Sample records for properties absorption coefficient

  1. A Comparison of Aerosol Optical Property Measurements Made During the DOE Aerosol Intensive Operating Period and Their Effects on Regional Climate

    NASA Technical Reports Server (NTRS)

    Strawa, Anthony W.; Hallar, A. G.; Arnott, W. P.; Covert, D.; Elleman, R.; Ogren, J.; Schmid, B.; Luu, A.

    2004-01-01

    The amount of radiant energy an aerosol absorbs has profound effects on climate and air quality. It is ironic that aerosol absorption coefficient is one of the most difficult to measure aerosol properties. One of the main purposes of the DOE Aerosol Intensive Operating Period (IOP) flown in May, 2003 was to assess our ability to measure absorption coefficient in situ. This paper compares measurements of aerosol optical properties made during the IOP. Measurements of aerosol absorption coefficient were made by Particle Soot Absorption Photometer (PSAP) aboard the CIRPAS Twin-Otter (U. Washington) and on the DOE Cessna 172 (NOAA-C,MDL). Aerosol absorption coefficient was also measured by a photoacoustic instrument (DRI) that was operated on an aircraft for the first time during the IOP. A new cavity ring-down (CRD) instrument, called Cadenza (NASA-AkC), measures the aerosol extinction coefficient for 675 nm and 1550 nm light, and simultaneously measures the scattering coefficient at 675 nm. Absorption coefficient is obtained from the difference of measured extinction and scattering within the instrument. Measurements of absorption coefficient from all of these instruments during appropriate periods are compared. During the IOP, several significant aerosol layers were sampled aloft. These layers are identified in the remote (AATS-14) as well as in situ measurements. Extinction profiles measured by Cadenza are compared to those derived from the Ames Airborne Tracking Sunphotometer (AATS-14, NASA-ARC). The regional radiative impact of these layers is assessed by using the measured aerosol optical properties in a radiative transfer model.

  2. [Spectral absorption properties of the water constituents in the estuary of Zhujiang River].

    PubMed

    Wang, Shan-shan; Wang, Yong-bo; Fu, Qing-hua; Yin, Bin; Li, Yun-mei

    2014-12-01

    Spectral absorption properties of the water constituents is the main factor affecting the light field under the surface of the water and the spectrum above the surface of the water. Thus, the study is useful for understanding of the water spectral property and the remote reversing of water quality parameters. Absorption properties of total suspended particles, non-algal particles, phytoplankton and CDOM were analyzed using the 30 samples collected in July 2013 in the estuary of Zhujiang River. The results indicated that: (1) the non-algal particles absorption dominated the absorption of the total suspended particles; (2) the absorption coefficient of the non-algal particles, which mainly came from the terrigenous deposits, decreased exponentially from short to long wavelength. In addition, the average value and spatial variation of the slope S(d) were higher than those in inland case- II waters; (3) the absorption coefficient of phytoplankton in 440 nm showed a better polynomial relationship with chlorophyll a concentration, while the absorption coefficient of phytoplankton in 675 nm linearly related with the chlorophyll a concentration. Moreover, the influence of accessory pigments on phytoplankton absorption coefficient mainly existed in the range of short wavelength, and Chlorophyll a was the main influencing factor for phytoplankton absorption in long wavelength. The specific absorption coefficient of phytoplankton decreased the power exponentially with the increase of the chlorophyll a concentration; (4) CDOM mainly came from the terrigenous sources and its spectral curve had an absorption shoulder between 250-290 nm. Thus, a piecewise S(g) fitting function could effectively express CDOM absorption properties, i.e., M value and S(g) value in period A (240-260 nm) showed a strong positive correlation. The M value was low, and the humic acid had a high proportion in CDOM; (5) the non-algal particles absorption dominated the total absorption in the estuary of Zhujiang River, and the contribution of the phytoplankton absorption to the total absorption was far lower than that of the non-algal particles. While the contribution of the CDOM was the lowest. The contribution of the CDOM absorption to the total absorption was relatively larger when the content of humic acid was higher.

  3. Impact of soil properties on selected pharmaceuticals adsorption in soils

    NASA Astrophysics Data System (ADS)

    Kodesova, Radka; Kocarek, Martin; Klement, Ales; Fer, Miroslav; Golovko, Oksana; Grabic, Roman; Jaksik, Ondrej

    2014-05-01

    The presence of human and veterinary pharmaceuticals in the environment has been recognized as a potential threat. Pharmaceuticals may contaminate soils and consequently surface and groundwater. Study was therefore focused on the evaluation of selected pharmaceuticals adsorption in soils, as one of the parameters, which are necessary to know when assessing contaminant transport in soils. The goals of this study were: (1) to select representative soils of the Czech Republic and to measure soil physical and chemical properties; (2) to measure adsorption isotherms of selected pharmaceuticals; (3) to evaluate impact of soil properties on pharmaceutical adsorptions and to propose pedotransfer rules for estimating adsorption coefficients from the measured soil properties. Batch sorption tests were performed for 6 selected pharmaceuticals (beta blockers Atenolol and Metoprolol, anticonvulsant Carbamazepin, and antibiotics Clarithromycin, Trimetoprim and Sulfamethoxazol) and 13 representative soils (soil samples from surface horizons of 11 different soil types and 2 substrates). The Freundlich equations were used to describe adsorption isotherms. The simple correlations between measured physical and chemical soil properties (soil particle density, soil texture, oxidable organic carbon content, CaCO3 content, pH_H2O, pH_KCl, exchangeable acidity, cation exchange capacity, hydrolytic acidity, basic cation saturation, sorption complex saturation, salinity), and the Freundlich adsorption coefficients were assessed using Pearson correlation coefficient. Then multiple-linear regressions were applied to predict the Freundlich adsorption coefficients from measured soil properties. The largest adsorption was measured for Clarithromycin (average value of 227.1) and decreased as follows: Trimetoprim (22.5), Metoprolol (9.0), Atenolol (6.6), Carbamazepin (2.7), Sulfamethoxazol (1.9). Absorption coefficients for Atenolol and Metoprolol closely correlated (R=0.85), and both were also related to absorption coefficients of Carbamazepin (R=0.67 and 0.68). Positive correlation was found between Trimetoprim absorption coefficients and Atenolol, Metoprolol or Carbamazepin absorption coefficients. The negative relationship was found between absorption coefficients of Sulfomethoxazol and Clarithromycin (R=-0.80). Sulfamethoxazol absorption coefficient was negatively related to pH_H2O, pH_KCL or sorption complex saturation and positively to the hydrolytic acidity or exchangeable acidity. Trimetoprim absorption coefficient was positively related to the oxidable organic carbon content, cation exchange capacity, basic cation saturation or silt content and negatively to particle density or sand content. Clarithromycin absorption coefficient was positively related to pH_H2O, pH_KCL, CaCO3 content, basic cation saturation or sorption complex saturation and negatively to hydrolytic acidity or exchangeable acidity. Atenolol and Metoprolol absorption coefficients were positively related to the oxidable organic carbon content, cation exchange capacity, basic cation saturation, salinity, clay content or silt content, and negatively to the particle density or sand content. Finally Carbamazepin absorption coefficient was positively related to the oxidable organic carbon content, cation exchange capacity or basic cation saturation, and negatively to the particle density or sand content. Evaluated pedotransfer rules for different pharmaceuticals included different sets of soil properties. Absorption coefficients could be predicted from: the hydrolytic acidity (Sulfamethoxazol), the oxidable organic carbon content (Trimetoprim and Carbamazepin), the oxidable organic carbon content, hydrolytic acidity and cation exchange capacity (Clarithromycin), the basic cation saturation (Atenolol and Metoprolol). Acknowledgement: Authors acknowledge the financial support of the Czech Science Foundation (Project No. 13-12477S).

  4. Observation and analysis of water inherent optical properties

    NASA Astrophysics Data System (ADS)

    Sun, Deyong; Li, Yunmei; Le, Chengfeng; Huang, Changchun

    2008-03-01

    Inherent optical property is an important part of water optical properties, and is the foundation of water color analytical model establishment. Through quantity filter technology (QFT) and backscattering meter BB9 (WETlabs Inc), absorption coefficients of CDOM, total suspended minerals and backscattering coefficients of total suspended minerals had been observed in Meiliang Bay of Taihu lake at summer and winter respectively. After analyzing the spectral characteristics of absorption and backscattering coefficients, the differences between two seasons had been illustrated adequately, and the reasons for the phenomena, which are related to the changes of water quality coefficient, had also been explained. So water environment states can be reflected by inherent optical properties. In addition, the relationship models between backscattering coefficients and suspended particle concentrations had been established, which can support coefficients for analytical models.

  5. Long-term variability of aerosol optical properties and radiative effects in Northern Finland

    NASA Astrophysics Data System (ADS)

    Lihavainen, Heikki; Hyvärinen, Antti; Asmi, Eija; Hatakka, Juha; Viisanen, Yrjö

    2017-04-01

    We introduce long term dataset of aerosol scattering and absorption properties and combined aerosol optical properties measured in Pallas Atmosphere-Ecosystem Supersite in Norhern Finland. The station is located 170 km north of the Arctic Circle. The station is affected by both pristine Arctic air masses as well as long transported air pollution from northern Europe. We studied the optical properties of aerosols and their radiative effects in continental and marine air masses, including seasonal cycles and long-term trends. The average (median) scattering coefficient, backscattering fraction, absorption coefficient and single scattering albedo at the wavelength of 550 nm were 7.9 (4.4) 1/Mm, 0.13 (0.12), 0.74 (0.35) 1/Mm and 0.92 (0.93), respectively. We observed clear seasonal cycles in these variables, the scattering coefficient having high values during summer and low in fall, and absorption coefficient having high values during winter and low in fall. We found that the high values of the absorption coefficient and low values of the single scattering albedo were related to continental air masses from lower latitudes. These aerosols can induce an additional effect on the surface albedo and melting of snow. We observed the signal of the Arctic haze in marine (northern) air masses during March and April. The haze increased the value of the absorption coefficient by almost 80% and that of the scattering coefficient by about 50% compared with the annual-average values. We did not observe any long-term trend in the scattering coefficient, while our analysis showed a clear decreasing trend in the backscattering fraction and scattering Ångström exponent during winter. We also observed clear relationship with temperature and aerosol scattering coefficient. We will present also how these different features affects to aerosol direct radiative forcing.

  6. Deep seawater inherent optical properties in the Southern Ionian Sea

    NASA Astrophysics Data System (ADS)

    Riccobene, G.; Capone, A.; Aiello, S.; Ambriola, M.; Ameli, F.; Amore, I.; Anghinolfi, M.; Anzalone, A.; Avanzini, C.; Barbarino, G.; Barbarito, E.; Battaglieri, M.; Bellotti, R.; Beverini, N.; Bonori, M.; Bouhadef, B.; Brescia, M.; Cacopardo, G.; Cafagna, F.; Caponetto, L.; Castorina, E.; Ceres, A.; Chiarusi, T.; Circella, M.; Cocimano, R.; Coniglione, R.; Cordelli, M.; Costa, M.; Cuneo, S.; D'Amico, A.; de Bonis, G.; de Marzo, C.; de Rosa, G.; de Vita, R.; Distefano, C.; Falchini, E.; Fiorello, C.; Flaminio, V.; Fratini, K.; Gabrielli, A.; Galeotti, S.; Gandolfi, E.; Grimaldi, A.; Habel, R.; Leonora, E.; Lonardo, A.; Longo, G.; Lo Presti, D.; Lucarelli, F.; Maccioni, E.; Margiotta, A.; Martini, A.; Masullo, R.; Megna, R.; Migneco, E.; Mongelli, M.; Montaruli, T.; Morganti, M.; Musumeci, M.; Nicolau, C. A.; Orlando, A.; Osipenko, M.; Osteria, G.; Papaleo, R.; Pappalardo, V.; Petta, C.; Piattelli, P.; Raffaelli, F.; Raia, G.; Randazzo, N.; Reito, S.; Ricco, G.; Ripani, M.; Rovelli, A.; Ruppi, M.; Russo, G. V.; Russo, S.; Russo, S.; Sapienza, P.; Sedita, M.; Schuller, J.-P.; Shirokov, E.; Simeone, F.; Sipala, V.; Spurio, M.; Taiuti, M.; Terreni, G.; Trasatti, L.; Urso, S.; Valente, V.; Vicini, P.

    2007-02-01

    The NEMO (NEutrino Mediterranean Observatory) Collaboration has been carrying out since 1998 an evaluation programme of deep sea sites suitable for the construction of the future Mediterranean km3 Čerenkov neutrino telescope. We investigated the seawater optical and oceanographic properties of several deep sea marine areas close to the Italian Coast. Inherent optical properties (light absorption and attenuation coefficients) have been measured as a function of depth using an experimental apparatus equipped with standard oceanographic probes and the commercial transmissometer AC9 manufactured by WETLabs. This paper reports on the visible light absorption and attenuation coefficients measured in deep seawater of a marine region located in the Southern Ionian Sea, 60 100 km SE of Capo Passero (Sicily). Data show that blue light absorption coefficient is about 0.015 m-1 (corresponding to an absorption length of 67 m) close to the one of optically pure water and it does not show seasonal variation.

  7. Influence of diffuse reflectance measurement accuracy on the scattering coefficient in determination of optical properties with integrating sphere optics (a secondary publication).

    PubMed

    Horibe, Takuro; Ishii, Katsunori; Fukutomi, Daichi; Awazu, Kunio

    2015-12-30

    An estimation error of the scattering coefficient of hemoglobin in the high absorption wavelength range has been observed in optical property calculations of blood-rich tissues. In this study, the relationship between the accuracy of diffuse reflectance measurement in the integrating sphere and calculated scattering coefficient was evaluated with a system to calculate optical properties combined with an integrating sphere setup and the inverse Monte Carlo simulation. Diffuse reflectance was measured with the integrating sphere using a small incident port diameter and optical properties were calculated. As a result, the estimation error of the scattering coefficient was improved by accurate measurement of diffuse reflectance. In the high absorption wavelength range, the accuracy of diffuse reflectance measurement has an effect on the calculated scattering coefficient.

  8. Multispectral imaging of absorption and scattering properties of in vivo exposed rat brain using a digital red-green-blue camera.

    PubMed

    Yoshida, Keiichiro; Nishidate, Izumi; Ishizuka, Tomohiro; Kawauchi, Satoko; Sato, Shunichi; Sato, Manabu

    2015-05-01

    In order to estimate multispectral images of the absorption and scattering properties in the cerebral cortex of in vivo rat brain, we investigated spectral reflectance images estimated by the Wiener estimation method using a digital RGB camera. A Monte Carlo simulation-based multiple regression analysis for the corresponding spectral absorbance images at nine wavelengths (500, 520, 540, 560, 570, 580, 600, 730, and 760 nm) was then used to specify the absorption and scattering parameters of brain tissue. In this analysis, the concentrations of oxygenated hemoglobin and that of deoxygenated hemoglobin were estimated as the absorption parameters, whereas the coefficient a and the exponent b of the reduced scattering coefficient spectrum approximated by a power law function were estimated as the scattering parameters. The spectra of absorption and reduced scattering coefficients were reconstructed from the absorption and scattering parameters, and the spectral images of absorption and reduced scattering coefficients were then estimated. In order to confirm the feasibility of this method, we performed in vivo experiments on exposed rat brain. The estimated images of the absorption coefficients were dominated by the spectral characteristics of hemoglobin. The estimated spectral images of the reduced scattering coefficients had a broad scattering spectrum, exhibiting a larger magnitude at shorter wavelengths, corresponding to the typical spectrum of brain tissue published in the literature. The changes in the estimated absorption and scattering parameters during normoxia, hyperoxia, and anoxia indicate the potential applicability of the method by which to evaluate the pathophysiological conditions of in vivo brain due to the loss of tissue viability.

  9. Light absorption coefficients by phytoplankton pigments, suspended particles and colored dissolved organic matter in the Crimea coastal water (the Black sea) in June 2016

    NASA Astrophysics Data System (ADS)

    Moiseeva, N.; Churilova, T.; Efimova, T.; Krivenko, O.; Latushkin, A.

    2017-11-01

    Variability of the bio-optical properties of the Crimean coastal waters in June 2016 has been analyzed. The type of vertical distribution chlorophyll a concentration and phytoplankton light absorption coefficients and spectra shape differed between shallow and deeper water. In the deeper water seasonal stratification divided euphotic zone into layers with different environmental conditions. In the deeper part of the euphotic zone (below the thermocline) phytoplankton absorption spectra had local maximum at 550 nm, which was likely to be associated with high abundance of cyanobacteria (Synechococcus sps.) in the phytoplankton community. The concentration of chlorophyll a specific light absorption coefficient of phytoplankton decreased with depth (especially pronounced in the blue domain of the spectrum). In the shallow water the vertical distributions of all absorption properties were relatively homogeneous due to vertical water mixing. In the shallow water non-algal particles light absorption coefficient and its contribution to total particulate absorption were higher than those in the deeper water. The non-algal particles (NAP) and colored dissolved organic matter (CDOM) light absorption spectra were well described by an exponential function with a slope averaging 0.010 nm-1 (SD = 0.001 nm-1) and 0.022 nm-1 (SD = 0.0060 nm-1), correspondingly. The CDOM absorption at 440 nm and slope coefficient varied significantly across the investigated area, which was possibly associated with the terrestrial influences. The assessment of the contribution of phytoplankton, NAP and CDOM to total light absorption showed that CDOM dominated in the absorption at 440 nm.

  10. [Differences of inherent optical properties of inland lake water body in typical seasons].

    PubMed

    Sun, De-Yong; Li, Yun-Mei; Wang, Qiao; Le, Cheng-Fen; Huang, Chang-Chun; Wang, Li-Zhen

    2008-05-01

    Inherent optical property is one of the important properties of water body, which lays the foundation for the establishment of water color analytical models. By using quantity filter technology (QFT) and BB9 backscattering meter, the absorption coefficients of chromophoric dissolved organic matter (CDOM) and total suspended matters (TSM) and the backscattering coefficient of TSM in the water body at Meiliang Bay of Taihu Lake were measured in summer and winter. Based on the spectral comparison of the absorption and backscattering coefficients, their differences between the two seasons were demonstrated, and the reasons that caused these differences were also explored in the context of their relations to the changes in water quality. Consequently, water environment condition could be revealed by using the inherent optical property. The relationship between the backscattering coefficient and the TSM concentration was established, which could provide supporting coefficients to the analytical models to be developed.

  11. Size and shape dependent optical properties of InAs quantum dots

    NASA Astrophysics Data System (ADS)

    Imran, Ali; Jiang, Jianliang; Eric, Deborah; Yousaf, Muhammad

    2018-01-01

    In this study Electronic states and optical properties of self assembled InAs quantum dots embedded in GaAs matrix have been investigated. Their carrier confinement energies for single quantum dot are calculated by time-independent Schrödinger equation in which hamiltonianian of the system is based on effective mass approximation and position dependent electron momentum. Transition energy, absorption coefficient, refractive index and high frequency dielectric constant for spherical, cylindrical and conical quantum dots with different sizes in different dimensions are calculated. Comparative studies have revealed that size and shape greatly affect the electronic transition energies and absorption coefficient. Peaks of absorption coefficients have been found to be highly shape dependent.

  12. Piezoelectric films for acoustoelectronic devices - Production, properties, and applications

    NASA Astrophysics Data System (ADS)

    Anisimkin, V. I.; Kotelianskii, I. M.

    1990-06-01

    Various aspects of the production of ZnO, AlN, and Ta2O5 piezoelectric films are briefly reviewed. The mininum possible absorption coefficient of surface acoustic waves in textured films is estimated theoretically with allowance for different absorption mechanisms. The results obtained are compared with those for single crystals of the same materials. Methods for calculating the absorption coefficient and temperature delay coefficient for Rayleigh and Sezawa surface acoustic waves in layered structures are proposed and verified experimentally.

  13. A model predicting the evolution of ice particle size spectra and radiative properties of cirrus clouds. Part 2: Dependence of absorption and extinction on ice crystal morphology

    NASA Technical Reports Server (NTRS)

    Mitchell, David L.; Arnott, W. Patrick

    1994-01-01

    This study builds upon the microphysical modeling described in Part 1 by deriving formulations for the extinction and absorption coefficients in terms of the size distribution parameters predicted from the micro-physical model. The optical depth and single scatter albedo of a cirrus cloud can then be determined, which, along with the asymmetry parameter, are the input parameters needed by cloud radiation models. Through the use of anomalous diffraction theory, analytical expressions were developed describing the absorption and extinction coefficients and the single scatter albedo as functions of size distribution parameters, ice crystal shapes (or habits), wavelength, and refractive index. The extinction coefficient was formulated in terms of the projected area of the size distribution, while the absorption coefficient was formulated in terms of both the projected area and mass of the size distribution. These properties were formulated as explicit functions of ice crystal geometry and were not based on an 'effective radius.' Based on simulations of the second cirrus case study described in Part 1, absorption coefficients predicted in the near infrared for hexagonal columns and rosettes were up to 47% and 71% lower, respectively, than absorption coefficients predicted by using equivalent area spheres. This resulted in single scatter albedos in the near-infrared that were considerably greater than those predicted by the equivalent area sphere method. Reflectances in this region should therefore be underestimated using the equivalent area sphere approach. Cloud optical depth was found to depend on ice crystal habit. When the simulated cirrus cloud contained only bullet rosettes, the optical depth was 142% greater than when the cloud contained only hexagonal columns. This increase produced a doubling in cloud albedo. In the near-infrared (IR), the single scatter albedo also exhibited a significant dependence on ice crystal habit. More research is needed on the geometrical properties of ice crystals before the influence of ice crystal shape on cirrus radiative properties can be adequately understood. This study provides a way of coupling the radiative properties of absorption, extinction, and single scatter albedo to the microphysical properties of cirrus clouds. The dependence of extinction and absorption on ice crystal shape was not just due to geometrical differences between crystal types, but was also due to the effect these differences had on the evolution of ice particle size spectra. The ice particle growth model in Part 1 and the radiative properties treated here are based on analytical formulations, and thus represent a computationally efficient means of modeling the microphysical and radiative properties of cirrus clouds.

  14. [Optical characteristics of colored dissolved organic material (CDOM) in Yangtze Estuary].

    PubMed

    Zhu, Wei-Jian; Shen, Fang; Hong, Guan-Lin

    2010-10-01

    Absorption property of colored dissolved organic material (CDOM) is one of the most important contents to remote sensing of ocean color in estuarine and coastal areas. In this study, the optical properties and mixing behavior of CDOM in surface water of Yangtze Estuary were discussed according to the two surveys in August of 2008 and May of 2009. Based on the research, the absorption coefficient and spectral slope were discussed. It was found that in summer of 2008 CDOM absorption coefficients at 440 nm [a(g) (440)], ranged from 0.20 m(-1) to 0.73 m(-1), while the coefficients in 2009 varied between 0.20 m(-1) and 0.77 m(-1). Statistics showed that the power function model fitted the best in the regression analysis of CDOM absorption spectral. The spectral slopes (S(g2)) of CDOM calculated by the power function model ranged from 5.10 to 7.90 in Summer of 2008 and from 2.95 to 6.11 in Spring of 2009. The highest absorption coefficients of two cruises appeared both in the south passage of the Yangtze Estuary. The absorption coefficient in surfer water was observed varied tremendously in the estuary and the offshore area. And the main reason is affected by the turbidity maximum zone. It is observed that the absorption coefficients of CDOM tended to a homogeneous distribution whilst the layers of water mixed tempestuously, but otherwise it always showed a conservative mixing behavior. Because of the frequent mixture, there is not assured correlativity between S(g2) and a(g) (440). In the offshore area of Yangtze Estuary, the effecting of local production cannot be negligent, which differed from the estuary area. Yet when the hydrological environment was relatively stable, the negative relationship between them was very clear. In conclusion, the optical properties and mixing behavior of CDOM had showed tremendous different characteristics from inside the estuary to outside the estuary because of the influence of complex physical, chemical and hydrology conditions.

  15. A study of sound absorption by street canyon boundaries and asphalt rubber concrete pavement

    NASA Astrophysics Data System (ADS)

    Drysdale, Graeme Robert

    A sound field model, based on a classical diffusion equation, is extended to account for sound absorption in a diffusion parameter used to model sound energy in a narrow street canyon. The model accounts for a single sound absorption coefficient, separate accommodation coefficients and a combination of separate absorption and accommodation coefficients from parallel canyon walls. The new expressions are compared to the original formula through numerical simulations to reveal the effect of absorption on sound diffusion. The newly established analytical formulae demonstrate satisfactory agreement with their predecessor under perfect reflection. As well, the influence of the extended diffusion parameter on normalized sound pressure levels in a narrow street canyon is in agreement with experimental data. The diffusion parameters are used to model sound energy density in a street canyon as a function of the sound absorption coefficient of the street canyon walls. The acoustic and material properties of conventional and asphalt rubber concrete (ARC) pavement are also studied to assess how the crumb rubber content influences sound absorption in street canyons. The porosity and absolute permeability of compacted specimens of asphalt rubber concrete are measured and compared to their normal and random incidence sound absorption coefficients as a function of crumb rubber content in the modified binder. Nonlinear trends are found between the sound absorption coefficients, porosity and absolute permeability of the compacted specimens and the percentage of crumb rubber in the modified binders. The cross-sectional areas of the air voids on the surfaces of the compacted specimens are measured using digital image processing techniques and a linear relationship is obtained between the average void area and crumb rubber content. The measured material properties are used to construct an empirical formula relating the average porosity, normal incidence noise reduction coefficients and percentage of crumb rubber in the modified binder of the compacted specimens.

  16. Fuel Property Determination of Biodiesel-Diesel Blends By Terahertz Spectrum

    NASA Astrophysics Data System (ADS)

    Zhao, Hui; Zhao, Kun; Bao, Rima

    2012-05-01

    The frequency-dependent absorption characteristics of biodiesel and its blends with conventional diesel fuel have been researched in the spectral range of 0.2-1.5 THz by the terahertz time-domain spectroscopy (THz-TDS). The absorption coefficient presented a regular increasing with biodiesel content. A nonlinear multivariate model that correlating cetane number and solidifying point of bio-diesel blends with absorption coefficient has been established, making the quantitative analysis of fuel properties simple. The results made the cetane number and solidifying point prediction possible by THz-TDS technology and indicated a bright future in practical application.

  17. COMPARISON OF PHOTOCHEMICAL BEHAVIOR OF VARIOUS HUMIC SUBSTANCES IN WATER: III. SPECTROSCOPIC PROPERTIES OF HUMIC SUBSTANCES

    EPA Science Inventory

    Spectral absorption coefficients and fluorescence quantum efficiencies were determined for humic substances from a variety of sources. Specific absorption coefficients, K(h), for humic substances at wavelengths lambda from 300 to 500 nm can be closely described by the relation Ae...

  18. Thermal properties of borate crystals for high power optical parametric chirped-pulse amplification.

    PubMed

    Riedel, R; Rothhardt, J; Beil, K; Gronloh, B; Klenke, A; Höppner, H; Schulz, M; Teubner, U; Kränkel, C; Limpert, J; Tünnermann, A; Prandolini, M J; Tavella, F

    2014-07-28

    The potential of borate crystals, BBO, LBO and BiBO, for high average power scaling of optical parametric chirped-pulse amplifiers is investigated. Up-to-date measurements of the absorption coefficients at 515 nm and the thermal conductivities are presented. The measured absorption coefficients are a factor of 10-100 lower than reported by the literature for BBO and LBO. For BBO, a large variation of the absorption coefficients was found between crystals from different manufacturers. The linear and nonlinear absorption coefficients at 515 nm as well as thermal conductivities were determined for the first time for BiBO. Further, different crystal cooling methods are presented. In addition, the limits to power scaling of OPCPAs are discussed.

  19. Changing of optical absorption and scattering coefficients in nonlinear-optical crystal lithium triborate before and after interaction with UV-radiation

    NASA Astrophysics Data System (ADS)

    Demkin, Artem S.; Nikitin, Dmitriy G.; Ryabushkin, Oleg A.

    2016-04-01

    In current work optical properties of LiB3O5 (LBO) crystal with ultraviolet (UV) (λ= 266 nm) induced volume macroscopic defect (track) are investigated using novel piezoelectric resonance laser calorimetry technique. Pulsed laser radiation of 10 W average power at 532 nm wavelength, is consecutively focused into spatial regions with and without optical defect. For these cases exponential fitting of crystal temperature kinetics measured during its irradiation gives different optical absorption coefficients α1 = 8.1 • 10-4 cm-1 (region with defect) and α =3.9ṡ10-4 cm-1 (non-defected region). Optical scattering coefficient is determined as the difference between optical absorption coefficients measured for opaque and transparent lateral facets of the crystal respectively. Measurements reveal that scattering coefficient of LBO in the region with defect is three times higher than the optical absorption coefficient.

  20. Measurement of the sound absorption coefficient for an advanced undergraduate physics laboratory

    NASA Astrophysics Data System (ADS)

    Macho-Stadler, E.; Elejalde-García, M. J.

    2017-09-01

    We present a simple experiment that allows advanced undergraduates to learn the basics of the acoustic properties of materials. The impedance tube-standing wave method is applied to study the normal absorption coefficient of acoustics insulators. The setup includes a tube, a speaker, a microphone, a digital function generator and an oscilloscope, material available in an undergraduate laboratory. Results of the change of the absorption coefficient with the frequency, the sample thickness and the sample density are analysed and compared with those obtained with a commercial system.

  1. Feasibility of interstitial diffuse optical tomography using cylindrical diffusing fiber for prostate PDT

    PubMed Central

    Liang, Xing; Wang, Ken Kang-Hsin; Zhu, Timothy C.

    2013-01-01

    Interstitial diffuse optical tomography (DOT) has been used to characterize spatial distribution of optical properties for prostate photodynamic therapy (PDT) dosimetry. We have developed an interstitial DOT method using cylindrical diffuse fibers (CDFs) as light sources, so that the same light sources can be used for both DOT measurement and PDT treatment. In this novel interstitial CDF-DOT method, absolute light fluence per source strength (in unit of 1/cm2) is used to separate absorption and scattering coefficients. A mathematical phantom and a solid prostate phantom including anomalies with known optical properties were used, respectively, to test the feasibility of reconstructing optical properties using interstitial CDF-DOT. Three dimension spatial distributions of the optical properties were reconstructed for both scenarios. Our studies show that absorption coefficient can be reliably extrapolated while there are some cross talks between absorption and scattering properties. Even with the suboptimal reduced scattering coefficients, the reconstructed light fluence rate agreed with the measured values to within ±10%, thus the proposed CDF-DOT allows greatly improved light dosimetry calculation for interstitial PDT. PMID:23629149

  2. Examination of the Measurement of Absorption Using the Reverberant Room Method for Highly Absorptive Acoustic Foam

    NASA Technical Reports Server (NTRS)

    Hughes, William O.; McNelis, Anne M.; Chris Nottoli; Eric Wolfram

    2015-01-01

    The absorption coefficient for material specimens are needed to quantify the expected acoustic performance of that material in its actual usage and environment. The ASTM C423-09a standard, "Standard Test Method for Sound Absorption and Sound Absorption Coefficients by the Reverberant Room Method" is often used to measure the absorption coefficient of material test specimens. This method has its basics in the Sabine formula. Although widely used, the interpretation of these measurements are a topic of interest. For example, in certain cases the measured Sabine absorption coefficients are greater than 1.0 for highly absorptive materials. This is often attributed to the diffraction edge effect phenomenon. An investigative test program to measure the absorption properties of highly absorbent melamine foam has been performed at the Riverbank Acoustical Laboratories. This paper will present and discuss the test results relating to the effect of the test materials' surface area, thickness and edge sealing conditions. A follow-on paper is envisioned that will present and discuss the results relating to the spacing between multiple piece specimens, and the mounting condition of the test specimen.

  3. [Near ultraviolet absorption spectral properties of chromophoric dissolved organic matter in the north area of Yellow Sea].

    PubMed

    Wang, Lin; Zhao, Dong-Zhi; Yang, Jian-Hong; Chen, Yan-Long

    2010-12-01

    Chromophoric dissolved organic matter (CDOM) near ultraviolet absorption spectra contains CDOM molecular structure, composition and other important physical and chemical information. Based on the measured data of CDOM absorption coefficient in March 2009 in the north area of Yellow Sea, the present paper analyzed near ultraviolet absorption spectral properties of CDOM. The results showed that due to the impact of near-shore terrigenous input, the composition of CDOM is quite different in the north area of Yellow Sea, and this area is a typical case II water; fitted slope with specific range of spectral band and absorption coefficient at specific band can indicate the relative size of CDOM molecular weight, correlation between spectral slope of the Sg,275-300), Sg,300-350, Sg,350-400 and Sg,250-275 and the relative size of CDOM molecular weight indicative parameter M increases in turn and the highest is up to 0.95. Correlation between a(g)(lambda) and M value increases gradually with the increase in wavelength, and the highest is up to 0.92 at 400 nm; being correlated or not between spectral slope and absorption coefficient is decided by the fitting-band wavelength range for the spectra slope and the wavelength for absorption coefficient. Correlation between Sg,275-300 and a(g)(400) is the largest, up to 0.87.

  4. Scattering and Absorption Properties of Biomaterials for Dental Restorative Applications

    NASA Astrophysics Data System (ADS)

    Fernandez-Oliveras, A.; Rubiño, M.; Pérez, M. M.

    2013-08-01

    The physical understanding of the optical properties of dental biomaterials is mandatory for their final success in restorative applications.Light propagation in biological media is characterized by the absorption coefficient, the scattering coefficient, the scattering phase function,the refractive index, and the surface conditions (roughness). We have employed the inverse adding-doubling (IAD) method to combine transmittance and reflectance measurements performed using an integrating-sphere setup with the results of the previous scattering-anisotropygoniometric measurements. This has led to the determination of the absorption and the scattering coefficients. The aim was to optically characterize two different dental-resin composites (nanocomposite and hybrid) and one type of zirconia ceramic, and comparatively study them. The experimental procedure was conducted under repeatability conditions of measurement in order to determine the uncertainty associated to the optical properties of the biomaterials. Spectral variations of the refraction index and the scattering anisotropy factor were also considered. The whole experimental procedure fulfilled all the necessary requirements to provide optical-property values with lower associated uncertainties. The effective transport coefficient presented a similar spectral behavior for the two composites but completely different for the zirconia ceramic. The results demonstrated that the scattering anisotropy exerted a clearly distinct impact on the optical properties of the zirconia ceramic compared with those of the dental-resin composites.

  5. In-Situ Measurements of Aerosol Optical Properties using New Cavity Ring-Down and Photoacoustics Instruments and Comparison with more Traditional Techniques

    NASA Technical Reports Server (NTRS)

    Strawa, A. W.; Arnott, P.; Covert, D.; Elleman, R.; Ferrare, R.; Hallar, A. G.; Jonsson, H.; Kirchstetter, T. W.; Luu, A. P.; Ogren, J.

    2004-01-01

    Carbonaceous species (BC and OC) are responsible for most of the absorption associated with aerosol particles. The amount of radiant energy an aerosol absorbs has profound effects on climate and air quality. It is ironic that aerosol absorption coefficient is one of the most difficult aerosol properties to measure. A new cavity ring-down (CRD) instrument, called Cadenza (NASA-ARC), measures the aerosol extinction coefficient for 675 nm and 1550 nm light, and simultaneously measures the scattering coefficient at 675 nm. Absorption coefficient is obtained from the difference of measured extinction and scattering within the instrument. Aerosol absorption coefficient is also measured by a photoacoustic (PA) instrument (DRI) that was operated on an aircraft for the first time during the DOE Aerosol Intensive Operating Period (IOP). This paper will report on measurements made with this new instrument and other in-situ instruments during two field recent field studies. The first field study was an airborne cam;oaign, the DOE Aerosol Intensive Operating Period flown in May, 2003 over northern Oklahoma. One of the main purposes of the IOP was to assess our ability to measure extinction and absorption coefficient in situ. This paper compares measurements of these aerosol optical properties made by the CRD, PA, nephelometer, and Particle Soot Absorption Photometer (PSAP) aboard the CIRPAS Twin-Otter. During the IOP, several significant aerosol layers were sampled aloft. These layers are identified in the remote (AATS-14) as well as in situ measurements. Extinction profiles measured by Cadenza are compared to those derived from the Ames Airborne Tracking Sunphotometer (AATS-14, NASA-ARC). The regional radiative impact of these layers is assessed by using the measured aerosol optical properties in a radiative transfer model. The second study was conducted in the Caldecott Tunnel, a heavily-used tunnel located north of San Francisco, Ca. The aerosol sampled in this study was characterized by fresh automobile and diesel exhaust. Measurements from Cadenza and from an aethalometer are presented. The aethalometer is a filter-based photometer and the infrared channel is calibrated to produce a measure of BC mass loading.

  6. Continuous light absorption photometer for long-term studies

    NASA Astrophysics Data System (ADS)

    Ogren, John A.; Wendell, Jim; Andrews, Elisabeth; Sheridan, Patrick J.

    2017-12-01

    A new photometer is described for continuous determination of the aerosol light absorption coefficient, optimized for long-term studies of the climate-forcing properties of aerosols. Measurements of the light attenuation coefficient are made at blue, green, and red wavelengths, with a detection limit of 0.02 Mm-1 and a precision of 4 % for hourly averages. The uncertainty of the light absorption coefficient is primarily determined by the uncertainty of the correction scheme commonly used to convert the measured light attenuation to light absorption coefficient and ranges from about 20 % at sites with high loadings of strongly absorbing aerosols up to 100 % or more at sites with low loadings of weakly absorbing aerosols. Much lower uncertainties (ca. 40 %) for the latter case can be achieved with an advanced correction scheme.

  7. Structural and optical properties of furfurylidenemalononitrile thin films

    NASA Astrophysics Data System (ADS)

    Ali, H. A. M.

    2013-03-01

    Thin films of furfurylidenemalononitrile (FMN) were deposited on different substrates at room temperature by thermal evaporation technique under a high vacuum. The structure of the powder was confirmed by Fourier transformation infrared (FTIR) technique. The unit cell dimensions were determined from X-ray diffraction (XRD) studies. The optical properties were investigated using spectrophotometric measurements of the transmittance and reflectance at normal incidence of light in the wavelength range from 200 to 2500 nm. The refractive index (n), the absorption index (k) and the absorption coefficient (α) were calculated. The analysis of the spectral behavior of the absorption coefficient in the absorption region revealed an indirect allowed transition. The refractive index dispersion was analyzed using the single oscillator model. Some dispersion parameters were estimated. Complex dielectric function and optical conductivity were determined. The influence of the irradiation with high-energy X-rays (6 MeV) on the studied properties was also investigated.

  8. Characteristics of aerosol light scattering and absorption properties observed at Gosan, Korea, during GOPOEX 2014

    NASA Astrophysics Data System (ADS)

    Cho, C.; Kim, S. W.; Sheridan, P. J.; Gustafsson, O.; Lee, M.; Yoon, S. C.

    2016-12-01

    Anthropogenic fine pollution and wind-blown mineral dust aerosols have a significant effect on the regional radiation budget by scattering or absorbing the solar radiation reaching the Earth's surface. We investigate the optical and physical properties of dust and pollution aerosols at Gosan Climate Observatory (GCO), Korea during Gosan Pollution Experiment 2014 (GOPOEX 2014; January 2014).Mean values of aerosol scattering coefficient and absorption coefficient during GOPOEX 2014 were 72 ± 86 Mm-1 and 6 ± 5 Mm-1 at 550 nm, respectively. Aerosol scattering coefficient and absorption coefficient during dust episodes were 245 ± 171 Mm-1 and 22 ± 13 Mm-1 at 550 nm, which were approximately 3.5 times greater than mean values during GOPOEX 2014. Values for scattering and absorption coefficient of pollution episodes were recorded as 153 ± 95 Mm-1 and 12 ± 7 Mm-1 at 550 nm. Therefore, single scattering albedo of pollution episodes (0.92 ± 0.02) was slightly higher than those of dust episodes (0.90 ± 0.03). This is because that pollutant aerosols include more scattering fraction such as SO42-, and NO3- in fine particulate matter emitted from industrial areas in the eastern coastal region of China while dust aerosols are transported from North China to Gosan.Aerosol optical properties are influenced by where the air mass is transported from, either South China or North China. The mean values of aerosol scattering coefficient and absorption coefficient when air mass was transported from South China were 136 ± 132 Mm-1 and 15 ± 14 Mm-1 at 550 nm whereas those from North China were 108 ± 112 Mm-1 and 8 ± 7 Mm-1 at 550 nm. Single scattering albedo are almost identical as 0.9 ± 0.03 for both air masses.Carbonaceous composition of aerosols, which occupy a considerable fraction of fine particulate matter, also depends on the origin of the air mass. Radiocarbon (14C) is a good indicator for distinguishing between fossil combustion and biomass combustion. Detailed source contribution based on radiocarbon measurements and its relationship to aerosol optical properties at GCO will be presented.

  9. Optical absorption and scattering properties of bulk porcine muscle phantoms from interstitial radiance measurements in 650-900 nm range

    NASA Astrophysics Data System (ADS)

    Grabtchak, Serge; Montgomery, Logan G.; Whelan, William M.

    2014-05-01

    We demonstrated the application of relative radiance-based continuous wave (cw) measurements for recovering absorption and scattering properties (the effective attenuation coefficient, the diffusion coefficient, the absorption coefficient and the reduced scattering coefficient) of bulk porcine muscle phantoms in the 650-900 nm spectral range. Both the side-firing fiber (the detector) and the fiber with a spherical diffuser at the end (the source) were inserted interstitially at predetermined locations in the phantom. The porcine phantoms were prostate-shaped with ˜4 cm in diameter and ˜3 cm thickness and made from porcine loin or tenderloin muscles. The described method was previously validated using the diffusion approximation on simulated and experimental radiance data obtained for homogenous Intralipid-1% liquid phantom. The approach required performing measurements in two locations in the tissue with different distances to the source. Measurements were performed on 21 porcine phantoms. Spectral dependences of the effective attenuation and absorption coefficients for the loin phantom deviated from corresponding dependences for the tenderloin phantom for wavelengths <750 nm. The diffusion constant and the reduced scattering coefficient were very close for both phantom types. To quantify chromophore presence, the plot for the absorption coefficient was matched with a synthetic absorption spectrum constructed from deoxyhemoglobin, oxyhemoglobin and water. The closest match for the porcine loin spectrum was obtained with the following concentrations: 15.5 µM (±30% s.d.) Hb, 21 µM (±30% s.d.) HbO2 and 0.3 (±30% s.d.) fractional volume of water. The tenderloin absorption spectrum was best described by 30 µM Hb (±30% s.d), 19 µM (±30% s.d.) HbO2 and 0.3 (±30% s.d.) fractional volume of water. The higher concentration of Hb in tenderloin was consistent with a dark-red appearance of the tenderloin phantom. The method can be applied to a number of biological tissues and organs for interstitial optical interrogation.

  10. Hyperspectral photoacoustic spectroscopy of highly-absorbing samples for diagnostic ocular imaging applications

    NASA Astrophysics Data System (ADS)

    Lim, Hoong-Ta; Murukeshan, Vadakke Matham

    2017-01-01

    Photoacoustic spectroscopy has been used to measure optical absorption coefficient and the application of tens of wavelength bands in photoacoustic spectroscopy was reported. Using optical methods, absorption-related information is, generally, derived from reflectance or transmittance values. Hence measurement accuracy is limited for highly absorbing samples where the reflectance or transmittance is too low to give reasonable signal-to-noise ratio. In this context, this paper proposes and illustrates a hyperspectral photoacoustic spectroscopy system to measure the absorption-related properties of highly absorbing samples directly. The normalized optical absorption coefficient spectrum of the highly absorbing iris is acquired using an optical absorption coefficient standard. The proposed concepts and the feasibility of the developed diagnostic medical imaging system are demonstrated using fluorescent microsphere suspensions and porcine eyes as test samples.

  11. Evaluation of the in vivo and ex vivo optical properties in a mouse ear model

    NASA Astrophysics Data System (ADS)

    Salomatina, E.; Yaroslavsky, A. N.

    2008-06-01

    Determination of in vivo optical properties is a challenging problem. Absorption and scattering measured ex vivo are often used for in vivo applications. To investigate the validity of this approach, we have obtained and compared the optical properties of mouse ears in vivo and ex vivo in the spectral range from 370 to 1650 nm. Integrating sphere spectrophotometry in combination with the inverse Monte Carlo technique was employed to determine absorption coefficients, μa, scattering coefficients, μs, and anisotropy factors, g. Two groups of mice were used for the study. The first group was measured in vivo and ex vivo within 5-10 min post mortem. The second group was measured in vivo and ex vivo every 24 h for up to 72 h after sacrifice. Between the measurements the tissues were kept at 4 °C wrapped in a gauze moistened with saline solution. Then the specimens were frozen at -25 °C for 40 min, thawed and measured again. The results indicate that the absorption coefficients determined in vivo and ex vivo within 5-10 min post mortem differed considerably only in the spectral range dominated by hemoglobin. These changes can be attributed to rapid deoxygenation of tissue and blood post mortem. Absorption coefficients determined ex vivo up to 72 h post mortem decreased gradually with time in the spectral regions dominated by hemoglobin and water, which can be explained by the continuing loss of blood. Absorption properties of the frozen-thawed ex vivo tissues showed increase in oxygenation, which is likely caused by the release of hemoglobin from hemolyzed erythrocytes. Scattering of the ex vivo tissues decreased gradually with time in the entire spectral range due to the continuing loss of blood and partial cell damage. Anisotropy factors did not change considerably.

  12. Evaluation of the in vivo and ex vivo optical properties in a mouse ear model.

    PubMed

    Salomatina, E; Yaroslavsky, A N

    2008-06-07

    Determination of in vivo optical properties is a challenging problem. Absorption and scattering measured ex vivo are often used for in vivo applications. To investigate the validity of this approach, we have obtained and compared the optical properties of mouse ears in vivo and ex vivo in the spectral range from 370 to 1650 nm. Integrating sphere spectrophotometry in combination with the inverse Monte Carlo technique was employed to determine absorption coefficients, mu(a), scattering coefficients, mu(s), and anisotropy factors, g. Two groups of mice were used for the study. The first group was measured in vivo and ex vivo within 5-10 min post mortem. The second group was measured in vivo and ex vivo every 24 h for up to 72 h after sacrifice. Between the measurements the tissues were kept at 4 degrees C wrapped in a gauze moistened with saline solution. Then the specimens were frozen at -25 degrees C for 40 min, thawed and measured again. The results indicate that the absorption coefficients determined in vivo and ex vivo within 5-10 min post mortem differed considerably only in the spectral range dominated by hemoglobin. These changes can be attributed to rapid deoxygenation of tissue and blood post mortem. Absorption coefficients determined ex vivo up to 72 h post mortem decreased gradually with time in the spectral regions dominated by hemoglobin and water, which can be explained by the continuing loss of blood. Absorption properties of the frozen-thawed ex vivo tissues showed increase in oxygenation, which is likely caused by the release of hemoglobin from hemolyzed erythrocytes. Scattering of the ex vivo tissues decreased gradually with time in the entire spectral range due to the continuing loss of blood and partial cell damage. Anisotropy factors did not change considerably.

  13. Modeling of the absorption properties of Ga1-xInxAs1-yNy/GaAs quantum well structures for photodetection applications

    NASA Astrophysics Data System (ADS)

    Aissat, A.; Bestam, R.; Alshehri, B.; Vilcot, J. P.

    2015-06-01

    This work reports on theoretical studies on the GaInNAs material properties (bandgap, lattice mismatch, absorption coefficient) as grown on GaAs substrate. The Band Anti-Crossing (BAC) kṡp 8 × 8 model has been used to determine the influence of indium and nitrogen concentrations on the position of conduction and valence bands. The incorporation of nitrogen at a level lower than 5% causes the split of the conduction band. For indium and nitrogen concentrations of 38% and 3.5%, respectively, the strained bandgap energy is 0.70 eV and the absorption coefficient of indium and nitrogen-rich compounds increases significantly.

  14. Nonlinear Relationships Between Particulate Absorption and Chlorophyll: Detritus or Pigment Packaging

    DTIC Science & Technology

    1993-06-15

    for another polar area. For samples from Antartic waters, the mean a*pan(4 3 5 ), normalized to chl a + pheo, was 0.0 18 m2 (mg chl a)-I (Mitchell and...specific absorption coefficients, was suggested as the cause of relatively low mean specific absorption coefficients in the Antartic . The values of c1...moored optical sensors in the Sargasso Sea. J. Geophys. Res. 97, 7399-7412. Mitchell, B.G., and 0. Holm-Hansen 1991. Bio-optical properties of Antartic

  15. Optical properties of the Tietz-Hua quantum well under the applied external fields

    NASA Astrophysics Data System (ADS)

    Kasapoglu, E.; Sakiroglu, S.; Ungan, F.; Yesilgul, U.; Duque, C. A.; Sökmen, I.

    2017-12-01

    In this study, the effects of the electric and magnetic fields as well as structure parameter- γ on the total absorption coefficient, including linear and third order nonlinear absorption coefficients for the optical transitions between any two subband in the Tietz-Hua quantum well have been investigated. The optical transitions were investigated by using the density matrix formalism and the perturbation expansion method. The Tietz-Hua quantum well becomes narrower (wider) when the γ - structure parameter increases (decreases) and so the energies of the bound states will be functions of this parameter. Therefore, we can provide the red or blue shift in the peak position of the absorption coefficient by changing the strength of the electric and magnetic fields as well as the structure parameters and these results can be used to adjust and control the optical properties of the Tietz-Hua quantum well.

  16. Terahertz optical properties of nonlinear optical CdSe crystals

    NASA Astrophysics Data System (ADS)

    Yan, Dexian; Xu, Degang; Li, Jining; Wang, Yuye; Liang, Fei; Wang, Jian; Yan, Chao; Liu, Hongxiang; Shi, Jia; Tang, Longhuang; He, Yixin; Zhong, Kai; Lin, Zheshuai; Zhang, Yingwu; Cheng, Hongjuan; Shi, Wei; Yao, Jianquan; Wu, Yicheng

    2018-04-01

    We investigate the optical properties of cadmium selenide (CdSe) crystals in a wide terahertz (THz) range from 0.2 to 6 THz by THz time-domain spectroscopy (THz-TDS) and Fourier transform infrared spectroscopy (FTIR). The refractive index, absorption coefficient and transmittance are measured and analyzed. The properties are characterized by several absorption peaks which represent the relevant phonon vibrations modes. The experimental results are in agreement with the theoretical results. The dispersion and absorption properties of CdSe crystal are analyzed in THz range. These properties indicate a good potential for THz sources and THz modulated devices.

  17. Aerosol optical properties at rural background area in Western Saudi Arabia

    NASA Astrophysics Data System (ADS)

    Lihavainen, H.; Alghamdi, M. A.; Hyvärinen, A.; Hussein, T.; Neitola, K.; Khoder, M.; Abdelmaksoud, A. S.; Al-Jeelani, H.; Shabbaj, I. I.; Almehmadi, F. M.

    2017-11-01

    To derive the comprehensive aerosol in situ characteristics at a rural background area in Saudi Arabia, an aerosol measurements station was established to Hada Al Sham, 60 km east from the Red Sea and the city of Jeddah. The present sturdy describes the observational data from February 2013 to February 2015 of scattering and absorption coefficients, Ångström exponents and single scattering albedo over the measurement period. The average scattering and absorption coefficients at wavelength 525 nm were 109 ± 71 Mm- 1 (mean ± SD, at STP conditions) and 15 ± 17 Mm- 1 (at STP conditions), respectively. As expected, the scattering coefficient was dominated by large desert dust particles with low Ångström scattering exponent, 0.49 ± 0.62. Especially from February to June the Ångström scattering exponent was clearly lower (0.23) and scattering coefficients higher (124 Mm- 1) than total averages because of the dust outbreak season. Aerosol optical properties had clear diurnal cycle. The lowest scattering and absorption coefficients and aerosol optical depths were observed around noon. The observed diurnal variation is caused by wind direction and speed, during night time very calm easterly winds are dominating whereas during daytime the stronger westerly winds are dominating (sea breeze). Positive Matrix Factorization mathematical tool was applied to the scattering and absorption coefficients and PM2.5 and coarse mode (PM10-PM2.5) mass concentrations to identify source characteristics. Three different factors with clearly different properties were found; anthropogenic, BC source and desert dust. Mass absorption efficiencies for BC source and desert dust factors were, 6.0 m2 g- 1 and 0.4 m2 g- 1, respectively, and mass scattering efficiencies for anthropogenic (sulphate) and desert dust, 2.5 m2 g- 1 and 0.8 m2 g- 1, respectively.

  18. Quantification of the dynamic changes in the absorption coefficient of liquid water at erbium:YAG and carbon dioxide laser wavelengths

    NASA Astrophysics Data System (ADS)

    Shori, Ramesh K.

    The interaction of high-intensity, short-pulsed radiation with liquid water results in dynamic changes in the optical absorption coefficient of water. These changes and their implications, as related to mid-infrared laser ablation of tissue, were not investigated until the late 1980's and early 1990's. Classical models of absorption and heating do not explain the dynamic, non-linear changes in water. The objective of the present work was to quantify the dynamic changes in the absorption coefficient of liquid water as a function of incident energy at three clinically relevant infrared wavelengths (λ = 2.94, 9.6, 10.6 μm). To investigate the changes in the absorption spectrum of water in the 3-μm band, a stable, high-energy Q- switched Er:YAG laser emitting 2.94-μm radiation in a near-perfect TEMoo spatial beam profile was developed. Key to the development of this laser was careful attention to the gain medium, optical pump system, system optics, and the thermal system. The final system design was capable of emitting 110 mJ/pulse at of 2-4 Hz with a lamp lifetime exceeding 12 million pulses The laser was used in two sets of experiments in order to quantify the above changes. First, the laser was used to measure the velocity of the shock front produced by vaporizing a gelatin-based tissue phantom. The measured shock velocity was related to the optical energy absorbed by the tissue phantom and the absorption coefficient, based on the pressure relationships derived using a 1-D piston model for an expanding plume. The shock front velocity measurements indicate that the absorption coefficient is constant for incident fluences less than 20 J/cm2, a result consistent with transmission data. For higher fluences, the data indicate a decrease in the absorption coefficient, which is again consistent with transmission data. Quantification of the absorption coefficient can, however, not be made without violating assumptions that form the basis for the 1-D piston model. Second, the laser was used to measure the optical transmission across water layers of known thicknesses. The data were used to develop a Dynamic Saturable Absorption (DSA) model to predict the dynamic changes in the absorption coefficient of water as a function of incident energy. The DSA model, based in part upon the homogeneous broadening of an atomic transition in a laser gain medium, accurately predicts the absorption coefficient of water over a wide range of incident fluences. One sees saturation of the absorption at both high and low fluence with a monotonic decrease in absorption with increasing fluence. Transmission measurements were also made at 9.6 and 10.6 μm using a TEA CO2 laser. The data show essentially no change in the absorption coefficient as the fluence is varied. The results from the experiments make a significant contribution towards an understanding of the relationship among the dynamic optical properties of water and clinically relevant properties such as ablation rate and residual thermal damage.

  19. Nonlinear absorption properties of silicene nanosheets.

    PubMed

    Zhang, Fang; Wang, Mengxia; Wang, Zhengping; Han, Kezhen; Liu, Xiaojuan; Xu, Xinguang

    2018-06-01

    As the cousins of graphene, i.e. same group IVA element, the nonlinear absorption (NLA) properties of silicene nanosheets were rarely studied. In this paper, we successfully exfoliated the two-dimensional silicene nanosheets from bulk silicon crystal using liquid phase exfoliation method. The NLA properties of silicene nanosheets were systemically investigated for the first time, as we have known. Silicene performed exciting saturable absorption and two photon absorption (2PA) behavior. The lower saturable intensity and larger 2PA coefficient at 532 nm excitation indicates that silicene has potential application in ultrafast lasers and optical limiting devices, especially in visible waveband.

  20. Nonlinear absorption properties of silicene nanosheets

    NASA Astrophysics Data System (ADS)

    Zhang, Fang; Wang, Mengxia; Wang, Zhengping; Han, Kezhen; Liu, Xiaojuan; Xu, Xinguang

    2018-06-01

    As the cousins of graphene, i.e. same group IVA element, the nonlinear absorption (NLA) properties of silicene nanosheets were rarely studied. In this paper, we successfully exfoliated the two-dimensional silicene nanosheets from bulk silicon crystal using liquid phase exfoliation method. The NLA properties of silicene nanosheets were systemically investigated for the first time, as we have known. Silicene performed exciting saturable absorption and two photon absorption (2PA) behavior. The lower saturable intensity and larger 2PA coefficient at 532 nm excitation indicates that silicene has potential application in ultrafast lasers and optical limiting devices, especially in visible waveband.

  1. Comparison of experimental and modeled absorption enhancement by black carbon (BC) cored polydisperse aerosols under hygroscopic conditions.

    PubMed

    Shamjad, P M; Tripathi, S N; Aggarwal, S G; Mishra, S K; Joshi, Manish; Khan, Arshad; Sapra, B K; Ram, Kirpa

    2012-08-07

    The quantification of the radiative impacts of light absorbing ambient black carbon (BC) particles strongly depends on accurate measurements of BC mass concentration and absorption coefficient (β(abs)). In this study, an experiment has been conducted to quantify the influence of hygroscopic growth of ambient particles on light absorption. Using the hygroscopic growth factor (i.e., Zdanovskii-Stokes-Robinson (ZSR) approach), a model has been developed to predict the chemical composition of particles based on measurements, and the absorption and scattering coefficients are derived using a core-shell assumption with light extinction estimates based on Mie theory. The estimated optical properties agree within 7% for absorption coefficient and 30% for scattering coefficient with that of measured values. The enhancement of absorption is found to vary according to the thickness of the shell and BC mass, with a maximum of 2.3 for a shell thickness of 18 nm for the particles. The findings of this study underline the importance of considering aerosol-mixing states while calculating their radiative forcing.

  2. In vivo imaging of scattering and absorption properties of exposed brain using a digital red-green-blue camera

    NASA Astrophysics Data System (ADS)

    Nishidate, Izumi; Yoshida, Keiichiro; Kawauchi, Satoko; Sato, Shunichi; Sato, Manabu

    2014-03-01

    We investigate a method to estimate the spectral images of reduced scattering coefficients and the absorption coefficients of in vivo exposed brain tissues in the range from visible to near-infrared wavelength (500-760 nm) based on diffuse reflectance spectroscopy using a digital RGB camera. In the proposed method, the multi-spectral reflectance images of in vivo exposed brain are reconstructed from the digital red, green blue images using the Wiener estimation algorithm. The Monte Carlo simulation-based multiple regression analysis for the absorbance spectra is then used to specify the absorption and scattering parameters of brain tissue. In this analysis, the concentration of oxygenated hemoglobin and that of deoxygenated hemoglobin are estimated as the absorption parameters whereas the scattering amplitude a and the scattering power b in the expression of μs'=aλ-b as the scattering parameters, respectively. The spectra of absorption and reduced scattering coefficients are reconstructed from the absorption and scattering parameters, and finally, the spectral images of absorption and reduced scattering coefficients are estimated. The estimated images of absorption coefficients were dominated by the spectral characteristics of hemoglobin. The estimated spectral images of reduced scattering coefficients showed a broad scattering spectrum, exhibiting larger magnitude at shorter wavelengths, corresponding to the typical spectrum of brain tissue published in the literature. In vivo experiments with exposed brain of rats during CSD confirmed the possibility of the method to evaluate both hemodynamics and changes in tissue morphology due to electrical depolarization.

  3. Study of nonlinear absorption properties of reduced graphene oxide by Z-scan technique

    NASA Astrophysics Data System (ADS)

    Sreeja, V. G.; Vinitha, G.; Reshmi, R.; Anila, E. I.; Jayaraj, M. K.

    2017-05-01

    Graphene has generated enormous research interest during the last decade due to its significant unique properties and wide applications in the field of optoelectronics and photonics. This research studied the structural and nonlinear absorption properties of reduced graphene oxide (rGO) synthesized by Modified Hummer's method. Structural and physiochemical properties of the rGO were explored with the help of Fourier transform infrared spectroscopy (FTIR) and Raman spectroscopy (Raman). Nonlinear absorption property in rGO, was investigated by open aperture Z-scan technique by using a continuous wave (CW) laser. The Z-scan results demonstrate saturable absorption property of rGO with a nonlinear absorption coefficient, β, of -2.62 × 10-4 cm/W, making it suitable for applications in Q switching, generation of ultra-fast high energy pulses in laser cavity and mode lockers.

  4. Contribution of mycosporine-like amino acids and colored dissolved and particulate matter to sea ice optical properties and ultraviolet attenuation

    PubMed Central

    Uusikivi, Jari; Vähätalo, Anssi V.; Granskog, Mats A.; Sommaruga, Ruben

    2010-01-01

    In the Baltic Sea ice, the spectral absorption coefficients for particulate matter (PM) were about two times higher at ultraviolet wavelengths than at photosynthetically available radiation (PAR) wavelengths. PM absorption spectra included significant absorption by mycosporine-like amino acids (MAAs) between 320 and 345 nm. In the surface ice layer, the concentration of MAAs (1.37 μg L−1) was similar to that of chlorophyll a, resulting in a MAAs-to-chlorophyll a ratio as high as 0.65. Ultraviolet radiation (UVR) intensity and the ratio of UVR to PAR had a strong relationship with MAAs concentration (R2 = 0.97, n = 3) in the ice. In the surface ice layer, PM and especially MAAs dominated the absorption (absorption coefficient at 325 nm: 0.73 m−1). In the columnar ice layers, colored dissolved organic matter was the most significant absorber in the UVR (< 380 nm) (absorption coefficient at 325 nm: 1.5 m−1). Our measurements and modeling of UVR and PAR in Baltic Sea ice show that organic matter, both particulate and dissolved, influences the optical properties of sea ice and strongly modifies the UVR exposure of biological communities in and under snow-free sea ice. PMID:20585592

  5. In vivo measurements of optical properties of human muscles with visible and near infrared reflectance spectroscopy

    NASA Astrophysics Data System (ADS)

    Wang, Chiao Yi; Yu, Ting Wen; Sung, Kung Bin

    2018-02-01

    Estimating optical properties of tissues is a crucial step to model photon migration in tissue, facilitate the design of the probe geometry, better interpret data measured from tissue and predict photon energy distributions in tissue for various diagnostic and therapeutic applications. Diffuse reflectance spectroscopy (DRS) using visible and near-infrared light is a well-known method for estimating optical properties of tissues. For estimating optical properties of muscles, most existing researches have used integrating spheres for ex-vivo measurements. However, due to inter-subject variability and sitespecific conditions, an in-vivo approach can provide more accurate estimations of muscle absorption and scattering coefficients, which is important for the tomographic reconstruction of changes in the absorption or fluorescence in tissue. In this study, we used DRS with wavelengths between 600 nm and 800 nm and a fiber bundle with source-to-detector separations in the range of 0.18-0.35 cm to quantify wavelength-dependent scattering and absorption coefficients of human muscles in vivo with an inverse Monte Carlo model. Reflectance spectra were measured on the neck and the upper arm of one volunteer. After calibrating spectra with tissue phantoms made of Intralipid and India ink, we estimated scattering and absorption coefficients of muscles. The results are compared to those measured ex vivo in the literature.

  6. Development of fly ash boards with thermal, acoustic and fire insulation properties.

    PubMed

    Leiva, C; Arenas, C; Vilches, L F; Alonso-Fariñas, B; Rodriguez-Galán, M

    2015-12-01

    This paper presents an experimental analysis on a new board composed of gypsum and fly ashes from coal combustion, which are mutually compatible. Physical and mechanical properties, sound absorption coefficient, thermal properties and leaching test have been obtained. The mechanical properties showed similar values to other commercial products. As far as the acoustic insulation characteristics are concerned, sound absorption coefficients of 0.3 and 0.8 were found. The board presents a low thermal conductivity and a fire resistance higher than 50 min (for 4 cm of thickness). The leaching of trace elements was below the leaching limit values. These boards can be considered as suitable to be used in building applications as partitions. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Coherent source interaction, third-order nonlinear response of synthesized PEG coated magnetite nanoparticles in polyethylene glycol and its application

    NASA Astrophysics Data System (ADS)

    Gopal, S. Veena; Chitrambalam, S.; Joe, I. Hubert

    2018-01-01

    Third-order nonlinear response of synthesized polyethylene glycol coated Fe3O4 nanoparticles dispersed in a suitable solvent, polyethylene glycol has been studied. The structural characterization of the synthesized magnetite nanoparticles were carried out. The linear optical property of the synthesized magnetite nanoparticles was investigated using UV-visible technique. Both closed and open aperture Z-scan techniques have been performed at 532 nm with pulse width 5 ns and repetition rate 10 Hz. It was found that polyethylene glycol coated magnetite exhibits reverse saturable absorption, with significant nonlinear absorption coefficient. Two-photon absorption intensity dependent positive nonlinear refraction coefficients indicate self focusing phenomena. Results show that higher concentration gives better nonlinear and optical limiting properties.

  8. Frequency-domain optical absorption spectroscopy of finite tissue volumes using diffusion theory.

    PubMed

    Pogue, B W; Patterson, M S

    1994-07-01

    The goal of frequency-domain optical absorption spectroscopy is the non-invasive determination of the absorption coefficient of a specific tissue volume. Since this allows the concentration of endogenous and exogenous chromophores to be calculated, there is considerable potential for clinical application. The technique relies on the measurement of the phase and modulation of light, which is diffusely reflected or transmitted by the tissue when it is illuminated by an intensity-modulated source. A model of light propagation must then be used to deduce the absorption coefficient. For simplicity, it is usual to assume the tissue is either infinite in extent (for transmission measurements) or semi-infinite (for reflectance measurements). The goal of this paper is to examine the errors introduced by these assumptions when measurements are actually performed on finite volumes. Diffusion-theory calculations and experimental measurements were performed for slabs, cylinders and spheres with optical properties characteristic of soft tissues in the near infrared. The error in absorption coefficient is presented as a function of object size as a guideline to when the simple models may be used. For transmission measurements, the error is almost independent of the true absorption coefficient, which allows absolute changes in absorption to be measured accurately. The implications of these errors in absorption coefficient for two clinical problems--quantitation of an exogenous photosensitizer and measurement of haemoglobin oxygenation--are presented and discussed.

  9. Measured acoustic properties of variable and low density bulk absorbers

    NASA Technical Reports Server (NTRS)

    Dahl, M. D.; Rice, E. J.

    1985-01-01

    Experimental data were taken to determine the acoustic absorbing properties of uniform low density and layered variable density samples using a bulk absober with a perforated plate facing to hold the material in place. In the layered variable density case, the bulk absorber was packed such that the lowest density layer began at the surface of the sample and progressed to higher density layers deeper inside. The samples were placed in a rectangular duct and measurements were taken using the two microphone method. The data were used to calculate specific acoustic impedances and normal incidence absorption coefficients. Results showed that for uniform density samples the absorption coefficient at low frequencies decreased with increasing density and resonances occurred in the absorption coefficient curve at lower densities. These results were confirmed by a model for uniform density bulk absorbers. Results from layered variable density samples showed that low frequency absorption was the highest when the lowest density possible was packed in the first layer near the exposed surface. The layers of increasing density within the sample had the effect of damping the resonances.

  10. Tuning the nonlinear optical absorption in Au/BaTiO3 nanocomposites with gold nanoparticle concentration

    NASA Astrophysics Data System (ADS)

    Bijeesh, M. M.; Shakhi, P. K.; Varier, Geetha K.; Nandakumar, P.

    2018-06-01

    We report on the nonlinear optical absorption coefficient of Au/BaTiO3 nanocomposite films and its dependence on gold nanoparticle concentration. Au/BaTiO3 nanocomposite films with different molar ratio of Au/Ba are prepared by sol-gel technique and characterized by X-ray diffraction, UV Visible absorption spectroscopy and high resolution transmission electron microscopy. An open aperture Z-scan technique is employed to study the third order nonlinear optical properties of Au/BaTiO3 thin films. An Nd:YAG laser operating at 532 nm wavelength having a pulse width of 5 ns is used for the measurements. The two-photon absorption coefficient of the films increases linearly with gold nanoparticle concentration and significant enhancement of nonlinear optical absorption is observed. This ability to fine tune the nonlinear optical coefficients of Au/BaTiO3 films would be handy in optical device applications.

  11. Measurements of Soot Mass Absorption Coefficients from 300 to 660 nm

    NASA Astrophysics Data System (ADS)

    Renbaum-Wolff, Lindsay; Fisher, Al; Helgestad, Taylor; Lambe, Andrew; Sedlacek, Arthur; Smith, Geoffrey; Cappa, Christopher; Davidovits, Paul; Onasch, Timothy; Freedman, Andrew

    2016-04-01

    Soot, a product of incomplete combustion, plays an important role in the earth's climate system through the absorption and scattering of solar radiation. In particular, the assumed mass absorption coefficient (MAC) of soot and its variation with wavelength presents a significant uncertainty in the calculation of radiative forcing in global climate change models. As part of the fourth Boston College/Aerodyne soot properties measurement campaign, we have measured the mass absorption coefficient of soot produced by an inverted methane diffusion flame over a spectral range of 300-660 nm using a variety of optical absorption techniques. Extinction and absorption were measured using a dual cavity ringdown photoacoustic spectrometer (CRD-PAS, UC Davis) at 405 nm and 532 nm. Scattering and extinction were measured using a CAPS PMssa single scattering albedo monitor (Aerodyne) at 630 nm; the absorption coefficient was determined by subtraction. In addition, the absorption coefficients in 8 wavelength bands from 300 to 660 nm were measured using a new broadband photoacoustic absorption monitor (UGA). Soot particle mass was quantified using a centrifugal particle mass analyzer (CPMA, Cambustion), mobility size with a scanning mobility particle sizer (SMPS, TSI) and soot concentration with a CPC (Brechtel). The contribution of doubly charged particles to the sample mass was determined using a Single Particle Soot Photometer (DMT). Over a mass range of 1-8 fg, corresponding to differential mobility diameters of ~150 nm to 550 nm, the value of the soot MAC proved to be independent of mass for all wavelengths. The wavelength dependence of the MAC was best fit to a power law with an Absorption Ångstrom Coefficient slightly greater than 1.

  12. Improvements to water vapor transmission and capillary absorption measurements in porous materials

    Treesearch

    Samuel L. Zelinka; Samuel V. Glass; Charles R. Boardman

    2016-01-01

    The vapor permeability (or equivalently the vapor diffusion resistance factor) and the capillary absorption coefficient are frequently used as inputs to hygrothermal or heat, air, and moisture (HAM) models. However, it has been well documented that the methods used to determine these properties are sensitive to the operator, and wide variations in the properties have...

  13. Hyperspectral diffuse reflectance for determination of the optical properties of milk and fruit and vegetable juices

    NASA Astrophysics Data System (ADS)

    Qin, Jianwei; Lu, Renfu

    2005-11-01

    Absorption and reduced scattering coefficients are two fundamental optical properties for turbid biological materials. This paper presents the technique and method of using hyperspectral diffuse reflectance for fast determination of the optical properties of fruit and vegetable juices and milks. A hyperspectral imaging system was used to acquire spatially resolved steady-state diffuse reflectance over the spectral region between 530 and 900 nm from a variety of fruit and vegetable juices (citrus, grapefruit, orange, and vegetable) and milks with different fat levels (full, skim and mixed). The system collected diffuse reflectance in the source-detector separation range from 1.1 to 10.0 mm. The hyperspectral reflectance data were analyzed by using a diffusion theory model for semi-infinite homogeneous media. The absorption and reduced scattering coefficients of the fruit and vegetable juices and milks were extracted by inverse algorithms from the scattering profiles for wavelengths of 530-900 nm. Values of the absorption and reduced scattering coefficient at 650 nm were highly correlated to the fat content of the milk samples with the correlation coefficient of 0.990 and 0.989, respectively. The hyperspectral imaging technique can be extended to the measurement of other liquid and solid foods in which light scattering is dominant.

  14. Bilayered Hybrid Perovskite Ferroelectric with Giant Two-Photon Absorption.

    PubMed

    Li, Lina; Shang, Xiaoying; Wang, Sasa; Dong, Ningning; Ji, Chengmin; Chen, Xueyuan; Zhao, Sangen; Wang, Jun; Sun, Zhihua; Hong, Maochun; Luo, Junhua

    2018-06-06

    Perovskite ferroelectrics with prominent nonlinear optical absorption have attracted great attention in the field of photonics. However, they are traditionally dominated by inorganic oxides and exhibit relatively small nonlinear optical absorption coefficients, which hinder their further applications. Herein, we report a new organic-inorganic hybrid bilayered perovskite ferroelectric, (C 4 H 9 NH 3 ) 2 (NH 2 CHNH 2 )Pb 2 Br 7 (1), showing an above-room-temperature Curie temperature (∼322 K) and notable spontaneous polarization (∼3.8 μC cm -2 ). Significantly, the unique quantum-well structure of 1 results in intriguing two-photon absorption properties with a giant nonlinear optical absorption coefficient as high as 5.76 × 10 3 cm GW -1 , which is almost two-orders of magnitude larger than those of mostly traditional all-inorganic perovskite ferroelectrics. To our best knowledge, 1 is the first example of hybrid ferroelectrics with giant two-photon absorption coefficient. The mechanisms for ferroelectric and two-photon absorption are revealed. This work will shed light on the design of new ferroelectrics with two-photon absorption and promote their potentials in the photonic application.

  15. Low-resolution mapping of the effective attenuation coefficient of the human head: a multidistance approach applied to high-density optical recordings

    PubMed Central

    Chiarelli, Antonio M.; Maclin, Edward L.; Low, Kathy A.; Fantini, Sergio; Fabiani, Monica; Gratton, Gabriele

    2017-01-01

    Abstract. Near infrared (NIR) light has been widely used for measuring changes in hemoglobin concentration in the human brain (functional NIR spectroscopy, fNIRS). fNIRS is based on the differential measurement and estimation of absorption perturbations, which, in turn, are based on correctly estimating the absolute parameters of light propagation. To do so, it is essential to accurately characterize the baseline optical properties of tissue (absorption and reduced scattering coefficients). However, because of the diffusive properties of the medium, separate determination of absorption and scattering across the head is challenging. The effective attenuation coefficient (EAC), which is proportional to the geometric mean of absorption and reduced scattering coefficients, can be estimated in a simpler fashion by multidistance light decay measurements. EAC mapping could be of interest for the scientific community because of its absolute information content, and because light propagation is governed by the EAC for source–detector distances exceeding 1 cm, which sense depths extending beyond the scalp and skull layers. Here, we report an EAC mapping procedure that can be applied to standard fNIRS recordings, yielding topographic maps with 2- to 3-cm resolution. Application to human data indicates the importance of venous sinuses in determining regional EAC variations, a factor often overlooked. PMID:28466026

  16. Low-resolution mapping of the effective attenuation coefficient of the human head: a multidistance approach applied to high-density optical recordings.

    PubMed

    Chiarelli, Antonio M; Maclin, Edward L; Low, Kathy A; Fantini, Sergio; Fabiani, Monica; Gratton, Gabriele

    2017-04-01

    Near infrared (NIR) light has been widely used for measuring changes in hemoglobin concentration in the human brain (functional NIR spectroscopy, fNIRS). fNIRS is based on the differential measurement and estimation of absorption perturbations, which, in turn, are based on correctly estimating the absolute parameters of light propagation. To do so, it is essential to accurately characterize the baseline optical properties of tissue (absorption and reduced scattering coefficients). However, because of the diffusive properties of the medium, separate determination of absorption and scattering across the head is challenging. The effective attenuation coefficient (EAC), which is proportional to the geometric mean of absorption and reduced scattering coefficients, can be estimated in a simpler fashion by multidistance light decay measurements. EAC mapping could be of interest for the scientific community because of its absolute information content, and because light propagation is governed by the EAC for source-detector distances exceeding 1 cm, which sense depths extending beyond the scalp and skull layers. Here, we report an EAC mapping procedure that can be applied to standard fNIRS recordings, yielding topographic maps with 2- to 3-cm resolution. Application to human data indicates the importance of venous sinuses in determining regional EAC variations, a factor often overlooked.

  17. Optical properties of an anterior lamellar human cornea model based on fibrin-agarose

    NASA Astrophysics Data System (ADS)

    Ionescu, Ana M.; Cardona, Juan de la Cruz; Ghinea, Razvan; Garzón, Ingrid; González-Andrades, Miguel; Alaminos, Miguel; Pérez, Maria del Mar

    2017-08-01

    The optical evaluation carried out using the Inverse Adding-Doubling (IAD) method to determine the scattering and the absorption coefficients of the bioengineered human corneal stromas showed that this type of artificial biomaterials shared many similarities with native control cornea after four weeks of development in culture. Their absorption and reduced scattering coefficients values were higher than the ones of the control cornea, but their spectral behaviors of both coefficients were similar. Time of development in culture was an influencing factor on the results.

  18. Space-time modeling of the photon diffusion in a three-layered model: application to the study of muscular oxygenation

    NASA Astrophysics Data System (ADS)

    Mansouri, C.; L'Huillier, J. P.; Piron, V.

    2007-07-01

    This work presents results on the modeling of the photon diffusion in a three-layered model, (skin, fat and muscle). The Finite Element method was performed in order to calculate the temporal response of the above-mentioned structure. The thickness of the fat layer was varied from 1 to 15 mm to investigate the effects of increasing fat thickness on the muscle layer absorption coefficient measurements for a source-detector spacing of 30 mm. The simulated time-resolved reflectance data, at different wavelengths, were fitted to the diffusion model to yield the scattering and absorption coefficients of muscle. The errors in estimating muscle absorption coefficients μ α depend on the thickness of the fat layer and its optical properties. In addition, it was shown that it is possible to recover with a good precision (~2.6 % of error) the absorption coefficient of muscle and this up to a thickness of the fat layer not exceeding 4mm. Beyond this limit a correction is proposed in order to make measurements coherent. The muscle-corrected absorption coefficient can be then used to calculate hemoglobin oxygenation.

  19. Linear and Nonlinear Optical Properties of Spherical Quantum Dots: Effects of Hydrogenic Impurity and Conduction Band Non-Parabolicity

    NASA Astrophysics Data System (ADS)

    Rezaei, G.; Vaseghi, B.; Doostimotlagh, N. A.

    2012-03-01

    Simultaneous effects of an on-center hydrogenic impurity and band edge non-parabolicity on intersubband optical absorption coefficients and refractive index changes of a typical GaAs/AlxGa1-x As spherical quantum dot are theoretically investigated, using the Luttinger—Kohn effective mass equation. So, electronic structure and optical properties of the system are studied by means of the matrix diagonalization technique and compact density matrix approach, respectively. Finally, effects of an impurity, band edge non-parabolicity, incident light intensity and the dot size on the linear, the third-order nonlinear and the total optical absorption coefficients and refractive index changes are investigated. Our results indicate that, the magnitudes of these optical quantities increase and their peaks shift to higher energies as the influences of the impurity and the band edge non-parabolicity are considered. Moreover, incident light intensity and the dot size have considerable effects on the optical absorption coefficients and refractive index changes.

  20. Two schemes for quantitative photoacoustic tomography based on Monte Carlo simulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Yubin; Yuan, Zhen, E-mail: zhenyuan@umac.mo

    Purpose: The aim of this study was to develop novel methods for photoacoustically determining the optical absorption coefficient of biological tissues using Monte Carlo (MC) simulation. Methods: In this study, the authors propose two quantitative photoacoustic tomography (PAT) methods for mapping the optical absorption coefficient. The reconstruction methods combine conventional PAT with MC simulation in a novel way to determine the optical absorption coefficient of biological tissues or organs. Specifically, the authors’ two schemes were theoretically and experimentally examined using simulations, tissue-mimicking phantoms, ex vivo, and in vivo tests. In particular, the authors explored these methods using several objects withmore » different absorption contrasts embedded in turbid media and by using high-absorption media when the diffusion approximation was not effective at describing the photon transport. Results: The simulations and experimental tests showed that the reconstructions were quantitatively accurate in terms of the locations, sizes, and optical properties of the targets. The positions of the recovered targets were accessed by the property profiles, where the authors discovered that the off center error was less than 0.1 mm for the circular target. Meanwhile, the sizes and quantitative optical properties of the targets were quantified by estimating the full width half maximum of the optical absorption property. Interestingly, for the reconstructed sizes, the authors discovered that the errors ranged from 0 for relatively small-size targets to 26% for relatively large-size targets whereas for the recovered optical properties, the errors ranged from 0% to 12.5% for different cases. Conclusions: The authors found that their methods can quantitatively reconstruct absorbing objects of different sizes and optical contrasts even when the diffusion approximation is unable to accurately describe the photon propagation in biological tissues. In particular, their methods are able to resolve the intrinsic difficulties that occur when quantitative PAT is conducted by combining conventional PAT with the diffusion approximation or with radiation transport modeling.« less

  1. Optical radiative properties of ablating polymers exposed to high-power arc plasmas

    NASA Astrophysics Data System (ADS)

    Becerra, Marley; Pettersson, Jonas

    2018-03-01

    The radiative properties of polymers exposed to high-intensity radiation are of importance for the numerical simulation of arc-induced ablation. The paper investigates the optical properties of polymethylmethacrylate PMMA and polyamide PA6 films exposed to high-power arc plasmas, which can cause ablation of the material. A four-flux radiative approximation is first used to estimate absorption and scattering coefficients of the tested materials in the ultraviolet (UV) and in the visible (VIS) ranges from spectrophotometric measurements. The temperature-induced variation of the collimated transmissivity of the polymers is also measured from room temperature to the glass temperature of PMMA and the melting temperature of PA6. Furthermore, band-averaged absorption and scattering coefficients of non-ablating and ablating polymers are estimated from the UV to the short-wavelength infrared (SWIR), covering the range of interest for the simulation of arc-induced ablation. These estimates are obtained from collimated transmissivities measured with an additional in situ photometric system that uses a high-power, transient arc plasma to both illuminate the samples and to induce ablation. It is shown that the increase in the bulk temperature of PA6 leads to a strong reversible increase in collimated transmissivity, significantly reducing the absorption and scattering coefficients of the material. A weaker but opposite effect of temperature on the optical properties is found in PMMA. As a consequence, it is suggested that the absorption coefficient of polymers used for arc-induced ablation estimates should not be taken directly from direct collimated transmissivity measurements at room temperature. The band-averaged radiation measurements also show that the layer of products released by ablation of PMMA produces scattering radiation losses mainly in the VIS-SWIR ranges, which are only a small fraction of the total incident arc radiation. In a similar manner, the ablation layer of PA6 leads to weak absorption radiation losses, although mainly in the UV range.

