Eric S

    2018-04-06

    A strength of Drosophila as a model system is its utility as a tool to screen for novel regulators of various functional and developmental processes. However, the utility of Drosophila as a screening tool is dependent on the speed and simplicity of the assay used. Here, we use larval locomotion as an assay to identify novel regulators of skeletal muscle function. We combined this assay with muscle-specific depletion of 82 genes to identify genes that impact muscle function by their expression in muscle cells. The data from the screen were supported with characterization of the muscle pattern in embryos and larvae that had disrupted expression of the strongest hit from the screen. With this assay, we showed that 12/82 tested genes regulate muscle function. Intriguingly, the disruption of five genes caused an increase in muscle function, illustrating that mechanisms that reduce muscle function exist and that the larval locomotion assay is sufficiently quantitative to identify conditions that both increase and decrease muscle function. We extended the data from this screen and tested the mechanism by which the strongest hit, fascin, impacted muscle function. Compared to controls, animals in which fascin expression was disrupted with either a mutant allele or muscle-specific expression of RNAi had fewer muscles, smaller muscles, muscles with fewer nuclei, and muscles with disrupted myotendinous junctions. However, expression of RNAi against fascin only after the muscle had finished embryonic development did not recapitulate any of these phenotypes. These data suggest that muscle function is reduced due to impaired myoblast fusion, muscle growth, and muscle attachment. Together, these data demonstrate the utility of Drosophila larval locomotion as an assay for the identification of novel regulators of muscle development and implicate fascin as necessary for embryonic muscle development.

  11. Uncoupling nicotine mediated motoneuron axonal pathfinding errors and muscle degeneration in zebrafish

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Welsh, Lillian; Tanguay, Robert L.; Svoboda, Kurt R.

    Zebrafish embryos offer a unique opportunity to investigate the mechanisms by which nicotine exposure impacts early vertebrate development. Embryos exposed to nicotine become functionally paralyzed by 42 hpf suggesting that the neuromuscular system is compromised in exposed embryos. We previously demonstrated that secondary spinal motoneurons in nicotine-exposed embryos were delayed in development and that their axons made pathfinding errors (Svoboda, K.R., Vijayaraghaven, S., Tanguay, R.L., 2002. Nicotinic receptors mediate changes in spinal motoneuron development and axonal pathfinding in embryonic zebrafish exposed to nicotine. J. Neurosci. 22, 10731-10741). In that study, we did not consider the potential role that altered skeletalmore » muscle development caused by nicotine exposure could play in contributing to the errors in spinal motoneuron axon pathfinding. In this study, we show that an alteration in skeletal muscle development occurs in tandem with alterations in spinal motoneuron development upon exposure to nicotine. The alteration in the muscle involves the binding of nicotine to the muscle-specific AChRs. The nicotine-induced alteration in muscle development does not occur in the zebrafish mutant (sofa potato, [sop]), which lacks muscle-specific AChRs. Even though muscle development is unaffected by nicotine exposure in sop mutants, motoneuron axonal pathfinding errors still occur in these mutants, indicating a direct effect of nicotine exposure on nervous system development.« less

  12. Cranial muscle development in the model organism ambystoma mexicanum: implications for tetrapod and vertebrate comparative and evolutionary morphology and notes on ontogeny and phylogeny.

    PubMed

    Ziermann, Janine M; Diogo, Rui

    2013-07-01

    There is still confusion about the homology of several cranial muscles in salamanders with those of other vertebrates. This is true, in part, because of the fact that many muscles present in early ontogeny of amphibians disappear during development and specifically during metamorphosis. Resolving this confusion is important for the understanding of the comparative and evolutionary morphology of vertebrates and tetrapods because amphibians are the phylogenetically most plesiomorphic tetrapods, concerning for example their myology, and include two often used model organisms, Xenopus laevis (anuran) and Ambystoma mexicanum (urodele). Here we provide the first detailed report of the cranial muscle development in axolotl from early ontogenetic stages to the adult stage. We describe different and complementary types of general muscle morphogenetic gradients in the head: from anterior to posterior, from lateral to medial, and from origin to insertion. Furthermore, even during the development of neotenic salamanders such as axolotls, various larval muscles become indistinct, contradicting the commonly accepted view that during ontogeny the tendency is mostly toward the differentiation of muscles. We provide an updated comparison between these muscles and the muscles of other vertebrates, a discussion of the homologies and evolution, and show that the order in which the muscles appear during axolotl ontogeny is in general similar to their appearance in phylogeny (e.g. differentiation of adductor mandibulae muscles from one anlage to four muscles), with only a few remarkable exceptions, as for example the dilatator laryngis that appears evolutionary later but in the development before the intermandibularis. Copyright © 2013 Wiley Periodicals, Inc.

  13. An eye on the head: the development and evolution of craniofacial muscles.

    PubMed

    Sambasivan, Ramkumar; Kuratani, Shigeru; Tajbakhsh, Shahragim

    2011-06-01

    Skeletal muscles exert diverse functions, enabling both crushing with great force and movement with exquisite precision. A remarkably distinct repertoire of genes and ontological features characterise this tissue, and recent evidence has shown that skeletal muscles of the head, the craniofacial muscles, are evolutionarily, morphologically and molecularly distinct from those of the trunk. Here, we review the molecular basis of craniofacial muscle development and discuss how this process is different to trunk and limb muscle development. Through evolutionary comparisons of primitive chordates (such as amphioxus) and jawless vertebrates (such as lampreys) with jawed vertebrates, we also provide some clues as to how this dichotomy arose.

  14. Dynamic changes in genes related to glucose uptake and utilization during pig skeletal and cardiac muscle development.

    PubMed

    Guo, Yanqin; Jin, Long; Wang, Fengjiao; He, Mengnan; Liu, Rui; Li, Mingzhou; Shuai, Surong

    2014-01-01

    Skeletal and cardiac muscle have important roles in glucose uptake and utilization. However, changes in expression of protein coding genes and miRNAs that participate in glucose metabolism during development are not fully understood. In this study, we investigated the expression of genes related to glucose metabolism during muscle development. We found an age-dependent increase in gene expression in cardiac muscle, with enrichment in heart development- and energy-related metabolic processes. A subset of genes that were up-regulated until 30 or 180 days postnatally, and then down-regulated in psoas major muscle was significantly enriched in mitochondrial oxidative-related processes, while genes that up-regulated in longissimus doris muscle was significantly enriched in glycolysis-related processes. Meanwhile, expression of energy-related microRNAs decreased with increasing age. In addition, we investigated the correlation between microRNAs and mRNAs in three muscle types across different stages of development and found many potential microRNA-mRNA pairs involved in regulating glucose metabolism.

  15. Fetal development of deep back muscles in the human thoracic region with a focus on transversospinalis muscles and the medial branch of the spinal nerve posterior ramus

    PubMed Central

    Sato, Tatsuo; Koizumi, Masahiro; Kim, Ji Hyun; Kim, Jeong Hyun; Wang, Bao Jian; Murakami, Gen; Cho, Baik Hwan

    2011-01-01

    Fetal development of human deep back muscles has not yet been fully described, possibly because of the difficulty in identifying muscle bundle directions in horizontal sections. Here, we prepared near-frontal sections along the thoracic back skin (eight fetuses) as well as horizontal sections (six fetuses) from 14 mid-term fetuses at 9–15 weeks of gestation. In the deep side of the trapezius and rhomboideus muscles, the CD34-positive thoracolumbar fascia was evident even at 9 weeks. Desmin-reactivity was strong and homogeneous in the superficial muscle fibers in contrast to the spotty expression in the deep fibers. Thus, in back muscles, formation of the myotendinous junction may start from the superficial muscles and advance to the deep muscles. The fact that developing intramuscular tendons were desmin-negative suggested little possibility of a secondary change from the muscle fibers to tendons. We found no prospective spinalis muscle or its tendinous connections with other muscles. Instead, abundant CD68-positive macrophages along the spinous process at 15 weeks suggested a change in muscle attachment, an event that may result in a later formation of the spinalis muscle. S100-positive intramuscular nerves exhibited downward courses from the multifidus longus muscle in the original segment to the rotatores brevis muscles in the inferiorly adjacent level. The medial cutaneous nerve had already reached the thoracolumbar fascia at 9 weeks, but by 15 weeks the nerve could not penetrate the trapezius muscle. Finally, we propose a folded myotomal model of the primitive transversospinalis muscle that seems to explain a fact that the roofing tile-like configuration of nerve twigs in the semispinalis muscle is reversed in the multifidus and rotatores muscles. PMID:21954879

  16. Muscle force depends on the amount of transversal muscle loading.

    PubMed

    Siebert, Tobias; Till, Olaf; Stutzig, Norman; Günther, Michael; Blickhan, Reinhard

    2014-06-03

    Skeletal muscles are embedded in an environment of other muscles, connective tissue, and bones, which may transfer transversal forces to the muscle tissue, thereby compressing it. In a recent study we demonstrated that transversal loading of a muscle with 1.3Ncm(-2) reduces maximum isometric force (Fim) and rate of force development by approximately 5% and 25%, respectively. The aim of the present study was to examine the influence of increasing transversal muscle loading on contraction dynamics. Therefore, we performed isometric experiments on rat M. gastrocnemius medialis (n=9) without and with five different transversal loads corresponding to increasing pressures of 1.3Ncm(-2) to 5.3Ncm(-2) at the contact area between muscle and load. Muscle loading was induced by a custom-made plunger which was able to move in transversal direction. Increasing transversal muscle loading resulted in an almost linear decrease in muscle force from 4.8±1.8% to 12.8±2% Fim. Compared to an unloaded isometric contraction, rate of force development decreased from 20.2±4.0% at 1.3Ncm(-2) muscle loading to 34.6±5.7% at 5.3Ncm(-2). Experimental observation of the impact of transversal muscle loading on contraction dynamics may help to better understand muscle tissue properties. Moreover, applying transversal loads to muscles opens a window to analyze three-dimensional muscle force generation. Data presented in this study may be important to develop and validate muscle models which enable simulation of muscle contractions under compression and enlighten the mechanisms behind. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. Saccadic velocity measurements in strabismus.

    PubMed Central

    Metz, H S

    1983-01-01

    Traditional evaluation of strabismus has included cover test measurements, evaluation of the range of ocular rotations, and an array of subjective sensory tests. These studies could not always differentiate paresis of an extraocular muscle from restrictions and from various neuro-ophthalmic motility disorders. The measurement of horizontal and vertical saccadic movements can provide an objective test of rectus muscle function. Using EOG, saccades can be recorded easily, inexpensively, and repeatably at any age. In ocular muscle paresis or paralysis, saccadic speed is reduced mildly to markedly and can be used to monitor recovery. Assessment of saccadic velocity does not appear useful in evaluating superior oblique palsy, although it is valuable in sixth nerve palsy, Duane's syndrome, and third nerve palsy. When restrictions are the major cause of limited rotation, as in thyroid ophthalmopathy and orbital floor fracture, saccadic speed is unaffected. The induction of OKN or vestibular nystagmus is helpful in the study of children too young to perform voluntary saccadic movements. In patients with limitation of elevation or depression, this technique can separate innervational from mechanical causes of diminished rotation. The specific saccadic velocity pattern in myasthenia gravis, progressive external ophthalmoplegia, internuclear ophthalmoplegia, and Möbius' syndrome is helpful in differentiating these disorders from other neuroophthalmic motility problems. Transposition surgery of the rectus muscle is effective because of an increase in force, seen as an improvement in saccadic velocity and resulting from the change of insertion of the muscles. Saccadic velocities can also be of assistance in diagnosing a lost or disinserted muscle following surgery for strabismus. Although analysis of saccadic velocity is not required for the proper evaluation of all problems in strabismus and motility, it can be of inestimable value in the diagnosis of many complex and confusing disorders. Together with forced duction testing, a clinical profile can be obtained concerning muscle force and muscle and orbital restrictions, which are required information for appropriate surgical planning. Images FIGURE 25 FIGURE 1 FIGURE 2 FIGURE 5 FIGURE 6 FIGURE 10 FIGURE 11 FIGURE 12 FIGURE 13 FIGURE 16 FIGURE 18 FIGURE 19 FIGURE 28 FIGURE 29 FIGURE 43 FIGURE 44 PMID:6676980

  18. Normative Quadriceps and Hamstring Muscle Strength Values for Female, Healthy, Elite Handball and Football Players.

    PubMed

    Risberg, May A; Steffen, Kathrin; Nilstad, Agnethe; Myklebust, Grethe; Kristianslund, Eirik; Moltubakk, Marie M; Krosshaug, Tron

    2018-05-23

    Risberg, MA, Steffen, K, Nilstad, A, Myklebust, G, Kristianslund, E, Moltubakk, MM, and Krosshaug, T. Normative quadriceps and hamstring muscle strength values for female, healthy, elite handball and football players. J Strength Cond Res XX(X): 000-000, 2018-This study presents normative values for isokinetic knee extension and flexion muscle strength tests in 350 elite, female, handball (n = 150) and football (n = 200) players. Isokinetic concentric muscle strength tests at 60°·sec were recorded bilaterally using a dynamometer. Peak torque (in Newton meter [N·m]), body mass normalized peak torque (N·m·kg), and hamstring to quadriceps ratio (H:Q ratio) for dominant and nondominant legs were recorded. The female elite players were 20.9 ± 4.0 years, started playing at the elite level at the age of 18.2 ± 2.7 years, with a mean of 9.7 ± 2.2 hours of weekly in-season training. Handball players demonstrated greater quadriceps muscle strength compared with football players (11.0%) (p < 0.001), also when normalized to body mass (4.1%) (p = 0.012), but not for weight-adjusted hamstring muscle strength. The H:Q ratio was higher on the dominant compared with the nondominant leg for handball players only (p = 0.012).The H:Q ratio was significantly lower for handball players (0.58) compared with football players (0.60) (p < 0.02). These normative values for isokinetic knee extension and flexion torques of healthy, elite, female handball and football players can be used to set rehabilitation goals for muscle strength after injury and enable comparison with uninjured legs. Significantly greater quadriceps muscle strength was found for handball players compared with football players, also when normalized to body mass.This is an open-access article distributed under the terms of the Creative Commons Attribution-Non Commercial-No Derivatives License 4.0 (CCBY-NC-ND), where it is permissible to download and share the work provided it is properly cited. The work cannot be changed in any way or used commercially without permission from the journal.

  19. Development of the ultrastructure of sonic muscles: a kind of neoteny?

    PubMed Central

    2014-01-01

    Background Drumming muscles of some sound-producing fish are ‘champions’ of contraction speed, their rate setting the fundamental frequency. In the piranha, contraction of these muscles at 150 Hz drives a sound at the same frequency. Drumming muscles of different not closely related species show evolutionary convergences. Interestingly, some characters of sonic muscles can also be found in the trunk muscles of newly hatched larvae that are able to maintain tail beat frequencies up to 100 Hz. The aim of this work was to study the development of sound production and sonic and epaxial muscles simultaneously in the red bellied piranhas (Pygocentrus nattereri) to seek for possible common characteristics. Results Call, pulse and period durations increased significantly with the fish size, but the call dominant frequencies decreased, and the number of pulses and the call amplitude formed a bell curve. In epaxial muscles, the fibre diameters of younger fish are first positioned in the graphical slope corresponding to sonic muscles, before diverging. The fibre diameter of older fish trunk muscles was bigger, and the area of the myofibrils was larger than in sonic muscles. Moreover, in two of the biggest fish, the sonic muscles were invaded by fat cells and the sonic muscle ultrastructure was similar to the epaxial one. These two fish were also unable to produce any sound, meaning they lost their ability to contract quickly. Conclusions The volume occupied by myofibrils determines the force of contraction, the volume of sarcoplasmic reticulum sets the contraction frequency, and the volume of mitochondria sets the level of sustained performance. The functional outcomes in muscles are all attributable to shifts in the proportions of those structures. A single delay in the development restricts the quantity of myofibrils, maintains a high proportion of space in the sarcoplasm and develops sarcoplasmic reticulum. High-speed sonic muscles could thus be skeletal muscles with delayed development. This hypothesis has the advantage that it could easily explain why high-speed sonic muscles have evolved so many times in different lineages. PMID:24507247

  20. The Him gene reveals a balance of inputs controlling muscle differentiation in Drosophila.

    PubMed

    Liotta, David; Han, Jun; Elgar, Stuart; Garvey, Clare; Han, Zhe; Taylor, Michael V

    2007-08-21

    Tissue development requires the controlled regulation of cell-differentiation programs. In muscle, the Mef2 transcription factor binds to and activates the expression of many genes and has a major positive role in the orchestration of differentiation. However, little is known about how Mef2 activity is regulated in vivo during development. Here, we characterize a gene, Holes in muscle (Him), which our results indicate is part of this control in Drosophila. Him expression rapidly declines as embryonic muscle differentiates, and consistent with this, Him overexpression inhibits muscle differentiation. This inhibitory effect is suppressed by mef2, implicating Him in the mef2 pathway. We then found that Him downregulates the transcriptional activity of Mef2 in both cell culture and in vivo. Furthermore, Him protein binds Groucho, a conserved, transcriptional corepressor, through a WRPW motif and requires this motif and groucho function to inhibit both muscle differentiation and Mef2 activity during development. Together, our results identify a mechanism that can inhibit muscle differentiation in vivo. We conclude that a balance of positive and negative inputs, including Mef2, Him, and Groucho, controls muscle differentiation during Drosophila development and suggest that one outcome is to hold developing muscle cells in a state with differentiation genes poised to be expressed.

  1. The Him Gene Reveals a Balance of Inputs Controlling Muscle Differentiation in Drosophila

    PubMed Central

    Liotta, David; Han, Jun; Elgar, Stuart; Garvey, Clare; Han, Zhe; Taylor, Michael V.

    2007-01-01

    Summary Tissue development requires the controlled regulation of cell-differentiation programs. In muscle, the Mef2 transcription factor binds to and activates the expression of many genes and has a major positive role in the orchestration of differentiation [1–4]. However, little is known about how Mef2 activity is regulated in vivo during development. Here, we characterize a gene, Holes in muscle (Him), which our results indicate is part of this control in Drosophila. Him expression rapidly declines as embryonic muscle differentiates, and consistent with this, Him overexpression inhibits muscle differentiation. This inhibitory effect is suppressed by mef2, implicating Him in the mef2 pathway. We then found that Him downregulates the transcriptional activity of Mef2 in both cell culture and in vivo. Furthermore, Him protein binds Groucho, a conserved, transcriptional corepressor, through a WRPW motif and requires this motif and groucho function to inhibit both muscle differentiation and Mef2 activity during development. Together, our results identify a mechanism that can inhibit muscle differentiation in vivo. We conclude that a balance of positive and negative inputs, including Mef2, Him, and Groucho, controls muscle differentiation during Drosophila development and suggest that one outcome is to hold developing muscle cells in a state with differentiation genes poised to be expressed. PMID:17702578

  2. Maturity aggravates sepsis-associated skeletal muscle catabolism in growing pigs

    USDA-ARS?s Scientific Manuscript database

    Synthesis and accretion of muscle protein is elevated in neonates and decreases with development. During sepsis, muscle protein synthesis is reduced, but the effect of development on the metabolic response to sepsis in skeletal muscle is not well understood. Fasted 7- and 26-d-old pigs were infused ...

  3. Synergizing Engineering and Biology to Treat and Model Skeletal Muscle Injury and Disease

    PubMed Central

    Bursac, Nenad; Juhas, Mark; Rando, Thomas A.

    2016-01-01

    Although skeletal muscle is one of the most regenerative organs in our body, various genetic defects, alterations in extrinsic signaling, or substantial tissue damage can impair muscle function and the capacity for self-repair. The diversity and complexity of muscle disorders have attracted much interest from both cell biologists and, more recently, bioengineers, leading to concentrated efforts to better understand muscle pathology and develop more efficient therapies. This review describes the biological underpinnings of muscle development, repair, and disease, and discusses recent bioengineering efforts to design and control myomimetic environments, both to study muscle biology and function and to aid in the development of new drug, cell, and gene therapies for muscle disorders. The synergy between engineering-aided biological discovery and biology-inspired engineering solutions will be the path forward for translating laboratory results into clinical practice. PMID:26643021

  4. Positive and Negative Regulation of Muscle Cell Identity by Members of the hedgehog and TGF-β Gene Families

    PubMed Central

    Du, Shao Jun; Devoto, Stephen H.; Westerfield, Monte; Moon, Randall T.

    1997-01-01

    We have examined whether the development of embryonic muscle fiber type is regulated by competing influences between Hedgehog and TGF-β signals, as previously shown for development of neuronal cell identity in the neural tube. We found that ectopic expression of Hedgehogs or inhibition of protein kinase A in zebrafish embryos induces slow muscle precursors throughout the somite but muscle pioneer cells only in the middle of the somite. Ectopic expression in the notochord of Dorsalin-1, a member of the TGF-β superfamily, inhibits the formation of muscle pioneer cells, demonstrating that TGF-β signals can antagonize the induction of muscle pioneer cells by Hedgehog. We propose that a Hedgehog signal first induces the formation of slow muscle precursor cells, and subsequent Hedgehog and TGF-β signals exert competing positive and negative influences on the development of muscle pioneer cells. PMID:9314535

  5. Structure-function relationship of skeletal muscle provides inspiration for design of new artificial muscle

    NASA Astrophysics Data System (ADS)

    Gao, Yingxin; Zhang, Chi

    2015-03-01

    A variety of actuator technologies have been developed to mimic biological skeletal muscle that generates force in a controlled manner. Force generation process of skeletal muscle involves complicated biophysical and biochemical mechanisms; therefore, it is impossible to replace biological muscle. In biological skeletal muscle tissue, the force generation of a muscle depends not only on the force generation capacity of the muscle fiber, but also on many other important factors, including muscle fiber type, motor unit recruitment, architecture, structure and morphology of skeletal muscle, all of which have significant impact on the force generation of the whole muscle or force transmission from muscle fibers to the tendon. Such factors have often been overlooked, but can be incorporated in artificial muscle design, especially with the discovery of new smart materials and the development of innovative fabrication and manufacturing technologies. A better understanding of the physiology and structure-function relationship of skeletal muscle will therefore benefit the artificial muscle design. In this paper, factors that affect muscle force generation are reviewed. Mathematical models used to model the structure-function relationship of skeletal muscle are reviewed and discussed. We hope the review will provide inspiration for the design of a new generation of artificial muscle by incorporating the structure-function relationship of skeletal muscle into the design of artificial muscle.

  6. Mean individual muscle activities and ratios of total muscle activities in a selective muscle strengthening experiment: the effects of lower limb muscle activity based on mediolateral slope angles during a one-leg stance.

    PubMed

    Lee, Sang-Yeol

    2016-09-01

    [Purpose] The purpose of this study was to provide basic data for research on selective muscle strengthening by identifying mean muscle activities and calculating muscle ratios for use in developing strengthening methods. [Subjects and Methods] Twenty-one healthy volunteers were included in this study. Muscle activity was measured during a one-leg stance under 6 conditions of slope angle: 0°, 5°, 10°, 15°, 20°, and 25°. The data used in the analysis were root mean square and % total muscle activity values. [Results] There were significant differences in the root mean square of the gluteus medius, the hamstring, and the medial gastrocnemius muscles. There were significant differences in % total muscle activity of the medial gastrocnemius. [Conclusion] Future studies aimed at developing selective muscle strengthening methods are likely to yield more effective results by using muscle activity ratios based on electromyography data.

  7. Muscle activity pattern dependent pain development and alleviation.

    PubMed

    Sjøgaard, Gisela; Søgaard, Karen

    2014-12-01

    Muscle activity is for decades considered to provide health benefits irrespectively of the muscle activity pattern performed and whether it is during e.g. sports, transportation, or occupational work tasks. Accordingly, the international recommendations for public health-promoting physical activity do not distinguish between occupational and leisure time physical activity. However, in this body of literature, attention has not been paid to the extensive documentation on occupational physical activity imposing a risk of impairment of health - in particular musculoskeletal health in terms of muscle pain. Focusing on muscle activity patterns and musculoskeletal health it is pertinent to elucidate the more specific aspects regarding exposure profiles and body regional pain. Static sustained muscle contraction for prolonged periods often occurs in the neck/shoulder area during occupational tasks and may underlie muscle pain development in spite of rather low relative muscle load. Causal mechanisms include a stereotype recruitment of low threshold motor units (activating type 1 muscle fibers) characterized by a lack of temporal as well as spatial variation in recruitment. In contrast during physical activities at leisure and sport the motor recruitment patterns are more dynamic including regularly relatively high muscle forces - also activating type 2 muscles fibers - as well as periods of full relaxation even of the type 1 muscle fibers. Such activity is unrelated to muscle pain development if adequate recovery is granted. However, delayed muscle soreness may develop following intensive eccentric muscle activity (e.g. down-hill skiing) with peak pain levels in thigh muscles 1-2 days after the exercise bout and a total recovery within 1 week. This acute pain profile is in contrast to the chronic muscle pain profile related to repetitive monotonous work tasks. The painful muscles show adverse functional, morphological, hormonal, as well as metabolic characteristics. Of note is that intensive muscle strength training actually may rehabilitate painful muscles, which has recently been repeatedly proven in randomized controlled trials. With training the maximal muscle activation and strength can be shown to recover, and consequently allow for decreased relative muscle load during occupational repetitive work tasks. Exercise training induces adaptation of metabolic and stress-related mRNA and protein responses in the painful muscles, which is in contrast to the responses evoked during repetitive work tasks per se. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Development-related expression patterns of protein-coding and miRNA genes involved in porcine muscle growth.

    PubMed

    Wang, F J; Jin, L; Guo, Y Q; Liu, R; He, M N; Li, M Z; Li, X W

    2014-11-27

    Muscle growth and development is associated with remarkable changes in protein-coding and microRNA (miRNA) gene expression. To determine the expression patterns of genes and miRNAs related to muscle growth and development, we measured the expression levels of 25 protein-coding and 16 miRNA genes in skeletal and cardiac muscles throughout 5 developmental stages by quantitative reverse transcription-polymerase chain reaction. The Short Time-Series Expression Miner (STEM) software clustering results showed that growth-related genes were downregulated at all developmental stages in both the psoas major and longissimus dorsi muscles, indicating their involvement in early developmental stages. Furthermore, genes related to muscle atrophy, such as forkhead box 1 and muscle ring finger, showed unregulated expression with increasing age, suggesting a decrease in protein synthesis during the later stages of skeletal muscle development. We found that development of the cardiac muscle was a complex process in which growth-related genes were highly expressed during embryonic development, but they did not show uniform postnatal expression patterns. Moreover, the expression level of miR-499, which enhances the expression of the β-myosin heavy chain, was significantly different in the psoas major and longissimus dorsi muscles, suggesting the involvement of miR-499 in the determination of skeletal muscle fiber types. We also performed correlation analyses of messenger RNA and miRNA expression. We found negative relationships between miR-486 and forkhead box 1, and miR-133a and serum response factor at all developmental stages, suggesting that forkhead box 1 and serum response factor are potential targets of miR-486 and miR-133a, respectively.

  9. Reduced satellite cell density and myogenesis in Wagyu compared with Angus cattle as a possible explanation of its high marbling.

    PubMed

    Fu, X; Yang, Q; Wang, B; Zhao, J; Zhu, M; Parish, S M; Du, M

    2018-05-01

    Mechanisms responsible for excellent marbling in Japanese black cattle, Wagyu, remain to be established. Because both muscle cells and intramuscular adipocytes are developed from mesenchymal progenitor cells during early muscle development, we hypothesized that intramuscular progenitor cells in Wagyu cattle have attenuated myogenic capacity in favor of adipogenesis, leading to high marbling but reduced muscle growth. Biceps femoris muscle biopsy samples were obtained from both Angus (n=3) and Wagyu (n=3) cattle at 12 months of age. Compared with Angus, the density of satellite cells was much lower in Wagyu muscle (by 45.8±10%, P<0.05). Consistently, the formation of myotubes from muscle-derived progenitor cells was also lower (by 64.2±12.9%, P<0.05), but adipogenic capacity was greater in Wagyu. The average muscle fiber diameter was larger in Wagyu (by 23.9±6.8%, P=0.089) despite less muscle mass, suggesting less muscle fiber formation in Wagyu compared with Angus cattle. Because satellite cells are derived from fetal myogenic cells, the reduction in satellite cell density together with lower muscle fiber formation suggests that myogenesis was attenuated during early muscle development in Wagyu cattle. Given the shared pool of mesenchymal progenitor cells, the attenuated myogenesis likely shifts progenitor cells to adipogenesis during early development, which may contribute to high intramuscular adipocyte formation in Wagyu cattle.

  10. Pathophysiology and animal modeling of underactive bladder

    PubMed Central

    Tyagi, Pradeep; Smith, Phillip P.; Kuchel, George A.; de Groat, William C.; Birder, Lori A.; Chermansky, Christopher J.; Adam, Rosalyn M.; Tse, Vincent; Chancellor, Michael B.; Yoshimura, Naoki

    2015-01-01

    While the symptomology of underactive bladder (UAB) may imply a primary dysfunction of the detrusor muscle, insights into pathophysiology indicate that both myogenic and neurogenic mechanisms need to be considered. Due to lack of proper animal models, the current understanding of the UAB pathophysiology is limited, and much of what is known about the clinical etiology of the condition has been derived from epidemiological data. We hereby review current state of the art in the understanding of the pathophysiology of and animal models used to study the UAB. PMID:25238890

  11. Treatment Strategy for Irreparable Rotator Cuff Tears

    PubMed Central

    Oh, Joo Han; Rhee, Sung Min

    2018-01-01

    Recently, patients with shoulder pain have increased rapidly. Of all shoulder disorders, rotator cuff tears (RCTs) are most prevalent in the middle-aged and older adults, which is the primary reason for shoulder surgery in the population. Some authors have reported that up to 30% of total RCTs can be classified as irreparable due to the massive tear size and severe muscle atrophy. In this review article, we provide an overview of treatment methods for irreparable massive RCTs and discuss proper surgical strategies for RCTs that require operative management. PMID:29854334

  12. Real-time processing of EMG signals for bionic arm purposes

    NASA Astrophysics Data System (ADS)

    Olid Dominguez, Ferran; Wawrzyniak, Zbigniew M.

    2016-09-01

    This paper is connected with the problem of prostheses, that have always been a necessity for the human being. Bio-physiological signals from muscles, electromyographic signals have been collected, analyzed and processed in order to implement a real-time algorithm which is capable of differentiation of two different states of a bionic hand: open and closed. An algorithm for real-time electromyographic signal processing with almost no false positives is presented and it is explained that in bio-physiological experiments proper signal processing is of great importance.

  13. Kinesio arm taping as prophylaxis against the development of Erb’s Engram

    PubMed Central

    ElKhatib, Radwa S.; ElNegmy, Emam H.; Salem, Amina H.; Sherief, AbdelAziz A.

    2012-01-01

    An Erb’s Engram is a common debility that develops in recovering children with Erb’s palsy. The purpose of this study was to investigate the effect of kinesiotaping over the deltoid and the forearm on the development of proper upper extremity function in children recovering from Erb’s palsy. Thirty patients with Erb’s palsy participated for 3 months in this study and were equally divided into two groups; control group A and study group B. The two groups received the same designed physical therapy program, while group B along the program, received kinesiotaping over the deltoid and the forearm. The subjects were evaluated, pre and post-treatment, and scored functionally, using the Toronto Active Motion Scale, and objectively, using an EMG device utilized to obtain the percentages of degeneration of the deltoid and the biceps muscles. Post-treatment values of six out of nine measured variables, between the two groups, revealed significant difference in favor of group B. The obtained results strongly support the introduction of kinesiotaping of the deltoid and the forearm as an adjunct to the treatment program of Erb’s palsied children. PMID:25685456

  14. Human skeletal muscle responses to spaceflight and possible countermeasures

    NASA Technical Reports Server (NTRS)

    Gollnick, Philip D.; Edgerton, V. Reggie; Saltin, Bengt

    1990-01-01

    The current status of knowledge concerning the effects of unweighting skeletal muscle is summarized. The results of both ground-based and space-based animal studies are reviewed which show that there is rapid loss in muscle mass, primarily in slow-twitch muscle, of the rat during unweighting of muscle. There is also a shift in the myosin isoforms with muscles such that slow-twitch muscles take on many of the characteristics of fast-twitch muscles. Ground-based studies in human suggest that programs of electrical stimulation can be developed to simulate normal muscular contractions. Attempts to develop countermeasures to the adverse effects of space travel on muscular functions in humans have not been successful to date.

  15. Sequencing and characterization of lncRNAs in the breast muscle of Gushi and Arbor Acres chickens.

    PubMed

    Ren, Tuanhui; Li, Zhuanjian; Zhou, Yu; Liu, Xuelian; Han, Ruili; Wang, Yongcai; Yan, FengBin; Sun, GuiRong; Li, Hong; Kang, Xiangtao

    2018-05-01

    Chicken muscle quality is one of the most important factors determining the economic value of poultry, and muscle development and growth are affected by genetics, environment, and nutrition. However, little is known about the molecular regulatory mechanisms of long non-coding RNAs (lncRNAs) in chicken skeletal muscle development. Our study aimed to better understand muscle development in chickens and thereby improve meat quality. In this study, Ribo-Zero RNA-Seq was used to investigate differences in the expression profiles of muscle development related genes and associated pathways between Gushi (GS) and Arbor Acres (AA) chickens. We identified two muscle tissue specific expression lncRNAs. In addition, the target genes of these lncRNAs were significantly enriched in certain biological processes and molecular functions, as demonstrated by Gene Ontology (GO) analysis, and these target genes participate in five signaling pathway, as revealed by an analysis of the Kyoto Encyclopedia of Genes and Genomes (KEGG) database. Taken together, these data suggest that different lncRNAs might be involved in regulating chicken muscle development and growth and provide new insight into the molecular mechanisms of lncRNAs.

