Sample records for properties high quality

  1. Late-maturing cooking rice Sensyuraku has excellent properties, equivalent to sake rice, for high-quality sake brewing.

    PubMed

    Anzawa, Yoshihiko; Satoh, Kenji; Satoh, Yuko; Ohno, Satomi; Watanabe, Tsutomu; Katsumata, Kazuaki; Kume, Kazunori; Watanabe, Ken-Ichi; Mizunuma, Masaki; Hirata, Dai

    2014-01-01

    Low protein content and sufficient grain rigidity are desired properties for the rice used in high-quality sake brewing such as Daiginjo-shu (polishing ratio of the rice, less than 50%). Two kinds of rice, sake rice (SR) and cooking rice (CR), have been used for sake brewing. Compared with those of SR, analyses of CR for high-quality sake brewing using highly polished rice have been limited. Here we described the original screening of late-maturing CR Sensyuraku (SEN) as rice with low protein content and characterization of its properties for high-quality sake brewing. The protein content of SEN was lower than those of SR Gohyakumangoku (GOM) and CR Yukinosei (YUK), and its grain rigidity was higher than that of GOM. The excellent properties of SEN with respect to both water-adsorption and enzyme digestibility were confirmed using a Rapid Visco Analyzer (RVA). Further, we confirmed a clear taste of sake produced from SEN by sensory evaluation. Thus, SEN has excellent properties, equivalent to those of SR, for high-quality sake brewing.

  2. Relationships of cotton fiber properties to ring-spun yarn quality on selected High Plains cottons

    USDA-ARS?s Scientific Manuscript database

    The objective of this research was to evaluate the adequacy of High Volume Instruement (HVI) and Advanced Fiber Information System (AFIS) fiber quality parameters for predicting quality parameters of ring-spun yarns considering differences in harvest method. Fiber properties measured using the HVI (...

  3. 36 CFR 910.31 - High architectural quality.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 36 Parks, Forests, and Public Property 3 2014-07-01 2014-07-01 false High architectural quality... PENNSYLVANIA AVENUE DEVELOPMENT AREA Standards Uniformly Applicable to the Development Area § 910.31 High architectural quality. Development must maintain a uniformly high standard of architecture, representative of...

  4. 36 CFR 910.31 - High architectural quality.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 36 Parks, Forests, and Public Property 3 2012-07-01 2012-07-01 false High architectural quality... PENNSYLVANIA AVENUE DEVELOPMENT AREA Standards Uniformly Applicable to the Development Area § 910.31 High architectural quality. Development must maintain a uniformly high standard of architecture, representative of...

  5. 36 CFR § 910.31 - High architectural quality.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 36 Parks, Forests, and Public Property 3 2013-07-01 2012-07-01 true High architectural quality. Â... PENNSYLVANIA AVENUE DEVELOPMENT AREA Standards Uniformly Applicable to the Development Area § 910.31 High architectural quality. Development must maintain a uniformly high standard of architecture, representative of...

  6. Coherent Beam Combining of Fiber Amplifiers via LOCSET (Postprint)

    DTIC Science & Technology

    2012-07-10

    load on final optics , and atmospheric turbulence compensation [20]. More importantly, tiled array systems are being investigated for extension to...compactness, near diffraction limited beam quality, superior thermal- optical properties, and high optical to optical conversion efficiencies. Despite...including: compactness, near diffraction limited beam quality, superior thermal- optical properties, and high optical to optical conversion efficiencies

  7. High-molecular-weight glutenin subunit-deficient mutants induced by ion beam and the effects of Glu-1 loci deletion on wheat quality properties.