  2. Diffuse reflectance relations based on diffusion dipole theory for large absorption and reduced scattering

    NASA Astrophysics Data System (ADS)

    Bremmer, Rolf H.; van Gemert, Martin J. C.; Faber, Dirk J.; van Leeuwen, Ton G.; Aalders, Maurice C. G.

    2013-08-01

    Diffuse reflectance spectra are used to determine the optical properties of biological samples. In medicine and forensic science, the turbid objects under study often possess large absorption and/or scattering properties. However, data analysis is frequently based on the diffusion approximation to the radiative transfer equation, implying that it is limited to tissues where the reduced scattering coefficient dominates over the absorption coefficient. Nevertheless, up to absorption coefficients of 20 m at reduced scattering coefficients of 1 and 11.5 mm-1, we observed excellent agreement (r2=0.994) between reflectance measurements of phantoms and the diffuse reflectance equation proposed by Zonios et al. [Appl. Opt. 38, 6628-6637 (1999)], derived as an approximation to one of the diffusion dipole equations of Farrell et al. [Med. Phys. 19, 879-888 (1992)]. However, two parameters were fitted to all phantom experiments, including strongly absorbing samples, implying that the reflectance equation differs from diffusion theory. Yet, the exact diffusion dipole approximation at high reduced scattering and absorption also showed agreement with the phantom measurements. The mathematical structure of the diffuse reflectance relation used, derived by Zonios et al. [Appl. Opt. 38, 6628-6637 (1999)], explains this observation. In conclusion, diffuse reflectance relations derived as an approximation to the diffusion dipole theory of Farrell et al. can analyze reflectance ratios accurately, even for much larger absorption than reduced scattering coefficients. This allows calibration of fiber-probe set-ups so that the object's diffuse reflectance can be related to its absorption even when large. These findings will greatly expand the application of diffuse reflection spectroscopy. In medicine, it may allow the use of blue/green wavelengths and measurements on whole blood, and in forensic science, it may allow inclusion of objects such as blood stains and cloth at crime scenes.

  3. Study of physical and sound absorbing property of epoxy blended coir dust biocomposite

    NASA Astrophysics Data System (ADS)

    Nath, G.; Mishra, S. P.

    2016-09-01

    Reinforcement biocomposite has gained more attention recently due to its low cost, abundantly availability, low density, specific properties, easy method of separation, enhanced energy recovery, CO2 neutrality, biodegradability and recyclable in nature. As a waste product of coconut fruit, the coconut coir dust (CCD) obtained from the coconut husk. The biocomposite material prepared from the CCD modified with the proper blended solution with the help of ultrasonic technique. The study of adiabatic compressibility of acetone / water (70/30) worth its blending property for bleaching of CCD. The biocomposite material of CCD was prepared with epoxy resin. The different physical properties such as sound absorption coefficient, thermal conductivity and electrical conductivity were measured. The morphological study of biocomposite and measurement of sound absorption coefficient shows good evidence of sound absorbing characteristics of biocomposite of CCD. The sound absorption property of composite material shows a significant result where as the thermal conductivity and electrical conductivity executes a weak result. Thus biocomposite of CCD can acts as a good sound absorber and band conductor of heat and electric current.

  4. Linear and nonlinear magneto-optical properties of an off-center single dopant in a spherical core/shell quantum dot

    NASA Astrophysics Data System (ADS)

    Feddi, E.; Talbi, A.; Mora-Ramos, M. E.; El Haouari, M.; Dujardin, F.; Duque, C. A.

    2017-11-01

    Using the effective mass approximation and a variational procedure, we have investigated the nonlinear optical absorption coefficient and the relative refractive index changes associated to a single dopant confined in core/shell quantum dots considering the influences of the core/shell dimensions, externally applied magnetic field, and dielectric mismatch. The results show that the optical absorption coefficient and the coefficients of relative refractive index change depend strongly on the core/shell sizes and they are blue shifted when the spatial confinement increases so this effect is magnified by higher structural dimensions. Additionally, it is obtained that both studied optical properties are sensitive to the dielectric environment in such a way that their amplitudes are very affected by the local field corrections.

  5. Brown carbon absorption in the red and near-infrared spectral region

    NASA Astrophysics Data System (ADS)

    Hoffer, András; Tóth, Ádám; Pósfai, Mihály; Eddy Chung, Chul; Gelencsér, András

    2017-06-01

    Black carbon (BC) aerosols have often been assumed to be the only light-absorbing carbonaceous particles in the red and near-infrared spectral regions of solar radiation in the atmosphere. Here we report that tar balls (a specific type of organic aerosol particles from biomass burning) do absorb red and near-infrared radiation significantly. Tar balls were produced in a laboratory experiment, and their chemical and optical properties were measured. The absorption of these particles in the range between 470 and 950 nm was measured with an aethalometer, which is widely used to measure atmospheric aerosol absorption. We find that the absorption coefficient of tar balls at 880 nm is more than 10 % of that at 470 nm. The considerable absorption of red and infrared light by tar balls also follows from their relatively low absorption Ångström coefficient (and significant mass absorption coefficient) in the spectral range between 470 and 950 nm. Our results support the previous finding that tar balls may play an important role in global warming. Due to the non-negligible absorption of tar balls in the near-infrared region, the absorption measured in the field at near-infrared wavelengths cannot solely be due to soot particles.

  6. Fabrication of Porous Ceramic-Geopolymer Based Material to Improve Water Absorption and Retention in Construction Materials: A Review

    NASA Astrophysics Data System (ADS)

    Jamil, N. H.; Ibrahim, W. M. A. W.; Abdullah, M. M. A. B.; Sandu, A. V.; Tahir, M. F. M.

    2017-06-01

    Porous ceramic nowadays has been investigated for a variety of its application such as filters, lightweight structural component and others due to their specific properties such as high surface area, stability and permeability. Besides, it has the properties of low thermal conductivity. Various formation techniques making these porous ceramic properties can be tailored or further fine-tuned to obtain the optimum characteristic. Porous materials also one of the good candidate for absorption properties. Conventional construction materials are not design to have good water absorption and retention that lead to the poor performance on these criteria. Temperature is a major driving force for moisture movement and influences sorption characteristics of many constructions materials. The effect of elevated temperatures on the water absorption coefficient and retention remain as critical issue that need to be investigated. Therefore, this paper will review the process parameters in fabricating porous ceramic for absorption properties.

  7. Technical note: Aerosol light absorption measurements with a carbon analyser - Calibration and precision estimates

    NASA Astrophysics Data System (ADS)

    Ammerlaan, B. A. J.; Holzinger, R.; Jedynska, A. D.; Henzing, J. S.

    2017-09-01

    Equivalent Black Carbon (EBC) and Elemental Carbon (EC) are different mass metrics to quantify the amount of combustion aerosol. Both metrics have their own measurement technique. In state-of-the-art carbon analysers, optical measurements are used to correct for organic carbon that is not evolving because of pyrolysis. These optical measurements are sometimes used to apply the technique of absorption photometers. Here, we use the transmission measurements of our carbon analyser for simultaneous determination of the elemental carbon concentration and the absorption coefficient. We use MAAP data from the CESAR observatory, the Netherlands, to correct for aerosol-filter interactions by linking the attenuation coefficient from the carbon analyser to the absorption coefficient measured by the MAAP. Application of the calibration to an independent data set of MAAP and OC/EC observations for the same location shows that the calibration is applicable to other observation periods. Because of simultaneous measurements of light absorption properties of the aerosol and elemental carbon, variation in the mass absorption efficiency (MAE) can be studied. We further show that the absorption coefficients and MAE in this set-up are determined within a precision of 10% and 12%, respectively. The precisions could be improved to 4% and 8% when the light transmission signal in the carbon analyser is very stable.

  8. Frequency domain photothermoacoustic signal amplitude dependence on the optical properties of water: turbid polyvinyl chloride-plastisol system.

    PubMed

    Spirou, Gloria M; Mandelis, Andreas; Vitkin, I Alex; Whelan, William M

    2008-05-10

    Photoacoustic (more precisely, photothermoacoustic) signals generated by the absorption of photons can be related to the incident laser fluence rate. The dependence of frequency domain photoacoustic (FD-PA) signals on the optical absorption coefficient (micro(a)) and the effective attenuation coefficient (micro(eff)) of a turbid medium [polyvinyl chloride-plastisol (PVCP)] with tissuelike optical properties was measured, and empirical relationships between these optical properties and the photoacoustic (PA) signal amplitude and the laser fluence rate were derived for the water (PVCP system with and without optical scatterers). The measured relationships between these sample optical properties and the PA signal amplitude were found to be linear, consistent with FD-PA theory: micro(a)=a(A/Phi)-b and micro(eff)=c(A/Phi)+d, where Phi is the laser fluence, A is the FD-PA amplitude, and a, ...,d are empirical coefficients determined from the experiment using linear frequency-swept modulation and a lock-in heterodyne detection technique. This quantitative technique can easily be used to measure the optical properties of general turbid media using FD-PAs.

  9. The saturable absorption and reverse saturable absorption properties of Cu doped zinc oxide thin films

    NASA Astrophysics Data System (ADS)

    Yao, Cheng-Bao; Wen, Xin; Li, Qiang-Hua; Yan, Xiao-Yan; Li, Jin; Zhang, Ke-Xin; Sun, Wen-Jun; Bai, Li-Na; Yang, Shou-Bin

    2017-03-01

    We present the structure and nonlinear absorption (NLA) properties of Cu-doped ZnO (CZO) films prepared by magnetron sputtering. The films were characterized using X-ray diffraction (XRD) and scanning electron microscopy (SEM), respectively. The results show that the CZO films can maintain a wurtzite structure. Furthermore, the open-aperture (OA) Z-scan measurements of the film were carried out by nanosecond laser pulse. A transition from saturable absorption (SA) to reverse saturable absorption (RSA) was observed as the excitation intensity increasing. With good excellent nonlinear optical coefficient, the samples were expected to be the potential applications in optical devices.

  10. Terahertz birefringence of potassium niobate crystals

    NASA Astrophysics Data System (ADS)

    Antsygin, V. D.; Mamrashev, A. A.; Nikolaev, N. A.

    2018-03-01

    We present terahertz optical properties (refractive indices and absorption coefficients) of potassium niobate crystals measured by time-domain spectroscopy in the range of 0.2-2.0 THz. We observe average refractive indices nx = 5.25, ny = 4.8, nz = 5.9 for corresponding optical axes X, Y, Z with the large birefringence of Δn = nz - ny = 1.1. We report rising absorption coefficient at higher frequencies (α ∼ 50 cm-1 at 1 THz for all three axes) while the dichroism is not pronounced. Somewhat higher absorption compared to the previous results could be attributed to some polydomain structure remaining in the crystal.

  11. Visible and near-infrared bulk optical properties of raw milk.

    PubMed

    Aernouts, B; Van Beers, R; Watté, R; Huybrechts, T; Lammertyn, J; Saeys, W

    2015-10-01

    The implementation of optical sensor technology to monitor the milk quality on dairy farms and milk processing plants would support the early detection of altering production processes. Basic visible and near-infrared spectroscopy is already widely used to measure the composition of agricultural and food products. However, to obtain maximal performance, the design of such optical sensors should be optimized with regard to the optical properties of the samples to be measured. Therefore, the aim of this study was to determine the visible and near-infrared bulk absorption coefficient, bulk scattering coefficient, and scattering anisotropy spectra for a diverse set of raw milk samples originating from individual cow milkings, representing the milk variability present on dairy farms. Accordingly, this database of bulk optical properties can be used in future simulation studies to efficiently optimize and validate the design of an optical milk quality sensor. In a next step of the current study, the relation between the obtained bulk optical properties and milk quality properties was analyzed in detail. The bulk absorption coefficient spectra were found to mainly contain information on the water, fat, and casein content, whereas the bulk scattering coefficient spectra were found to be primarily influenced by the quantity and the size of the fat globules. Moreover, a strong positive correlation (r ≥ 0.975) was found between the fat content in raw milk and the measured bulk scattering coefficients in the 1,300 to 1,400 nm wavelength range. Relative to the bulk scattering coefficient, the variability on the scattering anisotropy factor was found to be limited. This is because the milk scattering anisotropy is nearly independent of the fat globule and casein micelle quantity, while it is mainly determined by the size of the fat globules. As this study shows high correlations between the sample's bulk optical properties and the milk composition and fat globule size, a sensor that allows for robust separation between the absorption and scattering properties would enable accurate prediction of the raw milk quality parameters. Copyright © 2015 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  12. First principles study of electronic properties, interband transitions and electron energy loss of α-graphyne

    NASA Astrophysics Data System (ADS)

    Behzad, Somayeh

    2016-04-01

    The electronic and optical properties of α-graphyne sheet are investigated by using density functional theory. The results confirm that α-graphyne sheet is a zero-gap semimetal. The optical properties of the α-graphyne sheet such as dielectric function, refraction index, electron energy loss function, reflectivity, absorption coefficient and extinction index are calculated for both parallel and perpendicular electric field polarizations. The optical spectra are strongly anisotropic along these two polarizations. For (E ∥ x), absorption edge is at 0 eV, while there is no absorption below 8 eV for (E ∥ z).

  13. Influences of the Ratio of Polyol and MDI on the Acoustic Parameters of Polyurethane

    NASA Astrophysics Data System (ADS)

    Wang, Yonghua; Liu, Zheming; Wu, Haiquan; Zhang, Chengchun; Yu, Huadong; Ren, Luquan; Ichchou, Mohamed

    2018-05-01

    In this paper, the influence of different ratio of polyol and MDI on the absorption coefficient and acoustic parameters of polyurethane was studied. Ratio of 100:40 and 100:45 show the best sound absorption performance, and the change trend of transmission loss and sound absorption coefficient are opposite. The flow resistance increased with the increasing of the ratio of polyol and MDI, the greater the flow resistance, the worse the high frequency sound absorption property of the polyurethane. When the ratio of polyol and MDI keep 100:45, the minimum porosity of sample, the polyurethane porosity increase with the ratio of polyol and MDI increase.

  14. Light absorption properties of CDOM in the Changjiang (Yangtze) estuarine and coastal waters: An alternative approach for DOC estimation

    NASA Astrophysics Data System (ADS)

    Yu, Xiaolong; Shen, Fang; Liu, Yangyang

    2016-11-01

    Field measurements of CDOM absorption properties and DOC concentrations were collected in the Changjiang estuarine and coastal waters from 2011 to 2013. CDOM absorption coefficient at 355 nm (ag (355)) was found to be inversely correlated with salinity, with Pearson's coefficients r of -0.901 and -0.826 for summer and winter observations, respectively. Analysis results of the relationships between salinity and CDOM optical properties (i.e., absorption coefficient and spectral slope) suggested that terrigenous inputs dominated CDOM sources in the Changjiang estuary, but the proportion of terrigenous CDOM declined with increasing salinity. The level of CDOM in the Changjiang estuary was lower compared to some of the major estuaries in the world, which could be attributed to several controlling factors such as vegetation cover in the drainage basin, the origin of recharged streams and high sediment load in the Changjiang estuary. We further evaluated the relationships between CDOM and DOC and their mixing behavior among world's major estuaries. An empirical model was finally developed to estimate DOC concentration from ag (355) and spectral slope S275-295 using a non-linear regression. This empirical relationship was calibrated using the Cal dataset, and was validated with the Val dataset, resulting in an acceptable error with the R2 of 0.746, the RMSE of 20.99 μmol/L and the rMAD of 14.46%.

  15. Oil-based gel phantom for ultrasound and optical imaging

    NASA Astrophysics Data System (ADS)

    Cabrelli, Luciana C.; Pelissari, Pedro I. B. G. B.; Aggarwal, Lucimara P.; Deana, Alessandro M.; Carneiro, Antonio A. O.; Pavan, Theo. Z.

    2015-06-01

    Water-based materials are commonly used in phantoms for ultrasound and optical imaging techniques. However, these materials have disadvantages such as easy degradation and low temporal stability. In this study, we propose an oil-based new tissue mimicking material for ultrasound and optical imaging, with the advantage of presenting low temporal degradation. Styrene-Ethylene/Butylene-Styrene (SEBS) copolymer in mineral oil samples were made varying the SEBS concentration between 5-15%, and low-density polyethylene (LDPE) between 0-9%. Acoustic properties such as speed of sound and attenuation coefficient were obtained by the substitution technique with frequencies ranging from 2.25-10 MHz, and were consistent to that of soft tissue. These properties were controlled varying SEBS and LDPE concentration; speed of sound from 1445-1480 m/s, and attenuation from 0.86-11.31 dB/cm were observed. SEBS gels with 0% of LDPE were optically transparent, presenting low optical absorption and scattering coefficients in the visible region of the spectrum. In order to fully characterize the optical properties of the samples, the reflectances of the surfaces were measured, along with the absorption. Scattering and absorption coefficients ranging from 400 nm to 1200 nm were calculated for each compound. The results showed that the presence of LDPE increased absorption and scattering of the phantoms. The results suggest the copolymer gels are promising for ultrasound and optical imaging, what make them also potentially useful for photoacoustic imaging.

  16. Frequency-domain optical tomographic image reconstruction algorithm with the simplified spherical harmonics (SP3) light propagation model.

    PubMed

    Kim, Hyun Keol; Montejo, Ludguier D; Jia, Jingfei; Hielscher, Andreas H

    2017-06-01

    We introduce here the finite volume formulation of the frequency-domain simplified spherical harmonics model with n -th order absorption coefficients (FD-SP N ) that approximates the frequency-domain equation of radiative transfer (FD-ERT). We then present the FD-SP N based reconstruction algorithm that recovers absorption and scattering coefficients in biological tissue. The FD-SP N model with 3 rd order absorption coefficient (i.e., FD-SP 3 ) is used as a forward model to solve the inverse problem. The FD-SP 3 is discretized with a node-centered finite volume scheme and solved with a restarted generalized minimum residual (GMRES) algorithm. The absorption and scattering coefficients are retrieved using a limited-memory Broyden-Fletcher-Goldfarb-Shanno (L-BFGS) algorithm. Finally, the forward and inverse algorithms are evaluated using numerical phantoms with optical properties and size that mimic small-volume tissue such as finger joints and small animals. The forward results show that the FD-SP 3 model approximates the FD-ERT (S 12 ) solution within relatively high accuracy; the average error in the phase (<3.7%) and the amplitude (<7.1%) of the partial current at the boundary are reported. From the inverse results we find that the absorption and scattering coefficient maps are more accurately reconstructed with the SP 3 model than those with the SP 1 model. Therefore, this work shows that the FD-SP 3 is an efficient model for optical tomographic imaging of small-volume media with non-diffuse properties both in terms of computational time and accuracy as it requires significantly lower CPU time than the FD-ERT (S 12 ) and also it is more accurate than the FD-SP 1 .

  17. Delivery of Nano-Tethered Therapies to Brain Metastases of Primary Breast Cancer Using a Cellular Trojan Horse

    DTIC Science & Technology

    2015-12-01

    Hounsfield units (HU) of the brain were translated into corresponding optical properties (absorption coefficient, scattering coefficient, and anisotropy...factor) using lookup tables (Fig 2). The lookup tables were prepared from earlier studies which derived the Hounsfield units and optical properties of... Hounsfield Units /HU) are segmented and translated into optical properties of the brain tissue (white/gray matter, CSF, skull bone, etc.). Monte

  18. [The Lambert-Beer's law characterization of formal analysis in Terahertz spectrum quantitative testing].

    PubMed

    Su, Hai-Xia; Zhang, Zhao-Hui; Zhao, Xiao-Yan; Li, Zhi; Yan, Fang; Zhang, Han

    2013-12-01

    The present paper discusses the Lambert-Beer' s law application in the terahertz spectrum, studies the single amino acid tablet sample (glutamine) and two kinds of amino acids mixture tablet (threonine and cystine) under the condition of different concentrations. Absorbance and absorption coefficient was analyzed in the description of the terahertz optical properties of matter. By comparing absorption coefficient and absorbance value of the single component in the vicinity of 1. 72 THz, we verified the material under two kinds of absorption characterization of quantity of THz wave absorption along with the change in the concentration. Using the index of goodness of fit R , it studied the stand or fall of linear relationship between the terahertz absorption quantity of material and concentration under two kinds of representation. This paper analyzes the two components mixture under two kinds of absorption characterization of quantity of terahertz absorption in 0. 3-2. 6 THz. Using the similarity co- efficient and the estimate concentration error as evaluation index, it has been clear that the absorbance of additivity instead of the absorption coefficient should be used during the terahertz spectrum quantitative test, and the Lambert-Beer's law application in the terahertz wave band was further clarified.

  19. Structured light imaging system for structural and optical characterization of 3D tissue-simulating phantoms

    NASA Astrophysics Data System (ADS)

    Liu, Songde; Smith, Zach; Xu, Ronald X.

    2016-10-01

    There is a pressing need for a phantom standard to calibrate medical optical devices. However, 3D printing of tissue-simulating phantom standard is challenged by lacking of appropriate methods to characterize and reproduce surface topography and optical properties accurately. We have developed a structured light imaging system to characterize surface topography and optical properties (absorption coefficient and reduced scattering coefficient) of 3D tissue-simulating phantoms. The system consisted of a hyperspectral light source, a digital light projector (DLP), a CMOS camera, two polarizers, a rotational stage, a translation stage, a motion controller, and a personal computer. Tissue-simulating phantoms with different structural and optical properties were characterized by the proposed imaging system and validated by a standard integrating sphere system. The experimental results showed that the proposed system was able to achieve pixel-level optical properties with a percentage error of less than 11% for absorption coefficient and less than 7% for reduced scattering coefficient for phantoms without surface curvature. In the meanwhile, 3D topographic profile of the phantom can be effectively reconstructed with an accuracy of less than 1% deviation error. Our study demonstrated that the proposed structured light imaging system has the potential to characterize structural profile and optical properties of 3D tissue-simulating phantoms.

  20. Ab-initio calculations of structural, electronic, and optical properties of Zn3(VO4)2

    NASA Astrophysics Data System (ADS)

    Ahmed, Nisar; Mukhtar, S.; Gao, Wei; Zafar Ilyas, Syed

    2018-03-01

    The structural, electronic, and optical properties of Zn3(VO4)2 are investigated using full potential linearized augmented plane wave (FP-LAPW) method within the framework of density functional theory (DFT). Various approaches are adopted to treat the exchange and correlation potential energy such as generalized gradient approximation (GGA), GGA+U, and the Tran–Blaha modified Becke–Johnson (TB-mBJ) potential. The calculated band gap of 3.424 eV by TB-mBJ is found to be close to the experimental result (3.3 eV). The optical anisotropy is analyzed through optical constants, such as dielectric function and absorption coefficient along parallel and perpendicular crystal orientations. The absorption coefficient reveals high absorption (1.5× {10}6 {cm}}-1) of photons in the ultraviolet region.

  1. Remote Sensing of the Absorption Coefficients and Chlorophyll a Concentration in the U.S. Southern Middle Atlantic Bight from SeaWiFS and MODIS-Aqua

    NASA Technical Reports Server (NTRS)

    Pan, Xiaoju; Mannino, Antonio; Russ, Mary E.; Hooker, Stanford B.

    2008-01-01

    At present, satellite remote sensing of coastal water quality and constituent concentration is subject to large errors as compared to the capability of satellite sensors in oceanic waters. In this study, field measurements collected on a series of cruises within U.S. southern Middle Atlantic Bight (SMAB) were applied to improve retrievals of satellite ocean color products in order to examine the factors that regulate the bio-optical properties within the continental shelf waters of the SMAB. The first objective was to develop improvements in satellite retrievals of absorption coefficients of phytoplankton (a(sub ph)), colored dissolved organic matter (CDOM) (a(sub g)), non-pigmented particles (a(sub d)), and non-pigmented particles plus CDOM (a(sub dg)), and chlorophyll a concentration ([Chl_a]). Several algorithms were compared to derive constituent absorption coefficients from remote sensing reflectance (R(sub rs)) ratios. The validation match-ups showed that the mean absolute percent differences (MAPD) were typically less than 35%, although higher errors were found for a(sub d) retrievals. Seasonal and spatial variability of satellite-derived absorption coefficients and [Chl_a] was apparent and consistent with field data. CDOM is a major contributor to the bio-optical properties of the SMAB, accounting for 35-70% of total light absorption by particles plus CDOM at 443 nm, as compared to 30-45% for phytoplankton and 0-20% for non-pigmented particles. The overestimation of [Chl_a] from the operational satellite algorithms may be attributed to the strong CDOM absorption in this region. River discharge is important in controlling the bio-optical environment, but cannot explain all of the regional and seasonal variability of biogeochemical constituents in the SMAB.

  2. Improving sound absorption property of polyurethane foams doped with natural fiber

    NASA Astrophysics Data System (ADS)

    Azahari, M. Shafiq M.; Rus, Anika Zafiah M.; Taufiq Zaliran, M.; Kormin, Shaharuddin

    2017-08-01

    This study investigates the acoustics behavior of wood fibre filler of Red Meranti - filled polyurethane foam as a sound absorbing material. Three different thicknesses have been selected which is 10 mm, 20 mm and 30 mm. By choosing percentage loading of Red Meranti (RM) wood fibre of 5%, 10%, 15% and 20% added with polymer foam is namely as polymer foam (PF) composites of PF5%, PF10%, PF15% and PF20%. The sound absorption coefficient (α) and pore structure of the foam samples have been examined by using Impedance Tube test and Scanning Electron Microscopy (SEM). The results revealed that the highest thickness of highest filler loading (PF20%) gives higher sound absorption coefficient (α). The absorption frequency level is observed at 0.9922 and 0.99889 which contributed from low and high frequency absorption level respectively. The smallest pores size structure was observed with highest filler loading of PF. The higher the thickness and the higher the percentage loading of wood filler gives smaller pore structure, consequently, increased the sound absorption coefficient level.

  3. Influence of Ga doping ratio on the saturable absorption mechanism in Ga doped ZnO thin solid films processed by sol-gel spin coating technique

    NASA Astrophysics Data System (ADS)

    Sandeep, K. M.; Bhat, Shreesha; Dharmaprakash, S. M.; Byrappa, K.

    2017-03-01

    In the present study, the nonlinear optical properties of sol-gel spin coated gallium doped zinc oxide (GZO) thin solid films are explored with nanosecond laser pulses using the z-scan technique. The higher doping ratios of Ga result in a large redshift of the energy gap (0.38 eV) due to the existence of enhanced grain boundary defects in GZO films. A positive nonlinear absorption coefficient is observed in undoped 1 at.wt.% GZO and 2 at.wt.% GZO films, and a negative nonlinear absorption coefficient in 3 at.wt.% GZO film. Fewer defects in undoped 1% GZO and 2% GZO films resulted in reverse saturable absorption (RSA), whereas a saturable absorption (SA) mechanism is observed in 3% GZO films and is attributed to the enhanced defect concentration in the band structure of GZO. However, all the films showed a self-defocusing mechanism, derived by a closed aperture z-scan technique. The present work sheds light on the defect mechanism involved in the observed nonlinear properties of GZO films.

  4. Evaluation of elastic properties and study on water absorption behavior of alumina filled jute-epoxy composites

    NASA Astrophysics Data System (ADS)

    Santosh, D. N.; Ravikumar, B. N.; Mahesh, B.; Vijayalaxmi, S. P.; Srinivas, Y. V.

    2018-04-01

    In this paper, the effect of filler content is studied on elastic properties and water absorption behavior for jute epoxy composite. For reinforcement the plain woven jute fabric is used. The bonding system consists of resin-epoxy and Hardener in the ratio 10:1 by weight. Alumina (average grain size of 30 µm) is used as filler. The effect of filler content on elastic properties and water absorption behavior studied by varying the filler content from 5%, 10%, 15% with respect to weight of epoxy. The open mould method used to fabricate the alumina filled jute-epoxy composite laminates. Tests were conducted according to ASTM standards. The evaluation assesment of elastic properties of alumina filled jute-epoxy composite materials have been analyzed by theoretically and experimentally. The speculated values are analyzed with those obtained from experimental to validate the calculated theoretically with rule of mixture procedure. Young's modulus and shear modulus were found to increase with the increase in the filler content upto 10 wt%, beyond which the modulii showed decreasing trend. Poisson's ratio was found to be continuously decreasing with the increase in the alumina filler content of jute-eposy composite. It was clearly observed that unfilled specimen has the highest saturated moisture content and 15% filled specimen has lowest value. As alumina filler content increases resistance to moisture absorption also increases. The water diffusion coefficient of composite was calculated using the diffusion coefficient equation. As filler content increases diffusion co-efficient decreases for alumina filled jute-epoxy composite.

  5. Tuning the nonlinear optical absorption of reduced graphene oxide by chemical reduction.

    PubMed

    Shi, Hongfei; Wang, Can; Sun, Zhipei; Zhou, Yueliang; Jin, Kuijuan; Redfern, Simon A T; Yang, Guozhen

    2014-08-11

    Reduced graphene oxides with varying degrees of reduction have been produced by hydrazine reduction of graphene oxide. The linear and nonlinear optical properties of both graphene oxide as well as the reduced graphene oxides have been measured by single beam Z-scan measurement in the picosecond region. The results reveal both saturable absorption and two-photon absorption, strongly dependent on the intensity of the pump pulse: saturable absorption occurs at lower pump pulse intensity (~1.5 GW/cm2 saturation intensity) whereas two-photon absorption dominates at higher intensities (≥5.7 GW/cm2). Intriguingly, we find that the two-photon absorption coefficient (from 1.5 cm/GW to 4.5cm/GW) and the saturation intensity (from 1 GW/cm2 to 2 GW/cm2) vary with chemical reduction, which is ascribed to the varying concentrations of sp2 domains and sp2 clusters in the reduced graphene oxides. Our results not only provide an insight into the evolution of the nonlinear optical coefficient in reduced graphene oxide, but also suggest that chemical engineering techniques may usefully be applied to tune the nonlinear optical properties of various nano-materials, including atomically thick graphene sheets.

  6. Biot theory and acoustical properties of high porosity fibrous materials and plastic foams

    NASA Technical Reports Server (NTRS)

    Allard, J.; Aknine, A.

    1987-01-01

    Experimental values of acoustic wave propagation constant and characteristic impedance in fibrous materials, and normal absorption for two plastic foams, were compared to theoretical predictions obtained with Biot's theory. The best agreement was observed for fibrous materials between Biot's theory and Delany and Bazley experiments for a nearly zero mass coupling parameter. For foams, the lambda/4 structure resonance effect on absorption was calculated by using four-pole modelling of the medium. A significant mass coupling parameter is then necessary for obtaining agreement between the behavior of the measured absorption coefficients and the theoretical predictions. It is shown how the formalism used for predicting foams absorption coefficients may be used for studying the acoustic behavior of multi-layered media.

  7. Ab initio study of II-(VI)2 dichalcogenides.

    PubMed

    Olsson, P; Vidal, J; Lincot, D

    2011-10-12

    The structural stabilities of the (Zn,Cd)(S,Se,Te)(2) dichalcogenides have been determined ab initio. These compounds are shown to be stable in the pyrite phase, in agreement with available experiments. Structural parameters for the ZnTe(2) pyrite semiconductor compound proposed here are presented. The opto-electronic properties of these dichalcogenide compounds have been calculated using quasiparticle GW theory. Bandgaps, band structures and effective masses are proposed as well as absorption coefficients and refraction indices. The compounds are all indirect semiconductors with very flat conduction band dispersion and high absorption coefficients. The work functions and surface properties are predicted. The Te and Se based compounds could be of interest as absorber materials in photovoltaic applications.

  8. Spectral radiative properties of a living human body

    NASA Astrophysics Data System (ADS)

    Terada, N.; Ohnishi, K.; Kobayashi, M.; Kunitomo, T.

    1986-09-01

    Spectral radiative properties of the human body were studied experimentally in the region from the ultraviolet to the far-infrared to know the thermal response of the human body exposed to solar radiation and infrared radiation. The measuring equipment for reflectance and transmittance of a semitransparent scattering medium was developed and measurement on a living human skin was performed in vivo. The measured parts are forearm, cheek, dorsum hand, hip, and hair. The values obtained by the present study are much different from those of previous in vitro measurements. Fairly large values for hemispherical reflectances are observed in the visible and near-infrared regions but very small values for hemispherical reflectances are observed in the infrared region, below 0.05. By applying the four-flux treatment of radiative transfer, the absorption coefficient and scattering coefficient in the human skin are determined. The scattering coefficient is large in the visible region but negligible in the infrared region. The absorption coefficient is very close to that of water and large in the infrared region.

  9. Properties of the Water Column and Bottom Derived from AVIRIS Data

    NASA Technical Reports Server (NTRS)

    Lee, Zhong-Ping; Carder, Kendall L.; Chen, F. Robert; Peacock, Thomas G.

    2001-01-01

    Using AVIRIS data as an example, we show in this study that the optical properties of the water column and bottom of a large, shallow area can be adequately retrieved using a model-driven optimization technique. The simultaneously derived properties include bottom depth, bottom albedo, and water absorption and backscattering coefficients, which in turn could be used to derive concentrations of chlorophyll, dissolved organic matter, and suspended sediments. The derived bottom depths were compared with a bathymetry chart and a boat survey and were found to agree very well. Also, the derived bottom-albedo image shows clear spatial patterns, with end members consistent with sand and seagrass. The image of absorption and backscattering coefficients indicates that the water is quite horizontally mixed. These results suggest that the model and approach used work very well for the retrieval of sub-surface properties of shallow-water environments even for rather turbid environments like Tampa Bay, Florida.

  10. Absorption and Attenuation Coefficients Using the WET Labs ac-s in the Mid-Atlantic Bight: Field Measurements and Data Analysis

    NASA Technical Reports Server (NTRS)

    Ohi, Nobuaki; Makinen, Carla P.; Mitchell, Richard; Moisan, Tiffany A.

    2008-01-01

    Ocean color algorithms are based on the parameterization of apparent optical properties as a function of inherent optical properties. WET Labs underwater absorption and attenuation meters (ac-9 and ac-s) measure both the spectral beam attenuation [c (lambda)] and absorption coefficient [a (lambda)]. The ac-s reports in a continuous range of 390-750 nm with a band pass of 4 nm, totaling approximately 83 distinct wavelengths, while the ac-9 reports at 9 wavelengths. We performed the ac-s field measurements at nine stations in the Mid-Atlantic Bight from water calibrations to data analysis. Onboard the ship, the ac-s was calibrated daily using Milli Q-water. Corrections for the in situ temperature and salinity effects on optical properties of water were applied. Corrections for incomplete recovery of the scattered light in the ac-s absorption tube were performed. The fine scale of spectral and vertical distributions of c (lambda) and a (lambda) were described from the ac-s. The significant relationships between a (674) and that of spectrophotometric analysis and chlorophyll a concentration of discrete water samples were observed.

  11. Investigation of third-order nonlinear and optical power limiting properties of terphenyl derivatives

    NASA Astrophysics Data System (ADS)

    Kamath, Laxminarayana; Manjunatha, K. B.; Shettigar, Seetharam; Umesh, G.; Narayana, B.; Samshuddin, S.; Sarojini, B. K.

    2014-03-01

    A series of new chalcones containing terphenyl as a core and with different functional groups has been successfully synthesized by Claisen-Schmidt condensation method in search of new nonlinear optical (NLO) materials. Molecular structural characterization for the compounds was achieved by FTIR and single crystal X-ray diffraction. The third-order NLO absorption and refraction coefficients were simultaneously determined by Z-scan technique. The measurements were performed at 532 nm with 7 ns laser pulses using a Nd:YAG laser in solution form. The Z-scan experiments reveal that the compounds exhibit strong nonlinear refraction coefficient of the order 10-11 esu and the molecular two photon absorption cross section is 10-46 cm4 s/photon. The results also show that the structures of the compounds have great impact on NLO properties. The compounds show optical power limiting behavior due to two-photon absorption (TPA).

  12. Real-time absorption and scattering characterization of slab-shaped turbid samples obtained by a combination of angular and spatially resolved measurements.

    PubMed

    Dam, Jan S; Yavari, Nazila; Sørensen, Søren; Andersson-Engels, Stefan

    2005-07-10

    We present a fast and accurate method for real-time determination of the absorption coefficient, the scattering coefficient, and the anisotropy factor of thin turbid samples by using simple continuous-wave noncoherent light sources. The three optical properties are extracted from recordings of angularly resolved transmittance in addition to spatially resolved diffuse reflectance and transmittance. The applied multivariate calibration and prediction techniques are based on multiple polynomial regression in combination with a Newton--Raphson algorithm. The numerical test results based on Monte Carlo simulations showed mean prediction errors of approximately 0.5% for all three optical properties within ranges typical for biological media. Preliminary experimental results are also presented yielding errors of approximately 5%. Thus the presented methods show a substantial potential for simultaneous absorption and scattering characterization of turbid media.

  13. A synthesis of light absorption properties of the Arctic Ocean: application to semianalytical estimates of dissolved organic carbon concentrations from space

    NASA Astrophysics Data System (ADS)

    Matsuoka, A.; Babin, M.; Doxaran, D.; Hooker, S. B.; Mitchell, B. G.; Bélanger, S.; Bricaud, A.

    2014-06-01

    In addition to scattering coefficients, the light absorption coefficients of particulate and dissolved materials are the main factors determining the light propagation of the visible part of the spectrum and are, thus, important for developing ocean color algorithms. While these absorption properties have recently been documented by a few studies for the Arctic Ocean (e.g., Matsuoka et al., 2007, 2011; Ben Mustapha et al., 2012), the data sets used in the literature were sparse and individually insufficient to draw a general view of the basin-wide spatial and temporal variations in absorption. To achieve such a task, we built a large absorption database of the Arctic Ocean by pooling the majority of published data sets and merging new data sets. Our results show that the total nonwater absorption coefficients measured in the eastern Arctic Ocean (EAO; Siberian side) are significantly higher than in the western Arctic Ocean (WAO; North American side). This higher absorption is explained by higher concentration of colored dissolved organic matter (CDOM) in watersheds on the Siberian side, which contains a large amount of dissolved organic carbon (DOC) compared to waters off North America. In contrast, the relationship between the phytoplankton absorption (aϕ(λ)) and chlorophyll a (chl a) concentration in the EAO was not significantly different from that in the WAO. Because our semianalytical CDOM absorption algorithm is based on chl a-specific aϕ(λ) values (Matsuoka et al., 2013), this result indirectly suggests that CDOM absorption can be appropriately derived not only for the WAO but also for the EAO using ocean color data. Based on statistics, derived CDOM absorption values were reasonable compared to in situ measurements. By combining this algorithm with empirical DOC versus CDOM relationships, a semianalytical algorithm for estimating DOC concentrations for river-influenced coastal waters of the Arctic Ocean is presented and applied to satellite ocean color data.

  14. Simultaneous reconstruction of temperature distribution and radiative properties in participating media using a hybrid LSQR-PSO algorithm

    NASA Astrophysics Data System (ADS)

    Niu, Chun-Yang; Qi, Hong; Huang, Xing; Ruan, Li-Ming; Wang, Wei; Tan, He-Ping

    2015-11-01

    A hybrid least-square QR decomposition (LSQR)-particle swarm optimization (LSQR-PSO) algorithm was developed to estimate the three-dimensional (3D) temperature distributions and absorption coefficients simultaneously. The outgoing radiative intensities at the boundary surface of the absorbing media were simulated by the line-of-sight (LOS) method, which served as the input for the inverse analysis. The retrieval results showed that the 3D temperature distributions of the participating media with known radiative properties could be retrieved accurately using the LSQR algorithm, even with noisy data. For the participating media with unknown radiative properties, the 3D temperature distributions and absorption coefficients could be retrieved accurately using the LSQR-PSO algorithm even with measurement errors. It was also found that the temperature field could be estimated more accurately than the absorption coefficients. In order to gain insight into the effects on the accuracy of temperature distribution reconstruction, the selection of the detection direction and the angle between two detection directions was also analyzed. Project supported by the Major National Scientific Instruments and Equipment Development Special Foundation of China (Grant No. 51327803), the National Natural Science Foundation of China (Grant No. 51476043), and the Fund of Tianjin Key Laboratory of Civil Aircraft Airworthiness and Maintenance in Civil Aviation University of China.

  15. Properties of seismic absorption induced reflections

    NASA Astrophysics Data System (ADS)

    Zhao, Haixia; Gao, Jinghuai; Peng, Jigen

    2018-05-01

    Seismic reflections at an interface are often regarded as the variation of the acoustic impedance (product of seismic velocity and density) in a medium. In fact, they can also be generated due to the difference in absorption of the seismic energy. In this paper, we investigate the properties of such reflections. Based on the diffusive-viscous wave equation and elastic diffusive-viscous wave equation, we investigate the dependency of the reflection coefficients on frequency, and their variations with incident angles. Numerical results at a boundary due to absorption contrasts are compared with those resulted from acoustic impedance variation. It is found that, the reflection coefficients resulted from absorption depend significantly on the frequency especially at lower frequencies, but vary very slowly at small incident angles. At the higher frequencies, the reflection coefficients of diffusive-viscous wave and elastic diffusive-viscous wave are close to those of acoustic and elastic cases, respectively. On the other hand, the reflections caused by acoustic impedance variation are independent of frequency but vary distinctly with incident angles before the critical angle. We also investigate the difference between the seismograms generated in the two different media. The numerical results show that the amplitudes of these reflected waves are attenuated and their phases are shifted. However, the reflections obtained by acoustic impedance contrast, show no significant amplitude attenuation and phase shift.

  16. High purity silica reflective heat shield development

    NASA Technical Reports Server (NTRS)

    Blome, J. C.; Drennan, D. N.; Schmitt, R. J.

    1974-01-01

    Measurements were made of reflectance in the vacuum ultraviolet down to 0.15 micron. Scattering coefficients (S) and absorption coefficients (K) were also measured. These coefficients express the optical properties and are used directly in a thermodynamic analysis for sizing a heat shield. The effect of the thin silica melt layer formed during entry was also studied from the standpoint of trapped radiant energy.

  17. Phantom Preparation and Optical Property Determination

    NASA Astrophysics Data System (ADS)

    He, Di; He, Jie; Mao, Heng

    2018-12-01

    Tissue-like optical phantoms are important in testing new imaging algorithms. Homogeneous optical phantoms with determined optical properties are the first step of making a proper heterogeneous phantom for multi-modality imaging. Typical recipes for such phantoms consist of epoxy resin, hardener, India ink and titanium oxide. By altering the concentration of India ink and titanium oxide, we are able to get multiple homogeneous phantoms with different absorption and scattering coefficients by carefully mixing all the ingredients. After fabricating the phantoms, we need to find their individual optical properties including the absorption and scattering coefficients. This is achieved by solving diffusion equation of each phantom as a homogeneous slab under canonical illumination. We solve the diffusion equation of homogeneous slab in frequency domain and get the formula for theoretical measurements. Under our steady-state diffused optical tomography (DOT) imaging system, we are able to obtain the real distribution of the incident light produced by a laser. With this source distribution we got and the formula we derived, numerical experiments show how measurements change while varying the value of absorption and scattering coefficients. Then we notice that the measurements alone will not be enough for us to get unique optical properties for steady-state DOT problem. Thus in order to determine the optical properties of a homogeneous slab we want to fix one of the coefficients first and use optimization methods to find another one. Then by assemble multiple homogeneous slab phantoms with different optical properties, we are able to obtain a heterogeneous phantom suitable for testing multi-modality imaging algorithms. In this paper, we describe how to make phantoms, derive a formula to solve the diffusion equation, demonstrate the non-uniqueness of steady-state DOT problem by analysing some numerical results of our formula, and finally propose a possible way to determine optical properties for homogeneous slab for our future work.

  18. Nanofluid optical property characterization: towards efficient direct absorption solar collectors.

    PubMed

    Taylor, Robert A; Phelan, Patrick E; Otanicar, Todd P; Adrian, Ronald; Prasher, Ravi

    2011-03-15

    Suspensions of nanoparticles (i.e., particles with diameters < 100 nm) in liquids, termed nanofluids, show remarkable thermal and optical property changes from the base liquid at low particle loadings. Recent studies also indicate that selected nanofluids may improve the efficiency of direct absorption solar thermal collectors. To determine the effectiveness of nanofluids in solar applications, their ability to convert light energy to thermal energy must be known. That is, their absorption of the solar spectrum must be established. Accordingly, this study compares model predictions to spectroscopic measurements of extinction coefficients over wavelengths that are important for solar energy (0.25 to 2.5 μm). A simple addition of the base fluid and nanoparticle extinction coefficients is applied as an approximation of the effective nanofluid extinction coefficient. Comparisons with measured extinction coefficients reveal that the approximation works well with water-based nanofluids containing graphite nanoparticles but less well with metallic nanoparticles and/or oil-based fluids. For the materials used in this study, over 95% of incoming sunlight can be absorbed (in a nanofluid thickness ≥10 cm) with extremely low nanoparticle volume fractions - less than 1 × 10-5, or 10 parts per million. Thus, nanofluids could be used to absorb sunlight with a negligible amount of viscosity and/or density (read: pumping power) increase.

  19. Nanofluid optical property characterization: towards efficient direct absorption solar collectors

    PubMed Central

    2011-01-01

    Suspensions of nanoparticles (i.e., particles with diameters < 100 nm) in liquids, termed nanofluids, show remarkable thermal and optical property changes from the base liquid at low particle loadings. Recent studies also indicate that selected nanofluids may improve the efficiency of direct absorption solar thermal collectors. To determine the effectiveness of nanofluids in solar applications, their ability to convert light energy to thermal energy must be known. That is, their absorption of the solar spectrum must be established. Accordingly, this study compares model predictions to spectroscopic measurements of extinction coefficients over wavelengths that are important for solar energy (0.25 to 2.5 μm). A simple addition of the base fluid and nanoparticle extinction coefficients is applied as an approximation of the effective nanofluid extinction coefficient. Comparisons with measured extinction coefficients reveal that the approximation works well with water-based nanofluids containing graphite nanoparticles but less well with metallic nanoparticles and/or oil-based fluids. For the materials used in this study, over 95% of incoming sunlight can be absorbed (in a nanofluid thickness ≥10 cm) with extremely low nanoparticle volume fractions - less than 1 × 10-5, or 10 parts per million. Thus, nanofluids could be used to absorb sunlight with a negligible amount of viscosity and/or density (read: pumping power) increase. PMID:21711750

  20. Remarkable optical red shift and extremely high optical absorption coefficient of V-Ga co-doped TiO2

    NASA Astrophysics Data System (ADS)

    Deng, Quanrong; Han, Xiaoping; Gao, Yun; Shao, Guosheng

    2012-07-01

    A first attempt has been made to study the effect of codoping of transition metal and sp metal on the electronic structure and associated optical properties of TiO2, through V-Ga codoped thin films. V-Ga codoped rutile TiO2 films were fabricated on fused quartz substrates using pulsed laser ablation, followed by heat treatment at high temperatures. Gigantic redshift in the optical absorption edge was observed in V-Ga co-doped TiO2 materials, from UV to infrared region with high absorption coefficient. Through combined structural characterization and theoretical modeling, this is attributed to the p-d hybridization between the two metals. This leads to additional energy bands to overlap with the minimum of the conduction band, leading to remarkably narrowed band gap free of mid-gap states. The direct-gap of the co-doped phase is key to the remarkably high optical absorption coefficient of the coped titania.

  1. Frequency-domain method for measuring spectral properties in multiple-scattering media: methemoglobin absorption spectrum in a tissuelike phantom

    NASA Astrophysics Data System (ADS)

    Fishkin, Joshua B.; So, Peter T. C.; Cerussi, Albert E.; Gratton, Enrico; Fantini, Sergio; Franceschini, Maria Angela

    1995-03-01

    We have measured the optical absorption and scattering coefficient spectra of a multiple-scattering medium (i.e., a biological tissue-simulating phantom comprising a lipid colloid) containing methemoglobin by using frequency-domain techniques. The methemoglobin absorption spectrum determined in the multiple-scattering medium is in excellent agreement with a corrected methemoglobin absorption spectrum obtained from a steady-state spectrophotometer measurement of the optical density of a minimally scattering medium. The determination of the corrected methemoglobin absorption spectrum takes into account the scattering from impurities in the methemoglobin solution containing no lipid colloid. Frequency-domain techniques allow for the separation of the absorbing from the scattering properties of multiple-scattering media, and these techniques thus provide an absolute

  2. A Novel Acoustic Sensor Approach to Classify Seeds Based on Sound Absorption Spectra

    PubMed Central

    Gasso-Tortajada, Vicent; Ward, Alastair J.; Mansur, Hasib; Brøchner, Torben; Sørensen, Claus G.; Green, Ole

    2010-01-01

    A non-destructive and novel in situ acoustic sensor approach based on the sound absorption spectra was developed for identifying and classifying different seed types. The absorption coefficient spectra were determined by using the impedance tube measurement method. Subsequently, a multivariate statistical analysis, i.e., principal component analysis (PCA), was performed as a way to generate a classification of the seeds based on the soft independent modelling of class analogy (SIMCA) method. The results show that the sound absorption coefficient spectra of different seed types present characteristic patterns which are highly dependent on seed size and shape. In general, seed particle size and sphericity were inversely related with the absorption coefficient. PCA presented reliable grouping capabilities within the diverse seed types, since the 95% of the total spectral variance was described by the first two principal components. Furthermore, the SIMCA classification model based on the absorption spectra achieved optimal results as 100% of the evaluation samples were correctly classified. This study contains the initial structuring of an innovative method that will present new possibilities in agriculture and industry for classifying and determining physical properties of seeds and other materials. PMID:22163455

  3. Uncertainties of optical parameters and their propagations in an analytical ocean color inversion algorithm.

    PubMed

    Lee, ZhongPing; Arnone, Robert; Hu, Chuanmin; Werdell, P Jeremy; Lubac, Bertrand

    2010-01-20

    Following the theory of error propagation, we developed analytical functions to illustrate and evaluate the uncertainties of inherent optical properties (IOPs) derived by the quasi-analytical algorithm (QAA). In particular, we evaluated the effects of uncertainties of these optical parameters on the inverted IOPs: the absorption coefficient at the reference wavelength, the extrapolation of particle backscattering coefficient, and the spectral ratios of absorption coefficients of phytoplankton and detritus/gelbstoff, respectively. With a systematically simulated data set (46,200 points), we found that the relative uncertainty of QAA-derived total absorption coefficients in the blue-green wavelengths is generally within +/-10% for oceanic waters. The results of this study not only establish theoretical bases to evaluate and understand the effects of the various variables on IOPs derived from remote-sensing reflectance, but also lay the groundwork to analytically estimate uncertainties of these IOPs for each pixel. These are required and important steps for the generation of quality maps of IOP products derived from satellite ocean color remote sensing.

  4. Pressure shift coefficient measurements in an RF discharge for Ar 4s[3/2]2—5p[3/2]3 transition with the help of diodelaser absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Chernyshov, A. K.; Mikheyev, P. A.; Lunev, N. N.; Azyazov, V. N.

    2018-04-01

    Optically pumped all-rare-gas laser (OPRGL) with unique properties were recently proposed with a possibility to obtain the laser power on the order of hundreds of Watts from a cubic centimeter. To provide high laser efficiency, the pumping radiation has to match the absorption spectrum of the rare gas metastables. To meet this condition a reliable diagnostics of the key parameters of the active medium is required and knowledge of the broadening and shift coefficients for corresponding transitions of rare gases is necessary. In this paper, the diode-laser absorption spectroscopy was employed to determine the pressure shift coefficient for 811.5 nm Ar line. The value of obtained coefficient in pure argon reduced to 300 K is -(2.1 ± 0.1) × 10-10 s-1cm3. In the course of the study the pressure broadening coefficient was also evaluated and found to be (2.4 ± 0.5) × 10-10 s-1cm3.

  5. Magnetism, optical, and thermoelectric response of CdFe2O4 by using DFT scheme

    NASA Astrophysics Data System (ADS)

    Mahmood, Q.; Yaseen, M.; Bhamu, K. C.; Mahmood, Asif; Javed, Y.; Ramay, Shahid M.

    2018-03-01

    Comparative analysis of electronic, magnetic, optical, and thermoelectric properties of CdFe2O4, calculated by employing PBEsol + mBJ has been done. The PBEsol reveals metallic nature, while TB-mBJ illustrates ferromagnetic semiconducting behavior. The reasons behind the origin of ferromagnetism are explored by observing the exchange, crystal field, and John–Teller energies. The optical nature is investigated by analyzing dielectric constants, refraction, absorption coefficient, reflectivity, and optical conductivity. Finally, thermoelectric properties are elaborated by describing the electrical and thermal conductivities, Seebeck coefficient, and power factor. The strong absorption for the visible energy and high power factor suggest CdFe2O4 as the potential candidate for renewable energy applications.

  6. Characterization of Optical Properties of Desert Dust and Other Aerosols Using Postive Matrix Factorization

    NASA Astrophysics Data System (ADS)

    Lihavainen, H.; Alghamdi, M.; Hyvärinen, A.; Hussein, T.; Neitola, K.; Khoder, M.; Abdelmaksoud, A. S.; Al-Jeelani, H.; Shabbaj, I. I.; Almehmadi, F. M.

    2017-12-01

    To derive the comprehensive aerosol in situ characteristics at a rural background area in Saudi Arabia, an aerosol measurements station was established to Hada Al Sham, 60 km east from the Red Sea and the city of Jeddah. The present sturdy describes the observational data from February 2013 to February 2015 of scattering and absorption coefficients, Ångström exponents and single scattering albedo over the measurement period. As expected, the scattering coefficient was dominated by large desert dust particles with low Ångström scattering exponent. Especially from February to June the Ångström scattering exponent was clearly lower and scattering coefficients higher than total averages because of the dust outbreak season. Aerosol optical properties had clear diurnal cycle. The lowest scattering and absorption coefficients and aerosol optical depths were observed around noon. The observed diurnal variation is caused by wind direction and speed, during night time very calm easterly winds are dominating whereas during daytime the stronger westerly winds are dominating (sea breeze). Positive Matrix Factorization mathematical tool was applied to the scattering and absorption coefficients and PM2.5 and coarse mode (PM10- PM2.5) mass concentrations to characterise aerosols from different sources. Analysis revealed three clearly different types of sources, anthropogenic, BC source and desert dust. These factors have clearly different seasonal and diurnal variation. The contribution of desert dust factor was dominating from February to May, whereas the contribution of anthropogenic factor is quite steady over the whole year. We estimated the mass absorption and scattering efficiencies for the factors and they agreed well with earlier observations. Hence, this method could be used to distinguish aerosol source characteristics, at least in fairly simple cases.

  7. Sound decay in a rectangular room with impedance walls

    NASA Astrophysics Data System (ADS)

    Kanev, N. G.

    2012-09-01

    The problem of sound decay in a rectangular room is considered for the case of a room with walls the acoustic properties of which are described by the impedance, which implies a dependence of the absorption coefficient on the angle of incidence of sound waves. The ray approximation is used to determine the sound decay laws for different distributions of wall absorption. It is shown that, in a room with impedance walls, the sound decay is slower than in the conventional reverberation model, in which the wall absorption coefficient is independent of the angle of incidence. The problem is also solved in the wave approximation to determine the decay law for a preset frequency band.

  8. Pulsatile and steady-state hemodynamics of the human patella bone by diffuse optical spectroscopy.

    PubMed

    Farzam, Parisa; Zirak, Peyman; Binzoni, Tiziano; Durduran, Turgut

    2013-08-01

    The cardiac cycle related pulsatile behavior of the absorption and scattering coefficients of diffuse light and the corresponding alterations in hemoglobin concentrations in the human patella was studied. The pulsations in scattering is considerably smaller than absorption. The difference in amplitude of absorption coefficient pulsations for different wavelengths was translated to pulsations in oxygenated and deoxygenated hemoglobin, which leads to strong pulsations in the total hemoglobin concentration and oxygen saturation. The physiological origin of the observed signals was confirmed by applying a thigh-cuff. Moreover, we have investigated the optical and physiological properties of the patella bone and their changes in response to arterial cuff occlusion.

  9. Acoustic properties of polymer foam composites blended with different percentage loadings of natural fiber

    NASA Astrophysics Data System (ADS)

    Azahari, M. Shafiq M.; Rus, Anika Zafiah M.; Kormin, Shaharuddin; Taufiq Zaliran, M.

    2017-09-01

    This study investigates the acoustic properties of polymer foam composites (FC) filled with natural fiber. The FC were produced based on crosslinking of polyol, with flexible isocyanates and wood filler. The percentages of wood filler loading are 10, 15, and 20 wt% ratio of polyol. The FC also has a thickness of 10, 20 and 30 mm. The acoustic properties of the FC were determined by using Impedance Tube test, Optical Microscope (OM) and Mettler Toledo Density Kit test. The results revealed that FC20 with 30 mm in thickness gives the highest sound absorption coefficient (α) with 0.970 and 0.999, at low and high frequency respectively. FC20 also shows smallest pores structures size with 134.86 μm and biggest density with 868.5 kg/m3 which helps in absorbing sound. In this study, FC with different percentage loading of wood filler and different foam thickness shows the ability to contribute the absorption coefficient of polymeric foam at different frequency levels. Lastly, this type of FC is suitable for any type of sound absorption applications material.

  10. Acoustic behavior of a rigidly backed poroelastic layer with periodic resonant inclusions by a multiple scattering approach.

    PubMed

    Weisser, Thomas; Groby, Jean-Philippe; Dazel, Olivier; Gaultier, François; Deckers, Elke; Futatsugi, Sideto; Monteiro, Luciana

    2016-02-01

    The acoustic response of a rigidly backed poroelastic layer with a periodic set of elastic cylindrical inclusions embedded is studied. A semi-analytical approach is presented, based on Biot's 1956 theory to account for the deformation of the skeleton, coupling mode matching technique, Bloch wave representation, and multiple scattering theory. This model is validated by comparing the derived absorption coefficients to finite element simulations. Numerical results are further exposed to investigate the influence of the properties of the inclusions (type, material properties, size) of this structure, while a modal analysis is performed to characterize the dynamic behaviors leading to high acoustic absorption. Particularly, in the case of thin viscoelastic membranes, an absorption coefficient larger than 0.8 is observed on a wide frequency band. This property is found to be due to the coupling between the first volume mode of the inclusion and the trapped mode induced by the periodic array and the rigid backing, for a wavelength in the air smaller than 11 times the material thickness.

  11. Photothermal Techniques Used to Evaluate Quality in Dairy Products.

    NASA Astrophysics Data System (ADS)

    López-Romero, E.; Balderas-López, J. A.

    2017-01-01

    Photothermal systems were used to quantify thermal and optical properties of commercial and natural dairy products. Thermal diffusivity and light absorption coefficient were analyzed. It was found that water content easily alters thermal properties in samples of milk. In addition, all samples showed strong light absorptions at 405 nm, 980 nm and 488 nm, evidencing presence of proteins, fat and vitamins (riboflavin), respectively. Therefore, it was shown that thermo-physical properties measured in this work could be used as complementary parameters for quality evaluation of dairy products.

  12. Prediction of sound absorption in rigid porous media with the lattice Boltzmann method

    NASA Astrophysics Data System (ADS)

    da Silva, Andrey Ricardo; Mareze, Paulo; Brandão, Eric

    2016-02-01

    In this work, sound absorption phenomena associated with the viscous shear stress within rigid porous media is investigated with a simple isothermal lattice Boltzmann BGK model. Simulations are conducted for different macroscopic material properties such as sample thickness and porosity and the results are compared with the exact analytical solution for materials with slit-like structure in terms of acoustic impedance and sound absorption coefficient. The numerical results agree very well with the exact solution, particularly for the sound absorption coefficient. The small deviations found in the low frequency limit for the real part of the acoustic impedance are attributed to the ratio between the thicknesses of the slit and the viscous boundary layer. The results suggest that the lattice Boltzmann method can be a very compelling numerical tool for simulating viscous sound absorption phenomena in the time domain, particularly due to its computational simplicity when compared to traditional continuum based techniques.

  13. Aerosol Optical Properties Measured Onboard the Ronald H. Brown During ACE Asia as a Function of Aerosol Chemical Composition and Source Region

    NASA Technical Reports Server (NTRS)

    Quinn, P. K.; Coffman, D. J.; Bates, T. S.; Welton, E. J.; Covert, D. S.; Miller, T. L.; Johnson, J. E.; Maria, S.; Russell, L.; Arimoto, R.

    2004-01-01

    During the ACE Asia intensive field campaign conducted in the spring of 2001 aerosol properties were measured onboard the R/V Ronald H. Brown to study the effects of the Asian aerosol on atmospheric chemistry and climate in downwind regions. Aerosol properties measured in the marine boundary layer included chemical composition; number size distribution; and light scattering, hemispheric backscattering, and absorption coefficients. In addition, optical depth and vertical profiles of aerosol 180 deg backscatter were measured. Aerosol within the ACE Asia study region was found to be a complex mixture resulting from marine, pollution, volcanic, and dust sources. Presented here as a function of air mass source region are the mass fractions of the dominant aerosol chemical components, the fraction of the scattering measured at the surface due to each component, mass scattering efficiencies of the individual components, aerosol scattering and absorption coefficients, single scattering albedo, Angstrom exponents, optical depth, and vertical profiles of aerosol extinction. All results except aerosol optical depth and the vertical profiles of aerosol extinction are reported at a relative humidity of 55 +/- 5%. An over-determined data set was collected so that measured and calculated aerosol properties could be compared, internal consistency in the data set could be assessed, and sources of uncertainty could be identified. By taking into account non-sphericity of the dust aerosol, calculated and measured aerosol mass and scattering coefficients agreed within overall experimental uncertainties. Differences between measured and calculated aerosol absorption coefficients were not within reasonable uncertainty limits, however, and may indicate the inability of Mie theory and the assumption of internally mixed homogeneous spheres to predict absorption by the ACE Asia aerosol. Mass scattering efficiencies of non-sea salt sulfate aerosol, sea salt, submicron particulate organic matter, and dust found for the ACE Asia aerosol are comparable to values estimated for ACE 1, Aerosols99, and INDOEX. Unique to the ACE Asia aerosol was the large mass fractions of dust, the dominance of dust in controlling the aerosol optical properties, and the interaction of dust with soot aerosol.

  14. Optical band gap studies on lithium aluminum silicate glasses doped with Cr3+ ions

    NASA Astrophysics Data System (ADS)

    El-Diasty, Fouad; Abdel Wahab, Fathy A.; Abdel-Baki, Manal

    2006-11-01

    Lithium aluminum silicate glass system (LAS) implanted with chromium ions is prepared. The reflectance and transmittance measurements are used to determine the dispersion of absorption coefficient. The optical data are explained in terms of the different oxidation states adopted by the chromium ions into the glass network. It is found that the oxidation state of the chromium depends on its concentration. Across a wide spectral range, 0.2-1.6μm, analysis of the fundamental absorption edge provides values for the average energy band gaps for allowed direct and indirect transitions. The optical absorption coefficient just below the absorption edge varies exponentially with photon energy indicating the presence of Urbach's tail. Such tail is decreased with the increase of the chromium dopant. From the analysis of the optical absorption data, the absorption peak at ground state exciton energy, the absorption at band gap, and the free exciton binding energy are determined. The extinction coefficient data are used to determine the Fermi energy level of the studied glasses. The metallization criterion is obtained and discussed exploring the nature of the glasses. The measured IR spectra of the different glasses are used to throw some light on the optical properties of the present glasses correlating them with their structure and composition.

  15. Perfect sound insulation property of reclaimed waste tire rubber

    NASA Astrophysics Data System (ADS)

    Ubaidillah, Harjana, Yahya, Iwan; Kristiani, Restu; Muqowi, Eki; Mazlan, Saiful Amri

    2016-03-01

    This article reports an experimental investigation of sound insulation and absorption performance of a materials made of reclaimed ground tire rubber which is known as un-recyclable thermoset. The bulk waste tire is processed using single step recycling methods namely high-pressure high-temperature sintering (HPHTS). The bulk waste tire is simply placed into a mold and then a pressure load of 3 tons and a heating temperature of 200°C are applied to the mold. The HPHTS conducted for an hour and then it is cooled in room temperature. The resulted product is then evaluated the acoustical properties namely sound transmission loss (STL) and sound absorption coefficient using B&K Tube Kit Type 4206-T based on ISO 10534-2, ASTM E1050 and ASTM E2611. The sound absorption coefficient is found about 0.04 until 0.08 while STL value ranges between 50 to 60 dB. The sound absorption values are found to be very low (<0.1), while the average STL is higher than other elastomeric matrix found in previous work. The reclaimed tire rubber through HPHTS technique gives good soundproof characteristic.

  16. Stable phantom materials for ultrasound and optical imaging.

    PubMed

    Cabrelli, Luciana C; Pelissari, Pedro I B G B; Deana, Alessandro M; Carneiro, Antonio A O; Pavan, Theo Z

    2017-01-21

    Phantoms mimicking the specific properties of biological tissues are essential to fully characterize medical devices. Water-based materials are commonly used to manufacture phantoms for ultrasound and optical imaging techniques. However, these materials have disadvantages, such as easy degradation and low temporal stability. In this study, we propose an oil-based new tissue-mimicking material for ultrasound and optical imaging, with the advantage of presenting low temporal degradation. A styrene-ethylene/butylene-styrene (SEBS) copolymer in mineral oil samples was made varying the SEBS concentration between 5%-15%, and low-density polyethylene (LDPE) between 0%-9%. Acoustic properties, such as the speed of sound and the attenuation coefficient, were obtained using frequencies ranging from 1-10 MHz, and were consistent with that of soft tissues. These properties were controlled varying SEBS and LDPE concentration. To characterize the optical properties of the samples, the diffuse reflectance and transmittance were measured. Scattering and absorption coefficients ranging from 400 nm-1200 nm were calculated for each compound. SEBS gels are a translucent material presenting low optical absorption and scattering coefficients in the visible region of the spectrum, but the presence of LDPE increased the turbidity. Adding LDPE increased the absorption and scattering of the phantom materials. Ultrasound and photoacoustic images of a heterogeneous phantom made of LDPE/SEBS containing a spherical inclusion were obtained. Annatto dye was added to the inclusion to enhance the optical absorbance. The results suggest that copolymer gels are promising for ultrasound and optical imaging, making them also potentially useful for photoacoustic imaging.

  17. Stable phantom materials for ultrasound and optical imaging

    NASA Astrophysics Data System (ADS)

    Cabrelli, Luciana C.; Pelissari, Pedro I. B. G. B.; Deana, Alessandro M.; Carneiro, Antonio A. O.; Pavan, Theo Z.

    2017-01-01

    Phantoms mimicking the specific properties of biological tissues are essential to fully characterize medical devices. Water-based materials are commonly used to manufacture phantoms for ultrasound and optical imaging techniques. However, these materials have disadvantages, such as easy degradation and low temporal stability. In this study, we propose an oil-based new tissue-mimicking material for ultrasound and optical imaging, with the advantage of presenting low temporal degradation. A styrene-ethylene/butylene-styrene (SEBS) copolymer in mineral oil samples was made varying the SEBS concentration between 5%-15%, and low-density polyethylene (LDPE) between 0%-9%. Acoustic properties, such as the speed of sound and the attenuation coefficient, were obtained using frequencies ranging from 1-10 MHz, and were consistent with that of soft tissues. These properties were controlled varying SEBS and LDPE concentration. To characterize the optical properties of the samples, the diffuse reflectance and transmittance were measured. Scattering and absorption coefficients ranging from 400 nm-1200 nm were calculated for each compound. SEBS gels are a translucent material presenting low optical absorption and scattering coefficients in the visible region of the spectrum, but the presence of LDPE increased the turbidity. Adding LDPE increased the absorption and scattering of the phantom materials. Ultrasound and photoacoustic images of a heterogeneous phantom made of LDPE/SEBS containing a spherical inclusion were obtained. Annatto dye was added to the inclusion to enhance the optical absorbance. The results suggest that copolymer gels are promising for ultrasound and optical imaging, making them also potentially useful for photoacoustic imaging.

  18. Experimental investigation of sound absorption properties of perforated date palm fibers panel

    NASA Astrophysics Data System (ADS)

    Elwaleed, A. K.; Nikabdullah, N.; Nor, M. J. M.; Tahir, M. F. M.; Zulkifli, R.

    2013-06-01

    This paper presents the sound absorption properties of a natural waste of date palm fiber perforated panel. A single layer of the date palm fibers was tested in this study for its sound absorption properties. The experimental measurements were carried out using impedance tube at the acoustic lab, Faculty of Engineering, Universiti Kebangsaan Malaysia. The experiment was conducted for the panel without air gap, with air gap and with perforated plate facing. Three air gap thicknesses of 10 mm, 20 mm and 30 mm were used between the date palm fiber sample and the rigid backing of the impedance tube. The results showed that when facing the palm date fiber sample with perforated plate the sound absorption coefficient improved at the higher and lower frequency ranges. This increase in sound absorption coincided with reduction in medium frequency absorption. However, this could be improved by using different densities or perforated plate with the date palm fiber panel.

  19. Comparison of different Aethalometer correction schemes and a reference multi-wavelength absorption technique for ambient aerosol data

    NASA Astrophysics Data System (ADS)

    Saturno, Jorge; Pöhlker, Christopher; Massabò, Dario; Brito, Joel; Carbone, Samara; Cheng, Yafang; Chi, Xuguang; Ditas, Florian; Hrabě de Angelis, Isabella; Morán-Zuloaga, Daniel; Pöhlker, Mira L.; Rizzo, Luciana V.; Walter, David; Wang, Qiaoqiao; Artaxo, Paulo; Prati, Paolo; Andreae, Meinrat O.

    2017-08-01

    Deriving absorption coefficients from Aethalometer attenuation data requires different corrections to compensate for artifacts related to filter-loading effects, scattering by filter fibers, and scattering by aerosol particles. In this study, two different correction schemes were applied to seven-wavelength Aethalometer data, using multi-angle absorption photometer (MAAP) data as a reference absorption measurement at 637 nm. The compensation algorithms were compared to five-wavelength offline absorption measurements obtained with a multi-wavelength absorbance analyzer (MWAA), which serves as a multiple-wavelength reference measurement. The online measurements took place in the Amazon rainforest, from the wet-to-dry transition season to the dry season (June-September 2014). The mean absorption coefficient (at 637 nm) during this period was 1.8 ± 2.1 Mm-1, with a maximum of 15.9 Mm-1. Under these conditions, the filter-loading compensation was negligible. One of the correction schemes was found to artificially increase the short-wavelength absorption coefficients. It was found that accounting for the aerosol optical properties in the scattering compensation significantly affects the absorption Ångström exponent (åABS) retrievals. Proper Aethalometer data compensation schemes are crucial to retrieve the correct åABS, which is commonly implemented in brown carbon contribution calculations. Additionally, we found that the wavelength dependence of uncompensated Aethalometer attenuation data significantly correlates with the åABS retrieved from offline MWAA measurements.

  20. Electronic theoretical study of the influences of O adsorption on the electronic structure and optical properties of graphene

    NASA Astrophysics Data System (ADS)

    Shuang, Zhou; Guili, Liu; Dazhi, Fan

    2017-02-01

    The electronic structure and optical properties of adsorbing O atoms on graphene with different O coverage are researched using the density functional theory based upon the first-principle study to obtain further insight into properties of graphene. The adsorption energies, band structures, the density of states, light absorption coefficient and reflectivity of each system are calculated theoretically after optimizing structures of each system with different O coverage. Our calculations show that adsorption of O atoms on graphene increases the bond length of C-C which adjacent to the O atoms. When the O coverage is 9.4%, the adsorption energy (3.91 eV) is the maximum, which only increases about 1.6% higher than that of 3.1% O coverage. We find that adsorbed O atoms on pristine graphene opens up indirect gap of about 0.493-0.952 eV. Adsorbing O atoms make pristine graphene from metal into a semiconductor. When the O coverage is 9.4%, the band gap (0.952 eV) is the maximum. Comparing with pristine graphene, we find the density of states at Fermi level of O atoms adsorbing on graphene with different coverage are significantly increased. We also find that light absorption coefficient and reflectivity peaks are significantly reduced, and the larger the coverage, the smaller the absorption coefficient and reflectivity peaks are. And the blue shift phenomenon appears.

  1. AIP1OGREN: Aerosol Observing Station Intensive Properties Value-Added Product

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Koontz, Annette; Flynn, Connor

    The aip1ogren value-added product (VAP) computes several aerosol intensive properties. It requires as input calibrated, corrected, aerosol extensive properties (scattering and absorption coefficients, primarily) from the Aerosol Observing Station (AOS). Aerosol extensive properties depend on both the nature of the aerosol and the amount of the aerosol. We compute several properties as relationships between the various extensive properties. These intensive properties are independent of aerosol amount and instead relate to intrinsic properties of the aerosol itself. Along with the original extensive properties we report aerosol single-scattering albedo, hemispheric backscatter fraction, asymmetry parameter, and Ångström exponent for scattering and absorption withmore » one-minute averaging. An hourly averaged file is produced from the 1-minute files that includes all extensive and intensive properties as well as submicron scattering and submicron absorption fractions. Finally, in both the minutely and hourly files the aerosol radiative forcing efficiency is provided.« less

  2. Transfer of thermal microwaves in the atmosphere, volume 1

    NASA Technical Reports Server (NTRS)

    Paris, J. F.

    1971-01-01

    The Mie theory is used to determine the absorption and scattering properties of liquid hydrometeors at 27 microwave frequencies from 500 MHz to 60 GHz. Based on the Marshall-Palmer distribution of drop sizes, regression equations are developed for the volume absorption coefficient of rain as a function of its temperature and content of liquid water.

  3. Linear and nonlinear magneto-optical properties of monolayer phosphorene

    NASA Astrophysics Data System (ADS)

    Nguyen, Chuong V.; Ngoc Hieu, Nguyen; Duque, C. A.; Quoc Khoa, Doan; Van Hieu, Nguyen; Van Tung, Luong; Vinh Phuc, Huynh

    2017-01-01

    We theoretically study the magneto-optical properties of monolayer phosphorene under a perpendicular magnetic field. We evaluate linear, third-order nonlinear, and total absorption coefficients and relative refractive index changes as functions of the photon energy and the magnetic field, and show that they are strongly influenced by the magnetic field. The magneto-optical absorption coefficients and relative refractive index changes appear in two different regimes: the microwave to THz and the visible frequency. The amplitude of intra-band transition peaks is larger than that of the inter-band transitions. The resonant peaks are blue-shifted with the magnetic field. Our results demonstrate the potential of monolayer phosphorene as a new two-dimensional material for applications in nano-electronic and optical devices as a promising alternative to graphene.

  4. Design, synthesis and nonlinear optical properties of (E)-1-(4-substituted)-3-(4-hydroxy-3-nitrophenyl) prop-2-en-1-one compounds

    NASA Astrophysics Data System (ADS)

    Saha, Amrita; Shukla, Vijay; Choudhury, Sudip; Jayabalan, J.

    2016-06-01

    A new series of (E)-1-(4-substituted)-3-(4-hydroxy-3-nitrophenyl) prop-2-en-1-one compounds have been synthesized by Claisen-Schmidt condensation reaction. Nonlinear optical characterization were carried out using z-scan technique with nanosecond pulses. These samples are found to exhibit strong nonlinear absorption at 532 nm and the nonlinear absorption coefficient of these samples exponentially increases with the increase of phonon characteristic energy. This relation speaks the role of phonon in the origin of nonlinear absorption in these compounds. The reported dependence of optical nonlinearity of the chalcone derivatives on the phonon characteristic energy will help in designing similar class of new molecules with high nonlinear coefficients.

  5. Infrared reduction, an efficient method to control the non-linear optical property of graphene oxide in femtosecond regime

    NASA Astrophysics Data System (ADS)

    Bhattacharya, S.; Maiti, R.; Saha, S.; Das, A. C.; Mondal, S.; Ray, S. K.; Bhaktha, S. B. N.; Datta, P. K.

    2016-04-01

    Graphene Oxide (GO) has been prepared by modified Hummers method and it has been reduced using an IR bulb (800-2000 nm). Both as grown GO and reduced graphene oxide (RGO) have been characterized using Raman spectroscopy and X-ray photoelectron spectroscopy (XPS). Raman spectra shows well documented Dband and G-band for both the samples while blue shift of G-band confirms chemical functionalization of graphene with different oxygen functional group. The XPS result shows that the as-prepared GO contains 52% of sp2 hybridized carbon due to the C=C bonds and 33% of carbon atoms due to the C-O bonds. As for RGO, increment of the atomic % of the sp2 hybridized carbon atom to 83% and rapid decrease in atomic % of C=O bonds confirm an efficient reduction with infrared radiation. UV-Visible absorption spectrum also confirms increment of conjugation with increased reduction. Non-linear optical properties of both GO and RGO are measured using single beam open aperture Z-Scan technique in femtosecond regime. Intensity dependent nonlinear phenomena are observed. Depending upon the intensity, both saturable absorption and two photon absorption contribute to the non-linearity of both the samples. Saturation dominates at low intensity (~ 127 GW/cm2) while two photon absorption become prominent at higher intensities (from 217 GW/cm2 to 302 GW/cm2). We have calculated the two-photon absorption co-efficient and saturation intensity for both the samples. The value of two photon absorption co-efficient (for GO~ 0.0022-0.0037 cm/GW and for RGO~ 0.0128-0.0143 cm/GW) and the saturation intensity (for GO~57 GW/cm2 and for RGO~ 194GW/cm2) is increased with reduction. Increase in two photon absorption coefficient with increasing intensity can also suggest that there may be multi-photon absorption is taking place.

  6. Optical characterization of pancreatic normal and tumor tissues with double integrating sphere system

    NASA Astrophysics Data System (ADS)

    Kiris, Tugba; Akbulut, Saadet; Kiris, Aysenur; Gucin, Zuhal; Karatepe, Oguzhan; Bölükbasi Ates, Gamze; Tabakoǧlu, Haşim Özgür

    2015-03-01

    In order to develop minimally invasive, fast and precise diagnostic and therapeutic methods in medicine by using optical methods, first step is to examine how the light propagates, scatters and transmitted through medium. So as to find out appropriate wavelengths, it is required to correctly determine the optical properties of tissues. The aim of this study is to measure the optical properties of both cancerous and normal ex-vivo pancreatic tissues. Results will be compared to detect how cancerous and normal tissues respond to different wavelengths. Double-integrating-sphere system and computational technique inverse adding doubling method (IAD) were used in the study. Absorption and reduced scattering coefficients of normal and cancerous pancreatic tissues have been measured within the range of 500-650 nm. Statistical significant differences between cancerous and normal tissues have been obtained at 550 nm and 630 nm for absorption coefficients. On the other hand; there were no statistical difference found for scattering coefficients at any wavelength.

  7. Implementation of an Analytical Raman Scattering Correction for Satellite Ocean-Color Processing

    NASA Technical Reports Server (NTRS)

    McKinna, Lachlan I. W.; Werdell, P. Jeremy; Proctor, Christopher W.

    2016-01-01

    Raman scattering of photons by seawater molecules is an inelastic scattering process. This effect can contribute significantly to the water-leaving radiance signal observed by space-borne ocean-color spectroradiometers. If not accounted for during ocean-color processing, Raman scattering can cause biases in derived inherent optical properties (IOPs). Here we describe a Raman scattering correction (RSC) algorithm that has been integrated within NASA's standard ocean-color processing software. We tested the RSC with NASA's Generalized Inherent Optical Properties algorithm (GIOP). A comparison between derived IOPs and in situ data revealed that the magnitude of the derived backscattering coefficient and the phytoplankton absorption coefficient were reduced when the RSC was applied, whilst the absorption coefficient of colored dissolved and detrital matter remained unchanged. Importantly, our results show that the RSC did not degrade the retrieval skill of the GIOP. In addition, a timeseries study of oligotrophic waters near Bermuda showed that the RSC did not introduce unwanted temporal trends or artifacts into derived IOPs.