  16. Experimental comparisons between McKibben type artificial muscles and straight fibers type artificial muscles

    NASA Astrophysics Data System (ADS)

    Nakamura, Taro

    2007-01-01

    This paper describes experimental comparison between a conventional McKibben type artificial muscle and a straight fibers type artificial muscle developed by the authors. A wearable device and a rehabilitation robot which assists a human muscle should have characteristics similar to those of human muscle. In addition, because the wearable device and the rehabilitation robot should be light, an actuator with a high power/weight ratio is needed. At present, the McKibben type is widely used as an artificial muscle, but in fact its physical model is highly nonlinear. Further, the heat and mechanical loss of this actuator are large because of the friction caused by the expansion and contraction of the sleeve. Therefore, the authors have developed an artificial muscle tube in which high strength glass fibers have been built into the tube made from natural latex rubber. As results, experimental results demonstrated that the developed artificial muscle is more effective regarding its fundamental characteristics than that of the McKibben type; the straight fibers types of artificial muscle have more contraction ratio and power, longer lifetime than the McKibben types. And it has almost same characteristics of human muscle for isotonic and isometric that evaluate it dynamically.

  17. Short‐term disuse promotes fatty acid infiltration into skeletal muscle

    PubMed Central

    Pagano, Allan F.; Brioche, Thomas; Arc‐Chagnaud, Coralie; Demangel, Rémi; Chopard, Angèle

    2017-01-01

    Abstract Background Many physiological and/or pathological conditions lead to muscle deconditioning, a well‐described phenomenon characterized by a loss of strength and muscle power mainly due to the loss of muscle mass. Fatty infiltrations, or intermuscular adipose tissue (IMAT), are currently well‐recognized components of muscle deconditioning. Despite the fact that IMAT is present in healthy human skeletal muscle, its increase and accumulation are linked to muscle dysfunction. Although IMAT development has been largely attributable to inactivity, the precise mechanisms of its establishment are still poorly understood. Because the sedentary lifestyle that accompanies age‐related sarcopenia may favour IMAT development, deciphering the early processes of muscle disuse is of great importance before implementing strategies to limit IMAT deposition. Methods In our study, we took advantage of the dry immersion (DI) model of severe muscle inactivity to induce rapid muscle deconditioning during a short period. During the DI, healthy adult men (n = 12; age: 32 ± 5) remained strictly immersed, in a supine position, in a controlled thermo‐neutral water bath. Skeletal muscle biopsies were obtained from the vastus lateralis before and after 3 days of DI. Results We showed that DI for only 3 days was able to decrease myofiber cross‐sectional areas (−10.6%). Moreover, protein expression levels of two key markers commonly used to assess IMAT, perilipin, and fatty acid binding protein 4, were upregulated. We also observed an increase in the C/EBPα and PPARγ protein expression levels, indicating an increase in late adipogenic processes leading to IMAT development. While many stem cells in the muscle environment can adopt the capacity to differentiate into adipocytes, fibro‐adipogenic progenitors (FAPs) represent the population that appears to play a major role in IMAT development. In our study, we showed an increase in the protein expression of PDGFRα, the specific cell surface marker of FAPs, in response to 3 days of DI. It is well recognized that an unfavourable muscle environment drives FAPs to ectopic adiposity and/or fibrosis. Conclusions This study is the first to emphasize that during a short period of severe inactivity, muscle deconditioning is associated with IMAT development. Our study also reveals that FAPs could be the main resident muscle stem cell population implicated in ectopic adiposity development in human skeletal muscle. PMID:29248005

  18. Gravity Plays an Important Role in Muscle Development and the Differentiation of Contractile Protein Phenotype

    NASA Technical Reports Server (NTRS)

    Adams, Gregory A.; Haddad, Fadia; Baldwin, Kenneth M.

    2003-01-01

    Several muscles in the body exist mainly to work against gravity. Whether gravity is important in the development of these muscles is not known. By examining the basic proteins that compose muscle, questions about the role of gravity in muscle development can be answered. Myosin heavy chains (MHCs) are a family of proteins critically important for muscle contraction. Several types of MHCs exist (e.g., neonatal, slow, fast), and each type is produced by a particular gene. Neonatal MHCs are produced early in life. Slow MHCs are important in antigravity muscles, and fast MHCs are found in fast-twitch power muscles. The gene that is turned on or expressed will determine which MHC is produced. Early in development, antigravity skeletal muscles (muscles that work against gravity) normally produce a combination of the neonatal/embryonic MHCs. The expression of these primitive MHCs is repressed early in development; and the adult slow and fast MHC genes become fully expressed. We tested the hypothesis that weightbearing activity is critical for inducing the normal expression of the slow MHC gene typically expressed in adult antigravity muscles. Also, we hypothesized that thyroid hormone, but not opposition to gravity, is necessary for expressing the adult fast IIb MHC gene essential for high-intensity muscle performance. Groups of normal thyroid and thyroid-deficient neonatal rats were studied after their return from the 16-day Neurolab mission and compared to matched controls. The results suggest: (1) Weightlessness impaired body and limb skeletal muscle growth in both normal and thyroid-deficient animals. Antigravity muscles were impaired more than those used primarily for locomotion andor nonweightbearing activity. (2) Systemic and muscle expression of insulin-like growth factor-I (IGF-I), an important body and tissue growth factor, was depressed in flight animals. (3) Normal slow, type I MHC gene expression was markedly repressed in the normal thyroid flight group. (4) Fast IIb MHC gene expression was enhanced in fast-twitch muscles of normal thyroid animals exposed to spaceflight; however, thyroid deficiency markedly repressed expression of this gene independently of spaceflight. In summary, the absence of gravity, when imposed at critical stages of development, impaired body and skeletal muscle growth, as well as expression of the MHC gene family of motor proteins. This suggests that normal weightbearing activity is essential for establishing body and muscle growth in neonatal animals, and for expressing the motor gene essential for supporting antigravity functions.

  19. Molecular mechanisms and treatment targets of muscle wasting and cachexia in heart failure: an overview.

    PubMed

    Ebner, Nicole; Elsner, Sebastian; Springer, Jochen; von Haehling, Stephan

    2014-03-01

    This article aims to describe molecular pathways involved in the development of muscle wasting and cachexia, diagnostic possibilities, and potential treatments that have seen clinical testing in recent heart failure trials. An understanding of the specific changes that cause an anabolic-catabolic imbalance is an essential first step in the development of pharmaceutical intervention strategies aimed at blocking muscle wasting. Skeletal muscle mass and muscle strength are the most important determinants of exercise capacity in patients with heart failure. In contrast to cachexia, muscle wasting is not usually associated with weight loss, implying the need for sophisticated assessment methods to correctly diagnose muscle wasting, for example the use of computed tomography, magnetic resonance imaging, or dual energy X-ray absorptiometry. Simpler techniques such as handgrip strength, exercise testing, or even a biomarker may help in determining patients with a high pre-test probability of muscle wasting. Despite intensive research efforts in the field of muscle wasting during the last couple of decades, no effective treatment of muscle wasting currently exists other than exercise training. This situation remains true even though study of the molecular pathways involved in muscle wasting suggests many therapeutic targets. Easily applicable diagnostic tools may help to identify patients at risk of developing muscle wasting.

  20. The role of muscle spindles in the development of the monosynaptic stretch reflex

    PubMed Central

    Wang, Zhi; Li, LingYing

    2012-01-01

    Muscle sensory axons induce the development of specialized intrafusal muscle fibers in muscle spindles during development, but the role that the intrafusal fibers may play in the development of the central projections of these Ia sensory axons is unclear. In the present study, we assessed the influence of intrafusal fibers in muscle spindles on the formation of monosynaptic connections between Ia (muscle spindle) sensory axons and motoneurons (MNs) using two transgenic strains of mice. Deletion of the ErbB2 receptor from developing myotubes disrupts the formation of intrafusal muscle fibers and causes a nearly complete absence of functional synaptic connections between Ia axons and MNs. Monosynaptic connectivity can be fully restored by postnatal administration of neurotrophin-3 (NT-3), and the synaptic connections in NT-3-treated mice are as specific as in wild-type mice. Deletion of the Egr3 transcription factor also impairs the development of intrafusal muscle fibers and disrupts synaptic connectivity between Ia axons and MNs. Postnatal injections of NT-3 restore the normal strengths and specificity of Ia–motoneuronal connections in these mice as well. Severe deficits in intrafusal fiber development, therefore, do not disrupt the establishment of normal, selective patterns of connections between Ia axons and MNs, although these connections require the presence of NT-3, normally supplied by intrafusal fibers, to be functional. PMID:22490553

  1. Quantitative phosphoproteomic analysis of porcine muscle within 24 h postmortem.

    PubMed

    Huang, Honggang; Larsen, Martin R; Palmisano, Giuseppe; Dai, Jie; Lametsch, René

    2014-06-25

    Protein phosphorylation can regulate most of the important processes in muscle, such as metabolism and contraction. The postmortem (PM) metabolism and rigor mortis have essential effects on meat quality. In order to identify and characterize the protein phosphorylation events involved in meat quality development, a quantitative mass spectrometry-based phosphoproteomic study was performed to analyze the porcine muscle within 24h PM using dimethyl labeling combined with the TiSH phosphopeptide enrichment strategy. In total 305 unique proteins were identified, including 160 phosphoproteins with 784 phosphorylation sites. Among these, 184 phosphorylation sites on 93 proteins had their phosphorylation levels significantly changed. The proteins involved in glucose metabolism and muscle contraction were the two largest clusters of phosphoproteins with significantly changed phosphorylation levels in muscle within 24 h PM. The high phosphorylation level of heat shock proteins (HSPs) in early PM may be an adaptive response to slaughter stress and protect muscle cell from apoptosis, as observed in the serine 84 of HSP27. This work indicated that PM muscle proteins underwent significant changes at the phosphorylation level but were relatively stable at the total protein level, suggesting that protein phosphorylation may have important roles in meat quality development through the regulation of proteins involved in glucose metabolism and muscle contraction, thereby affecting glycolysis and rigor mortis development in PM muscle. The manuscript describes the characterization of postmortem (PM) porcine muscle within 24 h postmortem from the perspective of protein phosphorylation using advanced phosphoproteomic techniques. In the study, the authors employed the dimethyl labeling combined with the TiSH phosphopeptide enrichment and LC-MS/MS strategy. This was the first high-throughput quantitative phosphoproteomic study in PM muscle of farm animals. In the work, both the proteome and phosphoproteome were analyzed, and the large number of identified peptides, phosphopeptides and phosphorylation sites can greatly enrich the current farm animal protein database. The proteins involved in glycometabolism, muscle contraction and heat shock proteins (HSPs) showed significantly changed phosphorylation levels during PM meat development. This work indicated that PM muscle proteins underwent significant changes at phosphorylation level but were relatively stable at the total protein level, suggesting that protein phosphorylation may have important roles in meat development through the regulation of proteins involved in metabolism and muscle contraction, thereby affecting glycolysis and rigor mortis development in PM muscle. The work can promote the understanding of PM muscle metabolism and meat quality development, and be helpful for future meat quality control. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. Non-myogenic Contribution to Muscle Development and Homeostasis: The Role of Connective Tissues

    PubMed Central

    Nassari, Sonya; Duprez, Delphine; Fournier-Thibault, Claire

    2017-01-01

    Skeletal muscles belong to the musculoskeletal system, which is composed of bone, tendon, ligament and irregular connective tissue, and closely associated with motor nerves and blood vessels. The intrinsic molecular signals regulating myogenesis have been extensively investigated. However, muscle development, homeostasis and regeneration require interactions with surrounding tissues and the cellular and molecular aspects of this dialogue have not been completely elucidated. During development and adult life, myogenic cells are closely associated with the different types of connective tissue. Connective tissues are defined as specialized (bone and cartilage), dense regular (tendon and ligament) and dense irregular connective tissue. The role of connective tissue in muscle morphogenesis has been investigated, thanks to the identification of transcription factors that characterize the different types of connective tissues. Here, we review the development of the various connective tissues in the context of the musculoskeletal system and highlight their important role in delivering information necessary for correct muscle morphogenesis, from the early step of myoblast differentiation to the late stage of muscle maturation. Interactions between muscle and connective tissue are also critical in the adult during muscle regeneration, as impairment of the regenerative potential after injury or in neuromuscular diseases results in the progressive replacement of the muscle mass by fibrotic tissue. We conclude that bi-directional communication between muscle and connective tissue is critical for a correct assembly of the musculoskeletal system during development as well as to maintain its homeostasis in the adult. PMID:28386539

  3. Non-myogenic Contribution to Muscle Development and Homeostasis: The Role of Connective Tissues.

    PubMed

    Nassari, Sonya; Duprez, Delphine; Fournier-Thibault, Claire

    2017-01-01

    Skeletal muscles belong to the musculoskeletal system, which is composed of bone, tendon, ligament and irregular connective tissue, and closely associated with motor nerves and blood vessels. The intrinsic molecular signals regulating myogenesis have been extensively investigated. However, muscle development, homeostasis and regeneration require interactions with surrounding tissues and the cellular and molecular aspects of this dialogue have not been completely elucidated. During development and adult life, myogenic cells are closely associated with the different types of connective tissue. Connective tissues are defined as specialized (bone and cartilage), dense regular (tendon and ligament) and dense irregular connective tissue. The role of connective tissue in muscle morphogenesis has been investigated, thanks to the identification of transcription factors that characterize the different types of connective tissues. Here, we review the development of the various connective tissues in the context of the musculoskeletal system and highlight their important role in delivering information necessary for correct muscle morphogenesis, from the early step of myoblast differentiation to the late stage of muscle maturation. Interactions between muscle and connective tissue are also critical in the adult during muscle regeneration, as impairment of the regenerative potential after injury or in neuromuscular diseases results in the progressive replacement of the muscle mass by fibrotic tissue. We conclude that bi-directional communication between muscle and connective tissue is critical for a correct assembly of the musculoskeletal system during development as well as to maintain its homeostasis in the adult.

  4. Automatic Setting Procedure for Exoskeleton-Assisted Overground Gait: Proof of Concept on Stroke Population

    PubMed Central

    Gandolla, Marta; Guanziroli, Eleonora; D'Angelo, Andrea; Cannaviello, Giovanni; Molteni, Franco; Pedrocchi, Alessandra

    2018-01-01

    Stroke-related locomotor impairments are often associated with abnormal timing and intensity of recruitment of the affected and non-affected lower limb muscles. Restoring the proper lower limbs muscles activation is a key factor to facilitate recovery of gait capacity and performance, and to reduce maladaptive plasticity. Ekso is a wearable powered exoskeleton robot able to support over-ground gait training. The user controls the exoskeleton by triggering each single step during the gait cycle. The fine-tuning of the exoskeleton control system is crucial—it is set according to the residual functional abilities of the patient, and it needs to ensure lower limbs powered gait to be the most physiological as possible. This work focuses on the definition of an automatic calibration procedure able to detect the best Ekso setting for each patient. EMG activity has been recorded from Tibialis Anterior, Soleus, Rectus Femoris, and Semitendinosus muscles in a group of 7 healthy controls and 13 neurological patients. EMG signals have been processed so to obtain muscles activation patterns. The mean muscular activation pattern derived from the controls cohort has been set as reference. The developed automatic calibration procedure requires the patient to perform overground walking trials supported by the exoskeleton while changing parameters setting. The Gait Metric index is calculated for each trial, where the closer the performance is to the normative muscular activation pattern, in terms of both relative amplitude and timing, the higher the Gait Metric index is. The trial with the best Gait Metric index corresponds to the best parameters set. It has to be noted that the automatic computational calibration procedure is based on the same number of overground walking trials, and the same experimental set-up as in the current manual calibration procedure. The proposed approach allows supporting the rehabilitation team in the setting procedure. It has been demonstrated to be robust, and to be in agreement with the current gold standard (i.e., manual calibration performed by an expert engineer). The use of a graphical user interface is a promising tool for the effective use of an automatic procedure in a clinical context. PMID:29615890

  5. Automatic Setting Procedure for Exoskeleton-Assisted Overground Gait: Proof of Concept on Stroke Population.

    PubMed

    Gandolla, Marta; Guanziroli, Eleonora; D'Angelo, Andrea; Cannaviello, Giovanni; Molteni, Franco; Pedrocchi, Alessandra

    2018-01-01

    Stroke-related locomotor impairments are often associated with abnormal timing and intensity of recruitment of the affected and non-affected lower limb muscles. Restoring the proper lower limbs muscles activation is a key factor to facilitate recovery of gait capacity and performance, and to reduce maladaptive plasticity. Ekso is a wearable powered exoskeleton robot able to support over-ground gait training. The user controls the exoskeleton by triggering each single step during the gait cycle. The fine-tuning of the exoskeleton control system is crucial-it is set according to the residual functional abilities of the patient, and it needs to ensure lower limbs powered gait to be the most physiological as possible. This work focuses on the definition of an automatic calibration procedure able to detect the best Ekso setting for each patient. EMG activity has been recorded from Tibialis Anterior, Soleus, Rectus Femoris, and Semitendinosus muscles in a group of 7 healthy controls and 13 neurological patients. EMG signals have been processed so to obtain muscles activation patterns. The mean muscular activation pattern derived from the controls cohort has been set as reference. The developed automatic calibration procedure requires the patient to perform overground walking trials supported by the exoskeleton while changing parameters setting. The Gait Metric index is calculated for each trial, where the closer the performance is to the normative muscular activation pattern, in terms of both relative amplitude and timing, the higher the Gait Metric index is. The trial with the best Gait Metric index corresponds to the best parameters set. It has to be noted that the automatic computational calibration procedure is based on the same number of overground walking trials, and the same experimental set-up as in the current manual calibration procedure. The proposed approach allows supporting the rehabilitation team in the setting procedure. It has been demonstrated to be robust, and to be in agreement with the current gold standard (i.e., manual calibration performed by an expert engineer). The use of a graphical user interface is a promising tool for the effective use of an automatic procedure in a clinical context.

  6. Effect of transforming growth factor-beta1 on decorin expression and muscle morphology during chicken embryonic and posthatch growth and development.

    PubMed

    Li, X; Velleman, S G

    2009-02-01

    During skeletal muscle development, transforming growth factor-beta1 (TGF-beta1) is a potent inhibitor of muscle cell proliferation and differentiation, as well as a regulator of extracellular matrix (ECM) production. Decorin, a member of the small leucine-rich ECM proteoglycans, binds to TGF-beta1 and modulates TGF-beta1-dependent cell growth stimulation or inhibition. The expression of decorin can be regulated by TGF-beta1 during muscle proliferation and differentiation. How TGF-beta1 affects decorin and muscle growth, however, has not been well documented in vivo. The present study investigated the effect of TGF-beta1 on decorin expression and intracellular connective tissue development during skeletal muscle growth. Exogenous TGF-beta1 significantly decreased the number of myofibers in a given area at both 1 d and 6 wk posthatch. The TGF-beta1-treated muscle had a significant decrease in decorin mRNA expression at embryonic day (ED) 10, whereas protein amounts decreased at 17 ED and 1 d posthatch compared to the control muscle. Decorin was localized in both the endomysium and perimysium in the control pectoralis major muscle. Transforming growth factor-beta1 reduced decorin in both the endomysium and perimysium from 17 ED to 6 wk posthatch. Compared to the control muscle, the perimysium space in the pectoralis major muscle was dramatically decreased by TGF-beta1 during embryonic development through posthatch growth. Because decorin regulates collagen fibrillogenesis, a major component of the ECM, the reduction of decorin by TGF-beta1 treatment may cause the irregular formation of collagen fibrils, leading to the decrease in endomysium and perimysium space. The results from the current study suggest that the effect of TGF-beta1 on decorin expression and localization was likely associated with altered development of the perimysium and the regulation of muscle fiber development.

  7. Cis-Natural Antisense Transcripts Are Mainly Co-expressed with Their Sense Transcripts and Primarily Related to Energy Metabolic Pathways during Muscle Development.

    PubMed

    Zhao, Yunxia; Hou, Ye; Zhao, Changzhi; Liu, Fei; Luan, Yu; Jing, Lu; Li, Xinyun; Zhu, Mengjin; Zhao, Shuhong

    2016-01-01

    Cis-natural antisense transcripts (cis-NATs) are a new class of RNAs identified in various species. However, the biological functions of cis-NATs are largely unknown. In this study, we investigated the transcriptional characteristics and functions of cis-NATs in the muscle tissue of lean Landrace and indigenous fatty Lantang pigs. In total, 3,306 cis-NATs of 2,469 annotated genes were identified in the muscle tissue of pigs. More than 1,300 cis-NATs correlated with their sense genes at the transcriptional level, and approximately 80% of them were co-expressed in the two breeds. Furthermore, over 1,200 differentially expressed cis-NATs were identified during muscle development. Function annotation showed that the cis-NATs participated in muscle development mainly by co-expressing with genes involved in energy metabolic pathways, including citrate cycle (TCA cycle), glycolysis or gluconeogenesis, mitochondrial activation and so on. Moreover, these cis-NATs and their sense genes abruptly increased at the transition from the late fetal stages to the early postnatal stages and then decreased along with muscle development. In conclusion, the cis-NATs in the muscle tissue of pigs were identified and determined to be mainly co-expressed with their sense genes. The co-expressed cis-NATs and their sense gene were primarily related to energy metabolic pathways during muscle development in pigs. Our results offered novel evidence on the roles of cis-NATs during the muscle development of pigs.

  8. A Standardized Rat Model of Volumetric Muscle Loss Injury for the Development of Tissue Engineering Therapies

    PubMed Central

    Wu, Xiaowu; Corona, Benjamin T.; Chen, Xiaoyu

    2012-01-01

    Abstract Soft tissue injuries involving volumetric muscle loss (VML) are defined as the traumatic or surgical loss of skeletal muscle with resultant functional impairment and represent a challenging clinical problem for both military and civilian medicine. In response, a variety of tissue engineering and regenerative medicine treatments are under preclinical development. A wide variety of animal models are being used, all with critical limitations. The objective of this study was to develop a model of VML that was reproducible and technically uncomplicated to provide a standardized platform for the development of tissue engineering and regenerative medicine solutions to VML repair. A rat model of VML involving excision of ∼20% of the muscle's mass from the superficial portion of the middle third of the tibialis anterior (TA) muscle was developed and was functionally characterized. The contralateral TA muscle served as the uninjured control. Additionally, uninjured age-matched control rats were also tested to determine the effect of VML on the contralateral limb. TA muscles were assessed at 2 and 4 months postinjury. VML muscles weighed 22.7% and 19.5% less than contralateral muscles at 2 and 4 months postinjury, respectively. These differences were accompanied by a reduction in peak isometric tetanic force (Po) of 28.4% and 32.5% at 2 and 4 months. Importantly, Po corrected for differences in body weight and muscle wet weights were similar between contralateral and age-matched control muscles, indicating that VML did not have a significant impact on the contralateral limb. Lastly, repair of the injury with a biological scaffold resulted in rapid vascularization and integration with the wound. The technical simplicity, reliability, and clinical relevance of the VML model developed in this study make it ideal as a standard model for the development of tissue engineering solutions for VML. PMID:23515319

  9. Congenital myasthenic syndromes due to mutations in ALG2 and ALG14.

    PubMed

    Cossins, Judith; Belaya, Katsiaryna; Hicks, Debbie; Salih, Mustafa A; Finlayson, Sarah; Carboni, Nicola; Liu, Wei Wei; Maxwell, Susan; Zoltowska, Katarzyna; Farsani, Golara Torabi; Laval, Steven; Seidhamed, Mohammed Zain; Donnelly, Peter; Bentley, David; McGowan, Simon J; Müller, Juliane; Palace, Jacqueline; Lochmüller, Hanns; Beeson, David

    2013-03-01

    Congenital myasthenic syndromes are a heterogeneous group of inherited disorders that arise from impaired signal transmission at the neuromuscular synapse. They are characterized by fatigable muscle weakness. We performed linkage analysis, whole-exome and whole-genome sequencing to determine the underlying defect in patients with an inherited limb-girdle pattern of myasthenic weakness. We identify ALG14 and ALG2 as novel genes in which mutations cause a congenital myasthenic syndrome. Through analogy with yeast, ALG14 is thought to form a multiglycosyltransferase complex with ALG13 and DPAGT1 that catalyses the first two committed steps of asparagine-linked protein glycosylation. We show that ALG14 is concentrated at the muscle motor endplates and small interfering RNA silencing of ALG14 results in reduced cell-surface expression of muscle acetylcholine receptor expressed in human embryonic kidney 293 cells. ALG2 is an alpha-1,3-mannosyltransferase that also catalyses early steps in the asparagine-linked glycosylation pathway. Mutations were identified in two kinships, with mutation ALG2p.Val68Gly found to severely reduce ALG2 expression both in patient muscle, and in cell cultures. Identification of DPAGT1, ALG14 and ALG2 mutations as a cause of congenital myasthenic syndrome underscores the importance of asparagine-linked protein glycosylation for proper functioning of the neuromuscular junction. These syndromes form part of the wider spectrum of congenital disorders of glycosylation caused by impaired asparagine-linked glycosylation. It is likely that further genes encoding components of this pathway will be associated with congenital myasthenic syndromes or impaired neuromuscular transmission as part of a more severe multisystem disorder. Our findings suggest that treatment with cholinesterase inhibitors may improve muscle function in many of the congenital disorders of glycosylation.

  10. Power frequency spectrum analysis of surface EMG signals of upper limb muscles during elbow flexion - A comparison between healthy subjects and stroke survivors.

    PubMed

    Angelova, Silvija; Ribagin, Simeon; Raikova, Rositsa; Veneva, Ivanka

    2018-02-01

    After a stroke, motor units stop working properly and large, fast-twitch units are more frequently affected. Their impaired functions can be investigated during dynamic tasks using electromyographic (EMG) signal analysis. The aim of this paper is to investigate changes in the parameters of the power/frequency function during elbow flexion between affected, non-affected, and healthy muscles. Fifteen healthy subjects and ten stroke survivors participated in the experiments. Electromyographic data from 6 muscles of the upper limbs during elbow flexion were filtered and normalized to the amplitudes of EMG signals during maximal isometric tasks. The moments when motion started and when the flexion angle reached its maximal value were found. Equal intervals of 0.3407 s were defined between these two moments and one additional interval before the start of the flexion (first one) was supplemented. For each of these intervals the power/frequency function of EMG signals was calculated. The mean (MNF) and median frequencies (MDF), the maximal power (MPw) and the area under the power function (APw) were calculated. MNF was always higher than MDF. A significant decrease in these frequencies was found in only three post-stroke survivors. The frequencies in the first time interval were nearly always the highest among all intervals. The maximal power was nearly zero during first time interval and increased during the next ones. The largest values of MPw and APw were found for the flexor muscles and they increased for the muscles of the affected arm compared to the non-affected one of stroke survivors. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Electrospun Polycaprolactone Scaffolds for Small-Diameter Tissue Engineered Blood Vessels

    NASA Astrophysics Data System (ADS)

    Lee, Carol Hsiu-Yueh

    Cardiovascular disease is the leading cause of death in the United States with many patients requiring coronary artery bypass grafting. The current standard is using autografts such as the saphenous vein or intimal mammary artery, however creating a synthetic graft could eliminate this painful and inconvenient procedure. Large diameter grafts have long been established with materials such as DacronRTM and TeflonRTM, however these materials have not proved successful in small-diameter (< 6 mm) grafts where thrombosis and intimal hyperplasia are common in graft failure. With the use of a synthetic biodegradable polymer (polycaprolactone) we utilize our expertise in electrospinning and femtosecond laser ablation to create a novel tri-layered tissue engineered blood vessel containing microchannels. The benefits of creating a tri-layer is to mimic native arteries that contain an endothelium to prevent thrombosis in the inner layer, aligned smooth muscle cells in the middle to control vasodilation and constriction, and a mechanically robust outer layer. The following work evaluates the mechanical properties of such a graft (tensile, fatigue, burst pressure, and suture retention strength), the ability to rapidly align cells in laser ablated microchannels in PCL scaffolds, and the biological integration (co-culture of endothelial and smooth muscle cells) with electrospun PCL scaffolds. The conclusions from this work establish that the electrospun tri-layers provide adequate mechanical strength as a tissue engineered blood vessel, that laser ablated microchannels are able to contain the smooth muscle cells, and that cells are able to adhere to PCL fibers. However, future work includes adjusting microchannel dimensions to properly align smooth muscle cells along with perfect co-cultures of endothelial and smooth muscle cells on the electrospun tri-layer.

  12. Contributory factors to unsteadiness during walking up and down stairs in patients with diabetic peripheral neuropathy.

    PubMed

    Handsaker, Joseph C; Brown, Steven J; Bowling, Frank L; Cooper, Glen; Maganaris, Constantinos N; Boulton, Andrew J M; Reeves, Neil D

    2014-11-01

    Although patients with diabetic peripheral neuropathy (DPN) are more likely to fall than age-matched controls, the underlying causative factors are not yet fully understood. This study examines the effects of diabetes and neuropathy on strength generation and muscle activation patterns during walking up and down stairs, with implications for fall risk. Sixty-three participants (21 patients with DPN, 21 diabetic controls, and 21 healthy controls) were examined while walking up and down a custom-built staircase. The speed of strength generation at the ankle and knee and muscle activation patterns of the ankle and knee extensor muscles were analyzed. Patients with neuropathy displayed significantly slower ankle and knee strength generation than healthy controls during stair ascent and descent (P < 0.05). During ascent, the ankle and knee extensor muscles were activated significantly later by patients with neuropathy and took longer to reach peak activation (P < 0.05). During descent, neuropathic patients activated the ankle extensors significantly earlier, and the ankle and knee extensors took significantly longer to reach peak activation (P < 0.05). Patients with DPN are slower at generating strength at the ankle and knee than control participants during walking up and down stairs. These changes, which are likely caused by altered activations of the extensor muscles, increase the likelihood of instability and may be important contributory factors for the increased risk of falling. Resistance exercise training may be a potential clinical intervention for improving these aspects and thereby potentially reducing fall risk. © 2014 by the American Diabetes Association. Readers may use this article as long as the work is properly cited, the use is educational and not for profit, and the work is not altered.

  13. Differential rigor development in red and white muscle revealed by simultaneous measurement of tension and stiffness.

    PubMed

    Kobayashi, Masahiko; Takemori, Shigeru; Yamaguchi, Maki

    2004-02-10

    Based on the molecular mechanism of rigor mortis, we have proposed that stiffness (elastic modulus evaluated with tension response against minute length perturbations) can be a suitable index of post-mortem rigidity in skeletal muscle. To trace the developmental process of rigor mortis, we measured stiffness and tension in both red and white rat skeletal muscle kept in liquid paraffin at 37 and 25 degrees C. White muscle (in which type IIB fibres predominate) developed stiffness and tension significantly more slowly than red muscle, except for soleus red muscle at 25 degrees C, which showed disproportionately slow rigor development. In each of the examined muscles, stiffness and tension developed more slowly at 25 degrees C than at 37 degrees C. In each specimen, tension always reached its maximum level earlier than stiffness, and then decreased more rapidly and markedly than stiffness. These phenomena may account for the sequential progress of rigor mortis in human cadavers.

  14. Mechanical characterization of the mouse diaphragm with optical coherence elastography reveals fibrosis-related change of direction-dependent muscle tissue stiffness

    NASA Astrophysics Data System (ADS)

    Wang, Shang; Loehr, James A.; Larina, Irina V.; Rodney, George G.; Larin, Kirill V.

    2016-03-01

    The diaphragm, composed of skeletal muscle, plays an important role in respiration through its dynamic contraction. Genetic and molecular studies of the biomechanics of mouse diaphragm can provide great insights into an improved understanding and potential treatment of the disorders that lead to diaphragm dysfunction (i.e. muscular dystrophy). However, due to the small tissue size, mechanical assessment of mouse diaphragm tissue under its proper physiological conditions has been challenging. Here, we present the application of noncontact optical coherence elastography (OCE) for quantitative elastic characterization of ex vivo mouse diaphragm. Phase-sensitive optical coherence tomography was combined with a focused air-puff system to capture and measure the elastic wave propagation from tissue surface. Experiments were performed on wildtype and dystrophic mouse diaphragm tissues containing different levels of fibrosis. The OCE measurements of elastic wave propagation were conducted along both the longitudinal and transverse axis of the muscle fibers. Cross-correlation of the temporal displacement profiles from different spatial locations was utilized to obtain the propagation time delay, which was used to calculate the wave group velocity and to further quantify the tissue Young's modulus. Prior to and after OCE assessment, peak tetanic force was measured to monitor viability of the tissue during the elasticity measurements. Our experimental results indicate a positive correlation between fibrosis level and tissue stiffness, suggesting this elastic-wave-based OCE method could be a useful tool to monitor mechanical properties of skeletal muscle under physiological and pathological conditions.