    PubMed

    Zhang, Lujun; Chen, Qiufang; Su, Mingjie; Yan, Biao; Zhang, Xiangqi; Jiao, Zhen

    2016-03-15

    High-molecular-weight glutenin subunits (HMW-GSs) play a critical role in determining the viscoelastic properties of wheat. Mutations induced by ion beam radiation have been applied to improve the yield and quality of crop. In this study, HMW-GS-deficient mutant lines were selected and the effects of Glu-1 loci deletion on wheat quality properties were illustrated according to the analysis of dry seeds of common wheat (Triticum aestivum L.) Xiaoyan 81 treated with a nitrogen ion beam. Three HMW-GS-deficient mutant lines were obtained and then detected by sodium dodecyl sulfate polyacrylamide gel electrophoresis. Large-chromosome-fragment deletion resulted in specific deficiencies, and the deleted region sizes were determined using molecular markers. Agronomic characters, quantity and proportion of glutenins and dough microstructure of the deletion lines all proved to be quite different from those of wild-type Xiaoyan 81. Analysis of quality properties suggested that GluA1(-) had superior property parameters, while GluB1(-) and GluD1(-) both showed a significant decrease in quality properties compared with Xiaoyan 81. The effects of the three Glu-1 loci on flour and dough quality-related parameters should be Glu-D1 > Glu-B1 > Glu-A1. Ion beam radiation can be used as a mutagen to create new crop mutants. © 2015 Society of Chemical Industry.

  8. Fractionation and reconstitution experiments provide insight into the role of starch gelatinization and pasting properties in pasta quality.

    PubMed

    Delcour, J A; Vansteelandt, J; Hythier, M; Abécassis, J

    2000-09-01

    Commercial durum wheat semolina was fractionated into protein, starch, water-extractable, and sludge fractions. The starch fraction was hydroxypropylated, annealed, or cross-linked to change its gelatinization and pasting properties. Spaghettis were made by reconstitution of the fractions, and their quality was assessed. Hydroxypropylated starches were detrimental for cooked pasta quality. Cross-linked starches made the reconstituted pasta firmer and even brittle when the degree of cross-linking was too high. These results indicate that starch properties play a role in pasta quality, although the gluten remains very important as an ultrastructure agent. It was concluded that, given a certain gluten ultrastructure, starch water uptake and gel properties and/or its interference with or breakdown of the continuous gluten network during cooking determine pasta quality.

  9. Effect of different fibers on dough properties and biscuit quality.

    PubMed

    Blanco Canalis, María S; Steffolani, María E; León, Alberto E; Ribotta, Pablo D

    2017-03-01

    This study forms part of a broader project aimed at understanding the role of fibers from different sources in high-fat, high-sugar biscuits and at selecting the best fibers for biscuit quality. The main purpose of this work was to understand the rheological and structural properties involved in fiber-enriched biscuit dough. High-amylose corn starch (RSII), chemically modified starch (RSIV), oat fiber (OF) and inulin (IN) were used at two different levels of incorporation (6 and 12 g) in dough formulation. The influence of fiber on the properties of biscuit dough was studied via dynamic rheological tests, confocal microscopy and spreading behavior. Biscuit quality was assessed by width/thickness factor, texture and surface characteristics, total dietary fiber and sensory evaluation. Main results indicated that IN incorporation increased the capacity of dough spreading during baking and thus improved biscuit quality. OF reduced dough spreading during baking and strongly increased its resistance to deformation. RSII and RSIV slightly affected the quality of the biscuits. Sensory evaluation revealed that the panel liked IN-incorporated biscuits as much as control biscuits. The increase in total dietary fiber modified dough behavior and biscuit properties, and the extent of these effects depended on the type of fiber incorporated. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  10. Investigation of Mechanism of Action of Modifying Admixtures Based on Products of Petrochemical Synthesis on Concrete Structure

    NASA Astrophysics Data System (ADS)

    Tukhareli, V. D.; Tukhareli, A. V.; Cherednichenko, T. F.

    2017-11-01

    The creation of composite materials for generating structural elements with the desired properties has always been and still remains relevant. The basis of a modern concrete technology is the creation of a high-quality artificial stone characterized by low defectiveness and structure stability. Improving the quality of concrete compositions can be achieved by using chemical admixtures from local raw materials which is a very promising task of modern materials’ science for creation of a new generation of concretes. The new generation concretes are high-tech, high-quality, multicomponent concrete mixes and compositions with admixtures that preserve the required properties in service under all operating conditions. The growing complexity of concrete caused by systemic effects that allow you to control the structure formation at all stages of the technology ensures the obtaining of composites with "directional" quality, compositions, structure and properties. The possibility to use the organic fraction of oil refining as a multifunctional hydrophobic-plasticizing admixture in the effective cement concrete is examined.

  11. Farm-scale variation of soil quality indices and association with edaphic properties

    USDA-ARS?s Scientific Manuscript database

    Soil organisms are indicators of dynamic soil quality because their community structure and population density are sensitive to management changes. However, edaphic properties can also affect soil organisms and high spatial variability can confound their utility for soil evaluation. In the present...