  8. Enhanced optical limiting effect in fluorine-functionalized graphene oxide

    NASA Astrophysics Data System (ADS)

    Zhang, Fang; Wang, Zhengping; Wang, Duanliang; Wang, Shenglai; Xu, Xinguang

    2017-09-01

    Nonlinear optical absorption of fluorine-functionalized graphene oxide (F-GO) solution was researched by the open-aperture Z-scan method using 1064 and 532 nm lasers as the excitation sources. The F-GO dispersion exhibited strong optical limiting property and the fitted results demonstrated that the optical limiting behavior was the result of a two-photon absorption process. For F-GO nanosheets, the two-photon absorption coefficients at 1064 nm excitation are 20% larger than the values at 532 nm excitation and four times larger than that of pure GO nanosheets. It indicates that the doping of fluorine can effectively improve the nonlinear optical property of GO especially in infrared waveband, and fluorine-functionalized graphene oxide is an excellent nonlinear absorption material in infrared waveband.

  9. Subbarrier absorption in a stationary superlattice

    NASA Technical Reports Server (NTRS)

    Arutyunyan, G. M.; Nerkararyan, K. V.

    1984-01-01

    The calculation of the interband absorption coefficient was carried out in the classical case, when the frequency of light was assumed to bind two miniband subbarrier states of different bands. The influence of two dimensional Mott excitons on this absorption was studied and a comparison was made with the experiment. All of these considerations were done taking into account the photon wave vector (the phase spatial heterogeneity). The basic traits of the energy spectra of superlattice semiconductors, their kinetic and optical properties, and possible means of electromagnetic wave intensification were examined. By the density matrix method, a theory of electrical and electromagnetic properties of superlattices was suggested.

  10. Reference-free determination of tissue absorption coefficient by modulation transfer function characterization in spatial frequency domain.

    PubMed

    Chen, Weiting; Zhao, Huijuan; Li, Tongxin; Yan, Panpan; Zhao, Kuanxin; Qi, Caixia; Gao, Feng

    2017-08-08

    Spatial frequency domain (SFD) measurement allows rapid and non-contact wide-field imaging of the tissue optical properties, thus has become a potential tool for assessing physiological parameters and therapeutic responses during photodynamic therapy of skin diseases. The conventional SFD measurement requires a reference measurement within the same experimental scenario as that for a test one to calibrate mismatch between the real measurements and the model predictions. Due to the individual physical and geometrical differences among different tissues, organs and patients, an ideal reference measurement might be unavailable in clinical trials. To address this problem, we present a reference-free SFD determination of absorption coefficient that is based on the modulation transfer function (MTF) characterization. Instead of the absolute amplitude that is used in the conventional SFD approaches, we herein employ the MTF to characterize the propagation of the modulated lights in tissues. With such a dimensionless relative quantity, the measurements can be naturally corresponded to the model predictions without calibrating the illumination intensity. By constructing a three-dimensional database that portrays the MTF as a function of the optical properties (both the absorption coefficient μ a and the reduced scattering coefficient [Formula: see text]) and the spatial frequency, a look-up table approach or a least-square curve-fitting method is readily applied to recover the absorption coefficient from a single frequency or multiple frequencies, respectively. Simulation studies have verified the feasibility of the proposed reference-free method and evaluated its accuracy in the absorption recovery. Experimental validations have been performed on homogeneous tissue-mimicking phantoms with μ a ranging from 0.01 to 0.07 mm -1 and [Formula: see text] = 1.0 or 2.0 mm -1 . The results have shown maximum errors of 4.86 and 7% for [Formula: see text] = 1.0 mm -1 and [Formula: see text] = 2.0 mm -1 , respectively. We have also presented quantitative ex vivo imaging of human lung cancer in a subcutaneous xenograft mouse model for further validation, and observed high absorption contrast in the tumor region. The proposed method can be applied to the rapid and accurate determination of the absorption coefficient, and better yet, in a reference-free way. We believe this reference-free strategy will facilitate the clinical translation of the SFD measurement to achieve enhanced intraoperative hemodynamic monitoring and personalized treatment planning in photodynamic therapy.

  11. Thickness dependence of optical properties of amorphous indium oxide thin films deposited by reactive evaporation

    NASA Astrophysics Data System (ADS)

    Uluta, K.; Deer, D.; Skarlatos, Y.

    2006-08-01

    The electrical conductivity and absorption coefficient of amorphous indium oxide thin films, thermally evaporated on glass substrates at room temperature, were evaluated. For direct transitions the variation of the optical band gap with thickness was determined and this variation was supposed to appear due to the variation of localized gap states, whereas the variation of conductivity with thickness was supposed to be due to the variation of carrier concentration. We attribute the variation of absorption coefficient with thickness to the variation of optical band gap energy rather than optical interference.

  12. Vertical Profiles of Light-Absorbing Aerosol: A Combination of In-situ and AERONET Observations during NASA DISCOVER-AQ

    NASA Astrophysics Data System (ADS)

    Ziemba, L. D.; Beyersdorf, A. J.; Chen, G.; Corr, C.; Crumeyrolle, S.; Giles, D. M.; Holben, B. N.; Hudgins, C.; Martin, R.; Moore, R.; Shook, M.; Thornhill, K. L., II; Winstead, E.; Anderson, B. E.

    2014-12-01

    Understanding the vertical profile of atmospheric aerosols plays a vital role in utilizing spaceborne, column-integrated satellite observations. The properties and distribution of light-absorbing aerosol are particularly uncertain despite significant air quality and climate ramifications. Advanced retrieval algorithms are able to derive complex aerosol properties (e.g., wavelength-dependent absorption coefficient and single scattering albedo) from remote-sensing measurements, but quantitative relationships to surface conditions remain a challenge. Highly systematic atmospheric profiling during four unique deployments for the NASA DISCOVER-AQ project (Baltimore, MD, 2011; San Joaquin Valley, CA, 2013; Houston, TX, 2013; Denver, CO, 2014) allow statistical assessment of spatial, temporal, and source-related variability for light-absorbing aerosol properties in these distinct regions. In-situ sampling in conjunction with a dense network of AERONET sensors also allows evaluation of the sensitivity, limitations, and advantages of remote-sensing data products over a wide range of conditions. In-situ aerosol and gas-phase observations were made during DISCOVER-AQ aboard the NASA P-3B aircraft. Aerosol absorption coefficients were measured by a Particle Soot Absorption Photometer (PSAP). Approximately 200 profiles for each of the four deployments were obtained, from the surface (25-300m altitude) to 5 km, and are used to calculate absorption aerosol optical depths (AAODs). These are quantitatively compared to AAOD derived from AERONET Level 1.5 retrievals to 1) explore discrepancies between measurements, 2) quantify the fraction of AAOD that exists directly at the surface and is often missed by airborne sampling, and 3) evaluate the potential for deriving ground-level black carbon (BC) concentrations for air quality prediction. Aerosol size distributions are used to assess absorption contributions from mineral dust, both at the surface and aloft. SP2 (Single Particle Soot Photometer) mixing state and coating thickness analyses will be explored to explain in-situ/AERONET discrepancies, and ground-based absorption coefficient and BC-mass observations will be utilized whenever possible to fully obtain the true absorption vertical profile.

  13. Evaluation of polymer based third order nonlinear integrated optics devices

    NASA Astrophysics Data System (ADS)

    Driessen, A.; Hoekstra, H. J. W. M.; Blom, F. C.; Horst, F.; Krijnen, G. J. M.; van Schoot, J. B. P.; Lambeck, P. V.; Popma, Th. J. A.; Diemeer, M. B.

    1998-01-01

    Nonlinear polymers are promising materials for high speed active integrated optics devices. In this paper we evaluate the perspectives polymer based nonlinear optical devices can offer. Special attention is directed to the materials aspects. In our experimental work we applied mainly Akzo Nobel DANS side-chain polymer that exhibits large second and third order coefficients. This material has been characterized by third harmonic generation, z-scan and pump-probe measurements. In addition, various waveguiding structures have been used to measure the nonlinear absorption (two photon absorption) on a ps time-scale. Finally an integrated optics Mach Zehnder interferometer has been realized and evaluated. It is shown that the DANS side-chain polymer has many of the desired properties: the material is easily processable in high-quality optical waveguiding structures, has low linear absorption and its nonlinearity has a pure electronic origin. More materials research has to be done to arrive at materials with higher nonlinear coefficients to allow switching at moderate light intensity ( < 1 W peak power) and also with lower nonlinear absorption coefficients.

  14. The THz time domain spectra of SrB4O7 crystal

    NASA Astrophysics Data System (ADS)

    Wang, Yali; Hou, Bihui; Wang, Haiyan; Zhao, Guozhong; Shi, Yishi

    2010-11-01

    SrB4O7 (SBO) is a promising nonlinear optical crystal. It has the orthorhombic structure with group classified as Pnm2. The sample for the experiment was cut along the (001) plane and twin polishing with 1.632mm thickness. It exhibits a wider transparency range from UV to far-IR. And its absorption edge lies at 160nm. The forbidden band gap is about 7.76eV. The THz spectra of SBO crystal had been studied from 0.1 to 2.5THz. The THz time domain spectrum of SBO shows the strong resonance characters. In THz experiment, the vertical incident electromagnetic waves radiate the polished side twice along (001) orientation. The crystal turned 90 degrees relative to the first in the vertical direction. There are different optical properties in two directions. We gained the curves of the refractive index and absorption coefficient dependence of frequency in the region of 0.1-2.5THz. The absorption curves shows opposite parabola character. One is upward opening and the largest absorption coefficient is 10cm-1. The other is down opening and the less absorption coefficient is 1cm-1. The refractive index n is stable linear with frequency and it is 3 from 0.4THz to 2.5THz. But the refractive index of two directions shows the opposite tendency from 0.1 to 0.4THz. The reason of the difference is that polarized beam radiates the orthorhombic crystal. The properties of the sample show that it is possible to apply it to laser field.

  15. Investigation of Celestial Solid Analogs

    NASA Technical Reports Server (NTRS)

    Sievers, A. J.

    2003-01-01

    Our far infrared studies of both hydrophobic and hydrophilic aerogel grains have demonstrated that the mm and sub-mm wave absorption produced by the fundamental two level systems (TLS) mechanism represents a more significant contribution for these open grain structures than for bulk amorphous silicate grains. We found that the region with the anomalous temperature dependence of the spectral index due to the TLS excitations can extend in a fluffy material up to 80 per cm, which is well beyond its typical upper limit for bulk glasses. Currently there is no theoretical explanation for this surprising result. The effects of reduced dimensionality on the optical properties of carbonaceous grains have been studied with a systematic investigation of carbon aerogels. This spectroscopic approach has permitted a more reliable determination of the single grain mass normalized absorption coefficient based on the experimentally determined characteristics of the fluffy material rather than on first principles calculations involving the bulk properties of the substance. Our finding is that the electrical connectivity of the material is the main factor affecting its far infrared absorption coefficient. Another one of the main constituents of the interstellar dust, amorphous ice, has been investigated in the mm-wave region both in the high (HDA) and low (LDA) density amorphous phases and as a function of impurities. We found that doping either phase with ionic (LiCl) or molecular (methanol) impurities decreases the difference in the mm-wave absorption coefficient between the HDA and LDA ice phases so that the HDA spectrum can be used as an analog for impure ice absorption in the far infrared spectral region.

  16. Constraining the variability of optical properties in the Santa Barbara Channel, CA: A phytoplankton story

    NASA Astrophysics Data System (ADS)

    Barron, Rebecca Katherine

    The research presented in this dissertation evaluates the direct relationships of phytoplankton community composition and inherent optical properties (IOP); that is, the absorption and scattering of light in the ocean. Phytoplankton community composition affect IOPs in both direct and indirect ways, thus creating challenges for optical measurements of biological and biogeochemical properties in aquatic systems. Studies were performed in the Santa Barbara Channel (SBC), CA where an array of optical and biogeochemical measurements were made. Phytoplankton community structure was characterized by an empirical orthogonal functional analysis (EOF) using phytoplankton accessory pigments. The results showed that phytoplankton community significantly correlated to all IOPs, e.g. phytoplankton specific absorption, detrital absorption, CDOM absorption and particle backscattering coefficients. Furthermore, the EOF analysis was unique in splitting the microphytoplankton size class into separate diatom and dinoflagellate regimes allowing for assessment optical property differences within the same size class, a technique previously not systematically achievable. The phytoplankton functional group dinoflagellates were particularly influential to IOPs in surprising ways. Dinoflagellates showed higher backscattering efficiencies than would be predicted based on Mie theory, and significantly influenced CDOM absorption via direct association with dissolved mycosproine-like amino acid absorption (MAA) peaks in CDOM spectra. A new index was developed in this work to quantify MAA absorption peaks in CDOM spectra, and was named the MAA Index. Prior to this research dissolved MAA absorption in natural waters was never quantified, and CDOM data containing these peaks were often disregarded and discarded from analysis. CDOM dynamics in the SBC were assessed for a 15-year study period, and this work shows that significantly large MAA Index values, e.g. MAA Index > 1, were present in approximately 16% of surface water data. Variability in CDOM spectral shape was quantified using the EOF technique, and regression analysis with EOF outputs showed that CDOM absorption intensity and spectral shape were well correlated dinoflagellate presence. Furthermore, results showed that phytoplankton biomass played a secondary role in relation to CDOM absorption, and that variability in CDOM absorption coefficients were primarily driven by community composition. CDOM quality in the SBC was also assessed using CDOM fluorescence properties via excitation emission matrix spectroscopy (EEMS). The EEMS data was analyzed using a multivariate statistical procedure, again, an EOF analysis, to identify three dominant CDOM source regimes: the surface pelagic regime, deep-water (up to 300 m) regime and kelp forest pelagic regime. This work also found that while CDOM absorption coefficient was strongly influence by which phytoplankton groups were present, DOM quality was characterized more so by the amount of phytoplankton biomass, hence indicating strong microbial component to DOM production. Lastly, with the use of the EEMS data, and characterization of CDOM absorption properties, e.g. spectral slope, S, slope ratio, SR, specific UV-absorbance, SUVA and MAA Index, we found that terrestrial sources of CDOM were very limited in the SBC. Based on this research, mineral particle concentrations that significantly correlated with IOPs were thought to be associated with suspended sediments from shoaling of the continental shelf rather than from stream/river influence. Thus, the SBC is a unique, optically complex ocean system where IOP dynamics, thus remote sensing reflectance, are strongly influenced by shifts in phytoplankton community structure.

  17. Laser-heated thruster

    NASA Technical Reports Server (NTRS)

    Kemp, N. H.; Lewis, P. F.

    1980-01-01

    The development of a computer program for the design of the thrust chamber for a CW laser heated thruster was examined. Hydrodgen was employed as the propellant gas and high temperature absorber. The laser absorption coefficient of the mixture/laser radiation combination is given in temperature and species densities. Radiative and absorptive properties are given to determine radiation from such gas mixtures. A computer code for calculating the axisymmetric channel flow of a gas mixture in chemical equilibrium, and laser energy absorption and convective and radiative heating is described. It is concluded that: (1) small amounts of cesium seed substantially increase the absorption coefficient of hydrogen; (2) cesium is a strong radiator and contributes greatly to radiation of cesium seeded hydrogen; (3) water vapor is a poor absorber; and (4) for 5.3mcm radiation, both H2O/CO and NO/CO seeded hydrogen mixtures are good absorbers.

  18. Handbook of the Properties of Optical Materials

    DTIC Science & Technology

    1984-01-01

    EFFECTIVE MASS - - MOBILITY - - A-2 ARSEWIC SELENIOE (As2 Se3 ) OPTICAL PROPERTIES TRANSMISSION RANGE: 9 - 11n Optical Absorption Coefficient = 0.079...of 55 KRS-5 as a function of wavelength. A-2120 ZINC SELENIOE ZnSe 0 STRUCTURE CRYSTALLINE SYMMETRY = Cubic, 43m LATTICE CONSTANTS (A) = a = 5.667

  19. Influence of sintering time on switching of the femtosecond nonlinear optical properties of CuNb2O6

    NASA Astrophysics Data System (ADS)

    Priyadarshani, N.; Sabari Girisun, T. C.; Venugopal Rao, S.

    2017-04-01

    Transition of mixed phases (monoclinic and orthorhombic) to pure orthorhombic phase was achieved during the synthesis process of CuNb2O6 by varying the sintering time. The suppression of monoclinic phase and dominant formation of orthorhombic CuNb2O6 was confirmed from the XRD and FTIR data analysis. FESEM studies demonstrated that due to increase in sintering time, coarsening process initiated the grain growth and trapping of pores leading to pore-free structures. The nonlinear optical (NLO) properties of mixed and pure copper niobate were studied by the Z-scan technique using near-infrared (800 nm, ∼150 fs, 80 MHz) laser excitation. Mixed phases exhibited saturable absorption and self-defocusing behaviour while pure orthorhombic demonstrated reverse saturable absorption and self-focusing process. The switching of nonlinearity along with increase in NLO coefficient of O-CuNb2O6 was attributed to the decreased metal-oxygen bond length and pore free structure. The increase in nonlinear absorption coefficient with input irradiance suggests the occurrence of effective 3 PA (2 PA followed by ESA) process. The magnitudes of nonlinear absorption coefficient (2.14 × 10-23m3/W2) and nonlinear refractive index (6.0 × 0-17 m2/W) of O-CuNb2O6 were found to be higher than well-known NLO materials. Orthorhombic CuNb2O6 exhibited optical limiting action with low limiting threshold of 38.26 μJ/cm2 and favouring NLO properties suggesting that the material to be an entrant candidate for safety devices against ultrashort pulsed lasers.

  20. Preliminary Investigation of Acoustical Properties of Concrete Containing Oil Palm Shell as an Aggregate Replacement

    NASA Astrophysics Data System (ADS)

    Zanariah, J.; Zaiton, H.; Musli Nizam, Y.; Khairulzan, Y.; Dianah, M.; Nadirah, D.; Hanifi, O. Mohd

    2018-03-01

    Research has been so far focused extensively on mechanical properties of oil palm shell (OPS) concrete but less on sound properties. Thus, the objective of this study is to investigate whether concrete containing OPS can be applied in the field of road noise barrier. The acoustic properties of the samples were determined by using an impedance tube connected to a sound source. The noise reduction coefficient (NRC) and weighted sound absorption coefficient (αw) which is more commonly use in the road traffic noise barrier field were calculated according to BS EN ISO 11654:1997. Compressive strengths of samples were also determined by using compressive test. The results presented that the compressive strength of the OPS composites decreased as increased in w/c wit minimum of 20.44 N/mm2 at 28 days for w/c = 0.6 but still satisfactory for structural use. The sound absorption coefficient demonstrated that they were decreased as the w/c are higher with typical curve of two peaks at 315Hz and 1000Hz. All samples were then can be classified as class E as 0.5< αw < 0.25 and should be classified as L due to favourable deviation higher than 0.25 for 250 Hz.

  1. Nanocellulose based polymer composite for acoustical materials

    NASA Astrophysics Data System (ADS)

    Farid, Mohammad; Purniawan, Agung; Susanti, Diah; Priyono, Slamet; Ardhyananta, Hosta; Rahmasita, Mutia E.

    2018-04-01

    Natural fibers are biodegradable materials that are innovatively and widely used for composite reinforcement in automotive components. Nanocellulose derived from natural fibers oil palm empty bunches have properties that are remarkable for use as a composite reinforcement. However, there have not been many investigations related to the use of nanocellulose-based composites for wideband sound absorption materials. The specimens of nanocellulose-based polyester composite were prepared using a spray method. An impedance tube method was used to measure the sound absorption coefficient of this composite material. To reveal the characteristics of the nanocellulose-based polyester composite material, SEM (scanning electron microscope), TEM (Transmission Electron Microscope), FTIR (Fourier Transform Infra Red), TGA (Thermogravimetric Analysis), and density tests were performed. Sound absorption test results showed the average value of sound absorption coefficient of 0.36 to 0,46 for frequency between 500 and 4000 Hz indicating that this nanocellulose-based polyester composite materials had a tendency to wideband sound absorption materials and potentially used as automotive interior materials.

  2. Re-parameterization of a quasi-analytical algorithm for colored dissolved organic matter dominant inland waters

    NASA Astrophysics Data System (ADS)

    Ogashawara, Igor; Mishra, Deepak R.; Nascimento, Renata F. F.; Alcântara, Enner H.; Kampel, Milton; Stech, Jose L.

    2016-12-01

    Quasi-Analytical Algorithms (QAAs) are based on radiative transfer equations and have been used to derive inherent optical properties (IOPs) from the above surface remote sensing reflectance (Rrs) in aquatic systems in which phytoplankton is the dominant optically active constituents (OACs). However, Colored Dissolved Organic Matter (CDOM) and Non Algal Particles (NAP) can also be dominant OACs in water bodies and till now a QAA has not been parametrized for these aquatic systems. In this study, we compared the performance of three widely used QAAs in two CDOM dominated aquatic systems which were unsuccessful in retrieving the spectral shape of IOPS and produced minimum errors of 350% for the total absorption coefficient (a), 39% for colored dissolved matter absorption coefficient (aCDM) and 7566.33% for phytoplankton absorption coefficient (aphy). We re-parameterized a QAA for CDOM dominated (hereafter QAACDOM) waters which was able to not only achieve the spectral shape of the OACs absorption coefficients but also brought the error magnitude to a reasonable level. The average errors found for the 400-750 nm range were 30.71 and 14.51 for a, 14.89 and 8.95 for aCDM and 25.90 and 29.76 for aphy in Funil and Itumbiara Reservoirs, Brazil respectively. Although QAACDOM showed significant promise for retrieving IOPs in CDOM dominated waters, results indicated further tuning is needed in the estimation of a(λ) and aphy(λ). Successful retrieval of the absorption coefficients by QAACDOM would be very useful in monitoring the spatio-temporal variability of IOPS in CDOM dominated waters.

  3. Measurement of aerosol optical properties by integrating cavity ring-down spectroscopy and nephelometery

    NASA Astrophysics Data System (ADS)

    Tedela, Getachew; Singh, Sujeeta; Fiddler, Marc; Bililign, Solomon

    2013-03-01

    Accurate measurement of optical properties of aerosols is crucial for quantifying the influence of aerosols on climate. Aerosols that scatter and absorb radiation can have a cooling or warming effect depending on the magnitude of the respective scattering and absorption terms. One example is black carbon known for its strong absorption. The reported refractive indices for black carbon particles range from 1.2 +0i to 2.75 +1.44i. Our work attempts to measure extinction coefficient, and scattering coefficient of black carbon particles at different incident beam wavelengths using a cavity ring-down spectrometer and a Nephelometer and compare to Mie theory predictions. We report calibration results using polystyrene latex spheres and preliminary results on using commercial black carbon particles. The work is supported by the Department of Defense grant W911NF-11-1-0188.

  4. Stochastic inversion of ocean color data using the cross-entropy method.

    PubMed

    Salama, Mhd Suhyb; Shen, Fang

    2010-01-18

    Improving the inversion of ocean color data is an ever continuing effort to increase the accuracy of derived inherent optical properties. In this paper we present a stochastic inversion algorithm to derive inherent optical properties from ocean color, ship and space borne data. The inversion algorithm is based on the cross-entropy method where sets of inherent optical properties are generated and converged to the optimal set using iterative process. The algorithm is validated against four data sets: simulated, noisy simulated in-situ measured and satellite match-up data sets. Statistical analysis of validation results is based on model-II regression using five goodness-of-fit indicators; only R2 and root mean square of error (RMSE) are mentioned hereafter. Accurate values of total absorption coefficient are derived with R2 > 0.91 and RMSE, of log transformed data, less than 0.55. Reliable values of the total backscattering coefficient are also obtained with R2 > 0.7 (after removing outliers) and RMSE < 0.37. The developed algorithm has the ability to derive reliable results from noisy data with R2 above 0.96 for the total absorption and above 0.84 for the backscattering coefficients. The algorithm is self contained and easy to implement and modify to derive the variability of chlorophyll-a absorption that may correspond to different phytoplankton species. It gives consistently accurate results and is therefore worth considering for ocean color global products.

  5. Sensitivity of light interaction computer model to the absorption properties of skin

    NASA Astrophysics Data System (ADS)

    Karsten, A. E.; Singh, A.

    2011-06-01

    Light based treatments offer major benefits to patients. Many of the light based treatments or diagnostic techniques need to penetrate the skin to reach the site of interest. Human skin is a highly scattering medium and the melanin in the epidermal layer of the skin is a major absorber of light in the visible and near infrared wavelength bands. The effect of increasing absorption in the epidermis is tested on skin simulating phantoms as well as on a computer model. Changing the absorption coefficient between 0.1 mm-1 and 1.0 mm-1 resulted in a decrease of light reaching 1 mm into the sample. Transmission through a 1 mm thick sample decreased from 48% to 13% and from 31% to 2% for the different scattering coefficients.

  6. Hyperspectral absorption and backscattering coefficients of bulk water retrieved from a combination of remote-sensing reflectance and attenuation coefficient.

    PubMed

    Lin, Junfang; Lee, Zhongping; Ondrusek, Michael; Liu, Xiaohan

    2018-01-22

    Absorption (a) and backscattering (bb) coefficients play a key role in determining the light field; they also serve as the link between remote sensing and concentrations of optically active water constituents. Here we present an updated scheme to derive hyperspectral a and bb with hyperspectral remote-sensing reflectance (Rrs) and diffuse attenuation coefficient (Kd) as the inputs. Results show that the system works very well from clear open oceans to highly turbid inland waters, with an overall difference less than 25% between these retrievals and those from instrument measurements. This updated scheme advocates the measurement and generation of hyperspectral a and bb from hyperspectral Rrs and Kd, as an independent data source for cross-evaluation of in situ measurements of a and bb and for the development and/or evaluation of remote sensing algorithms for such optical properties.

  7. Casting of Halide and Fluoride Alloys for Laser Windows

    DTIC Science & Technology

    1976-02-15

    exhibit at least microplastic behavior at room temper- ature, it might be expected that their fracture strength will follow a Petch relationship...polishing and testing. Only later was it discovered that this particular annealing procedure degraded the optical properties (i. e., 5. 25 pm Pb- sorption ... sorption coefficient of 4. 8 x 10’ c~ii 1 TABLE 3-5 AP PARENT ABSOi. -)N COEFFICIENTS AN~D SCATTERING CF2CASTING HN 1 5.25 pm Absorption Coefficient

  8. Characterization of light absorption by chromophoric dissolved organic matter (CDOM) in the upper layer of the Red Sea

    NASA Astrophysics Data System (ADS)

    Kheireddine, Malika; Ouhssain, Mustapha; Calleja, Maria Ll.; Morán, Xosé Anxelu G.; Sarma, Y. V. B.; Tiwari, Surya P.; Jones, Burton H.

    2018-03-01

    The absorption coefficient of chromophoric dissolved organic matter (CDOM) is a major variable used in developing robust bio-optical models and understanding biogeochemical processes. Over the last decade, the optical properties of CDOM in the open sea have been intensely studied. However, their variations in clear water are poorly documented, particularly in the Red Sea, owing to the absence of in situ measurements. We performed several cruises in the Red Sea to investigate the spatial distribution of the absorption coefficient of CDOM. The spectral absorption coefficients were determined from 400 nm to 740 nm using a WETLabs ac-s hyper-spectral spectrophotometer. In general, we found a latitudinal gradient in the CDOM absorption coefficient at 443 nm (aCDOM(443)) from south to north that is likely influenced by the exchange of water through the strait of Bab-el-Mandeb and the thermohaline circulation of the Red Sea. However, high aCDOM(443) values were observed in the northern Red Sea due to the existence of a sub-mesoscale feature that may induce an increase in phytoplankton production and lead to CDOM production. The aCDOM(443) covaried with the chlorophyll a concentration ([Chl a],) despite a high scatter. Furthermore, the aCDOM(443) for a given [Chl a] concentration was higher than those predicted by global ocean bio-optical models. This study advances our understanding of CDOM concentration in the Red Sea and may help improve the accuracy of the algorithms used to obtain CDOM absorption from ocean color.

  9. Photoacoustic optical properties at UV, VIS, and near IR wavelengths for laboratory generated and winter time ambient urban aerosols

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gyawali, Madhu S.; Arnott, W. Patrick; Zaveri, Rahul A.

    2012-03-08

    We present the laboratory and ambient photoacoustic (PA) measurement of aerosol light absorption coefficients at ultraviolet wavelength (i.e., 355 nm) and compare with measurements at 405, 532, 870, and 1047 nm. Simultaneous measurements of aerosol light scattering coefficients were achieved by the integrating reciprocal nephelometer within the PA's acoustic resonator. Absorption and scattering measurements were carried out for various laboratory generated aerosols, including salt, incense, and kerosene soot to evaluate the instrument calibration and gain insight on the spectral dependence of aerosol light absorption and scattering. Ambient measurements were obtained in Reno, Nevada, between 18 December 2009 and 18 Januarymore » 2010. The measurement period included days with and without strong ground level temperature inversions, corresponding to highly polluted (freshly emitted aerosols) and relatively clean (aged aerosols) conditions. Particulate matter (PM) concentrations were measured and analyzed with other tracers of traffic emissions. The temperature inversion episodes caused very high concentration of PM{sub 2.5} and PM{sub 10} (particulate matter with aerodynamic diameters less than 2.5 {mu}m and 10 {mu}m, respectively) and gaseous pollutants: carbon monoxide (CO), nitric oxide (NO), and nitrogen dioxide (NO{sub 2}). The diurnal change of absorption and scattering coefficients during the polluted (inversion) days increased approximately by a factor of two for all wavelengths compared to the clean days. The spectral variation in aerosol absorption coefficients indicated a significant amount of absorbing aerosol from traffic emissions and residential wood burning. The analysis of single scattering albedo (SSA), Angstrom exponent of absorption (AEA), and Angstrom exponent of scattering (AES) for clean and polluted days provides evidences that the aerosol aging and coating process is suppressed by strong temperature inversion under cloudy conditions. In general, measured UV absorption coefficients were found to be much larger for biomass burning aerosol than for typical ambient aerosols.« less

  10. Photoacoustic Optical Properties at UV, VIS, and near IR Wavelengths for Laboratory Generated and Winter Time Ambient Urban Aerosols

    NASA Technical Reports Server (NTRS)

    Gyawali, M.; Arnott, W. P.; Zaveri, R. A.; Song, C.; Moosmuller, H.; Liu, L.; Mishchenko, M. I.; Chen, L.-W.A.; Green, M. C.; Watson, J. G.; hide

    2012-01-01

    We present the laboratory and ambient photoacoustic (PA) measurement of aerosol light absorption coefficients at ultraviolet wavelength (i.e., 355 nm) and compare with measurements at 405, 532, 870, and 1047 nm. Simultaneous measurements of aerosol light scattering coefficients were achieved by the integrating reciprocal nephelometer within the PA's acoustic resonator. Absorption and scattering measurements were carried out for various laboratory generated aerosols, including salt, incense, and kerosene soot to evaluate the instrument calibration and gain insight on the spectral dependence of aerosol light absorption and scattering. Ambient measurements were obtained in Reno, Nevada, between 18 December 2009 and 18 January 2010. The measurement period included days with and without strong ground level temperature inversions, corresponding to highly polluted (freshly emitted aerosols) and relatively clean (aged aerosols) conditions. Particulate matter (PM) concentrations were measured and analyzed with other tracers of traffic emissions. The temperature inversion episodes caused very high concentration of PM (sub 2.5) and PM( sub 10) (particulate matter with aerodynamic diameters less than 2.5 micrometers and 10 micrometers, respectively) and gaseous pollutants: carbon monoxide (CO), nitric oxide (NO), and nitrogen dioxide (NO2). The diurnal change of absorption and scattering coefficients during the polluted (inversion) days increased approximately by a factor of two for all wavelengths compared to the clean days. The spectral variation in aerosol absorption coefficients indicated a significant amount of absorbing aerosol from traffic emissions and residential wood burning. The analysis of single scattering albedo (SSA), Angstrom exponent of absorption (AEA), and Angstrom exponent of scattering (AES) for clean and polluted days provides evidences that the aerosol aging and coating process is suppressed by strong temperature inversion under cloudy conditions. In general, measured UV absorption coefficients were found to be much larger for biomass burning aerosol than for typical ambient aerosols.

  11. Estimation of biomedical optical properties by simultaneous use of diffuse reflectometry and photothermal radiometry: investigation of light propagation models

    NASA Astrophysics Data System (ADS)

    Fonseca, E. S. R.; de Jesus, M. E. P.

    2007-07-01

    The estimation of optical properties of highly turbid and opaque biological tissue is a difficult task since conventional purely optical methods rapidly loose sensitivity as the mean photon path length decreases. Photothermal methods, such as pulsed or frequency domain photothermal radiometry (FD-PTR), on the other hand, show remarkable sensitivity in experimental conditions that produce very feeble optical signals. Photothermal Radiometry is primarily sensitive to absorption coefficient yielding considerably higher estimation errors on scattering coefficients. Conversely, purely optical methods such as Local Diffuse Reflectance (LDR) depend mainly on the scattering coefficient and yield much better estimates of this parameter. Therefore, at moderate transport albedos, the combination of photothermal and reflectance methods can improve considerably the sensitivity of detection of tissue optical properties. The authors have recently proposed a novel method that combines FD-PTR with LDR, aimed at improving sensitivity on the determination of both optical properties. Signal analysis was performed by global fitting the experimental data to forward models based on Monte-Carlo simulations. Although this approach is accurate, the associated computational burden often limits its use as a forward model. Therefore, the application of analytical models based on the diffusion approximation offers a faster alternative. In this work, we propose the calculation of the diffuse reflectance and the fluence rate profiles under the δ-P I approximation. This approach is known to approximate fluence rate expressions better close to collimated sources and boundaries than the standard diffusion approximation (SDA). We extend this study to the calculation of the diffuse reflectance profiles. The ability of the δ-P I based model to provide good estimates of the absorption, scattering and anisotropy coefficients is tested against Monte-Carlo simulations over a wide range of scattering to absorption ratios. Experimental validation of the proposed method is accomplished by a set of measurements on solid absorbing and scattering phantoms.

  12. Atmospheric aerosols: Their Optical Properties and Effects (supplement)

    NASA Technical Reports Server (NTRS)

    1976-01-01

    A digest of technical papers is presented. Topics include aerosol size distribution from spectral attenuation with scattering measurements; comparison of extinction and backscattering coefficients for measured and analytic stratospheric aerosol size distributions; using hybrid methods to solve problems in radiative transfer and in multiple scattering; blue moon phenomena; absorption refractive index of aerosols in the Denver pollution cloud; a two dimensional stratospheric model of the dispersion of aerosols from the Fuego volcanic eruption; the variation of the aerosol volume to light scattering coefficient; spectrophone in situ measurements of the absorption of visible light by aerosols; a reassessment of the Krakatoa volcanic turbidity, and multiple scattering in the sky radiance.

  13. Some optical properties of KTP, LiIO3, and LiNbO3

    NASA Technical Reports Server (NTRS)

    Gettemy, Donald J.; Harker, William C.; Lindholm, Glenn; Barnes, Norman P.

    1988-01-01

    Measurements of the absorption coefficient for KTP, LiIO3, and LiNbO3 are discussed. The variation of the refractive index with temperature has been measured for KTP and LiIO3. It is necessary to know both the absorption coefficient beta and the variation in the indexes of refraction with temperature change dn/dT to determine the average power limit of a nonlinear interaction. With the dn/dT information, it is also possible to estimate the temperature half width of any nonlinear interaction by calculating the variation of the phase-matching condition with temperature.

  14. Controlling of the optical properties of the solutions of the PTCDI-C8 organic semiconductor

    NASA Astrophysics Data System (ADS)

    Erdoğan, Erman; Gündüz, Bayram

    2016-09-01

    N,N'-Dioctyl-3,4,9,10 perylenedicarboximide (PTCDI-C8) organic semiconductor have vast applications in solar cells, thermoelectric generators, thin film photovoltaics and many other optoelectronic devices. These applications of the materials are based on their spectral and optical properties. The solutions of the PTCDI-C8 for different molarities were prepared and the spectral and optical mesaurements were analyzed. Effects of the molarities on optical properties were investigated. Vibronic structure has been observed based on the absorption bands of PTCDI-C8 semiconductor with seven peaks at 2.292, 2.451, 2.616, 3.212, 3.851, 4.477 and 4.733 eV. The important spectral parameteres such as molar/mass extinction coefficients, absorption coefficient of the PTCDI-C8 molecule were calculated. Optical properties such as angle of incidence/refraction, optical band gap, real and imaginary parts of dielectric constant, loss factor and electrical susceptibility of the the PTCDI-C8 were obtained. Finally, we discussed these parameters for optoelectronic applications and compared with related parameters in literature.

  15. Absorption/Transmission Measurements of PSAP Particle-Laden Filters from the Biomass Burning Observation Project (BBOP) Field Campaign

    PubMed Central

    Presser, Cary; Nazarian, Ashot; Conny, Joseph M.; Chand, Duli; Sedlacek, Arthur; Hubbe, John M.

    2017-01-01

    Absorptivity measurements with a laser-heating approach, referred to as the laser-driven thermal reactor (LDTR), were carried out in the infrared and applied at ambient (laboratory) non-reacting conditions to particle-laden filters from a three-wavelength (visible) particle/soot absorption photometer (PSAP). The particles were obtained during the Biomass Burning Observation Project (BBOP) field campaign. The focus of this study was to determine the particle absorption coefficient from field-campaign filter samples using the LDTR approach, and compare results with other commercially available instrumentation (in this case with the PSAP, which has been compared with numerous other optical techniques). Advantages of the LDTR approach include 1) direct estimation of material absorption from temperature measurements (as opposed to resolving the difference between the measured reflection/scattering and transmission), 2) information on the filter optical properties, and 3) identification of the filter material effects on particle absorption (e.g., leading to particle absorption enhancement or shadowing). For measurements carried out under ambient conditions, the particle absorptivity is obtained with a thermocouple placed flush with the filter back surface and the laser probe beam impinging normal to the filter particle-laden surface. Thus, in principle one can employ a simple experimental arrangement to measure simultaneously both the transmissivity and absorptivity (at different discrete wavelengths) and ascertain the particle absorption coefficient. For this investigation, LDTR measurements were carried out with PSAP filters (pairs with both blank and exposed filters) from eight different days during the campaign, having relatively light but different particle loadings. The observed particles coating the filters were found to be carbonaceous (having broadband absorption characteristics). The LDTR absorption coefficient compared well with results from the PSAP. The analysis was also expanded to account for the filter fiber scattering on particle absorption in assessing particle absorption enhancement and shadowing effects. The results indicated that absorption enhancement effects were significant, and diminished with increased filter particle loading. PMID:28690360

  16. Absorption/Transmission Measurements of PSAP Particle-Laden Filters from the Biomass Burning Observation Project (BBOP) Field Campaign.

    PubMed

    Presser, Cary; Nazarian, Ashot; Conny, Joseph M; Chand, Duli; Sedlacek, Arthur; Hubbe, John M

    2017-01-01

    Absorptivity measurements with a laser-heating approach, referred to as the laser-driven thermal reactor (LDTR), were carried out in the infrared and applied at ambient (laboratory) non-reacting conditions to particle-laden filters from a three-wavelength (visible) particle/soot absorption photometer (PSAP). The particles were obtained during the Biomass Burning Observation Project (BBOP) field campaign. The focus of this study was to determine the particle absorption coefficient from field-campaign filter samples using the LDTR approach, and compare results with other commercially available instrumentation (in this case with the PSAP, which has been compared with numerous other optical techniques). Advantages of the LDTR approach include 1) direct estimation of material absorption from temperature measurements (as opposed to resolving the difference between the measured reflection/scattering and transmission), 2) information on the filter optical properties, and 3) identification of the filter material effects on particle absorption (e.g., leading to particle absorption enhancement or shadowing). For measurements carried out under ambient conditions, the particle absorptivity is obtained with a thermocouple placed flush with the filter back surface and the laser probe beam impinging normal to the filter particle-laden surface. Thus, in principle one can employ a simple experimental arrangement to measure simultaneously both the transmissivity and absorptivity (at different discrete wavelengths) and ascertain the particle absorption coefficient. For this investigation, LDTR measurements were carried out with PSAP filters (pairs with both blank and exposed filters) from eight different days during the campaign, having relatively light but different particle loadings. The observed particles coating the filters were found to be carbonaceous (having broadband absorption characteristics). The LDTR absorption coefficient compared well with results from the PSAP. The analysis was also expanded to account for the filter fiber scattering on particle absorption in assessing particle absorption enhancement and shadowing effects. The results indicated that absorption enhancement effects were significant, and diminished with increased filter particle loading.

  17. Fast calculation of tissue optical properties using MC and the experimental evaluation for diagnosis of cervical cancer

    NASA Astrophysics Data System (ADS)

    Zhang, Shuying; Zhou, Xiaoqing; Qin, Zhuanping; Zhao, Huijuan

    2011-02-01

    This article aims at the development of the fast inverse Monte Carlo (MC) simulation for the reconstruction of optical properties (absorption coefficient μs and scattering coefficient μs) of cylindrical tissue, such as a cervix, from the measurement of near infrared diffuse light on frequency domain. Frequency domain information (amplitude and phase) is extracted from the time domain MC with a modified method. To shorten the computation time in reconstruction of optical properties, efficient and fast forward MC has to be achieved. To do this, firstly, databases of the frequency-domain information under a range of μa and μs were pre-built by combining MC simulation with Lambert-Beer's law. Then, a double polynomial model was adopted to quickly obtain the frequency-domain information in any optical properties. Based on the fast forward MC, the optical properties can be quickly obtained in a nonlinear optimization scheme. Reconstruction resulting from simulated data showed that the developed inverse MC method has the advantages in both the reconstruction accuracy and computation time. The relative errors in reconstruction of the μs and μs are less than +/-6% and +/-12% respectively, while another coefficient (μs or μs) is in a fixed value. When both μs and μs are unknown, the relative errors in reconstruction of the reduced scattering coefficient and absorption coefficient are mainly less than +/-10% in range of 45< μs <80 cm-1 and 0.25< a μ <0.55 cm-1. With the rapid reconstruction strategy developed in this article the computation time for reconstructing one set of the optical properties is less than 0.5 second. Endoscopic measurement on two tubular solid phantoms were also carried out to evaluate the system and the inversion scheme. The results demonstrated that less than 20% relative error can be achieved.

  18. Determination of optical coefficients of biological tissue from a single integrating-sphere

    NASA Astrophysics Data System (ADS)

    Zhang, Lianshun; Shi, Aijuan; Lu, Hongguang

    2012-01-01

    The detection of interactions between light and tissue can be used to characterize the optical properties of the tissue. The development is described of a method that determines optical coefficients of biological tissue from a single optical reflectance spectrum measured with an integrating-sphere. The experimental system incorporated a DH-2000 deuterium tungsten halogen light source, a USB4000-VIS-NIR miniature fiber optic spectrometer and an integrating-sphere. Fat emulsion and ink were used to mimic the scattering and absorbing properties of tissue in the tested sample. The measured optical reflectance spectrums with different scattering and absorbing properties were used to train a back-propagation neural network (BPNN). Then the neural network (BPNN) was used to determine the optical coefficients of biological tissue from a single optical reflectance spectrum measured with an integrating-sphere. Tests on tissue-simulation phantoms showed the relative errors of this technique to be 7% for the reduced scattering coefficient and 15% for the absorption coefficients. The optical properties of human skin were also measured in vivo.

  19. Hydration shell parameters of aqueous alcohols: THz excess absorption and packing density.

    PubMed

    Matvejev, V; Zizi, M; Stiens, J

    2012-12-06

    Solvation in water requires minimizing the perturbations in its hydrogen bonded network. Hence solutes distort water molecular motions in a surrounding domain, forming a molecule-specific hydration shell. The properties of those hydration shells impact the structure and function of the solubilized molecules, both at the single molecule and at higher order levels. The size of the hydration shell and the picoseconds time-scale water dynamics retardation are revealed by terahertz (THz) absorption coefficient measurements. Room-temperature absorption coefficient at f = 0.28 [THz] is measured as a function of alcohol concentration in aqueous methanol, ethanol, 1,2-propanol, and 1-butanol solutions. Highly diluted alcohol measurements and enhanced overall measurement accuracy are achieved with a THz absorption measurement technique of nL-volume liquids in a capillary tube. In the absorption analysis, bulk and interfacial molecular domains of water and alcohol are considered. THz ideal and excess absorption coefficients are defined in accordance with thermodynamics mixing formulations. The parameter extraction method is developed based on a THz excess absorption model and hydrated solute molecule packing density representation. First, the hydration shell size is deduced from the hydrated solute packing densities at two specific THz excess absorption nonlinearity points: at infinite alcohol dilution (IAD) and at the THz excess absorption extremum (EAE). Consequently, interfacial water and alcohol molecular domain absorptions are deduced from the THz excess absorption model. The hydration shell sizes obtained at the THz excess absorption extremum are in excellent agreement with other reports. The hydration shells of methanol, ethanol, 1- and 2-propanol consist of 13.97, 22.94, 22.99, and 31.10 water molecules, respectively. The hydration shell water absorption is on average 0.774 ± 0.028 times the bulk water absorption. The hydration shell parameters might shed light on hydration dynamics of biomolecules.

  20. Estimation of chromophoric dissolved organic matter in the Mississippi and Atchafalaya river plume regions using above-surface hyperspectral remote sensing

    NASA Astrophysics Data System (ADS)

    Zhu, Weining; Yu, Qian; Tian, Yong Q.; Chen, Robert F.; Gardner, G. Bernard

    2011-02-01

    A method for the inversion of hyperspectral remote sensing was developed to determine the absorption coefficient for chromophoric dissolved organic matter (CDOM) in the Mississippi and Atchafalaya river plume regions and the northern Gulf of Mexico, where water types vary from Case 1 to turbid Case 2. Above-surface hyperspectral remote sensing data were measured by a ship-mounted spectroradiometer and then used to estimate CDOM. Simultaneously, water absorption and attenuation coefficients, CDOM and chlorophyll fluorescence, turbidities, and other related water properties were also measured at very high resolution (0.5-2 m) using in situ, underwater, and flow-through (shipboard, pumped) optical sensors. We separate ag, the absorption coefficient a of CDOM, from adg (a of CDOM and nonalgal particles) based on two absorption-backscattering relationships. The first is between ad (a of nonalgal particles) and bbp (total particulate backscattering coefficient), and the second is between ap (a of total particles) and bbp. These two relationships are referred as ad-based and ap-based methods, respectively. Consequently, based on Lee's quasi-analytical algorithm (QAA), we developed the so-called Extended Quasi-Analytical Algorithm (QAA-E) to decompose adg, using both ad-based and ap-based methods. The absorption-backscattering relationships and the QAA-E were tested using synthetic and in situ data from the International Ocean-Colour Coordinating Group (IOCCG) as well as our own field data. The results indicate the ad-based method is relatively better than the ap-based method. The accuracy of CDOM estimation is significantly improved by separating ag from adg (R2 = 0.81 and 0.65 for synthetic and in situ data, respectively). The sensitivities of the newly introduced coefficients were also analyzed to ensure QAA-E is robust.

  1. Seasonal And Regional Differentiation Of Bio-Optical Properties Within The North Polar Atlantic

    NASA Technical Reports Server (NTRS)

    Stramska, Malgorzata; Stramski, Dariusz; Kaczmarek, Slawomir; Allison, David B.; Schwarz, Jill

    2005-01-01

    Using data collected during spring and summer seasons in the north polar Atlantic we examined the variability of the spectral absorption, a(lambda), and backscattering, b(sub b)(lambda), coefficients of surface waters and its relation to phytoplankton pigment concentration and composition. For a given chlorophyll a concentration (TChla), the concentrations of photosynthetic carotenoids (PSC), photoprotective carotenoids (PPC), and total accessory pigments (AP) were consistently lower in spring than in summer. The chlorophyll-specific absorption coefficients of phytoplankton and total particulate matter were also lower in spring, which can be partly attributed to lower proportions of PPC, PSC, and AP in spring. The spring values of the green-to-blue band ratio of the absorption coefficient were higher than the summer ratios. The blue-to-green ratios of backscattering coefficient were also higher in spring. The higher b(sub b) values and lower blue-to-green b(sub b) ratios in summer were likely associated with higher concentrations of detrital particles in summer compared to spring. Because the product of the green-to-blue absorption ratio and the blue-to-green backscattering ratio is a proxy for the blue-to-green ratio of remote-sensing reflectance, we conclude that the performance of ocean color band-ratio algorithms for estimating pigments in the north polar Atlantic is significantly affected by seasonal shifts in the relationships between absorption and TChla as well as between backscattering and TChla. Intriguingly, however, fairly good estimate of the particulate beam attenuation coefficient at 660 nm (potential measure of total particulate matter or particulate organic carbon concentration) can be obtained by applying a single blue-to-green band-ratio algorithm for both spring and summer seasons.

  2. High-temperature thermoelectric properties of the double-perovskite ruthenium oxide (Sr1-xLax)2ErRuO6

    NASA Astrophysics Data System (ADS)

    Takahashi, Ryohei; Okazaki, Ryuji; Yasui, Yukio; Terasaki, Ichiro; Sudayama, Takaaki; Nakao, Hironori; Yamasaki, Yuichi; Okamoto, Jun; Murakami, Youichi; Kitajima, Yoshinori

    2012-10-01

    We have prepared polycrystalline samples of (Sr1-xLax)2ErRuO6 and (Sr1-xLax)2YRuO6, and have measured the resistivity, Seebeck coefficient, thermal conductivity, susceptibility, and x-ray absorption in order to evaluate the electronic states and thermoelectric properties of the doped double-perovskite ruthenates. We have observed a large Seebeck coefficient of -160 μV/K and a low thermal conductivity of 7 mW/cmK for x = 0.1 at 800 K in air. These two values are suitable for efficient oxide thermoelectrics, although the resistivity is still as high as 1 Ω cm. From the susceptibility and x-ray absorption measurements, we find that the doped electrons exist as Ru4+ in the low spin state. On the basis of the measured results, the electronic states and the conduction mechanism are discussed.

  3. Nonlinear optical investigation of the Tris(2‧,2-bipyridyl)iron(II) tetrafluoroborate using z-scan technique

    NASA Astrophysics Data System (ADS)

    Zidan, M. D.; Al-Ktaifani, M. M.; Allahham, A.

    2017-05-01

    Z-scan measurements were performed with a CW diode laser at 635 nm to investigate the nonlinear optical properties of Tris(2‧,2-bipyridyl)iron(II) tetrafluoroborate in ethanol at two concentrations. Theoretical fit was carried out to evaluate the nonlinear absorption coefficient (β) and the negative nonlinear refractive index (n2) for the studied complex. Furthermore, the ground-state absorption cross sections (σg), the excited-state absorption cross sections (σex) and thermo-optic coefficient were also estimated. The investigations show large NLO response, which is predominantly associated with substantial conjugation between the aromatic ring π-electron system and d-electron set metal center. The obtained results give a strong indication that Tris(2‧,2-bipyridyl)iron(II) tetrafluoroborate have a potential application in optical domain.

  4. Absorption degree analysis on biogas separation with ionic liquid systems.

    PubMed

    Zhang, Xin; Zhang, Suojiang; Bao, Di; Huang, Ying; Zhang, Xiangping

    2015-01-01

    For biogas upgrading, present work mainly focuses on either thermodynamics or mass transfer properties. A systematical study on these two aspects is important for developing a new biogas separation process. In this work, a new criterion "absorption degree", which combines both thermodynamics and mass transfer properties, was proposed for the first time to comprehensively evaluate the absorption performance. Henry's law constants of CO2 and CH4 in ionic liquids-polyethylene glycol dimethyl ethers mixtures were investigated. The liquid-side mass transfer coefficients (kL) were determined. The results indicate that IL-NHD mixtures exhibit not only a high CO2/CH4 selectivity, but also a fast kL for CO2 absorption. The [bmim][NO3]+NHD mixtures present a high absorption degree value for CO2 but a low value for CH4. For presenting a highest relative absorption degree value, the 50wt% [bmim][NO3]+50wt% NHD mixture is recommended for biogas upgrading. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Photoacoustic optical properties at UV, VIS, and near IR wavelengths for laboratory generated and winter time ambient urban aerosols

    NASA Astrophysics Data System (ADS)

    Gyawali, M.; Arnott, W. P.; Zaveri, R. A.; Song, C.; Moosmüller, H.; Liu, L.; Mishchenko, M. I.; Chen, L.-W. A.; Green, M. C.; Watson, J. G.; Chow, J. C.

    2011-09-01

    We present the first laboratory and ambient photoacoustic (PA) measurement of aerosol light absorption coefficients at ultraviolet (UV) wavelength (i.e. 355 nm) and compare with measurements at 405, 532, 870, and 1047 nm. Simultaneous measurements of aerosol light scattering coefficients were achieved by the integrating reciprocal nephelometer within the PA';s acoustic resonator. Absorption and scattering measurements were carried out for various laboratory-generated aerosols, including salt, incense, and kerosene soot to evaluate the instrument calibration and gain insight on the spectral dependence of aerosol light absorption and scattering. Exact T-matrix method calculations were used to model the absorption and scattering characteristics of fractal-like agglomerates of different compactness and varying number of monomers. With these calculations, we attempted to estimate the number of monomers and fractal dimension of laboratory generated kerosene soot. Ambient measurements were obtained in Reno, Nevada, between 18 December 2009, and 18 January 2010. The measurement period included days with and without strong ground level temperature inversions, corresponding to highly polluted (freshly emitted aerosols) and relatively clean (aged aerosols) conditions. Particulate matter (PM) concentrations were measured and analyzed with other tracers of traffic emissions. The temperature inversion episodes caused very high concentration of PM2.5 and PM10 (particulate matter with aerodynamic diameters less than 2.5 μm and 10 μm, respectively) and gaseous pollutants: carbon monoxide (CO), nitric oxide (NO), and nitrogen dioxide (NO2). The diurnal change of absorption and scattering coefficients during the polluted (inversion) days increased approximately by a factor of two for all wavelengths compared to the clean days. The spectral variation in aerosol absorption coefficients indicated a significant amount of absorbing aerosol from traffic emissions and residential wood burning. The analysis of single scattering albedo (SSA), Ångström exponent of absorption (AEA), and Ångström exponent of scattering (AES) for clean and polluted days provides evidences that the aerosol aging and coating process is suppressed by strong temperature inversion under cloudy conditions. In general, measured UV absorption coefficients were found to be much larger for biomass burning aerosol than for typical ambient aerosols.

  6. Electrical properties of undoped zinc oxide nanostructures at different annealing temperature

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nasir, M. F., E-mail: babaibaik2002@yahoo.com; Zainol, M. N., E-mail: nizarzainol@yahoo.com; Hannas, M., E-mail: mhannas@gmail.com

    This project has been focused on the electrical and optical properties respectively on the effect of Undoped zinc oxide (ZnO) thin films at different annealing temperature which is varied 400 °C, 450 °C, 500 °C, and 550 °C.Undoped ZnO solutions were deposited onto the glass substrates using sol-gel spin coating method. This project was involved with three phases, which are thin films preparation, deposition and characterization. The thin films were characterized using Current Voltage (I-V) measurement and UV-vis-NIR spectrophotometer for electrical properties and optical properties. The electrical properties show that the resistivity is the lowest at 500 °C which itsmore » resistivity is 5.36 × 10{sup 4} Ωcm{sup −1}. The absorption coefficient spectrum obtained from UV-Vis-NIR spectrophotometer measurement shows all films exhibit very low absorption in the visible (400-800 nm) and near infrared (NIR) (>800 nm) range but exhibit high absorption in the UV range.« less

  7. Absorption Refrigeration Cycles with Ammonia-Ionic Liquid Working Pairs Studied by Molecular Simulation.

    PubMed

    Becker, Tim M; Wang, Meng; Kabra, Abhishek; Jamali, Seyed Hossein; Ramdin, Mahinder; Dubbeldam, David; Infante Ferreira, Carlos A; Vlugt, Thijs J H

    2018-04-18

    For absorption refrigeration, it has been shown that ionic liquids have the potential to replace conventional working pairs. Due to the huge number of possibilities, conducting lab experiments to find the optimal ionic liquid is infeasible. Here, we provide a proof-of-principle study of an alternative computational approach. The required thermodynamic properties, i.e., solubility, heat capacity, and heat of absorption, are determined via molecular simulations. These properties are used in a model of the absorption refrigeration cycle to estimate the circulation ratio and the coefficient of performance. We selected two ionic liquids as absorbents: [emim][Tf 2 N], and [emim][SCN]. As refrigerant NH 3 was chosen due to its favorable operating range. The results are compared to the traditional approach in which parameters of a thermodynamic model are fitted to reproduce experimental data. The work shows that simulations can be used to predict the required thermodynamic properties to estimate the performance of absorption refrigeration cycles. However, high-quality force fields are required to accurately predict the cycle performance.

  8. Absorption Refrigeration Cycles with Ammonia–Ionic Liquid Working Pairs Studied by Molecular Simulation

    PubMed Central

    2018-01-01

    For absorption refrigeration, it has been shown that ionic liquids have the potential to replace conventional working pairs. Due to the huge number of possibilities, conducting lab experiments to find the optimal ionic liquid is infeasible. Here, we provide a proof-of-principle study of an alternative computational approach. The required thermodynamic properties, i.e., solubility, heat capacity, and heat of absorption, are determined via molecular simulations. These properties are used in a model of the absorption refrigeration cycle to estimate the circulation ratio and the coefficient of performance. We selected two ionic liquids as absorbents: [emim][Tf2N], and [emim][SCN]. As refrigerant NH3 was chosen due to its favorable operating range. The results are compared to the traditional approach in which parameters of a thermodynamic model are fitted to reproduce experimental data. The work shows that simulations can be used to predict the required thermodynamic properties to estimate the performance of absorption refrigeration cycles. However, high-quality force fields are required to accurately predict the cycle performance. PMID:29749996

  9. Ellipsometry study of optical parameters of AgIn5S8 crystals

    NASA Astrophysics Data System (ADS)

    Isik, Mehmet; Gasanly, Nizami

    2015-12-01

    AgIn5S8 crystals grown by Bridgman method were characterized for optical properties by ellipsometry measurements. Spectral dependence of optical parameters; real and imaginary parts of the pseudodielectric function, pseudorefractive index, pseudoextinction coefficient, reflectivity and absorption coefficient were obtained from ellipsometry experiments carried out in the 1.2-6.2 eV range. Direct band gap energy of 1.84 eV was found from the analysis of absorption coefficient vs. photon energy. The oscillator energy, dispersion energy and zero-frequency refractive index, high-frequency dielectric constant values were found from the analysis of the experimental data using Wemple-DiDomenico and Spitzer-Fan models. Crystal structure and atomic composition ratio of the constituent elements in the AgIn5S8 crystal were revealed from structural characterization techniques of X-ray diffraction and energy dispersive spectroscopy.

  10. Density, ultrasound velocity, acoustic impedance, reflection and absorption coefficient determination of liquids via multiple reflection method.

    PubMed

    Hoche, S; Hussein, M A; Becker, T

    2015-03-01

    The accuracy of density, reflection coefficient, and acoustic impedance determination via multiple reflection method was validated experimentally. The ternary system water-maltose-ethanol was used to execute a systematic, temperature dependent study over a wide range of densities and viscosities aiming an application as inline sensor in beverage industries. The validation results of the presented method and setup show root mean square errors of: 1.201E-3 g cm(-3) (±0.12%) density, 0.515E-3 (0.15%) reflection coefficient and 1.851E+3 kg s(-1) m(-2) (0.12%) specific acoustic impedance. The results of the diffraction corrected absorption showed an average standard deviation of only 0.12%. It was found that the absorption change shows a good correlation to concentration variations and may be useful for laboratory analysis of sufficiently pure liquids. The main part of the observed errors can be explained by the observed noise, temperature variation and the low signal resolution of 50 MHz. In particular, the poor signal-to-noise ratio of the second reflector echo was found to be a main accuracy limitation. Concerning the investigation of liquids the unstable properties of the reference material PMMA, due to hygroscopicity, were identified to be an additional, unpredictable source of uncertainty. While dimensional changes can be considered by adequate methodology, the impact of the time and temperature dependent water absorption on relevant reference properties like the buffer's sound velocity and density could not be considered and may explain part of the observed deviations. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Calculation of optical properties of dental composites as a basis for determining color impression and penetration depth of laser light

    NASA Astrophysics Data System (ADS)

    Weniger, Kirsten K.; Muller, Gerhard J.

    2005-03-01

    In order to achieve esthetic dental restorations, there should be no visible difference between restorative material and treated teeth. This requires a match of the optical properties of both restorative material and natural teeth. These optical properties are determined by absorption and scattering of light emerging not only on the surface but also inside the material. Investigating different dental composites in several shades, a method has been developed to calculate the optical parameters absorption coefficient μa, scattering coefficient μs, anisotropy factor g and reduced scattering coefficient μs'. The method includes sample preparation and measurements of transmittance and reflectance in an integrating sphere spectrometer, followed by inverse Monte Carlo simulations. Determination of optical properties is more precise and comprehensive than with the previously used Kubelka Munk theory because scattering can be looked at separated into pure scattering with the scattering coefficient μs and its direction with the anisotropy factor g. Moreover the use of the inverse Monte Carlo simulation not only minimizes systematic errors and considers the scattering phase function, but also takes into account the measuring geometry. The compilation of a data pool of optical parameters now enables the application of further calculation models as a basis for optimization of the composition of new materials. For example, a prediction of the general color impression for multiple layers can be carried out as well as the calculation of the wavelength dependent penetration depths of light with regard to photo polymerization. Further applications are possible in the area of laser ablation.

  12. Inherent and apparent optical properties of the complex estuarine waters of Tampa Bay: What controls light?

    NASA Astrophysics Data System (ADS)

    Le, Chengfeng; Hu, Chuanmin; English, David; Cannizzaro, Jennifer; Chen, Zhiqiang; Kovach, Charles; Anastasiou, Christopher J.; Zhao, Jun; Carder, Kendall L.

    2013-01-01

    Inherent and apparent optical properties (IOPs and AOPs) of Tampa Bay (Florida, USA) were measured during fourteen cruises between February 1998 and October 2010 to understand how these properties relate to one another and what controls light absorption and diffuse attenuation in this moderately sized (˜1000 km2), shallow estuary (average depth ˜4 m). The IOPs and AOPs included: 1) absorption coefficients of three optically significant constituents: phytoplankton pigments, detrital particles, and colored dissolved organic matter (CDOM); 2) particulate backscattering coefficients; 3) chlorophyll-a concentrations; 4) above-water remote sensing reflectance; 5) downwelling diffuse attenuation coefficients (Kd) at eight wavelengths and photosynthetically active radiation (PAR). Results showed substantial variability in all IOPs and AOPs in both space and time, with most IOPs spanning more than two orders of magnitude and showing strong co-variations. Of all four bay segments, Old Tampa Bay showed unique optical characteristics. During the wet season, the magnitude of blue-green-light absorption was dominated by CDOM, while during the dry season all three constituents contributed significantly. However, the variability in Kd (PAR, 490 nm, 555 nm) was driven mainly by the variability of detrital particles and phytoplankton as opposed to CDOM. This observation explained, at least to first order, why a nutrient reduction management strategy used by the Tampa Bay Estuary Program since the 1990s led to improved water clarity in most of Tampa Bay. The findings of this study provided the optical basis to fine tune existing or develop new algorithms to estimate the various optical water quality parameters from space.

  13. Investigation of optical limiting properties of Aluminium nanoparticles prepared by pulsed laser ablation in different carrier media

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kuladeep, Rajamudili; Jyothi, L.; Narayana Rao, D.

    In this communication, we carried out the systematic investigation of nonlinear absorption and scattering properties of Aluminium nanoparticles (Al NPs) in various polar and non-polar solvents. Al NPs were synthesized with pulsed Nd:YAG laser operated at 1064 nm by ablating Al target in polar and non-polar liquid environment like chloroform, chlorobenzene, toluene, benzene, and carbon tetrachloride. Synthesized Al NPs colloids of various solvents differ in appearance and UV-Vis extinction spectra exhibit absorption in the UV region. The characterization of Al NPs performed by Transmission electron microscopy (TEM) studies reveal that NPs are made up of a well crystallized Al innermore » part (bright zone) embedded with an amorphous metal Al shell (dark region). Growth, aggregation, and precipitation mechanisms which influence the optical properties and stability of NPs are found to be related to the dipole moment of the surrounding liquid environment. The nonlinear absorption and scattering studies are performed by open aperture Z-scan technique with 532 nm under nanosecond pulse excitation. The Z-scan measurements are fitted theoretically to estimate both two-photon absorption (TPA) and nonlinear scattering (NLS) coefficients. In polar solvents like chlorobenzene, chloroform synthesized Al NPs exhibited higher TPA, NLS coefficient values, and lower optical limiting threshold values in comparison with partially polar solvent like toluene and non-polar solvents like benzene and carbontetrachloride. These results indicate the potential use of Al NPs as a versatile optical limiting material.« less

  14. Nonlinear optical transmittance of semiconductors in the presence of high-intensity radiation fields

    NASA Astrophysics Data System (ADS)

    Dong, H. M.; Han, F. W.; Duan, Y. F.; Huang, F.; Liu, J. L.

    2018-04-01

    We developed a systematic theoretical study of nonlinear optical properties of semiconductors. The eight-band kṡp model and the energy-balance equation are employed to calculate the transmission and optical absorption coefficients in the presence of both the linear one-photon absorption and the nonlinear two-photon absorption (TPA) processes. A substantial reduction of the optical transmittance far below the band-gap can be observed under relatively high-intensity radiation fields due to the nonlinear TPA. The TPA-induced optical transmittance decreases with increasing intensity of the radiation fields. Our theoretical results are in line with those observed experimentally. The theoretical approach can be applied to understand the nonlinear optical properties of semiconductors under high-field conditions.

  15. Spectral properties of ice-particulate mixtures and implications for remote sensing. 1. Intimate mixtures.

    USGS Publications Warehouse

    Clark, R.N.; Lucey, P.G.

    1984-01-01

    The spectral properties of water ice-partitioning mixtures are studied for the purpose of deriving the ice and particulate abundances from remotely obtained spectra (particulates referring to non-icy materials in the form of grains). Reflectance levels and ice absorption band depths are a complex function of the single scattering albedo of the particulates embedded in the ice. The ice absorption band depths are related to the mean optical path length of photons in ice through Beers law, Fresnel reflection from the ice-crystal faces on the surface, and ice absorption coefficient as a function of wavelength. Laboratory spectra of many ice- particulate mixtures are studied with high-, medium-, and low-albedo particulates.-from Authors

  16. Stoichiometric effects on the optical properties of LiInSe(2)

    NASA Technical Reports Server (NTRS)

    Smith, Cecily J.; Lowe, Calvin W.

    1989-01-01

    The diffuse reflectance of LiInSe(2) between 0.67 and 3.54 eV have been measured and the Kubelka-Munk theory was used to obtain the absorption coefficient from the data. The band gap in the samples is located at approximately 1.6 eV. The In and Se content of the samples was determined from atomic absorption measurements. Absorption peaks at 0.890 and 0.896 eV have been observed which are correlated, respectively, to the selenium and indium deficiencies in the samples.

  17. Optical properties of nasal septum cartilage

    NASA Astrophysics Data System (ADS)

    Bagratashvili, Nodar V.; Sviridov, Alexander P.; Sobol, Emil N.; Kitai, Moishe S.

    1998-05-01

    Optical parameters (scattering coefficient s, absorption coefficient k and scattering anisotropy coefficient g) of hyaline cartilage were studied for the first time. Optical properties of human and pig nasal septum cartilage, and of bovine ear cartilage were examined using a spectrophotometer with an integrating sphere, and an Optical Multi-Channel Analyser. We measured total transmission Tt, total reflection Rt, and on-axis transmission Ta for light propagating through cartilage sample, over the visible spectral range (14000 - 28000 cm-1). It is shown that transmission and reflection spectra of human, pig and bovine cartilage are rather similar. It allows us to conclude that the pig cartilage can be used for in-vivo studies instead of human cartilage. The data obtained were treated by means of the one-dimensional diffusion approximation solution of the optical transport equation. We have found scattering coefficient s, absorption coefficient k and scattering anisotropy coefficient g by the iterative comparison of measured and calculated Tt, Rt and Ta values for human and pig cartilage. We found, in particular, that for 500 nm irradiation s equals 37,6 plus or minus 3.5 cm-1, g equals 0,56 plus or minus 0.05, k approximately equals 0,5 plus or minus 0.3 cm-1. The above data were used in Monte Carlo simulation for spatial intensity profile of light scattered by a cartilage sample. The computed profile was very similar to the profile measured using an Optical Multi-Channel Analyzer (OMA).

  18. Numerical indicators of absorption spectra of green leaf extract obtained from plants of different life forms.

    PubMed

    Koldaev, Vladimir M; Manyakhin, Artem Yu

    2018-06-05

    The study was carried out using 58 species of terrestrial plants of different life forms at the start of their fruiting stage. Photoreceptive systems of the leaves were assessed by means of unconventional numerical indicators of absorption spectra, relative photoabsorption coefficient, photosynthetic pigments' integral absorption intensity and relative absorption intensity coefficient. As the study showed, the leaves of all trees and light-demanding grasses favoring open spaces, which were subjected to the study were featured by the lowest values of numerical indicators of absorption spectra (NIAS). Shade-demanding grasses, which grow beneath the canopy, by contrast, were featured by the highest NIAS values. These values of the shrub leaves were in between those of light-demanding plants and shade-demanding ones. The results obtained are consistent with modern visions concerning the biochemistry and the physiology of plants' photoreceptive system. It is appropriate to apply the NIAS, which were used in this study and reflect a leaf's photoreceptive properties, as spectrophotometric criteria for monitoring and environmental management of natural plant resources and agricultural plants. Copyright © 2018 Elsevier B.V. All rights reserved.

  19. A synthesis of light absorption properties of the Pan-Arctic Ocean: application to semi-analytical estimates of dissolved organic carbon concentrations from space

    NASA Astrophysics Data System (ADS)

    Matsuoka, A.; Babin, M.; Doxaran, D.; Hooker, S. B.; Mitchell, B. G.; Bélanger, S.; Bricaud, A.

    2013-11-01

    The light absorption coefficients of particulate and dissolved materials are the main factors determining the light propagation of the visible part of the spectrum and are, thus, important for developing ocean color algorithms. While these absorption properties have recently been documented by a few studies for the Arctic Ocean (e.g., Matsuoka et al., 2007, 2011; Ben Mustapha et al., 2012), the datasets used in the literature were sparse and individually insufficient to draw a general view of the basin-wide spatial and temporal variations in absorption. To achieve such a task, we built a large absorption database at the pan-Arctic scale by pooling the majority of published datasets and merging new datasets. Our results showed that the total non-water absorption coefficients measured in the Eastern Arctic Ocean (EAO; Siberian side) are significantly higher than in the Western Arctic Ocean (WAO; North American side). This higher absorption is explained by higher concentration of colored dissolved organic matter (CDOM) in watersheds on the Siberian side, which contains a large amount of dissolved organic carbon (DOC) compared to waters off North America. In contrast, the relationship between the phytoplankton absorption (aφ(λ)) and chlorophyll a (chl a) concentration in the EAO was not significantly different from that in the WAO. Because our semi-analytical CDOM absorption algorithm is based on chl a-specific aφ(λ) values (Matsuoka et al., 2013), this result indirectly suggests that CDOM absorption can be appropriately derived not only for the WAO but also for the EAO using ocean color data. Derived CDOM absorption values were reasonable compared to in situ measurements. By combining this algorithm with empirical DOC vs. CDOM relationships, a semi-analytical algorithm for estimating DOC concentrations for coastal waters at the Pan-Arctic scale is presented and applied to satellite ocean color data.

  20. A Synthesis of Light Absorption Properties of the Arctic Ocean: Application to Semi-analytical Estimates of Dissolved Organic Carbon Concentrations from Space

    NASA Technical Reports Server (NTRS)

    Matsuoka, A.; Babin, M.; Doxaran, D.; Hooker, S. B.; Mitchell, B. G.; Belanger, S.; Bricaud, A.

    2014-01-01

    The light absorption coefficients of particulate and dissolved materials are the main factors determining the light propagation of the visible part of the spectrum and are, thus, important for developing ocean color algorithms. While these absorption properties have recently been documented by a few studies for the Arctic Ocean [e.g., Matsuoka et al., 2007, 2011; Ben Mustapha et al., 2012], the datasets used in the literature were sparse and individually insufficient to draw a general view of the basin-wide spatial and temporal variations in absorption. To achieve such a task, we built a large absorption database at the pan-Arctic scale by pooling the majority of published datasets and merging new datasets. Our results showed that the total non-water absorption coefficients measured in the Eastern Arctic Ocean (EAO; Siberian side) are significantly higher 74 than in the Western Arctic Ocean (WAO; North American side). This higher absorption is explained 75 by higher concentration of colored dissolved organic matter (CDOM) in watersheds on the Siberian 76 side, which contains a large amount of dissolved organic carbon (DOC) compared to waters off 77 North America. In contrast, the relationship between the phytoplankton absorption (a()) and chlorophyll a (chl a) concentration in the EAO was not significantly different from that in the WAO. Because our semi-analytical CDOM absorption algorithm is based on chl a-specific a() values [Matsuoka et al., 2013], this result indirectly suggests that CDOM absorption can be appropriately erived not only for the WAO but also for the EAO using ocean color data. Derived CDOM absorption values were reasonable compared to in situ measurements. By combining this algorithm with empirical DOC versus CDOM relationships, a semi-analytical algorithm for estimating DOC concentrations for coastal waters at the Pan-Arctic scale is presented and applied to satellite ocean color data.

  1. The optical properties of regenerated silk fibroin films obtained from different sources

    NASA Astrophysics Data System (ADS)

    Perotto, Giovanni; Zhang, Yuji; Naskar, Deboki; Patel, Nereus; Kaplan, David L.; Kundu, Subhas C.; Omenetto, Fiorenzo G.

    2017-09-01

    Silk fibroin possesses unique properties for bio-functional optical interfaces and has been attracting increasing interest as an optical material. Here, we report on the refractive index and absorption coefficient of silk fibroin extracted from Bombyx mori, Antheraea mylitta, Samia ricini, and Antheraea assamensis. The influence of protein molecular weight, residual water content, and crystallinity on refractive index was investigated. The parameters for the Cauchy dispersion law and Urbach absorption were determined for each of the silk fibroins. By exploiting the differences in refractive index between the different fibroins, an all-protein slab waveguide was fabricated.

  2. Measuring of nonlinear properties of spatial light modulator with different wavelengths

    NASA Astrophysics Data System (ADS)

    Khalid, Farah G.; Younis Al-Dabagh, Samar; Ahmed, Sudad S.; Mahmood, Aseel I.; Al-Naimee, Kais

    2018-05-01

    The non-linear optical properties of Spatial Light Modulator(SLM) represented by Nonlinear Refractive Index (NLR) and nonlinear Absorption coefficient has been measured in this work using highly sensitive method known as Z-scan technique for different wavelengths (red and green). The capability to do instant measurements of different nonlinear optical parameters lead to consider these techniques as a one of the most desired and effective methods that could apply for different materials. The results showed that the NLR were in the same power for the different wavelengths while the nonlinear absorption is higher in case of green laser.

  3. Estimation of the absorption coefficients of two-layered media by a simple method using spatially and time-resolved reflectances

    NASA Astrophysics Data System (ADS)

    Shimada, M.; Sato, C.; Hoshi, Y.; Yamada, Y.

    2009-08-01

    Our newly developed method using spatially and time-resolved reflectances can easily estimate the absorption coefficients of each layer in a two-layered medium if the thickness of the upper layer and the reduced scattering coefficients of the two layers are known a priori. We experimentally validated this method using phantoms and examined its possibility of estimating the absorption coefficients of the tissues in human heads. In the case of a homogeneous plastic phantom (polyacetal block), the absorption coefficient estimated by our method agreed well with that obtained by a conventional method. Also, in the case of two-layered phantoms, our method successfully estimated the absorption coefficients of the two layers. Furthermore, the absorption coefficients of the extracerebral and cerebral tissue inside human foreheads were estimated under the assumption that the human heads were two-layered media. It was found that the absorption coefficients of the cerebral tissues were larger than those of the extracerebral tissues.

  4. Spatial and seasonal changes in optical properties of autochthonous and allochthonous chromophoric dissolved organic matter in a stratified mountain lake.

    PubMed

    Bracchini, Luca; Dattilo, Arduino Massimo; Hull, Vincent; Loiselle, Steven Arthur; Nannicini, Luciano; Picchi, Maria Pia; Ricci, Maso; Santinelli, Chiara; Seritti, Alfredo; Tognazzi, Antonio; Rossi, Claudio

    2010-03-01

    In this study, we present results on seasonal and spatial changes in CDOM absorption and fluorescence (fCDOM) in a deep mountain lake (Salto Lake, Italy). A novel approach was used to describe the shape of CDOM absorption between 250-700 nm (distribution of the spectral slope, S(lambda)) and a new fluorescence ratio is used to distinguish between humic and amino acid-like components. Solar ultraviolet irradiance, dissolved organic carbon (DOC), DOM fluorescence and absorption measurements were analysed and compared to other physicochemical parameters. We show that in the UV-exposed mixed layer: (i) fluorescence by autochthonous amino acid-like CDOM, (ii) values of S(lambda) across UV-C and UV-B wavebands increased during the summer months, whereas (i) average molar absorption coefficient and (ii) fluorescence by allochthonous humic CDOM decreased. In the unexposed deep layer of the water column (and in the entire water column in winter), humic-like CDOM presented high values of molar absorption coefficients and low values of S(lambda). UV attenuation coefficients correlated with both chlorophyll a concentrations and CDOM absorption. In agreement with changes in CDOM, minimal values in UV attenuation were found in summer. The S(lambda) curve was used as a signature of the mixture between photobleached and algal-derived CDOM with respect to the unexposed chromophoric dissolved compounds in this thermal stratified lake. Furthermore, S(lambda) curves were useful to distinguish between low and high molecular weight CDOM.

  5. Application of ultrasound-tagged photons for measurement of amplitude of vibration of tissue caused by ultrasound: theory, simulation, and experiments.

    PubMed

    Devi, C Usha; Vasu, R M; Sood, A K

    2006-01-01

    We investigate the modulation of an optical field caused by its interaction with an ultrasound beam in a tissue mimicking phantom. This modulation appears as a modulation in the intensity autocorrelation, which is measured by a photon counting correlator. The factors contributing to the modulation are: 1. amplitude of vibration of the particles of the tissue, 2. refractive index modulation, and 3. absorption coefficient in the region of the tissue intercepted by the ultrasound beam and light. We show in this work that a significant part of the contribution to this modulation comes from displacement of the tissue particles, which in turn is governed by the elastic properties of the tissue. We establish, both through simulations and experiments using an optical elastography phantom, the effects of the elasticity and absorption coefficient variations on the modulation of intensity autocorrelation. In the case where there is no absorption coefficient variation, we suggest that the depth of modulation can be calibrated to measure the displacement of tissue particles that, in turn, can be used to measure the tissue elasticity.

  6. Nonlinear optical properties of TeO2-P2 O5- ZnO-LiNbO3 glass doped with Er3+ ions

    NASA Astrophysics Data System (ADS)

    Miedzinski, R.; Fuks-Janczarek, I.; El Sayed Said, Y.

    2016-10-01

    A series of lithium niobate LiNbO3 (LN) single crystals doped with Er3+ were grown under the same conditions by melt-quenching method. The distribution coefficients of rare-earth (RE) elements in the "crystal-melt" system of LN were determined at the beginning of the crystal growth. Their dependence on the dopant concentration in melt for 0.4 and 0.8 wt % was investigated. The procedure is applied to RE-doped lithium niobate (LiNbO3), a material of great interest for optoelectronic applications. We have obtained the real χR(3) and imaginary parts χI(3) of the third-order, nonlinear optical susceptibility to the nonlinear refractive index n2 and the nonlinear absorption coefficient β that are valid for absorbing systems. We show that nonlinear refractive or absorptive effects are the consequence of the interplay between the real and imaginary parts of the third-order susceptibilities of the materials. The method for measuring non-linear absorption coefficients and nonlinear refractive index based on well-known Z-scan is presented.

  7. Static and dynamic optical properties of La 1-xSr xFeO 3-δ: The effects of A-site and oxygen stoichiometry

    DOE PAGES

    Sergey Y. Smolin; Sfeir, Matthew Y.; Scafetta, Mark D.; ...