  15. Gene expression studies of developing bovine longissimus muscle from two different beef cattle breeds

    PubMed Central

    Lehnert, Sigrid A; Reverter, Antonio; Byrne, Keren A; Wang, Yonghong; Nattrass, Greg S; Hudson, Nicholas J; Greenwood, Paul L

    2007-01-01

    Background The muscle fiber number and fiber composition of muscle is largely determined during prenatal development. In order to discover genes that are involved in determining adult muscle phenotypes, we studied the gene expression profile of developing fetal bovine longissimus muscle from animals with two different genetic backgrounds using a bovine cDNA microarray. Fetal longissimus muscle was sampled at 4 stages of myogenesis and muscle maturation: primary myogenesis (d 60), secondary myogenesis (d 135), as well as beginning (d 195) and final stages (birth) of functional differentiation of muscle fibers. All fetuses and newborns (total n = 24) were from Hereford dams and crossed with either Wagyu (high intramuscular fat) or Piedmontese (GDF8 mutant) sires, genotypes that vary markedly in muscle and compositional characteristics later in postnatal life. Results We obtained expression profiles of three individuals for each time point and genotype to allow comparisons across time and between sire breeds. Quantitative reverse transcription-PCR analysis of RNA from developing longissimus muscle was able to validate the differential expression patterns observed for a selection of differentially expressed genes, with one exception. We detected large-scale changes in temporal gene expression between the four developmental stages in genes coding for extracellular matrix and for muscle fiber structural and metabolic proteins. FSTL1 and IGFBP5 were two genes implicated in growth and differentiation that showed developmentally regulated expression levels in fetal muscle. An abundantly expressed gene with no functional annotation was found to be developmentally regulated in the same manner as muscle structural proteins. We also observed differences in gene expression profiles between the two different sire breeds. Wagyu-sired calves showed higher expression of fatty acid binding protein 5 (FABP5) RNA at birth. The developing longissimus muscle of fetuses carrying the Piedmontese mutation shows an emphasis on glycolytic muscle biochemistry and a large-scale up-regulation of the translational machinery at birth. We also document evidence for timing differences in differentiation events between the two breeds. Conclusion Taken together, these findings provide a detailed description of molecular events accompanying skeletal muscle differentiation in the bovine, as well as gene expression differences that may underpin the phenotype differences between the two breeds. In addition, this study has highlighted a non-coding RNA, which is abundantly expressed and developmentally regulated in bovine fetal muscle. PMID:17697390

  16. Skeletal muscle regeneration and impact of aging and nutrition.

    PubMed

    Domingues-Faria, Carla; Vasson, Marie-Paule; Goncalves-Mendes, Nicolas; Boirie, Yves; Walrand, Stephane

    2016-03-01

    After skeletal muscle injury a regeneration process takes place to repair muscle. Skeletal muscle recovery is a highly coordinated process involving cross-talk between immune and muscle cells. It is well known that the physiological activities of both immune cells and muscle stem cells decline with advancing age, thereby blunting the capacity of skeletal muscle to regenerate. The age-related reduction in muscle repair efficiency contributes to the development of sarcopenia, one of the most important factors of disability in elderly people. Preserving muscle regeneration capacity may slow the development of this syndrome. In this context, nutrition has drawn much attention: studies have demonstrated that nutrients such as amino acids, n-3 polyunsaturated fatty acids, polyphenols and vitamin D can improve skeletal muscle regeneration by targeting key functions of immune cells, muscle cells or both. Here we review the process of skeletal muscle regeneration with a special focus on the cross-talk between immune and muscle cells. We address the effect of aging on immune and skeletal muscle cells involved in muscle regeneration. Finally, the mechanisms of nutrient action on muscle regeneration are described, showing that quality of nutrition may help to preserve the capacity for skeletal muscle regeneration with age. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. A Longitudinal Investigation of the Development of Weight and Muscle Concerns among Preadolescent Boys

    ERIC Educational Resources Information Center

    Ricciardelli, Lina A.; McCabe, Marita P.; Lillis, Jessica; Thomas, Kristina

    2006-01-01

    The study examined the impact of body mass index (BMI), negative affect, self-esteem, and sociocultural influences in the development of weight and muscle concerns among preadolescent boys. Body dissatisfaction, importance placed on weight and muscles, weight loss strategies, and strategies to increase muscles were evaluated. Participants were 237…

  18. The effects of Capn1 gene inactivation on skeletal muscle growth, development, and atrophy, and the compensatory role of other proteolytic systems.

    PubMed

    Kemp, C M; Oliver, W T; Wheeler, T L; Chishti, A H; Koohmaraie, M

    2013-07-01

    Myofibrillar protein turnover is a key component of muscle growth and degeneration, requiring proteolytic enzymes to degrade the skeletal muscle proteins. The objective of this study was to investigate the role of the calpain proteolytic system in muscle growth development using μ-calpain knockout (KO) mice in comparison with control wild-type (WT) mice, and evaluate the subsequent effects of silencing this gene on other proteolytic systems. No differences in muscle development between genotypes were observed during the early stages of growth due to the up regulation of other proteolytic systems. The KO mice showed significantly greater m-calpain protein abundance (P < 0.01) and activity (P < 0.001), and greater caspase 3/7 activity (P < 0.05). At 30 wk of age, KO mice showed increased protein:DNA (P < 0.05) and RNA:DNA ratios (P < 0.01), greater protein content (P < 0.01) at the expense of lipid deposition (P < 0.05), and an increase in size and number of fast-twitch glycolytic muscle fibers (P < 0.05), suggesting that KO mice exhibit an increased capacity to accumulate and maintain protein in their skeletal muscle. Also, expression of proteins associated with muscle regeneration (neural cell adhesion molecule and myoD) were both reduced in the mature KO mice (P < 0.05 and P < 0.01, respectively), indicating less muscle regeneration and, therefore, less muscle damage. These findings indicate the concerted action of proteolytic systems to ensure muscle protein homeostasis in vivo. Furthermore, these data contribute to the existing evidence of the importance of the calpain system's involvement in muscle growth, development, and atrophy. Collectively, these data suggest that there are opportunities to target the calpain system to promote the growth and/or restoration of skeletal muscle mass.

  19. INVITED REVIEW: Inhibitors of myostatin as methods of enhancing muscle growth and development.

    PubMed

    Chen, P R; Lee, K

    2016-08-01

    With the increasing demand for affordable, high-quality meat, livestock and poultry producers must continually find ways to maximize muscle growth in their animals without compromising palatability of the meat products. Muscle mass relies on myoblast proliferation during prenatal or prehatch stages and fiber hypertrophy through protein synthesis and nuclei donation by satellite cells after birth or hatch. Therefore, understanding the cellular and molecular mechanisms of myogenesis and muscle development is of great interest. Myostatin is a well-known negative regulator of muscle growth and development that inhibits proliferation and differentiation in myogenic cells as well as protein synthesis in existing muscle fibers. In this review, various inhibitors of myostatin activity or signaling are examined that may be used in animal agriculture for enhancing muscle growth. Myostatin inhibitors are relevant as potential therapies for muscle-wasting diseases and muscle weakness in humans and animals. Currently, there are no commercial myostatin inhibitors for agriculture or biomedical purposes because the safest and most effective option has yet to be identified. Further investigation of myostatin inhibitors and administration strategies may revolutionize animal production and the medical field.

  20. Bio-inspired Hybrid Carbon Nanotube Muscles

    NASA Astrophysics Data System (ADS)

    Kim, Tae Hyeob; Kwon, Cheong Hoon; Lee, Changsun; An, Jieun; Phuong, Tam Thi Thanh; Park, Sun Hwa; Lima, Márcio D.; Baughman, Ray H.; Kang, Tong Mook; Kim, Seon Jeong

    2016-05-01

    There has been continuous progress in the development for biomedical engineering systems of hybrid muscle generated by combining skeletal muscle and artificial structure. The main factor affecting the actuation performance of hybrid muscle relies on the compatibility between living cells and their muscle scaffolds during cell culture. Here, we developed a hybrid muscle powered by C2C12 skeletal muscle cells based on the functionalized multi-walled carbon nanotubes (MWCNT) sheets coated with poly(3,4-ethylenedioxythiophene) (PEDOT) to achieve biomimetic actuation. This hydrophilic hybrid muscle is physically durable in solution and responds to electric field stimulation with flexible movement. Furthermore, the biomimetic actuation when controlled by electric field stimulation results in movement similar to that of the hornworm by patterned cell culture method. The contraction and relaxation behavior of the PEDOT/MWCNT-based hybrid muscle is similar to that of the single myotube movement, but has faster relaxation kinetics because of the shape-maintenance properties of the freestanding PEDOT/MWCNT sheets in solution. Our development provides the potential possibility for substantial innovation in the next generation of cell-based biohybrid microsystems.

  1. Investigation on electromechanical properties of a muscle-like linear actuator fabricated by bi-film ionic polymer metal composites

    NASA Astrophysics Data System (ADS)

    Sun, Zhuangzhi; Zhao, Gang; Qiao, Dongpan; Song, Wenlong

    2017-12-01

    Artificial muscles have attracted great attention for their potentials in intelligent robots, biomimetic devices, and micro-electromechanical system. However, there are many performance bottlenecks restricting the development of artificial muscles in engineering applications, e.g., the little blocking force and short working life. Focused on the larger requirements of the output force and the lack characteristics of the linear motion, an innovative muscle-like linear actuator based on two segmented IPMC strips was developed to imitate linear motion of artificial muscles. The structures of the segmented IPMC strip of muscle-like linear actuator were developed and the established mathematical model was to determine the appropriate segmented proportion as 1:2:1. The muscle-like linear actuator with two segmented IPMC strips assemble by two supporting link blocks was manufactured for the study of electromechanical properties. Electromechanical properties of muscle-like linear actuator under the different technological factors were obtained to experiment, and the corresponding changing rules of muscle-like linear actuators were presented to research. Results showed that factors of redistributed resistance and surface strain on both end-sides were two main reasons affecting the emergence of different electromechanical properties of muscle-like linear actuators.

  2. Myostatin inhibitors as therapies for muscle wasting associated with cancer and other disorders

    PubMed Central

    Smith, Rosamund C.; Lin, Boris K.

    2013-01-01

    Purpose of review This review summarizes recent progress in the development of myostatin inhibitors for the treatment of muscle wasting disorders. It also focuses on findings in myostatin biology that may have implications for the development of antimyostatin therapies. Recent findings There has been progress in evaluating antimyostatin therapies in animal models of muscle wasting disorders. Some programs have progressed into clinical development with initial results showing positive impact on muscle volume. In normal mice myostatin deficiency results in enlarged muscles with increased total force but decreased specific force (total force/total mass). An increase in myofibrillar protein synthesis without concomitant satellite cell proliferation and fusion leads to muscle hypertrophy with unchanged myonuclear number. A specific force reduction is not observed when atrophied muscle, the predominant therapeutic target of myostatin inhibitor therapy, is made myostatindeficient. Myostatin has been shown to be expressed by a number of tumor cell lines in mice and man. Summary Myostatin inhibition remains a promising therapeutic strategy for a range of muscle wasting disorders. PMID:24157714

  3. Extensive alternative splicing transitions during postnatal skeletal muscle development are required for calcium handling functions

    PubMed Central

    Brinegar, Amy E; Xia, Zheng; Loehr, James Anthony; Li, Wei; Rodney, George Gerald

    2017-01-01

    Postnatal development of skeletal muscle is a highly dynamic period of tissue remodeling. Here, we used RNA-seq to identify transcriptome changes from late embryonic to adult mouse muscle and demonstrate that alternative splicing developmental transitions impact muscle physiology. The first 2 weeks after birth are particularly dynamic for differential gene expression and alternative splicing transitions, and calcium-handling functions are significantly enriched among genes that undergo alternative splicing. We focused on the postnatal splicing transitions of the three calcineurin A genes, calcium-dependent phosphatases that regulate multiple aspects of muscle biology. Redirected splicing of calcineurin A to the fetal isoforms in adult muscle and in differentiated C2C12 slows the timing of muscle relaxation, promotes nuclear localization of calcineurin target Nfatc3, and/or affects expression of Nfatc transcription targets. The results demonstrate a previously unknown specificity of calcineurin isoforms as well as the broader impact of alternative splicing during muscle postnatal development. PMID:28826478

  4. Myostatin inhibitors as therapies for muscle wasting associated with cancer and other disorders.

    PubMed

    Smith, Rosamund C; Lin, Boris K

    2013-12-01

    This review summarizes recent progress in the development of myostatin inhibitors for the treatment of muscle wasting disorders. It also focuses on findings in myostatin biology that may have implications for the development of antimyostatin therapies. There has been progress in evaluating antimyostatin therapies in animal models of muscle wasting disorders. Some programs have progressed into clinical development with initial results showing positive impact on muscle volume.In normal mice myostatin deficiency results in enlarged muscles with increased total force but decreased specific force (total force/total mass). An increase in myofibrillar protein synthesis without concomitant satellite cell proliferation and fusion leads to muscle hypertrophy with unchanged myonuclear number. A specific force reduction is not observed when atrophied muscle, the predominant therapeutic target of myostatin inhibitor therapy, is made myostatindeficient.Myostatin has been shown to be expressed by a number of tumor cell lines in mice and man. Myostatin inhibition remains a promising therapeutic strategy for a range of muscle wasting disorders.

  5. Increase in relative skeletal muscle mass over time and its inverse association with metabolic syndrome development: a 7-year retrospective cohort study.

    PubMed

    Kim, Gyuri; Lee, Seung-Eun; Jun, Ji Eun; Lee, You-Bin; Ahn, Jiyeon; Bae, Ji Cheol; Jin, Sang-Man; Hur, Kyu Yeon; Jee, Jae Hwan; Lee, Moon-Kyu; Kim, Jae Hyeon

    2018-02-05

    Skeletal muscle mass was negatively associated with metabolic syndrome prevalence in previous cross-sectional studies. The aim of this study was to investigate the impact of baseline skeletal muscle mass and changes in skeletal muscle mass over time on the development of metabolic syndrome in a large population-based 7-year cohort study. A total of 14,830 and 11,639 individuals who underwent health examinations at the Health Promotion Center at Samsung Medical Center, Seoul, Korea were included in the analyses of baseline skeletal muscle mass and those changes from baseline over 1 year, respectively. Skeletal muscle mass was estimated by bioelectrical impedance analysis and was presented as a skeletal muscle mass index (SMI), a body weight-adjusted appendicular skeletal muscle mass value. Using Cox regression models, hazard ratio for developing metabolic syndrome associated with SMI values at baseline or changes of SMI over a year was analyzed. During 7 years of follow-up, 20.1% of subjects developed metabolic syndrome. Compared to the lowest sex-specific SMI tertile at baseline, the highest sex-specific SMI tertile showed a significant inverse association with metabolic syndrome risk (adjusted hazard ratio [AHR] = 0.61, 95% confidence interval [CI] 0.54-0.68). Furthermore, compared with SMI changes < 0% over a year, multivariate-AHRs for metabolic syndrome development were 0.87 (95% CI 0.78-0.97) for 0-1% changes and 0.67 (0.56-0.79) for > 1% changes in SMI over 1 year after additionally adjusting for baseline SMI and glycometabolic parameters. An increase in relative skeletal muscle mass over time has a potential preventive effect on developing metabolic syndrome, independently of baseline skeletal muscle mass and glycometabolic parameters.

  6. Relative fascicle excursion effects on dynamic strength generation during gait in children with cerebral palsy.

    PubMed

    Martín Lorenzo, T; Lerma Lara, S; Martínez-Caballero, I; Rocon, E

    2015-10-01

    Evaluation of muscle structure gives us a better understanding of how muscles contribute to force generation which is significantly altered in children with cerebral palsy (CP). While most muscle structure parameters have shown to be significantly correlated to different expressions of strength development in children with CP and typically developing (TD) children, conflicting results are found for muscle fascicle length. Muscle fascicle length determines muscle excursion and velocity, and contrary to what might be expected, correlations of fascicle length to rate of force development have not been found for children with CP. The lack of correlation between muscle fascicle length and rate of force development in children with CP could be due, on the one hand, to the non-optimal joint position adopted for force generation on the isometric strength tests as compared to the position of TD children. On the other hand, the lack of correlation could be due to the erroneous assumption that muscle fascicle length is representative of sarcomere length. Thus, the relationship between muscle architecture parameters reflecting sarcomere length, such as relative fascicle excursions and dynamic power generation, should be assessed. Understanding of the underlying mechanisms of weakness in children with CP is key for individualized prescription and assessment of muscle-targeted interventions. Findings could imply the detection of children operating on the descending limb of the sarcomere length-tension curve, which in turn might be at greater risk of developing crouch gait. Furthermore, relative muscle fascicle excursions could be used as a predictive variable of outcomes related to crouch gait prevention treatments such as strength training. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Considerations of the Principles of Resistance Training in Exercise Studies for the Management of Knee Osteoarthritis: A Systematic Review.

    PubMed

    Minshull, Claire; Gleeson, Nigel

    2017-09-01

    To evaluate the methodologic quality of resistance training interventions for the management of knee osteoarthritis. A search of the literature for studies published up to August 10, 2015, was performed on MEDLINE (OVID platform), PubMed, Embase, and Physiotherapy Evidence Database databases. Search terms associated with osteoarthritis, knee, and muscle resistance exercise were used. Studies were included in the review if they were published in the English language and met the following criteria: (1) muscle resistance training was the primary intervention; (2) randomized controlled trial design; (3) treatment arms included at least a muscle conditioning intervention and a nonexercise group; and (4) participants had osteoarthritis of the knee. Studies using preoperative (joint replacement) interventions with only postoperative outcomes were excluded. The search yielded 1574 results. The inclusion criteria were met by 34 studies. Two reviewers independently screened the articles for eligibility. Critical appraisal of the methodology was assessed according to the principles of resistance training and separately for the reporting of adherence using a specially designed scoring system. A rating for each article was assigned. There were 34 studies that described a strength training focus of the intervention; however, the principles of resistance training were inconsistently applied and inadequately reported across all. Methods for adherence monitoring were incorporated into the design of 28 of the studies, but only 13 reported sufficient detail to estimate average dose of exercise. These findings affect the interpretation of the efficacy of muscle resistance exercise in the management of knee osteoarthritis. Clinicians and health care professionals cannot be confident whether nonsignificant findings are because of the lack of efficacy of muscle resistance interventions, or occur through limitations in treatment prescription and patient adherence. Future research that seeks to evaluate the effects of muscle strength training interventions on symptoms of osteoarthritis should be properly designed and adherence diligently reported. Copyright © 2016 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.

  8. Myosin Storage Myopathy in C. elegans and Human Cultured Muscle Cells

    PubMed Central

    Dahl-Halvarsson, Martin; Pokrzywa, Malgorzata; Rauthan, Manish; Pilon, Marc

    2017-01-01

    Myosin storage myopathy is a protein aggregate myopathy associated with the characteristic subsarcolemmal accumulation of myosin heavy chain in muscle fibers. Despite similar histological findings, the clinical severity and age of onset are highly variable, ranging from no weakness to severe impairment of ambulation, and usually childhood-onset to onset later in life. Mutations located in the distal end of the tail of slow/ß-cardiac myosin heavy chain are associated with myosin storage myopathy. Four missense mutations (L1793P, R1845W, E1883K and H1901L), two of which have been reported in several unrelated families, are located within or closed to the assembly competence domain. This location is critical for the proper assembly of sarcomeric myosin rod filaments. To assess the mechanisms leading to protein aggregation in myosin storage myopathy and to evaluate the impact of these mutations on myosin assembly and muscle function, we expressed mutated myosin proteins in cultured human muscle cells and in the nematode Caenorhabditis elegans. While L1793P mutant myosin protein efficiently incorporated into the sarcomeric thick filaments, R1845W and H1901L mutants were prone to formation of myosin aggregates without assembly into striated sarcomeric thick filaments in cultured muscle cells. In C. elegans, mutant alleles of the myosin heavy chain gene unc-54 corresponding to R1845W, E1883K and H1901L, were as effective as the wild-type myosin gene in rescuing the null mutant worms, indicating that they retain functionality. Taken together, our results suggest that the basis for the pathogenic effect of the R1845W and H1901L mutations are primarily structural rather than functional. Further analyses are needed to identify the primary trigger for the histological changes seen in muscle biopsies of patients with L1793P and E1883K mutations. PMID:28125727

  9. Myosin Storage Myopathy in C. elegans and Human Cultured Muscle Cells.

    PubMed

    Dahl-Halvarsson, Martin; Pokrzywa, Malgorzata; Rauthan, Manish; Pilon, Marc; Tajsharghi, Homa

    2017-01-01

    Myosin storage myopathy is a protein aggregate myopathy associated with the characteristic subsarcolemmal accumulation of myosin heavy chain in muscle fibers. Despite similar histological findings, the clinical severity and age of onset are highly variable, ranging from no weakness to severe impairment of ambulation, and usually childhood-onset to onset later in life. Mutations located in the distal end of the tail of slow/ß-cardiac myosin heavy chain are associated with myosin storage myopathy. Four missense mutations (L1793P, R1845W, E1883K and H1901L), two of which have been reported in several unrelated families, are located within or closed to the assembly competence domain. This location is critical for the proper assembly of sarcomeric myosin rod filaments. To assess the mechanisms leading to protein aggregation in myosin storage myopathy and to evaluate the impact of these mutations on myosin assembly and muscle function, we expressed mutated myosin proteins in cultured human muscle cells and in the nematode Caenorhabditis elegans. While L1793P mutant myosin protein efficiently incorporated into the sarcomeric thick filaments, R1845W and H1901L mutants were prone to formation of myosin aggregates without assembly into striated sarcomeric thick filaments in cultured muscle cells. In C. elegans, mutant alleles of the myosin heavy chain gene unc-54 corresponding to R1845W, E1883K and H1901L, were as effective as the wild-type myosin gene in rescuing the null mutant worms, indicating that they retain functionality. Taken together, our results suggest that the basis for the pathogenic effect of the R1845W and H1901L mutations are primarily structural rather than functional. Further analyses are needed to identify the primary trigger for the histological changes seen in muscle biopsies of patients with L1793P and E1883K mutations.

  10. MCAT elements and the TEF-1 family of transcription factors in muscle development and disease.

    PubMed

    Yoshida, Tadashi

    2008-01-01

    MCAT elements are located in the promoter-enhancer regions of cardiac, smooth, and skeletal muscle-specific genes including cardiac troponin T, beta-myosin heavy chain, smooth muscle alpha-actin, and skeletal alpha-actin, and play a key role in the regulation of these genes during muscle development and disease. The binding factors of MCAT elements are members of the transcriptional enhancer factor-1 (TEF-1) family. However, it has not been fully understood how these transcription factors confer cell-specific expression in muscle, because their expression patterns are relatively broad. Results of recent studies revealed multiple mechanisms whereby TEF-1 family members control MCAT element-dependent muscle-specific gene expression, including posttranslational modifications of TEF-1 family members, the presence of muscle-selective TEF-1 cofactors, and cell-selective control of TEF-1 accessibility to MCAT elements. In addition, of particular interest, recent studies regarding MCAT element-dependent transcription of the myocardin gene and the smooth muscle alpha-actin gene in muscle provide evidence for the transcriptional diversity among distinct cell types and subtypes. This article summarizes the role of MCAT elements and the TEF-1 family of transcription factors in muscle development and disease, and reviews recent progress in our understanding of the transcriptional regulatory mechanisms involved in MCAT element-dependent muscle-specific gene expression.

  11. Space travel directly induces skeletal muscle atrophy

    NASA Technical Reports Server (NTRS)

    Vandenburgh, H.; Chromiak, J.; Shansky, J.; Del Tatto, M.; Lemaire, J.

    1999-01-01

    Space travel causes rapid and pronounced skeletal muscle wasting in humans that reduces their long-term flight capabilities. To develop effective countermeasures, the basis of this atrophy needs to be better understood. Space travel may cause muscle atrophy indirectly by altering circulating levels of factors such as growth hormone, glucocorticoids, and anabolic steroids and/or by a direct effect on the muscle fibers themselves. To determine whether skeletal muscle cells are directly affected by space travel, tissue-cultured avian skeletal muscle cells were tissue engineered into bioartificial muscles and flown in perfusion bioreactors for 9 to 10 days aboard the Space Transportation System (STS, i.e., Space Shuttle). Significant muscle fiber atrophy occurred due to a decrease in protein synthesis rates without alterations in protein degradation. Return of the muscle cells to Earth stimulated protein synthesis rates of both muscle-specific and extracellular matrix proteins relative to ground controls. These results show for the first time that skeletal muscle fibers are directly responsive to space travel and should be a target for countermeasure development.

  12. Architectural differences in the anterior and middle compartments of the pelvic floor of young-adult and postmenopausal females.

    PubMed

    Wu, Yi; Dabhoiwala, Noshir F; Hagoort, Jaco; Tan, Li-Wen; Zhang, Shao-Xiang; Lamers, Wouter H

    2017-05-01

    The pelvic floor guards the passage of the pelvic organs to the exterior. The near-epidemic prevalence of incontinence in women continues to generate interest in the functional anatomy of the pelvic floor. However, due to its complex architecture and poor accessibility, the classical 'dissectional' approach has been unable to come up with a satisfactory description, so that many aspects of its anatomy continue to raise debate. For this reason, we opted for a 'sectional' approach, using the Chinese Visible Human project (four females, 21-35 years) and the Visible Human Project (USA; one female, 59 years) datasets to investigate age-related changes in the architecture of the anterior and middle compartments of the pelvic floor. The puborectal component of the levator ani muscle defined the levator hiatus boundary. The urethral sphincter complex consisted of a circular proximal portion (urethral sphincter proper), a sling that passed on the vaginal wall laterally to attach to the puborectal muscle (urethral compressor), and a circular portion that surrounded the distal urethra and vagina (urethrovaginal sphincter). The exclusive attachment of the urethral sphincter to soft tissues implies dependence on pelvic-floor integrity for optimal function. The vagina was circular at the introitus and gradually flattened between bladder and rectum. Well-developed fibrous tissue connected the inferior vaginal wall with urethra, rectum and pelvic floor. With eight-muscle insertions, the perineal body was a strong, irregular fibrous node that guarded the levator hiatus. Only loose areolar tissue comprising a remarkably well developed venous plexus connecting the middle and superior parts of the vagina with the lateral pelvic wall. The posterolateral boundary of the putative cardinal and sacrouterine ligaments coincided with the adventitia surrounding the mesorectum. The major difference between the young-adult and postmenopausal pelvic floor was the expansion of fat in between the components of the pelvic floor. We hypothesize that accumulation of pelvic fat compromises pelvic-floor cohesion, because the pre-pubertal pelvis contains very little fibrous and adipose tissue, and fat is an excellent lubricant. © 2017 Anatomical Society.

  13. Effects of microgravity on myogenic factor expressions during postnatal development of rat skeletal muscle

    NASA Technical Reports Server (NTRS)

    Inobe, Manabu; Inobe, Ikuko; Adams, Gregory R.; Baldwin, Kenneth M.; Takeda, Shin'Ichi

    2002-01-01

    To clarify the role of gravity in the postnatal development of skeletal muscle, we exposed neonatal rats at 7 days of age to microgravity. After 16 days of spaceflight, tibialis anterior, plantaris, medial gastrocnemius, and soleus muscles were removed from the hindlimb musculature and examined for the expression of MyoD-family transcription factors such as MyoD, myogenin, and MRF4. For this purpose, we established a unique semiquantitative method, based on RT-PCR, using specific primers tagged with infrared fluorescence. The relative expression of MyoD in the tibialis anterior and plantaris muscles and that of myogenin in the plantaris and soleus muscles were significantly reduced (P < 0.001) in the flight animals. In contrast, MRF4 expression was not changed in any muscle. These results suggest that MyoD and myogenin, but not MRF4, are sensitive to gravity-related stimuli in some skeletal muscles during postnatal development.

  14. Muscle development and obesity

    PubMed Central

    2008-01-01

    The formation of skeletal muscle from the epithelial somites involves a series of events triggered by temporally and spatially discrete signals resulting in the generation of muscle fibers which vary in their contractile and metabolic nature. The fiber type composition of muscles varies between individuals and it has now been found that there are differences in fiber type proportions between lean and obese animals and humans. Amongst the possible causes of obesity, it has been suggested that inappropriate prenatal environments may ‘program’ the fetus and may lead to increased risks for disease in adult life. The characteristics of muscle are both heritable and plastic, giving the tissue some ability to adapt to signals and stimuli both pre and postnatally. Given that muscle is a site of fatty acid oxidation and carbohydrate metabolism and that its development can be changed by prenatal events, it is interesting to examine the possible relationship between muscle development and the risk of obesity. PMID:19279728

  15. Development of a bedrest muscle stress apparatus

    NASA Technical Reports Server (NTRS)

    Booher, C. R.; Hooper, S. L.; Setzer, D. N.

    1979-01-01

    In attempting further to define the deleterious effects of spaceflight on the human body, measurement systems and techniques were devised to determine the loss of skeletal muscle strength and tone as a result of spaceflight exposure. In order to determine how the muscle degradation process progresses with time during nonuse, a system for measuring muscle stress during bedrest was developed. The Bedrest Muscle Stress Apparatus is configured to slip snugly over the foot board of a standard hospital bed. Data collected with this device correlated well with pre- and post-bedrest data collected with the original skeletal muscle stress apparatus.

  16. Muscle hypertrophy with complex repetitive discharges in C-6 radiculopathy.

    PubMed

    Rousseff, Rossen T; Tzvetanov, Plamen

    2005-08-01

    To report on a case of post-denervation muscle hypertrophy in an unusual distribution. A 52-year-old patient with severe flaccid paraparesis after polio developed unilateral C-6 radiculopathy that resolved with conservative treatment. Within 2 years marked hypertrophy, stiffness and pain in the muscles in the affected myotome developed. EMG discovered abundant complex repetitive discharges (CRD) within hypertrophic muscles. On biopsy, true hypertrophy of muscle fibers and some group atrophy was found. Steroid treatment relieved the symptoms and significantly suppressed the CRD. The possible causative role of CRD for hypertrophy in partially denervated muscle is discussed.

  17. Differentiation of original and regenerated skeletal muscle fibres in mdx dystrophic muscles.

    PubMed

    Earnshaw, John C; Kyprianou, Phillip; Krishan, Kewal; Dhoot, Gurtej K

    2002-07-01

    The differentiation of both original muscle fibres and the regenerated muscle fibres following necrosis in mdx muscles was investigated using immunoblotting and immunocytochemical procedures. Before the onset of necrosis, postnatal skeletal muscles in mdx mouse differentiated well with only a slight delay in differentiation indicated by the level of developmental isoforms of troponin T. Prior to the onset of apparent myopathic change, both fast and slow skeletal muscle fibre types in mdx leg muscles also differentiated well when investigated by analysis of specific myosin heavy chain expression pattern. While the original muscle fibres in mdx leg muscles developed well, the differentiation of regenerated myotubes into both slow and distinct fast muscle fibre types, however, was markedly delayed or inhibited as indicated by several clusters of homogeneously staining fibres even at 14 weeks of age. The number of slow myosin heavy chain-positive myotubes amongst the regenerated muscle clusters was quite small even in soleus. This study thus established that while muscle fibres initially develop normally with only a slight delay in the differentiation process, the differentiation of regenerated myotubes in mdx muscles is markedly compromised and consequently delayed.

  18. Computer-aided mechanogenesis of skeletal muscle organs from single cells in vitro

    NASA Technical Reports Server (NTRS)

    Vanderburgh, Herman H.; Swasdison, Somporn; Karlisch, Patricia

    1991-01-01

    Complex mechanical forces generated in the growing embryo play an important role in organogenesis. Computerized application of similar forces to differentiating skeletal muscle myoblasts in vitro generate three dimensional artificial muscle organs. These organs contain parallel networks of long unbranched myofibers organized into fascicle-like structures. Tendon development is initiated and the muscles are capable of performing directed, functional work. Kinetically engineered organs provide a new method for studying the growth and development of normal and diseased skeletal muscle.

  19. Computer aided mechanogenesis of skeletal muscle organs from single cells in vitro

    NASA Technical Reports Server (NTRS)

    Vandenburgh, Herman H.; Swasdison, Somporn; Karlisch, Patricia

    1990-01-01

    Complex mechanical forces generated in the growing embryo play an important role in organogenesis. Computerized application of similar forces to differentiating skeletal muscle myoblasts in vitro generate three dimensional artificial muscle organs. These organs contain parallel networks of long unbranched myofibers organized into fascicle-like structures. Tendon development is initiated and the muscles are capable of performing directed, functional work. Kinetically engineered organs provide a new method for studying the growth and development of normal and diseased skeletal muscle.

  20. Current Methods for Skeletal Muscle Tissue Repair and Regeneration

    PubMed Central

    Liu, Juan; Saul, Dominik; Böker, Kai Oliver; Ernst, Jennifer; Lehman, Wolfgang

    2018-01-01

    Skeletal muscle has the capacity of regeneration after injury. However, for large volumes of muscle loss, this regeneration needs interventional support. Consequently, muscle injury provides an ongoing reconstructive and regenerative challenge in clinical work. To promote muscle repair and regeneration, different strategies have been developed within the last century and especially during the last few decades, including surgical techniques, physical therapy, biomaterials, and muscular tissue engineering as well as cell therapy. Still, there is a great need to develop new methods and materials, which promote skeletal muscle repair and functional regeneration. In this review, we give a comprehensive overview over the epidemiology of muscle tissue loss, highlight current strategies in clinical treatment, and discuss novel methods for muscle regeneration and challenges for their future clinical translation. PMID:29850487

  1. M-cadherin and its sisters in development of striated muscle.

    PubMed

    Kaufmann, U; Martin, B; Link, D; Witt, K; Zeitler, R; Reinhard, S; Starzinski-Powitz, A

    1999-04-01

    Cadherins are calcium-dependent, transmembrane intercellular adhesion proteins with morphoregulatory functions in the development and maintenance of tissues. In the development of striated muscle, the expression and function of mainly M-, N-, and R-cadherin has been studied so far. While these three cadherins are expressed in skeletal muscle cells, of these only N-cadherin is expressed in cardiac muscle. In this review, M-, N-, and R-cadherin are discussed as important players in the terminal differentiation and possibly also in the commitment of skeletal muscle cells. Furthermore, reports are described which evaluate the essential role of N-cadherin in the formation of heart tissue.