  12. Exploring network operations for data and information networks

    NASA Astrophysics Data System (ADS)

    Yao, Bing; Su, Jing; Ma, Fei; Wang, Xiaomin; Zhao, Xiyang; Yao, Ming

    2017-01-01

    Barabási and Albert, in 1999, formulated scale-free models based on some real networks: World-Wide Web, Internet, metabolic and protein networks, language or sexual networks. Scale-free networks not only appear around us, but also have high qualities in the world. As known, high quality information networks can transfer feasibly and efficiently data, clearly, their topological structures are very important for data safety. We build up network operations for constructing large scale of dynamic networks from smaller scale of network models having good property and high quality. We focus on the simplest operators to formulate complex operations, and are interesting on the closeness of operations to desired network properties.

  13. High-frequency and high-quality silicon carbide optomechanical microresonators

    PubMed Central

    Lu, Xiyuan; Lee, Jonathan Y.; Lin, Qiang

    2015-01-01

    Silicon carbide (SiC) exhibits excellent material properties attractive for broad applications. We demonstrate the first SiC optomechanical microresonators that integrate high mechanical frequency, high mechanical quality, and high optical quality into a single device. The radial-breathing mechanical mode has a mechanical frequency up to 1.69 GHz with a mechanical Q around 5500 in atmosphere, which corresponds to a fm · Qm product as high as 9.47 × 1012 Hz. The strong optomechanical coupling allows us to efficiently excite and probe the coherent mechanical oscillation by optical waves. The demonstrated devices, in combination with the superior thermal property, chemical inertness, and defect characteristics of SiC, show great potential for applications in metrology, sensing, and quantum photonics, particularly in harsh environments that are challenging for other device platforms. PMID:26585637

  14. Effect of Zn and Te beam intensity upon the film quality of ZnTe layers on severely lattice mismatched sapphire substrates by molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Nakasu, Taizo; Sun, W.; Kobayashi, M.; Asahi, T.

    2017-06-01

    Zinc telluride layers were grown on highly-lattice-mismatched sapphire substrates by molecular beam epitaxy, and their crystallographic properties were studied by means of X-ray diffraction pole figures. The crystal quality of the ZnTe thin film was further studied by scanning electron microscopy, X-ray rocking curves and low-temperature photoluminescence measurements. These methods show that high-crystallinity (111)-oriented single domain ZnTe layers with the flat surface and good optical properties are realized when the beam intensity ratio of Zn and Te beams is adjusted. The migration of Zn and Te was inhibited by excess surface material and cracks were appeared. In particular, excess Te inhibited the formation of a high-crystallinity ZnTe film. The optical properties of the ZnTe layer revealed that the exciton-related features were dominant, and therefore the film quality was reasonably high even though the lattice constants and the crystal structures were severely mismatched.

  15. The Papers Printing Quality Complex Assessment Algorithm Development Taking into Account the Composition and Production Technological Features

    NASA Astrophysics Data System (ADS)

    Babakhanova, Kh A.; Varepo, L. G.; Nagornova, I. V.; Babluyk, E. B.; Kondratov, A. P.

    2018-04-01

    Paper is one of the printing system key components causing the high-quality printed products output. Providing the printing companies with the specified printing properties paper, while simultaneously increasing the paper products range and volume by means of the forecasting methods application and evaluation during the production process, is certainly a relevant problem. The paper presents the printing quality control algorithm taking into consideration the paper printing properties quality assessment depending on the manufacture technological features and composition variation. The information system including raw material and paper properties data and making possible pulp and paper enterprises to select paper composition optimal formulation is proposed taking into account the printing process procedure peculiarities of the paper manufacturing with specified printing properties.

  16. Structural and electrical properties of large area epitaxial VO2 films grown by electron beam evaporation

    NASA Astrophysics Data System (ADS)

    Théry, V.; Boulle, A.; Crunteanu, A.; Orlianges, J. C.; Beaumont, A.; Mayet, R.; Mennai, A.; Cosset, F.; Bessaudou, A.; Fabert, M.