    2015-12-09

    Perovskite oxides are a promising material class for photovoltaic and photocatalytic applications due to their visible band gaps, nanosecond recombination lifetimes, and great chemical diversity. However, there is limited understanding of the link between composition and static and dynamic optical properties, despite the critical role these properties play in the design of light-harvesting devices. To clarify these relationships, we systemically studied the optoelectronic properties in La 1-xSr xFeO 3-δ epitaxial films, uncovering the effects of A-site cation substitution and oxygen stoichiometry. Variable-angle spectroscopic ellipsometry was used to measure static optical properties, revealing a linear increase in absorption coefficient at 1.25more » eV and a red-shifting of the optical absorption edge with increasing Sr fraction. The absorption spectra can be similarly tuned through the introduction of oxygen vacancies, indicating the critical role that nominal Fe valence plays in optical absorption. Dynamic optoelectronic properties were studied with ultrafast transient reflectance spectroscopy, revealing similar nanosecond photoexcited carrier lifetimes for oxygen deficient and stoichiometric films with the same nominal Fe valence. Furthermore, these results demonstrate that while the static optical absorption is strongly dependent on nominal Fe valence tuned through cation or anion stoichiometry, oxygen vacancies do not appear to play a significantly detrimental role in the recombination kinetics.« less

  8. A Comparative Study of Structural Stability and Mechanical and Optical Properties of Fluorapatite (Ca5(PO4)3F) and Lithium Disilicate (Li2Si2O5) Components Forming Dental Glass-Ceramics: First Principles Study

    NASA Astrophysics Data System (ADS)

    Biskri, Z. E.; Rached, H.; Bouchear, M.; Rached, D.; Aida, M. S.

    2016-10-01

    The aim of this paper is a comparative study of structural stability and mechanical and optical properties of fluorapatite (FA) (Ca5(PO4)3F) and lithium disilicate (LD) (Li2Si2O5), using the first principles pseudopotential method based on density functional theory (DFT) within the generalized gradient approximation (GGA). The stability of fluorapatite and lithium disilicate compounds has been evaluated on the basis of their formation enthalpies. The results show that fluorapatite is more energetically stable than lithium disilicate. The independent elastic constants and related mechanical properties, including bulk modulus ( B), shear modulus ( G), Young's modulus ( E) and Poisson's ratio ( ν) as well as the Vickers hardness ( H v), have been calculated for fluorapatite compound and compared with other theoretical and experimental results. The obtained values of the shear modulus, Young's modulus and Vickers hardness are smaller in comparison with those of lithium disilicate compound, implying that lithium disilicate is more rigid than fluorapatite. The brittle and ductile properties were also discussed using B/ G ratio and Poisson's ratio. Optical properties such as refractive index n( ω), extinction coefficient k( ω), absorption coefficient α( ω) and optical reflectivity R( ω) have been determined from the calculations of the complex dielectric function ɛ( ω), and interpreted on the basis of the electronic structures of both compounds. The calculated values of static dielectric constant ɛ 1(0) and static refractive index n(0) show that the Li2Si2O5 compound has larger values compared to those of the Ca5(PO4)3F compound. The results of the extinction coefficient show that Li2Si2O5 compound exhibits a much stronger ultraviolet absorption. According to the absorption and reflectivity spectra, we inferred that both compounds are theoretically the best visible and infrared transparent materials.

  9. Modelling the light absorption coefficients of oceanic waters: Implications for underwater optical applications

    NASA Astrophysics Data System (ADS)

    Prabhakaran, Sai Shri; Sahu, Sanjay Kumar; Dev, Pravin Jeba; Shanmugam, Palanisamy

    2018-05-01

    Spectral absorption coefficients of particulate (algal and non-algal components) and dissolved substances are modelled and combined with the pure seawater component to determine the total light absorption coefficients of seawater in the Bay of Bengal. Two parameters namely chlorophyll-a (Chl) concentration and turbidity were measured using commercially available instruments with high sampling rates. For modelling the light absorption coefficients of oceanic waters, the measured data are classified into two broad groups - algal dominant and non-algal particle (NAP) dominant. With these criteria the individual absorption coefficients of phytoplankton and NAP were established based on their concentrations using an iterative method. To account for the spectral dependence of absorption by phytoplankton, the wavelength-dependent coefficients were introduced into the model. The CDOM absorption was determined by subtracting the individual absorption coefficients of phytoplankton and NAP from the measured total absorption data and then related to the Chl concentration. Validity of the model is assessed based on independent in-situ data from certain discrete locations in the Bay of Bengal. The total absorption coefficients estimated using the new model by considering the contributions of algal, non-algal and CDOM have good agreement with the measured total absorption data with the error range of 6.9 to 28.3%. Results obtained by the present model are important for predicting the propagation of the radiant energy within the ocean and interpreting remote sensing observation data.

  10. Studies on absorption coefficient near edge of multi elements

    NASA Astrophysics Data System (ADS)

    Eisa, M. H.; Shen, H.; Yao, H. Y.; Mi, Y.; Zhou, Z. Y.; Hu, T. D.; Xie, Y. N.

    2005-12-01

    X-ray absorption near edge structure (XANES) was used to study the near edge mass-absorption coefficients of seven elements, such as, Ti, V, Fe, Co, Ni, Cu and Zn. It is well known that, on the near edge absorption of element, when incident X-ray a few eV change can make the absorption coefficient an order magnitude alteration. So that, there are only a few points mass-absorption coefficient at the near edge absorption and that always average value in published table. Our results showed a wide range of data, the total measured data of mass-absorption coefficient of the seven elements was about 505. The investigation confirmed that XANES is useful technique for multi-element absorption coefficient measurement. Details of experimental methods and results are given and discussed. The experimental work has been performed at Beijing Synchrotron Radiation Facility. The measured values were compared with the published data. Good agreement between experimental results and published data is obtained.

  11. Structural properties and UV to NIR absorption spectra of metal-free phthalocyanine (H2Pc) thin films P. B. Thakor, P. N. Gajjar and A. R. Jani: Different reference systems in the study of structural properties of some simple liquid metals Shazia Bashir, M. S. Rafique, M. Khaleeq-ur-Rahman, Faizan-ul-Haq and B. R. Alvina: CO2 and Nd:YAG laser radiation induced damage in aluminium Smail Bougouffa: The study of atomic transitions by use of Numerov technique in schematic model

    NASA Astrophysics Data System (ADS)

    El-Nahass, M. M.; Farid, A. M.; Attia, A. A.; Ali, H. A. M.

    The structural properties and absorption spectra of H2Pc thin films have been studied. The films used in these studies were thermally evaporated on glass/quartz substrates with thickness ranging from 60 to 460 nm. The XRD studies of H2Pc thin films showed that the as-deposited films have a-form with monoclinic system. The mean crystallite size (L), the dislocation density (d) and the strain (x) were evaluated. The molecular structure of H2Pc thin films is confirmed by analysis of (FTIR) spectra. The surface morphology of H2Pc thin films was examined by scanning electron microscope. The absorption spectra of H2Pc recorded in the UV - VIS - IR region for the as-deposited and the annealed thin films of different thickness have been analyzed. The spectra showed two absorption bands namely the Q-band and the Soret (B)-band. The Q-band shows its characteristic splitting (Davydove splitting) with DQ = 0.21 eV. Values of some important optical parameters, namely optical absorption coefficient (a¢), molar extinction coefficient (emolar), half-band-width (Dl), electronic dipole strength (q2) and oscillator strength (f) were calculated. The fundamental and the onset of the indirect energy gaps were also determined as 2.47 and 1.4 eV, respectively.

  12. Multi-Wavelength Measurement of Soot Optical Properties: Influence of Non-Absorbing Coatings

    NASA Astrophysics Data System (ADS)

    Freedman, Andrew; Renbaum-Wollf, Lindsay; Forestieri, Sara; Lambe, Andrew; Cappa, Christopher; Davidovits, Paul; Onasch, Timothy

    2015-04-01

    Soot, a product of incomplete combustion, plays an important role in the earth's climate system through the absorption and scattering of solar radiation. Important in quantifying the direct radiative impacts of soot in climate models, and specifically of black carbon (BC), is the assumed BC refractive index and shape-dependent interaction of light with BC particles. The latter assumption carries significant uncertainty because BC particles are fractal-like, being agglomerates of smaller (20-40 nm) spherules, yet many optical models such as Mie theory in particular, typically assume a spherical particle morphology. It remains unclear under what conditions this is an acceptable assumption. To investigate the ability of various optical models to reproduce observed BC optical properties, we obtained measurements of light absorption, scattering and extinction coefficients and thus single scattering albedo (SSA) of size-resolved soot particles. Measurements were made on denuded soot particles produced using both methane and ethylene as fuels. In addition, these soot particles were coated with dioctyl sebacate or sulfuric acid and the enhancement in the apparent mass absorption coefficient determined. Extinction and absorption were measured using a dual cavity ringdown photoacoustic spectrometer (CRD-PAS) at 405 nm and 532 nm. Scattering and extinction were measured using a CAPS PMssa single scattering albedo monitor (Aerodyne) at 630 nm. Soot particle mass was quantified using a centrifugal particle mass analyzer (CPMA, Cambustion), mobility size with a scanning mobility particle sizer (SMPS, TSI) and soot concentration with a CPC (Brechtel). The results will be interpreted in light of both Mie theory which assumes spherical and uniform particles and Rayleigh-Debye-Gans (RDG) theory, which assumes that the absorption properties of soot are dictated by the individual spherules. For denuded soot, effective refractive indices will be determined.

  13. Comparison of eating quality and physicochemical properties between Japanese and Chinese rice cultivars.

    PubMed

    Nakamura, Sumiko; Cui, Jing; Zhang, Xin; Yang, Fan; Xu, Ximing; Sheng, Hua; Ohtsubo, Ken'ichi

    2016-12-01

    In this study, we evaluated 16 Japanese and Chinese rice cultivars in terms of their main chemical components, iodine absorption curve, apparent amylose content (AAC), pasting property, resistant starch content, physical properties, sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis, and enzyme activity. Based on these quality evaluations, we concluded that Chinese rice varieties are characterized by a high protein and the grain texture after cooking has high hardness and low stickiness. In a previous study, we developed a novel formula for estimating AAC based on the iodine absorption curve. The validation test showed a determination coefficient of 0.996 for estimating AAC of Chinese rice cultivars as unknown samples. In the present study, we developed a novel formulae for estimating the balance degree of the surface layer of cooked rice (A3/A1: a ratio of workload of stickiness and hardness) based on the iodine absorption curve obtained using milled rice.

  14. Noninvasive photoacoustic measurement of absorption coefficient using internal light irradiation of cylindrical diffusing fiber

    NASA Astrophysics Data System (ADS)

    Peng, Dong-qing; Zhu, Li-li; Li, Zhi-fang; Li, Hui

    2017-09-01

    Absorption coefficient of biological tissue is an important parameter in biomedicine, but its determination remains a challenge. In this paper, we propose a method using focusing photoacoustic imaging technique and internal light irradiation of cylindrical diffusing fiber (CDF) to quantify the target optical absorption coefficient. Absorption coefficients for ink absorbers are firstly determined through photoacoustic and spectrophotometric measurements at the same excitation, which demonstrates the feasibility of this method. Also, the optical absorption coefficients of ink absorbers with several concentrations are measured. Finally, the two-dimensional scanning photoacoustic image is obtained. Optical absorption coefficient measurement and simultaneous photoacoustic imaging of absorber non-invasively are the typical characteristics of the method. This method can play a significant role for non-invasive determination of blood oxygen saturation, the absorption-based imaging and therapy.

  15. Application of the laser induced deflection (LID) technique for low absorption measurements in bulk materials and coatings

    NASA Astrophysics Data System (ADS)

    Triebel, W.; Mühlig, C.; Kufert, S.

    2005-10-01

    Precise absorption measurements of bulk materials and coatings upon pulsed ArF laser irradiation are presented using a compact experimental setup based on the laser induced deflection technique (LID). For absorption measurements of bulk materials the influence of pure bulk and pure surface absorption on the temperature and refractive index profile and thus for the probe beam deflection is analyzed in detail. The separation of bulk and surface absorption via the commonly used variation of the sample thickness is carried out for fused silica and calcium fluoride. The experimental results show that for the given surface polishing quality the bulk absorption coefficient of fused silica can be obtained by investigating only one sample. To avoid the drawback of different bulk and surface properties amongst a thickness series, we propose a strategy based on the LID technique to generally obtain surface and bulk absorption separately by investigating only one sample. Apart from measuring bulk absorption coefficients the LID technique is applied to determine the absorption of highly reflecting (HR) coatings on CaF2 substrates. Beside the measuring strategy the experimental results of a AlF3/LaF3 based HR coating are presented. In order to investigate a larger variety of coatings, including high transmitting coatings, a general measuring strategy based on the LID technique is proposed.

  16. Solvent influence on the photophysical properties of 4-(2-Oxo-2H-benzo[h]chromen-4-ylmethoxy)-benzaldehyde

    NASA Astrophysics Data System (ADS)

    Pramod, A. G.; Renuka, C. G.; Shivashankar, K.; Boregowda, P.; Nadaf, Y. F.

    2018-05-01

    Steady-state absorption and the fluorescence properties of the synthesized Benzofuran derivatives were studied. Absorption and fluorescence spectra of 4-(2-Oxo-2H-benzo[h]chromen-4-ylm ethoxy)-benzaldehyde (4-OBCM) have been recorded at room temperature in extensive variety of solvents of various polarities. 4-OBCM Fluorescence band maxima of the solvents are small amount spectral shifted to hypsochromic when the solvent polarity will increase, compared to absorption band under the identical circumstance. This suggests an increase in dipole moment of excited state compared to ground state. The ground-state dipole moment of 4-OBCM was found from quantum mechanical methods and the excited state dipole moment of 4-OBCM was evaluated from Lippert-Mataga Bakhshiev's, Kawski-Chamma-Viallet's and Reichardt conditions by methods for solvatochromic shift. Kamlet-Taft coefficients which affect this absorption profiles.

  17. Optical properties of β-BBO and potential for THz applications

    NASA Astrophysics Data System (ADS)

    Nikolaev, N. A.; Andreev, Yu. M.; Antsygin, V. D.; Bekker, T. B.; Ezhov, D. M.; Kokh, A. E.; Kokh, K. A.; Lanskii, G. V.; Mamrashev, A. A.; Svetlichnyi, V. A.

    2018-01-01

    The anisotropy of optical properties of high quality beta barium borate crystal (β-BaB2O4, β-BBO) was studied in the main transparency window by using classic spectroscopic methods and in the range of 0.2 - 2 THz by using THz time-domain spectroscopy. β-BBO crystals were grown by the top-seeded solution technique in a highly resistive furnace with a heat field of 3-fold axis symmetry. At room temperature (RT), absorption coefficient in the maximal transparency window in grown crystals did not exceed 0.05 cm-1. Strong absorption anisotropy was observed in 3 - 5 μm and the THz range. At 1 THz absorption coefficients for e and o wave were, respectively, 7 cm-1 and 21 cm-1 at RT; 2 cm-1 and 10 cm-1 at 81 K. At the most attractive for out-of-door applications range < 0.4 THz the absorption coefficient is found to be very low: below 0.2 cm-1 at RT and 1 cm-1 at 81 K. Refractive indices dispersions measured by THz-TDS were approximated in the form of Sellmeier equations. Birefringence is found quite large for phase matched difference frequency generation (DFG) or down-conversion into the THz range (THz-DFG) under near IR pump at RT and 81 K. Type II (oe-o and eo-o), and type I (ee-e) three wave interactions can be realized at RT. THz-DFG of Nd:YAG laser and KTP OPO can be realized by type II (oe-o) three-wave interaction. For selected spectral ranges of femtosecond Ti:Sapphire laser efficient phase matched and group velocity matched optical rectification can be realized by another two types of three wave interactions. Accounting other well-known attractive physical properties of β-BBO crystal, wide application in THz technique can be forecasted.

  18. Investigating cloud absorption effects: Global absorption properties of black carbon, tar balls, and soil dust in clouds and aerosols

    NASA Astrophysics Data System (ADS)

    Jacobson, Mark Z.

    2012-03-01

    This study examines modeled properties of black carbon (BC), tar ball (TB), and soil dust (SD) absorption within clouds and aerosols to understand better Cloud Absorption Effects I and II, which are defined as the effects on cloud heating of absorbing inclusions in hydrometeor particles and of absorbing aerosol particles interstitially between hydrometeor particles at their actual relative humidity (RH), respectively. The globally and annually averaged modeled 550 nm aerosol mass absorption coefficient (AMAC) of externally mixed BC was 6.72 (6.3-7.3) m2/g, within the laboratory range (6.3-8.7 m2/g). The global AMAC of internally mixed (IM) BC was 16.2 (13.9-18.2) m2/g, less than the measured maximum at 100% RH (23 m2/g). The resulting AMAC amplification factor due to internal mixing was 2.41 (2-2.9), with highest values in high RH regions. The global 650 nm hydrometeor mass absorption coefficient (HMAC) due to BC inclusions was 17.7 (10.6-19) m2/g, ˜9.3% higher than that of the IM-AMAC. The 650 nm HMACs of TBs and SD were half and 1/190th, respectively, that of BC. Modeled aerosol absorption optical depths were consistent with data. In column tests, BC inclusions in low and mid clouds (CAE I) gave column-integrated BC heating rates ˜200% and 235%, respectively, those of interstitial BC at the actual cloud RH (CAE II), which itself gave heating rates ˜120% and ˜130%, respectively, those of interstitial BC at the clear-sky RH. Globally, cloud optical depth increased then decreased with increasing aerosol optical depth, consistent with boomerang curves from satellite studies. Thus, CAEs, which are largely ignored, heat clouds significantly.

  19. Effects of compression on human skin optical properties

    NASA Astrophysics Data System (ADS)

    Chan, Eric K.; Sorg, Brian S.; Protsenko, Dmitry E.; O'Neil, Michael P.; Motamedi, Massoud; Welch, Ashley J.

    1997-08-01

    Tissue optical properties are necessary parameters for prescribing light dosimetry in photomedicine. In many diagnostic or therapeutic applications where optical fiber probes are used, pressure is often applied to the tissue to reduce index mismatch and increase light transmittance. In this study, we have measured in vitro optical properties as a function of pressure with a visible-IR spectrophotometer. A spectral range of 400 - 1800 nm with a spectral resolution of 5 nm was used for all measurements. Skin specimens of two Hispanic donors and three caucasian donors were obtained from the tissue bank. Each specimen, sandwiched between microscope slides, was compressed by a spring-loaded apparatus. Then diffuse reflectance and transmittance of each sample were measured at no load and at approximately 0.1 and 1 kgf/cm2. Under compression, tissue thicknesses were reduced up to 78%. Generally, reflectance decreased while the overall transmittance increased under compression. The absorption and reduced scattering coefficients were calculated using the inverse adding doubling method. Compared with the no-load controls, there was an increase in the absorption and scattering coefficients among most of the compressed specimens.

  20. A COMPARISON OF IN SITU AND MODELLED ESTIMATES OF SELECTED APPARENT OPTICAL PROPERTIES IN RESPONSE TO CHL A AND CDOM VARIABILITY IN THE COASTAL WATERS OF SOUTHERN NEW ENGLAND DURING SUMMER 1999

    EPA Science Inventory

    Chlorophyll a concentrations, colored dissolved organic matter (CDOM) absorption coefficients, and selected apparent optical properties (AOPs) of waters along the Western Passage of Narragansett Bay and adjoining Rhode Island Sound were determined from May -August 1999. Water sam...

  1. Temperature dependence of terahertz optical properties of LBO and perspectives of applications in down-converters

    NASA Astrophysics Data System (ADS)

    Nikolaev, N. A.; Andreev, Yu. M.; Kononova, N. G.; Lanskii, G. V.; Mamrashev, A. A.; Antsygin, V. D.; Kokh, K. A.; Kokh, A. E.

    2018-01-01

    Lithium triborate LiB3O5 (LBO) crystals are widely used for frequency conversion of the near-IR lasers within main transparency windows. Their optical properties at these wavelengths are well studied. However, very little work has been published on the properties in the terahertz (THz) range. There was a lack of data on the refractive indices, the absorption coefficients spectra and their temperature dispersions. There are no reports of THz applications. Present work reveals all these topics including the prospects for use LBO crystals as down-converters of the near-IR lasers radiation. Optically finished samples of flux-grown LBO crystals were studied by THz-TDS. The refractive index dispersions were recorded and then approximated in the form of Sellmeier equations for the temperatures of 300 and 81 K. The phase-matching curves for the IR-THz and THz-THz frequency conversions were calculated. It was found that the absorption coefficients of LBO decrease significantly with cooling to cryogenic temperatures, but the overall character of optical properties changes is intricated. Experimental results are discussed in detail considering potential characteristics of THz down-converters.

  2. Three-dimensional surface profile intensity correction for spatially modulated imaging

    NASA Astrophysics Data System (ADS)

    Gioux, Sylvain; Mazhar, Amaan; Cuccia, David J.; Durkin, Anthony J.; Tromberg, Bruce J.; Frangioni, John V.

    2009-05-01

    We describe a noncontact profile correction technique for quantitative, wide-field optical measurement of tissue absorption (μa) and reduced scattering (μs') coefficients, based on geometric correction of the sample's Lambertian (diffuse) reflectance intensity. Because the projection of structured light onto an object is the basis for both phase-shifting profilometry and modulated imaging, we were able to develop a single instrument capable of performing both techniques. In so doing, the surface of the three-dimensional object could be acquired and used to extract the object's optical properties. The optical properties of flat polydimethylsiloxane (silicone) phantoms with homogenous tissue-like optical properties were extracted, with and without profilometry correction, after vertical translation and tilting of the phantoms at various angles. Objects having a complex shape, including a hemispheric silicone phantom and human fingers, were acquired and similarly processed, with vascular constriction of a finger being readily detectable through changes in its optical properties. Using profilometry correction, the accuracy of extracted absorption and reduced scattering coefficients improved from two- to ten-fold for surfaces having height variations as much as 3 cm and tilt angles as high as 40 deg. These data lay the foundation for employing structured light for quantitative imaging during surgery.

  3. Properties of the water column and bottom derived from Airborne Visible Infrared Imaging Spectrometer (AVIRIS) data

    NASA Astrophysics Data System (ADS)

    Lee, Zhongping; Carder, Kendall L.; Chen, Robert F.; Peacock, Thomas G.

    2001-06-01

    Using Airborne Visible Infrared Imaging Spectrometer (AVIRIS) data as an example, we show in this study that the properties of the water column and bottom of a large, shallow area can be adequately retrieved using a model-driven optimization technique. The simultaneously derived properties include bottom depth, bottom albedo, and water absorption and backscattering coefficients, which in turn could be used to derive concentrations of chlorophyll, dissolved organic matter, and suspended sediments in the water column. The derived bottom depths were compared with a bathymetry chart and a boat survey and were found to agree very well. Also, the derived bottom albedo image shows clear spatial patterns, with end-members consistent with sand and seagrass. The image of absorption and backscattering coefficients indicates that the water is quite horizontally mixed. Without bottom corrections, chlorophyll a retrievals were ˜50 mg m-3, while the retrievals after bottom corrections were tenfold less, approximating real values. These results suggest that the model and approach used work very well for the retrieval of subsurface properties of shallow-water environments even for rather turbid environments like Tampa Bay, Florida.

  4. Effect of 50MeV Li{sup 3+} ion irradiation on structural, optical and electrical properties of amorphous Se{sub 95}Zn{sub 5} thin films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ahmad, Shabir, E-mail: shaphyjmi@gmail.com; Sethi, Riti; Nasir, Mohd

    2015-08-28

    Present work focuses on the effect of swift heavy ion (SHI) irradiation of 50MeV Li{sup 3+} ions by varying the fluencies in the range of 1×10{sup 12} to 5×10{sup 13} ions/cm{sup 2} on the morphological, structural, optical and electrical properties of amorphous Se{sub 95}Zn{sub 5} thin films. Thin films of ~250nm thickness were deposited on cleaned glass substrates by thermal evaporation technique. X-ray diffraction (XRD) analysis shows the pristine thin film of Se{sub 95}Zn{sub 5} growsin hexagonal phase structure. Also it was found that the small peak observed in XRD spectra vanishes after SHI irradiation indicates the defects of themore » material increases. The optical parameters: absorption coefficient (α), extinction coefficient (K), refractive index (n) optical band gap (E{sub g}) and Urbach’s energy (E{sub U}) are determined from optical absorption spectra data measured from spectrophotometry in the wavelength range 200-1000nm. It was found that the values of absorption coefficient, refractive index and extinction coefficient increases while the value optical band gap decreases with the increase of ion fluence. This post irradiation change in the optical parameters was interpreted in terms of bond distribution model. Electrical properties such as dc conductivity and temperature dependent photoconductivity of investigated thin films were carried out in the temperature range 309-370 K. Analysis of data shows activation energy of dark current is greater as compared to activation energy photocurrent. The value of activation energy decreases with the increase of ion fluence indicates that the defect density of states increases.Also it was found that the value of dc conductivity and photoconductivity increases with the increase of ion fluence.« less

  5. Design and characterization of a phantom that simultaneously simulates tissue optical properties between 400 and 650 nm

    NASA Astrophysics Data System (ADS)

    Wagnieres, Georges A.; Cheng, Shangguan; Zellweger, Matthieu; Doegnitz-Utke, Nora; Braichotte, Daniel; Ballini, Jean-Pierre; van den Bergh, Hubert

    1996-12-01

    The design and characterization of optical phantoms which have the same absorption and scattering characteristics as biological tissues in a broad spectral window (between 400 and 650 nm) are presented. These low cost phantoms use agarose dissolved in water as the transparent matrix. The latter is loaded with various amounts of silicon dioxide, intralipid, ink, bovine serum, blood, azide, penicillin and fluorochromes. The silicon dioxide and intralipid particles are responsible for the light scattering whereas the ink and blood are the absorbers. The penicillin and the azide are used to insure the conservation of such phantoms when stored at 4 degrees Celsius. The serum and fluorochromes, such as Coumarin 30, produce an autofluorescence similar to human tissues. Various fluorochromes or photosensitizers can be added to these phantoms to simulate a photodetection procedure. The absorption and fluorescence spectroscopy of the dyes tested was not different in these phantoms than in live tissues. The mechanical properties of these gelatinous phantoms are also of interest as they can easily be molded and reshaped with a conventional cutter, so that for instance layered structures, with different optical properties in each layer, can be designed. The optical properties of these phantoms were determined between 400 and 650 nm by measuring their effective attenuation coefficient ((mu) eff) and total reflectance (Rd). The microscopic absorption and reduced scattering coefficients ((mu) a, (mu) s') were deduced from (mu) eff and Rd using a Monte-Carlo simulation.

  6. Properties of air-aluminum thermal plasmas

    NASA Astrophysics Data System (ADS)

    Cressault, Y.; Gleizes, A.; Riquel, G.

    2012-07-01

    We present the calculation and the main results of the properties of air-aluminum thermal plasmas, useful for complete modelling of arc systems involving aluminum contacts. The properties are calculated assuming thermal equilibrium and correspond to the equilibrium composition, thermodynamic functions, transport coefficients including diffusion coefficients and net emission coefficient representing the divergence of the radiative flux in the hottest plasma regions. The calculation is developed in the temperature range between 2000 and 30 000 K, for a pressure range from 0.1 to 1 bar and for several metal mass proportions. As in the case of other metals, the presence of aluminum vapours has a strong influence on three properties at intermediate temperatures: the electron number density, the electrical conductivity and the net emission coefficient. Some comparisons with other metal vapour (Cu, Fe and Ag) properties are made and show the original behaviour for Al-containing mixtures: mass density at high temperatures is low due to the low Al atomic mass; high electrical conductivity at T < 10 000 K due to low ionization potential (around 2 V less for Al than for the other metals); very strong self-absorption of ionized aluminum lines, leading to a net emission coefficient lower than that of pure air when T > 10 000 K, in contrast to copper or iron radiation.

  7. Light-harvesting organic photoinitiators of polymerization.

    PubMed

    Lalevée, Jacques; Tehfe, Mohamad-Ali; Dumur, Frédéric; Gigmes, Didier; Graff, Bernadette; Morlet-Savary, Fabrice; Fouassier, Jean-Pierre

    2013-02-12

    Two new photoinitiators with unprecedented light absorption properties are proposed on the basis of a suitable truxene skeleton where several UV photoinitiators PI units such as benzophenone and thioxanthone are introduced at the periphery and whose molecular orbitals MO can be coupled with those of the PI units: a red-shifted absorption and a strong increase of the molecular extinction coefficients (by a ≈ 20-1000 fold factor) are found. These compounds are highly efficient light-harvesting photoinitiators. The scope and practicality of these photoinitiators of polymerization can be dramatically expanded, that is, both radical and cationic polymerization processes are accessible upon very soft irradiation conditions (halogen lamp, LED…︁) thanks to the unique light absorption properties of the new proposed structures. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Effects of Perforation on Rigid PU Foam Plates: Acoustic and Mechanical Properties

    PubMed Central

    Lin, Jia-Horng; Chuang, Yu-Chun; Li, Ting-Ting; Huang, Chen-Hung; Huang, Chien-Lin; Chen, Yueh-Sheng; Lou, Ching-Wen

    2016-01-01

    Factories today are equipped with diverse mechanical equipment in response to rapid technological and industrial developments. Industrial areas located near residential neighborhoods cause massive environmental problems. In particular, noise pollution results in physical and psychological discomfort, and is a seen as invisible and inevitable problem. Thus, noise reduction is a critical and urgent matter. In this study, rigid polyurethane (PU) foam plates undergo perforation using a tapping machine. The mechanical and acoustic properties of these perforated plates as related to perforation rate and perforation depth are evaluated in terms of compression strength, drop-weight impact strength, and sound absorption coefficient. Experimental results indicate that applying the perforation process endows the rigid PU foaming plates with greater load absorption and better sound absorption at medium and high frequencies. PMID:28774119

  9. Effects of Perforation on Rigid PU Foam Plates: Acoustic and Mechanical Properties.

    PubMed

    Lin, Jia-Horng; Chuang, Yu-Chun; Li, Ting-Ting; Huang, Chen-Hung; Huang, Chien-Lin; Chen, Yueh-Sheng; Lou, Ching-Wen

    2016-12-09

    Factories today are equipped with diverse mechanical equipment in response to rapid technological and industrial developments. Industrial areas located near residential neighborhoods cause massive environmental problems. In particular, noise pollution results in physical and psychological discomfort, and is a seen as invisible and inevitable problem. Thus, noise reduction is a critical and urgent matter. In this study, rigid polyurethane (PU) foam plates undergo perforation using a tapping machine. The mechanical and acoustic properties of these perforated plates as related to perforation rate and perforation depth are evaluated in terms of compression strength, drop-weight impact strength, and sound absorption coefficient. Experimental results indicate that applying the perforation process endows the rigid PU foaming plates with greater load absorption and better sound absorption at medium and high frequencies.

  10. Temporal and vertical variability in optical properties of New England shelf waters during late summer and spring

    NASA Astrophysics Data System (ADS)

    Sosik, Heidi M.; Green, Rebecca E.; Pegau, W. Scott; Roesler, Collin S.

    2001-05-01

    Relationships between optical and physical properties were examined on the basis of intensive sampling at a site on the New England continental shelf during late summer 1996 and spring 1997. During both seasons, particles were found to be the primary source of temporal and vertical variability in optical properties since light absorption by dissolved material, though significant in magnitude, was relatively constant. Within the particle pool, changes in phytoplankton were responsible for much of the observed optical variability. Physical processes associated with characteristic seasonal patterns in stratification and mixing contributed to optical variability mostly through effects on phytoplankton. An exception to this generalization occurred during summer as the passage of a hurricane led to a breakdown in stratification and substantial resuspension of nonphytoplankton particulate material. Prior to the hurricane, conditions in summer were highly stratified with subsurface maxima in absorption and scattering coefficients. In spring, stratification was much weaker but increased over the sampling period, and a modest phytoplankton bloom caused surface layer maxima in absorption and scattering coefficients. These seasonal differences in the vertical distribution of inherent optical properties were evident in surface reflectance spectra, which were elevated and shifted toward blue wavelengths in the summer. Some seasonal differences in optical properties, including reflectance spectra, suggest that a significant shift toward a smaller particle size distribution occurred in summer. Shorter timescale optical variability was consistent with a variety of influences including episodic events such as the hurricane, physical processes associated with shelfbreak frontal dynamics, biological processes such as phytoplankton growth, and horizontal patchiness combined with water mass advection.

  11. Laser Ablation of Poly(methylmethacrylate) Doped with Aromatic Compounds: Laser Intensity Dependence of Absorption Coefficient

    NASA Astrophysics Data System (ADS)

    Wang, Jun; Niino, Hiroyuki; Yabe, Akira

    1999-02-01

    We developed a novel method of obtaining an absorption coefficient which depends on the laser intensity, since a single-photon absorption coefficient of a polymer could not be applied to laser ablation. The relationship between the nonlinear absorption coefficient and the laser intensity was derived from experimental data of transmission and incident laser intensities. Using the nonlinear absorption coefficient of poly(methylmethacrylate) doped with benzil and pyrene, we succeeded in fitting the relationship of etch depth and laser intensity, obtained experimentally, and discussed the energy absorbed by the polymer at the threshold fluence.

  12. Three-wave mixing in conjugated polymer solutions: Two-photon absorption in polydiacetylenes

    NASA Astrophysics Data System (ADS)

    Chance, R. R.; Shand, M. L.; Hogg, C.; Silbey, R.

    1980-10-01

    Three-wave-mixing spectroscopy is used to determine the dispersive and absorptive parts of a strongly allowed two-photon transition in a series of polydiacetylene solutions. The data analysis yields the energy, width, symmetry assignment, and oscillator strength for the two-photon transition. The data conclusively demonstrate that strong two-photon absorption is a fundamental property of the polydiacetylene backbone. The remarkably large two-photon absorption coefficients are explained by large oscillator strengths for both transitions involved in the two-photon absorption combined with strong one-photon resonance effects. The experimental results are shown to be consistent with a simple theoretical model for the energies and oscillator strengths of the one- and two-photon-allowed transitions.

  13. Effect of marine derived deoxyribonucleic acid on nonlinear optical properties of PicoGreen dye

    NASA Astrophysics Data System (ADS)

    Pradeep, C.; Mathew, S.; Nithyaja, B.; Radhakrishnan, P.; Nampoori, V. P. N.

    2013-06-01

    We have investigated the effect of DNA on nonlinear absorption of PicoGreen dye using single beam open aperture Z-scan technique in nanosecond regime. We observed reverse saturable absorption at 532 nm for PicoGreen without DNA. In the presence of DNA, the sample begins to behave like saturable absorbers and this effect increased as the concentration of DNA was increased. The dye-intercalated DNA showed SA characteristics near the focus but exhibited RSA characteristics at the focus. Theoretical analysis has been performed using a two-photon absorption model based on nonlinear absorption coefficient and saturation intensity. Such tailoring of optical nonlinear absorption in PicoGreen makes it a potential candidate for photonic application.

  14. Z-scan measurement for nonlinear absorption property of rGO/ZnO:Al thin film

    NASA Astrophysics Data System (ADS)

    Sreeja, V. G.; Anila, E. I.

    2018-04-01

    We report the fabrication of reduced graphene oxide integrated aluminium doped zinc oxide (rGO/ZnO:Al) composite thin film on a glass substrate by spin coating technique. The effect of rGO on structural and linear optical properties of rGO/ZnO:Al composite thin film was explored with the help of X-Ray powder diffraction (XRD), Fourier transform infrared spectroscopy (FTIR) and UV-Vis absorption spectroscopy. Structural studies reveals that the composite film has hexagonal wurtzite structure with a strong bonding between rGO and ZnO:Al material. The band gap energy of ZnO:Al thin film was red shifted by the addition of rGO. The Nonlinear absorption property was investigated by open aperture Z-scan technique by using Q switched Nd-YAG laser at 532nm. The Z-scan results showed that the composite film demonstrates reverse saturable absorption property with a nonlinear absorption coefficient, β, of 12.75×10-7m/w. The results showed that investigated rGO/ZnO:Al thin film is a promising material suitable for the applications in absorbing type optical devices such as optical limiters, optical switches and protection of the optical sensors in the field of nonlinear optics.

  15. 40 CFR 796.1050 - Absorption in aqueous solution: Ultraviolet/visible spectra.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... by both molar absorption coefficient (molar extinction coefficient) and band width. However, the..., expressed in cm; and the molar absorption (extinction) coefficient,εi, of each species. The absorbance...

  16. 40 CFR 796.1050 - Absorption in aqueous solution: Ultraviolet/visible spectra.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... by both molar absorption coefficient (molar extinction coefficient) and band width. However, the..., expressed in cm; and the molar absorption (extinction) coefficient,εi, of each species. The absorbance...

  17. 40 CFR 796.1050 - Absorption in aqueous solution: Ultraviolet/visible spectra.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... by both molar absorption coefficient (molar extinction coefficient) and band width. However, the..., expressed in cm; and the molar absorption (extinction) coefficient,εi, of each species. The absorbance...

  18. Near-infrared optical properties of ex-vivo human skin and subcutaneous tissues using reflectance and transmittance measurements

    NASA Astrophysics Data System (ADS)

    Simpson, Rebecca; Laufer, Jan G.; Kohl-Bareis, Matthias; Essenpreis, Matthias; Cope, Mark

    1997-08-01

    The vast majority of 'non-invasive' measurements of human tissues using near infrared spectroscopy rely on passing light through the dermis and subdermis of the skin. Accurate knowledge of the optical properties of these tissues is essential to put into models of light transport and predict the effects of skin perfusion on measurements of deep tissue. Additionally, the skin could be a useful accessible organ for non-invasively determining the constituents of blood flowing through it. Samples of abdominal human skin (including subdermal tissue) were obtained from either post mortem examinations or plastic surgery. The samples were separated into a dermal layer (epidermis and dermis, 1.5 to 2 mm tick), and a sub-cutaneous layer comprised largely of fat. They were enclosed between two glass coverslips and placed in an integrating sphere to measure their reflectance and transmittance over a range of wavelengths from 600 to 1000 nm. The reflectance and transmittance values were converted into average absorption and reduced scattering coefficients by comparison with a Monte Carlo model of light transport. Improvements to the Monte Carlo model and measurement technique removed some previous uncertainties. The results show excellent separation of reduced scattering and absorption coefficient, with clear absorption peaks of hemoglobin, water and lipid. The effect of tissue storage upon measured optical properties was investigated.

  19. Influence of Hybridizing Flax and Hemp-Agave Fibers with Glass Fiber as Reinforcement in a Polyurethane Composite

    PubMed Central

    Pandey, Pankaj; Bajwa, Dilpreet; Ulven, Chad; Bajwa, Sreekala

    2016-01-01

    In this study, six combinations of flax, hemp, and glass fiber were investigated for a hybrid reinforcement system in a polyurethane (PU) composite. The natural fibers were combined with glass fibers in a PU composite in order to achieve a better mechanical reinforcement in the composite material. The effect of fiber hybridization in PU composites was evaluated through physical and mechanical properties such as water absorption (WA), specific gravity (SG), coefficient of linear thermal expansion (CLTE), flexural and compression properties, and hardness. The mechanical properties of hybridized samples showed mixed trends compared to the unhybridized samples, but hybridization with glass fiber reduced water absorption by 37% and 43% for flax and hemp-agave PU composites respectively. PMID:28773512

  20. Variability in aerosol optical properties over an urban site, Kanpur, in the Indo-Gangetic Plain: A case study of haze and dust events

    NASA Astrophysics Data System (ADS)

    Ram, Kirpa; Singh, Sunita; Sarin, M. M.; Srivastava, A. K.; Tripathi, S. N.

    2016-06-01

    In this study, we report on three important optical parameters, viz. absorption and scattering coefficients (babs, bscat) and single scattering abledo (SSA) based on one-year chemical-composition data collected from an urban site (Kanpur) in the Indo-Gangetic-Plain (IGP) of northern India. In addition, absorption Ängstrom exponent (AAE) was also estimated in order to understand the wavelength dependence of absorption and to decipher emission sources of carbonaceous aerosols, in particular of black carbon. The absorption and scattering coefficients ranged between 8.3 to 95.2 Mm- 1 (1 Mm- 1 = 10- 6 m- 1) and 58 to 564 Mm- 1, respectively during the study period (for n = 66; from January 2007 to March 2008) and exhibit large seasonal variability with higher values occurring in winter and lower in the summer. Single scattering albedo varied from 0.65 to 0.92 whereas AAE ranged from 0.79 to 1.40 during pre-monsoon and winter seasons, respectively. The strong seasonal variability in aerosol optical properties is attributed to varying contribution from different emission sources of carbonaceous aerosols in the IGP. A case study of haze and dust events further provide information on extreme variability in aerosol optical parameters, particularly SSA, a crucial parameter in atmospheric radiative forcing estimates.

  1. Effect of electron withdrawing unit for dye-sensitized solar cell based on D-A-π-A organic dyes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kwon, Dong Yuel; Chang, Dong Min; Kim, Young Sik, E-mail: youngkim@hongik.ac.kr

    2014-10-15

    Highlights: • To gain the red-shifted absorption spectra, withdrawing unit was substituted in dye. • By the introduction of additional withdrawing unit, LUMOs level of dye are decreased. • Decreasing LUMOs level of dye caused the red-shifted absorption spectra of dye. • Novel acceptor, DCRD, showed better photovoltaic properties than cyanoacetic acid. - Abstract: In this work, two novel D-A-π-A dye sensitizers with triarylamine as an electron donor, isoindigo and cyano group as electron withdrawing units and cyanoacetic acid and 2-(1,1-dicyanomethylene) rhodanine as an electron acceptor for an anchoring group (TICC, TICR) were designed and investigated with the ID6 dyemore » as the reference. The difference in HOMO and LUMO levels were compared according to the presence or absence of isoindigo in ID6 (TC and ID6). To gain insight into the factors responsible for photovoltaic performance, we used density functional theory (DFT) and time-dependent density functional theory (TDDFT) calculations. Owing to different LUMO levels for each acceptor, the absorption band and molar extinction coefficient of each dye was different. Among the dyes, TICR showed more red-shifted and broader absorption spectra than other dyes and had a higher molar extinction coefficient than the reference. It is expected that TICR would show better photovoltaic properties than the other dyes, including the reference dye.« less

  2. Role of annealing temperatures on structure polymorphism, linear and nonlinear optical properties of nanostructure lead dioxide thin films

    NASA Astrophysics Data System (ADS)

    Zeyada, H. M.; Makhlouf, M. M.

    2016-04-01

    The powder of as synthesized lead dioxide (PbO2) has polycrystalline structure β-PbO2 phase of tetragonal crystal system. It becomes nanocrystallites α-PbO2 phase with orthorhombic crystal system upon thermal deposition to form thin films. Annealing temperatures increase nanocrystallites size from 28 to 46 nm. The optical properties of α-PbO2 phase were calculated from absolute values of transmittance and reflectance at nearly normal incidence of light by spectrophotometer measurements. The refractive and extinction indices were determined and showed a response to annealing temperatures. The absorption coefficient of α-PbO2 films is >106 cm-1 in UV region of spectra. Analysis of the absorption coefficient spectra near optical edge showed indirect allowed transition. Annealing temperature decreases the value of indirect energy gap for α-PbO2 films. The dispersion parameters such as single oscillator energy, dispersion energy, dielectric constant at high frequency and lattice dielectric constant were calculated and its variations with annealing temperatures are reported. The nonlinear refractive index (n2), third-order nonlinear susceptibility (χ(3)) and nonlinear absorption coefficient (βc) were determined. It was found that χ(3), n2 and β increase with increasing photon energy and decrease with increasing annealing temperature. The pristine film of α-PbO2 has higher values of nonlinear optical constants than for annealed films; therefore it is suitable for applications in manufacturing nonlinear optical devices.

  3. Light absorption and morphological properties of soot-containing aerosols observed at an East Asian outflow site, Noto Peninsula, Japan

    NASA Astrophysics Data System (ADS)

    Ueda, S.; Nakayama, T.; Taketani, F.; Adachi, K.; Matsuki, A.; Iwamoto, Y.; Sadanaga, Y.; Matsumi, Y.

    2015-09-01

    The coating of black carbon (BC) with inorganic salts and organic compounds can enhance the magnitude of light absorption by BC. To elucidate the enhancement of light absorption of aged BC particles and its relation to the mixing state and morphology of individual particles, we conducted observations of particles at an Asian outflow site in Noto Peninsula, Japan, in the spring of 2013. Absorption and scattering coefficients at 405, 532, and 781 nm and mass concentrations/mixing states of refractory-BC in PM2.5 were measured using a three-wavelength photoacoustic soot spectrometer and a single-particle soot photometer (SP2), respectively, after passage through a heater maintained at 300 or 400 °C or a bypass line maintained at room temperature (25 °C). The average enhancement of BC light absorption due to coating was estimated by comparing absorption coefficients at 781 nm for particles that with and without passing through the heater and was found to be 22-23 %. The largest enhancements (> 30 %) were observed under high absorption coefficient conditions when the air mass was long-range transported from urban areas in China. Aerosol samples were also analyzed using a transmission electron microscope (TEM) equipped with an energy dispersive X-ray analyzer. The morphological features and mixing states of soot-containing particles of four samples collected during the high absorption coefficient events were analyzed by comparing microphotographs before and after the evaporation of beam-sensitive materials by irradiation with a high density electron beam. The majority of the soot in all samples was found as mixed particles with spherical sulfate or as clusters of sulfate spherules. For samples showing high enhancement (> 30 %) of BC light absorption, TEM showed that the internally mixed soot-containing particles tended to have a more spherical shape and to be embedded into the sulfate. The SP2 measurements also suggested that the proportion of thickly-coated soot was greater. Thus, the observed enhancement of BC light absorption was found to differ according to the mixing states and morphology of soot-containing particles. The enhancement of BC light absorption in our in situ measurements and its relation with individual features of soot-containing particles will be useful to evaluate direct radiative forcing in the leeward areas of large emission sources of BC.

  4. Spatial frequency domain spectroscopy of two layer media

    NASA Astrophysics Data System (ADS)

    Yudovsky, Dmitry; Durkin, Anthony J.

    2011-10-01

    Monitoring of tissue blood volume and oxygen saturation using biomedical optics techniques has the potential to inform the assessment of tissue health, healing, and dysfunction. These quantities are typically estimated from the contribution of oxyhemoglobin and deoxyhemoglobin to the absorption spectrum of the dermis. However, estimation of blood related absorption in superficial tissue such as the skin can be confounded by the strong absorption of melanin in the epidermis. Furthermore, epidermal thickness and pigmentation varies with anatomic location, race, gender, and degree of disease progression. This study describes a technique for decoupling the effect of melanin absorption in the epidermis from blood absorption in the dermis for a large range of skin types and thicknesses. An artificial neural network was used to map input optical properties to spatial frequency domain diffuse reflectance of two layer media. Then, iterative fitting was used to determine the optical properties from simulated spatial frequency domain diffuse reflectance. Additionally, an artificial neural network was trained to directly map spatial frequency domain reflectance to sets of optical properties of a two layer medium, thus bypassing the need for iteration. In both cases, the optical thickness of the epidermis and absorption and reduced scattering coefficients of the dermis were determined independently. The accuracy and efficiency of the iterative fitting approach was compared with the direct neural network inversion.

  5. Optical nonlinear absorption characteristics of Sb2Se3 nanoparticles

    NASA Astrophysics Data System (ADS)

    Muralikrishna, Molli; Kiran, Aditha Sai; Ravikanth, B.; Sowmendran, P.; Muthukumar, V. Sai; Venkataramaniah, Kamisetti

    2014-04-01

    In this work, we report for the first time, the nonlinear optical absorption properties of antimony selenide (Sb2Se3) nanoparticles synthesized through solvothermal route. X-ray diffraction results revealed the crystalline nature of the nanoparticles. Electron microscopy studies revealed that the nanoparticles are in the range of 10 - 40 nm. Elemental analysis was performed using EDAX. By employing open aperture z-scan technique, we have evaluated the effective two-photon absorption coefficient of Sb2Se3 nanoparticles to be 5e-10 m/W at 532 nm. These nanoparticles exhibit strong intensity dependent nonlinear optical absorption and hence could be considered to have optical power limiting applications in the visible range.

  6. Application of spatially modulated near-infrared structured light to study changes in optical properties of mouse brain tissue during heatstress.

    PubMed

    Shaul, Oren; Fanrazi-Kahana, Michal; Meitav, Omri; Pinhasi, Gad A; Abookasis, David

    2017-11-10

    Heat stress (HS) is a medical emergency defined by abnormally elevated body temperature that causes biochemical, physiological, and hematological changes. The goal of the present research was to detect variations in optical properties (absorption, reduced scattering, and refractive index coefficients) of mouse brain tissue during HS by using near-infrared (NIR) spatial light modulation. NIR spatial patterns with different spatial phases were used to differentiate the effects of tissue scattering from those of absorption. Decoupling optical scattering from absorption enabled the quantification of a tissue's chemical constituents (related to light absorption) and structural properties (related to light scattering). Technically, structured light patterns at low and high spatial frequencies of six wavelengths ranging between 690 and 970 nm were projected onto the mouse scalp surface while diffuse reflected light was recorded by a CCD camera positioned perpendicular to the mouse scalp. Concurrently to pattern projection, brain temperature was measured with a thermal camera positioned slightly off angle from the mouse head while core body temperature was monitored by thermocouple probe. Data analysis demonstrated variations from baseline measurements in a battery of intrinsic brain properties following HS.

  7. Computationally effective solution of the inverse problem in time-of-flight spectroscopy.

    PubMed

    Kamran, Faisal; Abildgaard, Otto H A; Subash, Arman A; Andersen, Peter E; Andersson-Engels, Stefan; Khoptyar, Dmitry

    2015-03-09

    Photon time-of-flight (PTOF) spectroscopy enables the estimation of absorption and reduced scattering coefficients of turbid media by measuring the propagation time of short light pulses through turbid medium. The present investigation provides a comparison of the assessed absorption and reduced scattering coefficients from PTOF measurements of intralipid 20% and India ink-based optical phantoms covering a wide range of optical properties relevant for biological tissues and dairy products. Three different models are used to obtain the optical properties by fitting to measured temporal profiles: the Liemert-Kienle model (LKM), the diffusion model (DM) and a white Monte-Carlo (WMC) simulation-based algorithm. For the infinite space geometry, a very good agreement is found between the LKM and WMC, while the results obtained by the DM differ, indicating that the LKM can provide accurate estimation of the optical parameters beyond the limits of the diffusion approximation in a computational effective and accurate manner. This result increases the potential range of applications for PTOF spectroscopy within industrial and biomedical applications.

  8. Phytoplankton absorption predicts patterns in primary productivity in Australian coastal shelf waters

    NASA Astrophysics Data System (ADS)

    Robinson, C. M.; Cherukuru, N.; Hardman-Mountford, N. J.; Everett, J. D.; McLaughlin, M. J.; Davies, K. P.; Van Dongen-Vogels, V.; Ralph, P. J.; Doblin, M. A.

    2017-06-01

    The phytoplankton absorption coefficient (aPHY) has been suggested as a suitable alternate first order predictor of net primary productivity (NPP). We compiled a dataset of surface bio-optical properties and phytoplankton NPP measurements in coastal waters around Australia to examine the utility of an in-situ absorption model to estimate NPP. The magnitude of surface NPP (0.20-19.3 mmol C m-3 d-1) across sites was largely driven by phytoplankton biomass, with higher rates being attributed to the microplankton (>20 μm) size class. The phytoplankton absorption coefficient aPHY for PAR (photosynthetically active radiation; āPHY)) ranged from 0.003 to 0.073 m-1, influenced by changes in phytoplankton community composition, physiology and environmental conditions. The aPHY coefficient also reflected changes in NPP and the absorption model-derived NPP could explain 73% of the variability in measured surface NPP (n = 41; RMSE = 2.49). The absorption model was applied to two contrasting coastal locations to examine NPP dynamics: a high chlorophyll-high variation (HCHV; Port Hacking National Reference Station) and moderate chlorophyll-low variation (MCLV; Yongala National Reference Station) location in eastern Australia using the GIOP-DC satellite aPHY product. Mean daily NPP rates between 2003 and 2015 were higher at the HCHV site (1.71 ± 0.03 mmol C m-3 d-1) with the annual maximum NPP occurring during the austral winter. In contrast, the MCLV site annual NPP peak occurred during the austral wet season and had lower mean daily NPP (1.43 ± 0.03 mmol C m-3 d-1) across the time-series. An absorption-based model to estimate NPP is a promising approach for exploring the spatio-temporal dynamics in phytoplankton NPP around the Australian continental shelf.

  9. Tunable dielectric properties of mesoporous carbon hollow microspheres via textural properties.

    PubMed

    Xu, Hailong; Yin, Xiaowei; Li, Zhaochen; Liu, Chenglong; Wang, Zeyu; Li, Minghang; Zhang, Litong; Cheng, Laifei

    2018-05-04

    In this study, mesoporous carbon hollow microspheres (PCHMs) with tunable textural properties have been prepared through a facile hard template etching method. The PCHMs were characterized by scanning electron microscopy, transmission electron microscopy, x-ray diffraction, Raman spectra, and nitrogen adsorption and desorption systems. Uniform PCHMs with shell thickness ranging from 23 nm to 55 nm are realized. PCHMs with different textural properties can regulate dielectric and electromagnetic (EM) wave absorption effectively. The composite of paraffin wax mixed with 10 wt% PCHMs (the shell thickness of PCHMs is 35 nm) exhibits a minimum coefficient value of -53.8 dB at 8.8 GHz, with a thickness of 3.4 mm. Besides, it is remarkable that the effective absorption bandwidth covers all the X band with as low as a 10 wt% filler ratio, compared with other spherical EM wave absorbers. The excellent EM wave absorption capability of PCHMs can be ascribed to the better impendence matching and strong EM wave attenuation constant based on tunable textural properties. Our results provide a facile strategy to tune dielectric properties of spherical carbon absorbers based on textural properties, and can be extended to other spherical absorbers.

  10. Tunable dielectric properties of mesoporous carbon hollow microspheres via textural properties

    NASA Astrophysics Data System (ADS)

    Xu, Hailong; Yin, Xiaowei; Li, Zhaochen; Liu, Chenglong; Wang, Zeyu; Li, Minghang; Zhang, Litong; Cheng, Laifei

    2018-05-01

    In this study, mesoporous carbon hollow microspheres (PCHMs) with tunable textural properties have been prepared through a facile hard template etching method. The PCHMs were characterized by scanning electron microscopy, transmission electron microscopy, x-ray diffraction, Raman spectra, and nitrogen adsorption and desorption systems. Uniform PCHMs with shell thickness ranging from 23 nm to 55 nm are realized. PCHMs with different textural properties can regulate dielectric and electromagnetic (EM) wave absorption effectively. The composite of paraffin wax mixed with 10 wt% PCHMs (the shell thickness of PCHMs is 35 nm) exhibits a minimum coefficient value of -53.8 dB at 8.8 GHz, with a thickness of 3.4 mm. Besides, it is remarkable that the effective absorption bandwidth covers all the X band with as low as a 10 wt% filler ratio, compared with other spherical EM wave absorbers. The excellent EM wave absorption capability of PCHMs can be ascribed to the better impendence matching and strong EM wave attenuation constant based on tunable textural properties. Our results provide a facile strategy to tune dielectric properties of spherical carbon absorbers based on textural properties, and can be extended to other spherical absorbers.

  11. Measurement of Absorption Coefficient of Paraformaldehyde and Metaldehyde with Terahertz Spectroscopy

    NASA Astrophysics Data System (ADS)

    Zhang, J.; Xia, T.; Chen, Q.; Sun, Q.; Deng, Y.; Wang, C.

    2018-03-01

    The characteristic absorption spectra of paraformaldehyde and metaldehyde in the terahertz frequency region are obtained by terahertz time-domain spectroscopy (THz-TDS). In order to reduce the absorption of terahertz (THz) wave by water vapor in the air and the background noise, the measurement system was filled with dry air and the measurements were conducted at the temperature of 24°C. Meanwhile, the humidity was controlled within 10% RH. The THz frequency domain spectra of samples and their references from 0 to 2.5 THz were analyzed via Fourier transform. The refractive index and absorption coefficients of the two aldehydes were calculated by the model formulas. From 0.1 to 2.5 THz, there appear two weak absorption peaks at 1.20 and 1.66 THz in the absorption spectra of paraformaldehyde. Only one distinct absorption peak emerges at 1.83 THz for metaldehyde. There are significant differences between the terahertz absorption coefficients of paraformaldehyde and metaldehyde, which can be used as "fingerprints" to identify these substances. Furthermore, the relationship between the average absorption coefficients and mass concentrations was investigated and the average absorption coefficient-mass concentration diagrams of paraformaldehyde and metaldehyde were shown. For paraformaldehyde, there is a linear relationship between the average absorption coefficient and the natural logarithm of mass concentration. For metaldehyde, there exists a simpler linear relationship between the average absorption coefficient and the mass concentration. Because of the characteristics of THz absorption of paraformaldehyde and metaldehyde, the THz-TDS can be applied to the qualitative and quantitative detection of the two aldehydes to reduce the unpredictable hazards due to these substances.

  12. Nonlinear optical inves

    NASA Astrophysics Data System (ADS)

    Zidan, M. D.; Arfan, A.; Allahham, A.

    2017-03-01

    Z-scan technique was used to investigate the nonlinear optical properties of Quinine and 1-(carboxymethyl)-6-methoxy-4-(3-(3-vinylpiperidin-4-yl) propanoyl) quinolin-1-ium chloride (Quinotoxine) salts. The two salts were characterized using UV-visible, FTIR and NMR measurements. The characterization spectra confirm the expected molecular structure of the prepared ;Quinotoxine ; salt. The z-scan measurements were performed with a CW Diode laser at 635 nm wavelength and 26 mW power. The nonlinear absorption coefficient (β), nonlinear refractive index (n2), the ground-state absorption cross sections (σg), the excited-state absorption cross sections (σex) and thermo-optic coefficient of the samples were determined. Our results reveal that the σex is higher than the σg indicating that the reverse saturable absorption (RSA) is the dominating mechanism for the observed absorption nonlinearities. The results suggest that this material should be considered as a promising candidate for future optical devices applications.

  13. In situ phytoplankton absorption, fluorescence emission, and particulate backscattering spectra determined from reflectance

    NASA Technical Reports Server (NTRS)

    Roesler, Collin S.; Pery, Mary Jane

    1995-01-01

    An inverse model was developed to extract the absortion and scattering (elastic and inelastic) properties of oceanic constituents from surface spectral reflectance measurements. In particular, phytoplankton spectral absorption coefficients, solar-stimulated chlorophyll a fluorescence spectra, and particle backscattering spectra were modeled. The model was tested on 35 reflectance spectra obtained from irradiance measurements in optically diverse ocean waters (0.07 to 25.35 mg/cu m range in surface chlorophyll a concentrations). The universality of the model was demonstrated by the accurate estimation of the spectral phytoplankton absorption coefficents over a range of 3 orders of magnitude (rho = 0.94 at 500 nm). Under most oceanic conditions (chlorophyll a less than 3 mg/cu m) the percent difference between measured and modeled phytoplankton absorption coefficents was less than 35%. Spectral variations in measured phytoplankton absorption spectra were well predicted by the inverse model. Modeled volume fluorescence was weakly correlated with measured chl a; fluorescence quantum yield varied from 0.008 to 0.09 as a function of environment and incident irradiance. Modeled particle backscattering coefficients were linearly related to total particle cross section over a twentyfold range in backscattering coefficents (rho = 0.996, n = 12).

  14. Examination of contrast mechanisms in optoacoustic imaging of thermal lesions

    NASA Astrophysics Data System (ADS)

    Richter, Christian; Spirou, Gloria; Oraevsky, Alexander A.; Whelan, William M.; Kolios, Michael C.

    2006-02-01

    Optoacoustic Imaging is based on the thermal expansion of tissue caused by a temperature rise due to absorption of short laser pulses. At constant laser fluence, optoacoustic image contrast is proportional to differences in optical absorption and the thermoacoustic efficiency, expressed by the Grueuneisen parameter, Γ. Γ is proportional to the thermal expansion coefficient, the sound velocity squared and the inverse heat capacity at constant pressure. In thermal therapies, these parameters may be modified in the treated area. In this work experiments were performed to examine the influence of these parameters on image contrast. A Laser Optoacoustic Imaging System (LOIS, Fairway Medical Technologies, Houston, Texas) was used to image tissue phantoms comprised of cylindrical Polyvinyl Chloride Plastisol (PVCP) optical absorbing targets imbedded in either gelatin or PVCP as the background medium. Varying concentrations of Black Plastic Color (BPC) and titanium dioxide (TiO II) were added to targets and background to yield desired tissue relevant optical absorption and effective scattering coefficients, respectively. In thermal therapy experiments, ex-vivo bovine liver was heated with laser fibres (805nm laser at 5 W for 600s) to create regions of tissue coagulation. Lesions formed in the liver tissue were visible using the LOIS system with reasonable correspondence to the actual region of tissue coagulation. In the phantom experiments, contrast could be seen with low optical absorbing targets (μ a of 0.50cm -1 down to 0.13cm-1) embedded in a gelatin background (see manuscript for formula). Therefore, the data suggest that small objects (< 5mm) with low absorption coefficients (in the range < 1cm -1) can be imaged using LOIS. PVCP-targets in gelatin were visible, even with the same optical properties as the gelatin, but different Γ. The enhanced contrast may also be caused by differences in the mechanical properties between the target and the surrounding medium. PVCP-targets imbedded in PVCP produced poorer image contrast than PVCP-targets in gelatin with comparable optical properties. The preliminary investigation in tissue equivalent phantoms indicates that in addition to tissue optical properties, differences in mechanical properties between heated and unheated tissues may be responsible for image contrast. Furthermore, thermal lesions in liver tissue, ex-vivo, can be visualized using an optoacoustic system.

  15. A Solar Radiation Parameterization for Atmospheric Studies. Volume 15

    NASA Technical Reports Server (NTRS)

    Chou, Ming-Dah; Suarez, Max J. (Editor)

    1999-01-01

    The solar radiation parameterization (CLIRAD-SW) developed at the Goddard Climate and Radiation Branch for application to atmospheric models are described. It includes the absorption by water vapor, O3, O2, CO2, clouds, and aerosols and the scattering by clouds, aerosols, and gases. Depending upon the nature of absorption, different approaches are applied to different absorbers. In the ultraviolet and visible regions, the spectrum is divided into 8 bands, and single O3 absorption coefficient and Rayleigh scattering coefficient are used for each band. In the infrared, the spectrum is divided into 3 bands, and the k-distribution method is applied for water vapor absorption. The flux reduction due to O2 is derived from a simple function, while the flux reduction due to CO2 is derived from precomputed tables. Cloud single-scattering properties are parameterized, separately for liquid drops and ice, as functions of water amount and effective particle size. A maximum-random approximation is adopted for the overlapping of clouds at different heights. Fluxes are computed using the Delta-Eddington approximation.

  16. Relationship between the Kubelka-Munk scattering and radiative transfer coefficients.

    PubMed

    Thennadil, Suresh N

    2008-07-01

    The relationship between the Kubelka-Munk (K-M) and the transport scattering coefficient is obtained through a semi-empirical approach. This approach gives the same result as that given by Gate [Appl. Opt.13, 236 (1974)] when the incident beam is diffuse. This result and those given by Star et al. [Phys. Med. Biol.33, 437 (1988)] and Brinkworth [Appl. Opt.11, 1434 (1972)] are compared with the exact solution of the radiative transfer equation over a large range of optical properties. It is found that the latter expressions, which include an absorption component, do not give accurate results over the range considered. Using the semi-empirical approach, the relationship between the K-M and the transport scattering coefficient is derived for the case where the incident light is collimated. It is shown that although the K-M equation is derived based on diffuse incident light, it can also represent very well the reflectance from a slab of infinite thickness when the incident light is collimated. However, in this case the relationship between the coefficients has to include a function that is dependent on the anisotropy factor. Analysis indicates that the K-M transform achieves the objective of obtaining a measure that gives the ratio of absorption to scattering effects for both diffuse and collimated incident beams over a large range of optical properties.

  17. The Radiative Heat Transfer Properties of Molten Salts and Their Relevance to the Design of Advanced Reactors

    NASA Astrophysics Data System (ADS)

    Chaleff, Ethan Solomon

    Molten salts, such as the fluoride salt eutectic LiF-NaF-KF (FLiNaK) or the transition metal fluoride salt KF-ZrF4, have been proposed as coolants for numerous advanced reactor concepts. These reactors are designed to operate at high temperatures where radiative heat transfer may play a significant role. If this is the case, the radiative heat transfer properties of the salt coolants are required to be known for heat transfer calculations to be performed accurately. Chapter 1 describes the existing literature and experimental efforts pertaining to radiative heat transfer in molten salts. The physics governing photon absorption by halide salts is discussed first, followed by a more specific description of experimental results pertaining to salts of interest. The phonon absorption edge in LiF-based salts such as FLiNaK is estimated and the technique described for potential use in other salts. A description is given of various spectral measurement techniques which might plausibly be employed in the present effort, as well as an argument for the use of integral techniques. Chapter 2 discusses the mathematical treatments required to approximate and solve for the radiative flux in participating materials. The differential approximation and the exact solutions to the radiative flux are examined, and methods are given to solve radiative and energy equations simultaneously. A coupled solution is used to examine radiative heat transfer to molten salt coolants. A map is generated of pipe diameters, wall temperatures, and average absorption coefficients where radiative heat transfer will increase expected heat transfer by more than 10% compared to convective methods alone. Chapter 3 presents the design and analysis of the Integral Radiative Absorption Chamber (IRAC). The IRAC employs an integral technique for the measurement of the entire electromagnetic spectrum, negating some of the challenges associated with the methods discussed in Chapter 1 at the loss of spectral information. The IRAC design is validated by modeling the experiment in Fluent which shows that the IRAC should be capable of measuring absorption coefficients within 10%. Chapter 4 contains a parallel effort to experimental techniques, whereby information on absorption in salts is pursued using the Density Functional Theory code VASP. Photon-electron interactions are studied in pure salts such as LiF and are shown to be broadly transparent. Transition metal Fluoride salts such as KF-ZrF4 are shown to be broadly opaque. The addition of small amounts of transition metal impurities is studied by insertion of Chromium into the salt mixtures, which causes otherwise transparent salts to exhibit absorption coefficients significant to heat transfer. The spectral absorption coefficient for FLiNaK with Chromium is presented as is the average absorption coefficient as a function of impurity concentration. Chapter 5 discusses experimental efforts undertaken at The Ohio State University. Challenges with the constructed experimental apparatus are discussed and suggestions for future improvement on the technique are included. Finally, Chapter 6 contains broad conclusions pertaining to radiative transfer in advanced reactors.

  18. Pinning down high-performance Cu-chalcogenides as thin-film solar cell absorbers: A successive screening approach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Yubo; Zhang, Wenqing, E-mail: wqzhang@mail.sic.ac.cn, E-mail: pzhang3@buffalo.edu; State Key Laboratory of High Performance Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050

    2016-05-21

    Photovoltaic performances of Cu-chalcogenides solar cells are strongly correlated with the absorber fundamental properties such as optimal bandgap, desired band alignment with window material, and high photon absorption ability. According to these criteria, we carry out a successive screening for 90 Cu-chalcogenides using efficient theoretical approaches. Besides the well-recognized CuInSe{sub 2} and Cu{sub 2}ZnSnSe{sub 4} materials, several novel candidates are identified to have optimal bandgaps of around 1.0–1.5 eV, spike-like band alignments with CdS window layer, sharp photon absorption edges, and high absorption coefficients. These new systems have great potential to be superior absorbers for photovolatic applications if their carrriermore » transport and defect properties are properly optimized.« less

  19. Remote sensing of particle dynamics: a two-component unmixing model in a western UK shelf sea.

    NASA Astrophysics Data System (ADS)

    Mitchell, Catherine; Cunningham, Alex

    2014-05-01

    The relationship between the backscattering and absorption coefficients, in particular the backscattering to absorption ratio, is mediated by the type of particles present in the water column. By considering the optical signals to be driven by phytoplankton and suspended minerals, with a relatively constant influence from CDOM, radiative transfer modelling is used to propose a method for retrieving the optical contribution of phytoplankton and suspended minerals to the total absorption coefficient with mean percentage errors of below 5% for both components. These contributions can be converted to constituent concentrations if the appropriate specific inherent optical properties are known or can be determined from the maximum and minimum backscattering to absorption ratios of the data. Remotely sensed absorption and backscattering coefficients from eight years of MODIS data for the Irish Sea reveal maximum backscattering to absorption coefficient ratios over the winter (with an average for the region of 0.27), which then decrease to a minimum over the summer months (with an average of 0.06) before increasing again through to winter, indicating a change in the particles present in the water column. Application of the two-component unmixing model to this data showed seasonal cycles of both phytoplankton and suspended mineral concentrations which vary in both amplitude and periodicity depending on their location. For example, in the Bristol Channel the amplitude of the suspended mineral concentration throughout one cycle is approximately 75% greater than a yearly cycle in the eastern Irish Sea. These seasonal cycles give an insight into the complex dynamics of particles in the water column, indicating the suspension of sediment throughout the winter months and the loss of sediments from the surface layer over the summer during stratification. The relationship between the timing of the phytoplankton spring bloom and changes in the availability of light in the water column can be studied to gain an understanding into the phytoplankton phenology across the region.

  20. Efficient and robust method for simultaneous reconstruction of the temperature distribution and radiative properties in absorbing, emitting, and scattering media

    NASA Astrophysics Data System (ADS)

    Niu, Chun-Yang; Qi, Hong; Huang, Xing; Ruan, Li-Ming; Tan, He-Ping

    2016-11-01

    A rapid computational method called generalized sourced multi-flux method (GSMFM) was developed to simulate outgoing radiative intensities in arbitrary directions at the boundary surfaces of absorbing, emitting, and scattering media which were served as input for the inverse analysis. A hybrid least-square QR decomposition-stochastic particle swarm optimization (LSQR-SPSO) algorithm based on the forward GSMFM solution was developed to simultaneously reconstruct multi-dimensional temperature distribution and absorption and scattering coefficients of the cylindrical participating media. The retrieval results for axisymmetric temperature distribution and non-axisymmetric temperature distribution indicated that the temperature distribution and scattering and absorption coefficients could be retrieved accurately using the LSQR-SPSO algorithm even with noisy data. Moreover, the influences of extinction coefficient and scattering albedo on the accuracy of the estimation were investigated, and the results suggested that the reconstruction accuracy decreased with the increase of extinction coefficient and the scattering albedo. Finally, a non-contact measurement platform of flame temperature field based on the light field imaging was set up to validate the reconstruction model experimentally.

  1. [Extracting THz absorption coefficient spectrum based on accurate determination of sample thickness].

    PubMed

    Li, Zhi; Zhang, Zhao-hui; Zhao, Xiao-yan; Su, Hai-xia; Yan, Fang

    2012-04-01

    Extracting absorption spectrum in THz band is one of the important aspects in THz applications. Sample's absorption coefficient has a complex nonlinear relationship with its thickness. However, as it is not convenient to measure the thickness directly, absorption spectrum is usually determined incorrectly. Based on the method proposed by Duvillaret which was used to precisely determine the thickness of LiNbO3, the approach to measuring the absorption coefficient spectra of glutamine and histidine in frequency range from 0.3 to 2.6 THz(1 THz = 10(12) Hz) was improved in this paper. In order to validate the correctness of this absorption spectrum, we designed a series of experiments to compare the linearity of absorption coefficient belonging to one kind amino acid in different concentrations. The results indicate that as agreed by Lambert-Beer's Law, absorption coefficient spectrum of amino acid from the improved algorithm performs better linearity with its concentration than that from the common algorithm, which can be the basis of quantitative analysis in further researches.

  2. Modeling of the attenuation of stress waves in concrete based on the Rayleigh damping model using time-reversal and PZT transducers

    NASA Astrophysics Data System (ADS)

    Tian, Zhen; Huo, Linsheng; Gao, Weihang; Li, Hongnan; Song, Gangbing

    2017-10-01

    Wave-based concrete structural health monitoring has attracted much attention. A stress wave experiences significant attenuation in concrete, however there is a lack of a unified method for predicting the attenuation coefficient of the stress wave. In this paper, a simple and effective absorption attenuation model of stress waves in concrete is developed based on the Rayleigh damping model, which indicates that the absorption attenuation coefficient of stress waves in concrete is directly proportional to the square of the stress wave frequency when the damping ratio is small. In order to verify the theoretical model, related experiments were carried out. During the experiments, a concrete beam was designed in which the d33-model piezoelectric smart aggregates were embedded to detect the propagation of stress waves. It is difficult to distinguish direct stress waves due to the complex propagation paths and the reflection and scattering of stress waves in concrete. Hence, as another innovation of this paper, a new method for computing the absorption attenuation coefficient based on the time-reversal method is developed. Due to the self-adaptive focusing properties of the time-reversal method, the time-reversed stress wave focuses and generates a peak value. The time-reversal method eliminates the adverse effects of multipaths, reflection, and scattering. The absorption attenuation coefficient is computed by analyzing the peak value changes of the time-reversal focused signal. Finally, the experimental results are found to be in good agreement with the theoretical model.

  3. A Multi-Band Analytical Algorithm for Deriving Absorption and Backscattering Coefficients from Remote-Sensing Reflectance of Optically Deep Waters

    NASA Technical Reports Server (NTRS)

    Lee, Zhong-Ping; Carder, Kendall L.

    2001-01-01

    A multi-band analytical (MBA) algorithm is developed to retrieve absorption and backscattering coefficients for optically deep waters, which can be applied to data from past and current satellite sensors, as well as data from hyperspectral sensors. This MBA algorithm applies a remote-sensing reflectance model derived from the Radiative Transfer Equation, and values of absorption and backscattering coefficients are analytically calculated from values of remote-sensing reflectance. There are only limited empirical relationships involved in the algorithm, which implies that this MBA algorithm could be applied to a wide dynamic range of waters. Applying the algorithm to a simulated non-"Case 1" data set, which has no relation to the development of the algorithm, the percentage error for the total absorption coefficient at 440 nm a (sub 440) is approximately 12% for a range of 0.012 - 2.1 per meter (approximately 6% for a (sub 440) less than approximately 0.3 per meter), while a traditional band-ratio approach returns a percentage error of approximately 30%. Applying it to a field data set ranging from 0.025 to 2.0 per meter, the result for a (sub 440) is very close to that using a full spectrum optimization technique (9.6% difference). Compared to the optimization approach, the MBA algorithm cuts the computation time dramatically with only a small sacrifice in accuracy, making it suitable for processing large data sets such as satellite images. Significant improvements over empirical algorithms have also been achieved in retrieving the optical properties of optically deep waters.

  4. Photo-physical properties and triplet-triplet absorption of platinum(II) acetylides in solid PMMA matrices

    NASA Astrophysics Data System (ADS)

    Glimsdal, Eirik; Westlund, Robert; Lindgren, Mikael

    2009-05-01

    Because of their strong nonlinear optical properties, Platinum(II) acetylides are investigated as potential chromophores for optical power limiting (OPL) applications. The strong excited state absorption and efficient intersystem crossing to the triplet states in these materials are desired properties for good OPL performance. We recently reported on OPL and photo-physical properties of Pt(II)-acetylide chromophores in solution, modified with thiophenyl or triazole groups. [R. Westlund et al. J. Mater. Chem. 18, 166 (2008); E. Glimsdal et al. Proc. SPIE 6740, 67400M (2007)] The chromophores were later incorporated into poly(methyl-methacrylate) (PMMA) glasses. A variety of doped organic solids were prepared, reaching concentrations of up to 13 wt% of the guest molecule. Raman spectra of the doped solid devices proved that the chemical structure of the nonlinear dyes remains intact upon the polymerization of the solid matrix. Luminescence spectra confirm that the basic photo-physical properties (absorption, emission and inter-system crossing) observed for the solute molecules in THF are maintained also in the solid state. In particular, the phosphorescence lifetime stays in the order of μs to ms, just as in the oxygen evacuated liquid samples. Also, the wavelength dependence and time-dynamics of the triplet absorption spectra of the dyes, dissolved in THF solution and dispersed in solid PMMA matrices, were investigated and compared. Ground state UV absorption spectra between 300 and 420 nm have corresponding broad band visible triplet-triplet absorption between 400 and 800 nm. The triplet state extinction coefficients were determined to be in the order of 104 M-1cm-1.

  5. Modelling thermal radiation from one-meter diameter methane pool fires

    NASA Astrophysics Data System (ADS)

    Consalvi, J. L.; Demarco, R.

    2012-06-01

    The first objective of this article is to implement a comprehensive radiation model in order to predict the radiant fractions and radiative fluxes on remote surfaces in large-scale methane pool fires. The second aim is to quantify the importance of Turbulence-Radiation Interactions (TRIs) in such buoyant flames. The fire-induced flow is modelled by using a buoyancy-modified k-ɛ model and the Steady Laminar Flamelet (SLF) model coupled with a presumed probability density function (pdf) approach. Spectral radiation is modelled by using the Full-Spectrum Correlated-k (FSCK) method. TRIs are taken into account by considering the Optically-Thin Fluctuation Approximation (OTFA). The emission term and the mean absorption coefficient are closed by using a presumed pdf of the mixture fraction, scalar dissipation rate and enthalpy defect. Two 1m-diameter fires with Heat Release Rates (HRR) of 49 kW and 162 kW were simulated. Predicted radiant fractions and radiative heat fluxes are found in reasonable agreement with experimental data. The importance of TRIs is evidenced, computed radiant fractions and radiative heat fluxes being considerably higher than those obtained from calculations based on mean properties. Finally, model results show that the complete absorption coefficient-Planck function correlation should be considered in order to properly take into account the influence of TRIs on the emission term, whereas the absorption coefficient self-correlation in the absorption term reduces significantly the radiant fractions.

  6. Determination of optical properties in heterogeneous turbid media using a cylindrical diffusing fiber

    NASA Astrophysics Data System (ADS)

    Dimofte, Andreea; Finlay, Jarod C.; Liang, Xing; Zhu, Timothy C.

    2012-10-01

    For interstitial photodynamic therapy (PDT), cylindrical diffusing fibers (CDFs) are often used to deliver light. This study examines the feasibility and accuracy of using CDFs to characterize the absorption (μa) and reduced scattering (μ‧s) coefficients of heterogeneous turbid media. Measurements were performed in tissue-simulating phantoms with μa between 0.1 and 1 cm-1 and μ‧s between 3 and 10 cm-1 with CDFs 2 to 4 cm in length. Optical properties were determined by fitting the measured light fluence rate profiles at a fixed distance from the CDF axis using a heterogeneous kernel model in which the cylindrical diffusing fiber is treated as a series of point sources. The resulting optical properties were compared with independent measurement using a point source method. In a homogenous medium, we are able to determine the absorption coefficient μa using a value of μ‧s determined a priori (uniform fit) or μ‧s obtained by fitting (variable fit) with standard (maximum) deviations of 6% (18%) and 18% (44%), respectively. However, the CDF method is found to be insensitive to variations in μ‧s, thus requiring a complementary method such as using a point source for determination of μ‧s. The error for determining μa decreases in very heterogeneous turbid media because of the local absorption extremes. The data acquisition time for obtaining the one-dimensional optical properties distribution is less than 8 s. This method can result in dramatically improved accuracy of light fluence rate calculation for CDFs for prostate PDT in vivo when the same model and geometry is used for forward calculations using the extrapolated tissue optical properties.

  7. Optical Thin Film Modeling: Using FTG's FilmStar Software

    NASA Technical Reports Server (NTRS)

    Freese, Scott

    2009-01-01

    Every material has basic optical properties that define its interaction with light: The index of refraction (n) and extinction coefficient (k) vary for the material as a function of the wavelength of the incident light. Also significant are the phase velocity and polarization of the incident light These inherent properties allow for the accurate modeling of light s behavior upon contact with a surface: Reflectance, Transmittance, Absorptance.

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, H.; Chang, C.; Cheng, H. H., E-mail: hhcheng@ntu.edu.tw

    We report an investigation on the absorption mechanism of a GeSn photodetector with 2.4% Sn composition in the active region. Responsivity is measured and absorption coefficient is calculated. Square root of absorption coefficient linearly depends on photon energy indicating an indirect transition. However, the absorption coefficient is found to be at least one order of magnitude higher than that of most other indirect materials, suggesting that the indirect optical absorption transition cannot be assisted only by phonon. Our analysis of absorption measurements by other groups on the same material system showed the values of absorption coefficient on the same ordermore » of magnitude. Our study reveals that the strong enhancement of absorption for the indirect optical transition is the result of alloy disorder from the incorporation of the much larger Sn atoms into the Ge lattice that are randomly distributed.« less

  9. Determination of optical absorption coefficient with focusing photoacoustic imaging.

    PubMed

    Li, Zhifang; Li, Hui; Zeng, Zhiping; Xie, Wenming; Chen, Wei R

    2012-06-01

    Absorption coefficient of biological tissue is an important factor for photothermal therapy and photoacoustic imaging. However, its determination remains a challenge. In this paper, we propose a method using focusing photoacoustic imaging technique to quantify the target optical absorption coefficient. It utilizes the ratio of the amplitude of the peak signal from the top boundary of the target to that from the bottom boundary based on wavelet transform. This method is self-calibrating. Factors, such as absolute optical fluence, ultrasound parameters, and Grüneisen parameter, can be canceled by dividing the amplitudes of the two peaks. To demonstrate this method, we quantified the optical absorption coefficient of a target with various concentrations of an absorbing dye. This method is particularly useful to provide accurate absorption coefficient for predicting the outcomes of photothermal interaction for cancer treatment with absorption enhancement.

  10. Magnetodynamic properties of spatially distributed films based on a metal-dielectric composite

    NASA Astrophysics Data System (ADS)

    Tarasova, O. S.; Kalinin, Yu. E.; Sitnikov, A. V.; Yanchenko, L. I.