  2. GLUT4 Mobilization Supports Energetic Demands of Active Synapses.

    PubMed

    Ashrafi, Ghazaleh; Wu, Zhuhao; Farrell, Ryan J; Ryan, Timothy A

    2017-02-08

    The brain is highly sensitive to proper fuel availability as evidenced by the rapid decline in neuronal function during ischemic attacks and acute severe hypoglycemia. We previously showed that sustained presynaptic function requires activity-driven glycolysis. Here, we provide strong evidence that during action potential (AP) firing, nerve terminals rely on the glucose transporter GLUT4 as a glycolytic regulatory system to meet the activity-driven increase in energy demands. Activity at synapses triggers insertion of GLUT4 into the axonal plasma membrane driven by activation of the metabolic sensor AMP kinase. Furthermore, we show that genetic ablation of GLUT4 leads to an arrest of synaptic vesicle recycling during sustained AP firing, similar to what is observed during acute glucose deprivation. The reliance on this biochemical regulatory system for "exercising" synapses is reminiscent of that occurring in exercising muscle to sustain cellular function and identifies nerve terminals as critical sites of proper metabolic control. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Physical medicine and rehabilitation in the elderly arthritic patient.

    PubMed

    Schutt, A H

    1977-02-01

    The basic conservative therapy programs for elderly patients with arthritis include adequate physical rest and mental relaxation, analgesics, aspirin, and physical rehabilitation consisting of occupational and physical therapy with a good home therapy program providing appropriate balance between rest and activity. Proper protection from trauma and overuse of the involved joints, and appropriate nutrition can afford optimal improvement in health status and general resistance. Proper orientation of the patient regarding the nature of his disease and treatment program usually is required to obtain his full cooperation. A kind, encouraging, and understanding approach is most helpful in the elderly patient. Physical rehabilitation can help to relieve pain, decrease edema and deformities, improve muscle weakness and incoordination, and increase stamina. Difficulties with gait, transfers, and self-care can be solved or improved. Physical medicine and rehabilitation measures are important components of the challenging treatment of patients of all age groups who are afflicted with severe arthritis. It is most important to tailor these components of the treatment program to the problem presented by geriatric arthritic patients.

  4. mir-125a-5p-mediated Regulation of Lfng is Essential for the Avian Segmentation Clock

    PubMed Central

    Riley, Maurisa F.; Bochter, Matthew S.; Wahi, Kanu; Nuovo, Gerard J.; Cole, Susan E.

    2013-01-01

    Summary Somites are embryonic precursors of the axial skeleton and skeletal muscles, and establish the segmental vertebrate body plan. Somitogenesis is controlled in part by a segmentation clock that requires oscillatory expression of genes including Lunatic fringe (Lfng). Oscillatory genes must be tightly regulated both at the transcriptional and post-transcriptional levels for proper clock function. Here we demonstrate that microRNA-mediated regulation of Lfng is essential for proper segmentation during chick somitogenesis. We find that mir-125a-5p targets evolutionarily conserved sequences in the Lfng 3′UTR, and that preventing interactions between mir-125a-5p and Lfng transcripts in vivo causes abnormal segmentation and perturbs clock activity. This provides strong evidence that miRNAs function in the post-transcriptional regulation of oscillatory genes in the segmentation clock. Further, this demonstrates that the relatively subtle effects of miRNAs on target genes can have broad effects in developmental situations that have critical requirements for tight post-transcriptional regulation. PMID:23484856

  5. Generation of contractile actomyosin bundles depends on mechanosensitive actin filament assembly and disassembly

    PubMed Central

    Tojkander, Sari; Gateva, Gergana; Husain, Amjad; Krishnan, Ramaswamy; Lappalainen, Pekka

    2015-01-01

    Adhesion and morphogenesis of many non-muscle cells are guided by contractile actomyosin bundles called ventral stress fibers. While it is well established that stress fibers are mechanosensitive structures, physical mechanisms by which they assemble, align, and mature have remained elusive. Here we show that arcs, which serve as precursors for ventral stress fibers, undergo lateral fusion during their centripetal flow to form thick actomyosin bundles that apply tension to focal adhesions at their ends. Importantly, this myosin II-derived force inhibits vectorial actin polymerization at focal adhesions through AMPK-mediated phosphorylation of VASP, and thereby halts stress fiber elongation and ensures their proper contractility. Stress fiber maturation additionally requires ADF/cofilin-mediated disassembly of non-contractile stress fibers, whereas contractile fibers are protected from severing. Taken together, these data reveal that myosin-derived tension precisely controls both actin filament assembly and disassembly to ensure generation and proper alignment of contractile stress fibers in migrating cells. DOI: http://dx.doi.org/10.7554/eLife.06126.001 PMID:26652273

  6. Generation of contractile actomyosin bundles depends on mechanosensitive actin filament assembly and disassembly.

    PubMed

    Tojkander, Sari; Gateva, Gergana; Husain, Amjad; Krishnan, Ramaswamy; Lappalainen, Pekka

    2015-12-10

    Adhesion and morphogenesis of many non-muscle cells are guided by contractile actomyosin bundles called ventral stress fibers. While it is well established that stress fibers are mechanosensitive structures, physical mechanisms by which they assemble, align, and mature have remained elusive. Here we show that arcs, which serve as precursors for ventral stress fibers, undergo lateral fusion during their centripetal flow to form thick actomyosin bundles that apply tension to focal adhesions at their ends. Importantly, this myosin II-derived force inhibits vectorial actin polymerization at focal adhesions through AMPK-mediated phosphorylation of VASP, and thereby halts stress fiber elongation and ensures their proper contractility. Stress fiber maturation additionally requires ADF/cofilin-mediated disassembly of non-contractile stress fibers, whereas contractile fibers are protected from severing. Taken together, these data reveal that myosin-derived tension precisely controls both actin filament assembly and disassembly to ensure generation and proper alignment of contractile stress fibers in migrating cells.

  7. Neuromuscular Development and Regulation of Myosin Expression

    NASA Technical Reports Server (NTRS)

    Bodine, Sue

    1997-01-01

    The proposed experiments were designed to determine whether the absence of gravity during embryogenesis influences the postnatal development of the neuromuscular system. Further, we examined the effects of reduced gravity on hindlimb muscles of the pregnant rats. Microgravity may have short and long-term effects on the development of muscle fiber type differentiation and force producing capabilities. Microgravity will reduce muscle fiber size and cause a shift in myosin heavy chain expression from slow to fast in hindlimb muscles of the adult pregnant rats.

  8. Adolescent muscle dysmorphia and family-based treatment: a case report.

    PubMed

    Murray, Stuart B; Griffiths, Scott

    2015-04-01

    A growing body of evidence suggests that the prevalence of male body dissatisfaction and muscle dysmorphia is rising. To date, however, there is no published evidence on the efficacy of treatments for muscle dysmorphia. We present the case of a 15-year-old boy who met full diagnostic criteria for muscle dysmorphia, whose symptoms were treated into remission with eating disorder-focused, family-based treatment. The age of this patient fell within the time period in which symptoms of muscle dysmorphia are most likely to develop and this case represents the first published case report of family-based treatment for muscle dysmorphia in this age group. Thus, this case report has important implications for clinicians considering treatment options for presentations of muscle dysmorphia when first presenting in adolescence. Implications for the development of treatment guidelines for muscle dysmorphia and for the diagnostic debate surrounding muscle dysmorphia are also discussed. © The Author(s) 2014.

  9. The importance of subfragment 2 and C-terminus of myosin heavy chain for thick filament assembly in skeletal muscle cells.

    PubMed

    Ojima, Koichi; Oe, Mika; Nakajima, Ikuyo; Shibata, Masahiro; Muroya, Susumu; Chikuni, Koichi; Hattori, Akihito; Nishimura, Takanori

    2015-04-01

    In skeletal muscle cells, myofibrillar proteins are highly organized into sarcomeres in which thick filaments interdigitate with thin filaments to generate contractile force. The size of thick filaments, which consist mainly of myosin molecules, is strictly controlled. However, little is known about the mechanisms by which myosin molecules assemble into thick filaments. Here, we assessed the ability of each domain of myosin heavy chain (Myh) to form thick filaments. We showed that exogenously expressed subfragment 2 (S2) + light meromyosin (LMM) of Myh was efficiently incorporated into thick filaments in muscle cells, although neither solely expressed S2 nor LMM targeted to thick filaments properly. In nonmuscle COS7 cells, S2+LMM formed more enlarged filaments/speckles than LMM. These results suggest that Myh filament formation is induced by S2 accompanying LMM. We further examined the effects of Myh C-terminus on thick filament assembly. C-terminal deletion mutants were incorporated not into entire thick filaments but rather into restricted regions of thick filaments. Our findings suggest that the elongation of myosin filaments to form thick filaments is regulated by S2 as well as C-terminus of LMM. © 2014 Japanese Society of Animal Science.

  10. Development of the trigeminal motor neurons in parrots: implications for the role of nervous tissue in the evolution of jaw muscle morphology.

    PubMed

    Tokita, Masayoshi; Nakayama, Tomoki

    2014-02-01

    Vertebrates have succeeded to inhabit almost every ecological niche due in large part to the anatomical diversification of their jaw complex. As a component of the feeding apparatus, jaw muscles carry a vital role for determining the mode of feeding. Early patterning of the jaw muscles has been attributed to cranial neural crest-derived mesenchyme, however, much remains to be understood about the role of nonneural crest tissues in the evolution and diversification of jaw muscle morphology. In this study, we describe the development of trigeminal motor neurons in a parrot species with the uniquely shaped jaw muscles and compare its developmental pattern to that in the quail with the standard jaw muscles to uncover potential roles of nervous tissue in the evolution of vertebrate jaw muscles. In parrot embryogenesis, the motor axon bundles are detectable within the muscular tissue only after the basic shape of the muscular tissue has been established. This supports the view that nervous tissue does not primarily determine the spatial pattern of jaw muscles. In contrast, the trigeminal motor nucleus, which is composed of somata of neurons that innervate major jaw muscles, of parrot is more developed compared to quail, even in embryonic stage where no remarkable interspecific difference in both jaw muscle morphology and motor nerve branching pattern is recognized. Our data suggest that although nervous tissue may not have a large influence on initial patterning of jaw muscles, it may play an important role in subsequent growth and maintenance of muscular tissue and alterations in cranial nervous tissue development may underlie diversification of jaw muscle morphology. Copyright © 2013 Wiley Periodicals, Inc.

  11. The C. elegans SoxC protein SEM-2 opposes differentiation factors to promote a proliferative blast cell fate in the postembryonic mesoderm

    PubMed Central

    Tian, Chenxi; Shi, Herong; Colledge, Clark; Stern, Michael; Waterston, Robert; Liu, Jun

    2011-01-01

    The proper development of multicellular organisms requires precise regulation and coordination of cell fate specification, cell proliferation and differentiation. Abnormal regulation and coordination of these processes could lead to disease, including cancer. We have examined the function of the sole C. elegans SoxC protein, SEM-2, in the M lineage, which produces the postembryonic mesoderm. We found that SEM-2/SoxC is both necessary and sufficient to promote a proliferating blast cell fate, the sex myoblast fate, over a differentiated striated bodywall muscle fate. A number of factors control the specific expression of sem-2 in the sex myoblast precursors and their descendants. This includes direct control of sem-2 expression by a Hox-PBC complex. The crucial nature of the HOX/PBC factors in directly enhancing expression of this proliferative factor in the C. elegans M lineage suggests a possible more general link between Hox-PBC factors and SoxC proteins in regulating cell proliferation. PMID:21307099

  12. [Orthorexia nervosa. A new eating behavior disorder?].

    PubMed

    Catalina Zamora, M L; Bote Bonaechea, B; García Sánchez, F; Ríos Rial, B

    2005-01-01

    New eating behavior disorders such as bigorexia (muscle dysmorphia) and orthorexia are appearing in developed countries. These disorders have not been officially recognized so that they are not classified as independent entities. The term orthorexia comes from the Greek word orthos (straight, proper) and orexia (appetite). It is characterized by the pathological obsession for biologically pure food, which leads to important dietary restrictions. Orthorexic patients exclude foods from their diets that they consider to be impure because they have herbicides, pesticides or artificial substances and they worry in excess about the techniques and materials used in the food elaboration. This obsession leads to loss of social relationships and affective dissatisfactions which, in turn, favors obsessive concern about food. In orthorexia, that patient initially wants to improve his/her health, treat a disease or lose weight. Finally, the diet becomes the most important part of their lives. We present a clinical case that responds to the characteristics of orthorexia. The differential diagnosis with chronic delusional disorder, anorexia nervosa and obsessive-compulsive disorder is carried out.

  13. Embryonic-only arsenic exposure in killifish (Fundulus heteroclitus) reduces growth and alters muscle IGF levels one year later.

    PubMed

    Szymkowicz, Dana B; Sims, Kaleigh C; Castro, Noemi M; Bridges, William C; Bain, Lisa J

    2017-05-01

    Arsenic is a contaminant of drinking water and crops in many parts of the world. Epidemiological studies have shown that arsenic exposure is linked to decreased birth weight, weight gain, and proper skeletal muscle function. The goal of this study was to use killifish (Fundulus heteroclitus) as a model to determine the long-term effects of embryonic-only arsenic exposure on muscle growth and the insulin-like growth factor (IGF) pathway. Killifish embryos were exposed to 0, 50, 200 or 800ppb As III from fertilization until hatching. Juvenile fish were reared in clean water and muscle samples were collected at 16, 28, 40 and 52 weeks of age. There were significant reductions in condition factors, ranging from 12 to 17%, in the fish exposed to arsenic at 16, 28 and 40 weeks of age. However, by 52 weeks, no significant changes in condition factors were seen. Alterations in IGF-1R and IGF-1 levels were assessed as a potential mechanism by which growth was reduced. While there no changes in hepatic IGF-1 transcripts, skeletal muscle cells can also produce their own IGF-1 and/or alter IGF-1 receptor levels to help enhance growth. After a 200 and 800ppb embryonic exposure, fish grown in clean water for 16 weeks had IGF-1R transcripts that were 2.8-fold and 2-fold greater, respectively, than unexposed fish. Through 40 weeks of age, IGF1-R remained elevated in the 200ppb and 800ppb embryonic exposure groups by 1.8-3.9-fold, while at 52 weeks of age, IGF-1R levels were still significantly increased in the 800ppb exposure group. Skeletal muscle IGF-1 transcripts were also significantly increased by 1.9-5.1 fold through the 52 weeks of grow-out in clean by water in the 800ppb embryonic exposure group. Based on these results, embryonic arsenic exposure has long-term effects in that it reduces growth and increases both IGF-1 and IGF-1R levels in skeletal muscle even 1year after the exposure has ended. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Myopathy-inducing mutation H40Y in ACTA1 hampers actin filament structure and function

    DOE PAGES

    Chan, Chun; Fan, Jun; Messer, Andrew E.; ...

    2016-04-22

    In humans, more than 200 missense mutations have been identified in the ACTA1 gene. The exact molecular mechanisms by which, these particular mutations become toxic and lead to muscle weakness and myopathies remain obscure. To address this, here, we performed a molecular dynamics simulation, and we used a broad range of biophysical assays to determine how the lethal and myopathy-related H40Y amino acid substitution in actin affects the structure, stability, and function of this protein. Interestingly, our results showed that H40Y severely disrupts the DNase I-binding-loop structure and actin filaments. In addition, we observed that normal and mutant actin monomersmore » are likely to form distinctive homopolymers, with mutant filaments being very stiff, and not supporting proper myosin binding. Lastly, these phenomena underlie the toxicity of H40Y and may be considered as important triggering factors for the contractile dysfunction, muscle weakness and disease phenotype seen in patients.« less

  15. Might as Well Jump: Sound Affects Muscle Activation in Skateboarding

    PubMed Central

    Cesari, Paola; Camponogara, Ivan; Papetti, Stefano; Rocchesso, Davide; Fontana, Federico

    2014-01-01

    The aim of the study is to reveal the role of sound in action anticipation and performance, and to test whether the level of precision in action planning and execution is related to the level of sensorimotor skills and experience that listeners possess about a specific action. Individuals ranging from 18 to 75 years of age - some of them without any skills in skateboarding and others experts in this sport - were compared in their ability to anticipate and simulate a skateboarding jump by listening to the sound it produces. Only skaters were able to modulate the forces underfoot and to apply muscle synergies that closely resembled the ones that a skater would use if actually jumping on a skateboard. More importantly we showed that only skaters were able to plan the action by activating anticipatory postural adjustments about 200 ms after the jump event. We conclude that expert patterns are guided by auditory events that trigger proper anticipations of the corresponding patterns of movements. PMID:24619134

  16. Might as well jump: sound affects muscle activation in skateboarding.

    PubMed

    Cesari, Paola; Camponogara, Ivan; Papetti, Stefano; Rocchesso, Davide; Fontana, Federico

    2014-01-01

    The aim of the study is to reveal the role of sound in action anticipation and performance, and to test whether the level of precision in action planning and execution is related to the level of sensorimotor skills and experience that listeners possess about a specific action. Individuals ranging from 18 to 75 years of age--some of them without any skills in skateboarding and others experts in this sport--were compared in their ability to anticipate and simulate a skateboarding jump by listening to the sound it produces. Only skaters were able to modulate the forces underfoot and to apply muscle synergies that closely resembled the ones that a skater would use if actually jumping on a skateboard. More importantly we showed that only skaters were able to plan the action by activating anticipatory postural adjustments about 200 ms after the jump event. We conclude that expert patterns are guided by auditory events that trigger proper anticipations of the corresponding patterns of movements.

  17. Myopathy-inducing mutation H40Y in ACTA1 hampers actin filament structure and function

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chan, Chun; Fan, Jun; Messer, Andrew E.

    In humans, more than 200 missense mutations have been identified in the ACTA1 gene. The exact molecular mechanisms by which, these particular mutations become toxic and lead to muscle weakness and myopathies remain obscure. To address this, here, we performed a molecular dynamics simulation, and we used a broad range of biophysical assays to determine how the lethal and myopathy-related H40Y amino acid substitution in actin affects the structure, stability, and function of this protein. Interestingly, our results showed that H40Y severely disrupts the DNase I-binding-loop structure and actin filaments. In addition, we observed that normal and mutant actin monomersmore » are likely to form distinctive homopolymers, with mutant filaments being very stiff, and not supporting proper myosin binding. Lastly, these phenomena underlie the toxicity of H40Y and may be considered as important triggering factors for the contractile dysfunction, muscle weakness and disease phenotype seen in patients.« less

  18. A four year prospective study of injuries in elite Ontario youth provincial and national soccer players during training and matchplay

    PubMed Central

    Mohib, Milad; Moser, Nicholas; Kim, Richard; Thillai, Maathavan; Gringmuth, Robert

    2014-01-01

    Introduction: With over 200 million amateur players worldwide, soccer is one of the most popular and internationally recognized sports today. By understanding how and why soccer injuries occur we hope to reduce prevalent injuries amongst elite soccer athletes. Methods: Via a prospective cohort, we examined both male and female soccer players eligible to train with the Ontario Soccer Association provincial program between the ages of 13 to 17 during the period of October 10, 2008 and April 20, 2012. Data collection occurred during all player exposures to potential injury. Exposures occurred at the Soccer Centre, Ontario Training grounds and various other venues on multiple playing surfaces. Results: A total number of 733 injuries were recorded. Muscle strain, pull or tightness was responsible for 45.6% of all injuries and ranked as the most prevalent injury. Discussion: As anticipated, the highest injury reported was muscular strain, which warrants more suitable preventive programs aimed at strengthening and properly warming up the players’ muscles. PMID:25550661

  19. Relationships among muscle fiber type composition, fiber diameter and MRF gene expression in different skeletal muscles of naturally grazing Wuzhumuqin sheep during postnatal development.

    PubMed

    Siqin, Qimuge; Nishiumi, Tadayuki; Yamada, Takahisa; Wang, Shuiqing; Liu, Wenjun; Wu, Rihan; Borjigin, Gerelt

    2017-12-01

    The aim of this study was to determine the relationships among muscle fiber-type composition, fiber diameter, and myogenic regulatory factor (MRF) gene expression in different skeletal muscles during development in naturally grazing Wuzhumuqin sheep. Three major muscles (i.e. the Longissimus dorsi (LD), Biceps femoris (BF) and Triceps brachii (TB)) were obtained from 20 Wuzhumuqin sheep and 20 castrated rams at each of the following ages: 1, 3, 6, 9, 12 and 18 months. Muscle fiber-type composition and fiber diameter were measured using histochemistry and morphological analysis, and MRF gene expression levels were determined using real-time PCR. In the LD muscle, changes in the proportion of each of different types of fiber (I, IIA and IIB) were relatively small. In the BF muscle, a higher proportion of type I and a 6.19-fold lower proportion of type IIA fibers were observed (P < 0.05). In addition, the compositions of type I and IIA fibers continuously changed in the TB muscle (P < 0.05). Moreover, muscle diameter gradually increased throughout development (P < 0.05). Almost no significant difference was found in MRF gene expression patterns, which appeared to be relatively stable. These results suggest that changes in fiber-type composition and increases in fiber size may be mutually interacting processes during muscle development. © 2017 The Authors Animal Science Journal published by John Wiley & Sons Australia, Ltd on behalf of Japanese Society of Animal Science.

  20. Bio-kinetic energy harvesting using electroactive polymers

    NASA Astrophysics Data System (ADS)

    Slade, Jeremiah R.; Bowman, Jeremy; Kornbluh, Roy

    2012-06-01

    In hybrid vehicles, electric motors are used on each wheel to not only propel the car but also to decelerate the car by acting as generators. In the case of the human body, muscles spend about half of their time acting as a brake, absorbing energy, or doing what is known as negative work. Using dielectric elastomers it is possible to use the "braking" phases of walking to generate power without restricting or fatiguing the Warfighter. Infoscitex and SRI have developed and demonstrated methods for using electroactive polymers (EAPs) to tap into the negative work generated at the knee during the deceleration phase of the human gait cycle and convert it into electrical power that can be used to support wearable information systems, including display and communication technologies. The specific class of EAP that has been selected for these applications is termed dielectric elastomers. Because dielectric elastomers dissipate very little mechanical energy into heat, greater amounts of energy can be converted into electricity than by any other method. The long term vision of this concept is to have EAP energy harvesting cells located in components of the Warfighter ensemble, such as the boot uppers, knee pads and eventually even the clothing itself. By properly locating EAPs at these sites it will be possible to not only harvest power from the negative work phase but to actually reduce the amount of work done by the Warfighter's muscles during this phase, thereby reducing fatigue and minimizing the forces transmitted to the joints.

  1. Recent advances on the role of long non-coding RNA H19 in regulating mammalian muscle growth and development.

    PubMed

    Qin, Chen Yu; Cai, He; Qing, Han Rui; Li, Li; Zhang, Hong Ping

    2017-12-20

    As one of the first identified long non-coding RNAs (lncRNAs), H19 plays a wide range of roles in vivo, including not only as a tumor suppressor and oncogene involved in disease process, but also as a regulator of growth and development of multiple tissues in mammalian embryos. The function of H19 in muscles (both skeletal and cardiac muscle) draws widespread attention due to the following two reasons. On one hand, H19 promotes myogenic differentiation and myogenesis of skeletal muscle satellite cells (SMSCs) via regulating Igf2 in cis. On the other hand, H19 also modulates the target genes in trans, including sponging let-7, miR-106 or miR-29 to mediate myocyte glucose uptake, cardiomyocyte proliferation and tendon repair, as well as promote embryonic development and muscle regeneration through binding to MBD1 as a chromatin modifier. In this review, we summarize the role of H19 in mammalian muscles, which will provide a reference for further research to unveil the molecular mechanism of muscle growth and development.

  2. Development of the Muscle Appearance Satisfaction Scale: a self-report measure for the assessment of muscle dysmorphia symptoms.

    PubMed

    Mayville, Stephen B; Williamson, Donald A; White, Marney A; Netemeyer, Richard G; Drab, Danae L

    2002-12-01

    Muscle dysmorphia has recently been described as a variant of body dysmorphic disorder that involves an intense preoccupation with one's perceived lack of muscle size. Currently, no assessment measures specific to the cognitive, affective, and behavioral dimensions of the construct of muscle dysmorphia have been published. To address this need, the authors developed the Muscle Appearance Satisfaction Scale (MASS), a brief 19-item self-report measure for the assessment of muscle dysmorphia symptoms. Psychometric evaluation of the MASS across two samples of male weight lifting participants (total N = 372) revealed a stable five-factor structure. An evaluation of factor content resulted in the following factor labels: Bodybuilding Dependence, Muscle Checking, Substance Use, Injury, and Muscle Satisfaction. Internal consistency, test-retest reliability, and construct validity were established with the MASS total score and its subscales. The authors believe the MASS will be a useful measure for research and applied work relating to muscle dysmorphia.

  3. Effect of transforming growth factor-beta1 on embryonic and posthatch muscle growth and development in normal and low score normal chicken.

    PubMed

    Li, X; Velleman, S G

    2009-02-01

    During skeletal muscle development, transforming growth factor-beta1 (TGF-beta1) is a potent inhibitor of muscle cell proliferation and differentiation. The TGF-beta1 signal is carried by Smad proteins into the cell nucleus, inhibiting the expression of key myogenic regulatory factors including MyoD and myogenin. However, the molecular mechanism by which TGF-beta1 inhibits muscle cell proliferation and differentiation has not been well documented in vivo. The present study investigated the effect of TGF-beta1 on in vivo skeletal muscle growth and development. A chicken line, Low Score Normal (LSN) with reduced muscling and upregulated TGF-beta1 expression, was used and compared to a normal chicken line. The injection of TGF-beta1 at embryonic day (ED) 3 significantly reduced the pectoralis major (p. major) muscle weight in the normal birds at 1 wk posthatch, whereas no significant difference was observed in the LSN birds. The difference between normal and LSN birds in response to TGF-beta1 is likely due to different levels of endogenous TGF-beta1 where the LSN birds have increased TGF-beta1 expression in their p. major muscle at both 17 ED and 6 wk posthatch. Smad3 expression was reduced by TGF-beta1 from 10 ED to 1 wk posthatch in normal p. major muscle. Unlike Smad3, Smad7 expression was not significantly affected by TGF-beta1 until posthatch in both normal and LSN p. major muscle. Expression of MyoD was reduced 35% by TGF-beta1 during embryonic development in normal p. major muscle, whereas LSN p. major muscle showed a delayed decrease at 1 d posthatch in MyoD expression in response to the TGF-beta1 treatment. Myogenin expression was reduced 29% by TGF-beta1 after hatch in normal p. major muscle. In LSN p. major muscle, TGF-beta1 treatment significantly decreased myogenin expression by 43% at 1 d posthatch and 32% at 1 wk posthatch. These data suggested that TGF-beta1 reduced p. major muscle growth by inhibiting MyoD and myogenin expression during both embryonic and posthatch development. Furthermore, TGF-beta1 also reduced the expression of the cell adhesion receptor beta1 integrin subunit during embryonic and posthatch muscle growth in normal and LSN chickens. Therefore, the reduction of beta1 integrin in response to TGF-beta1 is also associated with decreased posthatch muscle growth. The results from this study indicate that TGF-beta1 inhibits skeletal muscle growth by regulating MyoD and myogenin expression. These data also suggest that a beta1 integrin-mediated alternative pathway is likely involved in the TGF-beta1-induced reduction of muscle growth.

  4. Regionalizing muscle activity causes changes to the magnitude and direction of the force from whole muscles-a modeling study.

    PubMed

    Rahemi, Hadi; Nigam, Nilima; Wakeling, James M

    2014-01-01

    Skeletal muscle can contain neuromuscular compartments that are spatially distinct regions that can receive relatively independent levels of activation. This study tested how the magnitude and direction of the force developed by a whole muscle would change when the muscle activity was regionalized within the muscle. A 3D finite element model of a muscle with its bounding aponeurosis was developed for the lateral gastrocnemius, and isometric contractions were simulated for a series of conditions with either a uniform activation pattern, or regionally distinct activation patterns: in all cases the mean activation from all fibers within the muscle reached 10%. The models showed emergent features of the fiber geometry that matched physiological characteristics: with fibers shortening, rotating to greater pennation, adopting curved trajectories in 3D and changes in the thickness and width of the muscle belly. Simulations were repeated for muscle with compliant, normal and stiff aponeurosis and the aponeurosis stiffness affected the changes to the fiber geometry and the resultant muscle force. Changing the regionalization of the activity resulted to changes in the magnitude, direction and center of the force vector from the whole muscle. Regionalizing the muscle activity resulted in greater muscle force than the simulation with uniform activity across the muscle belly. The study shows how the force from a muscle depends on the complex interactions between the muscle fibers and connective tissues and the region of muscle that is active.

  5. Integrative Analysis of Porcine microRNAome during Skeletal Muscle Development

    PubMed Central

    Qin, Lijun; Chen, Yaosheng; Liu, Xiaohong; Ye, Sanxing; Yu, Kaifan; Huang, Zheng; Yu, Jingwei; Zhou, Xingyu; Chen, Hu; Mo, Delin

    2013-01-01

    Pig is an important agricultural animal for meat production and provides a valuable model for many human diseases. Functional studies have demonstrated that microRNAs (miRNAs) play critical roles in almost all aspects of skeletal muscle development and disease pathogenesis. To investigate the miRNAs involved in regulating different periods of skeletal muscle development, we herein performed a comprehensive research for porcine microRNAome (miRNAome) during 10 skeletal muscle developmental stages including 35, 49, 63, 77, 91 dpc (days post coitum) and 2, 28, 90, 120, 180 dpn (days postnatal) using Solexa sequencing technology. Our results extend the repertoire of pig miRNAome to 247 known miRNAs processed from 210 pre-miRNAs and 297 candidate novel miRNAs through comparison with known miRNAs in the miRBase. Expression analysis of the 15 most abundant miRNAs in every library indicated that functional miRNAome may be smaller and tend to be highly expressed. A series of muscle-related miRNAs summarized in our study present different patterns between myofibers formation phase and muscle maturation phase, providing valuable reference for investigation of functional miRNAs during skeletal muscle development. Analysis of temporal profiles of miRNA expression identifies 18 novel candidate myogenic miRNAs in pig, which might provide new insight into regulation mechanism mediated by miRNAs underlying muscle development. PMID:24039761

  6. Muscle precursor cells in the developing limbs of two isopods (Crustacea, Peracarida): an immunohistochemical study using a novel monoclonal antibody against myosin heavy chain

    PubMed Central

    Kreissl, S.; Uber, A.

    2008-01-01

    In the hot debate on arthropod relationships, Crustaceans and the morphology of their appendages play a pivotal role. To gain new insights into how arthropod appendages evolved, developmental biologists recently have begun to examine the expression and function of Drosophila appendage genes in Crustaceans. However, cellular aspects of Crustacean limb development such as myogenesis are poorly understood in Crustaceans so that the interpretative context in which to analyse gene functions is still fragmentary. The goal of the present project was to analyse muscle development in Crustacean appendages, and to that end, monoclonal antibodies against arthropod muscle proteins were generated. One of these antibodies recognises certain isoforms of myosin heavy chain and strongly binds to muscle precursor cells in malacostracan Crustacea. We used this antibody to study myogenesis in two isopods, Porcellio scaber and Idotea balthica (Crustacea, Malacostraca, Peracarida), by immunohistochemistry. In these animals, muscles in the limbs originate from single muscle precursor cells, which subsequently grow to form multinucleated muscle precursors. The pattern of primordial muscles in the thoracic limbs was mapped, and results compared to muscle development in other Crustaceans and in insects. Electronic supplementary material The online version of this article (doi:10.1007/s00427-008-0216-1) contains supplementary material, which is available to authorized users. PMID:18443823

  7. MyoD and Myf6 gene expression patterns in skeletal muscle during embryonic and posthatch development in the domestic duck (Anas platyrhynchos domestica).

    PubMed

    Li, H; Zhu, C; Tao, Z; Xu, W; Song, W; Hu, Y; Zhu, W; Song, C

    2014-06-01

    The MyoD and Myf6 genes, which are muscle regulatory factors (MRFs), play major roles in muscle growth and development and initiate muscle fibre formation via the regulation of muscle-specific gene translation. Therefore, MyoD and Myf6 are potential candidate genes for meat production traits in animals and poultry. The objective of this study was to evaluate MyoD and Myf6 gene expression patterns in the skeletal muscle during early developmental stage of ducks. Gene expression levels were detected using the quantitative RT-PCR method in the breast muscle (BM) and leg muscle (LM) at embryonic days 13, 17, 21, 25, 27, as well as at 1 week posthatching in Gaoyou and Jinding ducks (Anas platyrhynchos domestica). The MyoD and Myf6 gene profiles in the two duck breeds were consistent during early development, and MyoD gene expression showed a 'wave' trend in BM and an approximate 'anti-√' trend in LM. Myf6 gene expression in BM showed the highest level at embryonic day 21, which subsequently decreased, although remained relatively high, while levels at embryonic days 13, 17 and 21 were higher in LM. The results of correlation analysis showed that MyoD and Myf6 gene expression levels were more strongly correlated in LM than in BM in both duck breeds. These results indicated that different expression patterns of the MyoD and Myf6 genes in BM and LM may be related to muscle development and differentiation, suggesting that MyoD and Myf6 are integral to skeletal muscle development. © 2013 Blackwell Verlag GmbH.