    2017-02-01

    Large area (up to 4 squared inches) epitaxial VO2 films, with a uniform thickness and exhibiting an abrupt metal-insulator transition with a resistivity ratio as high as 2.85 × 10 4 , have been grown on (001)-oriented sapphire substrates by electron beam evaporation. The lattice distortions (mosaicity) and the level of strain in the films have been assessed by X-ray diffraction. It is demonstrated that the films grow in a domain-matching mode where the distortions are confined close to the interface which allows growth of high-quality materials despite the high film-substrate lattice mismatch. It is further shown that a post-deposition high-temperature oxygen annealing step is crucial to ensure the correct film stoichiometry and provide the best structural and electrical properties. Alternatively, it is possible to obtain high quality films with a RF discharge during deposition, which hence do not require the additional annealing step. Such films exhibit similar electrical properties and only slightly degraded structural properties.

  17. Quality properties of fruits as affected by drying operation.

    PubMed

    Omolola, Adewale O; Jideani, Afam I O; Kapila, Patrick F

    2017-01-02

    The increasing consumption of dried fruits requires further attention on the quality parameters. Drying has become necessary because most fruits are highly perishable owing to their high moisture content and the need to make them available all year round and at locations where they are not produced. In addition to preservation, the reduced weight and bulk of dehydrated products decreases packaging, handling and transportation costs. Quality changes associated with drying of fruit products include physical, sensory, nutritional, and microbiological. Drying gives rise to low or moderate glycemic index (GI) products with high calorie, vitamin and mineral contents. This review examines the nutritional benefits of dried fruits, protective compounds present in dried fruits, GI, overview of some fruit drying methods and effects of drying operations on the quality properties such as shrinkage, porosity, texture, color, rehydration, effective moisture diffusivity, nutritional, sensory, microbiological and shelf stability of fruits.

  18. Gluten-Free Precooked Rice-Yellow Pea Pasta: Effect of Extrusion-Cooking Conditions on Phenolic Acids Composition, Selected Properties and Microstructure.

    PubMed

    Bouasla, Abdallah; Wójtowicz, Agnieszka; Zidoune, Mohammed Nasereddine; Olech, Marta; Nowak, Renata; Mitrus, Marcin; Oniszczuk, Anna

    2016-05-01

    Rice/yellow pea flour blend (2/1 ratio) was used to produce gluten-free precooked pasta using a single-screw modified extrusion-cooker TS-45. The effect of moisture content (28%, 30%, and 32%) and screw speed (60, 80, and 100 rpm) on some quality parameters was assessed. The phenolic acids profile and selected pasta properties were tested, like pasting properties, water absorption capacity, cooking loss, texture characteristics, microstructure, and sensory overall acceptability. Results indicated that dough moisture content influenced all tested quality parameters of precooked pasta except firmness. Screw speed showed an effect only on some quality parameters. The extrusion-cooking process at 30% of dough moisture with 80 rpm is appropriate to obtain rice-yellow pea precooked pasta with high content of phenolics and adequate quality. These pasta products exhibited firm texture, low stickiness, and regular and compact interne structure confirmed by high score in sensory overall acceptability. © 2016 Institute of Food Technologists®

  19. Genetic variation for agronomic and fiber quality traits in a population derived from high-quality cotton germplasm

    USDA-ARS?s Scientific Manuscript database

    Genetic improvement of fiber quality is necessary to meet the requirements of processors and users of cotton fiber. To foster genetic improvement of cotton fiber quality, adequate genetic variation for the quantitatively inherited physical properties of cotton is required. Additionally, knowledge of...

  20. Control of sinter quality for blast furnaces of SAIL through characterization of high temperature properties

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mishra, U.N.; Thakur, B.; Mediratta, S.R.

    1996-12-31

    Quality of blast furnace (BF) burden materials and their performance inside the furnace have attracted increased importance worldwide. High productivity, low fuel rate and stable operation of BF can be achieved by suitably controlling the quality of input materials particularly that of sinter which is the main constituent of the burden. Reduction Degradation Index (RDI), Reducibility Index (RI) and Softening-melting characteristics are some of the quality indicators of sinter. The effect of chemical composition of sinter in the ranges of CaO/SiO{sub 2} 1.4--2.0, FeO 4.0--8.0, Al{sub 2}O{sub 3} 1.3--2.0 and MgO 1.2--2.0 on the above mentioned properties have been reportedmore » in literature. Due to the peculiarity of Indian raw materials, i.e., high ash content of coke and high Al{sub 2}O{sub 3} content of iron ore, the sinter composition varies over a wide range of CaO/SiO{sub 2} 2.0--2.5, FeO 8--11%, Al{sub 2}O{sub 3} 2--4% and MgO 2--5% in different plants of SAIL. This paper discusses the effect of above constituents in higher ranges as compared to earlier study on RDI, RI and Softening-melting properties so that sinter composition can be optimized for achieving desirable properties for better BF performance.« less