    2017-09-01

    The frequency dependences of the absorption coefficient of electromagnetic radiation and frequency dependences of the complex magnetic permeability of the fiberglass made of fiberglass cloth with a heterogeneous film deposited on the surface were investigated in the frequency range from 300 MHz to 10 GHz.

  11. ESTIMATION OF INHERENT OPTICAL PROPERTIES AND WATER CONSTITUENT CONCENTRATIONS FROM THE REMOTE-SENSING REFLECTANCE SPECTRA IN THE ALBEMARLE-PAMLICO ESTUARY, USA

    EPA Science Inventory

    The decomposition of remote sensing reflectance (RSR) spectra into absorption, scattering and backscattering coefficients, and scattering phase function is an important issue for estimating water quality (WQ) components. For Case 1 waters RSR decomposition can be easily accompli...

  12. Electronic, Optical and Thermoelectric Properties of 2H-CuAlO2: A First Principles Study

    NASA Astrophysics Data System (ADS)

    Bhamu, K. C.; Khenata, R.; Khan, Saleem Ayaz; Singh, Mangej; Priolkar, K. R.

    2016-01-01

    The electronic and optical properties of 2H-CuAlO2, including energy bands, density of states (DOS), optical dielectric behaviour, refractive index, absorption coefficient and optical conductivity, have been investigated within the framework of a full-potential linearized augmented plane wave scheme using different potentials. The direct and indirect band gaps for CuAlO2, computed using the Becke-Johnson potential, are estimated at 3.53 eV and 2.48 eV, respectively, which are in better agreement with the experimentally reported band gaps than those previously computed. The origin of energy bands is elucidated in terms of DOS, while the behaviour of the imaginary part of the dielectric constant is explained in terms of electronic transitions from valence bands to conduction bands. The computed value of the refractive index is 2.25 (1.94) for light perpendicular (parallel) to the c axis, in concordance with the available values. The overall shape of the spectral distribution for absorption coefficient and optical conductivity is also in accord with the reported data. The investigated thermoelectric properties indicate that CuAlO2 is a p-type semiconductor showing high effectiveness at low temperatures.

  13. Influence of SiO2 Addition on Properties of PTFE/TiO2 Microwave Composites

    NASA Astrophysics Data System (ADS)

    Yuan, Ying; Wang, Jie; Yao, Minghao; Tang, Bin; Li, Enzhu; Zhang, Shuren

    2018-01-01

    Composite substrates for microwave circuit applications have been fabricated by filling polytetrafluoroethylene (PTFE) polymer matrix with ceramic powder consisting of rutile TiO2 ( D 50 ≈ 5 μm) partially substituted with fused amorphous SiO2 ( D 50 ≈ 8 μm) with composition x vol.% SiO2 + (50 - x) vol.% TiO2 ( x = 0, 3, 6, 9, 12), and the effects of SiO2 addition on characteristics such as the density, moisture absorption, microwave dielectric properties, and thermal properties systematically investigated. The results show that the filler was well distributed throughout the matrix. High dielectric constant ( ɛ r > 7.19) and extremely low moisture absorption (<0.02%) were obtained, resulting from the relatively high density of the composites. The ceramic particles served as barriers and improved the thermal stability of the PTFE polymer, retarding its decomposition. The temperature coefficient of dielectric constant ( τ ɛ ) of the composites shifted toward the positive direction (from - 309 ppm/°C to - 179 ppm/°C) as the SiO2 content was increased, while the coefficient of thermal expansion remained almost unchanged (˜ 35 ppm/°C).

  14. Application of Terahertz Radiation to Soil Measurements: Initial Results

    PubMed Central

    Dworak, Volker; Augustin, Sven; Gebbers, Robin

    2011-01-01

    Developing soil sensors with the possibility of continuous online measurement is a major challenge in soil science. Terahertz (THz) electromagnetic radiation may provide the opportunity for the measurement of organic material density, water content and other soil parameters at different soil depths. Penetration depth and information content is important for a functional soil sensor. Therefore, we present initial research on the analysis of absorption coefficients of four different soil samples by means of THz transmission measurements. An optimized soil sample holder to determine absorption coefficients was used. This setup improves data acquisition because interface reflections can be neglected. Frequencies of 340 GHz to 360 GHz and 1.627 THz to 2.523 THz provided information about an existing frequency dependency. The results demonstrate the potential of this THz approach for both soil analysis and imaging of buried objects. Therefore, the THz approach allows different soil samples to be distinguished according to their different absorption properties so that relations among soil parameters may be established in future. PMID:22163737

  15. Ellipsometric analysis and optical absorption characterization of gallium phosphide nanoparticulate thin film

    NASA Astrophysics Data System (ADS)

    Zhang, Qi-Xian; Wei, Wen-Sheng; Ruan, Fang-Ping

    2011-04-01

    Gallium phosphide (GaP) nanoparticulate thin films were easily fabricated by colloidal suspension deposition via GaP nanoparticles dispersed in N,N-dimethylformamide. The microstructure of the film was performed by x-ray diffraction, high resolution transmission electron microscopy and field emission scanning electron microscopy. The film was further investigated by spectroscopic ellipsometry. After the model GaP+void|SiO2 was built and an effective medium approximation was adopted, the values of the refractive index n and the extinction coefficient k were calculated for the energy range of 0.75 eV-4.0 eV using the dispersion formula in DeltaPsi2 software. The absorption coefficient of the film was calculated from its k and its energy gaps were further estimated according to the Tauc equation, which were further verified by its fluorescence spectrum measurement. The structure and optical absorption properties of the nanoparticulate films are promising for their potential applications in hybrid solar cells.

  16. THE ABSORPTION PROPERTIES OF LEAD-FREE GARMENTS FOR USE IN RADIATION PROTECTION.

    PubMed

    Çetin, Hüseyin; Yurt, Aysegül; Yüksel, Serra Haznaci

    2017-04-15

    In this study, the absorption capability and the weight of various radiation-shielding materials were evaluated, for applications as alternatives to lead garments. Toxicity, atomic number, density, K-edge absorption energy and availability of elements that can serve as an alternative to lead, including tin, antimony, bismuth and tungsten, were considered. The attenuation coefficients of these elements were determined using the XCOM software package, and these metals were mixed with polymers at 50, 70, 80 and 85 % mass ratios. It can be concluded that all of the new shielding materials used in the study can be used for a diagnostic range of X-rays. However, they were compared with the commercial lead garments in terms of weight and attenuation coefficient; the 85 % samples were lighter than a 0.5-mm lead garment and provided superior radiation protection, which demonstrates its potential for commercial applications. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  17. Acoustic and relaxation behaviors of polydimethylsiloxane studied by using brillouin and dielectric spectroscopies

    NASA Astrophysics Data System (ADS)

    Lee, Byoung Wan; Ko, Jae-Hyeon; Park, Jaehoon; Shin, Dong-Myeong; Hwang, Yoon-Hwae

    2016-04-01

    The temperature dependences of the acoustic properties and the dielectric relaxation times of polydimethylsiloxane were investigated by using high-resolution Brillouin and broadband dielectric spectroscopies. The longitudinal sound velocity showed a large increase upon approaching the glass transition temperature while the acoustic absorption coefficient exhibited a maximum at ~263 K. Comparison of these results with previous ultrasonic data revealed a substantial frequency dispersion of the acoustic properties of this silicone-based elastomer. The relaxation times derived from the acoustic absorption peaks were consistent with the temperature dependence of the dielectric relaxation time of the structural a process, indicating a strong coupling between the acoustic waves and the segmental motions of the main chains.

  18. Determination of absorption coefficient of nanofluids with unknown refractive index from reflection and transmission spectra

    NASA Astrophysics Data System (ADS)

    Kim, Joong Bae; Lee, Seungyoon; Lee, Kyungeun; Lee, Ikjin; Lee, Bong Jae

    2018-07-01

    It has been shown that the absorption coefficient of a nanofluid can be actively tuned by changing material, size, shape, and concentration of the nanoparticle suspension. In applications of engineered nanofluids for the direct absorption of solar radiation, it is important to experimentally characterize the absorption coefficient of nanofluids in the solar spectrum. If the refractive index of the base fluid (i.e., the solution without nanoparticles) is known a priori, the absorption coefficient of nanofluids can be easily determined from the transmission spectrum. However, if the refractive index of the base fluid is not known, it is not straightforward to extract the absorption coefficient solely from the transmission spectrum. The present work aims to develop an analytical method of determining the absorption coefficient of nanofluids with unknown refractive index by measuring both reflection and transmission spectra. The proposed method will be validated with deionized water, and the effect of measurement uncertainty will be carefully examined. Finally, the general applicability of the proposed method will also be demonstrated for Therminol VP-1 as well as the Therminol VP-1 - graphite nanofluid.

  19. InGaAs/InAsSb strained layer superlattices for mid-wave infrared detectors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ariyawansa, Gamini, E-mail: gamini.ariyawansa.2@us.af.mil; Reyner, Charles J.; Steenbergen, Elizabeth H.

    2016-01-11

    Investigation of growth and properties of InGaAs/InAsSb strained layer superlattices, identified as ternary strained layer superlattices (ternary SLSs), is reported. The material space for the antimony-based SLS detector development is expanded beyond InAs/InAsSb and InAs/(In)GaSb by incorporating Ga into InAs. It was found that this not only provides support for strain compensation but also enhances the infrared (IR) absorption properties. A unique InGaAs/InAsSb SLS exists when the conduction band of InGaAs aligns with that of InAsSb. The bandgap of this specific InGaAs/InAsSb SLS can then be tuned by adjusting the thickness of both constituents. Due to the enhanced electron-hole wavefunctionmore » overlap, a significant increase in the absorption coefficient was theoretically predicted for ternary SLS as compared to current state-of-the-art InAs/InAsSb SLS structures, and an approximately 30%–35% increase in the absorption coefficient was experimentally observed. All the samples examined in this work were designed to have the same bandgap of approximately 0.240 eV (5.6 μm) at 150 K.« less

  20. Fe induced optical limiting properties of Zn1-xFexS nanospheres

    NASA Astrophysics Data System (ADS)

    Vineeshkumar, T. V.; Raj, D. Rithesh; Prasanth, S.; Unnikrishnan, N. V.; Mahadevan Pillai, V. P.; Sudarasanakumar, C.

    2018-02-01

    Zn1-xFexS (x = 0.00, 0.01, 0.03, 0.05) nanospheres were synthesized by polyethylene glycol assisted hydrothermal method. XRD studies revealed that samples of all concentrations exhibited cubic structure with crystallite grain size 7-9 nm. TEM and SEM show the formation of nanospheres by dense aggregation of smaller particles. Increasing Zn/Fe ratio tune the band gap from 3.4 to 3.2 eV and also quenches the green luminescence. FTIR spectra reveal the presence of capping agent, intensity variation and shifting of LO and TO phonon modes confirm the presence of Fe ions. Nonlinear optical properties were measured using open and closed aperture z-scan techniques, employing frequency doubled 532 nm pumping sources which indicated reverse saturable absorption (RSA) process. The nonlinear optical coefficients are obtained by two photon absorption (2PA). Composition dependent nonlinear optical coefficients ;β;, nonlinear refractive index, third order susceptibility and optical limiting threshold were estimated. The sample shows good nonlinear absorption and enhancement of optical limiting behavior with increasing Fe volume fraction. Contribution of RSA on optical nonlinearity of Zn1-xFexS nanospheres are also investigated using three different input energies. Zn1-xFexS with comparatively small limiting threshold value is a promising candidate for optical power limiting applications.

  1. Effect of morphology and solvent on two-photon absorption of nano zinc oxide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kavitha, M.K.; Haripadmam, P.C.; Gopinath, Pramod

    Highlights: ► ZnO nanospheres and triangular structures synthesis by novel precipitation technique. ► The effect of precursor concentration on the size and shape of nano ZnO. ► Open aperture Z-scan measurements of the ZnO nanoparticle dispersions. ► Nanospheres exhibit higher two photon absorption coefficient than triangular nanostructures. ► Nanospheres dispersed in water exhibit higher two photon absorption coefficient than its dispersion in 2-propanol. - Abstract: In this paper, we report the effect of morphology and solvent on the two-photon absorption of nano zinc oxide. Zinc oxide nanoparticles in two different morphologies like nanospheres and triangular nanostructures are synthesized by novelmore » precipitation technique and their two-photon absorption coefficient is measured using open aperture Z-scan technique. Experimental results show that the zinc oxide nanospheres exhibit higher two-photon absorption coefficient than the zinc oxide triangular nanostructures. The zinc oxide nanospheres dispersed in water exhibit higher two-photon absorption coefficient than that of its dispersion in 2-propanol. The zinc oxide nanospheres dispersed in water shows a decrease in two-photon absorption coefficient with an increase in on-axis irradiance. The result confirms the dependence of shape and solvent on the two-photon absorption of nano zinc oxide.« less

  2. High transport and excellent optical property of a two-dimensional single-layered hybrid perovskite (C4H9NH3)2PbBr4: a theoretical study.

    PubMed

    Lei, Jun-Hui; Zhao, Yu-Qing; Tang, Qiong; Lin, Jian-Guo; Cai, Meng-Qiu

    2018-05-16

    Organic-inorganic hybrid perovskites are developed to pursue high charge carrier mobility and light absorption coefficient. In this study, we present a detailed comparative research of the atomic and electronic structures of single-layered perovskites (C4H9NH3)2PbBr4 with two-dimensional/three-dimensional (2D/3D) spatial arrangement to predict the in plane charge carrier mobility along with the charge effective mass, elastic constant, and deformation potential. The calculated results reveal that the intrinsic in plane carrier mobilities of 2D single-layered hybrid perovskite (C4H9NH3)2PbBr4 along the 100 and 010 directions are superior to those of the 3D structure. Furthermore, the optical properties are calculated from the electronic structure; it is found that the light absorption spectrum of 2D single-layered perovskite (C4H9NH3)2PbBr4 with a high absorption coefficient is wider than that of the 3D phase. We speculate that the superior mobility and wider absorption spectrum of the 2D mono-layered perovskite are due to high charge density and ferroelectricity originating from structure distortion upon 3D-to-2D structure transformation. These results indicate that the 2D single-layered hybrid perovskite (C4H9NH3)2PbBr4 is a potential candidate for application in the optoelectronic and photovoltaic fields.

  3. Hybrid density functional study on the mechanism for the enhanced photocatalytic properties of the ultrathin hybrid layered nanocomposite g-C3N4/BiOCl

    NASA Astrophysics Data System (ADS)

    Yao, Wenzhi; Zhang, Jihua; Wang, Yuanxu; Ren, Fengzhu

    2018-03-01

    To investigate the origin of the high photocatalytic performance of experimentally synthesized g-C3N4/ BiOCl, we studied its geometry structure, electronic structure, and photocatalytic properties by means of hybrid density-functional theory (DFT). The calculated band alignment of g-C3N4 and few-layer BiOCl sheets clearly shows that g-C3N4/ BiOCl is a standard type-II nanocomposite. The density of states, Bader charge, partial charge density, charge density difference, and the effective masses show that electron-hole pair can be effectively separated in the g-C3N4/BiOCl interface. The calculated absorption coefficients indicate an obvious redshift of the absorption edge. The band gap of g-C3N4/BiOCl can be modulated by external electric field, and a semiconductor-semimetal transition is observed. The type-II vdW heterostructure is still maintained during the changes of external electric field. Especially, when the electric field reaches to +0.7 V/Å, the impurity states have been eliminated with the band gap of 2.3 eV. An analysis of optical properties shows that the absorption coefficient in the visible-light region is enhanced considerably as the electric-field strength increases. Our calculation results suggest that the ultrathin hybrid layered g-C3N4/BiOCl nanocomposite may have significant advantages for visible-light photocatalysis.

  4. Optical properties and possible sources of brown carbon in PM2.5 over Xi'an, China

    NASA Astrophysics Data System (ADS)

    Shen, Zhenxing; Zhang, Qian; Cao, Junji; Zhang, Leiming; Lei, Yali; Huang, Yu; Huang, R.-J.; Gao, Jinjin; Zhao, Zhuzi; Zhu, Chongshu; Yin, Xiuli; Zheng, Chunli; Xu, Hongmei; Liu, Suixin

    2017-02-01

    To quantify optical and chemical properties of PM2.5 brown carbon (BrC) in Xi'an, 58 high-volume ambient PM2.5 samples were collected during 2 November 2009 to 13 October 2010. Mass concentrations of chemical components were determined, including water-soluble ions, water-soluble organic carbon, levoglucosan, organic carbon (OC), and element carbon (EC). BrC, as an unidentified and wavelength-dependent organic compound, was also measured from water-soluble carbon (WSOC) at 340 nm using UV-vis spectrometer. The wavelength-dependent absorption coefficient (babs) and mass absorption coefficient (MAC) were much abundant at 340 nm, and the high Absorption Ångström coefficient (AAC) values were observed around 5.4, corresponding to the existence of BrC in ambient PM2.5, especially in winter. Good correlations (R > 0.60) between babs and biomass burning markers, such as levoglucosan and K+, in winter indicated significant amounts of primary BrC from biomass burning emissions. Secondary organic carbon BrC (SOCsbnd BrC) was more abundant in winter than in summer. SOCsbnd BrC in winter was mainly fresh SOC formed from aqueous phase reactions while in summer, aged SOC from photo-chemical formation. Source profiles of BrC optical parameters were detected, which verified sources of BrC from biomass burning and coal burning emissions in areas surrounding Xi'an. The rapidly decreasing babs-340nm values from biomass burning smoldering to straw pellet burning suggested that burning straw pellet instead of burning straw directly is an effective measure for reducing BrC emissions.

  5. Optical properties and composition changes in chromophoric dissolved organic matter along trophic gradients: Implications for monitoring and assessing lake eutrophication.

    PubMed

    Zhang, Yunlin; Zhou, Yongqiang; Shi, Kun; Qin, Boqiang; Yao, Xiaolong; Zhang, Yibo

    2017-12-26

    Chromophoric dissolved organic matter (CDOM) is an important optically active substance in aquatic environments and plays a key role in light attenuation and in the carbon, nitrogen and phosphorus biogeochemical cycles. Although the optical properties, abundance, sources, cycles, compositions and remote sensing estimations of CDOM have been widely reported in different aquatic environments, little is known about the optical properties and composition changes in CDOM along trophic gradients. Therefore, we collected 821 samples from 22 lakes along a trophic gradient (oligotrophic to eutrophic) in China from 2004 to 2015 and determined the CDOM spectral absorption and nutrient concentrations. The total nitrogen (TN), total phosphorus (TP), and chlorophyll a (Chla) concentrations and the Secchi disk depth (SDD) ranged from 0.02 to 24.75 mg/L, 0.002-3.471 mg/L, 0.03-882.66 μg/L, and 0.05-17.30 m, respectively. The trophic state index (TSI) ranged from 1.55 to 98.91 and covered different trophic states, from oligotrophic to hyper-eutrophic. The CDOM absorption coefficient at 254 nm (a(254)) ranged from 1.68 to 92.65 m -1 . Additionally, the CDOM sources and composition parameters, including the spectral slope and relative molecular size value, exhibited a substantial variability from the oligotrophic level to other trophic levels. The natural logarithm value of the CDOM absorption, lna(254), is highly linearly correlated with the TSI (r 2  = 0.92, p < .001, n = 821). Oligotrophic lakes are distinguished by a(254)<4 m -1 , and mesotrophic and eutrophic lakes are classified as 4 ≤ a(254)≤10 and a(254)>10 m -1 , respectively. The results suggested that the CDOM absorption coefficient a(254) might be a more sensitive single indicator of the trophic state than TN, TP, Chla and SDD. Therefore, we proposed a CDOM absorption coefficient and determined the threshold for defining the trophic state of a lake. Several advantages of measuring and estimating CDOM, including rapid experimental measurements, potential in situ optical sensor measurements and large-spatial-scale remote sensing estimations, make it superior to traditional TSI techniques for the rapid monitoring and assessment of lake trophic states. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Optical band gap and spectroscopic study of lithium alumino silicate glass containing Y 3+ ions

    NASA Astrophysics Data System (ADS)

    Shakeri, M. S.; Rezvani, M.

    2011-09-01

    The effect of different amounts of Y 2O 3 dopant on lithium alumino silicate (LAS) glass has been studied in this work. Glasses having 14.8Li 2O-20Al 2O 3-65.2SiO 2 (wt%) composition accompanied with Y 2O 3 dopant were prepared by normal melting process. In order to calculate the absorption coefficient of samples, transmittance and reflectance spectra of polished samples were measured in the room temperature. Optical properties i.e. Fermi energy level, direct and indirect optical band gaps and Urbach energy were calculated using functionality of extinction coefficient from Fermi-Dirac distribution function, Tauc's plot and the exponential part of absorption coefficient diagram, respectively. It has been clarified that variation in mentioned optical parameters is associated with the changes in physical properties of samples i.e. density or molar mass. On the other hand, increasing of Y 3+ ions in the glassy microstructure of samples provides a semiconducting character to LAS glass by reducing the direct and indirect optical band gaps of glass samples from 1.97 to 1.67 and 3.46 to 2.1 (eV), respectively. These changes could be attributed to the role of Y 3+ ions as the network former in the track of SiO 4 tetrahedrals.

  7. Light absorption properties of brown carbon over the southeastern Tibetan Plateau.

    PubMed

    Zhu, Chong-Shu; Cao, Jun-Ji; Huang, Ru-Jin; Shen, Zhen-Xing; Wang, Qi-Yuan; Zhang, Ning-Ning

    2018-06-01

    We present a study of the light-absorbing properties of water-soluble brown carbon (WS-BrC) and methanol-soluble brown carbon (MeS-BrC) at a remote site (Lulang, 3326m above sea level) in the southeastern Tibetan Plateau during the period 2015-2016. The light absorption coefficients at 365nm (b abs365 ) of WS-BrC and MeS-BrC were the highest during winter and the lowest during monsoon season. MeS-BrC absorbs about 1.5 times higher at 365nm compared to WS-BrC. The absorption at 550nm appears lower compared to that of 365nm for WS-BrC and MeS-BrC, respectively. Higher average value of the absorption Ångström exponent (AAE, 365-550nm) was obtained for MeS-BrC (8.2) than that for WS-BrC (6.9). The values of the mass absorption cross section at 365nm (MAC 365 ) indicated that BrC in winter absorbs UV-visible light more efficiently than in monsoon. The results confirm the importance of BrC in contributing to light-absorbing aerosols in this region. The understanding of the light absorption properties of BrC is of great importance, especially in modeling studies for the climate effects and transport of BrC in the Tibetan Plateau. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Molecular Chemistry of Atmospheric Brown Carbon Inferred from a Nationwide Biomass Burning Event

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin, Peng; Bluvshtein, Nir; Rudich, Yinon

    Lag Ba'Omer, a nationwide bonfire festival in Israel, was chosen as a case study to investigate the influence of a major biomass burning event on the light absorption properties of atmospheric brown carbon (BrC). The chemical composition and optical properties of BrC chromophores were investigated using a high performance liquid chromatography (HPLC) platform coupled to photo diode array (PDA) and high resolution mass spectrometry (HRMS) detectors. Substantial increase of BrC light absorption coefficient was observed during the night-long biomass burning event. Most chromophores observed during the event were attributed to nitroaromatic compounds, comprising 28 elemental formulas of at least 63more » structural isomers. The NAC, in combination, accounted for 50-80% of the total visible light absorption (> 400 nm) by solvent extractable BrC. The results highlight that NAC, particular nitrophenols, are important light absorption contributors of biomass burning organic aerosol (BBOA), suggesting that night time chemistry of ·NO 3 and N 2O 5 with particles may play a significant role in atmospheric transformations of BrC. Nitrophenols and related compounds were especially important chromophores of BBOA. The absorption spectra of the BrC chromophores are influenced by the extraction solvent and solution pH, implying that the aerosol acidity is an important factor controlling the light absorption properties of BrC.« less

  9. Molecular Chemistry of Atmospheric Brown Carbon Inferred from a Nationwide Biomass Burning Event

    DOE PAGES

    Lin, Peng; Bluvshtein, Nir; Rudich, Yinon; ...

    2017-08-26

    Lag Ba'Omer, a nationwide bonfire festival in Israel, was chosen as a case study to investigate the influence of a major biomass burning event on the light absorption properties of atmospheric brown carbon (BrC). The chemical composition and optical properties of BrC chromophores were investigated using a high performance liquid chromatography (HPLC) platform coupled to photo diode array (PDA) and high resolution mass spectrometry (HRMS) detectors. Substantial increase of BrC light absorption coefficient was observed during the night-long biomass burning event. Most chromophores observed during the event were attributed to nitroaromatic compounds, comprising 28 elemental formulas of at least 63more » structural isomers. The NAC, in combination, accounted for 50-80% of the total visible light absorption (> 400 nm) by solvent extractable BrC. The results highlight that NAC, particular nitrophenols, are important light absorption contributors of biomass burning organic aerosol (BBOA), suggesting that night time chemistry of ·NO 3 and N 2O 5 with particles may play a significant role in atmospheric transformations of BrC. Nitrophenols and related compounds were especially important chromophores of BBOA. The absorption spectra of the BrC chromophores are influenced by the extraction solvent and solution pH, implying that the aerosol acidity is an important factor controlling the light absorption properties of BrC.« less

  10. The structural, electronic, magnetic and optical properties of the half-metallic binary alloys ZCl3 (Z=Be, Mg, Ca, Sr): A first-principles study

    NASA Astrophysics Data System (ADS)

    Song, Jun-Tao; Zhang, Jian-Min

    2018-06-01

    The investigations of the electronic and magnetic properties show the binary Heusler alloys ZCl3 (Z = Be, Mg, Ca, Sr) are half-metallic (HM) ferromagnets with an integer magnetic moment (Mt) of 1 μB /f.u.. The alloy BeCl3 is thermodynamic meta-stable, while other alloys are thermodynamic stable according to their cohesive energies and formation energies. Moreover, wide HM regions for alloys ZCl3 (Z = Be, Mg, Ca, Sr) show their HM characters are robust when the lattices are expanded or compressed under uniform and tetragonal strains. Finally, some optical properties are analyzed in detail, such as the dielectric function, the absorption coefficient, the refractive index and the extinction coefficient.

  11. Optical effects induced by epitaxial tension in lead titanate

    NASA Astrophysics Data System (ADS)

    Dejneka, A.; Chvostova, D.; Pacherova, O.; Kocourek, T.; Jelinek, M.; Tyunina, M.

    2018-01-01

    Single-crystal-type epitaxial films of perovskite oxide ferroelectrics are attractive for integrated photonic applications because of the remarkable optical properties and effects in ferroelectrics. The properties of the films may be influenced by epitaxial strain arising from the film-substrate mismatch. Here, dramatic strain-induced changes of the absorption and refraction are experimentally detected by spectroscopic ellipsometry in epitaxial films of archetypical ferroelectric PbTiO3. Comparison of the properties of a tensile-strained film with those of reference films and crystals reveals that epitaxial tension produces blueshifts of the primary above-bandgap absorption peaks by 1 eV and a decrease in the refractive index by 0.5 in the transparent spectral range. The obtained quadratic electrooptic and effective elastooptic coefficients exceed the bulk values by orders of magnitude. The experimental observations prove that epitaxy is a powerful tool for engineering unprecedented optical properties that may enable future photonics innovations.

  12. Passive optical limiting studies of nanostructured Cu doped ZnO-PVA composite thin films

    NASA Astrophysics Data System (ADS)

    Tamgadge, Y. S.; Sunatkari, A. L.; Talwatkar, S. S.; Pahurkar, V. G.; Muley, G. G.

    2016-01-01

    We prepared undoped and Cu doped ZnO semiconducting nanoparticles (NPs) by chemical co-precipitation method and obtained Cu doped ZnO-polyvinyl alcohol (PVA) nanocomposite thin films by spin coating to investigate third order nonlinear optical and optical limiting properties under cw laser excitation. Powder samples of NPs were characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), energy dispersive spectroscopy, transmission electron microscopy, ultraviolet-visible (UV-vis) and Fourier transform infrared spectroscopy. XRD pattern and FE-SEM micrograph revealed the presence of hexagonal wurtzite phase ZnO NPs having uniform morphology with average particle size of 20 nm. The presence of excitons and absorption peaks in the range 343-360 nm, revealed by UV-vis study, were attributed to excitons in n = 1 quantum state. Third order NLO properties of all composite thin films were investigated by He-Ne continuous wave (cw) laser of wavelength 632.8 nm using Z-scan technique. Thermally stimulated enhanced values of nonlinear refraction and absorption coefficients were obtained which may be attributed to self-defocusing effect, reverse saturable absorption, weak free carrier absorption and surface states properties originated from thermo optic effect. Optical limiting properties have been studied using cw diode laser of wavelength 808 nm and results are presented.

  13. Linear, non-linear and thermal properties of single crystal of LHMHCl

    NASA Astrophysics Data System (ADS)

    Kulshrestha, Shobha; Shrivastava, A. K.

    2018-05-01

    The single crystal of amino acid of L-histidine monohydrochloride was grown by slow evaporation technique at room temperature. High optical quality and appropriate size of crystals were grown under optimized growth conditions. The grown crystals were transparent. Crystals are characterized with different characterizations such as Solubility test, UV-Visible, optical band gap (Eg). With the help of optical data to be calculate absorption coefficient (α), extinction coefficient (k), refractive index (n), dielectric constant (ɛ). These optical constants are shows favorable conditions for photonics devices. Second harmonic generation (NLO) test show the green light emission which is confirm that crystal have properties for laser application. Thermal stability of grown crystal is confirmed by TG/DTA.

  14. Extension of depth-resolved reconstruction of attenuation coefficients in optical coherence tomography for slim samples

    NASA Astrophysics Data System (ADS)

    Hohmann, Martin; Lengenfelder, B.; Kanawade, R.; Klämpfl, F.; Schmidt, Michael

    2015-12-01

    Coherent light propagating through turbid media is attenuated due to scattering and absorption. The decrease of the intensity of the coherent light is described by the attenuation coefficient. The measured decay of the coherent light through turbid media with optical coherence tomography (OCT) can be used to reconstruct the attenuation coefficient. Since most of the OCT systems work in the near-infrared region, they are the optical window from 800-1400 nm in tissue. Hence, the most part of the attenuation coefficient is caused due to the scattering. Therefore, deriving the attenuation coefficient is one way to get an approximation of the scattering coefficient which is difficult to access even up to day. Moreover, OCT measurements are one of the few possibilities to derive physical properties with micrometre resolution of the media under investigation.

  15. Electrical properties of tin-doped zinc oxide nanostructures doped at different dopant concentrations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nasir, M. F., E-mail: babaibaik2002@yahoo.com; Zainol, M. N., E-mail: nizarzainol@yahoo.com; Hannas, M., E-mail: mhannas@gmail.com

    This project has been focused on the electrical and optical properties respectively on the effect of Tin doped zinc oxide (ZnO) thin films at different dopant concentrations. These thin films were doped with different Sn dopant concentrations at 1 at%, 2 at%, 3 at%, 4 at% and 5 at% was selected as the parameter to optimize the thin films quality while the annealing temperature is fixed 500 °C. Sn doped ZnO solutions were deposited onto the glass substrates using sol-gel spin coating method. This project was involved with three phases, which are thin films preparation, deposition and characterization. The thinmore » films were characterized using Current Voltage (I-V) measurement and ultraviolet-visible-near-infrared (UV-vis-NIR) spectrophotometer (Perkin Elmer Lambda 750) for electrical properties and optical properties. The electrical properties show that the resistivity is the lowest at 4 at% Sn doping concentration with the value 3.08 × 10{sup 3} Ωcm{sup −1}. The absorption coefficient spectrum obtained shows all films exhibit very low absorption in the visible (400-800 nm) and near infrared (NIR) (>800 nm) range but exhibit high absorption in the UV range.« less

  16. Temperature and pressure dependence of dichloro-difluoromethane (CF2C12) absorption coefficients for CO2 waveguide laser radiation

    NASA Technical Reports Server (NTRS)

    Harward, C. N.

    1977-01-01

    Measurements were performed to determine the pressure and temperature dependence of CFM-12 absorption coefficients for CO2 waveguide laser radiation. The absorption coefficients of CFM-12 for CO2 waveguide laser radiation were found to have no spectral structure within small spectral bandwidths around the CO2 waveguide laser lines in the CO2 spectral band for pressures above 20 torr. All of the absorption coefficients for the CO2 laser lines studied are independent of pressure above 100 torr, except for the P(36) laser CO2 spectral band. The absorption coefficients associated with the P(42) line in the same band showed the greatest change with temperature, and it also has the largest value of all the lines studied.

  17. Thermal dose dependent optical property changes of ex vivo chicken breast tissues between 500 and 1100 nm.

    PubMed

    Adams, Matthew T; Wang, Qi; Cleveland, Robin O; Roy, Ronald A

    2014-07-07

    This study examines the effectiveness of the thermal dose model in accurately predicting thermally induced optical property changes of ex vivo chicken breast between 500-1100 nm. The absorption coefficient, μa, and the reduced scattering coefficient, μ's, of samples are measured as a function of thermal dose over the range 50 °C-70 °C. Additionally, the maximum observable changes in μa and μ's are measured as a function of temperature in the range 50 °C-90 °C. Results show that the standard thermal dose model used in the majority of high-intensity focused ultrasound (HIFU) treatments is insufficient for modeling optical property changes, but that the isodose constant may be modified in order to better predict thermally induced changes. Additionally, results are presented that show a temperature dependence on changes in the two coefficients, with an apparent threshold effect occurring between 65 °C-70 °C.

  18. Two Photon Absorption And Refraction in Bulk of the Semiconducting Materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kumari, Vinay; Department of Physics, DCRUST Murthal, Haryana; Kumar, Vinod

    2011-10-20

    Fast electronic detection systems have opened up a number of new fields like nonlinear optics, optical communication, coherent optics, optical bistability, two/four wave mixing. The interest in this field has been stimulated by the importance of multiphoton processes in many fundamental aspects of physics. It has proved to be an invaluable tool for determining the optical and electronic properties of the solids because of the fact that one gets the information about the bulk of the material rather than the surface one. In this paper we report, the measurement of the nonlinear absorption and refraction from the band gap tomore » half-band gap region of bulk of semiconductors in the direct and indirect band gap crystals with nanosecond laser. The measured theoretical calculated values of two-photon absorption coefficients ({beta}) and nonlinear refraction n{sub 2}({omega}) of direct band gap crystal match the earlier reported theoretical predictions. By making use of these theoretical calculated values, we have estimated {beta} and n{sub 2}({omega}) in the case of indirect band gap crystals. Low value of absorption coefficient in case of indirect band gap crystals have been attributed to phonon assisted transition while reduction in nonlinear refraction is due to the rise in saturation taking place in the absorption.« less

  19. Tuning optical absorption and photoexcited recombination dynamics in La1-xSrxFeO3-δ through A-site substitution and oxygen vacancies

    NASA Astrophysics Data System (ADS)

    Smolin, Sergey; Scafetta, Mark; Choquette, Amber; Sfeir, Matthew; Baxter, Jason; May, Steven

    We study optical absorption and recombination dynamics in La1-xSrxFeO3-δ thin films, uncovering the effects of tuning nominal Fe valence via A-site substitution and oxygen stoichiometry. Variable angle spectroscopic ellipsometry was used to measure static optical properties, revealing a linear increase in absorption coefficient at 1.25 eV and a red-shifting of the optical absorption edge with increasing Sr fraction. The absorption spectra can be similarly tuned through the introduction of oxygen vacancies, indicating the critical role that nominal Fe valence plays in optical absorption. Dynamic optoelectronic properties were studied with ultrafast transient reflectance spectroscopy, revealing similar nanosecond photoexcited carrier lifetimes for oxygen deficient and stoichiometric films with the same nominal Fe valence. These results demonstrate that while the static optical absorption is strongly dependent on Fe valence tuned through cation or anion stoichiometry, oxygen vacancies do not appear to play a significantly detrimental role in the recombination kinetics. Nsf: ECCS-1201957, MRI DMR-0922929, MRI DMR-1040166. This research used resources of the Center for Functional Nanomaterials, which is a U.S. DOE Office of Science Facility, at Brookhaven National Laboratory under Contract No. DE-SC0012704.

  20. Nondestructive Method For Measuring The Scattering Coefficient Of Bulk Material

    NASA Astrophysics Data System (ADS)

    Groenhuis, R. A. J.; ten Bosch, J. J.

    1981-05-01

    During demineralization and remineralization of dental enamel its structure changes resulting in a change of the absorption and scattering coefficients of the enamel. By measuring these coefficients during demineralization and remineralization these processes can be monitored in a non-destructive way. For this purpose an experimental arrangement was made: a fibre illuminates a spot on the sample with monochromatic light with a wave-length between 400 nm and 700 nm; a photomultiplier measures the luminance of the light back-scattered by the sample as a function of the distance from the measuring snot to the spot of illumination. In a Monte Carlo-model this luminance is simulated using the same geometry given the scattering and absorption coefficients in a sample. Then the scattering and absorption coefficients in the sample are determined by selecting the theoretical curve fitting the experimental one. Scattering coefficients below 10 mm-1 and absorption coefficients obtained with this method on calibration samples correspond well with those obtained with another method. Scattering coefficients above 10 mm-1 (paper samples) were measured ton low. This perhaps is caused by the anisotropic structure of paper sheets. The method is very suitable to measure the scattering and absorption coefficients of bulk materials.

  1. Electromagnetic interference shielding effectiveness of polypropylene/conducting fiber composites

    NASA Astrophysics Data System (ADS)

    Lee, Pyoung-Chan; Kim, Bo-Ram; Jeoung, Sun Kyoung; Kim, Yeung Keun

    2016-03-01

    Electromagnetic released from the automotive electronic parts is harmful to human body. Electromagnetic interference (EMT) shielding refers to the reflection and/or adsorption of electromagnetic radiation by a material, which thereby acts as a shield against the penetration of the radiation through the shield. Polypropylene (PP)/conductive micro fiber composites containing various fiber contents and fiber length were injection-molded. The effect of fiber content and length on electrical properties of the composites was studied by electrical resistivity and EMT shielding measurements. The through-plane electrical conductivity and dielectric permittivity were obtained by measuring dielectric properties. The EMT shielding effectiveness (SE) was investigated by using S-parameter in the range of 100 ~ 1500 MHz. Reflection, absorption and multiple-reflection are the EMT attenuation mechanisms. From the measurement of S-Parameters, the absorption coefficient, reflection coefficient, and the shielding efficiency of the materials were calculated. The EMT SE of PP/conducing fiber composites is 40 dB over a wide frequency range up to 1.5 GHz, which is higher than that of PP/talc composite used automotive parts, viz. 0 dB.

  2. Changes in morphology and optical properties of sclera and choroidal layers due to hyperosmotic agent.

    PubMed

    Zaman, Raiyan T; Rajaram, Narasimhan; Nichols, Brandon S; Rylander, Henry G; Wang, Tianyi; Tunnell, James W; Welch, Ashley J

    2011-07-01

    Light scattering in the normally white sclera prevents diagnostic imaging or delivery of a focused laser beam to a target in the underlying choroid layer. In this study, we examine optical clearing of the sclera and changes in blood flow resulting from the application of glycerol to the sclera of rabbits. Recovery dynamics are monitored after the application of saline. The speed of clearing for injection delivery is compared to the direct application of glycerol through an incision in the conjunctiva. Although, the same volume of glycerol was applied, the sclera cleared much faster (5 to 10 s) with the topical application of glycerol compared to the injection method (3 min). In addition, the direct topical application of glycerol spreads over a larger area in the sclera than the latter method. A diffuse optical spectroscopy system provided spectral analysis of the remitted light every two minutes during clearing and rehydration. Comparison of measurements to those obtained from phantoms with various absorption and scattering properties provided estimates of the absorption coefficient and reduced scattering coefficient of rabbit eye tissue.

  3. Modeling of anisotropic properties of double quantum rings by the terahertz laser field.

    PubMed

    Baghramyan, Henrikh M; Barseghyan, Manuk G; Kirakosyan, Albert A; Ojeda, Judith H; Bragard, Jean; Laroze, David

    2018-04-18

    The rendering of different shapes of just a single sample of a concentric double quantum ring is demonstrated realizable with a terahertz laser field, that in turn, allows the manipulation of electronic and optical properties of a sample. It is shown that by changing the intensity or frequency of laser field, one can come to a new set of degenerated levels in double quantum rings and switch the charge distribution between the rings. In addition, depending on the direction of an additional static electric field, the linear and quadratic quantum confined Stark effects are observed. The absorption spectrum shifts and the additive absorption coefficient variations affected by laser and electric fields are discussed. Finally, anisotropic electronic and optical properties of isotropic concentric double quantum rings are modeled with the help of terahertz laser field.

  4. Optical properties of a multibarrier structure under intense laser fields

    NASA Astrophysics Data System (ADS)

    Ospina, D. A.; Akimov, V.; Mora-Ramos, M. E.; Morales, A. L.; Tulupenko, V.; Duque, C. A.

    2015-11-01

    Using the diagonalization method and within the effective mass and parabolic band approximations, the energy spectrum and the wave functions are investigated in biased multibarrier structure taking into account the effects of nonresonant intense laser fields. We calculated the optical properties from the susceptibility using a nonperturbative formalism recently reported. We study the changes in the intersubband optical absorption coefficients and refraction index for several values of the dressing laser parameter and for some specific values of the electric field applied along the growth direction of the heterostructure. It is concluded from our study that the peaks in the optical absorption spectrum have redshifts or blueshifts as a function of the laser parameter and the electric field. These parameters could be suitable tools for tuning the electronic and optical properties of the multibarrier structure.

  5. Enhanced optical band-gap of ZnO thin films by sol-gel technique

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Raghu, P., E-mail: dpr3270@gmail.com; Naveen, C. S.; Shailaja, J.

    2016-05-06

    Transparent ZnO thin films were prepared using different molar concentration (0.1 M, 0.2 M & 0.8 M) of zinc acetate on soda lime glass substrates by the sol-gel spin coating technique. The optical properties revealed that the transmittance found to decrease with increase in molar concentration. Absorption edge showed that the higher concentration film has increasingly red shifted. An increased band gap energy of the thin films was found to be direct allowed transition of ∼3.9 eV exhibiting their relevance for photovoltaic applications. The extinction coefficient analysis revealed maximum transmittance with negligible absorption coefficient in the respective wavelengths. The resultsmore » of ZnO thin film prepared by sol-gel technique reveal its suitability for optoelectronics and as a window layer in solar cell applications.« less

  6. Determination of the major groups of phytoplankton pigments from the absorption spectra of total particulate matter

    NASA Technical Reports Server (NTRS)

    Hoepffner, Nicolas; Sathyendranath, Shubha

    1993-01-01

    The contributions of detrital particles and phytoplankton to total light absorption are retrieved by nonlinear regression on the absorption spectra of total particles from various oceanic regions. The model used explains more than 96% of the variance in the observed particle absorption spectra. The resulting absorption spectra of phytoplankton are then decomposed into several Gaussian bands reflecting absorption by phytoplankton pigments. Such a decomposition, combined with high-performance liquid chromatography data on phytoplankton pigment concentrations, allows the computation of specific absorption coefficients for chlorophylls a, b, and c and carotenoids. The spectral values of these in vivo absorption coefficients are then discussed, considering the effects of secondary pigments which were not measured quantitatively. We show that these coefficients can be used to reconstruct the absorption spectra of phytoplankton at various locations and depths. Discrepancies that do occur at some stations are explained in terms of particle size effect. These coefficients can be used to determine the concentrations of phytoplankton pigments in the water, given the absorption spectrum of total particles.

  7. Models of filter-based particle light absorption measurements

    NASA Astrophysics Data System (ADS)

    Hamasha, Khadeejeh M.

    Light absorption by aerosol is very important in the visible, near UN, and near I.R region of the electromagnetic spectrum. Aerosol particles in the atmosphere have a great influence on the flux of solar energy, and also impact health in a negative sense when they are breathed into lungs. Aerosol absorption measurements are usually performed by filter-based methods that are derived from the change in light transmission through a filter where particles have been deposited. These methods suffer from interference between light-absorbing and light-scattering aerosol components. The Aethalometer is the most commonly used filter-based instrument for aerosol light absorption measurement. This dissertation describes new understanding of aerosol light absorption obtained by the filter method. The theory uses a multiple scattering model for the combination of filter and particle optics. The theory is evaluated using Aethalometer data from laboratory and ambient measurements in comparison with photoacoustic measurements of aerosol light absorption. Two models were developed to calculate aerosol light absorption coefficients from the Aethalometer data, and were compared to the in-situ aerosol light absorption coefficients. The first is an approximate model and the second is a "full" model. In the approximate model two extreme cases of aerosol optics were used to develop a model-based calibration scheme for the 7-wavelength Aethalometer. These cases include those of very strong scattering aerosols (Ammonium sulfate sample) and very absorbing aerosols (kerosene soot sample). The exponential behavior of light absorption in the strong multiple scattering limit is shown to be the square root of the total absorption optical depth rather than linear with optical depth as is commonly assumed with Beer's law. 2-stream radiative transfer theory was used to develop the full model to calculate the aerosol light absorption coefficients from the Aethalometer data. This comprehensive model allows for studying very general cases of particles of various sizes embedded on arbitrary filter media. Application of this model to the Reno Aerosol Optics Study (Laboratory data) shows that the aerosol light absorption coefficients are about half of the Aethalometer attenuation coefficients, and there is a reasonable agreement between the model calculated absorption coefficients at 521 nm and the measured photoacoustic absorption coefficients at 532 nm. For ambient data obtained during the Las Vegas study, it shows that the model absorption coefficients at 521 nm are larger than the photoacoustic coefficients at 532 nm. Use of the 2-stream model shows that particle penetration depth into the filter has a strong influence on the interpretation of filter-based aerosol light absorption measurements. This is likely explanation for the difference found between model results for filter-based aerosol light absorption and those from photoacoustic measurements for ambient and laboratory aerosol.

  8. Magneto-optical properties of semi-parabolic plus semi-inverse squared quantum wells

    NASA Astrophysics Data System (ADS)

    Tung, Luong V.; Vinh, Pham T.; Phuc, Huynh V.

    2018-06-01

    We theoretically study the optical absorption in a quantum well with the semi-parabolic potential plus the semi-inverse squared potential (SPSIS) in the presence of a static magnetic field in which both one- and two-photon absorption processes have been taken into account. The expression of the magneto-optical absorption coefficient (MOAC) is expressed by the second-order golden rule approximation including the electron-LO phonon interaction. We also use the profile method to obtain the full width at half maximum (FWHM) of the absorption peaks. Our numerical results show that either MOAC or FWHM strongly depends on the confinement frequency, temperature, and magnetic field but their dependence on the parameter β is very weak. The temperature dependence of FWHM is consistent with the previous theoretical and experimental works.

  9. Optical properties of InAsBi and optimal designs of lattice-matched and strain-balanced III-V semiconductor superlattices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Webster, P. T., E-mail: preston.t.webster@asu.edu; Riordan, N. A.; Gogineni, C.

    The optical properties of bulk InAs{sub 0.936}Bi{sub 0.064} grown by molecular beam epitaxy on a (100)-oriented GaSb substrate are measured using spectroscopic ellipsometry. The index of refraction and absorption coefficient are measured over photon energies ranging from 44 meV to 4.4 eV and are used to identify the room temperature bandgap energy of bulk InAs{sub 0.936}Bi{sub 0.064} as 60.6 meV. The bandgap of InAsBi is expressed as a function of Bi mole fraction using the band anticrossing model and a characteristic coupling strength of 1.529 eV between the Bi impurity state and the InAs valence band. These results are programmed into a software toolmore » that calculates the miniband structure of semiconductor superlattices and identifies optimal designs in terms of maximizing the electron-hole wavefunction overlap as a function of transition energy. These functionalities are demonstrated by mapping the design spaces of lattice-matched GaSb/InAs{sub 0.911}Sb{sub 0.089} and GaSb/InAs{sub 0.932}Bi{sub 0.068} and strain-balanced InAs/InAsSb, InAs/GaInSb, and InAs/InAsBi superlattices on GaSb. The absorption properties of each of these material systems are directly compared by relating the wavefunction overlap square to the absorption coefficient of each optimized design. Optimal design criteria are provided for key detector wavelengths for each superlattice system. The optimal design mid-wave infrared InAs/InAsSb superlattice is grown using molecular beam epitaxy, and its optical properties are evaluated using spectroscopic ellipsometry and photoluminescence spectroscopy.« less

  10. Thin-film limit formalism applied to surface defect absorption.

    PubMed

    Holovský, Jakub; Ballif, Christophe

    2014-12-15

    The thin-film limit is derived by a nonconventional approach and equations for transmittance, reflectance and absorptance are presented in highly versatile and accurate form. In the thin-film limit the optical properties do not depend on the absorption coefficient, thickness and refractive index individually, but only on their product. We show that this formalism is applicable to the problem of ultrathin defective layer e.g. on a top of a layer of amorphous silicon. We develop a new method of direct evaluation of the surface defective layer and the bulk defects. Applying this method to amorphous silicon on glass, we show that the surface defective layer differs from bulk amorphous silicon in terms of light soaking.

  11. A fast method to compute Three-Dimensional Infrared Radiative Transfer in non scattering medium

    NASA Astrophysics Data System (ADS)

    Makke, Laurent; Musson-Genon, Luc; Carissimo, Bertrand

    2014-05-01

    The Atmospheric Radiation field has seen the development of more accurate and faster methods to take into account absoprtion in participating media. Radiative fog appears with clear sky condition due to a significant cooling during the night, so scattering is left out. Fog formation modelling requires accurate enough method to compute cooling rates. Thanks to High Performance Computing, multi-spectral approach of Radiative Transfer Equation resolution is most often used. Nevertheless, the coupling of three-dimensionnal radiative transfer with fluid dynamics is very detrimental to the computational cost. To reduce the time spent in radiation calculations, the following method uses analytical absorption functions fitted by Sasamori (1968) on Yamamoto's charts (Yamamoto,1956) to compute a local linear absorption coefficient. By averaging radiative properties, this method eliminates the spectral integration. For an isothermal atmosphere, analytical calculations lead to an explicit formula between emissivities functions and linear absorption coefficient. In the case of cooling to space approximation, this analytical expression gives very accurate results compared to correlated k-distribution. For non homogeneous paths, we propose a two steps algorithm. One-dimensional radiative quantities and linear absorption coefficient are computed by a two-flux method. Then, three-dimensional RTE under the grey medium assumption is solved with the DOM. Comparisons with measurements of radiative quantities during ParisFOG field (2006) shows the cability of this method to handle strong vertical variations of pressure/temperature and gases concentrations.

  12. Effect of solution concentration on MEH-PPV thin films

    NASA Astrophysics Data System (ADS)

    Affendi, I. H. H.; Sarah, M. S. P.; Alrokayan, Salman A. H.; Khan, Haseeb A.; Rusop, M.

    2018-05-01

    MEH-PPV thin films were prepared with a mixture of THF (tetrahydrofuran) solution deposited by spin coating method. The surface topology of MEH-PPV thin film were characterize by atomic force microscopy (AFM) and optical properties of absorption spectra were characterized by using Ultraviolet-visible-near-infrared (UV-Vis-NIR). The MEH-PPV concentration variation affects the surface and optical properties of the thin film where 0.5 mg/ml MEH-PPV concentration have a good surface topology provided the same film also gives the highest absorption coefficient were then deposited to a TiO2 thin film forming composite layer. The composite layer then shows low current flow of short circuit current of Isc = -5.313E-7 A.

  13. The influence of water mixtures on the dermal absorption of glycol ethers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Traynor, Matthew J.; Wilkinson, Simon C.; Williams, Faith M.

    2007-01-15

    Glycol ethers are solvents widely used alone and as mixtures in industrial and household products. Some glycol ethers have been shown to have a range of toxic effects in humans following absorption and metabolism to their aldehyde and acid metabolites. This study assessed the influence of water mixtures on the dermal absorption of butoxyethanol and ethoxyethanol in vitro through human skin. Butoxyethanol penetrated human skin up to sixfold more rapidly from aqueous solution (50%, 450 mg/ml) than from the neat solvent. Similarly penetration of ethoxyethanol was increased threefold in the presence of water (50%, 697 mg/ml). There was a correspondingmore » increase in apparent permeability coefficient as the glycol ether concentration in water decreased. The maximum penetration rate of water also increased in the presence of both glycol ethers. Absorption through a synthetic membrane obeyed Fick's Law and absorption through rat skin showed a similar profile to human skin but with a lesser effect. The mechanisms for this phenomenon involves disruption of the stratum corneum lipid bilayer by desiccation by neat glycol ether micelles, hydration with water mixtures and the physicochemical properties of the glycol ether-water mixtures. Full elucidation of the profile of absorption of glycol ethers from mixtures is required for risk assessment of dermal exposure. This work supports the view that risk assessments for dermal contact scenarios should ideally be based on absorption data obtained for the relevant formulation or mixture and exposure scenario and that absorption derived from permeability coefficients may be inappropriate for water-miscible solvents.« less

  14. Laser-based measurements of pressure broadening and pressure shift coefficients of combustion-relevant absorption lines in the near-infrared region

    NASA Astrophysics Data System (ADS)

    Bürkle, Sebastian; Walter, Nicole; Wagner, Steven

    2018-06-01

    A set of high-resolution absorption spectrometers based on TDLAS was used to determine the impact of combustion-relevant gases on the pressure shift and broadening of H2O, CO2, C2H2 and CH4 absorption lines in the near-infrared spectral region. In particular, self- and foreign-broadening coefficients induced by CO2, N2, O2, air, C2H2 and CH4 were measured. The absorption lines under investigation are suitable to measure the respective species in typical combustion environments via laser absorption spectroscopy. Additionally, species-dependent self- and foreign-induced pressure shift coefficients were measured and compared to the literature. The experiments were performed in two specifically designed absorption cells over a wide pressure range from 5 to 180 kPa. Different sources of uncertainty were identified and quantified to achieve relative measurement uncertainties of 0.7-1.5% for broadening coefficients and 0.6-1.6% for pressure shift coefficients.

  15. Dynamic absorption coefficients of chemically amplified resists and nonchemically amplified resists at extreme ultraviolet

    NASA Astrophysics Data System (ADS)

    Fallica, Roberto; Stowers, Jason K.; Grenville, Andrew; Frommhold, Andreas; Robinson, Alex P. G.; Ekinci, Yasin

    2016-07-01

    The dynamic absorption coefficients of several chemically amplified resists (CAR) and non-CAR extreme ultraviolet (EUV) photoresists are measured experimentally using a specifically developed setup in transmission mode at the x-ray interference lithography beamline of the Swiss Light Source. The absorption coefficient α and the Dill parameters ABC were measured with unprecedented accuracy. In general, the α of resists match very closely with the theoretical value calculated from elemental densities and absorption coefficients, whereas exceptions are observed. In addition, through the direct measurements of the absorption coefficients and dose-to-clear values, we introduce a new figure of merit called chemical sensitivity to account for all the postabsorption chemical reaction ongoing in the resist, which also predicts a quantitative clearing volume and clearing radius, due to the photon absorption in the resist. These parameters may help provide deeper insight into the underlying mechanisms of the EUV concepts of clearing volume and clearing radius, which are then defined and quantitatively calculated.

  16. Ultrafast laser processing of copper: A comparative study of experimental and simulated transient optical properties

    NASA Astrophysics Data System (ADS)

    Winter, Jan; Rapp, Stephan; Schmidt, Michael; Huber, Heinz P.

    2017-09-01

    In this paper, we present ultrafast measurements of the complex refractive index for copper up to a time delay of 20 ps with an accuracy <1% at laser fluences in the vicinity of the ablation threshold. The measured refractive index n and extinction coefficient k are supported by a simulation including the two-temperature model with an accurate description of thermal and optical properties and a thermomechanical model. Comparison of the measured time resolved optical properties with results of the simulation reveals underlying physical mechanisms in three distinct time delay regimes. It is found that in the early stage (-5 ps to 0 ps) the thermally excited d-band electrons make a major contribution to the laser pulse absorption and create a steep increase in transient optical properties n and k. In the second time regime (0-10 ps) the material expansion influences the plasma frequency, which is also reflected in the transient extinction coefficient. In contrast, the refractive index n follows the total collision frequency. Additionally, the electron-ion thermalization time can be attributed to a minimum of the extinction coefficient at ∼10 ps. In the third time regime (10-20 ps) the transient extinction coefficient k indicates the surface cooling-down process.

  17. Effect of disorder on the optical properties of short period superlattices

    NASA Technical Reports Server (NTRS)

    Strozier, J. A.; Zhang, Y. A.; Horton, C.; Ignatiev, A.; Shih, H. D.

    1993-01-01

    The optical properties of disordered short period superlattices are studied using a one-dimensional tight-binding model. A difference vector and disorder structure factor are proposed to characterize the disordered superlattice. The density of states, participation number, and optical absorption coefficients for both ordered and disordered superlattices are calculated as a function of energy. The results show that introduction of disorder into an indirect band gap material enhances the optical transition near the indirect band edge.

  18. Lifetime Measurement of HgCdTe Semiconductor Material

    DTIC Science & Technology

    2012-03-01

    long-wavelength (>15 μm) infrared spectral region. HgCdTe is a very effective infrared detector material because of its different properties. The...properties that make HgCdTe an effective infrared detector are its adjustable bandgap of 0.7 to 25 μm, its high absorption coefficient, its moderate... HgCdTe infrared detectors . Retrieved Jul. 17, 2011, from http://www.wat.edu.pl/review/optor/10(3)159.pdf Wagner, R. J. (1999 Apr. 16). In

  19. Determination of the optical absorption spectra of thin layers from their photoacoustic spectra

    NASA Astrophysics Data System (ADS)

    Bychto, Leszek; Maliński, Mirosław; Patryn, Aleksy; Tivanov, Mikhail; Gremenok, Valery

    2018-05-01

    This paper presents a new method for computations of the optical absorption coefficient spectra from the normalized photoacoustic amplitude spectra of thin semiconductor samples deposited on the optically transparent and thermally thick substrates. This method was tested on CuIn(Te0.7Se0.3)2 thin films. From the normalized photoacoustic amplitude spectra, the optical absorption coefficient spectra were computed with the new formula as also with the numerical iterative method. From these spectra, the value of the energy gap of the thin film material and the type of the optical transitions were determined. From the experimental optical transmission spectra, the optical absorption coefficient spectra were computed too, and compared with the optical absorption coefficient spectra obtained from photoacoustic spectra.

  20. Functionalization-induced changes in the structural and physical properties of amorphous polyaniline: a first-principles and molecular dynamics study.

    PubMed

    Chen, X P; Liang, Q H; Jiang, J K; Wong, Cell K Y; Leung, Stanley Y Y; Ye, H Y; Yang, D G; Ren, T L

    2016-02-09

    In this paper, we present a first-principles and molecular dynamics study to delineate the functionalization-induced changes in the local structure and the physical properties of amorphous polyaniline. The results of radial distribution function (RDF) demonstrate that introducing -SO3(-)Na(+) groups at phenyl rings leads to the structural changes in both the intrachain and interchain ordering of polyaniline at shorter distances (≤5 Å). An unique RDF feature in 1.8-2.1 Å regions is usually observed in both the interchain and intrachain RDF profiles of the -SO3(-)Na(+) substituted polymer (i.e. Na-SPANI). Comparative studies of the atom-atom pairs, bond structures, torsion angles and three-dimensional structures show that EB-PANI has much better intrachain ordering than that of Na-SPANI. In addition, investigation of the band gap, density of states (DOS), and absorption spectra indicates that the derivatization at ring do not substantially alter the inherent electronic properties but greatly change the optical properties of polyaniline. Furthermore, the computed diffusion coefficient of water in Na-SPANI is smaller than that of EB-PANI. On the other hand, the Na-SPANI shows a larger density than that of EB-PANI. The computed RDF profiles, band gaps, absorption spectra, and diffusion coefficients are in quantitative agreement with the experimental data.

  1. Structural and opto-electronic properties of 2D AlSb monolayer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Singh, Deobrat, E-mail: deobratsingh9@gmail.com; Sonvane, Yogesh; Gupta, Sanjeev K.

    2016-05-23

    We have investigated dielectric function related optical properties such as refractive index, absorption coefficient of two-dimensional hexagonal system of aluminum antimony (AlSb). We have also find structural and electronic properties of AlSb which show direct/indirect band gap with planar structure, employing the density functional theory using the generalized gradient approximation (GGA) given by Perdew-Burke-Ernzerhof (PBE) functional for exchange-correlation potential. The refractive index n(ω) increases with frequency in the near infrared region but in visible region n(ω) increasing after decrease.

  2. The Electrical Properties for Phenolic Isocyanate-Modified Bisphenol-Based Epoxy Resins Comprising Benzoate Group.

    PubMed

    Lee, Eun Yong; Chae, Il Seok; Park, Dongkyung; Suh, Hongsuk; Kang, Sang Wook

    2016-03-01

    Epoxy resin has been required to have a low dielectric constant (D(k)), low dissipation factor (Df), low coefficient of thermal expansion (CTE), low water absorption, high mechanical, and high adhesion properties for various applications. A series of novel phenolic isocyanate-modified bisphenol-based epoxy resins comprising benzoate group were prepared for practical electronic packaging applications. The developed epoxy resins showed highly reduced dielectric constants (D(k)-3.00 at 1 GHz) and low dissipation values (Df-0.014 at 1 GHz) as well as enhanced thermal properties.

  3. Laser Cooling of Solids

    DTIC Science & Technology

    2009-01-01

    BN2 − CN3 + (1− ηe)BN2 (9) Here α(ν,N) is the interband absorption coefficient that in- cludes many-body and blocking factors. The recombination...the reso- nant absorption coefficient and αb is the unwanted parasitic (background) absorption coefficient . As will be derived in sections II and IV... coefficient of αb. It is straightforward to evaluate the steady-state solution to the above rate equations by setting the time derivatives to zero

  4. Determination of Scattering and Absorption Coefficients for Plasma-Sprayed Yttria-Stabilized Zirconia Thermal Barrier Coatings at Elevated Temperatures

    NASA Technical Reports Server (NTRS)

    Eldridge, Jeffrey I.; Spuckler, Charles M.; Markham, James R.

    2009-01-01

    The temperature dependence of the scattering and absorption coefficients for a set of freestanding plasma-sprayed 8 wt% yttria-stabilized zirconia (8YSZ) thermal barrier coatings (TBCs) was determined at temperatures up to 1360 C in a wavelength range from 1.2 micrometers up to the 8YSZ absorption edge. The scattering and absorption coefficients were determined by fitting the directional-hemispherical reflectance and transmittance values calculated by a four-flux Kubelka Munk method to the experimentally measured hemispherical-directional reflectance and transmittance values obtained for five 8YSZ thicknesses. The scattering coefficient exhibited a continuous decrease with increasing wavelength and showed no significant temperature dependence. The scattering is primarily attributed to the relatively temperature-insensitive refractive index mismatch between the 8YSZ and its internal voids. The absorption coefficient was very low (less than 1 per centimeter) at wavelengths between 2 micrometers and the absorption edge and showed a definite temperature dependence that consisted of a shift of the absorption edge to shorter wavelengths and an increase in the weak absorption below the absorption edge with increasing temperature. The shift in the absorption edge with temperature is attributed to strongly temperature-dependent multiphonon absorption. While TBC hemispherical transmittance beyond the absorption edge can be predicted by a simple exponential decrease with thickness, below the absorption edge, typical TBC thicknesses are well below the thickness range where a simple exponential decrease in hemispherical transmittance with TBC thickness is expected. [Correction added after online publication August 11, 2009: "edge to a shorter wavelengths" has been updated as edge to shorter wavelengths."

  5. Microwave-assisted synthesis of water-soluble, fluorescent gold nanoclusters capped with small organic molecules and a revealing fluorescence and X-ray absorption study

    NASA Astrophysics Data System (ADS)

    Helmbrecht, C.; Lützenkirchen-Hecht, D.; Frank, W.

    2015-03-01

    Colourless solutions of blue light-emitting, water-soluble gold nanoclusters (AuNC) were synthesized from gold colloids under microwave irradiation using small organic molecules as ligands. Stabilized by 1,3,5-triaza-7-phosphaadamantane (TPA) or l-glutamine (GLU), fluorescence quantum yields up to 5% were obtained. AuNC are considered to be very promising for biological labelling, optoelectronic devices and light-emitting materials but the structure-property relationships have still not been fully clarified. To expand the knowledge about the AuNC apart from their fluorescent properties they were studied by X-ray absorption spectroscopy elucidating the oxidation state of the nanoclusters' gold atoms. Based on curve fitting of the XANES spectra in comparison to several gold references, optically transparent fluorescent AuNC are predicted to be ligand-stabilized Au5+ species. Additionally, their near edge structure compared with analogous results of polynuclear clusters known from the literature discloses an increasing intensity of the feature close to the absorption edge with decreasing cluster size. As a result, a linear relationship between the cluster size and the X-ray absorption coefficient can be established for the first time.Colourless solutions of blue light-emitting, water-soluble gold nanoclusters (AuNC) were synthesized from gold colloids under microwave irradiation using small organic molecules as ligands. Stabilized by 1,3,5-triaza-7-phosphaadamantane (TPA) or l-glutamine (GLU), fluorescence quantum yields up to 5% were obtained. AuNC are considered to be very promising for biological labelling, optoelectronic devices and light-emitting materials but the structure-property relationships have still not been fully clarified. To expand the knowledge about the AuNC apart from their fluorescent properties they were studied by X-ray absorption spectroscopy elucidating the oxidation state of the nanoclusters' gold atoms. Based on curve fitting of the XANES spectra in comparison to several gold references, optically transparent fluorescent AuNC are predicted to be ligand-stabilized Au5+ species. Additionally, their near edge structure compared with analogous results of polynuclear clusters known from the literature discloses an increasing intensity of the feature close to the absorption edge with decreasing cluster size. As a result, a linear relationship between the cluster size and the X-ray absorption coefficient can be established for the first time. Electronic supplementary information (ESI) available: The deconvoluted reference spectra are given in ESI Fig. 1-9. See DOI: 10.1039/c4nr07051h

  6. SPATIAL DISTRIBUTIONS OF ABSORPTION, LOCAL SUPPRESSION, AND EMISSIVITY REDUCTION OF SOLAR ACOUSTIC WAVES IN MAGNETIC REGIONS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chou, D.-Y.; Yang, M.-H.; Zhao Hui

    Observed acoustic power in magnetic regions is lower than the quiet Sun because of absorption, emissivity reduction, and local suppression of solar acoustic waves in magnetic regions. In the previous studies, we have developed a method to measure the coefficients of absorption, emissivity reduction, and local suppression of sunspots. In this study, we go one step further to measure the spatial distributions of three coefficients in two active regions, NOAA 9055 and 9057. The maps of absorption, emissivity reduction, and local suppression coefficients correlate with the magnetic map, including plage regions, except the emissivity reduction coefficient of NOAA 9055 wheremore » the emissivity reduction coefficient is too weak and lost among the noise.« less

  7. Studies of absorption coefficient cum electro-optic performance of polymer dispersed liquid crystal doped with CNT and dichroic dye

    NASA Astrophysics Data System (ADS)

    Sharma, Vandna; Kumar, Pankaj

    2017-11-01

    Absorption coefficient of doped polymer dispersed liquid crystals (PDLCs) is a critical factor for their device performance and depends on dopants parameters like solubility, order parameter and extinction coefficients, in addition to configuration and orientation of the droplets. In this study, a fixed amount (0.125% wt/wt) of multiwall carbon nanotubes (CNTs) and orange azo dichroic dye was doped in PDLC and measured the OFF state absorption coefficient. Considering the theory based on Beer's law and followed by extinction coefficients of CNT and dye, the OFF state transmission for dye doped PDLC was found lower compared to CNT doped PDLC. As a result, absorption coefficient for dye doped PDLC was higher and resulted in the superior contrast ratio. The experimental results were found be consistent with the theoretical results.

  8. Dynamic behavior of photoablation products of corneal tissue in the mid-IR: a study with FELIX

    NASA Astrophysics Data System (ADS)

    Auerhammer, J. M.; Walker, R.; van der Meer, A. F. G.; Jean, B.

    The properties of pulsed IR-laser ablation of biological soft tissue (porcine cornea) were studied in vitro systematically and quantitatively with a free-electron laser in the wavelength range 6<=λ<=20 μm at fluences ranging from 3.1 to 9.4 J/cm2. Dynamic parameters such as the extension of the ablation cloud, the initial velocity and momentum of the ablated particles as well as the ablation threshold, the ablated mass, and the particle size were investigated. The ablation plume was made visible with a stroboscopic technique. For a fluence of 3.1 J/cm2 the average initial velocity of the ejected particles was deduced from the extension of the plume to range from 120-400 m/s. Measurements of the recoil momentum using a sensitive pendulum led to values between 0.5 and 2.0 mmg/s. All measured properties were related to the spectroscopically determined absorption coefficient of cornea αcornea. Where absorption due to proteins is high (at λ=6.2 and 6.5 μm), ablated mass, velocity and recoil momentum behave according to αcornea. For the first time, variations of the ablation plume from pulse to pulse were observed. Those, as well as the particle size, not only depend on the absorption coefficient, but also on the predominant absorber.

  9. Novel carbazole derivatives with quinoline ring: synthesis, electronic transition, and two-photon absorption three-dimensional optical data storage.

    PubMed

    Li, Liang; Wang, Ping; Hu, Yanlei; Lin, Geng; Wu, Yiqun; Huang, Wenhao; Zhao, Quanzhong

    2015-03-15

    We designed carbazole unit with an extended π conjugation by employing Vilsmeier formylation reaction and Knoevenagel condensation to facilitate the functional groups of quinoline from 3- or 3,6-position of carbazole. Two compounds doped with poly(methyl methacrylate) (PMMA) films were prepared. To explore the electronic transition properties of these compounds, one-photon absorption properties were experimentally measured and theoretically calculated by using the time-dependent density functional theory. We surveyed these films by using an 800 nm Ti:sapphire 120-fs laser with two-photon absorption (TPA) fluorescence emission properties and TPA coefficients to obtain the TPA cross sections. A three-dimensional optical data storage experiment was conducted by using a TPA photoreaction with an 800 nm-fs laser on the film to obtain a seven-layer optical data storage. The experiment proves that these carbazole derivatives are well suited for two-photon 3D optical storage, thus laying the foundation for the research of multilayer high-density and ultra-high-density optical information storage materials. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. Light distribution modulated diffuse reflectance spectroscopy.

    PubMed

    Huang, Pin-Yuan; Chien, Chun-Yu; Sheu, Chia-Rong; Chen, Yu-Wen; Tseng, Sheng-Hao

    2016-06-01

    Typically, a diffuse reflectance spectroscopy (DRS) system employing a continuous wave light source would need to acquire diffuse reflectances measured at multiple source-detector separations for determining the absorption and reduced scattering coefficients of turbid samples. This results in a multi-fiber probe structure and an indefinite probing depth. Here we present a novel DRS method that can utilize a few diffuse reflectances measured at one source-detector separation for recovering the optical properties of samples. The core of innovation is a liquid crystal (LC) cell whose scattering property can be modulated by the bias voltage. By placing the LC cell between the light source and the sample, the spatial distribution of light in the sample can be varied as the scattering property of the LC cell modulated by the bias voltage, and this would induce intensity variation of the collected diffuse reflectance. From a series of Monte Carlo simulations and phantom measurements, we found that this new light distribution modulated DRS (LDM DRS) system was capable of accurately recover the absorption and scattering coefficients of turbid samples and its probing depth only varied by less than 3% over the full bias voltage variation range. Our results suggest that this LDM DRS platform could be developed to various low-cost, efficient, and compact systems for in-vivo superficial tissue investigation.

  11. Light distribution modulated diffuse reflectance spectroscopy

    PubMed Central

    Huang, Pin-Yuan; Chien, Chun-Yu; Sheu, Chia-Rong; Chen, Yu-Wen; Tseng, Sheng-Hao

    2016-01-01

    Typically, a diffuse reflectance spectroscopy (DRS) system employing a continuous wave light source would need to acquire diffuse reflectances measured at multiple source-detector separations for determining the absorption and reduced scattering coefficients of turbid samples. This results in a multi-fiber probe structure and an indefinite probing depth. Here we present a novel DRS method that can utilize a few diffuse reflectances measured at one source-detector separation for recovering the optical properties of samples. The core of innovation is a liquid crystal (LC) cell whose scattering property can be modulated by the bias voltage. By placing the LC cell between the light source and the sample, the spatial distribution of light in the sample can be varied as the scattering property of the LC cell modulated by the bias voltage, and this would induce intensity variation of the collected diffuse reflectance. From a series of Monte Carlo simulations and phantom measurements, we found that this new light distribution modulated DRS (LDM DRS) system was capable of accurately recover the absorption and scattering coefficients of turbid samples and its probing depth only varied by less than 3% over the full bias voltage variation range. Our results suggest that this LDM DRS platform could be developed to various low-cost, efficient, and compact systems for in-vivo superficial tissue investigation. PMID:27375931

  12. Optical and structural properties of cadmium telluride films grown by glancing angle deposition

    NASA Astrophysics Data System (ADS)

    Ehsani, M. H.; Rezagholipour Dizaji, H.; Azizi, S.; Ghavami Mirmahalle, S. F.; Siyanaki, F. Hosseini

    2013-08-01

    Cadmium telluride films were grown by the glancing angle deposition (GLAD) technique. The samples were prepared under different incident deposition flux angles (α = 0°, 20° and 70° measured from the normal to the substrate surface). During deposition, the substrate temperature was maintained at room temperature. The structural study was performed using an x-ray diffraction diffractometer. The samples were found to be poly-crystalline with cubic structure for those deposited at α = 0° and 20° and hexagonal structure for the one deposited at 70°. The images of samples obtained by the field emission scanning electron microscopy technique showed that the GLAD method could produce a columnar layer tilted toward the incident deposition flux. The optical properties study by the UV-Vis spectroscopy technique showed that the use of this growth technique affected the optical properties of the films. A higher absorption coefficient in the visible and near-IR spectral range was observed for the sample deposited at α = 70°. This is an important result from the photovoltaic applications point of view where absorber materials with large absorption coefficients are needed. Also, it seems that the sample with a high incident deposition flux angle has the capability of making an n-CdTe/p-CdTe homo-junction.

  13. Theoretical Study of the Transverse Dielectric Constant of Superlattices and Their Alloys. Ph.D Thesis

    NASA Technical Reports Server (NTRS)

    Kahen, K. B.

    1986-01-01

    The optical properties of III to V binary and ternary compounds and GaAs-Al(x)Ga(1-x)As superlattices are determined by calculating the real and imaginary parts of the transverse dielectric constant. Emphasis is given to determining the influence of different material and superlattice parameters on the values of the index of refraction and absorption coefficient. In order to calculate the optical properties of a material, it is necessary to compute its electronic band structure. This was accomplished by introducing a partition band structure approach based on a combination of the vector k x vector p and nonlocal pseudopotential techniques. The advantages of this approach are that it is accurate, computationally fast, analytical, and flexible. These last two properties enable incorporation of additional effects into the model, such as disorder scattering, which occurs for alloy materials and excitons. Furthermore, the model is easily extended to more complex structures, for example multiple quantum wells and superlattices. The results for the transverse dielectric constant and absorption coefficient of bulk III to V compounds compare well with other one-electron band structure models and the calculations show that for small frequencies, the index of refraction is determined mainly by the contibution of the outer regions of the Brillouin zone.

  14. Tunable optical and excitonic properties of phosphorene via oxidation

    NASA Astrophysics Data System (ADS)

    Sadki, S.; Drissi, L. B.

    2018-06-01

    The optical properties and excitonic wave function of phosphorene oxides (PO) are studied using the first principle many-body Green function and the Bethe–Salpeter equation formalism. In this work, the optical properties are determined using ab initio calculations of the dielectric function. At the long wavelength limit q of EM wave (i.e. ), the dielectric function, the absorption spectrum, the lectivity, the electron energy loss spectra (EELS) and the wave function are calculated. The results show an excitonic binding energy of 818 meV with a bright exciton located in the armchair direction in pristine phosphorene. For PO, the arrangement of the oxygen atoms significantly influences the optical properties. In particular, the absorption spectrum is extended along the solar spectrum, with a high absorption coefficient observed in the dangling structures. The maximum lectivity values are observed for the high energies of the light spectrum. Moreover, the first EELS peak is located in the visible region in all the structures except for one configuration that exhibits the same behavior as pure phosphorene. Finally, the exciton effect reveals that all PO conformers have a dark exciton state, which is suitable for long-lived applications.

  15. Viscoelastic properties and efficient acoustic damping in confined polymer nano-layers at GHz frequencies

    PubMed Central

    Hettich, Mike; Jacob, Karl; Ristow, Oliver; Schubert, Martin; Bruchhausen, Axel; Gusev, Vitalyi; Dekorsy, Thomas

    2016-01-01

    We investigate the viscoelastic properties of confined molecular nano-layers by time resolved optical pump-probe measurements. Access to the elastic properties is provided by the damping time of acoustic eigenmodes of thin metal films deposited on the molecular nano-layers which show a strong dependence on the molecular layer thickness and on the acoustic eigen-mode frequencies. An analytical model including the viscoelastic properties of the molecular layer allows us to obtain the longitudinal sound velocity as well as the acoustic absorption coefficient of the layer. Our experiments and theoretical analysis indicate for the first time that the molecular nano-layers are much more viscous than elastic in the investigated frequency range from 50 to 120 GHz and thus show pronounced acoustic absorption. The longitudinal acoustic wavenumber has nearly equal real and imaginary parts, both increasing proportional to the square root of the frequency. Thus, both acoustic velocity and acoustic absorption are proportional to the square root of frequency and the propagation of compressional/dilatational acoustic waves in the investigated nano-layers is of the diffusional type, similar to the propagation of shear waves in viscous liquids and thermal waves in solids. PMID:27633351

  16. Role of Mn2+ concentration in the linear and nonlinear optical properties of Ni1-xMnxSe nanoparticles

    NASA Astrophysics Data System (ADS)

    Anugop, B.; Prasanth, S.; Rithesh Raj, D.; Vineeshkumar, T. V.; Pranitha, S.; Mahadevan Pillai, V. P.; Sudarsanakumar, C.

    2016-12-01

    Ni1-xMnxSe nanoparticles (x = 0.1, 0.3, 0.5, 0.7, 0.9) were successfully synthesized by chemical co-precipitation method and their structural and optical properties were studied using X-ray diffraction, transmission electron microscopy, UV-Visible absorption and photo luminescence spectroscopy. XRD pattern reveals the hexagonal structure of the particles and the peak positions were shifted to higher 2θ values with increase in Mn2+ concentration. The average particle size determined from XRD varies from 6 to 11 nm. The UV-Visible absorption spectrum shows absorption edge around the blue region and is red-shifted with increasing Mn2+ concentration consequently the optical bandgap energy is decreasing. The PL emission spectrum shows a broad emission around 380 nm, and the intensity of the emission decreases with increase in Mn2+ concentration. The nonlinear optical properties of the samples were analysed using Z-scan technique and the samples show optical limiting behaviour and the 2 PA coefficient increases with increasing Mn2+ concentration. Overall, manganese concentration influences the linear and nonlinear optical properties of Ni1-xMnxSe nanoparticles.

  17. Measurements of Nascent Soot Using a Cavity Attenauted Phase Shift (CAPS)-based Single Scattering Albedo Monitor

    NASA Astrophysics Data System (ADS)

    Freedman, A.; Onasch, T. B.; Renbaum-Wollf, L.; Lambe, A. T.; Davidovits, P.; Kebabian, P. L.

    2015-12-01

    Accurate, as compared to precise, measurement of aerosol absorption has always posed a significant problem for the particle radiative properties community. Filter-based instruments do not actually measure absorption but rather light transmission through the filter; absorption must be derived from this data using multiple corrections. The potential for matrix-induced effects is also great for organic-laden aerosols. The introduction of true in situ measurement instruments using photoacoustic or photothermal interferometric techniques represents a significant advance in the state-of-the-art. However, measurement artifacts caused by changes in humidity still represent a significant hurdle as does the lack of a good calibration standard at most measurement wavelengths. And, in the absence of any particle-based absorption standard, there is no way to demonstrate any real level of accuracy. We, along with others, have proposed that under the circumstance of low single scattering albedo (SSA), absorption is best determined by difference using measurement of total extinction and scattering. We discuss a robust, compact, field deployable instrument (the CAPS PMssa) that simultaneously measures airborne particle light extinction and scattering coefficients and thus the single scattering albedo (SSA) on the same sample volume. The extinction measurement is based on cavity attenuated phase shift (CAPS) techniques as employed in the CAPS PMex particle extinction monitor; scattering is measured using integrating nephelometry by incorporating a Lambertian integrating sphere within the sample cell. The scattering measurement is calibrated using the extinction measurement of non-absorbing particles. For small particles and low SSA, absorption can be measured with an accuracy of 6-8% at absorption levels as low as a few Mm-1. We present new results of the measurement of the mass absorption coefficient (MAC) of soot generated by an inverted methane diffusion flame at 630 nm. A value of 6.60 ±0.2 m2 g-1 was determined where the uncertainty refers to the precision of the measurement. The overall accuracy of the measurement, traceable to the properties of polystyrene latex particles, is estimated to be better than ±10%.