  8. The relationship of choline acetyltransferase activity at the neuromuscular junction to changes in muscle mass and function

    PubMed Central

    Diamond, Ivan; Franklin, Gary M.; Milfay, Dale

    1974-01-01

    1. The role of muscle mass and function in the regulation of choline acetyltransferase activity at the neuromuscular junction has been investigated in the rat. 2. Choline acetyltransferase (ChAc) is located in presynaptic nerve terminals and is a specific enzymatic marker of cholinergic innervation in muscle. 3. ChAc activity increased co-ordinately with developmental growth of the soleus muscle. However, another form of muscle growth, work hypertrophy, did not produce an increase in ChAc. 4. Growth arrest of muscle by hypophysectomy did not alter the normal development of ChAc activity, and cortisone-induced muscle atrophy did not reduce ChAc activity in the soleus or plantaris. 5. Tenotomy-induced muscle atrophy provoked a significant fall in ChAc in the soleus and plantaris. 6. The tonic soleus had significantly greater ChAc activity than the phasic plantaris. 7. These observations suggest that muscle mass per se does not influence the development and regulation of ChAc in muscle but that the quality of muscle contraction may modulate enzyme activity. PMID:4818500

  9. Patterning the dorsal longitudinal flight muscles (DLM) of Drosophila: insights from the ablation of larval scaffolds

    NASA Technical Reports Server (NTRS)

    Fernandes, J. J.; Keshishian, H.

    1996-01-01

    The six Dorsal Longitudinal flight Muscles (DLMs) of Drosophila develop from three larval muscles that persist into metamorphosis and serve as scaffolds for the formation of the adult fibers. We have examined the effect of muscle scaffold ablation on the development of DLMs during metamorphosis. Using markers that are specific to muscle and myoblasts we show that in response to the ablation, myoblasts which would normally fuse with the larval muscle, fuse with each other instead, to generate the adult fibers in the appropriate regions of the thorax. The development of these de novo DLMs is delayed and is reflected in the delayed expression of erect wing, a transcription factor thought to control differentiation events associated with myoblast fusion. The newly arising muscles express the appropriate adult-specific Actin isoform (88F), indicating that they have the correct muscle identity. However, there are frequent errors in the number of muscle fibers generated. Ablation of the larval scaffolds for the DLMs has revealed an underlying potential of the DLM myoblasts to initiate de novo myogenesis in a manner that resembles the mode of formation of the Dorso-Ventral Muscles, DVMs, which are the other group of indirect flight muscles. Therefore, it appears that the use of larval scaffolds is a superimposition on a commonly used mechanism of myogenesis in Drosophila. Our results show that the role of the persistent larval muscles in muscle patterning involves the partitioning of DLM myoblasts, and in doing so, they regulate formation of the correct number of DLM fibers.

  10. Muscle-driven finite element simulation of human foot movements.

    PubMed

    Spyrou, L A; Aravas, N

    2012-01-01

    This paper describes a finite element scheme for realistic muscle-driven simulation of human foot movements. The scheme is used to simulate human ankle plantar flexion. A three-dimensional anatomically detailed finite element model of human foot and lower leg is developed and the idea of generating natural foot movement based entirely on the contraction of the plantar flexor muscles is used. The bones, ligaments, articular cartilage, muscles, tendons, as well as the rest soft tissues of human foot and lower leg are included in the model. A realistic three-dimensional continuum constitutive model that describes the biomechanical behaviour of muscles and tendons is used. Both the active and passive properties of muscle tissue are accounted for. The materials for bones and ligaments are considered as homogeneous, isotropic and linearly elastic, whereas the articular cartilage and the rest soft tissues (mainly fat) are defined as hyperelastic materials. The model is used to estimate muscle tissue deformations as well as stresses and strains that develop in the lower leg muscles during plantar flexion of the ankle. Stresses and strains that develop in Achilles tendon during such a movement are also investigated.

  11. Skeletal muscle stem cells from animals I. Basic cell biology

    USDA-ARS?s Scientific Manuscript database

    Skeletal muscle stem cells from food-producing animals have been of interest to agricultural life scientists seeking to develop a better understanding of the molecular regulation of lean tissue (skeletal muscle protein hypertrophy) and intramuscular fat (marbling) development. Enhanced understanding...

  12. Measurement of Contractile Stress Generated by Cultured Rat Muscle on Silicon Cantilevers for Toxin Detection and Muscle Performance Enhancement

    DTIC Science & Technology

    2010-06-01

    muscle . J Clin Invest 117: 2388–2391. 13. Close R (1964) Dynamic properties of fast and slow skeletal muscles of the rat during development. J Physiol...cultured skeletal muscle [30], which reported average peak twitch stress values of 2.9 kPa (reported as specific peak twitch force in units of kN/m2), but...demonstrates that the myotubes were driven down a path towards a more mature phenotype, in the process developing fast - twitch isoforms of myosin, while

  13. Fatigue characteristics of carbon nanotube blocks under compression

    NASA Astrophysics Data System (ADS)

    Suhr, J.; Ci, L.; Victor, P.; Ajayan, P. M.

    2008-03-01

    In this paper we investigate the mechanical response from repeated high compressive strains on freestanding, long, vertically aligned multiwalled carbon nanotube membranes and show that the arrays of nanotubes under compression behave very similar to soft tissue and exhibit viscoelastic behavior. Under compressive cyclic loading, the mechanical response of nanotube blocks shows initial preconditioning and hysteresis characteristic of viscoeleastic materials. Furthermore, no fatigue failure is observed even at high strain amplitudes up to half million cycles. The outstanding fatigue life and extraordinary soft tissue-like mechanical behavior suggest that properly engineered carbon nanotube structures could mimic artificial muscles.

  14. SPARTEN (Scientific Program of Aerobic and Resistance Training Exercise in the Navy): A Total Body Fitness Program for Health and Physical Readiness.

    DTIC Science & Technology

    1984-08-01

    Conditioned- o latissimus dorsi o trapezius Training Recommendations - When adjusting for proper lat bar height, place pin in slot from a kneeling posi...Olattismus dorsi Training Recommendations -it is recommended that women hang from the chin handles and bring knees to chest. .. 19 - Arm-Curl Fig. 17...UPS (Posterior) trapezius ’IN ~ lover back muscles *lotiesimaus dorsi glutealS B-2 e-72-,- !.5 1, r. - U> r r-rrr r fl r rr r rrr rrr~ p... p... p p p

  15. Functioning of peripheral Ia pathways in infants with typical development: responses in antagonist muscle pairs

    PubMed Central

    Ulrich, Beverly D.; Martin, Bernard

    2015-01-01

    In muscle responses of proprioceptive origin, including the stretch/tendon reflex (T-reflex), the corresponding reciprocal excitation and irradiation to distant muscles have been described from newborn infants to older adults. However, the functioning of other responses mediated primarily by Ia-afferents has not been investigated in infants. Understanding the typical development of these multiple pathways is critical to determining potential problems in their development in populations affected by neurological disease, such as spina bifida or cerebral palsy. Hence, the goal of the present study was to quantify the excitability of Ia-mediated responses in lower limb muscles of infants with typical development. These responses were elicited by mechanical stimulation applied to the distal tendons of the gastrocnemius-soleus (GS), tibialis anterior (TA) and quadriceps (QAD) muscles of both legs in twelve 2- to 10-month-old infants and recorded simultaneously in antagonist muscle pairs by surface EMG. Tendon taps alone elicited responses in either, both or neither muscle. The homonymous response (T-reflex) was less frequent in the TA than the GS or QAD muscle. An 80 Hz vibration superimposed on tendon taps induced primarily an inhibition of monosynaptic responses; however, facilitation also occurred in either muscle of the recorded pair. These responses were not influenced significantly by age or gender. Vibration alone produced a tonic reflex response in the vibrated muscle (TVR) and/or the antagonist muscle (AVR). However, for the TA muscle the TVR was more frequently elicited in older than younger infants. High variability was common to all responses. Overall, the random distribution and inconsistency of muscle responses suggests that the gain of Ia-mediated feedback is unstable. We propose that during infancy the central nervous system needs to learn to set stable feedback gain, or destination of proprioceptive assistance, based on their use during functional movements. This will tailor the neuromuscular connectivity to support adaptive motor behaviors. PMID:21140137

  16. Genome-wide identification and characterization of long non-coding RNAs in developmental skeletal muscle of fetal goat.

    PubMed

    Zhan, Siyuan; Dong, Yao; Zhao, Wei; Guo, Jiazhong; Zhong, Tao; Wang, Linjie; Li, Li; Zhang, Hongping

    2016-08-22

    Long non-coding RNAs (lncRNAs) have been studied extensively over the past few years. Large numbers of lncRNAs have been identified in mouse, rat, and human, and some of them have been shown to play important roles in muscle development and myogenesis. However, there are few reports on the characterization of lncRNAs covering all the development stages of skeletal muscle in livestock. RNA libraries constructed from developing longissimus dorsi muscle of fetal (45, 60, and 105 days of gestation) and postnatal (3 days after birth) goat (Capra hircus) were sequenced. A total of 1,034,049,894 clean reads were generated. Among them, 3981 lncRNA transcripts corresponding to 2739 lncRNA genes were identified, including 3515 intergenic lncRNAs and 466 anti-sense lncRNAs. Notably, in pairwise comparisons between the libraries of skeletal muscle at the different development stages, a total of 577 transcripts were differentially expressed (P < 0.05) which were validated by qPCR using randomly selected six lncRNA genes. The identified goat lncRNAs shared some characteristics, such as fewer exons and shorter length, with the lncRNAs in other mammals. We also found 1153 lncRNAs genes were neighbored 1455 protein-coding genes (<10 kb upstream and downstream) and functionally enriched in transcriptional regulation and development-related processes, indicating they may be in cis-regulatory relationships. Additionally, Pearson's correlation coefficients of co-expression levels suggested 1737 lncRNAs and 19,422 mRNAs were possibly in trans-regulatory relationships (r > 0.95 or r < -0.95). These co-expressed mRNAs were enriched in development-related biological processes such as muscle system processes, regulation of cell growth, muscle cell development, regulation of transcription, and embryonic morphogenesis. This study provides a catalog of goat muscle-related lncRNAs, and will contribute to a fuller understanding of the molecular mechanism underpinning muscle development in mammals.

  17. Genetics Home Reference: Sheldon-Hall syndrome

    MedlinePlus

    ... proteins that are involved in muscle tensing (contraction). Muscle contraction occurs when thick filaments made of proteins called ... early development of the muscles. The process of muscle contraction is controlled (regulated) by other proteins called troponins ...

  18. Org-1-dependent lineage reprogramming generates the ventral longitudinal musculature of the Drosophila heart.

    PubMed

    Schaub, Christoph; März, Johannes; Reim, Ingolf; Frasch, Manfred

    2015-02-16

    Only few examples of transdifferentiation, which denotes the conversion of one differentiated cell type to another, are known to occur during normal development, and more often, it is associated with regeneration processes. With respect to muscles, dedifferentiation/redifferentiation processes have been documented during post-traumatic muscle regeneration in blastema of newts as well as during myocardial regeneration. As shown herein, the ventral longitudinal muscles of the adult Drosophila heart arise from specific larval alary muscles in a process that represents the first known example of syncytial muscle transdifferentiation via dedifferentiation into mononucleate myoblasts during normal development. We demonstrate that this unique process depends on the reinitiation of a transcriptional program previously employed for embryonic alary muscle development, in which the factors Org-1 (Drosophila Tbx1) and Tailup (Drosophila Islet1) are key components. During metamorphosis, the action of these factors is combined with cell-autonomous inputs from the ecdysone steroid and the Hox gene Ultrabithorax, which provide temporal and spatial specificity to the transdifferentiation events. Following muscle dedifferentiation, inductive cues, particularly from the remodeling heart tube, are required for the redifferentiation of myoblasts into ventral longitudinal muscles. Our results provide new insights into mechanisms of lineage commitment and cell-fate plasticity during development. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Bioreactors for guiding muscle tissue growth and development.

    PubMed

    Dennis, R G; Smith, B; Philp, A; Donnelly, K; Baar, K

    2009-01-01

    Muscle tissue bioreactors are devices which are employed to guide and monitor the development of engineered muscle tissue. These devices have a modern history that can be traced back more than a century, because the key elements of muscle tissue bioreactors have been studied for a very long time. These include barrier isolation and culture of cells, tissues and organs after isolation from a host organism; the provision of various stimuli intended to promote growth and maintain the muscle, such as electrical and mechanical stimulation; and the provision of a perfusate such as culture media or blood derived substances. An accurate appraisal of our current progress in the development of muscle bioreactors can only be made in the context of the history of this endeavor. Modern efforts tend to focus more upon the use of computer control and the application of mechanical strain as a stimulus, as well as substrate surface modifications to induce cellular organization at the early stages of culture of isolated muscle cells.

  20. In Vitro Tissue-Engineered Skeletal Muscle Models for Studying Muscle Physiology and Disease.

    PubMed

    Khodabukus, Alastair; Prabhu, Neel; Wang, Jason; Bursac, Nenad

    2018-04-25

    Healthy skeletal muscle possesses the extraordinary ability to regenerate in response to small-scale injuries; however, this self-repair capacity becomes overwhelmed with aging, genetic myopathies, and large muscle loss. The failure of small animal models to accurately replicate human muscle disease, injury and to predict clinically-relevant drug responses has driven the development of high fidelity in vitro skeletal muscle models. Herein, the progress made and challenges ahead in engineering biomimetic human skeletal muscle tissues that can recapitulate muscle development, genetic diseases, regeneration, and drug response is discussed. Bioengineering approaches used to improve engineered muscle structure and function as well as the functionality of satellite cells to allow modeling muscle regeneration in vitro are also highlighted. Next, a historical overview on the generation of skeletal muscle cells and tissues from human pluripotent stem cells, and a discussion on the potential of these approaches to model and treat genetic diseases such as Duchenne muscular dystrophy, is provided. Finally, the need to integrate multiorgan microphysiological systems to generate improved drug discovery technologies with the potential to complement or supersede current preclinical animal models of muscle disease is described. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Contralateral migration of oculomotor neurons is regulated by Slit/Robo signaling.

    PubMed

    Bjorke, Brielle; Shoja-Taheri, Farnaz; Kim, Minkyung; Robinson, G Eric; Fontelonga, Tatiana; Kim, Kyung-Tai; Song, Mi-Ryoung; Mastick, Grant S

    2016-10-22

    Oculomotor neurons develop initially like typical motor neurons, projecting axons out of the ventral midbrain to their ipsilateral targets, the extraocular muscles. However, in all vertebrates, after the oculomotor nerve (nIII) has reached the extraocular muscle primordia, the cell bodies that innervate the superior rectus migrate to join the contralateral nucleus. This motor neuron migration represents a unique strategy to form a contralateral motor projection. Whether migration is guided by diffusible cues remains unknown. We examined the role of Slit chemorepellent signals in contralateral oculomotor migration by analyzing mutant mouse embryos. We found that the ventral midbrain expresses high levels of both Slit1 and 2, and that oculomotor neurons express the repellent Slit receptors Robo1 and Robo2. Therefore, Slit signals are in a position to influence the migration of oculomotor neurons. In Slit 1/2 or Robo1/2 double mutant embryos, motor neuron cell bodies migrated into the ventral midbrain on E10.5, three days prior to normal migration. These early migrating neurons had leading projections into and across the floor plate. In contrast to the double mutants, embryos which were mutant for single Slit or Robo genes did not have premature migration or outgrowth on E10.5, demonstrating a cooperative requirement of Slit1 and 2, as well as Robo1 and 2. To test how Slit/Robo midline repulsion is modulated, we found that the normal migration did not require the receptors Robo3 and CXCR4, or the chemoattractant, Netrin 1. The signal to initiate contralateral migration is likely autonomous to the midbrain because oculomotor neurons migrate in embryos that lack either nerve outgrowth or extraocular muscles, or in cultured midbrains that lacked peripheral tissue. Overall, our results demonstrate that a migratory subset of motor neurons respond to floor plate-derived Slit repulsion to properly control the timing of contralateral migration.

  2. Cancer cachexia-induced muscle atrophy: evidence for alterations in microRNAs important for muscle size.

    PubMed

    Lee, David E; Brown, Jacob L; Rosa-Caldwell, Megan E; Blackwell, Thomas A; Perry, Richard A; Brown, Lemuel A; Khatri, Bhuwan; Seo, Dongwon; Bottje, Walter G; Washington, Tyrone A; Wiggs, Michael P; Kong, Byung-Whi; Greene, Nicholas P

    2017-05-01

    Muscle atrophy is a hallmark of cancer cachexia resulting in impaired function and quality of life and cachexia is the immediate cause of death for 20-40% of cancer patients. Multiple microRNAs (miRNAs) have been identified as being involved in muscle development and atrophy; however, less is known specifically on miRNAs in cancer cachexia. The purpose of this investigation was to examine the miRNA profile of skeletal muscle atrophy induced by cancer cachexia to uncover potential miRNAs involved with this catabolic condition. Phosphate-buffered saline (PBS) or Lewis lung carcinoma cells (LLC) were injected into C57BL/6J mice at 8 wk of age. LLC animals were allowed to develop tumors for 4 wk to induce cachexia. Tibialis anterior muscles were extracted and processed to isolate small RNAs, which were used for miRNA sequencing. Sequencing results were assembled with mature miRNAs, and functions of miRNAs were analyzed by Ingenuity Pathway Analysis. LLC animals developed tumors that contributed to significantly smaller tibialis anterior muscles (18.5%) and muscle cross-sectional area (40%) compared with PBS. We found 371 miRNAs to be present in the muscle above background levels. Of these, nine miRNAs were found to be differentially expressed. Significantly altered groups of miRNAs were categorized into primary functionalities including cancer, cell-to-cell signaling, and cellular development among others. Gene network analysis predicted specific alterations of factors contributing to muscle size including Akt, FOXO3, and others. These results create a foundation for future research into the sufficiency of targeting these genes to attenuate muscle loss in cancer cachexia. Copyright © 2017 the American Physiological Society.

  3. Muscle Deoxygenation Causes Muscle Fatigue

    NASA Technical Reports Server (NTRS)

    Murthy, G.; Hargens, A. R.; Lehman, S.; Rempel, D.

    1999-01-01

    Muscle fatigue is a common musculoskeletal disorder in the work place, and may be a harbinger for more disabling cumulative trauma disorders. Although the cause of fatigue is multifactorial, reduced blood flow and muscle oxygenation may be the primary factor in causing muscle fatigue during low intensity muscle exertion. Muscle fatigue is defined as a reduction in muscle force production, and also occurs among astronauts who are subjected to postural constraints while performing lengthy, repetitive tasks. The objectives of this research are to: 1) develop an objective tool to study the role of decreased muscle oxygenation on muscle force production, and 2) to evaluate muscle fatigue during prolonged glovebox work.

  4. The callipyge mutation and other genes that affect muscle hypertrophy in sheep

    PubMed Central

    2005-01-01

    Genetic strategies to improve the profitability of sheep operations have generally focused on traits for reproduction. However, natural mutations exist in sheep that affect muscle growth and development, and the exploitation of these mutations in breeding strategies has the potential to significantly improve lamb-meat quality. The best-documented mutation for muscle development in sheep is callipyge (CLPG), which causes a postnatal muscle hypertrophy that is localized to the pelvic limbs and loin. Enhanced skeletal muscle growth is also observed in animals with the Carwell (or rib-eye muscling) mutation, and a double-muscling phenotype has been documented for animals of the Texel sheep breed. However, the actual mutations responsible for these muscular hypertrophy phenotypes in sheep have yet to be identified, and further characterization of the genetic basis for these phenotypes will provide insight into the biological control of muscle growth and body composition. PMID:15601596

  5. Karyopherin alpha 1 regulates satellite cell proliferation and survival by modulating nuclear import

    PubMed Central

    Choo, Hyo-Jung; Cutler, Alicia; Rother, Franziska; Bader, Michael; Pavlath, Grace K.

    2016-01-01

    Satellite cells are stem cells with an essential role in skeletal muscle repair. Precise regulation of gene expression is critical for proper satellite cell quiescence, proliferation, differentiation and self -renewal. Nuclear proteins required for gene expression are dependent on the nucleocytoplasmic transport machinery to access to nucleus, however little is known about regulation of nuclear transport in satellite cells. The best characterized nuclear import pathway is classical nuclear import which depends on a classical nuclear localization signal (cNLS) in a cargo protein and the heterodimeric import receptors, karyopherin alpha (KPNA) and beta (KPNB). Multiple KPNA1 paralogs exist and can differ in importing specific cNLS proteins required for cell differentiation and function. We show that transcripts for six Kpna paralogs underwent distinct changes in mouse satellite cells during muscle regeneration accompanied by changes in cNLS proteins in nuclei. Depletion of KPNA1, the most dramatically altered KPNA, caused satellite cells in uninjured muscle to prematurely activate, proliferate and undergo apoptosis leading to satellite cell exhaustion with age. Increased proliferation of satellite cells led to enhanced muscle regeneration at early stages of regeneration. In addition, we observed impaired nuclear localization of two key KPNA1 cargo proteins: p27, a cyclin-dependent kinase inhibitor associated with cell cycle control and lymphoid enhancer factor 1, a critical co-transcription factor for β-catenin. These results indicate that regulated nuclear import of proteins by KPNA1 is critical for satellite cell proliferation and survival and establish classical nuclear import as a novel regulatory mechanism for controlling satellite cell fate. PMID:27434733

  6. Recommendations for natural bodybuilding contest preparation: resistance and cardiovascular training.

    PubMed

    Helms, E R; Fitschen, P J; Aragon, A A; Cronin, J; Schoenfeld, B J

    2015-03-01

    The anabolic effect of resistance training can mitigate muscle loss during contest preparation. In reviewing relevant literature, we recommend a periodized approach be utilized. Block and undulating models show promise. Muscle groups should be trained 2 times weekly or more, although high volume training may benefit from higher frequencies to keep volume at any one session from becoming excessive. Low to high (~3-15) repetitions can be utilized but most repetitions should occur in the 6-12 range using 70-80% of 1 repetition maximum. Roughly 40-70 reps per muscle group per session should be performed, however higher volume may be appropriate for advanced bodybuilders. Traditional rest intervals of 1-3 minutes are adequate, but longer intervals can be used. Tempo should allow muscular control of the load; 1-2 s concentric and 2-3 s eccentric tempos. Training to failure should be limited when performing heavy loads on taxing exercises, and primarily relegated to single-joint exercises and higher repetitions. A core of multi-joint exercises with some single-joint exercises to address specific muscle groups as needed should be used, emphasizing full range of motion and proper form. Cardiovascular training can be used to enhance fat loss. Interference with strength training adaptations increases concomitantly with frequency and duration of cardiovascular training. Thus, the lowest frequency and duration possible while achieving sufficient fat loss should be used. Full-body modalities or cycling may reduce interference. High intensities may as well; however, require more recovery. Fasted cardiovascular training may not have benefits over fed-state and could be detrimental.

  7. An Investigation of Electrochemomechanical Actuation of Conductive Polyacrylonitrile (PAN) Nanofiber Composites

    NASA Astrophysics Data System (ADS)

    Gonzalez, Mark A.

    A polymer-based nanofiber composite actuator designed for linear actuation was fabricated by electrospinning, actuated by electrolysis, and characterized by electrical and mechanical testing to address performance limitations and understand the activation processing effects on actuation performance. Currently, Electroactive polymers (EAPs) have provided uses in sensory and actuation technology, but have either low force output or expand rather than contract, falling short in capturing the natural motion and function of muscle desperately needed to provide breakthroughs in the bio-medical and robotic fields. Previous research has shown activated Polyacrylonitrile (PAN) fibers having biomimetic functionalities similar to the sarcomere contraction responsible for muscle function. Activated PAN is also known to contract and expand by electrolysis when in close vicinity to the anode and cathode, respectively. PAN nanofibers especially show faster response to changes in environmental pH and improved mechanical properties over larger diameter fibers. Conductive additives were introduced to the electrospinning solution and activated in an attempt to create composite PAN nanofiber gel actuators with improved conductivity and eliminate the need of stiff electrodes. Tensile testing was conducted to examine changes in mechanical properties between annealing and hydrolysis processing. Introducing conductive additives did not show a significant increase in conductivity and created unusable samples, requiring alternative electrode materials. Electrochemical contraction rates up to 25%/ min were achieved. Strains of 58.8%, ultimate stresses up to 77.1 MPa, and moduli of 0.21 MPa were achieved with pure PAN nanofiber mats, surpassing mechanical properties of natural muscles. Improvements to contraction rates and young's moduli are necessary to capture the function and performance of skeletal muscles properly.

  8. The pupillary and ciliary components of the cat Edinger-Westphal nucleus: a transsynaptic transport investigation.

    PubMed

    Erichsen, Jonathan T; May, Paul J

    2002-01-01

    The distribution of preganglionic motoneurons supplying the ciliary ganglion in the cat was defined both qualitatively and quantitatively. These cells were retrogradely labeled directly, following injections of wheat germ agglutinin conjugated to horseradish peroxidase (WGA-HRP) into the ciliary ganglion, or were transsynaptically labeled following injections of WGA into the vitreous chamber. Almost half of the cells are distributed rostral to the oculomotor nucleus, both in and lateral to the anteromedian nucleus. Of the remaining preganglionic motoneurons, roughly 20% of the total are located dorsal to the oculomotor nucleus. Strikingly few of these neurons are actually found within the Edinger-Westphal nucleus proper. Instead, the majority are found in the adjacent supraoculomotor area or along the midline between the two somatic nuclei. An additional population, roughly 30% of the total, is located ventral to the oculomotor nucleus. This study also provides evidence for a functional subdivision of this preganglionic population. Pupil-related preganglionic motoneurons were transsynaptically labeled by injecting WGA into the anterior chamber, while lens-related preganglionic motoneurons were transsynaptically labeled by injecting WGA into the ciliary muscle. The results suggest that the pupil-related preganglionic motoneurons, that is, those controlling the iris sphincter pupillae muscle, are located rostrally, in and lateral to the anteromedian nucleus. In contrast, lens-related preganglionic motoneurons, that is, those controlling the ciliary muscle are particularly prevalent caudally, both dorsal and ventral to the oculomotor nucleus. Thus, the cat intraocular muscle preganglionic innervation is spatially organized with respect to function, despite the dispersed nature of its distribution.

  9. Effects on craniofacial growth and development of unilateral botulinum neurotoxin injection into the masseter muscle.

    PubMed

    Tsai, Chi-Yang; Chiu, Wan Chi; Liao, Yi-Hsuan; Tsai, Chih-Mong

    2009-02-01

    The effects of botulinum neurotoxin type A (BoNT/A) on masseter muscles, when injected for cosmetic purposes (volumetric reduction) or treatment of excessive muscle activity (bruxism), have been investigated. However, the full anatomic effects of treatment are not known, particularly with respect to the mandible and relevant anthropometric measurements. The intent of this study was to use unilaterial BoNT/A injections to induce localized masseter atrophy and paresis and then to measure the effects of muscle influence on craniofacial growth and development. Growing male Wistar rats, 30 days old, were studied. The experimental group consisted of 8 rats. One side of the masseter muscle was injected with BoNT/A and the other side of the masseter muscle was injected with saline. The side with BoNT/A belonged to 1 group and the side with saline was the sham group. Three rats without injections was the control. After 45 days, the masseter muscles were dissected and weighed. Dry skulls were prepared, and anthropometric measurements determined. One-way ANOVA showed that the animals maintained their weight in both groups; however, the muscles injected with BoNT/A were smaller than the sham or control muscles. Anthropometric measurements of the bony structures attached to the masseter muscle showed a significant treatment effect. After localized masseter muscle atrophy induced by BoNT/A injection, alterations of craniofacial bone growth and development were seen. The results agree with the functional matrix theory that soft tissues regulate bone growth.

  10. Deletion of Skeletal Muscle SOCS3 Prevents Insulin Resistance in Obesity

    PubMed Central

    Jorgensen, Sebastian Beck; O’Neill, Hayley M.; Sylow, Lykke; Honeyman, Jane; Hewitt, Kimberly A.; Palanivel, Rengasamy; Fullerton, Morgan D.; Öberg, Lisa; Balendran, Anudharan; Galic, Sandra; van der Poel, Chris; Trounce, Ian A.; Lynch, Gordon S.; Schertzer, Jonathan D.; Steinberg, Gregory R.

    2013-01-01

    Obesity is associated with chronic low-grade inflammation that contributes to defects in energy metabolism and insulin resistance. Suppressor of cytokine signaling (SOCS)-3 expression is increased in skeletal muscle of obese humans. SOCS3 inhibits leptin signaling in the hypothalamus and insulin signal transduction in adipose tissue and the liver. Skeletal muscle is an important tissue for controlling energy expenditure and whole-body insulin sensitivity; however, the physiological importance of SOCS3 in this tissue has not been examined. Therefore, we generated mice that had SOCS3 specifically deleted in skeletal muscle (SOCS MKO). The SOCS3 MKO mice had normal muscle development, body mass, adiposity, appetite, and energy expenditure compared with wild-type (WT) littermates. Despite similar degrees of obesity when fed a high-fat diet, SOCS3 MKO mice were protected against the development of hyperinsulinemia and insulin resistance because of enhanced skeletal muscle insulin receptor substrate 1 (IRS1) and Akt phosphorylation that resulted in increased skeletal muscle glucose uptake. These data indicate that skeletal muscle SOCS3 does not play a critical role in regulating muscle development or energy expenditure, but it is an important contributing factor for inhibiting insulin sensitivity in obesity. Therapies aimed at inhibiting SOCS3 in skeletal muscle may be effective in reversing obesity-related glucose intolerance and insulin resistance. PMID:22961088

  11. Regeneration and Maintenance of Intestinal Smooth Muscle Phenotypes

    NASA Astrophysics Data System (ADS)

    Walthers, Christopher M.

    Tissue engineering is an emerging field of biomedical engineering that involves growing artificial organs to replace those lost to disease or injury. Within tissue engineering, there is a demand for artificial smooth muscle to repair tissues of the digestive tract, bladder, and vascular systems. Attempts to develop engineered smooth muscle tissues capable of contracting with sufficient strength to be clinically relevant have so far proven unsatisfactory. The goal of this research was to develop and sustain mature, contractile smooth muscle. Survival of implanted SMCs is critical to sustain the benefits of engineered smooth muscle. Survival of implanted smooth muscle cells was studied with layered, electrospun polycaprolactone implants with lasercut holes ranging from 0--25% porosity. It was found that greater angiogenesis was associated with increased survival of implanted cells, with a large increase at a threshold between 20% and 25% porosity. Heparan sulfate coatings improved the speed of blood vessel infiltration after 14 days of implantation. With these considerations, thicker engineered tissues may be possible. An improved smooth muscle tissue culture technique was utilized. Contracting smooth muscle was produced in culture by maintaining the native smooth muscle tissue organization, specifically by sustaining intact smooth muscle strips rather than dissociating tissue in to isolated smooth muscle cells. Isolated cells showed a decrease in maturity and contained fewer enteric neural and glial cells. Muscle strips also exhibited periodic contraction and regular fluctuation of intracellular calclium. The muscle strip maturity persisted after implantation in omentum for 14 days on polycaprolactone scaffolds. A low-cost, disposable bioreactor was developed to further improve maturity of cultured smooth muscle cells in an environment of controlled cyclical stress.The bioreactor consistently applied repeated mechanical strain with controllable inputs for strain, frequency, and duty cycle. Cells grown on protein-conjugated silicone membranes showed a morphological change while undergoing bioreactor stress. Analyzing change in muscle strips undergoing bioreactor stress is an area for future research. The overall goal of this research was to move engineered smooth muscle towards tissues capable of contracting with physiologically relevant strength and frequency. This approach first increased survival of smooth muscle constructs, and then sought to improve contractile ability of smooth muscle cells.

  12. Development and epithelial organisation of muscle cells in the sea anemone Nematostella vectensis.

    PubMed

    Jahnel, Stefan M; Walzl, Manfred; Technau, Ulrich

    2014-01-01

    Nematostella vectensis, a member of the cnidarian class Anthozoa, has been established as a promising model system in developmental biology, but while information about the genetic regulation of embryonic development is rapidly increasing, little is known about the cellular organization of the various cell types in the adult. Here, we studied the anatomy and development of the muscular system of N. vectensis to obtain further insights into the evolution of muscle cells. The muscular system of N. vectensis is comprised of five distinct muscle groups, which are differentiated into a tentacle and a body column system. Both systems house longitudinal as well as circular portions. With the exception of the ectodermal tentacle longitudinal muscle, all muscle groups are of endodermal origin. The shape and epithelial organization of muscle cells vary considerably between different muscle groups. Ring muscle cells are formed as epitheliomuscular cells in which the myofilaments are housed in the basal part of the cell, while the apical part is connected to neighboring cells by apical cell-cell junctions. In the longitudinal muscles of the column, the muscular part at the basal side is connected to the apical part by a long and narrow cytoplasmic bridge. The organization of these cells, however, remains epitheliomuscular. A third type of muscle cell is represented in the longitudinal muscle of the tentacle. Using transgenic animals we show that the apical cell-cell junctions are lost during differentiation, resulting in a detachment of the muscle cells to a basiepithelial position. These muscle cells are still located within the epithelium and outside of the basal matrix, therefore constituting basiepithelial myocytes. We demonstrate that all muscle cells, including the longitudinal basiepithelial muscle cells of the tentacle, initially differentiate from regular epithelial cells before they alter their epithelial organisation. A wide range of different muscle cell morphologies can already be found in a single animal. This suggests how a transition from an epithelially organized muscle system to a mesenchymal could have occurred. Our study on N. vectensis provides new insights into the organisation of a muscle system in a non-bilaterian organism.