  1. Determining the market value of high-rise residential buildings based on evaluation of consumer properties

    NASA Astrophysics Data System (ADS)

    Kolobova, Svetlana

    2018-03-01

    As you know, high-rise construction is an indicator of the practical implementation of advanced innovative technologies in the construction industry of the country. High-rise building inevitably comes to the big cities, in connection with the shortage and value of land. The life cycle of any construction project, including high-rise buildings consists of chains: of engineering survey - design-construction-operation. In the process of operation of a tall building, decisions about major repairs or reconstruction of a building are made for decision-making on further use. This article describes methods of assessing the consumer quality of high-rise residential buildings and the establishment of prices based on consumer characteristics of a tall residential building. It is proposed to assess the premises under their quality characteristics. The study was conducted to establish the influence of individual, comprehensive and integral indicators of comparable quality for effective quality living spaces. Simultaneously, there was established a relationship of quality with the consumer cost of housing, ultimately with the potential needs of owners, tenants of the home, lessor dwelling, or buyers of residential properties and other participants in the residential real estate market. This relationship further creates consumer requirements to quality standard of premises at a certain stage of socio-economic development.

  2. The effect of lake water quality and wind turbines on Rhode Island property sales price

    NASA Astrophysics Data System (ADS)

    Gorelick, Susan Shim

    This dissertation uses the hedonic pricing model to study the impact of lake water quality and wind turbines on Rhode Island house sales prices. The first two manuscripts are on lake water quality and use RI house sales transactions from 1988--2012. The third studies wind turbines using RI house sales transactions from 2000--2013. The first study shows that good lake water quality increases lakefront property price premium. It also shows that environmental amenities, such as forests, substitute for lake amenity as the property's distance from the lake increases. The second lake water quality study incorporates time variables to examine how environmental amenity values change over time. The results show that property price premium associated with good lake water quality does not change as it is constant in proportion to housing prices with short term economic fluctuations. The third study shows that wind turbines have a negative and significant impact on housing prices. However, this is highly location specific and varies with neighborhood demographics. All three studies have policy implications which are discussed in detail in the manuscripts below.

  3. Relationship of Rice Grain Amylose, Gelatinization Temperature and Pasting Properties for Breeding Better Eating and Cooking Quality of Rice Varieties

    PubMed Central

    Wang, Xiaoqian; Franje, Neil Johann; Revilleza, Jastin Edrian; Xu, Jianlong; Li, Zhikang

    2016-01-01

    A total of 787 non-waxy rice lines– 116 hybrids and 671 inbreds–were used to study the apparent amylose content (AAC), gelatinization temperature (GT), and rapid visco analyzer (RVA) pasting viscosity properties of rice starch to understand their importance in breeding better rice varieties. The investigated traits showed a wide range of diversity for both hybrid (HG) and inbred (IG) groups. The combinations of the different categories of AAC and GT were random in HG but were non-random in IG. For inbred lines, the high level of AAC tended to combine with the low level of GT, the intermediate level of AAC tended to have high or intermediate GT, and the low level of AAC tended to have high or low GT. Some stable correlations of the AAC, GT, and RVA properties may be the results derived from the physicochemical relationships among these traits, which rice breeders could utilize for selection in advanced breeding generations. Through cluster analysis, IG and HG were divided into 52 and 31 sub-clusters, respectively. Identifying the cultivars having AAC, GT, and RVA properties similar to that of popular high-quality rice varieties seems to be an interesting strategy and could be directly used for adaptation trials to breed high-quality rice varieties in targeted areas in a more customized manner. PMID:27992591

  4. Measurement properties of disease-specific questionnaires in patients with neck pain: a systematic review.

    PubMed

    Schellingerhout, Jasper M; Verhagen, Arianne P; Heymans, Martijn W; Koes, Bart W; de Vet, Henrica C; Terwee, Caroline B