  18. Optical and Structural Properties of Si Nanocrystals in SiO2 Films.

    PubMed

    Nikitin, Timur; Khriachtchev, Leonid

    2015-04-22

    Optical and structural properties of Si nanocrystals (Si-nc) in silica films are described. For the SiOx (x < 2) films annealed above 1000 °C, the Raman signal of Si-nc and the absorption coefficient are proportional to the amount of elemental Si detected by X-ray photoelectron spectroscopy. A good agreement is found between the measured refractive index and the value estimated by using the effective-medium approximation. The extinction coefficient of elemental Si is found to be between the values of crystalline and amorphous Si. Thermal annealing increases the degree of Si crystallization; however, the crystallization and the Si-SiO2 phase separation are not complete after annealing at 1200 °C. The 1.5-eV PL quantum yield increases as the amount of elemental Si decreases; thus, this PL is probably not directly from Si-nc responsible for absorption and detected by Raman spectroscopy. Continuous-wave laser light can produce very high temperatures in the free-standing films, which changes their structural and optical properties. For relatively large laser spots, the center of the laser-annealed area is very transparent and consists of amorphous SiO2. Large Si-nc (up to ∼300 nm in diameter) are observed in the ring around the central region. These Si-nc lead to high absorption and they are typically under compressive stress, which is connected with their formation from the liquid phase. By using strongly focused laser beams, the structural changes in the free-standing films can be made in submicron areas.

  19. Natural variability of bio-optical properties in an ultra-oligotrophic region: backscattering, attenuation and absorption coefficients as observed in the Red Sea

    NASA Astrophysics Data System (ADS)

    Kheireddine, M.; Jones, B. H.

    2016-02-01

    Until recently, satellite-derived ocean color observations have been the only means of evaluating optical variability of the Red Sea. The optical properties of the Red Sea have been empirically related to the chlorophyll concentration, [Chl], historically used as an index of the trophic state and of the abundance of the biological materials. The natural variability around the mean statistical relationships is here examined by comparing the optical properties as a function of [Chl] in different area of the Red Sea: the North Red Sea (NRS), the North Central Red Sea (NCRS) and the South Central Red Sea (SCRS) waters. The systematic deviations, with respect to the average laws provided for the global ocean, mainly result from the differing contents in non-algal particles, phytoplankton communities and dissolved colored substance for a given [Chl] level. These optical anomalies relate to the specific biological and environmental conditions occurring in the Red Sea ecosystem, showing the peculiar character of the Red Sea. Specifically, absorption's values of colored dissolved organic matter are lower than the values predicted from the global relationships, the surface specific phytoplankton absorption coefficients are lower than the values predicted from the global relationships due to a high proportion of relatively large sized phytoplankton. Conversely, bbp values are much higher than the mean standard values for a given [Chl] concentration. This presumably results from the influence of highly refractive submicrometer particles of Saharan or Arabian origin in the surface layer of the water column.

  20. Optical and Structural Properties of Si Nanocrystals in SiO2 Films

    PubMed Central

    Nikitin, Timur; Khriachtchev, Leonid

    2015-01-01

    Optical and structural properties of Si nanocrystals (Si-nc) in silica films are described. For the SiOx (x < 2) films annealed above 1000 °C, the Raman signal of Si-nc and the absorption coefficient are proportional to the amount of elemental Si detected by X-ray photoelectron spectroscopy. A good agreement is found between the measured refractive index and the value estimated by using the effective-medium approximation. The extinction coefficient of elemental Si is found to be between the values of crystalline and amorphous Si. Thermal annealing increases the degree of Si crystallization; however, the crystallization and the Si–SiO2 phase separation are not complete after annealing at 1200 °C. The 1.5-eV PL quantum yield increases as the amount of elemental Si decreases; thus, this PL is probably not directly from Si-nc responsible for absorption and detected by Raman spectroscopy. Continuous-wave laser light can produce very high temperatures in the free-standing films, which changes their structural and optical properties. For relatively large laser spots, the center of the laser-annealed area is very transparent and consists of amorphous SiO2. Large Si-nc (up to ~300 nm in diameter) are observed in the ring around the central region. These Si-nc lead to high absorption and they are typically under compressive stress, which is connected with their formation from the liquid phase. By using strongly focused laser beams, the structural changes in the free-standing films can be made in submicron areas. PMID:28347028

  1. Long term measurements of optical properties and their hygroscopic enhancement

    NASA Astrophysics Data System (ADS)

    Hervo, M.; Sellegri, K.; Pichon, J. M.; Roger, J. C.; Laj, P.

    2014-11-01

    Optical properties of aerosols were measured from the GAW Puy de Dôme station (1465 m) over a seven year period (2006-2012). The impact of hygroscopicity on aerosol optical properties was calculated over a two year period (2010-2011). The analysis of the spatial and temporal variability of the optical properties showed that while no long term trend was found, a clear seasonal and diurnal variation was observed on the extensive parameters (scattering, absorption). Scattering and absorption coefficients were highest during the warm season and daytime, in concordance with the seasonality and diurnal variation of the PBL height reaching the site. Intensive parameters (single scattering albedo, asymmetry factor, refractive index) did not show such a strong diurnal variability, but still indicated different values depending on the season. Both extensive and intensive optical parameters were sensitive to the air mass origin. A strong impact of hygroscopicity on aerosol optical properties was calculated, mainly on aerosol scattering, with a dependence on the aerosol type. At 90% humidity, the scattering factor enhancement (fσsca) was more than 4.4 for oceanic aerosol that have mixed with a pollution plume. Consequently, the aerosol radiative forcing was estimated to be 2.8 times higher at RH = 90% and 1.75 times higher at ambient RH when hygroscopic growth of the aerosol was considered. The hygroscopicity enhancement factor of the scattering coefficient was parameterized as a function of humidity and air mass type.

  2. Scattering and Absorption of E&M radiation by small particles-applications to study impact of biomass aerosols on climate

    NASA Astrophysics Data System (ADS)

    Bililign, Solomon; Singh, Sujeeta; Fiddler, Marc; Smith, Damon

    2015-03-01

    The phenomena of scattering, absorption, and emission of light and other electromagnetic radiation by small particles are central to many science and engineering disciplines. Absorption of solar radiation by black carbon aerosols has a significant impact on the atmospheric energy distribution and hydrologic processes. By intercepting incoming solar radiation before it reaches the surface, aerosols heat the atmosphere and, in turn, cool the surface. The magnitude of the atmospheric forcing induced by anthropogenic absorbing aerosols, mainly black carbon (BC) emitted from biomass burning and combustion processes has been suggested to be comparable to the atmospheric forcing by all greenhouse gases (GHGs). Despite the global abundance of biomass burning for cooking, forests clearing for agriculture and wild fires, the optical properties of these aerosols have not been characterized at wide range of wavelengths. Our laboratory uses a combination of Cavity ring down spectroscopy and integrating nephelometry to measure optical properties of (extinction, absorption and scattering coefficients) of biomass aerosols. Preliminary results will be presented. Supported by the Department of Defense under Grant #W911NF-11-1-0188.

  3. Absorption coefficients for water vapor at 193 nm from 300 to 1073 K

    NASA Technical Reports Server (NTRS)

    Kessler, W. J.; Carleton, K. L.; Marinelli, W. J.

    1993-01-01

    Measurements of the water absorption coefficient at 193 nm from 300 to 1073 K are reported. The measurements were made using broadband VUV radiation and a monochromator-based detection system. The water vapor was generated by a saturator and metered into a flowing, 99 cm absorption cell via a water vapor mass flow meter. The 193 nm absorption coefficient measurements are compared to room temperature and high temperature shock tube measurements with good agreement. The absorption can be parameterized by a nu3 vibrational mode reaction coordinate and the thermal population of the nu3 mode.

  4. Approximating the near-edge mass absorption coefficients for Ni using an ultra-thin bimetal foil

    DOE PAGES

    Alkire, Randall W.

    2016-11-01

    In an effort to improve the characteristics of a fluorescing metal-foil-based beam position monitor, a new bimetal ultra-thin (0.98/0.67 µm) Ti–Ni foil was introduced to replace an existing single-element ultra-thin 0.5 µm thick Cr foil. During characterization it was determined that absorption measurements on the bimetal foil could be used to fit the Ni mass absorption coefficients accurately in the vicinity of the NiKedge. Comparison with experimental results from the literature demonstrated that the fitting procedure produced coefficients with uncertainties of the order of ±1%. Once determined, these fit coefficients allowed the thickness of an independently mounted 8 µm thickmore » Ni foil to be computed from absorption measurements instead of relying on a tool-based measurement of the foil thickness. Using the 8 µm thick foil, a continuous map of Ni mass absorption coefficients was produced at 1 eV resolution throughout the near-edge region. Lastly, this high-resolution map marks a significant improvement over the existing NIST XCOM or FFAST database mass absorption coefficients, which have estimated errors of 10–20% for the near-edge region.« less

  5. Seismology in civil engineering

    NASA Astrophysics Data System (ADS)

    Dvorak, A.

    Properties of soils and rocks exposed to vibrations in the practice of civil engineering are examined. Seismic and dynamic field investigations, determination of seismic and dynamic modulus of elasticity, coefficients of damping and absorption are studied. Seismic effects of blasting and of other sources of vibrations on structures and persons, application of rock-noise and dynamic tests of piles are studied.

  6. Aerosol optical properties over the Svalbard region of Arctic: ground-based measurements and satellite remote sensing

    NASA Astrophysics Data System (ADS)

    Gogoi, Mukunda M.; Babu, S. Suresh

    2016-05-01

    In view of the increasing anthropogenic presence and influence of aerosols in the northern polar regions, long-term continuous measurements of aerosol optical parameters have been investigated over the Svalbard region of Norwegian Arctic (Ny-Ålesund, 79°N, 12°E, 8 m ASL). This study has shown a consistent enhancement in the aerosol scattering and absorption coefficients during spring. The relative dominance of absorbing aerosols is more near the surface (lower single scattering albedo), compared to that at the higher altitude. This is indicative of the presence of local anthropogenic activities. In addition, long-range transported biomass burning aerosols (inferred from the spectral variation of absorption coefficient) also contribute significantly to the higher aerosol absorption in the Arctic spring. Aerosol optical depth (AOD) estimates from ground based Microtop sun-photometer measurements reveals that the columnar abundance of aerosols reaches the peak during spring season. Comparison of AODs between ground based and satellite remote sensing indicates that deep blue algorithm of Moderate Resolution Imaging Spectroradiometer (MODIS) retrievals over Arctic snow surfaces overestimate the columnar AOD.

  7. Optical band gap and spectroscopic study of lithium alumino silicate glass containing Y3+ ions.

    PubMed

    Shakeri, M S; Rezvani, M

    2011-09-01

    The effect of different amounts of Y2O3 dopant on lithium alumino silicate (LAS) glass has been studied in this work. Glasses having 14.8Li2O-20Al2O3-65.2SiO2 (wt%) composition accompanied with Y2O3 dopant were prepared by normal melting process. In order to calculate the absorption coefficient of samples, transmittance and reflectance spectra of polished samples were measured in the room temperature. Optical properties i.e. Fermi energy level, direct and indirect optical band gaps and Urbach energy were calculated using functionality of extinction coefficient from Fermi-Dirac distribution function, Tauc's plot and the exponential part of absorption coefficient diagram, respectively. It has been clarified that variation in mentioned optical parameters is associated with the changes in physical properties of samples i.e. density or molar mass. On the other hand, increasing of Y3+ ions in the glassy microstructure of samples provides a semiconducting character to LAS glass by reducing the direct and indirect optical band gaps of glass samples from 1.97 to 1.67 and 3.46 to 2.1 (eV), respectively. These changes could be attributed to the role of Y3+ ions as the network former in the track of SiO4 tetrahedrals. Copyright © 2011 Elsevier B.V. All rights reserved.

  8. Measurement of the absorption coefficient using the sound-intensity technique

    NASA Technical Reports Server (NTRS)

    Atwal, M.; Bernhard, R.

    1984-01-01

    The possibility of using the sound intensity technique to measure the absorption coefficient of a material is investigated. This technique measures the absorption coefficient by measuring the intensity incident on the sample and the net intensity reflected by the sample. Results obtained by this technique are compared with the standard techniques of measuring the change in the reverberation time and the standing wave ratio in a tube, thereby, calculating the random incident and the normal incident adsorption coefficient.

  9. Ultrafast recovery time and broadband saturable absorption properties of black phosphorus suspension

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Yingwei; Huang, Guanghui; Chen, Jiazhang

    2015-08-31

    As a new type of two-dimensional crystal material, black phosphorus (BP) exhibits excellent electronics and optical performance. Herein, we focus on carrier relaxation dynamics and nonlinear optical properties of BP suspension. Atomic force microscopy, transmission electron microscopy, and optical transmission spectrum are employed to characterize the structure and linear optical properties of the BP. Additionally, pump-probe experiments at wavelength of 1550 nm were carried out to study the carrier dynamics in BP suspension, and ultrafast recovery time was observed (τ{sub s} = 24 ± 2 fs). Furthermore, we demonstrate the saturable absorption signals by open aperture Z-scan experiments at wavelengths of 1550 nm, 532 nm, and 680 nm. Themore » results indicate that BP has broadband saturable absorption properties and the nonlinear absorption coefficients were determined to be β{sub 2} = −0.20 ± 0.08 × 10{sup −3 }cm/GW (532 nm), β{sub 2} = −0.12 ± 0.05 × 10{sup −3 }cm/GW (680 nm), and β{sub 2} = −0.15 ± 0.09 × 10{sup −3 }cm/GW (1550 nm)« less

  10. Light absorption and morphological properties of soot-containing aerosols observed at an East Asian outflow site, Noto Peninsula, Japan

    NASA Astrophysics Data System (ADS)

    Ueda, Sayako; Nakayama, Tomoki; Taketani, Fumikazu; Adachi, Kouji; Matsuki, Atsushi; Iwamoto, Yoko; Sadanaga, Yasuhiro; Matsumi, Yutaka

    2016-03-01

    The coating of black carbon (BC) with inorganic salts and organic compounds can enhance the magnitude of light absorption by BC. To elucidate the enhancement of light absorption of aged BC particles and its relation to the mixing state and morphology of individual particles, we conducted observations of particles at an Asian outflow site in Noto Peninsula, Japan, in the spring of 2013. Absorption and scattering coefficients at 405, 532, and 781 nm and mass concentrations/mixing states of refractory BC in PM2.5 were measured using a three-wavelength photoacoustic soot spectrometer and a single-particle soot photometer (SP2), respectively, after passage through a thermodenuder (TD) maintained at 300 or 400 °C or a bypass line maintained at room temperature (25 °C). The average enhancement factor of BC light absorption due to coating was estimated by comparing absorption coefficients at 781 nm for particles that with and without passing through the TD at 300 °C and was found to be 1.22. The largest enhancements (> 1.30) were observed under high absorption coefficient periods when the air mass was long-range transported from urban areas in China. Aerosol samples were also analyzed using a transmission electron microscope (TEM) equipped with an energy dispersive X-ray analyzer. The morphological features and mixing states of soot-containing particles of four samples collected during the high absorption events were analyzed by comparing microphotographs before and after the evaporation of beam-sensitive materials by irradiation with a high-density electron beam. The majority of the soot in all samples was found as mixed particles with sulfate-containing spherules or as clusters of such spherules. For samples showing high enhancement (> 1.30) of BC light absorption, the TEM showed that the internally mixed soot-containing particles tended to have a more spherical shape and to be thickly coated. The SP2 measurements also suggested that the proportion of thickly coated soot was greater. Thus, the observed enhancement of BC light absorption was found to differ according to the mixing states and morphology of soot-containing particles. The enhancement of BC light absorption in our in situ measurements and its relation with individual features of soot-containing particles will be useful to evaluate direct radiative forcing in the downwind areas of large emission sources of BC.

  11. Spatial and temporal variations of aerosols around Beijing in summer 2006: 2. Local and column aerosol optical properties

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matsui, Hitoshi; Koike, Makoto; Kondo, Yutaka

    Weather Research and Forecasting (WRF)-chem model calculations were conducted to study aerosol optical properties around Beijing, China, during the Campaign of Air Quality Research in Beijing and Surrounding Region 2006 (CAREBeijing-2006) period. In this paper, we interpret aerosol optical properties in terms of aerosol mass concentrations and their chemical compositions by linking model calculations with measurements. In general, model calculations reproduced observed features of spatial and temporal variations of various surface and column aerosol optical parameters in and around Beijing. Spatial and temporal variations of aerosol absorption, scattering, and extinction coefficient corresponded well to those of elemental carbon (primary aerosol),more » sulfate (secondary aerosol), and the total aerosol mass concentration, respectively. These results show that spatial and temporal variations of the absorption coefficient are controlled by local emissions (within 100 km around Beijing during the preceding 24 h), while those of the scattering coefficient are controlled by regional-scale emissions (within 500 km around Beijing during the preceding 3 days) under synoptic-scale meteorological conditions, as discussed in our previous study of aerosol mass concentration. Vertical profiles of aerosol extinction revealed that the contribution of secondary aerosols and their water uptake increased with altitude within the planetary boundary layer, leading to a considerable increase in column aerosol optical depth (AOD) around Beijing. These effects are the main factors causing differences in regional and temporal variations between particulate matter (PM) mass concentration at the surface and column AOD over a wide region in the northern part of the Great North China Plain.« less

  12. In situ airborne measurements of aerosol optical properties during photochemical pollution events

    NASA Astrophysics Data System (ADS)

    Mallet, M.; van Dingenen, R.; Roger, J. C.; Despiau, S.; Cachier, H.

    2005-02-01

    Dry aerosol optical properties (scattering, absorbing coefficients, and single scattering albedo) were derived from in situ airborne measurements during two photochemical pollution events (25 and 26 June) observed during the Experience sur Site pour Contraindre les Modeles de Pollution atmospherique et de Transport d'Emissions (ESCOMPTE) experiment. Two flights were carried out during daytime (one during the morning and one at noon) over a domain, allowing the investigation of how an air pollution event affects the particle optical properties. Both horizontal distribution and vertical profiles are presented. Results from the horizontal mapping show that plumes of enhanced scattering and absorption are formed in the planetary boundary layer (PBL) during the day in the sea breeze-driven outflow of the coastal urban-industrial area of Marseille-Fos de Berre. The domain-averaged scattering coefficient (at 550 nm) over land σs changes from 35 (28) Mm-1 during land breeze to 63 (43) Mm-1 during sea breeze on 25 June (26 June), with local maxima reaching > 100 Mm-1. The increase in the scattering coefficient is associated with new particle formation, indicative of secondary aerosol formation. Simultaneously, the domain-averaged absorption coefficient increases from 5.6 (3.4) Mm-1 to 9.3 (8.0) Mm-1. The pollution plume leads to strong gradients in the single scattering albedo ωo over the domain studied, with local values as low as 0.73 observed inside the pollution plume. The role of photochemistry and secondary aerosol formation during the 25 June case is shown to increase ωo and to make the aerosol more `reflecting' while the plume moves away from the sources. The lower photochemical activity, observed in the 26 June case, induces a relatively higher contribution of black carbon, making the aerosol more absorbing. Results from vertical profiles at a single near-urban location in the domain indicate that the changes in optical properties happen almost entirely within the PBL. No significant variation of σs, σa, and ωo is observed in the upper layer (1-3 km), where the aerosol optical properties are considered to be well mixed.

  13. A study on optical properties of poly (ethylene oxide) based polymer electrolyte with different alkali metal iodides

    NASA Astrophysics Data System (ADS)

    Rao, B. Narasimha; Suvarna, R. Padma

    2016-05-01

    Polymer electrolytes were prepared by adding poly (ethylene glycol) dimethyl ether (PEGDME), TiO2 (nano filler), different alkali metal iodide salts RI (R+=Li+, Na+, K+, Rb+, Cs+) and I2 into Acetonitrile gelated with Poly (ethylene oxide) (PEO). Optical properties of poly (ethylene oxide) based polymer electrolytes were studied by FTIR, UV-Vis spectroscopic techniques. FTIR spectrum reveals that the alkali metal cations were coordinated to ether oxygen of PEO. The optical absorption studies were made in the wavelength range 200-800 nm. It is observed that the optical absorption increases with increase in the radius of alkali metal cation. The optical band gap for allowed direct transitions was evaluated using Urbach-edges method. The optical properties such as optical band gap, refractive index and extinction coefficient were determined. The studied polymer materials are useful for solar cells, super capacitors, fuel cells, gas sensors etc.

  14. Exploring the observational constraints on the simulation of brown carbon

    NASA Astrophysics Data System (ADS)

    Wang, X.; Heald, C. L.; Liu, J.; Weber, R. J.; Campuzano-Jost, P.; Jimenez, J. L.; Schwarz, J. P.; Perring, A. E.

    2017-12-01

    Brown carbon (BrC) is the component of organic aerosols (OA) which strongly absorbs solar radiation in the near-UV range of the spectrum. However the sources, evolution, and optical properties of BrC remain highly uncertain, and therefore constitute a large source of uncertainty in estimating the global direct radiative effect (DRE) of aerosols. Previous modeling studies of BrC optical properties and DRE have been unable to fully evaluate the skill of their simulations, given the lack of direct measurements of organic aerosol absorption. In this study, we develop a global model simulation (GEOS-Chem) of BrC and test it against BrC absorption measurements from two aircraft campaigns in the U.S. (SEAC4RS and DC3). To our knowledge, this is the first study to compare simulated BrC absorption with direct, continuous ambient measurements. We show that the laboratory-based BrC absorption properties from biomass burning overestimate the aircraft measurements of ambient BrC. In addition, applying a photochemical whitening scheme to simulated BrC is better able to represent the observed BrC absorption. These observations are consistent with a mass absorption coefficient (MAC) of freshly emitted biomass burning OA of 0.57m2g-1. Using the RRTMG model integrated with GEOS-Chem, we estimate that the all-sky top-of-atmosphere direct radiative effect (DRE) of OA is -0.350 Wm-2, 10% higher than that without consideration of BrC absorption. Therefore, our best estimate of the absorption DRE of BrC is +0.042 Wm-2. We suggest that the DRE of BrC has been overestimated previously due to the lack of observational constraints from direct measurements as well as neglect of the effects of photochemical whitening.

  15. Photoionization of environmentally polluting aromatic chlorides and nitrides on the water surface by laser and synchrotron radiations.

    PubMed

    Sato, Miki; Maeda, Yuki; Ishioka, Toshio; Harata, Akira

    2017-11-20

    The detection limits and photoionization thresholds of polycyclic aromatic hydrocarbons and their chlorides and nitrides on the water surface are examined using laser two-photon ionization and single-photon ionization, respectively. The laser two-photon ionization methods are highly surface-selective, with a high sensitivity for aromatic hydrocarbons tending to accumulate on the water surface in the natural environment due to their highly hydrophobic nature. The dependence of the detection limits of target aromatic molecules on their physicochemical properties (photoionization thresholds relating to excess energy, molar absorptivity, and the octanol-water partition coefficient) is discussed. The detection limit clearly depends on the product of the octanol-water partition coefficient and molar absorptivity, and no clear dependence was found on excess energy. The detection limits of laser two-photon ionization for these types of molecules on the water surface are formulated.

  16. Spectroscopic ellipsometry study of Cu2ZnSnS4 bulk poly-crystals

    NASA Astrophysics Data System (ADS)

    Levcenko, S.; Hajdeu-Chicarosh, E.; Garcia-Llamas, E.; Caballero, R.; Serna, R.; Bodnar, I. V.; Victorov, I. A.; Guc, M.; Merino, J. M.; Pérez-Rodriguez, A.; Arushanov, E.; León, M.

    2018-04-01

    The linear optical properties of Cu2ZnSnS4 bulk poly-crystals have been investigated using spectroscopic ellipsometry in the range of 1.2-4.6 eV at room temperature. The characteristic features identified in the optical spectra are explained by using the Adachi analytical model for the interband transitions at the corresponding critical points in the Brillouin zone. The experimental data have been modeled over the entire spectral range taking into account the lowest E0 transition near the fundamental absorption edge and E1A and E1B higher energy interband transitions. In addition, the spectral dependences of the refractive index, extinction coefficient, absorption coefficient, and normal-incidence reflectivity values have been accurately determined and are provided since they are essential data for the design of Cu2ZnSnS4 based optoelectronic devices.

  17. Optical response in a laser-driven quantum pseudodot system

    NASA Astrophysics Data System (ADS)

    Kilic, D. Gul; Sakiroglu, S.; Ungan, F.; Yesilgul, U.; Kasapoglu, E.; Sari, H.; Sokmen, I.

    2017-03-01

    We investigate theoretically the intense laser-induced optical absorption coefficients and refractive index changes in a two-dimensional quantum pseudodot system under an uniform magnetic field. The effects of non-resonant, monochromatic intense laser field upon the system are treated within the framework of high-frequency Floquet approach in which the system is supposed to be governed by a laser-dressed potential. Linear and nonlinear absorption coefficients and relative changes in the refractive index are obtained by means of the compact-density matrix approach and iterative method. The results of numerical calculations for a typical GaAs quantum dot reveal that the optical response depends strongly on the magnitude of external magnetic field and characteristic parameters of the confinement potential. Moreover, we have demonstrated that the intense laser field modifies the confinement and thereby causes remarkable changes in the linear and nonlinear optical properties of the system.

  18. Infrared radiative properties of tropical cirrus clouds inferred with aircraft measurements

    NASA Technical Reports Server (NTRS)

    Griffith, K. T.; Cox, S. K.; Knollenberg, R. G.

    1980-01-01

    Longwave emissivities and the vertical profile of cooling rates of tropical cirrus clouds are determined using broadband hemispheric irradiance data. Additionally, a broadband mass absorption coefficient is defined and used to relate emissivity to water content. The data used were collected by the National Center for Atmospheric Research (NCAR) Sabreliner during the GARP Atlantic Tropical Experiment (GATE) in the summer of 1974. Three case studies are analyzed showing that these tropical cirrus clouds approached an emissivity of 1.0 within a vertical distance of 1.0 km. Broadband mass absorption coefficients ranging from 0.076 to 0.096 sq m per g are derived. A comparison of these results with other work suggests that tropical cirrus cloud emissivities may be significantly larger than heretofore believed. Ice water content of the clouds were deduced from data collected by a one-dimensional particle spectrometer. Analyses of the ice water content and the observed particle size distributions are presented.

  19. On the sub-band gap optical absorption in heat treated cadmium sulphide thin film deposited on glass by chemical bath deposition technique

    NASA Astrophysics Data System (ADS)

    Chattopadhyay, P.; Karim, B.; Guha Roy, S.

    2013-12-01

    The sub-band gap optical absorption in chemical bath deposited cadmium sulphide thin films annealed at different temperatures has been critically analyzed with special reference to Urbach relation. It has been found that the absorption co-efficient of the material in the sub-band gap region is nearly constant up to a certain critical value of the photon energy. However, as the photon energy exceeds the critical value, the absorption coefficient increases exponentially indicating the dominance of Urbach rule. The absorption coefficients in the constant absorption region and the Urbach region have been found to be sensitive to annealing temperature. A critical examination of the temperature dependence of the absorption coefficient indicates two different kinds of optical transitions to be operative in the sub-band gap region. After a careful analyses of SEM images, energy dispersive x-ray spectra, and the dc current-voltage characteristics, we conclude that the absorption spectra in the sub-band gap domain is possibly associated with optical transition processes involving deep levels and the grain boundary states of the material.

  20. The Measurement of Aerosol Optical Properties using Continuous Wave Cavity Ring-Down Techniques

    NASA Technical Reports Server (NTRS)

    Strawa, Anthony W.; Castaneda, Rene; Owano, Thomas; Baer, Douglas S.; Paldus, Barbara A.; Gore, Warren J. (Technical Monitor)

    2002-01-01

    Large uncertainties in the effects that aerosols have on climate require improved in situ measurements of extinction coefficient and single-scattering albedo. This paper describes the use of continuous wave cavity ring-down (CW-CRD) technology to address this problem. The innovations in this instrument are the use of CW-CRD to measure aerosol extinction coefficient, the simultaneous measurement of scattering coefficient, and small size suitable for a wide range of aircraft applications. Our prototype instrument measures extinction and scattering coefficient at 690 nm and extinction coefficient at 1550 nm. The instrument itself is small (60 x 48 x 15 cm) and relatively insensitive to vibrations. The prototype instrument has been tested in our lab and used in the field. While improvements in performance are needed, the prototype has been shown to make accurate and sensitive measurements of extinction and scattering coefficients. Combining these two parameters, one can obtain the single-scattering albedo and absorption coefficient, both important aerosol properties. The use of two wavelengths also allows us to obtain a quantitative idea of the size of the aerosol through the Angstrom exponent. Minimum sensitivity of the prototype instrument is 1.5 x 10(exp -6)/m (1.5 M/m). Validation of the measurement of extinction coefficient has been accomplished by comparing the measurement of calibration spheres with Mie calculations. This instrument and its successors have potential to help reduce uncertainty currently associated with aerosol optical properties and their spatial and temporal variation. Possible applications include studies of visibility, climate forcing by aerosol, and the validation of aerosol retrieval schemes from satellite data.

  1. The Measurement of Aerosol Optical Properties Using Continuous Wave Cavity Ring-Down Techniques

    NASA Technical Reports Server (NTRS)

    Strawa, A. W.; Owano, T.; Castaneda, R.; Baer, D. S.; Paldus, B. A.; Gore, Warren J. (Technical Monitor)

    2002-01-01

    Large uncertainties in the effects that aerosols have on climate require improved in-situ measurements of extinction coefficient and single-scattering albedo. This abstract describes the use of continuous wave cavity ring-down (CW-CRD) technology to address this problem. The innovations in this instrument are the use of CW-CRD to measure aerosol extinction coefficient, the simultaneous measurement of scattering coefficient, and small size suitable for a wide range of aircraft applications. Our prototype instrument measures extinction and scattering coefficient at 690 nm and extinction coefficient at 1550 nm. The instrument itself is small (60 x 48 x 15 cm) and relatively insensitive to vibrations. The prototype instrument has been tested in our lab and used in the field. While improvements in performance are needed, the prototype has been shown to make accurate and sensitive measurements of extinction and scattering coefficients. Combining these two parameters, one can obtain the single-scattering albedo and absorption coefficient, both important aerosol properties. The use of two wavelengths also allows us to obtain a quantitative idea of the size of the aerosol through the Angstrom exponent. Minimum sensitivity of the prototype instrument is 1.5 x 10(exp -6)/m (1.5/Mm). Validation of the measurement of extinction coefficient has been accomplished by comparing the measurement of calibration spheres with Mie calculations. This instrument and its successors have potential to help reduce uncertainty currently associated with aerosol optical properties and their spatial and temporal variation. Possible applications include studies of visibility, climate forcing by aerosol, and the validation of aerosol retrieval schemes from satellite data.

  2. Effect of size and indium-composition on linear and nonlinear optical absorption of InGaN/GaN lens-shaped quantum dot

    NASA Astrophysics Data System (ADS)

    Ahmed, S. Jbara; Zulkafli, Othaman; M, A. Saeed

    2016-05-01

    Based on the Schrödinger equation for envelope function in the effective mass approximation, linear and nonlinear optical absorption coefficients in a multi-subband lens quantum dot are investigated. The effects of quantum dot size on the interband and intraband transitions energy are also analyzed. The finite element method is used to calculate the eigenvalues and eigenfunctions. Strain and In-mole-fraction effects are also studied, and the results reveal that with the decrease of the In-mole fraction, the amplitudes of linear and nonlinear absorption coefficients increase. The present computed results show that the absorption coefficients of transitions between the first excited states are stronger than those of the ground states. In addition, it has been found that the quantum dot size affects the amplitudes and peak positions of linear and nonlinear absorption coefficients while the incident optical intensity strongly affects the nonlinear absorption coefficients. Project supported by the Ministry of Higher Education and Scientific Research in Iraq, Ibnu Sina Institute and Physics Department of Universiti Teknologi Malaysia (UTM RUG Vote No. 06-H14).

  3. Absorption coefficients of silicon: A theoretical treatment

    NASA Astrophysics Data System (ADS)

    Tsai, Chin-Yi

    2018-05-01

    A theoretical model with explicit formulas for calculating the optical absorption and gain coefficients of silicon is presented. It incorporates direct and indirect interband transitions and considers the effects of occupied/unoccupied carrier states. The indirect interband transition is calculated from the second-order time-independent perturbation theory of quantum mechanics by incorporating all eight possible routes of absorption or emission of photons and phonons. Absorption coefficients of silicon are calculated from these formulas. The agreements and discrepancies among the calculated results, the Rajkanan-Singh-Shewchun (RSS) formula, and Green's data are investigated and discussed. For example, the RSS formula tends to overestimate the contributions of indirect transitions for cases with high photon energy. The results show that the state occupied/unoccupied effect is almost negligible for silicon absorption coefficients up to the onset of the optical gain condition where the energy separation of Quasi-Femi levels between electrons and holes is larger than the band-gap energy. The usefulness of using the physics-based formulas, rather than semi-empirical fitting ones, for absorption coefficients in theoretical studies of photovoltaic devices is also discussed.

  4. Phase-resolved reflectance spectroscopy on layered turbid media

    NASA Astrophysics Data System (ADS)

    Hielscher, Andreas H.; Liu, Hanli; Chance, Britton; Tittel, Frank K.; Jacques, Steven L.

    1995-05-01

    In this study, we investigate the influence of layered tissue structures on the phase-resolved reflectance. As a particular example, we consider the affect of the skin, skull, and meninges on noninvasive blood oxygenation determination of the brain. In this case, it's important to know how accurate one can measure the absorption coefficient of the brain through the enclosing layers of different tissues. Experiments were performed on layered gelatin tissue phantoms and the results compared to diffusion theory. It is shown that when a high absorbing medium is placed on top of a low absorbing medium, the absorption coefficient of the lower layer is accessible. In the inverse case, where a low absorbing medium is placed on top of a high absorbing medium, the absorption coefficient of the underlying medium can only be determined if the differences in the absorption coefficient are small, or the top layer is very thin. Investigations on almost absorption and scattering free layers, like the cerebral fluid filled arachnoid, reveal that the determination of the absorption coefficient is barely affected by these kinds of structures.

  5. Enhancing sound absorption and transmission through flexible multi-layer micro-perforated structures.

    PubMed

    Bravo, Teresa; Maury, Cédric; Pinhède, Cédric

    2013-11-01

    Theoretical and experimental results are presented into the sound absorption and transmission properties of multi-layer structures made up of thin micro-perforated panels (ML-MPPs). The objective is to improve both the absorption and insulation performances of ML-MPPs through impedance boundary optimization. A fully coupled modal formulation is introduced that predicts the effect of the structural resonances onto the normal incidence absorption coefficient and transmission loss of ML-MPPs. This model is assessed against standing wave tube measurements and simulations based on impedance translation method for two double-layer MPP configurations of relevance in building acoustics and aeronautics. Optimal impedance relationships are proposed that ensure simultaneous maximization of both the absorption and the transmission loss under normal incidence. Exhaustive optimization of the double-layer MPPs is performed to assess the absorption and/or transmission performances with respect to the impedance criterion. It is investigated how the panel volumetric resonances modify the excess dissipation that can be achieved from non-modal optimization of ML-MPPs.

  6. Optical absorption and scattering spectra of pathological stomach tissues

    NASA Astrophysics Data System (ADS)

    Giraev, K. M.; Ashurbekov, N. A.; Lakhina, M. A.

    2011-03-01

    Diffuse reflection spectra of biotissues in vivo and transmission and reflection coefficients for biotissues in vitro are measured over 300-800 nm. These data are used to determine the spectral absorption and scattering indices and the scattering anisotropy factor for stomach mucous membranes under normal and various pathological conditions (chronic atrophic and ulcerous defects, malignant neoplasms). The most importan tphysiological (hemodynamic and oxygenation levels) and structural-morphological (scatterer size and density) parameters are also determined. The results of a morphofunctional study correlate well with the optical properties and are consistent with data from a histomorphological analysis of the corresponding tissues.

  7. Nonlinear optical characterization of ZnS thin film synthesized by chemical spray pyrolysis method

    NASA Astrophysics Data System (ADS)

    G, Sreeja V.; V, Sabitha P.; Anila, E. I.; R, Reshmi; John, Manu Punnan; Radhakrishnan, P.

    2014-10-01

    ZnS thin film was prepared by Chemical Spray Pyrolysis (CSP) method. The sample was characterized by X-ray diffraction method and Z scan technique. XRD pattern showed that ZnS thin film has hexagonal structure with an average size of about 5.6nm. The nonlinear optical properties of ZnS thin film was studied by open aperture Z-Scan technique using Q-switched Nd-Yag Laser at 532nm. The Z-scan plot showed that the investigated ZnS thin film has saturable absorption behavior. The nonlinear absorption coefficient and saturation intensity were also estimated.

  8. Intrinsic Raman spectroscopy for quantitative biological spectroscopy Part II

    PubMed Central

    Bechtel, Kate L.; Shih, Wei-Chuan; Feld, Michael S.

    2009-01-01

    We demonstrate the effectiveness of intrinsic Raman spectroscopy (IRS) at reducing errors caused by absorption and scattering. Physical tissue models, solutions of varying absorption and scattering coefficients with known concentrations of Raman scatterers, are studied. We show significant improvement in prediction error by implementing IRS to predict concentrations of Raman scatterers using both ordinary least squares regression (OLS) and partial least squares regression (PLS). In particular, we show that IRS provides a robust calibration model that does not increase in error when applied to samples with optical properties outside the range of calibration. PMID:18711512

  9. Electron photodetachment from gas phase peptide dianions. Relation with optical absorption properties.

    PubMed

    Joly, Laure; Antoine, Rodolphe; Broyer, Michel; Lemoine, Jérôme; Dugourd, Philippe

    2008-02-07

    Electron detachment from peptide dianions is studied as a function of the laser wavelength. The first step for the detachment is a resonant electronic excitation of the dianions. Electronic excitation spectra are reported for three peptides, including gramicidin. A comparative study of the detachment yield for 13 peptides was performed at 260 nm and at 220 nm. At 260 nm, the detachment yield is mainly driven by the sum of the absorption coefficients of the aromatic amino acids that are contained in the peptide. At 220 nm, no direct relation is observed between the electron photodetachement yields and the sum of absorption efficiencies. At this wavelength, the sequence and the structure of the peptide may have an influence on the photodetachment process.

  10. Linear and nonlinear magneto-optical absorption in a triangular quantum well

    NASA Astrophysics Data System (ADS)

    Tung, Luong V.; Vinh, Pham T.; Dinh, Le; Phuc, Huynh V.

    2018-05-01

    In this work, we study the linear and nonlinear magneto-optical absorption spectrum in a triangular quantum well (TrQW) created by the applied electric field via investigating the phonon-assisted cyclotron resonance (PACR) effect. The results are calculated for a specific Ga0.7Al0.3As/GaAs quantum well. The magneto-optical absorption coefficient (MOAC) and the full width at half maximum (FWHM) are found to be significantly dependent on the magnetic field, the electric field and the temperature. Our results showed that the MOAC and FWHM increase with the magnetic, electric fields and temperature. The obtained results also suggest a useful way to control the magneto-optical properties of TrQW by changing these parameters.

  11. Optoelectronic and photoacoustic studies of an organic dye synthesized through green route

    NASA Astrophysics Data System (ADS)

    Vijayakumar, S.; Sreelatha, S.; Hatamimoslehabadi, M.; Yelleswarappu, C. S.

    2017-10-01

    An azo dye was prepared through an environmentally benign and economically feasible synthesis route with cardanol as a starting material. Cardanol is a cost-effective and renewable natural source obtained from Cashew Nut Shell Liquid, a by-product of the cashew industry. The dye was spectrally characterized by IR, UV-Vis, NMR and fluorescence studies. UV-Vis absorption showed a bathochromic shift between solvents of lower and higher polarities. Nonlinear optical and photoacoustic properties were studied using a frequency doubled Nd:YAG laser producing 532 nm laser pulses of 3 ns pulse width. Results show that the nonlinear absorption coefficient decreases with the increase of on-axis intensity, suggesting excited state absorption as the principal mechanism. The observed nonlinearity has applications in optoelectronics.

  12. The examination of berberine excited state by laser flash photolysis

    NASA Astrophysics Data System (ADS)

    Cheng, Lingli; Wang, Mei; Zhao, Ping; Zhu, Hui; Zhu, Rongrong; Sun, Xiaoyu; Yao, Side; Wang, Shilong

    2009-07-01

    The property of the excited triplet state of berberine (BBR) was investigated by using time-resolved laser flash photolysis of 355 nm in acetonitrile. The transient absorption spectra of the excited triplet BBR were obtained in acetonitrile, which have an absorption maximum at 420 nm. And the ratio of excitation to ionization of BBR in acetonitrile solvent was calculated. The self-decay and self-quenching rate constants, and the absorption coefficient of 3BBR* were investigated and the excited state quantum yield was determined. Furthermore utilizing the benzophenone (BEN) as a triplet sensitizer, and the β-carotene (Car) as an excited energy transfer acceptor, the assignment of 3BBR* was further confirmed and the related energy transfer rate constants were also determined.

  13. Refractive indices of layers and optical simulations of Cu(In,Ga)Se2 solar cells

    PubMed Central

    Avancini, Enrico; Losio, Paolo A.; Figi, Renato; Schreiner, Claudia; Bürki, Melanie; Bourgeois, Emilie; Remes, Zdenek; Nesladek, Milos; Tiwari, Ayodhya N.

    2018-01-01

    Abstract Cu(In,Ga)Se2 based solar cells have reached efficiencies close to 23%. Further knowledge-driven improvements require accurate determination of the material properties. Here, we present refractive indices for all layers in Cu(In,Ga)Se2 solar cells with high efficiency. The optical bandgap of Cu(In,Ga)Se2 does not depend on the Cu content in the explored composition range, while the absorption coefficient value is primarily determined by the Cu content. An expression for the absorption spectrum is proposed, with Ga and Cu compositions as parameters. This set of parameters allows accurate device simulations to understand remaining absorption and carrier collection losses and develop strategies to improve performances. PMID:29785230

  14. Electronic Structure, Optical and Transport Properties of Double Perovskite La2NbMnO6: A Theoretical Understanding from DFT Calculations

    NASA Astrophysics Data System (ADS)

    Parrey, Khursheed Ahmad; Khandy, Shakeel Ahmad; Islam, Ishtihadah; Laref, Amel; Gupta, Dinesh C.; Niazi, Asad; Aziz, Anver; Ansari, S. G.; Khenata, R.; Rubab, Seemin

    2018-03-01

    Double perovskite La2NbMnO6 was systematically studied using the first-principles calculations. The structural, electronic, optical and transport properties of this compound were calculated. Spin resolved band structure predicted this material as a half-metal with an energy gap of 3.75 eV in spin down state. The optical coefficients including optical conductivity, reflectivity and electron energy loss are calculated for photon energy up to 30.00 eV to understand the optical response of this perovskite. The strong absorption of all the ultraviolet and infrared frequencies of the spectrum by this material may suggest the potential application of this material for the optoelectronic devices in ultraviolet and infra-red region. Also, the thermoelectric properties with a speculation from the half-metallic electronic structure are reported. Subsequently, the Seebeck coefficient, electrical and thermal conductivity coefficients are calculated to predict the thermoelectric figure of merit (zT), the maximum of which is found out to be 0.14 at 800 K.

  15. Synthesis, crystal structure, photophysical properties and theoretical studies of a novel bis(phenylisoxazolyl) benzene derivative

    NASA Astrophysics Data System (ADS)

    de Brito, A. C. F.; Correa, R. S.; Pinto, A. A.; Matos, M. J. S.; Tenorio, J. C.; Taylor, J. G.; Cazati, T.

    2018-07-01

    Isoxazoles have well established biological activities but, have been underexplored as synthetic intermediates for applications in materials science. The aims of this work are to synthesis a novel isoxazole and analyze its structural and photophysical properties for application in electronic organic materials. The novel bis (phenylisoxazolyl) benzene compound was synthesized in four steps and characterized by NMR, high resolution mass spectrometry, differential thermal analysis, infrared spectroscopy, cyclic voltammetry, ultraviolet-visible spectroscopy, fluorescence spectroscopy, DFT and TDDFT calculations. The molecule presented optical absorption in the ultraviolet region (from 290 nm to 330 nm), with maximum absorption length centered at 306 nm. The molar extinction coefficients (ε), fluorescence emission spectra and quantum efficiencies in chloroform and dimethylformamide solution were determined. Cyclic voltammetry analysis was carried out for estimating the HOMO energy level and these properties make it desirable material for photovoltaic device applications. Finally, the excited-state properties of present compound were calculated by time-dependent density functional theory (TDDFT).

  16. Tunable diode laser measurements of HO2NO2 absorption coefficients near 12.5 microns

    NASA Technical Reports Server (NTRS)

    May, R. D.; Molina, L. T.; Webster, C. R.

    1988-01-01

    A tunable diode laser spectrometer has been used to measure absorption coefficients of peroxynitric acid (HO2NO2) near the 803/cm Q branch. HO2NO2 concentrations in a low-pressure flowing gas mixture were determined from chemical titration procedures and UV absorption spectroscopy. The diode laser measured absorption coefficients, at a spectral resolution of better than 0.001/cm, are about 10 percent larger than previous Fourier transform infrared measurements made at a spectral resolution of 0.06/cm.

  17. Absorption properties of chromophoric dissolved organic matter (CDOM) in the East China Sea and the waters off eastern Taiwan

    NASA Astrophysics Data System (ADS)

    Zhou, Fengxia; Gao, Xuelu; Song, Jinming; Chen, Chen-Tung Arthur; Yuan, Huamao; Xing, Qianguo

    2018-05-01

    The absorption properties of chromophoric dissolved organic matter (CDOM) in the East China Sea (ECS) and the waters off eastern Taiwan (WET) were studied during May 2014. CDOM absorption coefficient (a280) and spectral slope (S275-295) revealed considerable spatial variations. In the ECS, the values of a280 and S275-295 presented a reverse distribution pattern. In the WET, a280 values were generally low while S275-295 values were generally high. Vertical distributions of a280 and S275-295 also varied in different regions. Terrestrial input, phytoplankton production, sediment release or photobleaching may be responsible for the dynamics of CDOM. Relationships among CDOM related parameters could partly support this conclusion. a280 were also used to trace different water masses and the result showed that the influence of Changjiang Diluted Water could reach the outer shelf of the northern ECS, and that the Kuroshio Current had a strong influence on the middle shelf of the southern ECS.

  18. Elastic, thermodynamic and optical behavior of V2AC (A = Al, Ga) MAX phases

    NASA Astrophysics Data System (ADS)

    Khatun, M. R.; Ali, M. A.; Parvin, F.; Islam, A. K. M. A.

    This article reports the first-principles calculations of yet unexplored Mulliken bond population, Vickers hardness, thermodynamic and optical properties of MAX phases V2AC (A = Al, Ga). We have also revisited the structural and elastic properties of these phases in order to assess the reliability of our calculations. The temperature and pressure dependence of bulk modulus, Debye temperature, specific heats, and thermal expansion coefficient have been successfully estimated through the quasi-harmonic Debye model in the temperature range from 0 to 1000 K and the pressure range from 0 to 50 GPa. The optical properties such as the dielectric function, refractive index, photoconductivity, absorption coefficients, reflectivity and loss function are also evaluated for the first time. The reflectivity is found to be high which indicates that V2AC (A = Al, Ga) having the same characteristics could be good candidate materials to reduce solar heating up to ∼15 eV.

  19. Visible and infrared optical properties of stacked cone graphite microtubes.

    PubMed

    Bruce, Charles W; Alyones, Sharhabeel

    2012-06-01

    The absorptive and scattering optical properties of heat-treated, vapor-grown, graphite microtubes consisting of nanotubes in a "stacked cone" configuration were investigated through the visible and infrared wavelengths using photoacoustic and other spectrometric techniques. However, computations of these properties involved uncertainties that were not easily resolved; the appropriate dielectric coefficients were presumed to be a combination of the published values for the distinct orientations of graphite, but the correct proportions are not evident and none of the reasonable choices produced satisfactory agreement (within the measurement limits of error). Since both of the primary components of the extinction were measured, the appropriate computational codes were employed in reverse to compute the dielectric coefficients for the graphite microtubes. Differences, primarily for the imaginary index, are most distinct for visible and near infrared wavelengths; in this wavelength region, the imaginary index falls progressively to less than half that for the computed mixture.

  20. Physicochemical and Nonlinear Optical Properties of Novel Environmentally Benign Heterocyclic Azomethine Dyes: Experimental and Theoretical Studies

    PubMed Central

    Afzal, S. M.; Razvi, M. A. N.; Khan, Salman A.; Osman, Osman I.; Bakry, Ahmed H.; Asiri, Abdullah M.

    2016-01-01

    Novel heterocyclic azomethine dyes were prepared by the reaction of anthracene-9-carbaldehyde with different heterocyclic amines under microwave irradiation. Structures of the azomethine dyes were confirmed by the elemental analysis, mass spectrometry and several spectroscopic techniques. We studied absorbance and fluorescence spectra of the azomethine dyes in various solvents. They are found to be good absorbers and emitters. We also report photophysical properties like, extinction coefficient, oscillator strength, stokes shift and transition dipole moment. This reflects physicochemical behaviors of synthesized dyes. In addition, their intramolecular charge transfer and nonlinear optical properties, supported by natural bond orbital technique, were also studied computationally by density functional theory. The negative nonlinear refractive index and nonlinear absorption coefficient were measured for these dyes using the closed and open aperture Z-scan technique with a continuous wave helium-neon laser. These are found to vary linearly with solution concentration. PMID:27631371

  1. Novel Application of Glass Fibers Recovered From Waste Printed Circuit Boards as Sound and Thermal Insulation Material

    NASA Astrophysics Data System (ADS)

    Sun, Zhixing; Shen, Zhigang; Ma, Shulin; Zhang, Xiaojing

    2013-10-01

    The aim of this study is to investigate the feasibility of using glass fibers, a recycled material from waste printed circuit boards (WPCB), as sound absorption and thermal insulation material. Glass fibers were obtained through a fluidized-bed recycling process. Acoustic properties of the recovered glass fibers (RGF) were measured and compared with some commercial sound absorbing materials, such as expanded perlite (EP), expanded vermiculite (EV), and commercial glass fiber. Results show that RGF have good sound absorption ability over the whole tested frequency range (100-6400 Hz). The average sound absorption coefficient of RGF is 0.86, which is prior to those of EP (0.81) and EV (0.73). Noise reduction coefficient analysis indicates that the absorption ability of RGF can meet the requirement of II rating for sound absorbing material according to national standard. The thermal insulation results show that RGF has a fair low thermal conductivity (0.046 W/m K), which is comparable to those of some insulation materials (i.e., EV, EP, and rock wool). Besides, an empirical dependence of thermal conductivity on material temperature was determined for RGF. All the results showed that the reuse of RGF for sound and thermal insulation material provided a promising way for recycling WPCB and obtaining high beneficial products.

  2. Absorption coefficients of solid NH3 from 50 to 7000 per cm

    NASA Technical Reports Server (NTRS)

    Sill, G.; Fink, U.; Ferraro, J. R.

    1980-01-01

    Thin-film spectra of solid NH3 at a resolution of 1 per cm were used to determine its absorption coefficient over the range 50-7000 per cm. The thin films were formed inside a liquid N2 cooled dewar using a variety of substrates and dewar windows. The spectra were recorded with two Fourier spectrometers, one covering the range from 1 to 4 microns and the other from 2.6 to 200 microns. The thickness of the films was measured with a laser interference technique. The absorption coefficients were determined by application of Lambert's law and by a fitting procedure to the observed spectra using thin-film theory. Good agreement was found with the absorption coefficients recently determined by other investigators over a more restricted wavelength range. A metastable phase was observed near a temperature of 90 K and its absorption coefficient is reported. No other major spectral changes with temperature were noted for the range 88-120 K.

  3. A method for determination mass absorption coefficient of gamma rays by Compton scattering.

    PubMed

    El Abd, A

    2014-12-01

    A method was proposed for determination mass absorption coefficient of gamma rays for compounds, alloys and mixtures. It is based on simulating interaction processes of gamma rays with target elements having atomic numbers from Z=1 to Z=92 using the MCSHAPE software. Intensities of Compton scattered gamma rays at saturation thicknesses and at a scattering angle of 90° were calculated for incident gamma rays of different energies. The obtained results showed that the intensity of Compton scattered gamma rays at saturations and mass absorption coefficients can be described by mathematical formulas. These were used to determine mass absorption coefficients for compound, alloys and mixtures with the knowledge of their Compton scattered intensities. The method was tested by calculating mass absorption coefficients for some compounds, alloys and mixtures. There is a good agreement between obtained results and calculated ones using WinXom software. The advantages and limitations of the method were discussed. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Sound Absorption Characteristics of Aluminum Foams Treated by Plasma Electrolytic Oxidation

    PubMed Central

    Jin, Wei; Liu, Jiaan; Wang, Zhili; Wang, Yonghua; Cao, Zheng; Liu, Yaohui; Zhu, Xianyong

    2015-01-01

    Open-celled aluminum foams with different pore sizes were fabricated. A plasma electrolytic oxidation (PEO) treatment was applied on the aluminum foams to create a layer of ceramic coating. The sound absorption coefficients of the foams were measured by an impedance tube and they were calculated by a transfer function method. The experimental results show that the sound absorption coefficient of the foam increases gradually with the decrease of pore size. Additionally, when the porosity of the foam increases, the sound absorption coefficient also increases. The PEO coating surface is rough and porous, which is beneficial for improvement in sound absorption. After PEO treatment, the maximum sound absorption of the foam is improved to some extent. PMID:28793653

  5. Effect of the concentration of magnetic grains on the linear-optical-absorption coefficient of ferrofluid-doped lyotropic mesophases: deviation from the Beer-Lambert law.

    PubMed

    Cuppo, F L S; Gómez, S L; Figueiredo Neto, A M

    2004-04-01

    In this paper is reported a systematic experimental study of the linear-optical-absorption coefficient of ferrofluid-doped isotropic lyotropic mixtures as a function of the magnetic-grains concentration. The linear optical absorption of ferrolyomesophases increases in a nonlinear manner with the concentration of magnetic grains, deviating from the usual Beer-Lambert law. This behavior is associated to the presence of correlated micelles in the mixture which favors the formation of small-scale aggregates of magnetic grains (dimers), which have a higher absorption coefficient with respect to that of isolated grains. We propose that the indirect heating of the micelles via the ferrofluid grains (hyperthermia) could account for this nonlinear increase of the linear-optical-absorption coefficient as a function of the grains concentration.

  6. Nanosecond nonlinear optical and optical limiting properties of hollow gold nanocages

    NASA Astrophysics Data System (ADS)

    Zheng, Chan; Huang, Jiaxin; Lei, Li; Chen, Wenzhe; Wang, Haiyan; Li, Wei

    2018-01-01

    Gold nanocages (NCs) were prepared using the galvanic replacement reaction. Transmission electron microscopy images confirmed the porous morphology and completely hollow interior of the gold NCs. The nanosecond nonlinear optical and optical limiting (OL) properties of the NCs were characterized using the open-aperture Z-scan technique with 8-ns laser pulses at 532 nm. The gold NCs exhibited intensity-dependent transformation from saturable absorption to reverse-saturable absorption. The nonlinear absorption coefficient and saturable energy of the NCs were 5 × 10- 12 m/W and 2.5 × 1010 W/m2, respectively. Meanwhile, the gold NCs were found to display strong OL properties towards nanosecond laser pulses. The OL threshold of the gold NCs was lower than that of solid gold nanoparticles and comparable with that of a carbon nanotube suspension. Input fluence and angle-dependent scattering measurements indicated that nonlinear scattering plays an important role in the OL behavior of the gold nanostructures at high laser excitation. The improved OL response in gold NCs was discussed from the viewpoint of structural characteristic. The ultrathin and highly porous walls of the gold NCs can effectively transfer the photon-induced heat to the surrounding solvent, resulting in enhanced OL properties compared with those of solid gold nanoparticles. The intensity-dependent transformation from saturable absorption to reverse-saturable absorption and excellent OL response indicate that the smart gold NCs with ultrathin and highly porous walls can be considered as potential candidate in pulse shaping, passive mode locking, and eye protection against powerful lasers.

  7. Evolution of wavelength-dependent mass absorption cross sections of carbonaceous aerosols during the 2010 DOE CARES campaign

    NASA Astrophysics Data System (ADS)

    Flowers, B. A.; Dubey, M. K.; Subramanian, R.; Sedlacek, A. J.; Kelley, P.; Luke, W. T.; Jobson, B. T.; Zaveri, R. A.

    2011-12-01

    Predictions of aerosol radiative forcing require process level optical property models that are built on precise and accurate field observations. Evolution of aerosol optical properties for urban influenced carbonaceous aerosol undergoing transport and mixing with rural air masses was a focal point of the DOE Carbonaceous Aerosol and Radiative Effects (CARES) campaign near Sacramento, CA in summer 2010. Urban aerosol was transported from Sacramento, CA (T0) to the foothills of the Sierra Nevada Mountains to a rural site located near Cool, CA (T1). Aerosol absorption and scattering coefficients were measured at the T0 and T1 sites using integrated photoacoustic acoustic/nephelometer instruments (PASS-3 and PASS-UV) at 781, 532, 405, and 375 nm. Single particle soot photometry (SP2) instrumentation was used to monitor black carbon (BC) mass at both sites. Combining data from these sensors allows estimate of the wavelength-dependent mass absorption coefficient (MAC(λ)) and partitioning of MAC(λ) into contributions from the BC core and from enhancements from coating of BC cores. MAC(λ) measured in this way is free of artifacts associated with filter-based aerosol absorption measurements and takes advantage of the single particle sensitivity of the SP2 instrument, allowing observation of MAC(λ) on 10 minute and faster time scales. Coating was observed to enhance MAC(λ) by 20 - 30 % and different wavelength dependence for MAC(λ) was observed for urban and biomass burning aerosol. Further, T0 - T1 evolution of MAC(λ) was correlated with separately measured NO/NOy ratios and CO/CO2 ratios to understand the effects of aging & transport on MAC(λ) and the implications of aerosol processing that links air quality to radiative forcing on a regional scale. Aircraft observations made from the Gulfstream-1 during CARES are also analyzed to enhance process level understanding of the optical properties of fresh and aged carbonaceous aerosol in the urban-rural interface.

  8. [1]Benzothieno[3,2-b]benzothiophene-Based Organic Dyes for Dye-Sensitized Solar Cells.

    PubMed

    Capodilupo, Agostina L; Fabiano, Eduardo; De Marco, Luisa; Ciccarella, Giuseppe; Gigli, Giuseppe; Martinelli, Carmela; Cardone, Antonio

    2016-04-15

    Three new metal-free organic dyes with the [1]benzothieno[3,2-b]benzothiophene (BTBT) π-bridge, having the structure donor-π-acceptor (D-π-A) and labeled as 19, 20 and 21, have been designed and synthesized for application in dye-sensitized solar cells (DSSC). Once the design of the π-acceptor block was fixed, containing the BTBT as the π-bridge and the cyanoacrylic group as the electron acceptor and anchoring unit, we selected three donor units with different electron-donor capacity, in order to assemble new chromophores with high molar extinction coefficients (ε), whose absorption features well reflect the good performance of the final DSSC devices. Starting with the 19 dye, which shows a molar extinction coefficient ε of over 14,000 M(-1) cm(-1) and takes into account the absorption maximun at the longer wavelength, the substitution of the BFT donor unit with the BFA yields a great enhancement of absorptivity (molar extinction coefficient ε > 42,000 M(-1) cm(-1)), until reaching the higher value (ε > 69,000 M(-1) cm(-1)) with the BFPhz donor unit. The good general photovoltaic performances obtained with the three dyes highlight the suitable properties of electron-transport of the BTBT as the π-bridge in organic chromophore for DSSC, making this very cheap and easy to synthesize molecule particularly attractive for efficient and low-cost photovoltaic devices.

  9. Aircraft observations of the physical and radiative properties of biomass aerosol particles during SAFARI-2000.

    NASA Astrophysics Data System (ADS)

    Osborne, S. R.; Haywood, J. M.

    2001-12-01

    An initial analysis will be shown from the ~80 h of data collected between 2--18 September 2000 by the UK Met Office C-130 aircraft during the dry season campaign of the Southern African Regional Science Initiative (SAFARI-2000). The talk will concentrate on the physical and optical properties of the biomass aerosol. The evolution of the particle size spectrum and its optical properties at emission and after ageing will be shown. The vertical distribution of the biomass plume over the land and sea will be compared in view of the local meteorology. A generalised three log-normal model is shown to represent aged biomass aerosol over the sea areas, both in terms of the number and mass particle size spectra, but also derived optical properties (e.g. asymmetry factor, single scatter albedo (ω 0) and extinction coefficient) as calculated using Mie theory and appropriate refractive indices. ω 0 was determined independently using a particle soot absorption photometer (giving the absorption coefficient at a wavelength of 0.567 μ m) and a nephelometer (giving the scattering coefficients at 0.45, 0.55 and 0.65 μ m). Good agreement was found between the measurements and those obtained from the Mie calculations and observed size distributions. A typical value of ω 0 at 0.55 μ m for aged biomass aerosol was 0.90. The radiative properties of the biomass aerosol over both land and sea will be summarised. Stratocumulus cloud was present on some of the days over the sea and the surprising lack of interaction between the elevated biomass plume (containing significant levels of cloud condensation nuclei) and the cloud capping the marine boundary layer will be illustrated. Using the cloud-free and cloudy case studies we can begin to elucidate the levels of direct and indirect forcing of the biomass aerosol on a regional scale. >http://www.mrfnet.demon.co.uk/africa/SAFARI2000.htm

  10. No Radiative Heat Transport Through Pyrolitic Lower Mantle

    NASA Astrophysics Data System (ADS)

    Lobanov, S.; Holtgrewe, N.; Badro, J.; Goncharov, A. F.

    2017-12-01

    Transport properties of the lower mantle, such as its thermal conductivity, are key parameters required to understand the nature and dynamics of the core-mantle boundary (CMB) region. Radiative thermal conductivity (krad) of the mantle is determined by its visible-infrared absorption coefficient (α) at high pressure (P) and temperature (T). The latter is highly uncertain at the CMB conditions as optical measurements at high temperature suffer from intense thermal radiation that diminishes the probe contrast. Room-temperature high-pressure studies of bridgmanite and ferropericlase absorption coefficients suggest a steady increase of mantle radiative conductivity with depth mirroring the temperature increase along the geotherm (Goncharov et al., 2008; Keppler et al., 2008). Here we reconstruct optical properties of the mantle as a function of depth by using fast time-resolved spectroscopic technology combined with laser-heated diamond anvil cells. We found a strong increase in the rock absorption coefficient upon heating to 3000 K at 40-135 GPa. Using the pressure- and temperature-dependent pyrolite absorption coefficient we establish that lower mantle radiative thermal conductivity is decreasing with depth from 0.35 W/m/K at 1000 km to 0.15 W/m/K at the CMB, making it 50 times smaller than the corresponding lattice thermal conductivity at such conditions (Ohta et al., 2017; Okuda et al., 2017). Combining our results with models of lattice thermal conductivity in pyrolitic lower mantle we obtain a CMB heat flow of 8.5 TW. This estimate implies an inner core age of 0.7-1.3 Gy and favors a low-to-moderate core thermal conductivity (< 80 W/m/K). A core with higher thermal conductivity (Ohta et al., 2016; Pozzo et al., 2012) would be thermally stratified, halting a thermally driven dynamo prior to the inner core growth, if no other mechanism is invoked, such as MgO (Badro et al., 2016) or SiO2 (Hirose et al., 2017) exsolution. On the other hand, the low iron thermal conductivity scenario (Konopkova et al., 2016) combined with our model of low thermal conductivity at the base of the mantle, suggests that core convection could have taken place prior to inner core growth whether sources of chemical buoyancy were present or not.

  11. Evaluation of Fourier transform coefficients for the diagnosis of rheumatoid arthritis from diffuse optical tomography images

    NASA Astrophysics Data System (ADS)

    Montejo, Ludguier D.; Jia, Jingfei; Kim, Hyun K.; Hielscher, Andreas H.

    2013-03-01

    We apply the Fourier Transform to absorption and scattering coefficient images of proximal interphalangeal (PIP) joints and evaluate the performance of these coefficients as classifiers using receiver operator characteristic (ROC) curve analysis. We find 25 features that yield a Youden index over 0.7, 3 features that yield a Youden index over 0.8, and 1 feature that yields a Youden index over 0.9 (90.0% sensitivity and 100% specificity). In general, scattering coefficient images yield better one-dimensional classifiers compared to absorption coefficient images. Using features derived from scattering coefficient images we obtain an average Youden index of 0.58 +/- 0.16, and an average Youden index of 0.45 +/- 0.15 when using features from absorption coefficient images.

  12. Microstructural effect on radiative scattering coefficient and asymmetry factor of anisotropic thermal barrier coatings

    NASA Astrophysics Data System (ADS)

    Chen, X. W.; Zhao, C. Y.; Wang, B. X.

    2018-05-01

    Thermal barrier coatings are common porous materials coated on the surface of devices operating under high temperatures and designed for heat insulation. This study presents a comprehensive investigation on the microstructural effect on radiative scattering coefficient and asymmetry factor of anisotropic thermal barrier coatings. Based on the quartet structure generation set algorithm, the finite-difference-time-domain method is applied to calculate angular scattering intensity distribution of complicated random microstructure, which takes wave nature into account. Combining Monte Carlo method with Particle Swarm Optimization, asymmetry factor, scattering coefficient and absorption coefficient are retrieved simultaneously. The retrieved radiative properties are identified with the angular scattering intensity distribution under different pore shapes, which takes dependent scattering and anisotropic pore shape into account implicitly. It has been found that microstructure significantly affects the radiative properties in thermal barrier coatings. Compared with spherical shape, irregular anisotropic pore shape reduces the forward scattering peak. The method used in this paper can also be applied to other porous media, which designs a frame work for further quantitative study on porous media.

  13. Insight into the structural, electronic, elastic and optical properties of the alkali hydride compounds, XH (X = Rb and Cs)

    NASA Astrophysics Data System (ADS)

    Jaradat, Raed; Abu-Jafar, Mohammed; Abdelraziq, Issam; Mousa, Ahmad; Ouahrani, Tarik; Khenata, Rabah

    2018-04-01

    The equilibrium structural parameters, electronic and optical properties of the alkali hydrides RbH and CsH compounds in rock-salt (RS) and cesium chloride (CsCl) structures have been studied using the full-potential linearized augmented plane-wave (FP-LAPW) method. Wu and Cohen generalized gradient approximation (WC-GGA) was used for the exchange-correlation potential to compute the equilibrium structural parameters, such as the lattice constant (a0), the bulk modulus (B) and bulk modulus first order pressure derivative (B'). In addition to the WC-GGA, the modified Becke Johnson (mBJ) scheme has been also used to overcome the underestimation of the band gap energies. RbH and CsH compounds are found to be semiconductors (wide energy-band gap) using the WC-GGA method, while they are insulators using the mBJ-GGA method. Elastic constants, mechanical and thermodynamic properties were obtained by using the IRelast package. RbH and CsH compounds at ambient pressure are mechanically stable in RS and CsCl structures; they satisfy the Born mechanical stability criteria. Elastic constants (Cij), bulk modulus (B), shear modulus (S) and Debye temperatures (θD) of RbH and CsH compounds decrease as the alkali radius increases. The RS structure of these compounds at ambient conditions is mechanically stronger than CsCl structure. RbH and CsH in RS and CsCl structures are suitable as dielectric compounds. The wide direct energy band gap for these compounds make them promising compounds for optoelectronic UV device applications. Both RbH and CsH have a wide absorption region, on the other hand RbH absorption is very huge compared to the CsH absorption, RbH is an excellent absorbent material, maximum absorption regions are located in the middle ultraviolet (MUV) region and far ultraviolet (FUV) region. The absorption coefficient α (w), imaginary part of the dielectric constant ɛ2(w) and the extinction coefficient k(w) vary in the same way. The present calculated results are in good agreement with the experimental data, indicating the high accuracy of the performed calculations and reliability of the obtained results.

  14. Electromagnetic interference shielding effectiveness of polypropylene/conducting fiber composites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Pyoung-Chan, E-mail: pclee@katech.re.kr; Kim, Bo-Ram; Jeoung, Sun Kyoung

    Electromagnetic released from the automotive electronic parts is harmful to human body. Electromagnetic interference (EMT) shielding refers to the reflection and/or adsorption of electromagnetic radiation by a material, which thereby acts as a shield against the penetration of the radiation through the shield. Polypropylene (PP)/conductive micro fiber composites containing various fiber contents and fiber length were injection-molded. The effect of fiber content and length on electrical properties of the composites was studied by electrical resistivity and EMT shielding measurements. The through-plane electrical conductivity and dielectric permittivity were obtained by measuring dielectric properties. The EMT shielding effectiveness (SE) was investigated bymore » using S-parameter in the range of 100 ~ 1500 MHz. Reflection, absorption and multiple-reflection are the EMT attenuation mechanisms. From the measurement of S-Parameters, the absorption coefficient, reflection coefficient, and the shielding efficiency of the materials were calculated. The EMT SE of PP/conducing fiber composites is 40 dB over a wide frequency range up to 1.5 GHz, which is higher than that of PP/talc composite used automotive parts, viz. 0 dB.« less

  15. Determination of the optical properties of semi-infinite turbid media from frequency-domain reflectance close to the source.

    PubMed

    Kienle, A; Patterson, M S

    1997-09-01

    We investigate theoretically the errors in determining the reduced scattering and absorption coefficients of semi-infinite turbid media from frequency-domain reflectance measurements made at small distances between the source and the detector(s). The errors are due to the uncertainties in the measurement of the phase, the modulation and the steady-state reflectance as well as to the diffusion approximation which is used as a theoretical model to describe light propagation in tissue. Configurations using one and two detectors are examined for the measurement of the phase and the modulation and for the measurement of the phase and the steady-state reflectance. Three solutions of the diffusion equation are investigated. We show that measurements of the phase and the steady-state reflectance at two different distances are best suited for the determination of the optical properties close to the source. For this arrangement the errors in the absorption coefficient due to typical uncertainties in the measurement are greater than those resulting from the application of the diffusion approximation at a modulation frequency of 200 MHz. A Monte Carlo approach is also examined; this avoids the errors due to the diffusion approximation.

  16. Irradiance attenuation coefficient in a stratified ocean - A local property of the medium

    NASA Technical Reports Server (NTRS)

    Gordon, H. R.

    1980-01-01

    The influence of optically important constituents of water on the absorption (a) and scattering (b) coefficients and the backscattering probability is considered, with emphasis placed on measuring the volume scattering function (B/theta/). Two stratification models are examined; one in which the phase function (B(theta)/b) is depth independent and only b/c is allowed to vary with optical depth, and the other in which both b/c and the phase function depend on depth. The results demonstrate that Gordon's (1977) technique of estimating a and b is applicable without change to a stratified ocean.

  17. Thickness dependent optical and electrical properties of CdSe thin films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Purohit, A., E-mail: anuradha.purohit34@gmail.com; Chander, S.; Nehra, S. P.

    2016-05-06

    The effect of thickness on the optical and electrical properties of CdSe thin films is investigated in this paper. The films of thickness 445 nm, 631 nm and 810 nm were deposited on glass and ITO coated glass substrates using thermal evaporation technique. The deposited thin films were thermally annealed in air atmosphere at temperature 100°C and were subjected to UV-Vis spectrophotometer and source meter for optical and electrical analysis respectively. The absorption coefficient is observed to increase with photon energy and found maximum in higher photon energy region. The extinction coefficient and refractive index are also calculated. The electrical analysis shows thatmore » the electrical resistivity is observed to be decreased with thickness.« less

  18. Aerosol Optical Properties of Smoke from the Las Conchas Wildfire, Los Alamos, NM

    NASA Astrophysics Data System (ADS)

    Gorkowski, K.; Dubey, M. K.; Flowers, B. A.; Aiken, A. C.; Klein, B. Z.; Mazzoleni, C.; Sharma, N.; China`, S.

    2011-12-01

    The Las Conchas wildfire in Northern New Mexico started on June, 26 2011 and spread rapidly, eventually burning an area of 634 km2 (245 mi2). Due to the close proximity to the fire, the Los Alamos National Laboratory (LANL) was shut down and the town evacuated for several days. Immediately after LANL reopened (7/6/2011) the Earth and Environmental Sciences Division (EES-14) attained unique measurements of the smoke by sampling the ambient air. Three Integrated Photoacoustic/Nephelometer Spectrometers (DMT Inc.) were set up to measure aerosol light absorption and scattering coefficients. A University of Northwest Switzerland thermodenuder was used to remove compounds that are volatile at temperatures up to 200C. The aerosol's optical properties were measured before and after denuding the sample at 405nm (blue), 532nm (green), 781nm (red), and for non-denuded particles also at 375nm (ultraviolet). The aerosol size distributions were measured after the denuder with a Laser Aerosol Spectrometer (LAS, TSI Inc.) and black carbon was measured with a Single Particle Soot Photometer (SP2, DMT Inc.). Additionally, ambient measurements of Total Particulate Matter (PM2.5 and PM10) were collected continuously at the LANL air monitoring stations. These measurements are used in conjunction with numerical simulations to determine the bulk optical properties of the aerosol. Aerosols in wildfire smoke are composed of organic and black carbon (soot) particles that are formed during wood combustion and pyrolysis. The optical properties of the smoke particles are complex and lead to large uncertainties in assessing the global climate. During the measurement period, the Las Conchas fire provided very high particle concentrations (up to 200 μg/m3) that were exploited to investigate their optical properties. By heating the particles to temperatures ranging from 75 to 200C in the denuder, volatile organics were removed and the optical properties of the remaining particles were measured. Denuding of the aerosols, removed the outer organic coatings leaving behind the inner core of black carbon (soot) and any compounds that did not volatize completely. By simultaneously measuring the optical properties of the non-denuded as well as the denuded aerosol, we can study how the coatings affect the optical properties. The absorption coefficient measurements showed that coatings can cause an increase or decrease in absorption. The photoacoustic measurements were also combined with SP2 measurements to gain a mechanistic understanding of the effect of composition on the mass light absorption cross-sections of carbonaceous aerosols emitted by fires.

  19. The use of ultrasonic properties of CR-39 track detectors in neutron dosimetry

    NASA Astrophysics Data System (ADS)

    Afifi, H.; El-Sersy, A.; Khaled, N.

    2004-01-01

    The longitudinal and shear wave ultrasonic velocities have been measured before and after exposing 5-mm thick CR-39 solid state nuclear track detectors to both a mixed field of gamma-rays and fast neutrons from an Am-Be source in the ranges from 0 to 10 4 mSv. The change in the intermolecular structure as caused by the fast neutron exposure was studied by the ultrasonic pulse echo method at a frequency of 2 MHz and at room temperature. The elastic coefficients, Poisson's ratio, microhardness, ultrasonic absorption coefficient and internal friction have been determined. The study shows that the gamma-ray irradiation had no effect on the ultrasonic properties of CR-39 at least at the used doses. However, all the ultrasonic properties are influenced by the fast neutrons at doses up to 10 4 mSv. Our experimental results confirmed that the ultrasonic technique is useful for fast neutron detection, by exploiting the differences in mechanical properties of CR-39.

  20. Electrical and Optical Characteristics of Undoped and Se-Doped Bi2S3 Transistors

    NASA Astrophysics Data System (ADS)

    Kilcoyne, Colin; Alsaqqa, Ali; Rahman, Ajara A.; Whittaker-Brooks, Luisa; Sambandamurthy, G.

    Semiconducting chalcogenides have been drawing increased attention due to their interesting physical properties, especially in low dimensional structures. Bi2S3 has demonstrated a high optical absorption coefficient, a large bulk mobility, small bandgap, high Seebeck coefficient, and low thermal conductivity. These properties make it a good candidate for optical, electric and thermoelectric applications. However, control over the electrical properties for enhanced thermoelectric performance and optical applications is desired. We present electrical transport and optical properties from individual nanowire and few-layer transistors of single crystalline undoped and Se-doped Bi2S3-xSex. All devices exhibit n-type semiconducting behavior and the ON/OFF ratio, mobility, and conductivity noise behavior are studied as functions of dopant concentration, temperature, and charge carrier density in different conduction regimes. The roles of dopant driven scattering mechanisms and mobility/carrier density fluctuations will be discussed. The potential for this series of materials as optical and electrical switches will be presented. NSF DMR.

  1. Implications of New Methane Absorption Coefficients on Uranus Vertical Structure Derived from Near-IR Spectra

    NASA Astrophysics Data System (ADS)

    Fry, Patrick M.; Sromovsky, L. A.

    2009-09-01

    Using new methane absorption coefficients from Karkoschka and Tomasko (2009, submitted to Icarus, "Methane Absorption Coefficients for the Jovian Planets from Laboratory, Huygens, and HST Data"), we fit Uranus near-IR spectra previously analyzed in Sromovsky et al. (2006, Icarus 182, 577-593, Fink and Larson, 1979 J- and H-band), Sromovsky and Fry (2008, Icarus 193, 252-266, 2006 NIRC2 J- and H-band, 2006 SpeX) using Irwin et al. (2006, Icarus 181, 309-319) methane absorption coefficients. Because the new absorption coefficients usually result in higher opacities at the low temperatures seen in Uranus' upper troposphere, our previously derived cloud altitudes are expected to generally rise to higher altitudes. For example, using Lindal et al. (1987, JGR 92, 14987-15001) model D temperature and methane abundance profiles, we are better able to fit the J-band 43-deg. south bright band with the new coefficients (chi-square=205, vs. 315 for Irwin), with the pressure of the upper tropospheric cloud decreasing to 1.6 bars (from 2.4 bars using Irwin coefficients). Improvements in fitting H-band spectra from the same latitude are not as readily obtained. Derived upper tropospheric cloud pressures are very similar using the two absorption datasets (1.6-1.7 bars), but the character of the fits differs. New Karkoschka and Tomasko coefficients better fit some details in the 1.5-1.58 micron region, but Irwin fits the broad absorption band wing at 1.61-1.62 microns better, and the fit chi-square values are similar (K&T: 243, Irwin: 220). Results for a higher methane concentration (Lindal et al. model F) were similar. Whether the new coefficients will simply raise derived altitudes across the planet or will result in fundamental changes in structure is as yet unclear. This work was suported by NASA planetary astronomy and planetary atmospheres programs.

  2. Evaluation of ship-based sediment flux measurements by ADCPs in tidal flows

    NASA Astrophysics Data System (ADS)

    Becker, Marius; Maushake, Christian; Grünler, Steffen; Winter, Christian

    2017-04-01

    In the past decades acoustic backscatter calibration developed into a frequently applied technique to measure fluxes of suspended sediments in rivers and estuaries. Data is mainly acquired using single-frequency profiling devices, such as ADCPs. In this case, variations of acoustic particle properties may have a significant impact on the calibration with respect to suspended sediment concentration, but associated effects are rarely considered. Further challenges regarding flux determination arise from incomplete vertical and lateral coverage of the cross-section, and the small ratio of the residual transport to the tidal transport, depending on the tidal prism. We analyzed four sets of 13h cross-sectional ADCP data, collected at different locations in the range of the turbidity zone of the Weser estuary, North Sea, Germany. Vertical LISST, OBS and CTD measurements were taken very hour. During the calibration sediment absorption was taken into account. First, acoustic properties were estimated using LISST particle size distributions. Due to the tidal excursion and displacement of the turbidity zone, acoustic properties of particles changed during the tidal cycle, at all locations. Applying empirical functions, the lowest backscattering cross-section and highest sediment absorption coefficient were found in the center of the turbidity zone. Outside the tidally averaged location of the turbidity zone, changes of acoustic parameters were caused mainly by advection. In the turbidity zone, these properties were also affected by settling and entrainment, inducing vertical differences and systematic errors in concentration. In general, due to the iterative correction of sediment absorption along the acoustic path, local errors in concentration propagate and amplify exponentially. Based on reference concentration obtained from water samples and OBS data, we quantified these errors and their effect on cross-sectional averaged concentration and sediment flux. We found that errors are effectively decreased by applying calibration parameters interpolated in time, and by an optimization of the sediment absorption coefficient. We further discuss practical aspects of residual flux determination in tidal environments and of measuring strategies in relation to site-specific tidal dynamics.