  13. Cell Science and Cell Biology Research at MSFC: Summary

    NASA Technical Reports Server (NTRS)

    2003-01-01

    The common theme of these research programs is that they investigate regulation of gene expression in cells, and ultimately gene expression is controlled by the macromolecular interactions between regulatory proteins and DNA. The NASA Critical Path Roadmap identifies Muscle Alterations and Atrophy and Radiation Effects as Very Serious Risks and Severe Risks, respectively, in long term space flights. The specific problem addressed by Dr. Young's research ("Skeletal Muscle Atrophy and Muscle Cell Signaling") is that skeletal muscle loss in space cannot be prevented by vigorous exercise. Aerobic skeletal muscles (i.e., red muscles) undergo the most extensive atrophy during long-term space flight. Of the many different potential avenues for preventing muscle atrophy, Dr. Young has chosen to study the beta-adrenergic receptor (betaAR) pathway. The reason for this choice is that a family of compounds called betaAR agonists will preferentially cause an increase in muscle mass of aerobic muscles (i.e., red muscle) in animals, potentially providing a specific pharmacological solution to muscle loss in microgravity. In addition, muscle atrophy is a widespread medical problem in neuromuscular diseases, spinal cord injury, lack of exercise, aging, and any disease requiring prolonged bedridden status. Skeletal muscle cells in cell culture are utilized as a model system to study this problem. Dr. Richmond's research ("Radiation & Cancer Biology of Mammary Cells in Culture") is directed toward developing a laboratory model for use in risk assessment of cancer caused by space radiation. This research is unique because a human model will be developed utilizing human mammary cells that are highly susceptible to tumor development. This approach is preferential over using animal cells because of problems in comparing radiation-induced cancers between humans and animals.

  14. Mest but Not MiR-335 Affects Skeletal Muscle Growth and Regeneration

    PubMed Central

    Hiramuki, Yosuke; Sato, Takahiko; Furuta, Yasuhide; Surani, M. Azim; Sehara-Fujisawa, Atsuko

    2015-01-01

    When skeletal muscle fibers are injured, they regenerate and grow until their sizes are adjusted to surrounding muscle fibers and other relevant organs. In this study, we examined whether Mest, one of paternally expressed imprinted genes that regulates body size during development, and miR-335 located in the second intron of the Mest gene play roles in muscle regeneration. We generated miR-335-deficient mice, and found that miR-335 is a paternally expressed imprinted microRNA. Although both Mest and miR-335 are highly expressed during muscle development and regeneration, only Mest+/- (maternal/paternal) mice show retardation of body growth. In addition to reduced body weight in Mest+/-; DMD-null mice, decreased muscle growth was observed in Mest+/- mice during cardiotoxin-induced regeneration, suggesting roles of Mest in muscle regeneration. Moreover, expressions of H19 and Igf2r, maternally expressed imprinted genes were affected in tibialis anterior muscle of Mest+/-; DMD-null mice compared to DMD-null mice. Thus, Mest likely mediates muscle regeneration through regulation of imprinted gene networks in skeletal muscle. PMID:26098312

  15. Mest but Not MiR-335 Affects Skeletal Muscle Growth and Regeneration.

    PubMed

    Hiramuki, Yosuke; Sato, Takahiko; Furuta, Yasuhide; Surani, M Azim; Sehara-Fujisawa, Atsuko

    2015-01-01

    When skeletal muscle fibers are injured, they regenerate and grow until their sizes are adjusted to surrounding muscle fibers and other relevant organs. In this study, we examined whether Mest, one of paternally expressed imprinted genes that regulates body size during development, and miR-335 located in the second intron of the Mest gene play roles in muscle regeneration. We generated miR-335-deficient mice, and found that miR-335 is a paternally expressed imprinted microRNA. Although both Mest and miR-335 are highly expressed during muscle development and regeneration, only Mest+/- (maternal/paternal) mice show retardation of body growth. In addition to reduced body weight in Mest+/-; DMD-null mice, decreased muscle growth was observed in Mest+/- mice during cardiotoxin-induced regeneration, suggesting roles of Mest in muscle regeneration. Moreover, expressions of H19 and Igf2r, maternally expressed imprinted genes were affected in tibialis anterior muscle of Mest+/-; DMD-null mice compared to DMD-null mice. Thus, Mest likely mediates muscle regeneration through regulation of imprinted gene networks in skeletal muscle.

  16. Transcriptome analysis reveals long intergenic non-coding RNAs involved in skeletal muscle growth and development in pig.

    PubMed

    Zou, Cheng; Li, Jingxuan; Luo, Wenzhe; Li, Long; Hu, An; Fu, Yuhua; Hou, Ye; Li, Changchun

    2017-08-18

    Long intergenic non-coding RNAs (lincRNAs) play essential roles in numerous biological processes and are widely studied. The skeletal muscle is an important tissue that plays an essential role in individual movement ability. However, lincRNAs in pig skeletal muscles are largely undiscovered and their biological functions remain elusive. In this study, we assembled transcriptomes using RNA-seq data published in previous studies of our laboratory group and identified 323 lincRNAs in porcine leg muscle. We found that these lincRNAs have shorter transcript length, fewer exons and lower expression level than protein-coding genes. Gene ontology and pathway analyses indicated that many potential target genes (PTGs) of lincRNAs were involved in skeletal-muscle-related processes, such as muscle contraction and muscle system process. Combined our previous studies, we found a potential regulatory mechanism in which the promoter methylation of lincRNAs can negatively regulate lincRNA expression and then positively regulate PTG expression, which can finally result in abnormal phenotypes of cloned piglets through a certain unknown pathway. This work detailed a number of lincRNAs and their target genes involved in skeletal muscle growth and development and can facilitate future studies on their roles in skeletal muscle growth and development.

  17. Distinct roles for Ste20-like kinase SLK in muscle function and regeneration

    PubMed Central

    2013-01-01

    Background Cell growth and terminal differentiation are controlled by complex signaling systems that regulate the tissue-specific expression of genes controlling cell fate and morphogenesis. We have previously reported that the Ste20-like kinase SLK is expressed in muscle tissue and is required for cell motility. However, the specific function of SLK in muscle tissue is still poorly understood. Methods To gain further insights into the role of SLK in differentiated muscles, we expressed a kinase-inactive SLK from the human skeletal muscle actin promoter. Transgenic muscles were surveyed for potential defects. Standard histological procedures and cardiotoxin-induced regeneration assays we used to investigate the role of SLK in myogenesis and muscle repair. Results High levels of kinase-inactive SLK in muscle tissue produced an overall decrease in SLK activity in muscle tissue, resulting in altered muscle organization, reduced litter sizes, and reduced breeding capacity. The transgenic mice did not show any differences in fiber-type distribution but displayed enhanced regeneration capacity in vivo and more robust differentiation in vitro. Conclusions Our results show that SLK activity is required for optimal muscle development in the embryo and muscle physiology in the adult. However, reduced kinase activity during muscle repair enhances regeneration and differentiation. Together, these results suggest complex and distinct roles for SLK in muscle development and function. PMID:23815977

  18. Comparative Analyses by Sequencing of Transcriptomes during Skeletal Muscle Development between Pig Breeds Differing in Muscle Growth Rate and Fatness

    PubMed Central

    Li, Anning; Gong, Wen; Xiao, Shuqi; Zhang, Yue; Qin, Limei; Niu, Yuna; Guo, Yunxue; Liu, Xiaohong; Cong, Peiqing; He, Zuyong; Wang, Chong; Li, Jiaqi; Chen, Yaosheng

    2011-01-01

    Understanding the dynamics of muscle transcriptome during development and between breeds differing in muscle growth is necessary to uncover the complex mechanism underlying muscle development. Herein, we present the first transcriptome-wide longissimus dorsi muscle development research concerning Lantang (LT, obese) and Landrace (LR, lean) pig breeds during 10 time-points from 35 days-post-coitus (dpc) to 180 days-post-natum (dpn) using Solexa/Illumina's Genome Analyzer. The data demonstrated that myogenesis was almost completed before 77 dpc, but the muscle phenotypes were still changed from 77 dpc to 28 dpn. Comparative analysis of the two breeds suggested that myogenesis started earlier but progressed more slowly in LT than in LR, the stages ranging from 49 dpc to 77 dpc are critical for formation of different muscle phenotypes. 595 differentially expressed myogenesis genes were identified, and their roles in myogenesis were discussed. Furthermore, GSK3B, IKBKB, ACVR1, ITGA and STMN1 might contribute to later myogenesis and more muscle fibers in LR than LT. Some myogenesis inhibitors (ID1, ID2, CABIN1, MSTN, SMAD4, CTNNA1, NOTCH2, GPC3 and HMOX1) were higher expressed in LT than in LR, which might contribute to more slow muscle differentiation in LT than in LR. We also identified several genes which might contribute to intramuscular adipose differentiation. Most important, we further proposed a novel model in which MyoD and MEF2A controls the balance between intramuscular adipogenesis and myogenesis by regulating CEBP family; Myf5 and MEF2C are essential during the whole myogenesis process while MEF2D affects muscle growth and maturation. The MRFs and MEF2 families are also critical for the phenotypic differences between the two pig breeds. Overall, this study contributes to elucidating the mechanism underlying muscle development, which could provide valuable information for pig meat quality improvement. The raw data have been submitted to Gene Expression Omnibus (GEO) under series GSE25406. PMID:21637832

  19. Comparative analyses by sequencing of transcriptomes during skeletal muscle development between pig breeds differing in muscle growth rate and fatness.

    PubMed

    Zhao, Xiao; Mo, Delin; Li, Anning; Gong, Wen; Xiao, Shuqi; Zhang, Yue; Qin, Limei; Niu, Yuna; Guo, Yunxue; Liu, Xiaohong; Cong, Peiqing; He, Zuyong; Wang, Chong; Li, Jiaqi; Chen, Yaosheng

    2011-01-01

    Understanding the dynamics of muscle transcriptome during development and between breeds differing in muscle growth is necessary to uncover the complex mechanism underlying muscle development. Herein, we present the first transcriptome-wide longissimus dorsi muscle development research concerning Lantang (LT, obese) and Landrace (LR, lean) pig breeds during 10 time-points from 35 days-post-coitus (dpc) to 180 days-post-natum (dpn) using Solexa/Illumina's Genome Analyzer. The data demonstrated that myogenesis was almost completed before 77 dpc, but the muscle phenotypes were still changed from 77 dpc to 28 dpn. Comparative analysis of the two breeds suggested that myogenesis started earlier but progressed more slowly in LT than in LR, the stages ranging from 49 dpc to 77 dpc are critical for formation of different muscle phenotypes. 595 differentially expressed myogenesis genes were identified, and their roles in myogenesis were discussed. Furthermore, GSK3B, IKBKB, ACVR1, ITGA and STMN1 might contribute to later myogenesis and more muscle fibers in LR than LT. Some myogenesis inhibitors (ID1, ID2, CABIN1, MSTN, SMAD4, CTNNA1, NOTCH2, GPC3 and HMOX1) were higher expressed in LT than in LR, which might contribute to more slow muscle differentiation in LT than in LR. We also identified several genes which might contribute to intramuscular adipose differentiation. Most important, we further proposed a novel model in which MyoD and MEF2A controls the balance between intramuscular adipogenesis and myogenesis by regulating CEBP family; Myf5 and MEF2C are essential during the whole myogenesis process while MEF2D affects muscle growth and maturation. The MRFs and MEF2 families are also critical for the phenotypic differences between the two pig breeds. Overall, this study contributes to elucidating the mechanism underlying muscle development, which could provide valuable information for pig meat quality improvement. The raw data have been submitted to Gene Expression Omnibus (GEO) under series GSE25406.

  20. Theoretical analysis, design and development of a 27-MHz folded loop antenna as a potential applicator in hyperthermia treatment.

    PubMed

    Kouloulias, Vassilis; Karanasiou, Irene; Giamalaki, Melina; Matsopoulos, George; Kouvaris, John; Kelekis, Nikolaos; Uzunoglu, Nikolaos

    2015-02-01

    A hyperthermia system using a folded loop antenna applicator at 27 MHz for soft tissue treatment was investigated both theoretically and experimentally to evaluate its clinical value. The electromagnetic analysis of a 27-MHz folded loop antenna for use in human tissue was based on a customised software tool and led to the design and development of the proposed hyperthermia system. The system was experimentally validated using specific absorption rate (SAR) distribution estimations through temperature distribution measurements of a muscle tissue phantom after electromagnetic exposure. Various scenarios for optimal antenna positioning were also performed. Comparison of the theoretical and experimental analysis results shows satisfactory agreement. The SAR level of 50% reaches 8 cm depth in the tissue phantom. Thus, based on the maximum observed SAR values that were of the order of 100 W/kg, the antenna specified is suitable for deep tumour heating. Theoretical and experimental SAR distribution results as derived from this study are in agreement. The proposed folded loop antenna seems appropriate for use in hyperthermia treatment, achieving proper planning and local treatment of deeply seated affected areas and lesions.

  1. The Dynamic Actin Cytoskeleton in Smooth Muscle.

    PubMed

    Tang, Dale D

    2018-01-01

    Smooth muscle contraction requires both myosin activation and actin cytoskeletal remodeling. Actin cytoskeletal reorganization facilitates smooth muscle contraction by promoting force transmission between the contractile unit and the extracellular matrix (ECM), and by enhancing intercellular mechanical transduction. Myosin may be viewed to serve as an "engine" for smooth muscle contraction whereas the actin cytoskeleton may function as a "transmission system" in smooth muscle. The actin cytoskeleton in smooth muscle also undergoes restructuring upon activation with growth factors or the ECM, which controls smooth muscle cell proliferation and migration. Abnormal smooth muscle contraction, cell proliferation, and motility contribute to the development of vascular and pulmonary diseases. A number of actin-regulatory proteins including protein kinases have been discovered to orchestrate actin dynamics in smooth muscle. In particular, Abelson tyrosine kinase (c-Abl) is an important molecule that controls actin dynamics, contraction, growth, and motility in smooth muscle. Moreover, c-Abl coordinates the regulation of blood pressure and contributes to the pathogenesis of airway hyperresponsiveness and vascular/airway remodeling in vivo. Thus, c-Abl may be a novel pharmacological target for the development of new therapy to treat smooth muscle diseases such as hypertension and asthma. © 2018 Elsevier Inc. All rights reserved.

  2. Legal and Ethical Issues of Persons with Special Needs in Nigeria

    ERIC Educational Resources Information Center

    Asiwe, C. C.; Omiegbe, Odirin

    2014-01-01

    Persons with special needs have innate abilities and when properly harnessed through proper education would be able to contribute ultimately to their development as well as that of the society they reside in terms of political, social, economic and technological development. Before such group of persons can be properly educated there is the dire…

  3. Loss of Prox1 in striated muscle causes slow to fast skeletal muscle fiber conversion and dilated cardiomyopathy.

    PubMed

    Petchey, Louisa K; Risebro, Catherine A; Vieira, Joaquim M; Roberts, Tom; Bryson, John B; Greensmith, Linda; Lythgoe, Mark F; Riley, Paul R

    2014-07-01

    Correct regulation of troponin and myosin contractile protein gene isoforms is a critical determinant of cardiac and skeletal striated muscle development and function, with misexpression frequently associated with impaired contractility or disease. Here we reveal a novel requirement for Prospero-related homeobox factor 1 (Prox1) during mouse heart development in the direct transcriptional repression of the fast-twitch skeletal muscle genes troponin T3, troponin I2, and myosin light chain 1. A proportion of cardiac-specific Prox1 knockout mice survive beyond birth with hearts characterized by marked overexpression of fast-twitch genes and postnatal development of a fatal dilated cardiomyopathy. Through conditional knockout of Prox1 from skeletal muscle, we demonstrate a conserved requirement for Prox1 in the repression of troponin T3, troponin I2, and myosin light chain 1 between cardiac and slow-twitch skeletal muscle and establish Prox1 ablation as sufficient to cause a switch from a slow- to fast-twitch muscle phenotype. Our study identifies conserved roles for Prox1 between cardiac and skeletal muscle, specifically implicated in slow-twitch fiber-type specification, function, and cardiomyopathic disease.

  4. Patterns of spatial and temporal visceral arch muscle development in the Mexican axolotl (Ambystoma mexicanum).

    PubMed

    Ericsson, Rolf; Olsson, Lennart

    2004-08-01

    Vertebrate head development is a classical topic that has received renewed attention during the last decade. Most reports use one of a few model organisms (chicken, mouse, zebrafish) and have focused on molecular mechanisms and the role of the neural crest, while cranial muscle development has received less attention. Here we describe cranial muscle differentiation and morphogenesis in the Mexican axolotl, Ambystoma mexicanum. To determine the onset of differentiation we use antibodies against desmin and optical sectioning using confocal laser scanning microscopy on whole-mount immunostained embryos. This technique makes it possible to document the cranial muscle in three dimensions while keeping the specimens intact. Desmin expression starts almost simultaneously in the first, second, and third visceral arch muscles (as in other amphibians studied). Muscle anlagen divide up early into the different elements which constitute the larval cranial musculature. We extend and refine earlier findings, e.g., by documenting a clear division between interhyoideus and interhyoideus posterior. The timing of cranial muscle differentiation differs among vertebrate groups, but seems to be constant within each group. This study provides a morphological foundation for further studies of muscle cell fate and early differentiation. Copyright 2004 Wiley-Liss, Inc.

  5. Loss of Prox1 in striated muscle causes slow to fast skeletal muscle fiber conversion and dilated cardiomyopathy

    PubMed Central

    Petchey, Louisa K.; Risebro, Catherine A.; Vieira, Joaquim M.; Roberts, Tom; Bryson, John B.; Greensmith, Linda; Lythgoe, Mark F.; Riley, Paul R.

    2014-01-01

    Correct regulation of troponin and myosin contractile protein gene isoforms is a critical determinant of cardiac and skeletal striated muscle development and function, with misexpression frequently associated with impaired contractility or disease. Here we reveal a novel requirement for Prospero-related homeobox factor 1 (Prox1) during mouse heart development in the direct transcriptional repression of the fast-twitch skeletal muscle genes troponin T3, troponin I2, and myosin light chain 1. A proportion of cardiac-specific Prox1 knockout mice survive beyond birth with hearts characterized by marked overexpression of fast-twitch genes and postnatal development of a fatal dilated cardiomyopathy. Through conditional knockout of Prox1 from skeletal muscle, we demonstrate a conserved requirement for Prox1 in the repression of troponin T3, troponin I2, and myosin light chain 1 between cardiac and slow-twitch skeletal muscle and establish Prox1 ablation as sufficient to cause a switch from a slow- to fast-twitch muscle phenotype. Our study identifies conserved roles for Prox1 between cardiac and skeletal muscle, specifically implicated in slow-twitch fiber-type specification, function, and cardiomyopathic disease. PMID:24938781

  6. miRNA expression in control and FSHD fetal human muscle biopsies.

    PubMed

    Portilho, Débora Morueco; Alves, Marcelo Ribeiro; Kratassiouk, Gueorgui; Roche, Stéphane; Magdinier, Frédérique; de Santana, Eliane Corrêa; Polesskaya, Anna; Harel-Bellan, Annick; Mouly, Vincent; Savino, Wilson; Butler-Browne, Gillian; Dumonceaux, Julie

    2015-01-01

    Facioscapulohumeral muscular dystrophy (FSHD) is an autosomal-dominant disorder and is one of the most common forms of muscular dystrophy. We have recently shown that some hallmarks of FSHD are already expressed in fetal FSHD biopsies, thus opening a new field of investigation for mechanisms leading to FSHD. As microRNAs (miRNAs) play an important role in myogenesis and muscle disorders, in this study we compared miRNAs expression levels during normal and FSHD muscle development. Muscle biopsies were obtained from quadriceps of both healthy control and FSHD1 fetuses with ages ranging from 14 to 33 weeks of development. miRNA expression profiles were analyzed using TaqMan Human MicroRNA Arrays. During human skeletal muscle development, in control muscle biopsies we observed changes for 4 miRNAs potentially involved in secondary muscle fiber formation and 5 miRNAs potentially involved in fiber maturation. When we compared the miRNA profiles obtained from control and FSHD biopsies, we did not observe any differences in the muscle specific miRNAs. However, we identified 8 miRNAs exclusively expressed in FSHD1 samples (miR-330, miR-331-5p, miR-34a, miR-380-3p, miR-516b, miR-582-5p, miR-517* and miR-625) which could represent new biomarkers for this disease. Their putative targets are mainly involved in muscle development and morphogenesis. Interestingly, these FSHD1 specific miRNAs do not target the genes previously described to be involved in FSHD. This work provides new candidate mechanisms potentially involved in the onset of FSHD pathology. Whether these FSHD specific miRNAs cause deregulations during fetal development, or protect against the appearance of the FSHD phenotype until the second decade of life still needs to be investigated.

  7. Muscle fatigue evaluation of astronaut upper limb based on sEMG and subjective assessment

    NASA Astrophysics Data System (ADS)

    Zu, Xiaoqi; Zhou, Qianxiang; Li, Yun

    2012-07-01

    All movements are driven by muscle contraction, and it is easy to cause muscle fatigue. Evaluation of muscle fatigue is a hot topic in the area of astronaut life support training and rehabilitation. If muscle gets into fatigue condition, it may reduce work efficiency and has an impact on psychological performance. Therefore it is necessary to develop an accurate and usable method on muscle fatigue evaluation of astronaut upper limb. In this study, we developed a method based on surface electromyography (sEMG) and subjective assessment (Borg scale) to evaluate local muscle fatigue. Fifteen healthy young male subjects participated in the experiment. They performed isometric muscle contractions of the upper limb. sEMG of the biceps brachii were recorded during the entire process of isotonic muscle contraction and Borg scales of muscle fatigue were collected in certain times. sEMG were divided into several parts, and then mean energy of each parts were calculated by the one-twelfth band octave method. Equations were derived based on the relationship between the mean energy of sEMG and Borg scale. The results showed that cubic curve could describe the degree of local muscle fatigue, and could be used to evaluate and monitor local muscle fatigue during the entire process.

  8. Development and Applications of a Self-Contained, Non-Invasive EVA Joint Angle and Muscle Fatigue Sensor System

    NASA Technical Reports Server (NTRS)

    Ranniger, C. U.; Sorenson, E. A.; Akin, D. L.

    1995-01-01

    The University of Maryland Space Systems Laboratory, as a participant in NASA's INSTEP program, is developing a non-invasive, self-contained sensor system which can provide quantitative measurements of joint angles and muscle fatigue in the hand and forearm. The goal of this project is to develop a system with which hand/forearm motion and fatigue metrics can be determined in various terrestrial and zero-G work environments. A preliminary study of the prototype sensor systems and data reduction techniques for the fatigue measurement system are presented. The sensor systems evaluated include fiberoptics, used to measure joint angle, surface electrodes, which measure the electrical signals created in muscle as it contracts; microphones, which measure the noise made by contracting muscle; and accelerometers, which measure the lateral muscle acceleration during contraction. The prototype sensor systems were used to monitor joint motion of the metacarpophalangeal joint and muscle fatigue in flexor digitorum superficialis and flexor carpi ulnaris in subjects performing gripping tasks. Subjects were asked to sustain a 60-second constant-contraction (isometric) exercise and subsequently to perform a repetitive handgripping task to failure. Comparison of the electrical and mechanical signals of the muscles during the different tasks will be used to evaluate the applicability of muscle signal measurement techniques developed for isometric contraction tasks to fatigue prediction in quasi-dynamic exercises. Potential data reduction schemes are presented.

  9. Insights into skeletal muscle development and applications in regenerative medicine.

    PubMed

    Tran, T; Andersen, R; Sherman, S P; Pyle, A D

    2013-01-01

    Embryonic and postnatal development of skeletal muscle entails highly regulated processes whose complexity continues to be deconstructed. One key stage of development is the satellite cell, whose niche is composed of multiple cell types that eventually contribute to terminally differentiated myotubes. Understanding these developmental processes will ultimately facilitate treatments of myopathies such as Duchenne muscular dystrophy (DMD), a disease characterized by compromised cell membrane structure, resulting in severe muscle wasting. One theoretical approach is to use pluripotent stem cells in a therapeutic setting to help replace degenerated muscle tissue. This chapter discusses key myogenic developmental stages and their regulatory pathways; artificial myogenic induction in pluripotent stem cells; advantages and disadvantages of DMD animal models; and therapeutic approaches targeting DMD. Furthermore, skeletal muscle serves as an excellent paradigm for understanding general cell fate decisions throughout development. Copyright © 2013 Elsevier Inc. All rights reserved.

  10. Gap-Junctional communication between developing Drosophila muscles is essential for their normal development.

    PubMed

    Todman, M G; Baines, R A; Stebbings, L A; Davies, J A; Bacon, J P

    1999-01-01

    Recent experiments have demonstrated that a family of proteins, known as the innexins, are structural components of invertebrate gap junctions. The shaking-B (shak-B) locus of Drosophila encodes two members of this emerging family, Shak-B(lethal) and Shak-B(neural). This study focuses on the role of Shak-B gap junctions in the development of embryonic and larval muscle. During embryogenesis, shak-B transcripts are expressed in a subset of the somatic muscles; expression is strong in ventral oblique muscles (VO4-6) but only weak in ventral longitudinals (VL3 and 4). Carboxyfluorescein injected into VO4 of wild-type early stage 16 embryos spreads, via gap junctions, to label adjacent muscles, including VL3 and 4. In shak-B2 embryos (in which the shak-B(neural) function is disrupted), dye injected into VO4 fails to spread into other muscles. In the first instar larva, when dye coupling between muscles is no longer present, another effect of the shak-B2 mutation is revealed by whole-cell voltage clamp. In a calcium-free saline, only two voltage-activated potassium currents are present in wild-type muscles; a fast IA and a slow IK current. In shak-B2 larvae, these two currents are significantly reduced in magnitude in VO4 and 5, but remain normal in VL3. Expression of shak-B(neural) in a shak-B2 background fully rescues both dye coupling in embryonic muscle and whole-cell currents in first instar VO4 and 5. Our observations show that Shak-B(neural) is one of a set of embryonic gap-junction proteins, and that it is required for the normal temporal development of potassium currents in some larval muscles.

  11. The pathway to muscle fibrosis depends on myostatin stimulating the differentiation of fibro/adipogenic progenitor cells in chronic kidney disease

    PubMed Central

    Dong, Jiangling; Dong, Yanjun; Chen, Zihong; Mitch, William E.; Zhang, Liping

    2016-01-01

    Fibrosis in skeletal muscle develops after injury or in response to chronic kidney disease (CKD) but the origin of cells becoming fibrous tissue and the initiating and sustaining mechanisms causing muscle fibrosis are unclear. We have identified muscle fibro/adipogenic progenitor cells (FAPs) that potentially differentiate into adipose tissues or fibrosis. We also demonstrated that CKD stimulates myostatin production in muscle. Therefore, we tested whether CKD induces myostatin which stimulates fibrotic differentiation of FAPs leading to fibrosis in skeletal muscles. We isolated FAPs from mouse muscles and found that myostatin stimulates their proliferation and conversion into fibrocytes. In vivo, FAPs isolated from EGFP-transgenic mice (FAPs-EGFP) were transplanted into muscles of mice with CKD or into mouse muscles that were treated with myostatin. CKD or myostatin stimulated FAPs-EGFP proliferation in muscle and increased α-smooth muscle actin expression in FAP-EGFP cells. When myostatin was inhibited with a neutralizing peptibody (a chimeric peptide-Fc fusion protein), the FAP proliferation and muscle fibrosis induced by CKD were both suppressed. Knocking down Smad3 in cultured FAPs interrupted their conversion into fibrocytes indicating that myostatin directly converts FAPs into fibrocytes. Thus, counteracting myostatin may be a strategy for preventing the development of fibrosis in skeletal muscles of patients with CKD. PMID:27653838

  12. The pathway to muscle fibrosis depends on myostatin stimulating the differentiation of fibro/adipogenic progenitor cells in chronic kidney disease.

    PubMed

    Dong, Jiangling; Dong, Yanjun; Chen, Zihong; Mitch, William E; Zhang, Liping

    2017-01-01

    Fibrosis in skeletal muscle develops after injury or in response to chronic kidney disease (CKD), but the origin of cells becoming fibrous tissue and the initiating and sustaining mechanisms causing muscle fibrosis are unclear. We identified muscle fibro/adipogenic progenitor cells (FAPs) that potentially differentiate into adipose tissues or fibrosis. We also demonstrated that CKD stimulates myostatin production in muscle. Therefore, we tested whether CKD induces myostatin, which stimulates fibrotic differentiation of FAPs leading to fibrosis in skeletal muscles. We isolated FAPs from mouse muscles and found that myostatin stimulates their proliferation and conversion into fibrocytes. In vivo, FAPs isolated from EGFP-transgenic mice (FAPs-EGFP) were transplanted into muscles of mice with CKD or into mouse muscles that were treated with myostatin. CKD or myostatin stimulated FAPs-EGFP proliferation in muscle and increased α-smooth muscle actin expression in FAP-EGFP cells. When myostatin was inhibited with a neutralizing peptibody (a chimeric peptide-Fc fusion protein), the FAP proliferation and muscle fibrosis induced by CKD were both suppressed. Knocking down Smad3 in cultured FAPs interrupted their conversion into fibrocytes, indicating that myostatin directly converts FAPs into fibrocytes. Thus, counteracting myostatin may be a strategy for preventing the development of fibrosis in skeletal muscles of patients with CKD. Copyright © 2016 International Society of Nephrology. Published by Elsevier Inc. All rights reserved.

  13. Distinct Effects of Abelson Kinase Mutations on Myocytes and Neurons in Dissociated Drosophila Embryonic Cultures: Mimicking of High Temperature

    PubMed Central

    Liu, Lijuan; Wu, Chun-Fang

    2014-01-01

    Abelson tyrosine kinase (Abl) is known to regulate axon guidance, muscle development, and cell-cell interaction in vivo. The Drosophila primary culture system offers advantages in exploring the cellular mechanisms mediated by Abl with utilizing various experimental manipulations. Here we demonstrate that single-embryo cultures exhibit stage-dependent characteristics of cellular differentiation and developmental progression in neurons and myocytes, as well as nerve-muscle contacts. In particular, muscle development critically depends on the stage of dissociated embryos. In wild-type (WT) cultures derived from embryos before stage 12, muscle cells remained within cell clusters and were rarely detected. Interestingly, abundant myocytes were spotted in Abl mutant cultures, exhibiting enhanced myocyte movement and fusion, as well as neuron-muscle contacts even in cultures dissociated from younger, stage 10 embryos. Notably, Abl myocytes frequently displayed well-expanded lamellipodia. Conversely, Abl neurons were characterized with fewer large veil-like lamellipodia, but instead had increased numbers of filopodia and darker nodes along neurites. These distinct phenotypes were equally evident in both homo- and hetero-zygous cultures (Abl/Abl vs. Abl/+) of different alleles (Abl1 and Abl4) indicating dominant mutational effects. Strikingly, in WT cultures derived from stage 10 embryos, high temperature (HT) incubation promoted muscle migration and fusion, partially mimicking the advanced muscle development typical of Abl cultures. However, HT enhanced neuronal growth with increased numbers of enlarged lamellipodia, distinct from the characteristic Abl neuronal morphology. Intriguingly, HT incubation also promoted Abl lamellipodia expansion, with a much greater effect on nerve cells than muscle. Our results suggest that Abl is an essential regulator for myocyte and neuron development and that high-temperature incubation partially mimics the faster muscle development typical of Abl cultures. Despite the extensive alterations by Abl mutations, we observed myocyte fusion events and nerve-muscle contact formation between WT and Abl cells in mixed WT and Abl cultures derived from labeled embryos. PMID:24466097

  14. Protein Profiles for Muscle Development and Intramuscular Fat Accumulation at Different Post-Hatching Ages in Chickens.

    PubMed

    Liu, Jie; Fu, Ruiqi; Liu, Ranran; Zhao, Guiping; Zheng, Maiqing; Cui, Huanxian; Li, Qinghe; Song, Jiao; Wang, Jie; Wen, Jie

    2016-01-01

    Muscle development and growth influences the efficiency of poultry meat production, and is closely related to deposition of intramuscular fat (IMF), which is crucial in meat quality. To clarify the molecular mechanisms underlying muscle development and IMF deposition in chickens, protein expression profiles were examined in the breast muscle of Beijing-You chickens at ages 1, 56, 98 and 140 days, using isobaric tags for relative and absolute quantification (iTRAQ). Two hundred and four of 494 proteins were expressed differentially. The expression profile at day 1 differed greatly from those at day 56, 98 and 140. KEGG pathway analysis of differential protein expression from pair-wise comparisons (day 1 vs. 56; 56 vs. 98; 98 vs. 140), showed that the fatty acid degradation pathway was more active during the stage from day 1 to 56 than at other periods. This was consistent with the change in IMF content, which was highest at day 1 and declined dramatically thereafter. When muscle growth was most rapid (days 56-98), pathways involved in muscle development were dominant, including hypertrophic cardiomyopathy, dilated cardiomyopathy, cardiac muscle contraction, tight junctions and focal adhesion. In contrast with hatchlings, the fatty acid degradation pathway was downregulated from day 98 to 140, which was consistent with the period for IMF deposition following rapid muscle growth. Changes in some key specific proteins, including fast skeletal muscle troponin T isoform, aldehyde dehydrogenase 1A1 and apolipoprotein A1, were verified by Western blotting, and could be potential biomarkers for IMF deposition in chickens. Protein-protein interaction networks showed that ribosome-related functional modules were clustered in all three stages. However, the functional module involved in the metabolic pathway was only clustered in the first stage (day 1 vs. 56). This study improves our understanding of the molecular mechanisms underlying muscle development and IMF deposition in chickens.

  15. Development of the platysma muscle and the superficial musculoaponeurotic system (human specimens at 8-17 weeks of development).