    2012-05-01

    To critically appraise and compare the measurement properties of the original versions of neck-specific questionnaires. Bibliographic databases were searched for articles concerning the development or evaluation of the measurement properties of an original version of a self-reported questionnaire, evaluating pain and/or disability, which was specifically developed or adapted for patients with neck pain. The methodological quality of the selected studies and the results of the measurement properties were critically appraised and rated using a checklist, specifically designed for evaluating studies on measurement properties. The search strategy resulted in a total of 3,641 unique hits, of which 25 articles, evaluating 8 different questionnaires, were included in our study. The Neck Disability Index is the most frequently evaluated questionnaire and shows positive results for internal consistency, content validity, structural validity, hypothesis testing, and responsiveness, but a negative result for reliability. The other questionnaires show positive results, but the evidence for each measurement property is mostly limited, and at least 50% of the information on measurement properties per questionnaire is lacking. Our findings imply that studies of high methodological quality are needed to properly assess the measurement properties of the currently available questionnaires. Until high quality studies are available, we recommend using these questionnaires with caution. There is no need for the development of new neck-specific questionnaires until the current questionnaires have been adequately assessed.

  5. High-quality unsaturated zone hydraulic property data for hydrologic applications

    USGS Publications Warehouse

    Perkins, Kimberlie; Nimmo, John R.

    2009-01-01

    In hydrologic studies, especially those using dynamic unsaturated zone moisture modeling, calculations based on property transfer models informed by hydraulic property databases are often used in lieu of measured data from the site of interest. Reliance on database-informed predicted values has become increasingly common with the use of neural networks. High-quality data are needed for databases used in this way and for theoretical and property transfer model development and testing. Hydraulic properties predicted on the basis of existing databases may be adequate in some applications but not others. An obvious problem occurs when the available database has few or no data for samples that are closely related to the medium of interest. The data set presented in this paper includes saturated and unsaturated hydraulic conductivity, water retention, particle-size distributions, and bulk properties. All samples are minimally disturbed, all measurements were performed using the same state of the art techniques and the environments represented are diverse.

  6. Geographic disparities in Healthy Eating Index scores (HEI-2005 and 2010) by residential property values: Findings from Seattle Obesity Study (SOS).

    PubMed

    Drewnowski, Adam; Aggarwal, Anju; Cook, Andrea; Stewart, Orion; Moudon, Anne Vernez

    2016-02-01

    Higher socioeconomic status (SES) has been linked with higher-quality diets. New GIS methods allow for geographic mapping of diet quality at a very granular level. To examine the geographic distribution of two measures of diet quality: Healthy Eating Index (HEI 2005 and HEI 2010) in relation to residential property values in Seattle-King County. The Seattle Obesity Study (SOS) collected data from a population-based sample of King County adults in 2008-09. Socio-demographic data were obtained by 20-min telephone survey. Dietary data were obtained from food frequency questionnaires (FFQs). Home addresses were geocoded to the tax parcel and residential property values were obtained from the King County tax assessor. Multivariable regression analyses using 1116 adults tested associations between SES variables and diet quality measured (HEI scores). Residential property values, education, and incomes were associated with higher HEI scores in bivariate analyses. Property values were not collinear with either education or income. In adjusted multivariable models, education and residential property were better associated with HEI, compared to than income. Mapping of HEI-2005 and HEI-2010 at the census block level illustrated the geographic distribution of diet quality across Seattle-King County. The use of residential property values, an objective measure of SES, allowed for the first visual exploration of diet quality at high spatial resolution: the census block level. Copyright © 2015 Elsevier Inc. All rights reserved.

  7. Geographic disparities in Healthy Eating Index scores (HEI-2005 and 2010) by residential property values: Findings from Seattle Obesity Study (SOS)

    PubMed Central

    Drewnowski, Adam; Aggarwal, Anju; Cook, Andrea; Stewart, Orion; Vernez Moudon, Anne

    2016-01-01

    Background Higher socioeconomic status (SES) has been linked with higher-quality diets. New GIS methods allow for geographic mapping of diet quality at a very granular level. Objective To examine the geographic distribution of two measures of diet quality: Healthy Eating Index (HEI 2005 and HEI 2010) in relation to residential property values in Seattle-King County. Methods The Seattle Obesity Study (SOS) collected data from a population-based sample of King County adults in 2008–09. Socio-demographic data were obtained by 20-min telephone survey. Dietary data were obtained from food frequency questionnaires (FFQs). Home addresses were geocoded to the tax parcel and residential property values were obtained from the King County tax assessor. Multivariable regression analyses using 1,116 adults tested associations between SES variables and diet quality measured (HEI scores). Results Residential property values, education, and incomes were associated with higher HEI scores in bivariate analyses. Property values were not collinear with either education or income. In adjusted multivariable models, education and residential property were better associated with HEI, compared to than income. Mapping of HEI-2005 and HEI-2010 at the census block level illustrated the geographic distribution of diet quality across Seattle-King County. Conclusion The use of residential property values, an objective measure of SES, allowed for the first visual exploration of diet quality at high spatial resolution: the census block level. PMID:26657348