  3. Thermal emission and absorption of radiation in finite inverted-opal photonic crystals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Florescu, Marian; Stimpson, Andrew J.; Lee, Hwang

    We study theoretically the optical properties of a finite inverted-opal photonic crystal. The light-matter interaction is strongly affected by the presence of the three-dimensional photonic crystal and the alterations of the light emission and absorption processes can be used to suppress or enhance the thermal emissivity and absorptivity of the dielectric structure. We investigate the influence of the absorption present in the system on the relevant band edge frequencies that control the optical response of the photonic crystal. Our study reveals that the absorption processes cause spectral broadening and shifting of the band edge optical resonances, and determine a strongmore » reduction of the photonic band gap spectral range. Using the angular and spectral dependence of the band edge frequencies for stop bands along different directions, we argue that by matching the blackbody emission spectrum peak with a prescribed maximum of the absorption coefficient, it is possible to achieve an angle-sensitive enhancement of the thermal emission/absorption of radiation. This result opens a way to realize a frequency-sensitive and angle-sensitive photonic crystal absorbers/emitters.« less

  4. Thermophysics Characterization of Multiply Ionized Air Plasma Absorption of Laser Radiation

    NASA Technical Reports Server (NTRS)

    Wang, Ten-See; Rhodes, Robert; Turner, Jim (Technical Monitor)

    2002-01-01

    The impact of multiple ionization of air plasma on the inverse Bremsstrahlung absorption of laser radiation is investigated for air breathing laser propulsion. Thermochemical properties of multiply ionized air plasma species are computed for temperatures up to 200,000 deg K, using hydrogenic approximation of the electronic partition function; And those for neutral air molecules are also updated for temperatures up to 50,000 deg K, using available literature data. Three formulas for absorption are calculated and a general formula is recommended for multiple ionization absorption calculation. The plasma composition required for absorption calculation is obtained by increasing the degree of ionization sequentially, up to quadruple ionization, with a series of thermal equilibrium computations. The calculated second ionization absorption coefficient agrees reasonably well with that of available data. The importance of multiple ionization modeling is demonstrated with the finding that area under the quadruple ionization curve of absorption is found to be twice that of single ionization. The effort of this work is beneficial to the computational plasma aerodynamics modeling of laser lightcraft performance.

  5. Advanced Diagnostics for Reacting Flows

    DTIC Science & Technology

    1993-11-24

    time) Dr. J. Seitzman (25% time) Dr. D. Baer (25% time) 4.2 Graduate Research Assistants Tim Birbeck Renato Cedolin (50% time) Andrew Chang Paul...terms of the unsaturated absorption coefficient and an intensity-dependent factor by the relation 4 k,(vo) = ko (vo) 1 + • (8) In the theoretical...variation of the 1.0, the effective saturated absorption coefficient is spectral absorption coefficient that is relative to the 35% (k,/ ko = 0.65) and 44

  6. Mass energy-absorption coefficients and average atomic energy-absorption cross-sections for amino acids in the energy range 0.122-1.330 MeV

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    More, Chaitali V., E-mail: chaitalimore89@gmail.com; Lokhande, Rajkumar M.; Pawar, Pravina P., E-mail: pravinapawar4@gmail.com

    Mass attenuation coefficients of amino acids such as n-acetyl-l-tryptophan, n-acetyl-l-tyrosine and d-tryptophan were measured in the energy range 0.122-1.330 MeV. NaI (Tl) scintillation detection system was used to detect gamma rays with a resolution of 8.2% at 0.662 MeV. The measured attenuation coefficient values were then used to determine the mass energy-absorption coefficients (σ{sub a,en}) and average atomic energy-absorption cross sections (μ{sub en}/ρ) of the amino acids. Theoretical values were calculated based on XCOM data. Theoretical and experimental values are found to be in good agreement.

  7. Minority carrier diffusion lengths and absorption coefficients in silicon sheet material

    NASA Technical Reports Server (NTRS)

    Dumas, K. A.; Swimm, R. T.

    1980-01-01

    Most of the methods which have been developed for the measurement of the minority carrier diffusion length of silicon wafers require that the material have either a Schottky or an ohmic contact. The surface photovoltage (SPV) technique is an exception. The SPV technique could, therefore, become a valuable diagnostic tool in connection with current efforts to develop low-cost processes for the production of solar cells. The technique depends on a knowledge of the optical absorption coefficient. The considered investigation is concerned with a reevaluation of the absorption coefficient as a function of silicon processing. A comparison of absorption coefficient values showed these values to be relatively consistent from sample to sample, and independent of the sample growth method.

  8. Kerr nonlinearity and nonlinear absorption coefficient in a four-level M-model cylindrical quantum dot under the phenomenon of electromagnetically induced transparency

    NASA Astrophysics Data System (ADS)

    Behroozian, B.; Askari, H. R.

    2018-07-01

    The Kerr nonlinearity and the nonlinear absorption coefficient in a four-level M-model of a GaAs cylindrical quantum dot (QD) with parabolic potential under electromagnetically induced transparency are investigated. By solving the density matrix equations in the steady-state, the third order susceptibility is obtained. Then, by using the real and imaginary parts of third order susceptibility, the Kerr nonlinearity and the nonlinear absorption coefficient, respectively, for this system are computed. The effects of the radius and height of the cylindrical QD are then investigated. In addition, the effects of the control laser fields on the Kerr nonlinearity and the nonlinear absorption coefficient are investigated.

  9. A dynamic Monte Carlo model for predicting radiant exposure distribution in dental composites: model development and verifications

    NASA Astrophysics Data System (ADS)

    Chen, Yin-Chu; Ferracane, Jack L.; Prahl, Scott A.

    2005-03-01

    Photo-cured dental composites are widely used in dental practices to restore teeth due to the esthetic appearance of the composites and the ability to cure in situ. However, their complex optical characteristics make it difficult to understand the light transport within the composites and to predict the depth of cure. Our previous work showed that the absorption and scattering coefficients of the composite changed after the composite was cured. The static Monte Carlo simulation showed that the penetration of radiant exposures differed significantly for cured and uncured optical properties. This means that a dynamic model is required for accurate prediction of radiant exposure in the composites. The purpose of this study was to develop and verify a dynamic Monte Carlo (DMC) model simulating light propagation in dental composites that have dynamic optical properties while photons are absorbed. The composite was divided into many small cubes, each of which had its own scattering and absorption coefficients. As light passed through the composite, the light was scattered and absorbed. The amount of light absorbed in each cube was calculated using Beer's Law and was used to determine the next optical properties in that cube. Finally, the predicted total reflectance and transmittance as well as the optical property during curing were verified numerically and experimentally. Our results showed that the model predicted values agreed with the theoretical values within 1% difference. The DMC model results are comparable with experimental results within 5% differences.

  10. Thermal mirror spectrometry: An experimental investigation of optical glasses

    NASA Astrophysics Data System (ADS)

    Zanuto, V. S.; Herculano, L. S.; Baesso, M. L.; Lukasievicz, G. V. B.; Jacinto, C.; Malacarne, L. C.; Astrath, N. G. C.

    2013-03-01

    The Thermal mirror technique relies on measuring laser-induced nanoscale surface deformation of a solid sample. The amplitude of the effect is directly dependent on the optical absorption and linear thermal expansion coefficients, and the time evolution depends on the heat diffusion properties of the sample. Measurement of transient signals provide direct access to thermal, optical and mechanical properties of the material. The theoretical models describing this effect can be formulated for very low optical absorbing and for absorbing materials. In addition, the theories describing the effect apply for semi-infinite and finite samples. In this work, we apply the Thermal mirror technique to measure physical properties of optical glasses. The semi-infinite and finite models are used to investigate very low optical absorbing glasses. The thickness limit for which the semi-infinite model retrieves the correct values of the thermal diffusivity and amplitude of the transient is obtained using the finite description. This procedure is also employed on absorbing glasses, and the semi-infinite Beer-Lambert law model is used to analyze the experimental data. The experimental data show the need to use the finite model for samples with very low bulk absorption coefficients and thicknesses L < 1.5 mm. This analysis helped to establish limit values of thickness for which the semi-infinite model for absorbing materials could be used, L > 1.0 mm in this case. In addition, the physical properties of the samples were calculated and absolute values derived.

  11. Laboratory measurement of the absorption coefficient of riboflavin for ultraviolet light (365 nm).

    PubMed

    Iseli, Hans Peter; Popp, Max; Seiler, Theo; Spoerl, Eberhard; Mrochen, Michael

    2011-03-01

    Corneal cross-linking (CXL) is an increasingly used treatment technique for stabilizing the cornea in keratoconus. Cross-linking (polymerization) between collagen fibrils is induced by riboflavin (vitamin B2) and ultraviolet light (365 nm). Although reported to reach a constant value at higher riboflavin concentrations, the Lambert-Beer law predicts a linear increase in the absorption coefficient. This work was carried out to determine absorption behavior at different riboflavin concentrations and to further investigate the purported plateau absorption coefficient value of riboflavin and to identify possible bleaching effects. The Lambert-Beer law was used to calculate the absorption coefficient at various riboflavin concentrations. The following investigated concentrations of riboflavin solutions were prepared using a mixture of 0.5% riboflavin and 20% Dextran T500 dissolved in 0.9% sodium chloride solution: 0%, 0.02%, 0.03%, 0.04%, 0.05%, 0.06%, 0.08%, 0.1%, 0.2%, 0.3%, 0.4%, and 0.5%, and were investigated with and without aperture plate implementation. An additional test series measured the transmitted power at selected riboflavin concentrations over time. In diluted solutions, a linear correlation exists between the absorption coefficient and riboflavin concentration. The absorption coefficient reaches a plateau, but this occurs at a higher riboflavin concentration (0.1%) than previously reported (just above 0.04%). Transmitted light power increases over time, indicating a bleaching effect of riboflavin. The riboflavin concentration can be effectively varied as a treatment parameter in a considerably broader range than previously thought. Copyright 2011, SLACK Incorporated.

  12. Measurement of diffusion coefficients important in modeling the absorption rate of carbon dioxide into aqueous N-methyldiethanolamine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rowley, R.L.; Adams, M.E.; Marshall, T.L.

    1997-03-01

    Natural gas processors use amine treating processes to remove the acid gases H{sub 2}S and CO{sub 2} from gas streams. Absorption rates of gaseous CO{sub 2} into aqueous N-methyldiethanolamine (MDEA) solutions were measured in a quiescent, inverted-tube diffusiometer by monitoring the rate of pressure drop. The absorption rate was found to be insensitive to the diffusion coefficient of CO{sub 2} in solution but very sensitive to the diffusion rate of bicarbonate and protonated MDEA ions. Evidence also suggested that chemical reaction equilibrium is rapid relative to diffusion. A numerical model was developed on the basis of these observations. The modelmore » was used to regress diffusion coefficients of bicarbonate and protonated amine, which must be equivalent by electroneutrality arguments, from measured absorption rates. Complete modeling of the absorption process also required data for the diffusion coefficient of MDEA in water. These were measured using a Taylor dispersion apparatus. CO{sub 2} absorption rates and diffusion coefficients of bicarbonate and protonated MDEA were obtained at 298.2 K and 318.2 K in solutions containing 20, 35, and 50 mass % MDEA in water.« less

  13. Semi-analytical Model for Estimating Absorption Coefficients of Optically Active Constituents in Coastal Waters

    NASA Astrophysics Data System (ADS)

    Wang, D.; Cui, Y.

    2015-12-01

    The objectives of this paper are to validate the applicability of a multi-band quasi-analytical algorithm (QAA) in retrieval absorption coefficients of optically active constituents in turbid coastal waters, and to further improve the model using a proposed semi-analytical model (SAA). The ap(531) and ag(531) semi-analytically derived using SAA model are quite different from the retrievals procedures of QAA model that ap(531) and ag(531) are semi-analytically derived from the empirical retrievals results of a(531) and a(551). The two models are calibrated and evaluated against datasets taken from 19 independent cruises in West Florida Shelf in 1999-2003, provided by SeaBASS. The results indicate that the SAA model produces a superior performance to QAA model in absorption retrieval. Using of the SAA model in retrieving absorption coefficients of optically active constituents from West Florida Shelf decreases the random uncertainty of estimation by >23.05% from the QAA model. This study demonstrates the potential of the SAA model in absorption coefficients of optically active constituents estimating even in turbid coastal waters. Keywords: Remote sensing; Coastal Water; Absorption Coefficient; Semi-analytical Model

  14. In vitro efficacy and release study with anti-inflammatory drugs incorporated in adhesive transdermal drug delivery systems.

    PubMed

    Meyer, Stefanie; Peters, Nils; Mann, Tobias; Wolber, Rainer; Pörtner, Ralf; Nierle, Jens

    2014-04-01

    The topical application of two different anti-inflammatory extracts incorporated in adhesive transdermal drug delivery systems (TDDSs) was investigated. Therefore, anti-inflammatory properties and percutaneous absorption behavior of adhesive TDDSs were characterized in vitro conducting experiments with a dermatologically relevant human skin model. Anti-inflammatory efficacy against UV irradiation of both TDDSs was determined in vitro with EpiDerm™. The reduction of the release of proinflammatory cytokines by topically applied TDDSs was compared with the reduction during the presence of the specific cyclooxygenase inhibitor diclofenac in the culture medium. A similar anti-inflammatory efficacy of the topically applied TDDSs in comparison with the use of diclofenac in the culture medium should be achieved. Furthermore, percutaneous absorption in efficacy tests was compared with percutaneous absorption in diffusion studies with porcine cadaver skin. Both the topically applied TDDSs showed a significant anti-inflammatory activity. Permeation coefficients through the stratum corneum and the epidermis gained from the release studies on porcine cadaver skin (Magnolia: 2.23·10(-5) cm/h, licorice: 4.68·10(-6) cm/h) were approximately five times lower than the permeation coefficients obtained with the EpiDerm™ skin model (Magnolia: 9.48·10(-5) cm/h, licorice: 24.0·10(-6) cm/h). Therefore, an adjustment of drug doses during experiments with the EpiDerm™ skin model because of weaker skin barrier properties should be considered.

  15. Measurement of the coagulation dynamics of bovine liver using the modified microscopic Beer-Lambert law.

    PubMed

    Terenji, Albert; Willmann, Stefan; Osterholz, Jens; Hering, Peter; Schwarzmaier, Hans-Joachim

    2005-06-01

    During heating, the optical properties of biological tissues change with the coagulation state. In this study, we propose a technique, which uses these changes to monitor the coagulation process during laser-induced interstitial thermotherapy (LITT). Untreated and coagulated (water bath, temperatures between 35 degrees C and 90 degrees C for 20 minutes.) samples of bovine liver tissue were examined using a Nd:YAG (lambda = 1064 nm) frequency-domain reflectance spectrometer. We determined the time integrated intensities (I(DC)) and the phase shifts (Phi) of the photon density waves after migration through the tissue. From these measured quantities, the time of flight (TOF) of the photons and the absorption coefficients of the samples were derived using the modified microscopic Beer-Lambert law. The absorption coefficients of the liver samples decreased significantly with the temperature in the range between 50 degrees C and 70 degrees C. At the same time, the TOF of the investigated photos was found increased indicating an increased scattering. The coagulation dynamics could be well described using the Arrhenius formalism with the activation energy of 106 kJ/mol and the frequency factor of 1.59 x 10(13)/second. Frequency-domain reflectance spectroscopy in combination with the modified microscopic Beer-Lambert (MBL) is suitable to measure heat induced changes in the absorption and scattering properties of bovine liver in vitro. The technique may be used to monitor the coagulation dynamics during local thermo-coagulation in vivo. Copyright 2005 Wiley-Liss, Inc.

  16. Sound absorption and transmission through flexible micro-perforated panels backed by an air layer and a thin plate.

    PubMed

    Bravo, Teresa; Maury, Cédric; Pinhède, Cédric

    2012-05-01

    This paper describes theoretical and experimental investigations into the sound absorption and transmission properties of micro-perforated panels (MPP) backed by an air cavity and a thin plate. A fully coupled modal approach is proposed to calculate the absorption coefficient and the transmission loss of finite-sized micro-perforated panels-cavity-panel (MPPCP) partitions with conservative boundary conditions. It is validated against infinite partition models and experimental data. A practical methodology is proposed using collocated pressure-velocity sensors to evaluate in an anechoic environment the transmission and absorption properties of conventional MPPCPs. Results show under which conditions edge scattering effects should be accounted for at low frequencies. Coupled mode analysis is also performed and analytical approximations are derived from the resonance frequencies and mode shapes of a flexible MPPCP. It is found that the Helmholtz-type resonance frequency is deduced from the one associated to the rigidly backed MPPCP absorber shifted up by the mass-air mass resonance of the flexible non-perforated double-panel. Moreover, it is shown analytically and experimentally that the absorption mechanisms at the resonances are governed by a large air-frame relative velocity over the MPP surface, with either in-phase or out-of-phase relationships, depending on the MPPCP parameters.

  17. Fundamental understanding of drug absorption from a parenteral oil depot.

    PubMed

    Kalicharan, Raween W; Schot, Peter; Vromans, Herman

    2016-02-15

    Oil depots are parenteral drug formulations meant for sustained release of lipophilic compounds. Until now, a comprehensive understanding of the mechanism of drug absorption from oil depots is lacking. The aim of this paper was to fill this gap. A clinical study with healthy volunteers was conducted. An oil depot with nandrolone decanoate and benzyl alcohol was subcutaneously administered in the upper arm of female volunteers. Pharmacokinetic profiles of both substances were related to each other and to literature data. Benzyl alcohol absorbs much more rapidly than nandrolone. In detail, it appears that benzyl alcohol enters the central compartment directly, while nandrolone decanoate is recovered in serum after a lag time. This lag time is also seen in literature data, although not reported explicitly. The absorption of nandrolone is enhanced by the presence of benzyl alcohol. This is most likely an effect of altered oil viscosity and partition coefficient between the oil and aqueous phase. The absorption rate constant of compounds is found to be related to the logP of the solubilized prodrug. The absorption rate is however not only determined by the physico-chemical properties of the formulation but also by the tissue properties. Here, it is argued that lymphatic flow must be considered as a relevant parameter. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Method for accurate quantitation of background tissue optical properties in the presence of emission from a strong fluorescence marker

    NASA Astrophysics Data System (ADS)

    Bravo, Jaime; Davis, Scott C.; Roberts, David W.; Paulsen, Keith D.; Kanick, Stephen C.

    2015-03-01

    Quantification of targeted fluorescence markers during neurosurgery has the potential to improve and standardize surgical distinction between normal and cancerous tissues. However, quantitative analysis of marker fluorescence is complicated by tissue background absorption and scattering properties. Correction algorithms that transform raw fluorescence intensity into quantitative units, independent of absorption and scattering, require a paired measurement of localized white light reflectance to provide estimates of the optical properties. This study focuses on the unique problem of developing a spectral analysis algorithm to extract tissue absorption and scattering properties from white light spectra that contain contributions from both elastically scattered photons and fluorescence emission from a strong fluorophore (i.e. fluorescein). A fiber-optic reflectance device was used to perform measurements in a small set of optical phantoms, constructed with Intralipid (1% lipid), whole blood (1% volume fraction) and fluorescein (0.16-10 μg/mL). Results show that the novel spectral analysis algorithm yields accurate estimates of tissue parameters independent of fluorescein concentration, with relative errors of blood volume fraction, blood oxygenation fraction (BOF), and the reduced scattering coefficient (at 521 nm) of <7%, <1%, and <22%, respectively. These data represent a first step towards quantification of fluorescein in tissue in vivo.

  19. Feasibility of interstitial near-infrared radiance spectroscopy platform for ex vivo canine prostate studies: optical properties extraction, hemoglobin and water concentration, and gold nanoparticles detection

    NASA Astrophysics Data System (ADS)

    Grabtchak, Serge; Montgomery, Logan G.; Whelan, William M.

    2014-05-01

    The canine prostate is a close match for the human prostate and is used in research of prostate cancers. Determining accurately optical absorption and scattering properties of the gland in a wide spectral range (preferably in a minimally invasive way), linking optical properties to concentrations of major endogenous chromophores, and detecting the presence of localized optical inhomogeneities like inclusions of gold nanoparticles for therapeutic and diagnostic purposes, are among the major challenges for researchers. The goal of the article is to demonstrate a feasibility of the multifunctional radiance spectroscopy platform in providing the required information. For ex vivo canine prostate, extraction of the effective attenuation and diffusion coefficients using relative cw radiance measurements was demonstrated in the 650- to 900-nm range. The derived absorption coefficient was decomposed to contributions from 9.0 μM HbO2, 29.6 μM Hb, and 0.47 fractional volume of H2O. Detection of a localized inclusion containing ˜1.5.1010 gold nanorods (0.8 μg Au) at 10 mm distance from the urethra was achieved with the detector in the urethra and the light source in a virtual rectum position. The platform offers the framework for a systematic study of various chromophores in the prostate that can be used as comprehensive diagnostic markers.

  20. Feasibility of interstitial near-infrared radiance spectroscopy platform for ex vivo canine prostate studies: optical properties extraction, hemoglobin and water concentration, and gold nanoparticles detection.

    PubMed

    Grabtchak, Serge; Montgomery, Logan G; Whelan, William M

    2014-05-01

    The canine prostate is a close match for the human prostate and is used in research of prostate cancers. Determining accurately optical absorption and scattering properties of the gland in a wide spectral range (preferably in a minimally invasive way), linking optical properties to concentrations of major endogenous chromophores, and detecting the presence of localized optical inhomogeneities like inclusions of gold nanoparticles for therapeutic and diagnostic purposes, are among the major challenges for researchers. The goal of the article is to demonstrate a feasibility of the multifunctional radiance spectroscopy platform in providing the required information. For ex vivo canine prostate, extraction of the effective attenuation and diffusion coefficients using relative cw radiance measurements was demonstrated in the 650- to 900-nm range. The derived absorption coefficient was decomposed to contributions from 9.0 μM HbO₂, 29.6 μM Hb, and 0.47 fractional volume of H₂O. Detection of a localized inclusion containing ∼1.5·1010 gold nanorods (0.8 μg Au) at 10 mm distance from the urethra was achieved with the detector in the urethra and the light source in a virtual rectum position. The platform offers the framework for a systematic study of various chromophores in the prostate that can be used as comprehensive diagnostic markers.

  1. Optical properties of soot particles: measurement - model comparison

    NASA Astrophysics Data System (ADS)

    Forestieri, S.; Lambe, A. T.; Lack, D.; Massoli, P.; Cross, E. S.; Dubey, M.; Mazzoleni, C.; Olfert, J.; Freedman, A.; Davidovits, P.; Onasch, T. B.; Cappa, C. D.

    2013-12-01

    Soot, a product of incomplete combustion, plays an important role in the earth's climate system through the absorption and scattering of solar radiation. In order to accurately model the direct radiative impact of black carbon (BC), the refractive index and shape dependent scattering and absorption characteristics must be known. At present, the assumed shape remains highly uncertain because BC particles are fractal-like, being agglomerates of smaller (20-40 nm) spherules, yet traditional optical models such as Mie theory typically assume a spherical particle morphology. To investigate the ability of various optical models to reproduce observed BC optical properties, we measured light absorption and extinction coefficients of methane and ethylene flame soot particles. Optical properties were measured by multiple instruments: absorption by a dual cavity ringdown photoacoustic spectrometer (CRD-PAS), absorption and scattering by a 3-wavelength photoacoustic/nephelometer spectrometer (PASS-3) and extinction and scattering by a cavity attenuated phase shift spectrometer (CAPS). Soot particle mass was quantified using a centrifugal particle mass analyzer (CPMA) and mobility size was measured with a scanning mobility particle sizer (SMPS). Measurements were made for nascent soot particles and for collapsed soot particles following coating with dioctyl sebacate or sulfuric acid and thermal denuding to remove the coating. Wavelength-dependent refractive indices for the sampled particles were derived by fitting the observed absorption and extinction cross-sections to spherical particle Mie theory and Rayleigh-Debye-Gans theory. The Rayleigh-Debye-Gans approximation assumes that the absorption properties of soot are dictated by the individual spherules and neglects interaction between them. In general, Mie theory reproduces the observed absorption and extinction cross-sections for particles with volume equivalent diameters (VED) < ~160 nm, but systematically predicts lower absorption cross-sections relative to observations for larger particles with VED > ~160 nm. The discrepancy is most pronounced for measurements made at shorter wavelengths. In contrast, Rayleigh-Debye-Gans theory, which does not assume spherical particle morphology, exhibited good agreement with the observations for all particle diameters and wavelengths. These results indicate that the use of Mie theory to describe the absorption behavior of particles >160 nm VED will underestimate the absorption by these particles. Concurrent measurements of the absorption Angstrom exponent and the single scattering albedo, and their dependence on particle size, will also be discussed.

  2. Multi-wavelength aerosol light absorption measurements in the Amazon rainforest

    NASA Astrophysics Data System (ADS)

    Saturno, Jorge; Chi, Xuguang; Pöhlker, Christopher; Morán, Daniel; Ditas, Florian; Massabò, Dario; Prati, Paolo; Rizzo, Luciana; Artaxo, Paulo; Andreae, Meinrat

    2015-04-01

    The most important light-absorbing aerosol is black carbon (BC), which is emitted by incomplete combustion of fossil fuels and biomass. BC is considered the second anthropogenic contributor to global warming. Beyond BC, other aerosols like some organics, dust, and primary biological aerosol particles are able to absorb radiation. In contrast to BC, the light absorption coefficient of these aerosols is wavelength dependent. Therefore, multi-wavelength measurements become important in environments where BC is not the predominant light-absorbing aerosol like in the Amazon. The Amazon Tall Tower Observatory (ATTO) site is located in the remote Amazon rainforest, one of the most pristine continental sites in the world during the wet season. In the dry season, winds coming from the southern hemisphere are loaded with biomass burning aerosol particles originated by farming-related deforestation. BC and aerosol number concentration data from the last two years indicate this is the most polluted period. Two different techniques have been implemented to measure the light absorption at different wavelengths; one of them is the 7-wavelengths Aethalometer, model AE30, an instrument that measures the light attenuation on a filter substrate and requires multiple scattering and filter-loading corrections to retrieve the light absorption coefficient. The other method is an offline technique, the Multi-Wavelength Absorbance Analysis (MWAA), which is able to measure reflectance and absorbance by aerosols collected on a filter and, by means of a radiative model, can retrieve the light absorption coefficient. Filters collected during May-September 2014, comprehending wet-to-dry transition and most of the dry season, were analyzed. The results indicate that the Absorption Ångström Exponent (AAE), a parameter that is directly proportional to the wavelength dependence of the aerosol light absorption, is close to 1.0 during the transition period and slightly decreases in the beginning of the dry season. However, during strong biomass burning episodes in the dry season, the AAE increases significantly, and reaches values higher than 1.3, indicating the presence of wavelength dependent light-absorbing aerosols like organics (brown carbon). The present study is a contribution to the understanding of the optical properties of light-absorbing aerosol particles under pristine and biomass-burning conditions.

  3. Vertical variability of aerosol single-scattering albedo and equivalent black carbon concentration based on in-situ and remote sensing techniques during the iAREA campaigns in Ny-Ålesund

    NASA Astrophysics Data System (ADS)

    Markowicz, K. M.; Ritter, C.; Lisok, J.; Makuch, P.; Stachlewska, I. S.; Cappelletti, D.; Mazzola, M.; Chilinski, M. T.

    2017-09-01

    This work presents a methodology for obtaining vertical profiles of aerosol single scattering properties based on a combination of different measurement techniques. The presented data were obtained under the iAREA (Impact of absorbing aerosols on radiative forcing in the European Arctic) campaigns conducted in Ny-Ålesund (Spitsbergen) during the spring seasons of 2015-2017. The retrieval uses in-situ observations of black carbon concentration and absorption coefficient measured by a micro-aethalometer AE-51 mounted onboard a tethered balloon, as well as remote sensing data obtained from sun photometer and lidar measurements. From a combination of the balloon-borne in-situ and the lidar data, we derived profiles of single scattering albedo (SSA) as well as absorption, extinction, and aerosol number concentration. Results have been obtained in an altitude range from about 400 m up to 1600 m a.s.l. and for cases with increased aerosol load during the Arctic haze seasons of 2015 and 2016. The main results consist of the observation of increasing values of equivalent black carbon (EBC) and absorption coefficient with altitude, and the opposite trend for aerosol concentration for particles larger than 0.3 μm. SSA was retrieved with the use of lidar Raman and Klett algorithms for both 532 and 880 nm wavelengths. In most profiles, SSA shows relatively high temporal and altitude variability. Vertical variability of SSA computed from both methods is consistent; however, some discrepancy is related to Raman retrieval uncertainty and absorption coefficient estimation from AE-51. Typically, very low EBC concentration in Ny-Ålesund leads to large error in the absorbing coefficient. However, SSA uncertainty for both Raman and Klett algorithms seems to be reasonable, e.g. SSA of 0.98 and 0.95 relate to an error of ±0.01 and ± 0.025, respectively.

  4. An integrated fiber-optic probe combined with support vector regression for fast estimation of optical properties of turbid media.

    PubMed

    Zhou, Yang; Fu, Xiaping; Ying, Yibin; Fang, Zhenhuan

    2015-06-23

    A fiber-optic probe system was developed to estimate the optical properties of turbid media based on spatially resolved diffuse reflectance. Because of the limitations in numerical calculation of radiative transfer equation (RTE), diffusion approximation (DA) and Monte Carlo simulations (MC), support vector regression (SVR) was introduced to model the relationship between diffuse reflectance values and optical properties. The SVR models of four collection fibers were trained by phantoms in calibration set with a wide range of optical properties which represented products of different applications, then the optical properties of phantoms in prediction set were predicted after an optimal searching on SVR models. The results indicated that the SVR model was capable of describing the relationship with little deviation in forward validation. The correlation coefficient (R) of reduced scattering coefficient μ'(s) and absorption coefficient μ(a) in the prediction set were 0.9907 and 0.9980, respectively. The root mean square errors of prediction (RMSEP) of μ'(s) and μ(a) in inverse validation were 0.411 cm(-1) and 0.338 cm(-1), respectively. The results indicated that the integrated fiber-optic probe system combined with SVR model were suitable for fast and accurate estimation of optical properties of turbid media based on spatially resolved diffuse reflectance. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. First measurements of ambient aerosol over an ecologically sensitive zone in Central India: Relationships between PM2.5 mass, its optical properties, and meteorology.

    PubMed

    Sunder Raman, Ramya; Kumar, Samresh

    2016-04-15

    PM2.5 mass and its optical properties were measured over an ecologically sensitive zone in Central India between January and December, 2012. Meteorological parameters including temperature, relative humidity, wind speed, wind direction, and barometric pressure were also monitored. During the study period, the PM2.5 (fine PM) concentration ranged between 3.2μgm(-3) and 193.9μgm(-3) with a median concentration of 31.4μgm(-3). The attenuation coefficients, βATN at 370nm, 550nm, and 880nm had median values of 104.5Mm(-1), 79.2Mm(-1), and 59.8Mm(-1), respectively. Further, the dry scattering coefficient, βSCAT at 550nm had a median value of 17.1Mm(-1) while the absorption coefficient βABS at 550nm had a median value of 61.2Mm(-1). The relationship between fine PM mass and attenuation coefficients showed pronounced seasonality. Scattering, absorption, and attenuation coefficient at different wavelengths were all well correlated with fine PM mass only during the post-monsoon season (October, November, and December). The highest correlation (r(2)=0.81) was between fine PM mass and βSCAT at 550nm during post-monsoon season. During this season, the mass scattering efficiency (σSCAT) was 1.44m(2)g(-1). Thus, monitoring optical properties all year round, as a surrogate for fine PM mass was found unsuitable for the study location. In order to assess the relationships between fine PM mass and its optical properties and meteorological parameters, multiple linear regression (MLR) models were fitted for each season, with fine PM mass as the dependent variable. Such a model fitted for the post-monsoon season explained over 88% of the variability in fine PM mass. However, the MLR models were able to explain only 31 and 32% of the variability in fine PM during pre-monsoon (March, April, and May) and monsoon (June, July, August, and September) seasons, respectively. During the winter (January and February) season, the MLR model explained 54% of the PM2.5 variability. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Metallic Iron and Iron Oxide as an Explanation for the Dark Material Observed on Saturn's Icy Satellites and Rings with Cassini VIMS

    NASA Astrophysics Data System (ADS)

    Clark, Roger Nelson; Cruikshank, D. P.; Jaumann, R.; Brown, R. H.; Dalle Ore, C.; Stephan, K.; Hoefen, T. M.; Curchin, J. M.; Buratti, B. J.; Filacchione, G.; Baines, K. H.; Nicholson, P. D.

    2010-10-01

    The Visual and Infrared Mapping Spectrometer (VIMS) on Cassini has obtained spatially resolved spectra on satellites of Saturn. The Cassini Rev 49 Iapetus fly-by on September 10, 2007, provided data on both the dark material and the transition zone between the dark material and the visually bright ice. The dark material has low albedo with a linear increase in reflectance with wavelength, 3-micron water, and CO2 absorptions. The transition between bright and dark regions shows mixing with unusual optical properties including increased blue scattering and increasing strength of a UV absorber in areas with stronger ice absorptions. Similar spectral effects are observed on other Saturnian satellites and in the rings. We have been unable to match these spectral properties and trends using tholins and carbon compounds. However, the dark material is spectrally matched by fine-grained metallic iron plus nano-phase hematite and adsorbed water which contribute UV and 3-micron absorption, respectively. The blue scattering peak and UV absorption can be explained by Rayleigh scattering from sub-micron particles with a UV absorption, or a combination of Rayleigh scattering and Rayleigh absorption as has been attributed to spectral properties of the Moon. A new radiative transfer model that includes Rayleigh scattering and Rayleigh absorption has been constructed. Models of ice, sub-micron metallic iron, hydrated iron oxide, and trace CO2 explain the observed spectra. Rayleigh absorption requires high absorption coefficient nano-sized particles, which is also consistent with metallic iron. The UV absorber appears to have increased strength on satellite surfaces close to Saturn, with a corresponding decrease in metallic iron signature. A possible explanation is that the iron is oxidized closer to Saturn by oxygen in the extended atmosphere of Saturn's rings, or the dark material is simply covered by clean fine-grained ice particles, for example, from the E-ring.

  7. Exploring the observational constraints on the simulation of brown carbon

    NASA Astrophysics Data System (ADS)

    Wang, Xuan; Heald, Colette L.; Liu, Jiumeng; Weber, Rodney J.; Campuzano-Jost, Pedro; Jimenez, Jose L.; Schwarz, Joshua P.; Perring, Anne E.

    2018-01-01

    Organic aerosols (OA) that strongly absorb solar radiation in the near-UV are referred to as brown carbon (BrC). The sources, evolution, and optical properties of BrC remain highly uncertain and contribute significantly to uncertainty in the estimate of the global direct radiative effect (DRE) of aerosols. Previous modeling studies of BrC optical properties and DRE have been unable to fully evaluate model performance due to the lack of direct measurements of BrC absorption. In this study, we develop a global model simulation (GEOS-Chem) of BrC and test it against BrC absorption measurements from two aircraft campaigns in the continental US (SEAC4RS and DC3). To the best of our knowledge, this is the first study to compare simulated BrC absorption with direct aircraft measurements. We show that BrC absorption properties estimated based on previous laboratory measurements agree with the aircraft measurements of freshly emitted BrC absorption but overestimate aged BrC absorption. In addition, applying a photochemical scheme to simulate bleaching/degradation of BrC improves model skill. The airborne observations are therefore consistent with a mass absorption coefficient (MAC) of freshly emitted biomass burning OA of 1.33 m2 g-1 at 365 nm coupled with a 1-day whitening e-folding time. Using the GEOS-Chem chemical transport model integrated with the RRTMG radiative transfer model, we estimate that the top-of-the-atmosphere all-sky direct radiative effect (DRE) of OA is -0.344 Wm-2, 10 % higher than that without consideration of BrC absorption. Therefore, our best estimate of the absorption DRE of BrC is +0.048 Wm-2. We suggest that the DRE of BrC has been overestimated previously due to the lack of observational constraints from direct measurements and omission of the effects of photochemical whitening.

  8. Characterization of absorption and degradation on optical components for high power excimer lasers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mann, K.; Eva, E.; Granitza, B.

    1996-12-31

    At Laser-Laboratorium Goettingen, the performance of UV optical components for high power excimer lasers is characterized, aiming to employ testing procedures that meet industrial conditions, i.e. very high pulse numbers and repetition rates. Measurements include determination of single and multiple pulse damage thresholds, absorption loss and degradation of optical properties under long-term irradiation. Absorption of excimer laser pulses is investigated by a calorimetric technique which provides greatly enhanced sensitivity compared to transmissive measurements. Thus, it allows determining both single and two photon absorption coefficients at intensities of standard excimer lasers. Results of absorption measurements at 248nm are presented for baremore » substrates (CaF{sub 2}, BaF{sub 2}, z-cut quartz and fused silica). UV calorimetry is also employed to investigate laser induced aging phenomena, e.g. color center formation in fused silica. A separation of transient and cumulative effects as a function of intensity is achieved, giving insight into various loss mechanisms.« less

  9. Dual-frequency sound-absorbing metasurface based on visco-thermal effects with frequency dependence

    NASA Astrophysics Data System (ADS)

    Ryoo, H.; Jeon, W.

    2018-03-01

    We investigate theoretically an acoustic metasurface with a high absorption coefficient at two frequencies and design it from subwavelength structures. We propose the use of a two-dimensional periodic array of four Helmholtz resonators in two types to obtain a metasurface with nearly perfect sound absorption at given target frequencies via interactions between waves emanating from different resonators. By considering how fluid viscosity affects acoustic energy dissipation in the narrow necks of the Helmholtz resonators, we obtain effective complex-valued material properties that depend on frequency and on the geometrical parameters of the resonators. We furthermore derive the effective acoustic impedance of the metasurface from the effective material properties and calculate the absorption spectra from the theoretical model, which we compare with the spectra obtained from a finite-element simulation. As a practical application of the theoretical model, we derive empirical formulas for the geometrical parameters of a metasurface which would yield perfect absorption at a given frequency. While previous works on metasurfaces based on Helmholtz resonators aimed to absorb sound at single frequencies, we use optimization to design a metasurface composed of four different Helmholtz resonators to absorb sound at two distinct frequencies.

  10. Effect of Co doping concentration on structural properties and optical parameters of Co-doped ZnO thin films by sol-gel dip-coating method.

    PubMed

    Nam, Giwoong; Yoon, Hyunsik; Kim, Byunggu; Lee, Dong-Yul; Kim, Jong Su; Leem, Jae-Young

    2014-11-01

    The structural and optical properties of Co-doped ZnO thin films prepared by a sol-gel dip-coating method were investigated. X-ray diffraction analysis showed that the thin films were grown with a c-axis preferred orientation. The position of the (002) peak was almost the same in all samples, irrespective of the Co concentration. It is thus clear that Co doping had little effect on the position of the (002) peak. To confirm that Co2+ was substituted for Zn2+ in the wurtzite structure, optical measurements were conducted at room temperature by a UV-visible spectrometer. Three absorption peaks are apparent in the Co-doped ZnO thin films that do not appear for the undoped ZnO thin film. As the Co concentration was increased, absorption related to characteristic Co2+ transitions increased because three absorption band intensities and the area underneath the absorption wells between 500 and 700 nm increased with increasing Co concentration. The optical band gap and static dielectric constant decreased and the Urbach energy and extinction coefficient increased with increasing Co concentration.

  11. Exciton diamagnetic shift and optical properties in CdSe nanocrystal quantum dots in magnetic fields

    NASA Astrophysics Data System (ADS)

    Wu, Shudong; Cheng, Liwen

    2018-04-01

    The magnetic field dependence of the optical properties of CdSe nanocrystal quantum dots (NQDs) is investigated theoretically using a perturbation method within the effective-mass approximation. The results show that the magnetic field lifts the degeneracy of the electron (hole) states. A blue-shift in the absorption spectra of m ≥ 0 exciton states is observed while the absorption peak of m < 0 exciton states is first red-shifted and then blue-shifted with increasing the magnetic field strength B. This is attributed to the interplay of the orbital Zeeman effect and the additive confinement induced by the magnetic field. The excitonic absorption coefficient is almost independent of B in the strong confinement regime. The applied magnetic field causes the splitting of degenerated exciton states, resulting in the new absorption peaks. Based on the first-order perturbation theory, we propose the analytical expressions for the exciton binding energy, exciton transition energy and exciton diamagnetic shift of 1s, 1p-1, 1p0, 1p1, 1d-2, 1d-1, 1d0, 1d1, 1d2 and 2s exciton states on the applied magnetic field in the strong confinement regime.

  12. Retrieval of Macro- and Micro-Physical Properties of Oceanic Hydrosols from Polarimetric Observations

    NASA Technical Reports Server (NTRS)

    Ibrahim, Amir; Gilerson, Alexander; Chowdhary, Jacek; Ahmed, Samir

    2016-01-01

    Remote sensing has mainly relied on measurements of scalar radiance and its spectral and angular features to retrieve micro- and macro-physical properties of aerosols/hydrosols. However, it is recognized that measurements that include the polarimetric characteristics of light provide more intrinsic information about particulate scattering. To take advantage of this, we used vector radiative transfer (VRT) simulations and developed an analytical relationship to retrieve the macro and micro-physical properties of the oceanic hydrosols. Specifically, we investigated the relationship between the observed degree of linear polarization (DoLP) and the ratio of attenuation-to- absorption coefficients (c/a) in water, from which the scattering coefficient can be readily computed (b equals c minus a), after retrieving a. This relationship was parameterized for various scattering geometries, including sensor zenith/azimuth angles relative to the Sun's principal plane, and for varying Sun zenith angles. An inversion method was also developed for the retrieval of the microphysical properties of hydrosols, such as the bulk refractive index and the particle size distribution. The DoLP vs c/a relationship was tested and validated against in-situ measurements of underwater light polarization obtained by a custom-built polarimeter and measurements of the coefficients a and c, obtained using an in-water WET (Western Environmental Technologies) Labs ac-s (attenuation coefficients In-Situ Spectrophotometer) instrument package. These measurements confirmed the validity of the approach, with retrievals of attenuation coefficients showing a high coefficient of determination depending on the wavelength. We also performed a sensitivity analysis of the DoLP at the Top of Atmosphere (TOA) over coastal waters showing the possibility of polarimetric remote sensing application for ocean color.

  13. Techniques For Measuring Absorption Coefficients In Crystalline Materials

    NASA Astrophysics Data System (ADS)

    Klein, Philipp H.

    1981-10-01

    Absorption coefficients smaller than 0.001 cm-1 can, with more or less difficulty, be measured by several techniques. With diligence, all methods can be refined to permit measurement of absorption coefficients as small as 0.00001 cm-1. Spectral data are most readily obtained by transmission (spectrophotometric) methods, using multiple internal reflection to increase effective sample length. Emissivity measurements, requiring extreme care in the elimination of detector noise and stray light, nevertheless afford the most accessible spectral data in the 0.0001 to 0.00001 cm-1 range. Single-wavelength informa-tion is most readily obtained with modifications of laser calorimetry. Thermo-couple detection of energy absorbed from a laser beam is convenient, but involves dc amplification techniques and is susceptible to stray-light problems. Photoacoustic detection, using ac methods, tends to diminish errors of these types, but at some expense in experimental complexity. Laser calorimetry has been used for measurements of absorption coefficients as small as 0.000003 cm-1. Both transmission and calorimetric data, taken as functions of intensity, have been used for measurement of nonlinear absorption coefficients.

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abdel-Baki, Manal; Abdel-Wahab, Fathy A.; El-Diasty, Fouad

    Lithium tungsten borate glass of the composition (0.56-x)B{sub 2}O{sub 3}-0.4Li{sub 2}O-xZnO-0.04WO{sub 3} (0 {<=}x{<=} 0.1 mol. %) is prepared for photonics applications. The glass is doped with ZnO to tune the glass absorption characteristics in a wide spectrum range (200-2500 nm). Chemical bond approach, including chemical structure, electronegativity, bond ionicity, nearest-neighbor coordination, and other chemical bonding aspect, is used to analyze and to explain the obtained glass properties such as: transmittance, absorption, electronic structure parameters (bandgap, Fermi level, and Urbach exciton-phonon coupling), Wannier free excitons excitation (applying Elliott's model), and two-photon absorption coefficient as a result of replacement of B{submore » 2}O{sub 3} by ZnO.« less

  15. Absorption and recovery of n-hexane in aqueous solutions of fluorocarbon surfactants.

    PubMed

    Xiao, Xiao; Yan, Bo; Fu, Jiamo; Xiao, Xianming

    2015-11-01

    n-Hexane is widely used in industrial production as an organic solvent. As an industrial exhaust gas, the contribution of n-hexane to air pollution and damage to human health are attracting increasing attention. In the present study, aqueous solutions of two fluorocarbon surfactants (FSN100 and FSO100) were investigated for their properties of solubilization and dynamic absorption of n-hexane, as well as their capacity for regeneration and n-hexane recovery by thermal distillation. The results show that the two fluorocarbon surfactants enhance dissolution and absorption of n-hexane, and their effectiveness is closely related to their concentrations in solution. For low concentration solutions (0.01%-0.30%), the partition coefficient decreases dramatically and the saturation capacity increases significantly with increasing concentration, but the changes for both are more modest when the concentration is over 0.30%. The FSO100 solution presents a smaller partition coefficient and a greater saturation capacity than the FSN100 solution at the same concentration, indicating a stronger solubilization for n-hexane. Thermal distillation is a feasible method to recover n-hexane from these absorption solutions, and to regenerate them. With 90sec heating at 80-85°C, the recovery of n-hexane ranges between 81% and 85%, and the regenerated absorption solution maintains its original performance during reuse. This study provides basic information on two fluorocarbon surfactants for application in the treatment of industrial n-hexane waste gases. Copyright © 2015. Published by Elsevier B.V.

  16. Alternative Measurement Configurations for Extracting Bulk Optical Properties Using an Integrating Sphere Setup.

    PubMed

    Thennadil, Suresh N; Chen, Yi-Chieh

    2017-02-01

    The usual approach for estimating bulk optical properties using an integrating sphere measurement setup is by acquiring spectra from three measurement modes namely collimated transmittance (T c ), total transmittance (T d ), and total diffuse reflectance (R d ), followed by the inversion of these measurements using the adding-doubling method. At high scattering levels, accurate acquisition of T c becomes problematic due to the presence of significant amounts of forward-scattered light in this measurement which is supposed to contain only unscattered light. In this paper, we propose and investigate the effectiveness of using alternative sets of integrating sphere measurements that avoid the use of T c and could potentially increase the upper limit of concentrations of suspensions at which bulk optical property measurements can be obtained in the visible-near-infrared (Vis-NIR) region of the spectrum. We examine the possibility of replacing T c with one or more reflectance measurements at different sample thicknesses. We also examine the possibility of replacing both the collimated (T c ) and total transmittance (T d ) measurements with reflectance measurements taken from different sample thicknesses. The analysis presented here indicates that replacing T c with a reflectance measurement can reduce the errors in the bulk scattering properties when scattering levels are high. When only multiple reflectance measurements are used, good estimates of the bulk optical properties can be obtained when the absorption levels are low. In addition, we examine whether there is any advantage in using three measurements instead of two to obtain the reduced bulk scattering coefficient and the bulk absorption coefficient. This investigation is made in the context of chemical and biological suspensions which have a much larger range of optical properties compared to those encountered with tissue.

  17. Investigation of light induced effect on density of states of Pb doped CdSe thin films

    NASA Astrophysics Data System (ADS)

    Kaur, Jagdish; Singh, Baljinder; Tripathi, S. K.

    2016-05-01

    Thin films of Pb doped CdSe are deposited on the glass substrates by thermal evaporation technique using inert gas condensation method. The prepared thin films are light soaked under vacuum of 2×10-3 mbar for two hour. The absorption coefficient in the sub-band gap region has been studied using Constant Photocurrent Method (CPM). The absorption coefficient in the sub-band gap region follows an exponential Urbach tail. The value of Urbach energy and number density of defect states have been calculated from the absorption coefficient in the sub-band gap region and found to increase after light soaking treatment. The energy distribution of the occupied density of states below Fermi level has been evaluated using derivative procedure of the absorption coefficient.

  18. Laboratory Measurements of Celestial Solids

    NASA Technical Reports Server (NTRS)

    Sievers, A. J.; Beckwith, S. V. W.

    1997-01-01

    Our experimental study has focused on laboratory measurements of the low temperature optical properties of a variety of astronomically significant materials in the infrared and mm-wave region of the spectrum. Our far infrared measurements of silicate grains with an open structure have produced a variety of unusual results: (1) the low temperature mass opacity coefficient of small amorphous 2MgO(central dot)SiO2 and MgO(central dot)2SiO2 grains are many times larger than the values previously used for interstellar grain material; (2) all of the amorphous silicate grains studied possess the characteristic temperature dependent signature associated with two level systems in bulk glass; and (3) a smaller but nonzero two level temperature dependence signature is also observed for crystalline particles, its physical origin is unclear. These laboratory measurements yield surprisingly large and variable values for the mm-wave absorption coefficients of small silicate particles similar to interstellar grains, and suggest that the bulk absorptivity of interstellar dust at these long wavelengths will not be well known without such studies. Furthermore, our studies have been useful to better understand the physics of the two level absorption process in amorphous and crystalline grains to gain confidence in the wide applicability of these results.

  19. X-ray data booklet. Revision

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vaughan, D.

    A compilation of data is presented. Included are properties of the elements, electron binding energies, characteristic x-ray energies, fluorescence yields for K and L shells, Auger energies, energy levels for hydrogen-, helium-, and neonlike ions, scattering factors and mass absorption coefficients, and transmission bands of selected filters. Also included are selected reprints on scattering processes, x-ray sources, optics, x-ray detectors, and synchrotron radiation facilities. (WRF)

  20. Assessing the measurement of aerosol single scattering albedo by Cavity Attenuated Phase-Shift Single Scattering Monitor (CAPS PMssa)

    NASA Astrophysics Data System (ADS)

    Perim de Faria, Julia; Bundke, Ulrich; Onasch, Timothy B.; Freedman, Andrew; Petzold, Andreas

    2016-04-01

    The necessity to quantify the direct impact of aerosol particles on climate forcing is already well known; assessing this impact requires continuous and systematic measurements of the aerosol optical properties. Two of the main parameters that need to be accurately measured are the aerosol optical depth and single scattering albedo (SSA, defined as the ratio of particulate scattering to extinction). The measurement of single scattering albedo commonly involves the measurement of two optical parameters, the scattering and the absorption coefficients. Although there are well established technologies to measure both of these parameters, the use of two separate instruments with different principles and uncertainties represents potential sources of significant errors and biases. Based on the recently developed cavity attenuated phase shift particle extinction monitor (CAPS PM_{ex) instrument, the CAPS PM_{ssa instrument combines the CAPS technology to measure particle extinction with an integrating sphere capable of simultaneously measuring the scattering coefficient of the same sample. The scattering channel is calibrated to the extinction channel, such that the accuracy of the single scattering albedo measurement is only a function of the accuracy of the extinction measurement and the nephelometer truncation losses. This gives the instrument an accurate and direct measurement of the single scattering albedo. In this study, we assess the measurements of both the extinction and scattering channels of the CAPS PM_{ssa through intercomparisons with Mie theory, as a fundamental comparison, and with proven technologies, such as integrating nephelometers and filter-based absorption monitors. For comparison, we use two nephelometers, a TSI 3563 and an Aurora 4000, and two measurements of the absorption coefficient, using a Particulate Soot Absorption Photometer (PSAP) and a Multi Angle Absorption Photometer (MAAP). We also assess the indirect absorption coefficient measurement from the CAPS PM_{ssa (calculated as the difference from the measured extinction and scattering). The study was carried out in the laboratory with controlled particle generation systems. We used both light absorbing aerosols (Regal 400R pigment black from Cabot Corp. and colloidal graphite - Aquadag - from Agar Scientific) and purely scattering aerosols (ammonium sulphate and polystyrene latex spheres), covering single scattering albedo values from approximately 0.4 to 1.0. A new truncation angle correction for the CAPS PM_{ssa integrated sphere is proposed.

  1. Optical absorption characteristics in the assessment of powder phosphor-based x-ray detectors: from nano- to micro-scale.

    PubMed

    Liaparinos, P F

    2015-11-21

    X-ray phosphor-based detectors have enormously improved the quality of medical imaging examinations through the optimization of optical diffusion. In recent years, with the development of science and technology in the field of materials, improved powder phosphors require structural and optical properties that contribute to better optical signal propagation. The purpose of this paper was to provide a quantitative and qualitative understanding of the optical absorption characteristics in the assessment of powder phosphor-based detectors (from nano- scale up to micro-scale). Variations on the optical absorption parameters (i.e. the light extinction coefficient [Formula: see text] and the percentage probability of light absorption p%) were evaluated based on Mie calculations examining a wide range of light wavelengths, particle refractive indices and sizes. To model and assess the effects of the aforementioned parameters on optical diffusion, Monte Carlo simulation techniques were employed considering: (i) phosphors of different layer thickness, 100 μm (thin layer) and 300 μm (thick layer), respectively, (ii) light extinction coefficient values, 1, 3 and 6 μm(-1), and (iii) percentage probability of light absorption p% in the range 10(-4)-10(-2). Results showed that the [Formula: see text] coefficient is high for phosphor grains in the submicron scale and for low light wavelengths. At higher wavelengths (above 650 nm), optical quanta follow approximately similar depths until interaction for grain diameter 500 nm and 1 μm. Regarding the variability of the refractive index, high variations of the [Formula: see text] coefficient occurred above 1.6. Furthermore, results derived from Monte Carlo modeling showed that high spatial resolution phosphors can be accomplished by increasing the [Formula: see text] parameter. More specifically, the FWHM was found to decrease (i.e. higher resolution): (i) 4.8% at 100 μm and (ii) 9.5%, at 300 μm layer thickness. This study attempted to examine the role of the optical absorption parameters on optical diffusion studies. A significant outcome of the present investigation was that the improvement of phosphor spatial resolution without decreasing the light collection efficiency too much can be better achieved by increasing the parameter [Formula: see text] rather than the parameter p%.

  2. Hyperspectral imaging-based spatially-resolved technique for accurate measurement of the optical properties of horticultural products

    NASA Astrophysics Data System (ADS)

    Cen, Haiyan

    Hyperspectral imaging-based spatially-resolved technique is promising for determining the optical properties and quality attributes of horticultural and food products. However, considerable challenges still exist for accurate determination of spectral absorption and scattering properties from intact horticultural products. The objective of this research was, therefore, to develop and optimize hyperspectral imaging-based spatially-resolved technique for accurate measurement of the optical properties of horticultural products. Monte Carlo simulations and experiments for model samples of known optical properties were performed to optimize the inverse algorithm of a single-layer diffusion model and the optical designs, for extracting the absorption (micro a) and reduced scattering (micros') coefficients from spatially-resolved reflectance profiles. The logarithm and integral data transformation and the relative weighting methods were found to greatly improve the parameter estimation accuracy with the relative errors of 10.4%, 10.7%, and 11.4% for micro a, and 6.6%, 7.0%, and 7.1% for micros', respectively. More accurate measurements of optical properties were obtained when the light beam was of Gaussian type with the diameter of less than 1 mm, and the minimum and maximum source-detector distances were 1.5 mm and 10--20 transport mean free paths, respectively. An optical property measuring prototype was built, based on the optimization results, and evaluated for automatic measurement of absorption and reduced scattering coefficients for the wavelengths of 500--1,000 nm. The instrument was used to measure the optical properties, and assess quality/maturity, of 500 'Redstar' peaches and 1039 'Golden Delicious' (GD) and 1040 'Delicious' (RD) apples. A separate study was also conducted on confocal laser scanning and scanning electron microscopic image analysis and compression test of fruit tissue specimens to measure the structural and mechanical properties of 'Golden Delicious' and 'Granny Smith' (GS) apples under accelerated softening at high temperature (22 ºC)/high humidity (95%) for up to 30 days. The absorption spectra of peach and apple fruit were featured with the absorption peaks of major pigments (i.e., chlorophylls and anthocyanin) and water, while the reduced scattering coefficient generally decreased with the increase of wavelength. Partial least squares regression resulted in various levels of correlation of microa and micros' with the firmness, soluble solids content, and skin and flesh color parameters of peaches (r = 0.204--0.855) and apples (r = 0.460--0.885), and the combination of the two optical parameters generally gave higher correlations (up to 0.893). The mean value of microa and micros' for GD and GS apples for each storage date was positively correlated with acoustic/impact firmness, Young's modulus, and cell parameters (r = 0.585--0.948 for GD and r = 0.292--0.993 for GS). A two-layer diffusion model for determining the optical properties of fruit skin and flesh was further investigated through solid model samples. The average errors of determining two and four optical parameters were 6.8% and 15.3%, respectively, for the Monte Carlo reflectance data. The errors of determining the first or surface layer of the model samples were approximately 23.0% for microa and 18.4% for micros', indicating the difficulty and also potential in applying the two-layer diffusion model for fruit. This research has demonstrated the usefulness of hyperspectral imaging-based spatially-resolved technique for determining the optical properties and maturity/quality of fruits. However, further research is needed to reduce measurement variability or error caused by irregular or rough surface of fruit and the presence of fruit skin, and apply the technique to other foods and biological materials.

  3. Comparison of the Radiative Two-Flux and Diffusion Approximations

    NASA Technical Reports Server (NTRS)

    Spuckler, Charles M.

    2006-01-01

    Approximate solutions are sometimes used to determine the heat transfer and temperatures in a semitransparent material in which conduction and thermal radiation are acting. A comparison of the Milne-Eddington two-flux approximation and the diffusion approximation for combined conduction and radiation heat transfer in a ceramic material was preformed to determine the accuracy of the diffusion solution. A plane gray semitransparent layer without a substrate and a non-gray semitransparent plane layer on an opaque substrate were considered. For the plane gray layer the material is semitransparent for all wavelengths and the scattering and absorption coefficients do not vary with wavelength. For the non-gray plane layer the material is semitransparent with constant absorption and scattering coefficients up to a specified wavelength. At higher wavelengths the non-gray plane layer is assumed to be opaque. The layers are heated on one side and cooled on the other by diffuse radiation and convection. The scattering and absorption coefficients were varied. The error in the diffusion approximation compared to the Milne-Eddington two flux approximation was obtained as a function of scattering coefficient and absorption coefficient. The percent difference in interface temperatures and heat flux through the layer obtained using the Milne-Eddington two-flux and diffusion approximations are presented as a function of scattering coefficient and absorption coefficient. The largest errors occur for high scattering and low absorption except for the back surface temperature of the plane gray layer where the error is also larger at low scattering and low absorption. It is shown that the accuracy of the diffusion approximation can be improved for some scattering and absorption conditions if a reflectance obtained from a Kubelka-Munk type two flux theory is used instead of a reflection obtained from the Fresnel equation. The Kubelka-Munk reflectance accounts for surface reflection and radiation scattered back by internal scattering sites while the Fresnel reflection only accounts for surface reflections.

  4. Understanding the optical properties of ambient sub- and supermicron particulate matter: results from the CARES 2010 field study in northern California

    DOE PAGES

    Cappa, Christopher D.; Kolesar, Katheryn R.; Zhang, Xiaolu; ...

    2016-05-27

    Here, measurements of the optical properties (absorption, scattering and extinction) of PM 1, PM 2.5 and PM 10 made at two sites around Sacramento, CA, during the June 2010 Carbonaceous Aerosols and Radiative Effects Study (CARES) are reported. These observations are used to establish relationships between various intensive optical properties and to derive information about the dependence of the optical properties on photochemical aging and sources. Supermicron particles contributed substantially to the total light scattering at both sites, about 50 % on average. A strong, linear relationship is observed between the scattering Ångström exponent for PM 10 and the fraction of themore » scattering that is contributed by submicron particles ( f sca, PM 1 ) at both sites and with similar slopes and intercepts (for a given pair of wavelengths), suggesting that the derived relationship may be generally applicable for understanding variations in particle size distributions from remote sensing measurements. At the more urban T0 site, the f sca, PM 1 increased with photochemical age, whereas at the downwind, more rural T1 site the f sca, PM 1 decreased slightly with photochemical age. This difference in behavior reflects differences in transport, local production and local emission of supermicron particles between the sites. Light absorption is dominated by submicron particles, but there is some absorption by supermicron particles (~15 % of the total). The supermicron absorption derives from a combination of black carbon that has penetrated into the supermicron mode and from dust, and there is a clear increase in the mass absorption coefficient of just the supermicron particles with increasing average particle size. The mass scattering coefficient (MSC) for the supermicron particles was directly observed to vary inversely with the average particle size, demonstrating that MSC cannot always be treated as a constant in estimating mass concentrations from scattering measurements, or vice versa. The total particle backscatter fraction exhibited some dependence upon the relative abundance of sub- versus supermicron particles; however this was modulated by variations in the median size of particles within a given size range; variations in the submicron size distribution had a particularly large influence on the observed backscatter efficiency and an approximate method to account for this variability is introduced. The relationship between the absorption and scattering Ångström exponents is examined and used to update a previously suggested particle classification scheme. Differences in composition led to differences in the sensitivity of PM 2.5 to heating in a thermodenuder to the average particle size, with more extensive evaporation (observed as a larger decrease in the PM 2.5 extinction coefficient) corresponding to smaller particles; i.e., submicron particles were generally more susceptible to heating than the supermicron particles. The influence of heating on the particle hygroscopicity varied with the effective particle size, with larger changes observed when the PM 2.5 distribution was dominated by smaller particles.« less

  5. Understanding the optical properties of ambient sub- and supermicron particulate matter: results from the CARES 2010 field study in northern California

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cappa, Christopher D.; Kolesar, Katheryn R.; Zhang, Xiaolu

    2016-01-01

    Measurements of the optical properties (absorption, scattering and extinction) of PM 1, PM 2.5 and PM 10 made at two sites around Sacramento, CA, during the June 2010 Carbonaceous Aerosols and Radiative Effects Study (CARES) are reported. These observations are used to establish relationships between various intensive optical properties and to derive information about the dependence of the optical properties on photochemical aging and sources. Supermicron particles contributed substantially to the total light scattering at both sites, about 50 % on average. A strong, linear relationship is observed between the scattering Ångström exponent for PM 10 and the fraction of the scatteringmore » that is contributed by submicron particles ( f sca, PM 1 ) at both sites and with similar slopes and intercepts (for a given pair of wavelengths), suggesting that the derived relationship may be generally applicable for understanding variations in particle size distributions from remote sensing measurements. At the more urban T0 site, the f sca, PM 1 increased with photochemical age, whereas at the downwind, more rural T1 site the f sca, PM 1 decreased slightly with photochemical age. This difference in behavior reflects differences in transport, local production and local emission of supermicron particles between the sites. Light absorption is dominated by submicron particles, but there is some absorption by supermicron particles (~15 % of the total). The supermicron absorption derives from a combination of black carbon that has penetrated into the supermicron mode and from dust, and there is a clear increase in the mass absorption coefficient of just the supermicron particles with increasing average particle size. The mass scattering coefficient (MSC) for the supermicron particles was directly observed to vary inversely with the average particle size, demonstrating that MSC cannot always be treated as a constant in estimating mass concentrations from scattering measurements, or vice versa. The total particle backscatter fraction exhibited some dependence upon the relative abundance of sub- versus supermicron particles; however this was modulated by variations in the median size of particles within a given size range; variations in the submicron size distribution had a particularly large influence on the observed backscatter efficiency and an approximate method to account for this variability is introduced. The relationship between the absorption and scattering Ångström exponents is examined and used to update a previously suggested particle classification scheme. Differences in composition led to differences in the sensitivity of PM 2.5 to heating in a thermodenuder to the average particle size, with more extensive evaporation (observed as a larger decrease in the PM 2.5 extinction coefficient) corresponding to smaller particles; i.e., submicron particles were generally more susceptible to heating than the supermicron particles. The influence of heating on the particle hygroscopicity varied with the effective particle size, with larger changes observed when the PM 2.5 distribution was dominated by smaller particles.« less

  6. Understanding the optical properties of ambient sub- and supermicron particulate matter: results from the CARES 2010 field study in northern California

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cappa, Christopher D.; Kolesar, Katheryn R.; Zhang, Xiaolu

    Here, measurements of the optical properties (absorption, scattering and extinction) of PM 1, PM 2.5 and PM 10 made at two sites around Sacramento, CA, during the June 2010 Carbonaceous Aerosols and Radiative Effects Study (CARES) are reported. These observations are used to establish relationships between various intensive optical properties and to derive information about the dependence of the optical properties on photochemical aging and sources. Supermicron particles contributed substantially to the total light scattering at both sites, about 50 % on average. A strong, linear relationship is observed between the scattering Ångström exponent for PM 10 and the fraction of themore » scattering that is contributed by submicron particles ( f sca, PM 1 ) at both sites and with similar slopes and intercepts (for a given pair of wavelengths), suggesting that the derived relationship may be generally applicable for understanding variations in particle size distributions from remote sensing measurements. At the more urban T0 site, the f sca, PM 1 increased with photochemical age, whereas at the downwind, more rural T1 site the f sca, PM 1 decreased slightly with photochemical age. This difference in behavior reflects differences in transport, local production and local emission of supermicron particles between the sites. Light absorption is dominated by submicron particles, but there is some absorption by supermicron particles (~15 % of the total). The supermicron absorption derives from a combination of black carbon that has penetrated into the supermicron mode and from dust, and there is a clear increase in the mass absorption coefficient of just the supermicron particles with increasing average particle size. The mass scattering coefficient (MSC) for the supermicron particles was directly observed to vary inversely with the average particle size, demonstrating that MSC cannot always be treated as a constant in estimating mass concentrations from scattering measurements, or vice versa. The total particle backscatter fraction exhibited some dependence upon the relative abundance of sub- versus supermicron particles; however this was modulated by variations in the median size of particles within a given size range; variations in the submicron size distribution had a particularly large influence on the observed backscatter efficiency and an approximate method to account for this variability is introduced. The relationship between the absorption and scattering Ångström exponents is examined and used to update a previously suggested particle classification scheme. Differences in composition led to differences in the sensitivity of PM 2.5 to heating in a thermodenuder to the average particle size, with more extensive evaporation (observed as a larger decrease in the PM 2.5 extinction coefficient) corresponding to smaller particles; i.e., submicron particles were generally more susceptible to heating than the supermicron particles. The influence of heating on the particle hygroscopicity varied with the effective particle size, with larger changes observed when the PM 2.5 distribution was dominated by smaller particles.« less

  7. Understanding the optical properties of ambient sub- and supermicron particulate matter: results from the CARES 2010 field study in northern California

    NASA Astrophysics Data System (ADS)

    Cappa, Christopher D.; Kolesar, Katheryn R.; Zhang, Xiaolu; Atkinson, Dean B.; Pekour, Mikhail S.; Zaveri, Rahul A.; Zelenyuk, Alla; Zhang, Qi

    2016-05-01

    Measurements of the optical properties (absorption, scattering and extinction) of PM1, PM2.5 and PM10 made at two sites around Sacramento, CA, during the June 2010 Carbonaceous Aerosols and Radiative Effects Study (CARES) are reported. These observations are used to establish relationships between various intensive optical properties and to derive information about the dependence of the optical properties on photochemical aging and sources. Supermicron particles contributed substantially to the total light scattering at both sites, about 50 % on average. A strong, linear relationship is observed between the scattering Ångström exponent for PM10 and the fraction of the scattering that is contributed by submicron particles (fsca, PM1) at both sites and with similar slopes and intercepts (for a given pair of wavelengths), suggesting that the derived relationship may be generally applicable for understanding variations in particle size distributions from remote sensing measurements. At the more urban T0 site, the fsca, PM1 increased with photochemical age, whereas at the downwind, more rural T1 site the fsca, PM1 decreased slightly with photochemical age. This difference in behavior reflects differences in transport, local production and local emission of supermicron particles between the sites. Light absorption is dominated by submicron particles, but there is some absorption by supermicron particles ( ˜ 15 % of the total). The supermicron absorption derives from a combination of black carbon that has penetrated into the supermicron mode and from dust, and there is a clear increase in the mass absorption coefficient of just the supermicron particles with increasing average particle size. The mass scattering coefficient (MSC) for the supermicron particles was directly observed to vary inversely with the average particle size, demonstrating that MSC cannot always be treated as a constant in estimating mass concentrations from scattering measurements, or vice versa. The total particle backscatter fraction exhibited some dependence upon the relative abundance of sub- versus supermicron particles; however this was modulated by variations in the median size of particles within a given size range; variations in the submicron size distribution had a particularly large influence on the observed backscatter efficiency and an approximate method to account for this variability is introduced. The relationship between the absorption and scattering Ångström exponents is examined and used to update a previously suggested particle classification scheme. Differences in composition led to differences in the sensitivity of PM2.5 to heating in a thermodenuder to the average particle size, with more extensive evaporation (observed as a larger decrease in the PM2.5 extinction coefficient) corresponding to smaller particles; i.e., submicron particles were generally more susceptible to heating than the supermicron particles. The influence of heating on the particle hygroscopicity varied with the effective particle size, with larger changes observed when the PM2.5 distribution was dominated by smaller particles.

  8. Measurement of HCl absorption coefficients with a DF laser

    NASA Technical Reports Server (NTRS)

    Bair, C. H.; Allario, F.

    1977-01-01

    Absorption coefficients in the fundamental P-branch of HCl at several DF laser transitions from 2439.02/cm to 2862.87/cm have been measured experimentally. The 2-1 P(3) DF laser transition has been shown to overlap the P(6) HCl-37 absorption line within the halfwidth of an atmospherically broadened line. The absorption coefficient k was measured to be 5.64 plus or minus 0.28/(atm-cm) for a 0.27% mixture of HCl in N2 at a total pressure of 760 torr. A theoretical and experimental comparison of the pressure dependence of k showed that the 2-1 P(3) DF transition lies 1.32 plus or minus 0.15 GHz from the center of the P(6) HCl absorption line. Applications of these results to differential absorption lidar and to heterodyne detection are discussed.

  9. Franz-Keldysh effect in GeSn pin photodetectors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oehme, M., E-mail: oehme@iht.uni-stuttgart.de; Kostecki, K.; Schmid, M.

    2014-04-21

    The optical properties and the Franz-Keldysh effect at the direct band gap of GeSn alloys with Sn concentrations up to 4.2% at room temperature were investigated. The GeSn material was embedded in the intrinsic region of a Ge heterojunction photodetector on Si substrates. The layer structure was grown by means of ultra-low temperature molecular beam epitaxy. The absorption coefficient as function of photon energy and the direct bandgap energies were determined. In all investigated samples, the Franz-Keldysh effect can be observed. A maximum absorption ratio of 1.5 was determined for 2% Sn for a voltage swing of 3 V.

  10. Spectroscopic thermoacoustic imaging of water and fat composition

    NASA Astrophysics Data System (ADS)

    Bauer, Daniel R.; Wang, Xiong; Vollin, Jeff; Xin, Hao; Witte, Russell S.

    2012-07-01

    During clinical studies, thermoacoustic imaging (TAI) failed to reliably identify malignant breast tissue. To increase detection capability, we propose spectroscopic TAI to differentiate samples based on the slope of their dielectric absorption. Phantoms composed of different ratios of water and fat were imaged using excitation frequencies between 2.7 and 3.1 GHz. The frequency-dependent slope of the TA signal was highly correlated with that of its absorption coefficient (R2 = 0.98 and p < 0.01), indicating spectroscopic TAI can distinguish materials based on their intrinsic dielectric properties. This approach potentially enhances cancer detection due to the increased water content of many tumors.

  11. Nonlinear Optical Spectroscopy of Two-Dimensional Materials

    NASA Astrophysics Data System (ADS)

    Cui, Qiannan

    Nonlinear optical properties of two-dimensional (2D) materials, such as transition metal dichalcogenides (TMDs), graphene, black phosphorus, and so on, play a key role of understanding nanoscale light-matter interactions, as well as developing nanophotonics applications from solar cells to quantum computation. With ultrafast lasers, we experimentally study nonlinear optical properties of 2D materials. Employing transient absorption microscopy, we study several members of 2D materials, such as WSe2, TiS3 and ReS2. The dynamical saturable absorption process of 2D excitons is spatiotemporally resolved. Intrinsic parameters of these 2D materials, such as exciton lifetime, exciton diffusion coefficient, and exciton mobility, are effectively measured. Especially, in-plane anisotropy of transient absorption and diffusive transport is observed for 2D excitons in monolayer ReS2, demonstrating the in-plane degree of freedom. Furthermore, with quantum interference and control nanoscopy, we all-optically inject, detect and manipulate nanoscale ballistic charge currents in a ReS2 thin film. By tuning the phase difference between one photon absorption and two photon absorption transition paths, sub-picosecond timescale of ballistic currents is coherently controlled for the first time in TMDs. In addition, the spatial resolution is two-order of magnitude smaller than optical diffraction limit. The second-order optical nonlinearity of 2D monolayers is resolved by second harmonic generation (SHG) microscopy. We measure the second-order susceptibility of monolayer MoS 2. The angular dependence of SHG in monolayer MoS2 shows strong symmetry dependence on its crystal lattice structure. Hence, second harmonic generation microscopy can serve as a powerful tool to noninvasively determine the crystalline directions of 2D monolayers. The real and imaginary parts of third-order optical nonlinearity of 2D monolayers are resolved by third harmonic generation (THG) microscopy and two-photon transient absorption microscopy, respectively. With third harmonic generation microscopy, we observe strong and anisotropic THG in monolayer and multilayer ReS2. Comparing with 2D materials with hexagonal lattice, such as MoS2, the third-order susceptibility is higher by one order of magnitude in ReS2 with a distorted 1T structure. The in-plane anisotropy of THG is attributed to the lattice distortion in ReS2 after comparing with a symmetry analysis. With two-photon transient absorption microscopy, we observe a giant two-photon absorption coefficient of monolayer WS2.

  12. Monte Carlo method for photon heating using temperature-dependent optical properties.

    PubMed

    Slade, Adam Broadbent; Aguilar, Guillermo

    2015-02-01

    The Monte Carlo method for photon transport is often used to predict the volumetric heating that an optical source will induce inside a tissue or material. This method relies on constant (with respect to temperature) optical properties, specifically the coefficients of scattering and absorption. In reality, optical coefficients are typically temperature-dependent, leading to error in simulation results. The purpose of this study is to develop a method that can incorporate variable properties and accurately simulate systems where the temperature will greatly vary, such as in the case of laser-thawing of frozen tissues. A numerical simulation was developed that utilizes the Monte Carlo method for photon transport to simulate the thermal response of a system that allows temperature-dependent optical and thermal properties. This was done by combining traditional Monte Carlo photon transport with a heat transfer simulation to provide a feedback loop that selects local properties based on current temperatures, for each moment in time. Additionally, photon steps are segmented to accurately obtain path lengths within a homogenous (but not isothermal) material. Validation of the simulation was done using comparisons to established Monte Carlo simulations using constant properties, and a comparison to the Beer-Lambert law for temperature-variable properties. The simulation is able to accurately predict the thermal response of a system whose properties can vary with temperature. The difference in results between variable-property and constant property methods for the representative system of laser-heated silicon can become larger than 100K. This simulation will return more accurate results of optical irradiation absorption in a material which undergoes a large change in temperature. This increased accuracy in simulated results leads to better thermal predictions in living tissues and can provide enhanced planning and improved experimental and procedural outcomes. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  13. Simple approach for high-contrast optical imaging and characterization of graphene-based sheets.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jung, I.; Pelton, M.; Piner, R.

    2007-12-01

    A simple optical method is presented for identifying and measuring the effective optical properties of nanometer-thick, graphene-based materials, based on the use of substrates consisting of a thin dielectric layer on silicon. High contrast between the graphene-based materials and the substrate is obtained by choosing appropriate optical properties and thickness of the dielectric layer. The effective refractive index and optical absorption coefficient of graphene oxide, thermally reduced graphene oxide, and graphene are obtained by comparing the predicted and measured contrasts.

  14. Absorption of infrared radiation by electrons in the field of a neutral hydrogen atom

    NASA Technical Reports Server (NTRS)

    Stallcop, J. R.

    1974-01-01

    An analytical expression for the absorption coefficient is developed from a relationship between the cross-section for inverse bremsstrahlung absorption and the cross-section for electron-atom momentum transfer; it is accurate for those photon frequencies v and temperatures such that hv/kT is small. The determination of the absorption of infrared radiation by free-free transitions of the negative hydrogen ion has been extended to higher temperatures. A simple analytical expression for the absorption coefficient has been derived.

  15. Understanding the optical properties of ZnO1-xSx and ZnO1-xSex alloys

    NASA Astrophysics Data System (ADS)

    Baldissera, Gustavo; Persson, Clas

    2016-01-01

    ZnO1-xYx with chalcogen element Y exhibits intriguing optoelectronic properties as the alloying strongly impacts the band-gap energy Eg(x). In this work, we analyze and compare the electronic structures and the dielectric responses of Zn(O,S) and Zn(O,Se) alloys by means of the density functional theory and the partially self-consistent GW approach. We model the crystalline stability from the total energies, and the results indicate that Zn(O,S) is more stable as alloy than Zn(O,Se). We demonstrate also that ion relaxation strongly affects total energies, and that the band-gap bowing depends primarily on local relaxation of the bonds. Moreover, we show that the composition dependent band-gap needs to be analyzed by the band anti-crossing model for small alloying concentration, while the alloying band-bowing model is accurate for strong alloying. We find that the Se-based alloys have a stronger change in the band-gap energy (for instance, ΔEg(0.50) = Eg(ZnO) - Eg(x = 0.50) ≈ 2.2 eV) compared with that of the S-based alloy (ΔEg(0.50) = 1.2 eV), mainly due to a stronger relaxation of the Zn-anion bonds that affects the electronic structure near the band edges. The optical properties of the alloys are discussed in terms of the complex dielectric function ɛ(ω) = ɛ1(ω) + iɛ2(ω) and the absorption coefficient α(ω). While the large band-gap bowing directly impacts the low-energy absorption spectra, the high-frequency dielectric constant ɛ∞ is correlated to the intensity of the dielectric response at energies above 4 eV. Therefore, the dielectric constant is only weakly affected by the non-linear band-gap variation. Despite strong structural relaxation, the high absorption coefficients of the alloys demonstrate that the alloys have well-behaved optoelectronic properties.

  16. Influence of electrically induced refraction and absorption on the measurement of spin current by pockels effect in GaAs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Houquan; She, Weilong, E-mail: shewl@mail.sysu.edu.cn

    2015-03-14

    The pockels effect could be utilized to measure spin current in semiconductors for linear electro-optic coefficient can be induced by spin current. When dc electric field is applied, the carriers will shift in k space, which could lead to the change of refraction and absorption coefficients. In this paper, we investigate the influence of the induced change of the refraction and absorption coefficients on the measurement of spin current by pockels effect in GaAs.

  17. The Free-Free Absorption Coefficients of the Negative Helium Ion

    NASA Astrophysics Data System (ADS)

    John, T. L.

    1994-08-01

    Free-free absorption coefficients of the negative helium ion are calculated by a phaseshift approximation, using continuum data that accurately account for electron-atom correlation and polarization. The approximation is considered to yield results within a few per cent of numerical values for wavelengths greater than 1 m, over the temperature range 1400-10080 K. These coefficients are expected to give the best current estimates of He - continuous absorption. Key words: atomic data - atomic processes - stars: atmospheres - infrared: general.

  18. Absorption Coefficient of Alkaline Earth Halides.

    DTIC Science & Technology

    1980-04-01

    not observed at low energy level , are developed at high power levels . No matter how low the absorption is. the effect is objectionable at high-energy... levels . As a natural consequence, the magnitude of the absorption coefficient is the key parameter in selecting laser window materials. Over the past...Presence of impurities can complicate the exponential tail. particularly at low absorption levels . The impurities may enter 12 the lattice singly or

  19. Light Absorptive Properties of Articular Cartilage, ECM Molecules, Synovial Fluid, and Photoinitiators as Potential Barriers to Light-Initiated Polymer Scaffolding Procedures.

    PubMed

    Finch, Anthony J; Benson, Jamie M; Donnelly, Patrick E; Torzilli, Peter A

    2017-06-01

    Objective Many in vivo procedures to repair chondral defects use ultraviolet (UV)-photoinitiated in situ polymerization within the cartilage matrix. Chemical species that absorb UV light might reduce the effectiveness of these procedures by acting as light absorption barriers. This study evaluated whether any of the individual native biochemical components in cartilage and synovial fluid interfered with the absorption of light by common scaffolding photosensitizers. Materials UV-visible spectroscopy was performed on each major component of cartilage in solution, on bovine synovial fluid, and on four photosensitizers, riboflavin, Irgacure 2959, quinine, and riboflavin-5'-phosphate. Molar extinction and absorption coefficients were calculated at wavelengths of maximum absorbance and 365 nm. Intact articular cartilage was also examined. Results The individual major biochemical components of cartilage, Irgacure 2959, and quinine did not exhibit a significant absorption at 365 nm. Riboflavin and riboflavin-5'-phosphate were more effectual light absorbers at 365 nm, compared with the individual native species. Intact cartilage absorbed a significantly greater amount of UV light in comparison with the native species. Conclusion Our results indicate that none of the individual native species in cartilage will interfere with the absorption of UV light at 365 nm by these commonly used photoinitiators. Intact cartilage slices exhibited significant light absorption at 365 nm, while also having distinct absorbance peaks at wavelengths less than 300 nm. Determining the UV absorptive properties of the biomolecules native to articular cartilage and synovial fluid will aid in optimizing scaffolding procedures to ensure sufficient scaffold polymerization at a minimum UV intensity.