    PubMed

    De la Cuadra-Blanco, C; Peces-Peña, M D; Carvallo-de Moraes, L O; Herrera-Lara, M E; Mérida-Velasco, J R

    2013-01-01

    There is controversy regarding the description of the different regions of the face of the superficial musculoaponeurotic system (SMAS) and its relationship with the superficial mimetic muscles. The purpose of this study is to analyze the development of the platysma muscle and the SMAS in human specimens at 8-17 weeks of development using an optical microscope. Furthermore, we propose to study the relationship of the anlage of the SMAS and the neighbouring superficial mimetic muscles. The facial musculature derives from the mesenchyme of the second arch and migrates towards the different regions of the face while forming premuscular laminae. During the 8th week of development, the cervical, infraorbital, mandibular, and temporal laminae are observed to be on the same plane. The platysma muscle derives from the cervical lamina and its mandibular extension enclosing the lower part of the parotid region and the cheek, while the SMAS derives from the upper region. During the period of development analyzed in this study, we have observed no continuity between the anlage of the SMAS and that of the superficial layer of the temporal fascia and the zygomaticus major muscle. Nor have we observed any structure similar to the SMAS in the labial region.

  16. Development of the Platysma Muscle and the Superficial Musculoaponeurotic System (Human Specimens at 8–17 Weeks of Development)

    PubMed Central

    De la Cuadra-Blanco, C.; Peces-Peña, M. D.; Carvallo-de Moraes, L. O.; Herrera-Lara, M. E.; Mérida-Velasco, J. R.

    2013-01-01

    There is controversy regarding the description of the different regions of the face of the superficial musculoaponeurotic system (SMAS) and its relationship with the superficial mimetic muscles. The purpose of this study is to analyze the development of the platysma muscle and the SMAS in human specimens at 8–17 weeks of development using an optical microscope. Furthermore, we propose to study the relationship of the anlage of the SMAS and the neighbouring superficial mimetic muscles. The facial musculature derives from the mesenchyme of the second arch and migrates towards the different regions of the face while forming premuscular laminae. During the 8th week of development, the cervical, infraorbital, mandibular, and temporal laminae are observed to be on the same plane. The platysma muscle derives from the cervical lamina and its mandibular extension enclosing the lower part of the parotid region and the cheek, while the SMAS derives from the upper region. During the period of development analyzed in this study, we have observed no continuity between the anlage of the SMAS and that of the superficial layer of the temporal fascia and the zygomaticus major muscle. Nor have we observed any structure similar to the SMAS in the labial region. PMID:24396304

  17. Integrative Analyses of miRNA-mRNA Interactions Reveal let-7b, miR-128 and MAPK Pathway Involvement in Muscle Mass Loss in Sex-Linked Dwarf Chickens

    PubMed Central

    Luo, Wen; Lin, Shumao; Li, Guihuan; Nie, Qinghua; Zhang, Xiquan

    2016-01-01

    The sex-linked dwarf (SLD) chicken is an ideal model system for understanding growth hormone (GH)-action and growth hormone receptor (GHR) function because of its recessive mutation in the GHR gene. Skeletal muscle mass is reduced in the SLD chicken with a smaller muscle fiber diameter. Our previous study has presented the mRNA and miRNA expression profiles of the SLD chicken and normal chicken between embryo day 14 and seven weeks of age. However, the molecular mechanism of GHR-deficient induced muscle mass loss is still unclear, and the key molecules and pathways underlying the GHR-deficient induced muscle mass loss also remain to be illustrated. Here, by functional network analysis of the differentially expressed miRNAs and mRNAs between the SLD and normal chickens, we revealed that let-7b, miR-128 and the MAPK pathway might play key roles in the GHR-deficient induced muscle mass loss, and that the reduced cell division and growth are potential cellular processes during the SLD chicken skeletal muscle development. Additionally, we also found some genes and miRNAs involved in chicken skeletal muscle development, through the MAPK, PI3K-Akt, Wnt and Insulin signaling pathways. This study provides new insights into the molecular mechanism underlying muscle mass loss in the SLD chickens, and some regulatory networks that are crucial for chicken skeletal muscle development. PMID:26927061

  18. A Standardized Rat Model of Volumetric Muscle Loss Injury for the Development of Tissue Engineering Therapies

    DTIC Science & Technology

    2012-12-01

    isometric tetanic force (Po) of 28.4% and 32.5% at 2 and 4 months. Importantly, Po corrected for differences in body weight and muscle wet weights were...development, we removed progres- sively larger amounts of muscle tissue followed by a mea- surement of maximal isometric force (Po). The final model, and...indicated by increased collagen deposition (Fig. 2). The scarred area and the area immediately adjacent to it contained disorganized muscle fibers

  19. Lower limb muscle volume estimation from maximum cross-sectional area and muscle length in cerebral palsy and typically developing individuals.

    PubMed

    Vanmechelen, Inti M; Shortland, Adam P; Noble, Jonathan J

    2018-01-01

    Deficits in muscle volume may be a significant contributor to physical disability in young people with cerebral palsy. However, 3D measurements of muscle volume using MRI or 3D ultrasound may be difficult to make routinely in the clinic. We wished to establish whether accurate estimates of muscle volume could be made from a combination of anatomical cross-sectional area and length measurements in samples of typically developing young people and young people with bilateral cerebral palsy. Lower limb MRI scans were obtained from the lower limbs of 21 individuals with cerebral palsy (14.7±3years, 17 male) and 23 typically developing individuals (16.8±3.3years, 16 male). The volume, length and anatomical cross-sectional area were estimated from six muscles of the left lower limb. Analysis of Covariance demonstrated that the relationship between the length*cross-sectional area and volume was not significantly different depending on the subject group. Linear regression analysis demonstrated that the product of anatomical cross-sectional area and length bore a strong and significant relationship to the measured muscle volume (R 2 values between 0.955 and 0.988) with low standard error of the estimates of 4.8 to 8.9%. This study demonstrates that muscle volume may be estimated accurately in typically developing individuals and individuals with cerebral palsy by a combination of anatomical cross-sectional area and muscle length. 2D ultrasound may be a convenient method of making these measurements routinely in the clinic. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. INTRACELLULAR DISTRIBUTION OF CALCIUM IN DEVELOPING BREAST MUSCLE OF NORMAL AND DYSTROPHIC CHICKENS

    PubMed Central

    Cosmos, Ethel

    1964-01-01

    To follow the intracellular distribution of calcium in the breast muscles of developing chickens, Ca45 was injected into the albumen of predeveloped eggs. Since the embryos were grown in a radioactive medium, a complete exchange of the isotope for its non-radioactive counterpart in muscles was accomplished. Subcellular particulates of the muscle cells were separated by the method of differential centrifugation. Analysis of the separated fractions showed that in the muscles of the 13-day embryo, when the nuclear-myofibrillar ratio is high, 65 per cent of the muscle calcium is in the nuclei. With the increased synthesis of myofibrils, the nuclear-myofibrillar ratio decreases with a concomitant fall in radioactivity. Thus, calcium was not associated with the developing myofibrils. At the time of hatching, when myofibrils perform physiological work, the highest level of calcium is in the mitochondria. This suggests that the mitochondria play a key role in the physiological activities of calcium in the cell. The microsomal fraction reaches a maximal level of calcium when the adult composition of muscle is attained. Results of investigations on dystrophic muscles show changes in the calcium distribution of the fractions as early as the 3rd week of embryonic development, which are interpreted to indicate an alteration in the protein metabolism of the cell, or an early destruction of muscle tissue. Further, alterations in the calcium content of fractions which seem to regulate the movements of this ion in the cell are discussed. A new technique for homogenizing tissues from embryos of different ages is presented. PMID:14222812

  1. Bone and Skeletal Muscle: Key Players in Mechanotransduction and Potential Overlapping Mechanisms

    PubMed Central

    Goodman, Craig A.; Hornberger, Troy A.; Robling, Alexander G.

    2015-01-01

    The development and maintenance of skeletal muscle and bone mass is critical for movement, health and issues associated with the quality of life. Skeletal muscle and bone mass are regulated by a variety of factors that include changes in mechanical loading. Moreover, bone mass is, in large part, regulated by muscle-derived mechanical forces and thus by changes in muscle mass/strength. A thorough understanding of the cellular mechanism(s) responsible for mechanotransduction in bone and skeletal muscle is essential for the development of effective exercise and pharmaceutical strategies aimed at increasing, and/or preventing the loss of, mass in these tissues. Thus, in this review we will attempt to summarize the current evidence for the major molecular mechanisms involved in mechanotransduction in skeletal muscle and bone. By examining the differences and similarities in mechanotransduction between these two tissues, it is hoped that this review will stimulate new insights and ideas for future research and promote collaboration between bone and muscle biologists. PMID:26453495

  2. Counteracting Muscle Atrophy using Galvanic Stimulation of the Vestibular System

    NASA Technical Reports Server (NTRS)

    Fox, Robert A.; Polyakov, Igor

    1999-01-01

    The unloading of weight bearing from antigravity muscles during space flight produces significant muscle atrophy and is one of the most serious health problems facing the space program. Various exercise regimens have been developed and used either alone or in combination with pharmacological techniques to ameliorate this atrophy, but no effective countermeasure exists for this problem. The research in this project was conducted to evaluate the potential use of vestibular galvanic stimulation (VGS) to prevent muscle atrophy resulting from unloading of weight bearing from antigravity muscles. This approach was developed based on two concepts related to the process of maintaining the status of the anti-gravity neuromuscular system. These two premises are: (1) The "tone," or bias on spinal motorneurons is affected by vestibular projections that contribute importantly to maintaining muscle health and status. (2) VGS can be used to modify the excitability, or 'tone' of motorneuron of antigravity muscles. Thus, the strategy is to use VGS to modify the gain of vestibular projections to antigravity muscles and thereby change the general status of these muscles.

  3. Development of oral and branchial muscles in lancelet larvae of Branchiostoma japonicum.

    PubMed

    Yasui, Kinya; Kaji, Takao; Morov, Arseniy R; Yonemura, Shigenobu

    2014-04-01

    The perforated pharynx has generally been regarded as a shared characteristic of chordates. However, there still remains phylogenetic ambiguity between the cilia-driven system in invertebrate chordates and the muscle-driven system in vertebrates. Giant larvae of the genus Asymmetron were reported to develop an orobranchial musculature similar to that of vertebrates more than 100 years ago. This discovery might represent an evolutionary link for the chordate branchial system, but few investigations of the lancelet orobranchial musculature have been completed since. We studied staged larvae of a Japanese population of Branchiostoma japonicum to characterize the developmental property of the orobranchial musculature. The larval mouth and the unpaired primary gills develop well-organized muscles. These muscles function only as obturators of the openings without antagonistic system. As the larval mouth enlarged posteriorly to the level of the ninth myomere, the oral musculature was fortified accordingly without segmental patterning. In contrast, the iterated branchial muscles coincided with the dorsal myomeric pattern before metamorphosis, but the pharynx was remodeled dynamically irrespective of the myomeric pattern during metamorphosis. The orobranchial musculature disappeared completely during metamorphosis, and adult muscles in the oral hood and velum, as well as on the pterygial coeloms developed independently. The lancelet orobranchial musculature is apparently a larval adaptation to prevent harmful intake. However, vestigial muscles appeared transiently with the secondary gill formation suggest a bilateral ancestral state of muscular gills, and a segmental pattern of developing branchial muscles without neural crest and placodal contributions is suggestive of a precursor of vertebrate branchiomeric pattern. Copyright © 2013 Wiley Periodicals, Inc.

  4. Development and Validation of a Musculoskeletal Model of the Fully Articulated Thoracolumbar Spine and Rib Cage

    PubMed Central

    Bruno, Alexander G.; Bouxsein, Mary L.; Anderson, Dennis E.

    2015-01-01

    We developed and validated a fully articulated model of the thoracolumbar spine in opensim that includes the individual vertebrae, ribs, and sternum. To ensure trunk muscles in the model accurately represent muscles in vivo, we used a novel approach to adjust muscle cross-sectional area (CSA) and position using computed tomography (CT) scans of the trunk sampled from a community-based cohort. Model predictions of vertebral compressive loading and trunk muscle tension were highly correlated to previous in vivo measures of intradiscal pressure (IDP), vertebral loading from telemeterized implants and trunk muscle myoelectric activity recorded by electromyography (EMG). PMID:25901907

  5. Myosin Heavy Chain Gene Expression in Developing Neonatal Skeletal Muscle: Involvement of the Nerve, Gravity, and Thyroid State

    NASA Technical Reports Server (NTRS)

    Baldwin, K. M.; Adams, G.; Haddad, F.; Zeng, M.; Qin, A.; Qin, L.; McCue, S.; Bodell, P.

    1999-01-01

    The myosin heavy chain (MHC) gene family encodes at least six MHC proteins (herein designated as neonatal, embryonic, slow type I (beta), and fast IIa, IIx, and IIb) that are expressed in skeletal muscle in a muscle-specific and developmentally-regulated fashion. At birth, both antigravity (e.g. soleus) and locomotor (e.g., plantaris) skeletal muscles are undifferentiated relative to the adult MHC phenotype such that the neonatal and embryonic MHC isoforms account for 80 - 90% of the MHC pool in a fast locomotor muscle; whereas, the embryonic and slow, type I isoforms account for approx. 90% of the pool in a typical antigravity muscle. The goal of this study was to investigate the role of an intact nerve, gravity and thyroid hormone (T3), as well as certain interactions of these interventions, on MHC gene expression in developing neonatal skeletal muscles of rodents.

  6. [Morphohistochemical study of skeletal muscles in rats after experimental flight on "Kosmos-1887"].

    PubMed

    Il'ina-Kakueva, E I

    1990-01-01

    Morphometric and histochemical methods were used to examine the soleus, gastrocnemius (medial portion), quadriceps femoris (central portion) and biceps brachii muscles of Wistar SPF rats two days after the 13-day flight on Cosmos-1887. It was found that significant atrophy developed only in the soleus muscle. The space flight did not change the percentage content of slow (type I) and fast (type II) fibers in fast twitch muscles. During two days at 1 g the slow soleus muscle developed substantial circulation disorders, which led to interstitial edema and necrotic changes. The gastrocnemius muscle showed small foci containing necrotic myofibers. Two days after recovery no glycogen aggregates were seen in myofibers, which were previously observed in other rats examined 4--8 hours after flight. An initial stage of muscle readaptation to 1 g occurred, when NAD.H2-dehydrogenase activity was decreased.

  7. Growth factor involvement in tension-induced skeletal muscle growth

    NASA Technical Reports Server (NTRS)

    Vandenburgh, Herman W.

    1987-01-01

    New muscle tissue culture techniques were developed to grow embryonic skeletal myofibers which are able to differentiate into more adultlike myofibers. Studies on mechanical simulation of cultured muscle cell growth will now be more directly applicable to mechanically-induced growth in adult muscle, and lead to better models for understanding muscle tissue atrophy caused by disuse in the microgravity of space.

  8. The relevance of stretch intensity and position—a systematic review

    PubMed Central

    Apostolopoulos, Nikos; Metsios, George S.; Flouris, Andreas D.; Koutedakis, Yiannis; Wyon, Matthew A.

    2015-01-01

    Stretching exercises to increase the range of motion (ROM) of joints have been used by sports coaches and medical professionals for improving performance and rehabilitation. The ability of connective and muscular tissues to change their architecture in response to stretching is important for their proper function, repair, and performance. Given the dearth of relevant data in the literature, this review examined two key elements of stretching: stretch intensity and stretch position; and their significance to ROM, delayed onset muscle soreness (DOMS), and inflammation in different populations. A search of three databases, Pub-Med, Google Scholar, and Cochrane Reviews, identified 152 articles, which were subsequently categorized into four groups: athletes (24), clinical (29), elderly (12), and general population (87). The use of different populations facilitated a wider examination of the stretching components and their effects. All 152 articles incorporated information regarding duration, frequency and stretch position, whereas only 79 referred to the intensity of stretching and 22 of these 79 studies were deemed high quality. It appears that the intensity of stretching is relatively under-researched, and the importance of body position and its influence on stretch intensity, is largely unknown. In conclusion, this review has highlighted areas for future research, including stretch intensity and position and their effect on musculo-tendinous tissue, in relation to the sensation of pain, delayed onset muscle soreness, inflammation, as well as muscle health and performance. PMID:26347668

  9. In vivo and in vitro functional characterization of Andersen's syndrome mutations.

    PubMed

    Bendahhou, Saïd; Fournier, Emmanuel; Sternberg, Damien; Bassez, Guillaume; Furby, Alain; Sereni, Carole; Donaldson, Matthew R; Larroque, Marie-Madeleine; Fontaine, Bertrand; Barhanin, Jacques

    2005-06-15

    The inward rectifier K(+) channel Kir2.1 carries all Andersen's syndrome mutations identified to date. Patients exhibit symptoms of periodic paralysis, cardiac dysrhythmia and multiple dysmorphic features. Here, we report the clinical manifestations found in three families with Andersen's syndrome. Molecular genetics analysis identified two novel missense mutations in the KCNJ2 gene leading to amino acid changes C154F and T309I of the Kir2.1 open reading frame. Patch clamp experiments showed that the two mutations produced a loss of channel function. When co-expressed with Kir2.1 wild-type (WT) channels, both mutations exerted a dominant-negative effect leading to a loss of the inward rectifying K(+) current. Confocal microscopy imaging in HEK293 cells is consistent with a co-assembly of the EGFP-fused mutant proteins with WT channels and proper traffick to the plasma membrane to produce silent channels alone or as hetero-tetramers with WT. Functional expression in C2C12 muscle cell line of newly as well as previously reported Andersen's syndrome mutations confirmed that these mutations act through a dominant-negative effect by altering channel gating or trafficking. Finally, in vivo electromyographic evaluation showed a decrease in muscle excitability in Andersen's syndrome patients. We hypothesize that Andersen's syndrome-associated mutations and hypokalaemic periodic paralysis-associated calcium channel mutations may lead to muscle membrane hypoexcitability via a common mechanism.

  10. In vivo and in vitro functional characterization of Andersen's syndrome mutations

    PubMed Central

    Bendahhou, Saïd; Fournier, Emmanuel; Sternberg, Damien; Bassez, Guillaume; Furby, Alain; Sereni, Carole; Donaldson, Matthew R; Larroque, Marie-Madeleine; Fontaine, Bertrand; Barhanin, Jacques

    2005-01-01

    The inward rectifier K+ channel Kir2.1 carries all Andersen's syndrome mutations identified to date. Patients exhibit symptoms of periodic paralysis, cardiac dysrhythmia and multiple dysmorphic features. Here, we report the clinical manifestations found in three families with Andersen's syndrome. Molecular genetics analysis identified two novel missense mutations in the KCNJ2 gene leading to amino acid changes C154F and T309I of the Kir2.1 open reading frame. Patch clamp experiments showed that the two mutations produced a loss of channel function. When co-expressed with Kir2.1 wild-type (WT) channels, both mutations exerted a dominant-negative effect leading to a loss of the inward rectifying K+ current. Confocal microscopy imaging in HEK293 cells is consistent with a co-assembly of the EGFP-fused mutant proteins with WT channels and proper traffick to the plasma membrane to produce silent channels alone or as hetero-tetramers with WT. Functional expression in C2C12 muscle cell line of newly as well as previously reported Andersen's syndrome mutations confirmed that these mutations act through a dominant-negative effect by altering channel gating or trafficking. Finally, in vivo electromyographic evaluation showed a decrease in muscle excitability in Andersen's syndrome patients. We hypothesize that Andersen's syndrome-associated mutations and hypokalaemic periodic paralysis-associated calcium channel mutations may lead to muscle membrane hypoexcitability via a common mechanism. PMID:15831539

  11. Reversal of diabetic vasculopathy in a rat model of type 1 diabetes by opiorphin-related peptides

    PubMed Central

    Calenda, Giulia; Tong, Yuehong; Kanika, Nirmala D.; Tar, Moses T.; Suadicani, Sylvia O.; Zhang, Xinhua; Melman, Arnold; Rougeot, Catherine

    2011-01-01

    Diabetes results in a myriad of vascular complications, often referred to as diabetic vasculopathy, which encompasses both microvascular [erectile dysfunction (ED), retinopathy, neuropathy, and nephropathy] and macrovascular complications (hypertension, coronary heart disease, and myocardial infarction). In diabetic animals and patients with ED, there is decreased opiorphin or opiorphin-related gene expression in corporal tissue. Both opiorphin and the rat homologous peptide sialorphin are found circulating in the plasma. In the present study, we investigated if diabetes induced changes in plasma sialorphin levels and if changes in these levels could modulate the biochemistry and physiology of vascular smooth muscle. We show that circulating sialorphin levels are reduced in a rat model of type I diabetes. Intracorporal injection of plasmids expressing sialorphin into diabetic rats restores sialorphin levels to those seen in the blood of nondiabetic animals and results in both improved erectile function and blood pressure. Sialorphin modulated the ability of C-type natriuretic peptide to relax both corporal and aortic smooth muscle strips and of bradykinin to regulate intracellular calcium levels in both corporal and aortic smooth muscle cells. We have previously shown that expression of genes encoding opiorphins is increased when erectile function is improved. Our findings thus suggest that by affecting circulating levels of opiorphin-related peptides, proper erectile function is not only an indicator but also a modulator of overall vascular health of a man. PMID:21784987

  12. Reversal of diabetic vasculopathy in a rat model of type 1 diabetes by opiorphin-related peptides.

    PubMed

    Calenda, Giulia; Tong, Yuehong; Kanika, Nirmala D; Tar, Moses T; Suadicani, Sylvia O; Zhang, Xinhua; Melman, Arnold; Rougeot, Catherine; Davies, Kelvin P

    2011-10-01

    Diabetes results in a myriad of vascular complications, often referred to as diabetic vasculopathy, which encompasses both microvascular [erectile dysfunction (ED), retinopathy, neuropathy, and nephropathy] and macrovascular complications (hypertension, coronary heart disease, and myocardial infarction). In diabetic animals and patients with ED, there is decreased opiorphin or opiorphin-related gene expression in corporal tissue. Both opiorphin and the rat homologous peptide sialorphin are found circulating in the plasma. In the present study, we investigated if diabetes induced changes in plasma sialorphin levels and if changes in these levels could modulate the biochemistry and physiology of vascular smooth muscle. We show that circulating sialorphin levels are reduced in a rat model of type I diabetes. Intracorporal injection of plasmids expressing sialorphin into diabetic rats restores sialorphin levels to those seen in the blood of nondiabetic animals and results in both improved erectile function and blood pressure. Sialorphin modulated the ability of C-type natriuretic peptide to relax both corporal and aortic smooth muscle strips and of bradykinin to regulate intracellular calcium levels in both corporal and aortic smooth muscle cells. We have previously shown that expression of genes encoding opiorphins is increased when erectile function is improved. Our findings thus suggest that by affecting circulating levels of opiorphin-related peptides, proper erectile function is not only an indicator but also a modulator of overall vascular health of a man.

  13. Nutritional and metabolic responses in common dentex (Dentex dentex) fed on different types and levels of carbohydrates.

    PubMed

    Pérez-Jiménez, Amalia; Abellán, Emilia; Arizcun, Marta; Cardenete, Gabriel; Morales, Amalia E; Hidalgo, M Carmen

    2015-06-01

    The present study was aimed to evaluate the capacity of common dentex (Dentex dentex) to efficiently use dietary carbohydrates. So, the effects of different type and levels of carbohydrates on growth performance, feed utilization, fish composition, plasma metabolites and key metabolic pathways in liver and white muscle of common dentex are presented. Nine isonitrogenous (43%) and isoenergetic (22 MJ kg(-1)) diets were formulated combining three types, pregelatinized starch (PS), dextrin (Dx) and maltodextrin (Mx), and three levels (12, 18 and 24%) of carbohydrates. Growth performance was not significantly influenced by treatments. The best feed utilization was observed in 18% Mx group. Higher hepatic lipid content was found in fish fed lower dietary carbohydrate levels. PS induced higher liver and white muscle hexokinase and pyruvate kinase activities compared to the lower values observed for Mx. Malic enzyme and glucose 6-phosphate dehydrogenase in liver and white muscle were lower in Mx group. The influence of dietary carbohydrates source was more noticeable than those induced by the carbohydrate level, when glycolysis and lipogenesis pathways were considered. Common dentex is able to use properly dietary carbohydrates, although optimal dietary inclusion levels are below 24%. The greater protein-sparing effect was promoted by the less complex carbohydrate (maltodextrin) and the best feed utilization indices were obtained at intermediate levels of inclusion (18%). Copyright © 2015 Elsevier Inc. All rights reserved.

  14. mTORC1-independent reduction of retinal protein synthesis in type 1 diabetes.

    PubMed

    Fort, Patrice E; Losiewicz, Mandy K; Pennathur, Subramaniam; Jefferson, Leonard S; Kimball, Scot R; Abcouwer, Steven F; Gardner, Thomas W

    2014-09-01

    Poorly controlled diabetes has long been known as a catabolic disorder with profound loss of muscle and fat body mass resulting from a simultaneous reduction in protein synthesis and enhanced protein degradation. By contrast, retinal structure is largely maintained during diabetes despite reduced Akt activity and increased rate of cell death. Therefore, we hypothesized that retinal protein turnover is regulated differently than in other insulin-sensitive tissues, such as skeletal muscle. Ins2(Akita) diabetic mice and streptozotocin-induced diabetic rats exhibited marked reductions in retinal protein synthesis matched by a concomitant reduction in retinal protein degradation associated with preserved retinal mass and protein content. The reduction in protein synthesis depended on both hyperglycemia and insulin deficiency, but protein degradation was only reversed by normalization of hyperglycemia. The reduction in protein synthesis was associated with diminished protein translation efficiency but, surprisingly, not with reduced activity of the mTORC1/S6K1/4E-BP1 pathway. Instead, diabetes induced a specific reduction of mTORC2 complex activity. These findings reveal distinctive responses of diabetes-induced retinal protein turnover compared with muscle and liver that may provide a new means to ameliorate diabetic retinopathy. © 2014 by the American Diabetes Association. Readers may use this article as long as the work is properly cited, the use is educational and not for profit, and the work is not altered.

  15. The expression and crucial roles of BMP signaling in development of smooth muscle progenitor cells in the mouse embryonic gut.

    PubMed

    Torihashi, Shigeko; Hattori, Takako; Hasegawa, Hirotaka; Kurahashi, Masaaki; Ogaeri, Takunori; Fujimoto, Toyoshi

    2009-03-01

    Bone morphogenetic protein (BMP) signaling is essential for normal development of the gastrointestinal (GI) tract. BMPs also play multiple roles in vascular smooth muscle cells; however, the BMP signaling in the development of the GI musculature remains to be clarified. We investigated the expression of BMPs and their receptors in mouse embryonic GI tracts by immunohistochemistry and in situ hybridization. We demonstrated that BMP2, BMP receptor Ib and BMP receptor II were expressed in the smooth muscle progenitors from E12 to E13 for the first time. BMP signaling on smooth muscle differentiation was examined by implantation of agarose beads soaked with BMPs in the in vitro developmental model that is gut-like structures from mouse embryonic stem (ES) cells. BMP2 rather than BMP4 beads enhanced smooth muscle differentiation, and increased gut-like structures showing spontaneous contractions and expressing intensive alpha-smooth muscle actin immunoreactivity. This increase was confirmed by up-regulation of SM22 mRNA shown by real-time PCR. By addition of noggin beads or noggin to the medium at BMP2 bead implantation, the ratio of contractive gut-like structures decreased. Implantation of BMP2 beads at EB7 (EB--embryoid bodies) (corresponding to E12 or E13 of mouse embryo) showed the highest effects and up-regulation of transcription factors msx-1 after 24h. This increase was blocked by noggin, and msx-1 decreased to almost the control level after 60 h. BMP2 beads at EB7 increased platelet-derived growth factor-A (PDGF-A) in the differentiating smooth muscle cells. We have recently reported that PDGF-A is expressed in the developing inner circular smooth muscle and is crucial for the longitudinal smooth muscle differentiation. Taken together, BMP signaling was expressed for a short window in the smooth muscle progenitors and the signal, especially BMP2, plays an essential role in smooth muscle differentiation in cooperation with PDGF signaling.

  16. The Need for Standardized Assessment of Muscle Quality in Skeletal Muscle Function Deficit and Other Aging-Related Muscle Dysfunctions: A Symposium Report.

    PubMed

    Correa-de-Araujo, Rosaly; Harris-Love, Michael O; Miljkovic, Iva; Fragala, Maren S; Anthony, Brian W; Manini, Todd M

    2017-01-01

    A growing body of scientific literature suggests that not only changes in skeletal muscle mass, but also other factors underpinning muscle quality, play a role in the decline in skeletal muscle function and impaired mobility associated with aging. A symposium on muscle quality and the need for standardized assessment was held on April 28, 2016 at the International Conference on Frailty and Sarcopenia Research in Philadelphia, Pennsylvania. The purpose of this symposium was to provide a venue for basic science and clinical researchers and expert clinicians to discuss muscle quality in the context of skeletal muscle function deficit and other aging-related muscle dysfunctions. The present article provides an expanded introduction concerning the emerging definitions of muscle quality and a potential framework for scientific inquiry within the field. Changes in muscle tissue composition, based on excessive levels of inter- and intra-muscular adipose tissue and intramyocellular lipids, have been found to adversely impact metabolism and peak force generation. However, methods to easily and rapidly assess muscle tissue composition in multiple clinical settings and with minimal patient burden are needed. Diagnostic ultrasound and other assessment methods continue to be developed for characterizing muscle pathology, and enhanced sonography using sensors to provide user feedback and improve reliability is currently the subject of ongoing investigation and development. In addition, measures of relative muscle force such as specific force or grip strength adjusted for body size have been proposed as methods to assess changes in muscle quality. Furthermore, performance-based assessments of muscle power via timed tests of function and body size estimates, are associated with lower extremity muscle strength may be responsive to age-related changes in muscle quality. Future aims include reaching consensus on the definition and standardized assessments of muscle quality, and providing recommendations to address critical clinical and technology research gaps within the field.

  17. Connexin 39.9 Protein Is Necessary for Coordinated Activation of Slow-twitch Muscle and Normal Behavior in Zebrafish*

    PubMed Central

    Hirata, Hiromi; Wen, Hua; Kawakami, Yu; Naganawa, Yuriko; Ogino, Kazutoyo; Yamada, Kenta; Saint-Amant, Louis; Low, Sean E.; Cui, Wilson W.; Zhou, Weibin; Sprague, Shawn M.; Asakawa, Kazuhide; Muto, Akira; Kawakami, Koichi; Kuwada, John Y.

    2012-01-01

    In many tissues and organs, connexin proteins assemble between neighboring cells to form gap junctions. These gap junctions facilitate direct intercellular communication between adjoining cells, allowing for the transmission of both chemical and electrical signals. In rodents, gap junctions are found in differentiating myoblasts and are important for myogenesis. Although gap junctions were once believed to be absent from differentiated skeletal muscle in mammals, recent studies in teleosts revealed that differentiated muscle does express connexins and is electrically coupled, at least at the larval stage. These findings raised questions regarding the functional significance of gap junctions in differentiated muscle. Our analysis of gap junctions in muscle began with the isolation of a zebrafish motor mutant that displayed weak coiling at day 1 of development, a behavior known to be driven by slow-twitch muscle (slow muscle). We identified a missense mutation in the gene encoding Connexin 39.9. In situ hybridization found connexin 39.9 to be expressed by slow muscle. Paired muscle recordings uncovered that wild-type slow muscles are electrically coupled, whereas mutant slow muscles are not. The further examination of cellular activity revealed aberrant, arrhythmic touch-evoked Ca2+ transients in mutant slow muscle and a reduction in the number of muscle fibers contracting in response to touch in mutants. These results indicate that Connexin 39.9 facilitates the spreading of neuronal inputs, which is irregular during motor development, beyond the muscle cells and that gap junctions play an essential role in the efficient recruitment of slow muscle fibers. PMID:22075003

  18. Systematic identification of genes involved in divergent skeletal muscle growth rates of broiler and layer chickens.

    PubMed

    Zheng, Qi; Zhang, Yong; Chen, Ying; Yang, Ning; Wang, Xiu-Jie; Zhu, Dahai

    2009-02-22

    The genetic closeness and divergent muscle growth rates of broilers and layers make them great models for myogenesis study. In order to discover the molecular mechanisms determining the divergent muscle growth rates and muscle mass control in different chicken lines, we systematically identified differentially expressed genes between broiler and layer skeletal muscle cells during different developmental stages by microarray hybridization experiment. Taken together, 543 differentially expressed genes were identified between broilers and layers across different developmental stages. We found that differential regulation of slow-type muscle gene expression, satellite cell proliferation and differentiation, protein degradation rate and genes in some metabolic pathways could give great contributions to the divergent muscle growth rates of the two chicken lines. Interestingly, the expression profiles of a few differentially expressed genes were positively or negatively correlated with the growth rates of broilers and layers, indicating that those genes may function in regulating muscle growth during development. The multiple muscle cell growth regulatory processes identified by our study implied that complicated molecular networks involved in the regulation of chicken muscle growth. These findings will not only offer genetic information for identifying candidate genes for chicken breeding, but also provide new clues for deciphering mechanisms underlining muscle development in vertebrates.

  19. Hedgehog signaling and laminin play unique and synergistic roles in muscle development.

    PubMed

    Peterson, Matthew T; Henry, Clarissa A

    2010-03-01

    Hedgehog (Hh) signaling and laminin-111, a basement membrane protein, are required for early muscle development. Hh signaling specifies different populations of muscle fibers and laminin-111 is critical for early muscle morphogenesis. However, additional requirements for Hh signaling and laminin during later phases of muscle development are not known. Furthermore, interactions between Hh signaling and laminin in this context are unknown. We used laminin gamma1 mutant zebrafish and cyclopamine to block Hh signal transduction separately and in combination to investigate their functions and interactions. We found that both Hh signaling and laminin are required for normal myosin chain expression. In addition, Hh signaling and laminin act synergistically during fast-twitch fiber elongation: fast muscle cells do not elongate in embryos deficient for both Hh signaling and laminin. Finally, we present evidence that suggests that Hh signaling is indirectly required via slow fiber specification for recovery of fast fiber elongation in laminin gamma1 mutant embryos. Copyright (c) 2010 Wiley-Liss, Inc.

  20. 3D finite element models of shoulder muscles for computing lines of actions and moment arms.

    PubMed

    Webb, Joshua D; Blemker, Silvia S; Delp, Scott L

    2014-01-01

    Accurate representation of musculoskeletal geometry is needed to characterise the function of shoulder muscles. Previous models of shoulder muscles have represented muscle geometry as a collection of line segments, making it difficult to account for the large attachment areas, muscle-muscle interactions and complex muscle fibre trajectories typical of shoulder muscles. To better represent shoulder muscle geometry, we developed 3D finite element models of the deltoid and rotator cuff muscles and used the models to examine muscle function. Muscle fibre paths within the muscles were approximated, and moment arms were calculated for two motions: thoracohumeral abduction and internal/external rotation. We found that muscle fibre moment arms varied substantially across each muscle. For example, supraspinatus is considered a weak external rotator, but the 3D model of supraspinatus showed that the anterior fibres provide substantial internal rotation while the posterior fibres act as external rotators. Including the effects of large attachment regions and 3D mechanical interactions of muscle fibres constrains muscle motion, generates more realistic muscle paths and allows deeper analysis of shoulder muscle function.

  1. 3D Finite Element Models of Shoulder Muscles for Computing Lines of Actions and Moment Arms

    PubMed Central

    Webb, Joshua D.; Blemker, Silvia S.; Delp, Scott L.

    2014-01-01

    Accurate representation of musculoskeletal geometry is needed to characterize the function of shoulder muscles. Previous models of shoulder muscles have represented muscle geometry as a collection of line segments, making it difficult to account the large attachment areas, muscle-muscle interactions, and complex muscle fiber trajectories typical of shoulder muscles. To better represent shoulder muscle geometry we developed three-dimensional finite element models of the deltoid and rotator cuff muscles and used the models to examine muscle function. Muscle fiber paths within the muscles were approximated, and moment arms were calculated for two motions: thoracohumeral abduction and internal/external rotation. We found that muscle fiber moment arms varied substantially across each muscle. For example, supraspinatus is considered a weak external rotator, but the three-dimensional model of supraspinatus showed that the anterior fibers provide substantial internal rotation while the posterior fibers act as external rotators. Including the effects of large attachment regions and three-dimensional mechanical interactions of muscle fibers constrains muscle motion, generates more realistic muscle paths, and allows deeper analysis of shoulder muscle function. PMID:22994141

  2. Intact Regulation of the AMPK Signaling Network in Response to Exercise and Insulin in Skeletal Muscle of Male Patients With Type 2 Diabetes: Illumination of AMPK Activation in Recovery From Exercise.

    PubMed

    Kjøbsted, Rasmus; Pedersen, Andreas J T; Hingst, Janne R; Sabaratnam, Rugivan; Birk, Jesper B; Kristensen, Jonas M; Højlund, Kurt; Wojtaszewski, Jørgen F P

    2016-05-01

    Current evidence on exercise-mediated AMPK regulation in skeletal muscle of patients with type 2 diabetes (T2D) is inconclusive. This may relate to inadequate segregation of trimeric complexes in the investigation of AMPK activity. We examined the regulation of AMPK and downstream targets ACC-β, TBC1D1, and TBC1D4 in muscle biopsy specimens obtained from 13 overweight/obese patients with T2D and 14 weight-matched male control subjects before, immediately after, and 3 h after exercise. Exercise increased AMPK α2β2γ3 activity and phosphorylation of ACCβ Ser(221), TBC1D1 Ser(237)/Thr(596), and TBC1D4 Ser(704) Conversely, exercise decreased AMPK α1β2γ1 activity and TBC1D4 Ser(318)/Thr(642) phosphorylation. Interestingly, compared with preexercise, 3 h into exercise recovery, AMPK α2β2γ1 and α1β2γ1 activity were increased concomitant with increased TBC1D4 Ser(318)/Ser(341)/Ser(704) phosphorylation. No differences in these responses were observed between patients with T2D and control subjects. Subjects were also studied by euglycemic-hyperinsulinemic clamps performed at rest and 3 h after exercise. We found no evidence for insulin to regulate AMPK activity. Thus, AMPK signaling is not compromised in muscle of patients with T2D during exercise and insulin stimulation. Our results reveal a hitherto unrecognized activation of specific AMPK complexes in exercise recovery. We hypothesize that the differential regulation of AMPK complexes plays an important role for muscle metabolism and adaptations to exercise. © 2016 by the American Diabetes Association. Readers may use this article as long as the work is properly cited, the use is educational and not for profit, and the work is not altered.

  3. Physical performance in relation to menopause status and physical activity.

    PubMed

    Bondarev, Dmitriy; Laakkonen, Eija K; Finni, Taija; Kokko, Katja; Kujala, Urho M; Aukee, Pauliina; Kovanen, Vuokko; Sipilä, Sarianna

    2018-05-21

    The aim of this study was to examine differences in physical performance (muscle power, muscle strength, aerobic capacity, and walking speed) across menopausal stages and potential of leisure physical activity (PA) to modify the impact of menopause on physical performance. In this cross-sectional study, women aged 47 to 55 were randomly selected from the Finnish National Registry and categorized as premenopausal (n = 233), perimenopausal (n = 381), or postmenopausal (n = 299) based on serum concentrations of follicle-stimulating hormone and bleeding diary. Physical performance was measured by knee extension force, handgrip force, vertical jumping height, maximal walking speed, and 6-minute walking distance. PA level was assessed by self-report and categorized as low, moderate, or high. Multivariate linear regression modeling was used for data analysis. After including fat mass, height, PA, and education in the model, the postmenopausal women showed 12.0 N weaker (P < 0.001) handgrip force and 1.1 cm lower (P < 0.001) vertical jumping height than the premenopausal women. There was no significant interaction between menopausal stage and PA on physical performance. The peri- and postmenopausal women with a high PA, however, showed better performance in the maximal knee extension strength and 6-minute walking test, and showed greater lower body muscle power than those with a low PA. Menopause status is associated with muscle strength and power, whereas the association between menopause status and mobility/walking is clearly weaker. A high leisure PA level provides more capacity to counteract the potential negative influence of menopausal factors on muscle function.This is an open access article distributed under the terms of the Creative Commons Attribution-Non Commercial-No Derivatives License 4.0 (CCBY-NC-ND), where it is permissible to download and share the work provided it is properly cited. The work cannot be changed in any way or used commercially without permission from the journal. http://creativecommons.org/licenses/by-nc-nd/4.0.

  4. The Role of the UNC-82 Protein Kinase in Organizing Myosin Filaments in Striated Muscle of Caenorhabditis elegans

    PubMed Central

    Schiller, NaTasha R.; Duchesneau, Christopher D.; Lane, Latrisha S.; Reedy, April R.; Manzon, Emily R.; Hoppe, Pamela E.

    2017-01-01

    We study the mechanisms that guide the formation and maintenance of the highly ordered actin-myosin cytoskeleton in striated muscle. The UNC-82 kinase of Caenorhabditis elegans is orthologous to mammalian kinases ARK5/NUAK1 and SNARK/NUAK2. UNC-82 localizes to the M-line, and is required for proper organization of thick filaments, but its substrate and mechanism of action are unknown. Antibody staining of three mutants with missense mutations in the UNC-82 catalytic domain revealed muscle structure that is less disorganized than in the null unc-82(0), but contained distinctive ectopic accumulations not found in unc-82(0). These accumulations contain paramyosin and myosin B, but lack myosin A and myosin A-associated proteins, as well as proteins of the integrin-associated complex. Fluorescently tagged missense mutant protein UNC-82 E424K localized normally in wild type; however, in unc-82(0), the tagged protein was found in the ectopic accumulations, which we also show to label with recently synthesized paramyosin. Recruitment of wild-type UNC-82::GFP to aggregates of differing protein composition in five muscle-affecting mutants revealed that colocalization of UNC-82 and paramyosin does not require UNC-96, UNC-98/ZnF, UNC-89/obscurin, CSN-5, myosin A, or myosin B individually. Dosage effects in paramyosin mutants suggest that UNC-82 acts as part of a complex, in which its stoichiometric relationship with paramyosin is critical. UNC-82 dosage affects muscle organization in the absence of paramyosin, perhaps through myosin B. We present evidence that the interaction of UNC-98/ZnF with myosin A is independent of UNC-82, and that UNC-82 acts upstream of UNC-98/ZnF in a pathway that organizes paramyosin during thick filament assembly. PMID:28040740

  5. The Role of the UNC-82 Protein Kinase in Organizing Myosin Filaments in Striated Muscle of Caenorhabditis elegans.

    PubMed

    Schiller, NaTasha R; Duchesneau, Christopher D; Lane, Latrisha S; Reedy, April R; Manzon, Emily R; Hoppe, Pamela E

    2017-03-01

    We study the mechanisms that guide the formation and maintenance of the highly ordered actin-myosin cytoskeleton in striated muscle. The UNC-82 kinase of Caenorhabditis elegans is orthologous to mammalian kinases ARK5/NUAK1 and SNARK/NUAK2. UNC-82 localizes to the M-line, and is required for proper organization of thick filaments, but its substrate and mechanism of action are unknown. Antibody staining of three mutants with missense mutations in the UNC-82 catalytic domain revealed muscle structure that is less disorganized than in the null unc-82(0) , but contained distinctive ectopic accumulations not found in unc-82(0) These accumulations contain paramyosin and myosin B, but lack myosin A and myosin A-associated proteins, as well as proteins of the integrin-associated complex. Fluorescently tagged missense mutant protein UNC-82 E424K localized normally in wild type; however, in unc-82(0) , the tagged protein was found in the ectopic accumulations, which we also show to label with recently synthesized paramyosin. Recruitment of wild-type UNC-82::GFP to aggregates of differing protein composition in five muscle-affecting mutants revealed that colocalization of UNC-82 and paramyosin does not require UNC-96, UNC-98/ZnF, UNC-89/obscurin, CSN-5, myosin A, or myosin B individually. Dosage effects in paramyosin mutants suggest that UNC-82 acts as part of a complex, in which its stoichiometric relationship with paramyosin is critical. UNC-82 dosage affects muscle organization in the absence of paramyosin, perhaps through myosin B. We present evidence that the interaction of UNC-98/ZnF with myosin A is independent of UNC-82, and that UNC-82 acts upstream of UNC-98/ZnF in a pathway that organizes paramyosin during thick filament assembly. Copyright © 2017 by the Genetics Society of America.

  6. Gastrocnemius operating length with ankle foot orthoses in cerebral palsy.

    PubMed

    Choi, Hwan; Wren, Tishya Anne Leong; Steele, Katherine Muterspaugh

    2017-06-01

    Many individuals with cerebral palsy wear ankle foot orthoses during daily life. Orthoses influence joint motion, but how they impact muscle remains unclear. In particular, the gastrocnemius is commonly stiff in cerebral palsy. Understanding whether orthoses stretch or shorten this muscle during daily life may inform orthosis design and rehabilitation. This study investigated the impact of different ankle foot orthoses on gastrocnemius operating length during walking in children with cerebral palsy. Case series, within subject comparison of gastrocnemius operating length while walking barefoot and with two types of ankle foot orthoses. We performed gait analyses for 11 children with cerebral palsy. Each child was fit with two types of orthoses: a dynamic ankle foot orthosis (Cascade dynamic ankle foot orthosis) and an adjustable dynamic response ankle foot orthosis (Ultraflex ankle foot orthosis). Musculoskeletal modeling was used to quantify gastrocnemius musculotendon operating length and velocity with each orthosis. Walking with ankle foot orthoses could stretch the gastrocnemius more than barefoot walking for some individuals; however, there was significant variability between participants and orthoses. At least one type of orthosis stretched the gastrocnemius during walking for 4/6 and 3/5 of the Gross Motor Functional Classification System Level I and III participants, respectively. AFOs also reduced peak gastrocnemius lengthening velocity compared to barefoot walking for some participants, with greater reductions among the Gross Motor Functional Classification System Level III participants. Changes in gastrocnemius operating length and lengthening velocity were related to changes in ankle and knee kinematics during gait. Ankle foot orthoses impact gastrocnemius operating length during walking and, with proper design, may assist with stretching tight muscles in daily life. Clinical relevance Determining whether ankle foot orthoses stretch tight muscles can inform future orthotic design and potentially provide a platform for integrating therapy into daily life. However, stretching tight muscles must be balanced with other goals of orthoses such as improving gait and preventing bone deformities.

  7. Distinct functions of the laminin β LN domain and collagen IV during cardiac extracellular matrix formation and stabilization of alary muscle attachments revealed by EMS mutagenesis in Drosophila

    PubMed Central

    2014-01-01

    Background The Drosophila heart (dorsal vessel) is a relatively simple tubular organ that serves as a model for several aspects of cardiogenesis. Cardiac morphogenesis, proper heart function and stability require structural components whose identity and ways of assembly are only partially understood. Structural components are also needed to connect the myocardial tube with neighboring cells such as pericardial cells and specialized muscle fibers, the so-called alary muscles. Results Using an EMS mutagenesis screen for cardiac and muscular abnormalities in Drosophila embryos we obtained multiple mutants for two genetically interacting complementation groups that showed similar alary muscle and pericardial cell detachment phenotypes. The molecular lesions underlying these defects were identified as domain-specific point mutations in LamininB1 and Cg25C, encoding the extracellular matrix (ECM) components laminin β and collagen IV α1, respectively. Of particular interest within the LamininB1 group are certain hypomorphic mutants that feature prominent defects in cardiac morphogenesis and cardiac ECM layer formation, but in contrast to amorphic mutants, only mild defects in other tissues. All of these alleles carry clustered missense mutations in the laminin LN domain. The identified Cg25C mutants display weaker and largely temperature-sensitive phenotypes that result from glycine substitutions in different Gly-X-Y repeats of the triple helix-forming domain. While initial basement membrane assembly is not abolished in Cg25C mutants, incorporation of perlecan is impaired and intracellular accumulation of perlecan as well as the collagen IV α2 chain is detected during late embryogenesis. Conclusions Assembly of the cardiac ECM depends primarily on laminin, whereas collagen IV is needed for stabilization. Our data underscore the importance of a correctly assembled ECM particularly for the development of cardiac tissues and their lateral connections. The mutational analysis suggests that the β6/β3/β8 interface of the laminin β LN domain is highly critical for formation of contiguous cardiac ECM layers. Certain mutations in the collagen IV triple helix-forming domain may exert a semi-dominant effect leading to an overall weakening of ECM structures as well as intracellular accumulation of collagen and other molecules, thus paralleling observations made in other organisms and in connection with collagen-related diseases. PMID:24935095

  8. An assessment by the Statin Muscle Safety Task Force: 2014 update.

    PubMed

    Rosenson, Robert S; Baker, Steven K; Jacobson, Terry A; Kopecky, Stephen L; Parker, Beth A; The National Lipid Association's Muscle Safety Expert Panel

    2014-01-01

    The National Lipid Association's Muscle Safety Expert Panel was charged with the duty of examining the definitions for statin-associated muscle adverse events, development of a clinical index to assess myalgia, and the use of diagnostic neuromuscular studies to investigate muscle adverse events. We provide guidance as to when a patient should be considered for referral to neuromuscular specialists and indications for the performance of a skeletal muscle biopsy. Based on this review of evidence, we developed an algorithm for the evaluation and treatment of patients who may be intolerant to statins as the result of adverse muscle events. The panel was composed of clinical cardiologists, clinical lipidologists, an exercise physiologist, and a neuromuscular specialist. Copyright © 2014 National Lipid Association. Published by Elsevier Inc. All rights reserved.

  9. Concept Developed for an Implanted Stimulated Muscle-Powered Piezoelectric Generator

    NASA Technical Reports Server (NTRS)

    Lewandowski, Beth; Kilgore, Kevin; Ercegovic, David; Gustafson, Kenneth

    2005-01-01

    Implanted electronic devices are typically powered by batteries or transcutaneous power transmission. Batteries must be replaced or recharged, and transcutaneous power sources burden the patient or subject with external equipment prone to failure. A completely self-sustaining implanted power source would alleviate these limitations. Skeletal muscle provides an available autologous power source containing native chemical energy that produces power in excess of the requirements for muscle activation by motor nerve stimulation. A concept has been developed to convert stimulated skeletal muscle power into electrical energy (see the preceding illustration). We propose to connect a piezoelectric generator between a muscle tendon and bone. Electrically stimulated muscle contractions would exert force on the piezoelectric generator, charging a storage circuit that would be used to power the stimulator and other devices.

  10. Post-transcriptional regulation of myotube elongation and myogenesis by Hoi Polloi

    PubMed Central

    Johnson, Aaron N.; Mokalled, Mayssa H.; Valera, Juliana M.; Poss, Kenneth D.; Olson, Eric N.

    2013-01-01

    Striated muscle development requires the coordinated expression of genes involved in sarcomere formation and contractility, as well as genes that determine muscle morphology. However, relatively little is known about the molecular mechanisms that control the early stages of muscle morphogenesis. To explore this facet of myogenesis, we performed a genetic screen for regulators of somatic muscle morphology in Drosophila, and identified the putative RNA-binding protein (RBP) Hoi Polloi (Hoip). Hoip is expressed in striated muscle precursors within the muscle lineage and controls two genetically separable events: myotube elongation and sarcomeric protein expression. Myotubes fail to elongate in hoip mutant embryos, even though the known regulators of somatic muscle elongation, target recognition and muscle attachment are expressed normally. In addition, a majority of sarcomeric proteins, including Myosin Heavy Chain (MHC) and Tropomyosin, require Hoip for their expression. A transgenic MHC construct that contains the endogenous MHC promoter and a spliced open reading frame rescues MHC protein expression in hoip embryos, demonstrating the involvement of Hoip in pre-mRNA splicing, but not in transcription, of muscle structural genes. In addition, the human Hoip ortholog NHP2L1 rescues muscle defects in hoip embryos, and knockdown of endogenous nhp2l1 in zebrafish disrupts skeletal muscle development. We conclude that Hoip is a conserved, post-transcriptional regulator of muscle morphogenesis and structural gene expression. PMID:23942517

  11. Androgen effects on skeletal muscle: implications for the development and management of frailty

    PubMed Central

    O’Connell, Matthew DL; Wu, Frederick CW

    2014-01-01

    Androgens have potent anabolic effects on skeletal muscle and decline with age in parallel to losses in muscle mass and strength. This loss of muscle mass and function, known as sarcopenia, is the central event in development of frailty, the vulnerable health status that presages adverse outcomes and rapid functional decline in older adults. The potential role of falling androgen levels in the development of frailty and their utility as function promoting therapies in older men has therefore attracted considerable attention. This review summarizes current concepts and definitions in muscle ageing, sarcopenia and frailty, and evaluates recent developments in the study of androgens and frailty. Current evidence from observational and interventional studies strongly supports an effect of androgens on muscle mass in ageing men, but effects on muscle strength and particularly physical function have been less clear. Androgen treatment has been generally well–tolerated in studies of older men, but concerns remain over higher dose treatments and use in populations with high cardiovascular risk. The first trials of selective androgen receptor modulators (SARMs) suggest similar effects on muscle mass and function to traditional androgen therapies in older adults. Important future directions include the use of these agents in combination with exercise training to promote functional ability across different populations of older adults, as well as more focus on the relationships between concurrent changes in hormone levels, body composition and physical function in observational studies. PMID:24457838

  12. Assessment of muscle fatigue using electromygraphm sensing

    NASA Astrophysics Data System (ADS)

    Helmi, Muhammad Hazimin Bin; Ping, Chew Sue; Ishak, Nur Elliza Binti; Saad, Mohd Alimi Bin Mohd; Mokhtar, Anis Shahida Niza Binti

    2017-08-01

    Muscle fatigue is condition of muscle decline in ability after undergoing any physical activity. Observation of the muscle condition of an athlete during training is crucial to prevent or minimize injury and able to achieve optimum performance in actual competition. The aim of this project is to develop a muscle monitoring system to detect muscle fatigue in swimming athlete. This device is capable to measure muscle stress level of the swimmer and at the same time provide indication of muscle fatigue level to trainer. Electromyography signal was recorded from the muscle movement while practicing the front crawl stroke repetitively. The time domain data was processed to frequency spectra in order to study the effect of muscle fatigue. The results show that the recorded EMG signal is able to sense muscle fatigue.

  13. Cigarette smoke condensate inhibits collagen gel contraction and prostaglandin E2 production in human gingival fibroblasts.

    PubMed

    Romero, A; Cáceres, M; Arancibia, R; Silva, D; Couve, E; Martínez, C; Martínez, J; Smith, P C

    2015-06-01

    Granulation tissue remodeling and myofibroblastic differentiation are critically important events during wound healing. Tobacco smoking has a detrimental effect in gingival tissue repair. However, studies evaluating the effects of cigarette smoke on these events are lacking. We used gingival fibroblasts cultured within free-floating and restrained collagen gels to simulate the initial and final steps of the granulation tissue phase during tissue repair. Collagen gel contraction was stimulated with serum or transforming growth factor-β1. Cigarette smoke condensate (CSC) was used to evaluate the effects of tobacco smoke on gel contraction. Protein levels of alpha-smooth muscle actin, β1 integrin, matrix metalloproteinase-3 and connective tissue growth factor were evaluated through Western blot. Prostaglandin E(2) (PGE(2)) levels were determined through ELISA. Actin organization was evaluated through confocal microscopy. CSC reduced collagen gel contraction induced by serum and transforming growth factor-β1 in restrained collagen gels. CSC also altered the development of actin stress fibers in fibroblasts cultured within restrained collagen gels. PGE(2) levels were strongly diminished by CSC in three-dimensional cell cultures. However, other proteins involved in granulation tissue remodeling and myofibroblastic differentiation such as alpha-smooth muscle actin, β1 integrin, matrix metalloproteinase-3 and connective tissue growth factor, were unmodified by CSC. CSC may alter the capacity of gingival fibroblasts to remodel and contract a collagen matrix. Inhibition of PGE(2) production and alterations of actin stress fibers in these cells may impair proper tissue maturation during wound healing in smokers. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  14. Multiple Facets of cAMP Signalling and Physiological Impact: cAMP Compartmentalization in the Lung

    PubMed Central

    Oldenburger, Anouk; Maarsingh, Harm; Schmidt, Martina

    2012-01-01

    Therapies involving elevation of the endogenous suppressor cyclic AMP (cAMP) are currently used in the treatment of several chronic inflammatory disorders, including chronic obstructive pulmonary disease (COPD). Characteristics of COPD are airway obstruction, airway inflammation and airway remodelling, processes encompassed by increased airway smooth muscle mass, epithelial changes, goblet cell and submucosal gland hyperplasia. In addition to inflammatory cells, airway smooth muscle cells and (myo)fibroblasts, epithelial cells underpin a variety of key responses in the airways such as inflammatory cytokine release, airway remodelling, mucus hypersecretion and airway barrier function. Cigarette smoke, being next to environmental pollution the main cause of COPD, is believed to cause epithelial hyperpermeability by disrupting the barrier function. Here we will focus on the most recent progress on compartmentalized signalling by cAMP. In addition to G protein-coupled receptors, adenylyl cyclases, cAMP-specific phospho-diesterases (PDEs) maintain compartmentalized cAMP signalling. Intriguingly, spatially discrete cAMP-sensing signalling complexes seem also to involve distinct members of the A-kinase anchoring (AKAP) superfamily and IQ motif containing GTPase activating protein (IQGAPs). In this review, we will highlight the interaction between cAMP and the epithelial barrier to retain proper lung function and to alleviate COPD symptoms and focus on the possible molecular mechanisms involved in this process. Future studies should include the development of cAMP-sensing multiprotein complex specific disruptors and/or stabilizers to orchestrate cellular functions. Compartmentalized cAMP signalling regulates important cellular processes in the lung and may serve as a therapeutic target. PMID:24281338

  15. Are linear AChR epitopes the real culprit in ocular myasthenia gravis?

    PubMed

    Wu, Xiaorong; Tüzün, Erdem

    2017-02-01

    Extraocular muscle weakness occurs in most of the myasthenia gravis (MG) patients and it is often the initial complaint. Approximately 10-20% of MG patients with extraocular muscle weakness display only ocular symptoms and rest of the patients subsequently develop generalized muscle weakness. It is not entirely clear why some MG patients develop only ocular symptoms and why extraocular muscle weakness almost always precedes generalized muscle weakness. These facts are often explained by increased susceptibility of extraocular muscles due to their reduced endplate safety factor and lower complement inhibitor expression. Findings of a recently developed animal model of ocular MG suggest that additional factors might be in play. While immunization of HLA transgenic and wild-type (WT) mice with the native acetylcholine receptor (AChR) pentamer carrying conformational epitopes generates severe generalized muscle weakness, immunization of the same mouse strains with recombinant unfolded AChR subunits containing linear epitopes induces ptosis with or without mild generalized muscle weakness. Notably, immunization of mice with deficient T helper cell-mediated antigen presentation with recombinant AChR subunits or whole native AChR pentamer also induces ocular symptoms, AChR-reactive B cells and AChR antibodies. Based on these findings, we hypothesize that ocular symptoms observed in the earlier stages of MG might be triggered by linear and non-conformational AChR epitopes expressed by thymic cells or invading microorganisms. This initial AChR autoimmunity might be managed by T cell-independent and B cell mediated mechanisms yielding low affinity AChR antibodies. These antibodies are putatively capable of inducing muscle weakness only in extraocular muscles which have increased vulnerability due to their inherent biological properties. After this initial attack, as AChR bearing immune complexes form and the immune system gains access to the native AChR expressed by muscle and thymic myoid cells, a more robust anti-AChR autoimmunity develops giving way to high affinity AChR antibodies, thymic germinal center formation and severe generalized muscle weakness. Accurate characterization of chain if events leading to ocular and generalized symptoms in MG might enable development of novel therapeutics that might prevent the transition from mild ocular symptoms to severe generalized weakness in earlier stages of the disease. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Treatment with Riluzole Restores Normal Control of Soleus and Extensor Digitorum Longus Muscles during Locomotion in Adult Rats after Sciatic Nerve Crush at Birth

    PubMed Central

    Cabaj, Anna M.; Sławińska, Urszula

    2017-01-01

    The effects of sciatic nerve crush (SNC) and treatment with Riluzole on muscle activity during unrestrained locomotion were identified in an animal model by analysis of the EMG activity recorded from soleus (Sol) and extensor digitorum longus (EDL) muscles of both hindlimbs; in intact rats (IN) and in groups of rats treated for 14 days with saline (S) or Riluzole (R) after right limb nerve crush at the 1st (1S and 1R) or 2nd (2S and 2R) day after birth. Changes in the locomotor pattern of EMG activity were correlated with the numbers of survived motor units (MUs) identified in investigated muscles. S rats with 2–8 and 10–28 MUs that survived in Sol and EDL muscles respectively showed increases in the duration and duty factor of muscle EMG activity and a loss of correlation between the duty factors of muscle activity, and abnormal flexor-extensor co-activation 3 months after SNC. R rats with 5, 6 (Sol) and 15–29 MUs (EDL) developed almost normal EMG activity of both Sol and control EDL muscles, whereas EDL muscles with SNC showed a lack of recovery. R rats with 8 (Sol) and 23–33 (EDL) MUs developed almost normal EMG activities of all four muscles. A subgroup of S rats with a lack of recovery and R rats with almost complete recovery that had similar number of MUs (8 and 24–28 vs 8 and 23–26), showed that the number of MUs was not the only determinant of treatment effectiveness. The results demonstrated that rats with SNC failed to develop normal muscle activity due to malfunction of neuronal circuits attenuating EDL muscle activity during the stance phase, whereas treatment with Riluzole enabled almost normal EMG activity of Sol and EDL muscles during locomotor movement. PMID:28095499

  17. Treatment with Riluzole Restores Normal Control of Soleus and Extensor Digitorum Longus Muscles during Locomotion in Adult Rats after Sciatic Nerve Crush at Birth.

    PubMed

    Zmysłowski, Wojciech; Cabaj, Anna M; Sławińska, Urszula

    2017-01-01

    The effects of sciatic nerve crush (SNC) and treatment with Riluzole on muscle activity during unrestrained locomotion were identified in an animal model by analysis of the EMG activity recorded from soleus (Sol) and extensor digitorum longus (EDL) muscles of both hindlimbs; in intact rats (IN) and in groups of rats treated for 14 days with saline (S) or Riluzole (R) after right limb nerve crush at the 1st (1S and 1R) or 2nd (2S and 2R) day after birth. Changes in the locomotor pattern of EMG activity were correlated with the numbers of survived motor units (MUs) identified in investigated muscles. S rats with 2-8 and 10-28 MUs that survived in Sol and EDL muscles respectively showed increases in the duration and duty factor of muscle EMG activity and a loss of correlation between the duty factors of muscle activity, and abnormal flexor-extensor co-activation 3 months after SNC. R rats with 5, 6 (Sol) and 15-29 MUs (EDL) developed almost normal EMG activity of both Sol and control EDL muscles, whereas EDL muscles with SNC showed a lack of recovery. R rats with 8 (Sol) and 23-33 (EDL) MUs developed almost normal EMG activities of all four muscles. A subgroup of S rats with a lack of recovery and R rats with almost complete recovery that had similar number of MUs (8 and 24-28 vs 8 and 23-26), showed that the number of MUs was not the only determinant of treatment effectiveness. The results demonstrated that rats with SNC failed to develop normal muscle activity due to malfunction of neuronal circuits attenuating EDL muscle activity during the stance phase, whereas treatment with Riluzole enabled almost normal EMG activity of Sol and EDL muscles during locomotor movement.

  18. Terminology and classification of muscle injuries in sport: The Munich consensus statement

    PubMed Central

    Mueller-Wohlfahrt, Hans-Wilhelm; Haensel, Lutz; Mithoefer, Kai; Ekstrand, Jan; English, Bryan; McNally, Steven; Orchard, John; van Dijk, C Niek; Kerkhoffs, Gino M; Schamasch, Patrick; Blottner, Dieter; Swaerd, Leif; Goedhart, Edwin; Ueblacker, Peter

    2013-01-01

    Objective To provide a clear terminology and classification of muscle injuries in order to facilitate effective communication among medical practitioners and development of systematic treatment strategies. Methods Thirty native English-speaking scientists and team doctors of national and first division professional sports teams were asked to complete a questionnaire on muscle injuries to evaluate the currently used terminology of athletic muscle injury. In addition, a consensus meeting of international sports medicine experts was established to develop practical and scientific definitions of muscle injuries as well as a new and comprehensive classification system. Results The response rate of the survey was 63%. The responses confirmed the marked variability in the use of the terminology relating to muscle injury, with the most obvious inconsistencies for the term strain. In the consensus meeting, practical and systematic terms were defined and established. In addition, a new comprehensive classification system was developed, which differentiates between four types: functional muscle disorders (type 1: overexertion-related and type 2: neuromuscular muscle disorders) describing disorders without macroscopic evidence of fibre tear and structural muscle injuries (type 3: partial tears and type 4: (sub)total tears/tendinous avulsions) with macroscopic evidence of fibre tear, that is, structural damage. Subclassifications are presented for each type. Conclusions A consistent English terminology as well as a comprehensive classification system for athletic muscle injuries which is proven in the daily practice are presented. This will help to improve clarity of communication for diagnostic and therapeutic purposes and can serve as the basis for future comparative studies to address the continued lack of systematic information on muscle injuries in the literature. What are the new things Consensus definitions of the terminology which is used in the field of muscle injuries as well as a new comprehensive classification system which clearly defines types of athletic muscle injuries. Level of evidence Expert opinion, Level V. PMID:23080315

  19. Live-Cell Imaging of Mitochondria and the Actin Cytoskeleton in Budding Yeast.

    PubMed

    Higuchi-Sanabria, Ryo; Swayne, Theresa C; Boldogh, Istvan R; Pon, Liza A

    2016-01-01

    Maintenance and regulation of proper mitochondrial dynamics and functions are necessary for cellular homeostasis. Numerous diseases, including neurodegeneration and muscle myopathies, and overall cellular aging are marked by declining mitochondrial function and subsequent loss of multiple other cellular functions. For these reasons, optimized protocols are needed for visualization and quantification of mitochondria and their function and fitness. In budding yeast, mitochondria are intimately associated with the actin cytoskeleton and utilize actin for their movement and inheritance. This chapter describes optimal approaches for labeling mitochondria and the actin cytoskeleton in living budding yeast cells, for imaging the labeled cells, and for analyzing the resulting images.

  20. Acute Motor Axonal Neuropathy in a Child With Atypical Presentation

    PubMed Central

    Lee, Kyung Soo; Han, Seung Hoon

    2015-01-01

    Abstract Acute motor axonal neuropathy (AMAN) is a variant of Guillain–Barre syndrome. It has been reported to have no sensory symptoms and is diagnosed by typical electrophysiological findings of low-amplitude or unobtainable compound muscle action potentials with normal sensory nerve action potentials. However, the authors experienced atypical case of general electrophysiological findings of AMAN with pain and paresthesia and presented it. This case implies that clinician should be on the alert to atypical sensory symptoms from the classical presentation of AMAN even if the patient is diagnosed with AMAN electrophysiologically and should consider proper treatment options based on clinical presentations. PMID:25621680

Top