  20. Experiment to Determine the Absorption Coefficient of Gamma Rays as a Function of Energy.

    ERIC Educational Resources Information Center

    Ouseph, P. J.; And Others

    1982-01-01

    Simpler than x-ray diffractometer experiments, the experiment described illustrates certain concepts regarding the interaction of electromagnetic rays with matter such as the exponential decrease in the intensity with absorber thickness, variation of the coefficient of absorption with energy, and the effect of the K-absorption edge on the…

  1. Energy transfer and energy absorption in photon interactions with matter revisited: A step-by-step illustrated approach

    NASA Astrophysics Data System (ADS)

    Abdel-Rahman, W.; Podgorsak, E. B.

    2010-05-01

    A clear understanding of energy transfer and energy absorption in photon interactions with matter is essential for the understanding of radiation dosimetry and development of new dosimetry techniques. The concepts behind the two quantities have been enunciated many years ago and described in many scientific papers, review articles, and textbooks. Data dealing with energy transfer and energy absorption as well as the associated mass energy transfer coefficient and the mass energy absorption coefficient are readily available in web-based tabular forms. However, tables, even when available in detailed and easy to access form, do not lend themselves to serve as visual aid to promote better understanding of the dosimetric quantities related to energy transfer and energy absorption as well as their relationship to the photon energy and absorber atomic number. This paper uses graphs and illustrations, in addition to well-known mathematical relationships, to guide the reader in a systematic manner through the various stages involved in the derivation of energy absorbed in medium and its associated quantity, the mass energy absorption coefficient, from the mass attenuation coefficient.

  2. Synthesis and properties of feruloyl corn bran arabinoxylan esters.

    PubMed

    Li, Y; Yang, C

    2016-06-01

    To enhance the antioxidant activity and UV absorption coefficient of corn bran arabinoxylan (CAX), ferulic acid (FA) with this physiological activity is used to modify CAX. Corn bran arabinoxylan was extracted from corn bran according to alkaline hydrogen peroxide (AHP) method. FA was covalently linked to CAX by esterification in a two-step feasible synthesis to generate ferulic acid arabinoxylan esters (FA-CAX). The structure and molecular weight of FA-CAX were characterized by NMR and HPSEC, the degrees of substitution (DS) was determined by HPLC, and the ultraviolet (UV) coefficient of FA-CAX was tested by UV spectroscopy. The antioxidant activity of FA-CAX was investigated on the basis of 2,2'-diphenyl-1-picrylhydrazyl (DPPH) radical assay, and protecting ability of FA-CAX to UV-induced oxidative damage was tested using linolenic acid dispersion as stratum corneum lipid model. The results demonstrated that FA was attached to CAX successfully, and the inherent structure of CAX would not be broken during the process of the synthesis. FA-CAX-1 and FA-CAX-2 contained different amount of FA, with DS at 0.33 and 1.25, respectively, can absorb UV both at UVA and UVB. Moreover, FA-CAX-2 exhibited better antioxidant activity than FA-CAX-1 based on the two test methods. Ferulic acid modified CAX had significant antioxidant ability and UV absorption coefficient. And higher amount of FA leads to higher antioxidant activity and stronger UV absorption and stability. With increasing amount of FA attached to CAX, the antioxidant activities were better and the UV absorption was stronger and more durable. © 2015 Society of Cosmetic Scientists and the Société Française de Cosmétologie.

  3. Thermally induced changes of optical and vital parameters in human cancer cells

    NASA Astrophysics Data System (ADS)

    Dressler, C.; Schwandt, D.; Beuthan, J.; Mildaziene, V.; Zabarylo, U.; Minet, O.

    2010-11-01

    Minimally invasive laser-induced thermotherapy (LITT) presents an alternative method to conventional tumor therapeutically interventions, such as surgery, chemotherapy, radiotherapy or nuclear medicine. Optical tissue characteristics of tumor cells and their heat-induced changes are essential issues for controlling LITT progressions. Therefore, it is indispensable to exactly know the absorption coefficient μa, the scattering coefficient μs and the anisotropy factor g as well as their changes under rising temperatures in order to simulate the treatment parameters successfully. Optical parameters of two different cancer model tissues - breast cancer cells species MX1 and colon cancer cells species CX1 - were measured in the spectral range 400 - 1100 nm as well as in the temperature range 37 - 60°C. The absorption coefficient of both cell species was low throughout the spectral range analyzed, while μs of both species rose with increasing temperatures. The anisotropy factor g however dropped for both tissues with increasing temperatures. Light scatterings inside tissues proceeded continuously forward for all species tested. It was demonstrated that optical tissue properties undergo significant changes along with the vital status of the cells when the temperature increases.

  4. Laboratory measurements of selected optical, physical, chemical, and remote-sensing properties of five water mixtures containing Calvert clay and a nonfluorescing dye

    NASA Technical Reports Server (NTRS)

    Usry, J. W.; Whitlock, C. H.; Poole, L. R.; Witte, W. G., Jr.

    1981-01-01

    Total suspended solids concentrations ranged from 6.1 ppm to 24.3 ppm and sizes ranged between 1.5 micrometers and 10 micrometers with the most frequently occurring size less than 2 micrometers. Iron concentration was less than 1 percent of the total suspended solids. Nonfluorescing dye concentrations of the two mixtures were 20 ppm and 40 ppm. Attenuation coefficient for the five mixtures ranged from 4.8/m to 21.3/m. Variations in volume scattering function with phase angle were typical. Variations in attenuation and absorption coefficient with wavelength were similar for the mixtures without the dye. Attenuation coefficient of the mixtures with the dye increased for wavelengths less than 600 nm due to the dye's strong absorption peak near 500 nm. Reflectance increased as the concentration of Calvert clay increased and peaked near 600 nm. The nonfluorescent dye decreased the magnitude of the peak, but had practically no effect on the variation for wavelengths greater than 640 nm. At wavelengths less than 600 nm, the spectral variations of the mixtures with the dye were significantly different from those mixtures without the dye.

  5. Preparation and optical properties of TeO2-BaO-ZnO-ZnF2 fluoro-tellurite glass for mid-infrared fiber Raman laser applications

    NASA Astrophysics Data System (ADS)

    Li, Jie; Xiao, Xusheng; Gu, Shaoxuan; Xu, Yantao; Zhou, Zhiguang; Guo, Haitao

    2017-04-01

    A serial of novel fluoro-tellurite glasses with compositions of 60TeO2-20BaO-(20-x)ZnO-xZnF2 (x = 0, 2, 4, 5 and 6 mol%) were prepared. The compositional dependences of glass structural evaluation, Raman gain coefficient, UV-Vis transmission spectrum, IR transmission spectrum, linear refractive index and third-order nonlinearity were analyzed. The results showed that the addition of 6 mol% ZnF2 can further improve the Raman gain coefficient to as well as 52 × 10-11 cm/W and effectively decrease around 73% and 57% absorption coefficients respectively caused by free Osbnd H groups (@3.3 μm) and hydrogen-bonded Osbnd H groups (@4.5 μm) in glass. Addition of ZnF2 does not change the UV-Vis absorption edge, optical band gap energy and infrared region cut-off edge almost, while the linear refraction index and ultrafast third-nonlinearity show unmonotonic changes. These novel fluoro-tellurite glasses may be suitable candidates for using in mid-infrared Raman fiber laser and/or amplifier.

  6. Cell openness manipulation of low density polyurethane foam for efficient sound absorption

    NASA Astrophysics Data System (ADS)

    Hyuk Park, Ju; Suh Minn, Kyung; Rae Lee, Hyeong; Hyun Yang, Sei; Bin Yu, Cheng; Yeol Pak, Seong; Sung Oh, Chi; Seok Song, Young; June Kang, Yeon; Ryoun Youn, Jae

    2017-10-01

    Satisfactory sound absorption using a low mass density foam is an intriguing desire for achieving high fuel efficiency of vehicles. This issue has been dealt with a microcellular geometry manipulation. In this study, we demonstrate the relationship between cell openness of polyurethane (PU) foam and sound absorption behaviors, both theoretically and experimentally. The objective of this work is to mitigate a threshold of mass density by rendering a sound absorber which shows a satisfactory performance. The cell openness, which causes the best sound absorption performance in all cases considered, was estimated as 15% by numerical simulation. Cell openness of PU foam was experimentally manipulated into desired ranges by adjusting rheological properties in a foaming reaction. Microcellular structures of the fabricated PU foams were observed and sound absorption coefficients were measured using a B&K impedance tube. The fabricated PU foam with the best cell openness showed better sound absorption performance than the foam with double mass density. We envisage that this study can help the manufacture of low mass density sound absorbing foams more efficiently and economically.

  7. Improved diffusivity of NaOH solution in autohydrolyzed poplar sapwood chips for chemi-mechanical pulp production.

    PubMed

    Zhang, Honglei; Hou, Qingxi; Liu, Wei; Yue, Zhen; Jiang, Xiaoya; Ma, Xixi

    2018-07-01

    This work investigated the changes in the physical structure of autohydrolyzed poplar sapwood chips and the effect on the subsequent alkali liquor diffusion properties for chemi-mechanical pulping (CMP). An alkali impregnation process was conducted by using the autohydrolyzed poplar sapwood with different levels of autohydrolysis intensity. The results showed that the volume porosity, water constraint capacity, and saturated water absorption of the autohydrolyzed poplar sapwood chips increased. Also, the effective capillary cross-sectional area (ECCSA) in the radial direction and the diffusion coefficients of NaOH solution in both the radial and axial directions all increased. Autohydrolysis pretreatment enhanced the alkali liquor diffusion properties in poplar sapwood chips, and the diffusion coefficient was increased more greatly in the radial direction than that in the axial direction. Copyright © 2018 Elsevier Ltd. All rights reserved.

  8. Behavior of optical properties of coagulated blood sample at 633 nm wavelength

    NASA Astrophysics Data System (ADS)

    Morales Cruzado, Beatriz; Vázquez y Montiel, Sergio; Delgado Atencio, José Alberto

    2011-03-01

    Determination of tissue optical parameters is fundamental for application of light in either diagnostics or therapeutical procedures. However, in samples of biological tissue in vitro, the optical properties are modified by cellular death or cellular agglomeration that can not be avoided. This phenomena change the propagation of light within the biological sample. Optical properties of human blood tissue were investigated in vitro at 633 nm using an optical setup that includes a double integrating sphere system. We measure the diffuse transmittance and diffuse reflectance of the blood sample and compare these physical properties with those obtained by Monte Carlo Multi-Layered (MCML). The extraction of the optical parameters: absorption coefficient μa, scattering coefficient μs and anisotropic factor g from the measurements were carried out using a Genetic Algorithm, in which the search procedure is based in the evolution of a population due to selection of the best individual, evaluated by a function that compares the diffuse transmittance and diffuse reflectance of those individuals with the experimental ones. The algorithm converges rapidly to the best individual, extracting the optical parameters of the sample. We compare our results with those obtained by using other retrieve procedures. We found that the scattering coefficient and the anisotropic factor change dramatically due to the formation of clusters.

  9. Synthesis and Study of Optical Properties of Graphene/TiO2 Composites Using UV-VIS Spectroscopy

    NASA Astrophysics Data System (ADS)

    Rathod, P. B.; Waghuley, S. A.

    2016-09-01

    Graphene and TiO2 were synthesized using electrochemical exfoliation and co-precipitation methods, respectively. An ex situ approach was adopted for the graphene/TiO2 composites. The conformation of graphene in the TiO2 samples was examined through X-ray diffraction. Optical properties of the as-synthesised composites such as optical absorption, extinction coefficient, refractive index, real dielectric constant, imaginary dielectric constant, dissipation factor, and optical conductivity were measured using UV-Vis spectroscopy. The varying concentration of graphene in TiO2 affects the optical properties which appear different for 10 wt.% as compared to 5 wt.% graphene/ TiO2 composite. The composites exhibit an absorption peak at 300 nm with a decrease in band gap for 10 wt.% as compared to 5 wt.% graphene/TiO2 composite. The maximum optical conductivity for the graphene/TiO2 composite of 10 wt.% was found to be 1.86·10-2 Ω-1·m-1 at 300 nm.

  10. Investigation of noise properties in grating-based x-ray phase tomography with reverse projection method

    NASA Astrophysics Data System (ADS)

    Bao, Yuan; Wang, Yan; Gao, Kun; Wang, Zhi-Li; Zhu, Pei-Ping; Wu, Zi-Yu

    2015-10-01

    The relationship between noise variance and spatial resolution in grating-based x-ray phase computed tomography (PCT) imaging is investigated with reverse projection extraction method, and the noise variances of the reconstructed absorption coefficient and refractive index decrement are compared. For the differential phase contrast method, the noise variance in the differential projection images follows the same inverse-square law with spatial resolution as in conventional absorption-based x-ray imaging projections. However, both theoretical analysis and simulations demonstrate that in PCT the noise variance of the reconstructed refractive index decrement scales with spatial resolution follows an inverse linear relationship at fixed slice thickness, while the noise variance of the reconstructed absorption coefficient conforms with the inverse cubic law. The results indicate that, for the same noise variance level, PCT imaging may enable higher spatial resolution than conventional absorption computed tomography (ACT), while ACT benefits more from degraded spatial resolution. This could be a useful guidance in imaging the inner structure of the sample in higher spatial resolution. Project supported by the National Basic Research Program of China (Grant No. 2012CB825800), the Science Fund for Creative Research Groups, the Knowledge Innovation Program of the Chinese Academy of Sciences (Grant Nos. KJCX2-YW-N42 and Y4545320Y2), the National Natural Science Foundation of China (Grant Nos. 11475170, 11205157, 11305173, 11205189, 11375225, 11321503, 11179004, and U1332109).

  11. Non-Wovens as Sound Reducers

    NASA Astrophysics Data System (ADS)

    Belakova, D.; Seile, A.; Kukle, S.; Plamus, T.

    2018-04-01

    Within the present study, the effect of hemp (40 wt%) and polyactide (60 wt%), non-woven surface density, thickness and number of fibre web layers on the sound absorption coefficient and the sound transmission loss in the frequency range from 50 to 5000 Hz is analysed. The sound insulation properties of the experimental samples have been determined, compared to the ones in practical use, and the possible use of material has been defined. Non-woven materials are ideally suited for use in acoustic insulation products because the arrangement of fibres produces a porous material structure, which leads to a greater interaction between sound waves and fibre structure. Of all the tested samples (A, B and D), the non-woven variant B exceeded the surface density of sample A by 1.22 times and 1.15 times that of sample D. By placing non-wovens one above the other in 2 layers, it is possible to increase the absorption coefficient of the material, which depending on the frequency corresponds to C, D, and E sound absorption classes. Sample A demonstrates the best sound absorption of all the three samples in the frequency range from 250 to 2000 Hz. In the test frequency range from 50 to 5000 Hz, the sound transmission loss varies from 0.76 (Sample D at 63 Hz) to 3.90 (Sample B at 5000 Hz).

  12. Determination of optical properties, drug concentration, and tissue oxygenation in human pleural tissue before and after Photofrin-mediated photodynamic therapy

    NASA Astrophysics Data System (ADS)

    Ong, Yi Hong; Padawer-Curry, Jonah; Finlay, Jarod C.; Kim, Michele M.; Dimofte, Andreea; Cengel, Keith; Zhu, Timothy C.

    2018-02-01

    PDT efficacy depends on the concentration of photosensitizer, oxygen, and light delivery in patient tissues. In this study, we measure the in-vivo distribution of important dosimetric parameters, namely the tissue optical properties (absorption μa (λ) and scattering μs ' (λ) coefficients), photofrin concentration (cphotofrin), blood oxygen saturation (%StO2), and total hemoglobin concentration (THC), before and after PDT. We characterize the inter- and intra-patient heterogeneity of these quantities and explore how these properties change as a result of PDT treatment. The result suggests the need for real-time dosimetry during PDT to optimize the treatment condition depending on the optical and physiological properties.

  13. Optical Properties of the Organic Semiconductor Polyacetylene.

    NASA Astrophysics Data System (ADS)

    Feldblum, Avinoam Y.

    Polyacetylene is the prototype conducting organic polymer. In its pristine form, it exhibits physical properties closely resembling those of a conventional inorganic semiconductor. When chemically or electrochemically doped, the polymer undergoes a semiconductor-metal transition. The nature of lightly doped polyacetylene, prior to the metallic transition, is not well understood. In addition, there still remain questions as to the nature of the pristine film itself. In this thesis, optical absorption experiments were performed in order to gain a clearer understanding of the electronic structure of polyacetylene. To attain this understanding, opto-electrochemical spectroscopy (OES), a new technique combining optical measurements with in situ electrochemical doping was developed. Optical absorption measurements were performed on cis-(CH)(,x) in order to examine doping induced isomerization. When doped to metallic levels followed by compensation or undoping, cis-(CH)(,x) isomerizes to trans-(CH)(,x). Using OES, one finds that with light doping, the main contribution to the midgap transition comes from the small trans content in the film. Electrochemical cycling shows isomerization beginning below y = 0.01 and repeated cycling to different concentrations indicate that the total isomerization depends on the value of the highest dopant level. These results suggest that upon light doping, the trans-(CH)(,x) dopes first, followed by enough cis-(CH)(,x) isomerizing to accomodate the injected charge. A quantitative study of the effects of doping on the absorption coefficient of trans-(CH)(,x) was carried out using OES. Upon doping, the interband absorption uniformly decreases over an extremely wide range. A strong absorbtion appeared at mid-gap; its oscillator strength increasing linearly with dopant concentration. A weak shoulder is observed on the interband edge which grows at low concentrations and then decreases to zero by 4%. These results agree with the predictions of the soliton model--the midgap absorption is identified as a soliton level and the shoulder as a transition between localized polaron levels. The pressure dependence of the photoabsorption of cis- and trans-(CH)(,x) has been measured. In both cases the bandedge shifted to a lower energy, and the value of the peak absorption coefficient decreased. These results suggest that the observed bandwidth is due primarily to the transverse transfer integral.

  14. Sensitive photo-thermal response of graphene oxide for mid-infrared detection

    NASA Astrophysics Data System (ADS)

    Bae, Jung Jun; Yoon, Jung Hyun; Jeong, Sooyeon; Moon, Byoung Hee; Han, Joong Tark; Jeong, Hee Jin; Lee, Geon-Woong; Hwang, Ha Ryong; Lee, Young Hee; Jeong, Seung Yol; Lim, Seong Chu

    2015-09-01

    This study characterizes the effects of incident infrared (IR) radiation on the electrical conductivity of graphene oxide (GO) and examines its potential for mid-IR detection. Analysis of the mildly reduced GO (m-GO) transport mechanism near room temperature reveals variable range hopping (VRH) for the conduction of electrons. This VRH behavior causes the m-GO resistance to exhibit a strong temperature dependence, with a large negative temperature coefficient of resistance of approximately -2 to -4% K-1. In addition to this hopping transport, the presence of various oxygen-related functional groups within GO enhances the absorption of IR radiation significantly. These two GO material properties are synergically coupled and provoke a remarkable photothermal effect within this material; specifically, a large resistance drop is exhibited by m-GO in response to the increase in temperature caused by the IR absorption. The m-GO bolometer effect identified in this study is different from that exhibited in vanadium oxides, which require added gold-black films that function as IR absorbers owing to their limited IR absorption capability.This study characterizes the effects of incident infrared (IR) radiation on the electrical conductivity of graphene oxide (GO) and examines its potential for mid-IR detection. Analysis of the mildly reduced GO (m-GO) transport mechanism near room temperature reveals variable range hopping (VRH) for the conduction of electrons. This VRH behavior causes the m-GO resistance to exhibit a strong temperature dependence, with a large negative temperature coefficient of resistance of approximately -2 to -4% K-1. In addition to this hopping transport, the presence of various oxygen-related functional groups within GO enhances the absorption of IR radiation significantly. These two GO material properties are synergically coupled and provoke a remarkable photothermal effect within this material; specifically, a large resistance drop is exhibited by m-GO in response to the increase in temperature caused by the IR absorption. The m-GO bolometer effect identified in this study is different from that exhibited in vanadium oxides, which require added gold-black films that function as IR absorbers owing to their limited IR absorption capability. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr04039f

  15. [Chromophoric dissolved organic matter absorption characteristics with relation to fluorescence in typical macrophyte, algae lake zones of Lake Taihu].

    PubMed

    Zhang, Yun-lin; Qin, Bo-qiang; Ma, Rong-hua; Zhu, Guang-wei; Zhang, Lu; Chen, Wei-min

    2005-03-01

    Chromophoric dissolved organic matter (CDOM) represents one of the primary light-absorbing species in natural waters and plays a critical in determining the aquatic light field. CDOM shows a featureless absorption spectrum that increases exponentially with decreasing wavelength, which limits the penetration of biologically damaging UV-B radiation (wavelength from 280 to 320 nm) in the water column, thus shielding aquatic organisms. CDOM absorption measurements and their relationship with dissolved organic carbon (DOC), and fluorescence are presented in typical macrophyte and algae lake zone of Lake Taihu based on a field investigation in April in 2004 and lab analysis. Absorption spectral of CDOM was measured from 240 to 800 nm using a Shimadzu UV-2401PC UV-Vis recording spectrophotometer. Fluorescence with an excitation wavelength of 355 nm, an emission wavelength of 450 nm is measured using a Shimadzu 5301 spectrofluorometer. Concentrations of DOC ranged from 6.3 to 17.2 mg/L with an average of 9.08 +/- 2.66 mg/L. CDOM absorption coefficients at 280 nm and 355 nm were in the range of 11.2 - 32.6 m(-1) (average 17.46m(-1) +/- 5.75 m(-1) and 2.4 - 8.3 m(-1) (average 4.17m(-1) +/- 1.47 m(-l)), respectively. The values of the DOC-specific absorption coefficient at 355 nm ranged from 0.31 to 0.64 L x (mg x m)-1. Fluorescence emission at 450 nm, excited at 355 nm, had a mean value of 1.32nm(-1) +/- 0.84 nm(-1). A significant lake zone difference is found in DOC concentration, CDOM absorption coefficient and fluorescence, but not in DOC-specific absorption coefficient and spectral slope coefficient. This regional distribution pattern is in agreement with the location of sources of yellow substance: highest concentrations close to river mouth under the influence of river inflow, lower values in East Lake Taihu. The values of algae lake zone are obvious larger than those of macrophyte lake zone. In Meiliang Bay, CDOM absorption, DOC concentration and fluorescence tend to decreasing from inside to mouth of the Bay. The results show a good correlation between CDOM absorption and DOC coefficients during 280 - 500 nm short wavelength intervals. The R-square coefficient between CDOM absorption and DOC concentration decreases with the increase of wavelength from 280 to 500 nm. The significant linear regression correlations between fluorescence, DOC concentration and absorption coefficients were found at 355 nm. The exponential slope coefficients ranged from 13.0 to 16.4 microm(-1) with a mean value 14.37microm(-1) +/- 0.73microm(-1), 17.3microm(-1) - 20.3microm(-1) with a mean value 19.17microm(-1) +/- 0.84microm(-1) and 12.0microm(-1) - 15.8microm(-1) with a mean value 13.38microm(-1) +/- 0.82microm(-1) over the 280 - 500 nm, 280 - 360 nm and 360 - 440 nm intervals.

  16. Improved predictive modeling of white LEDs with accurate luminescence simulation and practical inputs with TracePro opto-mechanical design software

    NASA Astrophysics Data System (ADS)

    Tsao, Chao-hsi; Freniere, Edward R.; Smith, Linda

    2009-02-01

    The use of white LEDs for solid-state lighting to address applications in the automotive, architectural and general illumination markets is just emerging. LEDs promise greater energy efficiency and lower maintenance costs. However, there is a significant amount of design and cost optimization to be done while companies continue to improve semiconductor manufacturing processes and begin to apply more efficient and better color rendering luminescent materials such as phosphor and quantum dot nanomaterials. In the last decade, accurate and predictive opto-mechanical software modeling has enabled adherence to performance, consistency, cost, and aesthetic criteria without the cost and time associated with iterative hardware prototyping. More sophisticated models that include simulation of optical phenomenon, such as luminescence, promise to yield designs that are more predictive - giving design engineers and materials scientists more control over the design process to quickly reach optimum performance, manufacturability, and cost criteria. A design case study is presented where first, a phosphor formulation and excitation source are optimized for a white light. The phosphor formulation, the excitation source and other LED components are optically and mechanically modeled and ray traced. Finally, its performance is analyzed. A blue LED source is characterized by its relative spectral power distribution and angular intensity distribution. YAG:Ce phosphor is characterized by relative absorption, excitation and emission spectra, quantum efficiency and bulk absorption coefficient. Bulk scatter properties are characterized by wavelength dependent scatter coefficients, anisotropy and bulk absorption coefficient.

  17. Improving optical properties of silicon nitride films to be applied in the middle infrared optics by a combined high-power impulse/unbalanced magnetron sputtering deposition technique.

    PubMed

    Liao, Bo-Huei; Hsiao, Chien-Nan

    2014-02-01

    Silicon nitride films are prepared by a combined high-power impulse/unbalanced magnetron sputtering (HIPIMS/UBMS) deposition technique. Different unbalance coefficients and pulse on/off ratios are applied to improve the optical properties of the silicon nitride films. The refractive indices of the Si3N4 films vary from 2.17 to 2.02 in the wavelength ranges of 400-700 nm, and all the extinction coefficients are smaller than 1×10(-4). The Fourier transform infrared spectroscopy and x-ray diffractometry measurements reveal the amorphous structure of the Si3N4 films with extremely low hydrogen content and very low absorption between the near IR and middle IR ranges. Compared to other deposition techniques, Si3N4 films deposited by the combined HIPIMS/UBMS deposition technique possess the highest refractive index, the lowest extinction coefficient, and excellent structural properties. Finally a four-layer coating is deposited on both sides of a silicon substrate. The average transmittance from 3200 to 4800 nm is 99.0%, and the highest transmittance is 99.97% around 4200 nm.

  18. Label-free hyperspectral dark-field microscopy for quantitative scatter imaging

    NASA Astrophysics Data System (ADS)

    Cheney, Philip; McClatchy, David; Kanick, Stephen; Lemaillet, Paul; Allen, David; Samarov, Daniel; Pogue, Brian; Hwang, Jeeseong

    2017-03-01

    A hyperspectral dark-field microscope has been developed for imaging spatially distributed diffuse reflectance spectra from light-scattering samples. In this report, quantitative scatter spectroscopy is demonstrated with a uniform scattering phantom, namely a solution of polystyrene microspheres. A Monte Carlo-based inverse model was used to calculate the reduced scattering coefficients of samples of different microsphere concentrations from wavelength-dependent backscattered signal measured by the dark-field microscope. The results are compared to the measurement results from a NIST double-integrating sphere system for validation. Ongoing efforts involve quantitative mapping of scattering and absorption coefficients in samples with spatially heterogeneous optical properties.

  19. Measurement of the aerosol absorption coefficient with the nonequilibrium process

    NASA Astrophysics Data System (ADS)

    Li, Liang; Li, Jingxuan; Bai, Hailong; Li, Baosheng; Liu, Shanlin; Zhang, Yang

    2018-02-01

    On the basis of the conventional Jamin interferometer,the improved measuring method is proposed that using a polarization type reentrant Jamin interferometer measures atmospheric aerosol absorption coefficient under the photothermal effect.The paper studies the relationship between the absorption coefficient of atmospheric aerosol particles and the refractive index change of the atmosphere.In Matlab environment, the variation curves of the output voltage of the interferometer with different concentration aerosol samples under stimulated laser irradiation were plotted.Besides, the paper also studies the relationship between aerosol concentration and the time required for the photothermal effect to reach equilibrium.When using the photothermal interferometry the results show that the time required for the photothermal effect to reach equilibrium is also increasing with the increasing concentration of aerosol particles,the absorption coefficient and time of aerosol in the process of nonequilibrium are exponentially changing.

  20. Mechanical and Physical Properties of Hydrophobized Lightweight Aggregate Concrete with Sewage Sludge.

    PubMed

    Suchorab, Zbigniew; Barnat-Hunek, Danuta; Franus, Małgorzata; Łagód, Grzegorz

    2016-04-27

    This article is focused on lightweight aggregate-concrete modified by municipal sewage sludge and lightweight aggregate-concrete obtained from light aggregates. The article presents laboratory examinations of material physical parameters. Water absorptivity of the examined material was decreased by the admixture of water emulsion of reactive polysiloxanes. Water transport properties were determined using Time Domain Reflectometry, an indirect technique for moisture detection in porous media. Together with basic physical parameters, the heat conductivity coefficient λ was determined for both types of lightweight aggregate-concrete. Analysis of moisture and heat properties of the examined materials confirmed the usefulness of light aggregates supplemented with sewage sludge for prospective production.

  1. Temperature and salinity correction coefficients for light absorption by water in the visible to infrared spectral region.

    PubMed

    Röttgers, Rüdiger; McKee, David; Utschig, Christian

    2014-10-20

    The light absorption coefficient of water is dependent on temperature and concentration of ions, i.e. the salinity in seawater. Accurate knowledge of the water absorption coefficient, a, and/or its temperature and salinity correction coefficients, Ψ(T) and Ψ(S), respectively, is essential for a wide range of optical applications. Values are available from published data only at specific narrow wavelength ranges or at single wavelengths in the visible and infrared regions. Ψ(T) and Ψ(S) were therefore spectrophotometrically measured throughout the visible, near, and short wavelength infrared spectral region (400 to ~2700 nm). Additionally, they were derived from more precise measurements with a point-source integrating-cavity absorption meter (PSICAM) for 400 to 700 nm. When combined with earlier measurements from the literature in the range of 2600 - 14000 nm (wavenumber: 3800 - 700 cm(-1)), the coefficients are provided for 400 to 14000 nm (wavenumber: 25000 to 700 cm(-1)).

  2. Studies on mass energy-absorption coefficients and effective atomic energy-absorption cross sections for carbohydrates

    NASA Astrophysics Data System (ADS)

    Ladhaf, Bibifatima M.; Pawar, Pravina P.

    2015-04-01

    We measured here the mass attenuation coefficients (μ/ρ) of carbohydrates, Esculine (C15H16O9), Sucrose (C12H22O11), Sorbitol (C6H14O6), D-Galactose (C6H12O6), Inositol (C6H12O6), D-Xylose (C5H10O5) covering the energy range from 122 keV up to 1330 keV photon energies by using gamma ray transmission method in a narrow beam good geometry set-up. The gamma-rays were detected using NaI(Tl) scintillation detection system with a resolution of 8.2% at 662 keV. The attenuation coefficient data were then used to obtain the total attenuation cross-section (σtot), molar extinction coefficients (ε), mass-energy absorption coefficients (μen/ρ) and effective (average) atomic energy-absorption cross section (σa,en) of the compounds. These values are found to be in good agreement with the theoretical values calculated based on XCOM data.

  3. Optical, physical, and chemical properties of springtime aerosol over Barrow Alaska in 2008

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shantz, Nicole C.; Gultepe, Ismail; Andrews, Elisabeth

    2014-03-06

    Airborne observations from four flights during the 2008 Indirect and Semi-Direct Aerosol Campaign (ISDAC) are used to examine some cloud-free optical, physical, and chemical properties of aerosol particles in the springtime Arctic troposphere. The number concentrations of particles larger than 0.12 μm (Na>120), important for light extinction and cloud droplet formation, ranged from 15 to 2260 cm -3, with the higher Na>120 cases dominated by measurements from two flights of long-range transported biomass burning (BB) aerosols. The two other flights examined here document a relatively clean aerosol and an Arctic Haze aerosol impacted by larger particles largely composed of dust.more » For observations from the cleaner case and the BB cases, the particle light scattering coefficients at low relative humidity (RH<20%) increased nonlinearly with increasing Na>120, driven mostly by an increase in mean sizes of particles with increasing Na>120 (BB cases). For those three cases, particle light absorption coefficients also increased nonlinearly with increasing Na>120 and linearly with increasing submicron particle volume concentration. In addition to black carbon, brown carbon was estimated to have increased light absorption coefficients by 27% (450 nm wavelength) and 14% (550 nm) in the BB cases. For the case with strong dust influence, the absorption relative to submicron particle volume was small compared with the other cases. There was a slight gradient of Passive Cavity Aerosol Spectrometer Probe (PCASP) mean volume diameter (MVD) towards smaller sizes with increasing height, which suggests more scavenging of the more elevated particles, consistent with a typically longer lifetime of particles higher in the atmosphere. However, in approximately 10% of the cases, the MVD increased (>0.4 μm) with increasing altitude, suggesting transport of larger fine particle mass (possibly coarse particle mass) at high levels over the Arctic. This may be because of transport of larger particles at higher elevations and relatively slow deposition to the surface.« less

  4. Nonlinear optical studies on 1,3-disubstituent chalcones doped polymer films

    NASA Astrophysics Data System (ADS)

    Poornesh, P.; Shettigar, Seetharam; Umesh, G.; Manjunatha, K. B.; Prakash Kamath, K.; Sarojini, B. K.; Narayana, B.

    2009-04-01

    We report the measurements of the third-order nonlinear optical properties of recently synthesized and characterized two different 1,3-disubstituent chalcones doped PMMA films, with the prospective of reaching a good compromise between processability and high nonlinear optical properties. The measurements were done using nanosecond Z-scan at 532 nm. The Z-scan spectra reveal a large negative nonlinear refraction coefficient n2 of the order 10 -11 esu and the molecular two photon absorption cross section is 10 -46 cm 4 s/photon. The doped films exhibit good optical power limiting property under nanosecond regime and the two photon absorption (TPA) is the dominating process leading to the nonlinear behavior. The improvement in the nonlinear properties has been observed when methylenedioxy group is replaced by dimethoxy group due to increase in conjugation length. The observed nonlinear parameters of chalcone derivatives doped PMMA film is comparable with stilbazolieum derivatives, a well-known class of optical materials for photonics and biophotonics applications, which suggests that, these moieties have potential for the application of all-optical limiting and switching devices.

  5. Science and software support for spacecraft solar occultation experiments

    NASA Technical Reports Server (NTRS)

    Hessameddin, G.; Becher, J.

    1982-01-01

    The temperature dependence of absorption coefficients of ozone was studied between 7567 A and 3630 A. When the gas was cooled from room temperature to -108 C, an overall increase in the absorption coefficients was noticed. The maximum increase of 5% occurred at lambda = 6020 A. In general, the absorption is linearly dependent on temperature.

  6. The contribution of malabsorption to the reduction in net energy absorption after long-limb Roux-en-Y gastric bypass.

    PubMed

    Odstrcil, Elizabeth A; Martinez, Juan G; Santa Ana, Carol A; Xue, Beiqi; Schneider, Reva E; Steffer, Karen J; Porter, Jack L; Asplin, John; Kuhn, Joseph A; Fordtran, John S

    2010-10-01

    Roux-en-Y gastric bypass (RYGB) restricts food intake, and when the Roux limb is elongated to 150 cm, the procedure is believed to induce malabsorption. Our objective was to measure total reduction in intestinal absorption of combustible energy after RYGB and the extent to which this was due to restriction of food intake or malabsorption of ingested macronutrients. Long-limb RYGB was performed in 9 severely obese patients. Dietary intake and intestinal absorption of fat, protein, carbohydrate, and combustible energy were measured before and at 2 intervals after bypass. By using coefficients of absorption to measure absorptive function, equations were developed to calculate the daily gram and kilocalorie quantities of ingested macronutrients that were not absorbed because of malabsorption or restricted food intake. Coefficients of fat absorption were 92 ± 1.3% before bypass, 72 ± 5.5% 5 mo after bypass, and 68 ± 8.7% 14 mo after bypass. There were no statistically significant effects of RYGB on protein or carbohydrate absorption coefficients, although protein coefficients decreased substantially in some patients. Five months after bypass, malabsorption reduced absorption of combustible energy by 124 ± 57 kcal/d, whereas restriction of food intake reduced energy absorption by 2062 ± 271 kcal/d. Fourteen months after bypass, malabsorption reduced energy absorption by 172 ± 60 kcal/d compared with 1418 ± 171 kcal/d caused by restricted food intake. On average, malabsorption accounted for ≈6% and 11% of the total reduction in combustible energy absorption at 5 and 14 mo, respectively, after this gastric bypass procedure.

  7. A contribution of black and brown carbon to the aerosol light absorption

    NASA Astrophysics Data System (ADS)

    Kim, Sang-Woo; Cho, Chaeyoon; Jo, Duseong; Park, Rokjin

    2017-04-01

    Black carbon (BC) is functionally defined as the absorbing component of atmospheric total carbonaceous aerosols and is typically dominated by soot-like elemental carbon (EC). Organic carbon (OC) has also been shown to absorb strongly at visible to UV wavelengths and the absorbing organics are referred to as brown carbon (BrC; Alexander et al., 2008). These two aerosols contribute to solar radiative forcing through absorption of solar radiation and heating of the absorbing aerosol layer, but most optical instruments that quantify light absorption are unable to distinguish one type of absorbing aerosol from another (Moosmüller et al. 2009). In this study, we separate total aerosol absorption from these two different light absorbers from co-located simultaneous in-situ measurements, such as Continuous Soot Monitoring System (COSMOS), Continuous Light Absorption Photometer (CLAP) and Sunset EC/OC analyzer, at Gosan climate observatory, Korea. We determine the mass absorption cross-section (MAC) of BC, and then estimate the contribution of BC and BrC on aerosol light absorption, together with a global 3-D chemical transport model (GEOS-Chem) simulation. At 565 nm wavelength, BC MAC is found to be about 5.4±2.8 m2 g-1 from COSMOS and Sunset EC/OC analyzer measurements during January-May 2012. This value is similar to those from Alexander et al. (2008; 4.3 ˜ 4.8 m2 g-1 at 550 nm) and Chung et al. (2012; 5.1 m2 g-1 at 520 nm), but slightly lower than Bond and Bergstrom (2006; 7.5±1.2 m2 g-1 at 550 nm). The COMOS BC mass concentration calculated with 5.4 m2 g-1 of BC MAC shows a good agreement with thermal EC concentration, with a good slope (1.1). Aerosol absorption coefficient and BC mass concentration from COSMOS, meanwhile, are approximately 25 ˜ 30 % lower than those of CLAP. This difference can be attributable to the contribution of volatile light-absorbing aerosols (i.e., BrC). The absorption coefficient of BrC, which is determined by the difference of absorption coefficients from CLAP and COSMOS measurements, increases with increasing thermal OC mass concentration. Monthly variation of BC and BrC absorption coefficients estimated from in-situ measurements and GEOS-Chem model simulation are generally well agreed, even though GEOS-Chem simulation overestimates BC absorption coefficient while underestimates BrC absorption coefficient. Here, we note that MAC of 5.4 m2 g-1 and3.8 m2 g-1 (taken from Alexander et al., 2008) are used to calculate aerosol absorption coefficient of BC and BrC, respectively. The contribution of BC to aerosol light absorption is estimated to be about 70˜75%, while BrC accounts for about 25˜30% of total aerosol light absorption, having a significant climatic implication in East Asia.

  8. A Radiation Solver for the National Combustion Code

    NASA Technical Reports Server (NTRS)

    Sockol, Peter M.

    2015-01-01

    A methodology is given that converts an existing finite volume radiative transfer method that requires input of local absorption coefficients to one that can treat a mixture of combustion gases and compute the coefficients on the fly from the local mixture properties. The Full-spectrum k-distribution method is used to transform the radiative transfer equation (RTE) to an alternate wave number variable, g . The coefficients in the transformed equation are calculated at discrete temperatures and participating species mole fractions that span the values of the problem for each value of g. These results are stored in a table and interpolation is used to find the coefficients at every cell in the field. Finally, the transformed RTE is solved for each g and Gaussian quadrature is used to find the radiant heat flux throughout the field. The present implementation is in an existing cartesian/cylindrical grid radiative transfer code and the local mixture properties are given by a solution of the National Combustion Code (NCC) on the same grid. Based on this work the intention is to apply this method to an existing unstructured grid radiation code which can then be coupled directly to NCC.

  9. Third-order nonlinear optical properties of acid green 25 dye by Z-scan method

    NASA Astrophysics Data System (ADS)

    Jeyaram, S.; Geethakrishnan, T.

    2017-03-01

    Third-order nonlinear optical (NLO) properties of aqueous solutions of an anthraquinone dye (Acid green 25 dye, color index: 61570) have been studied by Z-scan method with a 5 mW continuous wave (CW) diode laser operating at 635 nm. The nonlinear refractive index (n2) and the absorption coefficient (β) have been evaluated respectively from the closed and open aperture Z-scan data and the values of these parameters are found to increase with increase in concentration of the dye solution. The negative sign of the observed nonlinear refractive index (n2) indicates that the aqueous solution of acid green 25 dye exhibits self-defocusing type optical nonlinearity. The mechanism of the observed nonlinear absorption (NLA) and nonlinear refraction (NLR) is attributed respectively to reverse saturable absorption (RSA) and thermal nonlinear effects. The magnitudes of n2 and β are found to be of the order of 10-7 cm2/W and 10-3 cm/W respectively. With these experimental results, the authors suggest that acid green 25 dye may have potential applications in nonlinear optics.

  10. Determination of UV-visible-NIR absorption coefficient of graphite bulk using direct and indirect methods

    NASA Astrophysics Data System (ADS)

    Smausz, T.; Kondász, B.; Gera, T.; Ajtai, T.; Utry, N.; Pintér, M.; Kiss-Albert, G.; Budai, J.; Bozóki, Z.; Szabó, G.; Hopp, B.

    2017-10-01

    Absorption coefficient of graphite bulk pressed from 1 to 5 μm-sized crystalline grains was measured in UV-Vis-NIR range with three different methods: (i) determination of pulsed laser ablation rate as the function of laser fluence for different wavelengths (248, 337, 532, and 1064 nm, respectively); (ii) production of aerosol particles by UV laser ablation of the bulk graphite in inert atmosphere and determination of the mass-specific absorption coefficient with a four-wavelength (266, 355, 532, and 1064 nm, respectively) photoacoustic spectrometer, and (iii) spectroscopic ellipsometry in 250-1000 nm range. Taking into account the wide range of the absorption coefficients of different carbon structures, an overall relatively good agreement was observed for the three methods. The ellipsometric results fit well with the ablation rate measurement, and the data obtained with photoacoustic method are also similar in the UV and NIR region; however, the values were somewhat higher in visible and near-UV range. Taking into account the limitations of the methods, they can be promising candidates for the determination of absorption coefficient when the samples are strongly scattering and there is no possibility to perform transmissivity measurements.

  11. Optical Properties and Aging of Light Absorbing Secondary Organic Aerosol

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Jiumeng; Lin, Peng; Laskin, Alexander

    2016-10-14

    The light-absorbing organic aerosol (OA), commonly referred to as “brown carbon (BrC)”, has attracted considerable attention in recent years because of its potential to affect atmospheric radiation balance, especially in the ultraviolet region and thus impact photochemical processes. A growing amount of data has indicated that BrC is prevalent in the atmosphere, which has motivated numerous laboratory and field studies; however, our understanding of the relationship between the chemical composition and optical properties of BrC remains limited. We conducted chamber experiments to investigate the effect of various VOC precursors, NOx concentrations, photolysis time and relative humidity (RH) on the lightmore » absorption of selected secondary organic aerosols (SOA). Light absorption of chamber generated SOA samples, especially aromatic SOA, was found to increase with NOx concentration, at moderate RH, and for the shortest photolysis aging times. The highest mass absorption coefficients (MAC) value is observed from toluene SOA products formed under high NOx conditions at moderate RH, in which nitro-aromatics were previously identified as the major light absorbing compounds. BrC light absorption is observed to decrease with photolysis time, correlated with a decline of the organonitrate fraction of SOA. SOA formed from mixtures of aromatics and isoprene absorb less visible and UV light than SOA formed from aromatic precursors alone on a mass basis. However, the mixed-SOA absorption was underestimated when optical properties were predicted using a two-product SOA formation model, as done in many current climate models. Further investigation, including analysis on detailed mechanisms, are required to explain the discrepancy.« less

  12. Excited-state properties of nucleic acid components

    NASA Astrophysics Data System (ADS)

    Salet, C.; Bensasson, R. V.; Becker, R. S.

    1981-12-01

    Measurements were made of the fluorescence and phosphorescence spectra and lifetimes, and also of the absorption spectra, lifetimes, extinction coefficients, and quantum yields of the T1 lower triplet states of thymine, uracil, their N, N'-dimethyl derivatives, thymidine, thymidine monophosphate, uridine, and uridine monophosphate in various solvents at 300 °K. The influence of the solvent on the quantum yield of the T1 state of nucleic acid components is discussed.

  13. Optical properties of human colon tissues in the 350 – 2500 nm spectral range

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bashkatov, A N; Genina, E A; Kochubey, V I

    2014-08-31

    We present the optical characteristics of the mucosa and submucosa of human colon tissue. The experiments are performed in vitro using a LAMBDA 950 spectrophotometer in the 350 – 2500 nm spectral range. The absorption and scattering coefficients and the scattering anisotropy factor are calculated based on the measured diffuse reflectance and total and collimated transmittance spectra using the inverse Monte Carlo method. (laser biophotonics)

  14. Monte Carlo analysis on probe performance for endoscopic diffuse optical spectroscopy of tubular organ

    NASA Astrophysics Data System (ADS)

    Zhang, Yunyao; Zhu, Jingping; Cui, Weiwen; Nie, Wei; Li, Jie; Xu, Zhenghong

    2015-03-01

    We investigated the performance of endoscopic diffuse optical spectroscopy probes with circular or linear fiber arrangements for tubular organ cancer detection. Probe performance was measured by penetration depth. A Monte Carlo model was employed to simulate light transport in the hollow cylinder that both emits and receives light from the inner boundary of the sample. The influence of fiber configurations and tissue optical properties on penetration depth was simulated. The results show that under the same condition, probes with circular fiber arrangement penetrate deeper than probes with linear fiber arrangement, and the difference between the two probes' penetration depth decreases with an increase in the 'distance between source and detector (SD)' and the radius of the probe. Other results show that the penetration depths and their differences both decrease with an increase in the absorption coefficient and the reduced scattering coefficient but remain constant with changes in the anisotropy factor. Moreover, the penetration depth was more affected by the absorption coefficient than the reduced scattering coefficient. It turns out that in NIR band, probes with linear fiber arrangements are more appropriate for diagnosing superficial cancers, whereas probes with circular fiber arrangements should be chosen for diagnosing adenocarcinoma. But in UV-VIS band, the two probe configurations exhibit nearly the same. These results are useful in guiding endoscopic diffuse optical spectroscopy-based diagnosis for esophageal, cervical, colorectal and other cancers.

  15. Broadband optical properties of graphene and HOPG investigated by spectroscopic Mueller matrix ellipsometry

    NASA Astrophysics Data System (ADS)

    Song, Baokun; Gu, Honggang; Zhu, Simin; Jiang, Hao; Chen, Xiuguo; Zhang, Chuanwei; Liu, Shiyuan

    2018-05-01

    Optical properties of mono-graphene fabricated by chemical vapor deposition (CVD) and highly oriented pyrolytic graphite (HOPG) are comparatively studied by Mueller matrix ellipsometry (MME) over an ultra-wide energy range of 0.73-6.42 eV. A multilayer stacking model is constructed to describe the CVD mono-graphene, in which the roughness of the glass substrate and the water adsorption on the graphene are considered. We introduce a uniaxial anisotropic dielectric model to parameterize the optical constants of both the graphene and the HOPG. With the established models, broadband optical constants of the graphene and the HOPG are determined from the Mueller matrix spectra based on a point-by-point method and a non-linear regression method, respectively. Two significant absorption peaks at 4.75 eV and 6.31 eV are observed in the extinction coefficient spectra of the mono-graphene, which can be attributed to the von-Hove singularity (i.e., the π-to-π∗ exciton transition) near the M point and the σ-to-σ∗ exciton transition near the Γ point of the Brillouin zone, respectively. Comparatively, only a major absorption peak at 4.96 eV appears in the ordinary extinction coefficient spectra of the HOPG, which is mainly formed by the π-to-π∗ interband transition.

  16. Na0.3WO3 nanorods: a multifunctional agent for in vivo dual-model imaging and photothermal therapy of cancer cells.

    PubMed

    Zhang, Yuxin; Li, Bo; Cao, Yunjiu; Qin, Jinbao; Peng, Zhiyou; Xiao, Zhiyin; Huang, Xiaojuan; Zou, Rujia; Hu, Junqing

    2015-02-14

    The combination of imaging diagnosis and photothermal ablation (PTA) therapy has become a potential treatment for cancer. In particular, tungsten bronzes have a number of unique properties such as broad near-infrared (NIR) absorption and a large X-ray attenuation coefficient. However, these materials have seldom been reported as an X-ray computed tomography (CT) contrast agent and a photothermal agent. Herein, we synthesized PEGylated Na(0.3)WO(3) nanorods (mean size ∼39 nm × 5 nm) by a simple one-pot solvothermal route. As we expected, the prepared PEGylated Na(0.3)WO(3) nanorods exhibit intense NIR absorption, derived from the outer d-electron of W(5+). These PEGylated Na(0.3)WO(3) nanorods also show an excellent CT imaging effect and a high HU value of 29.95 HU g L(-1) (much higher than the figure of iopamidol (19.35 HU g L(-1))), due to the intrinsic property of tungsten of large atomic number and X-ray attenuation coefficient. Furthermore, the temperature elevation and the in vivo photothermal experiment reveal that as-synthesized Na(0.3)WO(3) nanorods could be an effective photothermal agent, as they have low toxicity, high effectiveness and good photostability.

  17. Bottom Extreme-Ultraviolet-Sensitive Coating for Evaluation of the Absorption Coefficient of Ultrathin Film

    NASA Astrophysics Data System (ADS)

    Hijikata, Hayato; Kozawa, Takahiro; Tagawa, Seiichi; Takei, Satoshi

    2009-06-01

    A bottom extreme-ultraviolet-sensitive coating (BESC) for evaluation of the absorption coefficients of ultrathin films such as extreme ultraviolet (EUV) resists was developed. This coating consists of a polymer, crosslinker, acid generator, and acid-responsive chromic dye and is formed by a conventional spin-coating method. By heating the film after spin-coating, a crosslinking reaction is induced and the coating becomes insoluble. A typical resist solution can be spin-coated on a substrate covered with the coating film. The evaluation of the linear absorption coefficients of polymer films was demonstrated by measuring the EUV absorption of BESC substrates on which various polymers were spin-coated.

  18. Superlattice Intermediate Band Solar Cell on Gallium Arsenide

    DTIC Science & Technology

    2015-02-09

    18  APPENDIX: Methodology for Calculaton of Minband Energies and Absorption Coefficient of a Superlattice...4 Figure 3. Absorption coefficient extracted from spectroscopic ellipsometry measurements of a... coefficient of a 30 period GaAs0.98N0.02 (3nm)/ Al0.20Ga0.80As (3nm) Superlattice following the methodology developed in

  19. Multiple-scattering coefficients and absorption controlled diffusive processes

    NASA Astrophysics Data System (ADS)

    Godoy, Salvador; García-Colín, L. S.; Micenmacher, Victor

    1999-11-01

    Multiple-scattering transmission and reflection coefficients (T,R) are introduced in addition to the diffusion coefficient D for the description of ballistic diffusion in the presence of absorption. For 1D (one-dimensional) systems, the measurement of only one between T and D imposes restrictions on the possible values of the other. If D is measured, then T is bounded between the Landauer and Lambert-Beer equations. Measurements of both (T,D) imply the theoretical knowledge of the microscopic absorption Σa and scattering rΣs cross sections.

  20. Sound attenuation and absorption by micro-perforated panels backed by anisotropic fibrous materials: Theoretical and experimental study

    NASA Astrophysics Data System (ADS)

    Bravo, Teresa; Maury, Cédric

    2018-07-01

    Enhancing the attenuation or the absorption of low-frequency noise using lightweight bulk-reacting liners is still a demanding task in surface and air transport systems. The aim of this study is to understand the physical mechanisms involved in the attenuation and absorption properties of partitions made up of a thin micro-perforated panel (MPP) rigidly backed by a cavity filled with anisotropic fibrous material. Such a layout is denoted as a MPPF partition. Analytical models are formulated in the flow and no-flow cases to predict the axial damping of the least attenuated wave in a MPPF partition as well as the plane wave absorption coefficient. They account for a rigid or an elastic MPP facing a bulk-reacting fully-anisotropic material. A cost-efficient solution of the propagation constant for the least attenuated mode is obtained using a simulated annealing search method as well as a low-frequency approximation to the axial attenuation. The normal incidence absorption model is assessed in the no-flow case against pressure-velocity measurements of the surface impedance over a MPPF partition filled with fibreglass material. A parametric study is conducted to evaluate the MPP and the cavity constitutive parameters that mostly enhance the axial attenuation and sound absorption properties, with special interest on the MPP airframe relative velocity. This sensitivity study provides guidelines that could be used to further reduce the search space in parametric or impedance optimization studies.

  1. Evolution of Multispectral Aerosol Absorption Properties in a Biogenically-Influenced Urban Environment during the CARES Campaign

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gyawali, Madhu; Arnott, W.; Zaveri, Rahul

    We present the evolution of multispectral optical properties as urban aerosols aged and interacted with biogenic emissions resulting in stronger short wavelength absorption and formation of moderately brown secondary organic aerosols. Ground-based aerosol measurements were made during June 2010 within the Sacramento urban area (site T0) and at a 40-km downwind location (site T1) in the forested Sierra Nevada foothills area. Data on black carbon and non-refractory aerosol mass and composition were collected at both sites. In addition, photoacoustic (PA) instruments with integrating nephelometers were used to measure spectral absorption and scattering coefficients for wavelengths ranging from 355 to 870more » nm. The daytime absorption Ångström exponent (AAE) indicated a modest wavelength-dependent enhancement of absorption at both sites throughout the study. From the 22nd to the 28th of June, secondary organic aerosol mass increased significantly at both sites due to increased biogenic emissions coupled with intense photochemical activity and air mass recirculation in the area. During this period, the median BC mass-normalized absorption cross-section (MAC) values for 405 nm and 532 nm at T1 increased by ~23% and ~35%, respectively, compared to the relatively less aged urban emissions at the T0 site. In contrast, the average MAC values for the 870 nm wavelength were similar for both sites. These results suggest formation of moderately brown secondary organic aerosols in biogenically-influenced urban air.« less

  2. Evolution of Multispectral Aerosol Absorption Properties in a Biogenically-Influenced Urban Environment during the CARES Campaign

    DOE PAGES

    Gyawali, Madhu; Arnott, W.; Zaveri, Rahul; ...

    2017-11-13

    We present the evolution of multispectral optical properties through urban aerosols that have aged and interacted with biogenic emissions, resulting in stronger short wavelength absorption and the formation of moderately brown secondary organic aerosols. Ground-based aerosol measurements were made in June 2010 within the Sacramento urban area (site T0) and at a 40-km downwind location (site T1) in the forested Sierra Nevada foothills area. Data on black carbon (BC) and non-refractory aerosol mass and composition were collected at both sites. In addition, photoacoustic (PA) instruments with integrating nephelometers were used to measure spectral absorption and scattering coefficients for wavelengths rangingmore » from 355 to 870 nm. The daytime absorption Ångström exponent (AAE) indicated a modest wavelength-dependent enhancement of absorption at both sites throughout the study. From 22 to 28 June 2010, secondary organic aerosol mass increased significantly at both sites, which was due to increased biogenic emissions coupled with intense photochemical activity and air mass recirculation in the area. During this period, the median BC mass-normalized absorption cross-section (MAC) values for 405 nm and 532 nm at T1 increased by ~23% and ~35%, respectively, compared with the relatively less aged urban emissions at the T0 site. In contrast, the average MAC values for the 870 nm wavelength were similar for both sites. These results suggest the formation of moderately brown secondary organic aerosols in biogenically-influenced urban air.« less

  3. Evolution of Multispectral Aerosol Absorption Properties in a Biogenically-Influenced Urban Environment during the CARES Campaign

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gyawali, Madhu; Arnott, W.; Zaveri, Rahul

    We present the evolution of multispectral optical properties through urban aerosols that have aged and interacted with biogenic emissions, resulting in stronger short wavelength absorption and the formation of moderately brown secondary organic aerosols. Ground-based aerosol measurements were made in June 2010 within the Sacramento urban area (site T0) and at a 40-km downwind location (site T1) in the forested Sierra Nevada foothills area. Data on black carbon (BC) and non-refractory aerosol mass and composition were collected at both sites. In addition, photoacoustic (PA) instruments with integrating nephelometers were used to measure spectral absorption and scattering coefficients for wavelengths rangingmore » from 355 to 870 nm. The daytime absorption Ångström exponent (AAE) indicated a modest wavelength-dependent enhancement of absorption at both sites throughout the study. From 22 to 28 June 2010, secondary organic aerosol mass increased significantly at both sites, which was due to increased biogenic emissions coupled with intense photochemical activity and air mass recirculation in the area. During this period, the median BC mass-normalized absorption cross-section (MAC) values for 405 nm and 532 nm at T1 increased by ~23% and ~35%, respectively, compared with the relatively less aged urban emissions at the T0 site. In contrast, the average MAC values for the 870 nm wavelength were similar for both sites. These results suggest the formation of moderately brown secondary organic aerosols in biogenically-influenced urban air.« less

  4. Noninvasive evaluation of collagen and hemoglobin contents and scattering property of in vivo keloid scars and normal skin using diffuse reflectance spectroscopy: pilot study

    NASA Astrophysics Data System (ADS)

    Tseng, Sheng-Hao; Hsu, Chao-Kai; Yu-Yun Lee, Julia; Tzeng, Shih-Yu; Chen, Wan-Rung; Liaw, Yu-Kai

    2012-07-01

    Collagen is a rich component in skin that provides skin structure integrity; however, its contribution to the absorption and scattering properties of various types of skin has not been extensively studied. We considered the contribution of the collagen to the absorption spectrum of in vivo normal skin and keloids of 12 subjects derived from our diffuse reflectance spectroscopy (DRS) system in the wavelength range from 550 to 860 nm. It was found that the collagen concentration, the hemoglobin oxygen saturation, and the reduced scattering coefficient of keloids were remarkably different from that of normal skin. Our results suggest that our DRS system could assist clinicians in understanding the functional and structural condition of keloid scars. In the future, we will evaluate the accuracy of our system in the keloid diagnosis and investigate the applicability of our system for other skin-collagen-related studies.

  5. Terahertz spectroscopy of liver cirrhosis: investigating the origin of contrast

    NASA Astrophysics Data System (ADS)

    Sy, Stanley; Huang, Shengyang; Wang, Yi-Xiang J.; Yu, Jun; Ahuja, Anil T.; Zhang, Yuan-ting; Pickwell-MacPherson, Emma

    2010-12-01

    We have previously demonstrated that terahertz pulsed imaging is able to distinguish between rat tissues from different healthy organs. In this paper we report our measurements of healthy and cirrhotic liver tissues using terahertz reflection spectroscopy. The water content of the fresh tissue samples was also measured in order to investigate the correlations between the terahertz properties, water content, structural changes and cirrhosis. Finally, the samples were fixed in formalin to determine whether water was the sole source of image contrast in this study. We found that the cirrhotic tissue had a higher water content and absorption coefficient than the normal tissue and that even after formalin fixing there were significant differences between the normal and cirrhotic tissues' terahertz properties. Our results show that terahertz pulsed imaging can distinguish between healthy and diseased tissue due to differences in absorption originating from both water content and tissue structure.

  6. Ultraviolet absorption spectrum of the half-filled bilayer graphene

    NASA Astrophysics Data System (ADS)

    Apinyan, V.; Kopeć, T. K.

    2018-07-01

    We consider the optical properties of the half-filled AB-stacked bilayer graphene with the excitonic pairing and condensation between the layers. Both intra and interlayer local Coulomb interaction effects have been taken into account and the role of the exact Fermi energy has been discussed in details. We have calculated the absorption coefficient, refractive index, dielectric response functions and the electron energy loss spectrum for different interlayer Coulomb interaction regimes and for different temperatures. Considering the full four-band model for the interacting AB bilayer graphene, a good agreement is achieved with other theoretical and experimental works on the subject, in particular, limiting cases of the theory. The calculations, presented here, permit to estimate accurately the effects of excitonic pairing and condensation on the optical properties of the bilayer graphene. The modifications of the plasmon excitation spectrum are discussed in details for a very large interval of the interlayer interaction parameter.

  7. Polydiacetylene as an all-optical picosecond Switch

    NASA Technical Reports Server (NTRS)

    Abdeldayem, Hossin A.; Frazier, D. O.; Paley, M. S.; Whitaker, Ann F. (Technical Monitor)

    2001-01-01

    Polydiacetylene derivative of 2-methyl-4-nitroaniline (PDAMNA) shows a picosecond switching property, which illustrated a partial all-optical picosecond NAND logic gate. The switching phenomenon was demonstrated by waveguiding two collinear beams at 633 nm and 532 nm through a hollow fiber of 50 micrometers diameter, coated from inside with a thin film of PDAMNA. A Z-scan investigations of a PDAMNA thin film on quartz substrate revealed that the switching effect was attributed to an excited state absorption in the systems. The studies also showed that the polymer suffers a photo-oxidation beyond an intensity level of 2.9 x 10(exp 6) w/square cm. The photo-oxidized film has different physical properties that are different from the original film before oxidation. The life time of both excited states before and after oxidation as well as their absorption coefficients were estimated by fitting a three level system model to the experimental results.

  8. Cavity-enhanced measurements for determining dielectric-membrane thickness and complex index of refraction.

    PubMed

    Stambaugh, Corey; Durand, Mathieu; Kemiktarak, Utku; Lawall, John

    2014-08-01

    The material properties of silicon nitride (SiN) play an important role in the performance of SiN membranes used in optomechanical applications. An optimum design of a subwavelength high-contrast grating requires accurate knowledge of the membrane thickness and index of refraction, and its performance is ultimately limited by material absorption. Here we describe a cavity-enhanced method to measure the thickness and complex index of refraction of dielectric membranes with small, but nonzero, absorption coefficients. By determining Brewster's angle and an angle at which reflection is minimized by means of destructive interference, both the real part of the index of refraction and the sample thickness can be measured. A comparison of the losses in the empty cavity and the cavity containing the dielectric sample provides a measurement of the absorption.

  9. Transition-metal-substituted indium thiospinels as novel intermediate-band materials: prediction and understanding of their electronic properties.

    PubMed

    Palacios, P; Aguilera, I; Sánchez, K; Conesa, J C; Wahnón, P

    2008-07-25

    Results of density-functional calculations for indium thiospinel semiconductors substituted at octahedral sites with isolated transition metals (M=Ti,V) show an isolated partially filled narrow band containing three t2g-type states per M atom inside the usual semiconductor band gap. Thanks to this electronic structure feature, these materials will allow the absorption of photons with energy below the band gap, in addition to the normal light absorption of a semiconductor. To our knowledge, we demonstrate for the first time the formation of an isolated intermediate electronic band structure through M substitution at octahedral sites in a semiconductor, leading to an enhancement of the absorption coefficient in both infrared and visible ranges of the solar spectrum. This electronic structure feature could be applied for developing a new third-generation photovoltaic cell.

  10. Three-dimensional diffuse optical mammography with ultrasound localization in a human subject

    NASA Astrophysics Data System (ADS)

    Holboke, Monica J.; Tromberg, Bruce J.; Li, Xingde; Shah, Natasha; Fishkin, Joshua B.; Kidney, D.; Butler, J.; Chance, Britton; Yodh, Arjun G.

    2000-04-01

    We describe an approach that combines clinical ultrasound and photon migration techniques to enhance the sensitivity and information content of diffuse optical tomography. Measurements were performed on a postmenopausal woman with a single 1.8 X 0.9 cm malignant ductal carcinoma in situ approximately 7.4 mm beneath the skin surface (UCI IRB protocol 95-563). The ultrasound-derived information about tumor geometry enabled us to segment the breast tissue into tumor and background regions. Optical data was obtained with a multifrequency, multiwavelength hand-held frequency-domain photon migration backscattering probe. The optical properties of the tumor and background were then computed using the ultrasound-derived geometrical constraints. An iterative perturbative approach, using parallel processing, provided quantitative information about scattering and absorption simultaneously with the ability to incorporate and resolve complex boundary conditions and geometries. A three to four fold increase in the tumor absorption coefficient and nearly 50% reduction in scattering coefficient relative to background was observed ((lambda) equals 674, 782, 803, and 849 nm). Calculations of the mean physiological parameters reveal fourfold greater tumor total hemoglobin concentration [Hbtot] than normal breast (67 (mu) M vs 16 (mu) M) and tumor hemoglobin oxygen saturation (SOx) values of 63% (vs 73% and 68% in the region surrounding the tumor and the opposite normal tissue, respectively). Comparison of semi-infinite to heterogeneous models shows superior tumor/background contrast for the latter in both absorption and scattering. Sensitivity studies assessing the impact of tumor size and refractive index assumptions, as well as scan direction, demonstrate modest effects on recovered properties.

  11. Diffusion coefficients significant in modeling the absorption rate of carbon dioxide into aqueous blends of N-methyldiethanolamine and diethanolamine and of hydrogen sulfide into aqueous N-methyldiethanolamine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adams, M.E.; Marshall, T.L.; Rowley, R.L.

    1998-07-01

    Absorption rates of gaseous CO{sub 2} into aqueous blends of N-methyldiethanolamine (MDEA) and diethanolamine (DEA) and of gaseous H{sub 2}S into aqueous MDEA were measured in a quiescent, inverted-tube diffusiometer by monitoring the rate of pressure drop. A numerical model for absorption, diffusion, and reaction of CO{sub 2} and H{sub 2}S in blends of MDEA, DEA, and water was developed. The model was used to regress diffusion coefficients of bicarbonate, carbamate, and MDEAH{sub 2}CO{sub 3} for the case of CO{sub 2} absorption and of bisulfide ion for the case of H{sub 2}S absorption from measured absorption rates. CO{sub 2} absorptionmore » rates and diffusion coefficients of bicarbonate, carbamate, and MDEAH{sub 2}CO{sub 3} were obtained at 298.2 K and 318.2 K in aqueous solutions containing 50 mass % total amine at DEA:MDEA mole ratios of 1:20, 1:4, 1L3, and 2:3. H{sub 2}S absorption rates and diffusion coefficients of bisulfide ion were obtained at 298.2 K and 318.2 K in aqueous solutions containing 20, 35, and 50 mass % MDEA.« less

  12. Extinction and Scattering Properties of Soot Emitted from Buoyant Turbulent Diffusion Flames. Appendix F

    NASA Technical Reports Server (NTRS)

    Krishnan, S. S.; Lin, K.-C.; Faeth, G. M.; Yuan, Z.-G. (Technical Monitor); Urban, D. L. (Technical Monitor); Yuan, Z.-G. (Technical Monitor)

    2001-01-01

    Extinction and scattering properties at wavelengths of 250-5200 nm were studied for soot emitted from buoyant turbulent diffusion flames in the long residence time regime where soot properties are independent of position in the overfire region and characteristic flame residence times. Flames burning in still air and fueled with gas (acetylene, ethylene, propane, and propylene) and liquid (benzene, toluene, cyclohexane, and n-heptane) hydrocarbon fuels were considered. Measured scattering patterns and ratios of total scattering/absorption cross sections were in good agreement with predictions based on the Rayleigh-Debye-Gans (RDG) scattering approximation in the visible. Measured depolarization ratios were roughly correlated by primary particle size parameter, suggesting potential for completing RDG methodology needed to make soot scattering predictions as well as providing a nonintrusive way to measure primary soot particle diameters. Measurements of dimensionless extinction coefficients were in good agreement with earlier measurements for similar soot populations and were independent of fuel type and wavelength except for reduced values as the near ultraviolet was approached. The ratios of the scattering/absorption refractive index functions were independent of fuel type within experimental uncertainties and were in good agreement with earlier measurements. The refractive index junction for absorption was similarly independent of fuel type but was larger than earlier reflectometry measurements in the infrared. Ratios of total scattering/absorption cross sections were relatively large in the visible and near infrared, with maximum values as large as 0.9 and with values as large as 0.2 at 2000 nm, suggesting greater potential for scattering from soot particles to affect flame radiation properties than previously thought.

  13. Extinction and Scattering Properties of Soot Emitted from Buoyant Turbulent Diffusion Flames. Appendix D

    NASA Technical Reports Server (NTRS)

    Krishnan, S. S.; Lin, K.-C.; Faeth, G. M.; Urban, D. L. (Technical Monitor); Yuan, Z.-G. (Technical Monitor)

    2001-01-01

    Extinction and scattering properties at wavelengths of 250-5200 nm were studied for soot emitted from buoyant turbulent diffusion flames in the long residence time regime where soot properties are independent of position in the overfire region and characteristic flame residence times. Flames burning in still air and fueled with gas (acetylene, ethylene, propane, and propylene) and liquid (benzene, toluene, cyclohexane, and n-heptane) hydrocarbon fuels were considered Measured scattering patterns and ratios of total scattering/absorption cross sections were in good agreement with predictions based on the Rayleigh-Debye-Gans (RDG) scattering approximation in the visible. Measured depolarization ratios were roughly correlated by primary particle size parameter, suggesting potential for completing RDG methodology needed to make soot scattering predictions as well as providing a nonintrusive way to measure primary soot particle diameters. Measurements of dimensionless extinction coefficients were in good agreement with earlier measurements for similar soot populations and were independent of fuel type and wavelength except for reduced values as the near ultraviolet was approached. The ratios of the scattering/absorption refractive index functions were independent of fuel type within experimental uncertainties and were in good agreement with earlier measurements. The refractive index function for absorption was similarly independent of fuel type but was larger than earlier reflectometry measurements in the infrared. Ratios of total scattering/absorption cross sections were relatively large in the visible and near infrared, with maximum values as large as 0.9 and with values as large as 0.2 at 2000 nm, suggesting greater potential for scattering from soot particles to affect flame radiation properties than previously thought.

  14. ∼2 μm fluorescence radiative dynamics and energy transfer between Er{sup 3+} and Tm{sup 3+} ions in silicate glass

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Ming; Liu, Xueqiang; Graduate School of Chinese Academy of Sciences, Beijing 100039

    2014-03-01

    Graphical abstract: - Highlights: • A Er{sup 3+}/Tm{sup 3+} co-doped silicate glass with good thermal stability (k{sub gl} = 0.402 for STE glass) is prepared. • Efficient ∼2 μm emission is observed under 808 nm and 980 nm laser excitation. • The glass structure and spectroscopic properties are confirmed by optical absorption, IR transmission, Raman and fluorescence studies. • The content of OH groups deceases efficiently after fluorine ions are introduced. • The energy transfer coefficient from Er{sup 3+} to Tm{sup 3+} in STFE glass is 13.39 × 10{sup −40} cm{sup 6}/s. - Abstract: A Er{sup 3+}/Tm{sup 3+} co-doped silicatemore » glass with good thermal stability is prepared by melt-quenching method. An efficient emission of ∼2 μm is observed under different selective laser excitations. The optical absorption and transmission spectra, Raman spectra, and emission spectra are tested to characterize ∼2 μm emission properties of Er{sup 3+}/Tm{sup 3+} co-doped silicate glasses and a reasonable energy transfer mechanism of ∼2 μm emission between Er{sup 3+} and Tm{sup 3+} ions is proposed. Based on the optical absorption spectra, the Judd–Ofelt parameters and radiative properties were calculated. Intense ∼2 μm emission is obtained from Er{sup 3+}/Tm{sup 3+} co-doped silicate glasses due to the efficient energy transfer from Er{sup 3+} to Tm{sup 3+} ions. The energy transfer coefficient from Er{sup 3+} to Tm{sup 3+} ions can reach as high as 13.39 × 10{sup −40} cm{sup 6}/s. In addition, the population of the OH groups is decreased and the ∼2 μm emission is effectively enhanced with fluoride introduction. The emission property, together with good thermal property, indicates that Er{sup 3+}/Tm{sup 3+} co-doped silicate glass is a potential kind of laser glass for efficient ∼2 μm laser.« less

  15. Laboratory investigation on the role of tubular shaped micro resonators phononic crystal insertion on the absorption coefficient of profiled sound absorber

    NASA Astrophysics Data System (ADS)

    Yahya, I.; Kusuma, J. I.; Harjana; Kristiani, R.; Hanina, R.

    2016-02-01

    This paper emphasizes the influence of tubular shaped microresonators phononic crystal insertion on the sound absorption coefficient of profiled sound absorber. A simple cubic and two different bodies centered cubic phononic crystal lattice model were analyzed in a laboratory test procedure. The experiment was conducted by using transfer function based two microphone impedance tube method refer to ASTM E-1050-98. The results show that sound absorption coefficient increase significantly at the mid and high-frequency band (600 - 700 Hz) and (1 - 1.6 kHz) when tubular shaped microresonator phononic crystal inserted into the tested sound absorber element. The increment phenomena related to multi-resonance effect that occurs when sound waves propagate through the phononic crystal lattice model that produce multiple reflections and scattering in mid and high-frequency band which increases the sound absorption coefficient accordingly

  16. Local Probing Spinel and Perovskite Complex Magnetic Systems

    NASA Astrophysics Data System (ADS)

    Oliveira, Goncalo Nuno de Pinho

    Noise is defined as unwanted sound, when perceived in excess can cause many harmful effects such as annoyance, interference with speech, and hearing loss, hence there is a need to control noise in practical situations. Noise can be controlled actively and/or passively, here we discuss the passive noise control techniques. Passive noise control involves using energy dissipating or reflecting materials such as absorbers or barriers respectively. Damping and isolating materials are also used in eliminating structure-borne noise. These materials exhibit properties such as reflection, absorption and transmission loss when incidence is by a sound source. Thus, there is a need to characterize the acoustical properties of these materials for practical use. The theoretical background of the random incident sound absorption with reverberation room and normal incident sound absorption using impedance tube are well documented. The Transfer Matrix method for measuring transmission loss and absorption coefficient using impedance tube is very attractive since it is rather inexpensive and fast. In this research, a low-cost Impedance Tube is constructed using transfer function method to measure both absorption and transmissibility of materials. Equipment and measurement instruments available in the laboratory were used in the construction of the tube, adhering to cost-effectiveness. Care has been taken for precise construction of tube to ensure better measurement results. Further various samples varying from hard non-porous to soft porous materials were tested for absorption and sound transmission loss. Absorption values were also compared with reverberation room method with the available samples further ensuring the reliability of the newly constructed tube for future measurements.

  17. Absorption and Fluorescence Properties of Chromophoric Dissolved Organic Matter Produced by Algae.

    PubMed

    Peng, Tong; Lu, Xiao-lan; Su, Rong-guo; Zhang, Dong-mei

    2015-09-01

    Four kinds of diatom (Chaetoceros curvisetus, Phaeodactylum tricornutum, Nitzschia closterium f. minutissima and Navicula halophile) and two kinds of dinoflagellates (Prorocentrum donghaiense and Gymnodinium) were cultured under laboratory conditions. Variations of optical properties of chromophoric dissolved organic matter (CDOM) were studied with absorption and fluorescence excitation-emission matrix spectroscopy(EEM) during growth of marine microalgae in incubation experiment. Absorption spectrum revealed absorption coefficient a(355) (CDOM absorption coefficients at 355 nm) of 6 kinds of marine microalgae above increased by 64.8%, 242.3%, 535.1%, 903.2%, 836% and 196.4%, respectively. Simultaneously, the absorption spectral slope (Sg), determined between 270 and 350 nm, representing the size of molecular weight of CDOM and humic-like composition, decreased by 8.7%, 34.6%, 39.4%, 53.1%, 46.7%, and 35.7%, respectively. Applying parallel factor analysis (PARAFAC) together with EEM got four components of CDOM: C1(Ex/Em=350(260) nm/450 nm), C2 (Ex/Em=260(430) nm/525 nm), C3 (Ex/Em=325 nm/400 nm) and C4(Ex/Em=275 nm/325 nm), which were relative to three humic-like and one protein-like fluorescent components of Nitzschia closterium f. minutissima and Navicula halophile. In incubation experiment, fluorescence intensity of these four components during growth of Nitzschia closterium f. minutissima increased by, respectively, 8.68, 24.9, 7.19 and 39.8 times, and those of Navicula halophile increased by 2.64, 0.07, 4.39 and 12.4 times, respectively. Significant relationships were found between the fluorescence intensity of four components of CDOM, a(355) and Sg. All results demonstrated that both content and molecular weight of CDOM produced by diatom and dinoflagellate studied in incubation experiment increased, but these two parameters changed more obviously of the diatom than those of dinoflagellate; the proportion of humic-like components in the composition of CDOM also increased clearly with the growth of marine microalgae, but protein-like fluorescent component had only a slow growth. Furthermore, the absorption spectrum of CDOM produced by different species of algae changed obviously and the relative composition fluorescence intensity of CDOM produced by different microalgae were found to vary among different composition from EEM, which suggested CDOM produced by different microalgae make quite different contributions to CDOM in natural seawater.

  18. Absorption features of chromophoric dissolved organic matter (CDOM) and tracing implication for dissolved organic carbon (DOC) in Changjiang Estuary, China

    NASA Astrophysics Data System (ADS)

    Zhang, X. Y.; Chen, X.; Deng, H.; Du, Y.; Jin, H. Y.

    2013-07-01

    Chromophoric dissolved organic matter (CDOM) represents the light absorbing fraction of dissolved organic carbon (DOC). Studies have shown that the optical properties of CDOM can be used to infer the distribution and diffusion characteristics of DOC in the estuary and coastal zone. The inversion of DOC concentrations from remote sensing has been implemented in certain regions. In this study we investigate the potential of tracing DOC from CDOM by the measurement of DOC, absorption spectrum of CDOM, Chla concentration, suspended sediment (SS), and salinity from cruises in different seasons around the Changjiang estuary. Our results show that around the Changjiang estuary the absorption coefficients of CDOM in general have the similar spatial and temporal characteristics as that of DOC, but the strength of the correlation between CDOM and DOC varies locally and seasonally. The input of pollutants from outside the estuary, the bloom of phytoplankton in spring, re-suspension of deposited sediment, and light bleaching all contribute to the local and seasonal variation of the correlation between DOC and CDOM. An inversion model for the determination of DOC from CDOM is established, but the stability of model parameters and its application in different environments need further study. We find that relative to the absorption coefficient of CDOM, the fitted parameters of the absorption spectrum of DOM are better indictors for the composition of DOC. In addition, it is found that the terrestrial input of DOC to Changjiang estuary is a typical two-stage dilution process instead of a linear diffusion process.

  19. Collision and radiative processes in emission of atmospheric carbon dioxide

    NASA Astrophysics Data System (ADS)

    Smirnov, B. M.

    2018-05-01

    The peculiarities of the spectroscopic properties of CO2 molecules in air due to vibration-rotation radiative transitions are analyzed. The absorption coefficient due to atmospheric carbon dioxide and other atmospheric components is constructed within the framework of the standard atmosphere model, on the basis of classical molecular spectroscopy and the regular model for the spectroscopy absorption band. The radiative flux from the atmosphere toward the Earth is represented as that of a blackbody, and the radiative temperature for emission at a given frequency is determined with accounting for the local thermodynamic equilibrium, a small gradient of the tropospheric temperature and a high optical thickness of the troposphere for infrared radiation. The absorption band model with an absorption coefficient averaged over the frequency and line-by-line model are used for evaluating the radiative flux from the atmosphere to the Earth which values are nearby for these models and are equal W m‑2 for the contemporary concentration of atmospheric CO2 molecules and W m‑2 at its doubled value. The absorption band model is not suitable to calculate the radiative flux change at doubling of carbon dioxide concentration because averaging over oscillations decreases the range where the atmospheric optical thickness is of the order of one, and just this range determines this change. The line-by-line method gives the change of the global temperature K as a result of doubling the carbon dioxide concentration. The contribution to the global temperature change due to anthropogenic injection of carbon dioxide in the atmosphere, i.e. resulted from combustion of fossil fuels, is approximately 0.02 K now.

  20. Absorption of ethanol, acetone, benzene and 1,2-dichloroethane through human skin in vitro: a test of diffusion model predictions.

    PubMed

    Gajjar, Rachna M; Kasting, Gerald B

    2014-11-15

    The overall goal of this research was to further develop and improve an existing skin diffusion model by experimentally confirming the predicted absorption rates of topically-applied volatile organic compounds (VOCs) based on their physicochemical properties, the skin surface temperature, and the wind velocity. In vitro human skin permeation of two hydrophilic solvents (acetone and ethanol) and two lipophilic solvents (benzene and 1,2-dichloroethane) was studied in Franz cells placed in a fume hood. Four doses of each (14)C-radiolabed compound were tested - 5, 10, 20, and 40μLcm(-2), corresponding to specific doses ranging in mass from 5.0 to 63mgcm(-2). The maximum percentage of radiolabel absorbed into the receptor solutions for all test conditions was 0.3%. Although the absolute absorption of each solvent increased with dose, percentage absorption decreased. This decrease was consistent with the concept of a stratum corneum deposition region, which traps small amounts of solvent in the upper skin layers, decreasing the evaporation rate. The diffusion model satisfactorily described the cumulative absorption of ethanol; however, values for the other VOCs were underpredicted in a manner related to their ability to disrupt or solubilize skin lipids. In order to more closely describe the permeation data, significant increases in the stratum corneum/water partition coefficients, Ksc, and modest changes to the diffusion coefficients, Dsc, were required. The analysis provided strong evidence for both skin swelling and barrier disruption by VOCs, even by the minute amounts absorbed under these in vitro test conditions. Copyright © 2014 Elsevier Inc. All rights reserved.

Top