  8. Vapor Phase Growth of High-Quality Bi-Te Compounds Using Elemental Bi and Te Sources: A Comparison Between High Vacuum and Atmospheric Pressure

    NASA Astrophysics Data System (ADS)

    Concepción, O.; Escobosa, A.; de Melo, O.

    2018-03-01

    Bismuth telluride (Bi2Te3), traditionally used in the industry as thermoelectric material, has deserved much attention recently due to its properties as a topological insulator, a kind of material that might have relevant applications in spintronics or quantum computing, among other innovative uses. The preparation of high-quality material has become a very important technological task. Here, we compare the preparation of Bi2Te3 by physical vapor transport from the evaporation of elemental Bi and Te sources, under either low pressure or atmospheric pressure. The layers were characterized by different techniques to evaluate its structural properties. As a result, it is concluded that, as a consequence of the different transport regimes, films grown at atmospheric pressure present better crystal quality.

  9. Lakefront Property Owners' Willingness to Accept Easements for Conservation of Water Quality and Habitat

    NASA Astrophysics Data System (ADS)

    Nohner, Joel K.; Lupi, Frank; Taylor, William W.

    2018-03-01

    Lakes provide valuable ecosystem services such as food, drinking water, and recreation, but shoreline development can degrade riparian habitats and lake ecosystems. Easement contracts for specific property rights can encourage conservation practices for enhanced water quality, fish habitat, and wildlife habitat, yet little is known about the easement market. We surveyed inland lake shoreline property owners in Michigan to assess supply of two conservation easements (in riparian and in littoral zones) and identified property and property owner characteristics influencing potential enrollment. Respondents were significantly less likely to enroll in littoral easements if they indicated there was social pressure for manicured lawns and more likely to enroll if they had more formal education, shoreline frontage, naturally occurring riparian plants, ecological knowledge, or if the lake shoreline was more developed. Enrollment in easements in the riparian zone was significantly less likely if property owners indicated social pressure for manicured lawns, but more likely if they had more formal education, naturally occurring riparian plants, or shoreline frontage. When payments were low (<1,000 yr-1), marginal gains in enrollment were relatively high. Some respondents may enroll in littoral (29.8% ± 2.2; mean ± SE) and riparian (24.4% ± 2.1) easements even without payment. Estimated mean willingness to accept values were 1,365 yr-1 (littoral) and $7,298 yr-1 (riparian). Targeting high-probability property owners with large shoreline frontages, more formal education, and high riparian plant coverages and conducting education to increase ecological knowledge and change social norms could increase conservation outcomes for water quality and habitat.

  10. Scenedesmus incrassatulus CLHE-Si01: a potential source of renewable lipid for high quality biodiesel production.

    PubMed

    Arias-Peñaranda, Martha T; Cristiani-Urbina, Eliseo; Montes-Horcasitas, Carmen; Esparza-García, Fernando; Torzillo, Giuseppe; Cañizares-Villanueva, Rosa Olivia

    2013-07-01

    The potential of microalgal oil from Scenedesmus incrassatulus as a feedstock for biodiesel production was studied. Cell concentration of S. incrassatulus and lipid content obtained during mixotrophic growth were 1.8 g/L and 19.5 ± 1.5% dry cell weight, respectively. The major components of biodiesel obtained from S. incrassatulus oil were methyl palmitate (26%) and methyl linoleate (49%), which provided a strong indication of high quality biodiesel. Fuel properties were determined by empirical equations and found to be within the limits of biodiesel standard ASTM D6751 and EN 14214. The quality properties of the biodiesel were high cetane number (62), low density (803 kg/m(3)), low viscosity (3.78 mm(2)/s), oxidation stability (9h) and cold filter plugging point (-4°C). Hence, S. incrassatulus has potential as a feedstock for the production of excellent quality biodiesel. Copyright © 2013 Elsevier Ltd. All rights reserved.

  11. Criteria for High Quality Biology Teaching: An Analysis

    ERIC Educational Resources Information Center

    Tasci, Guntay

    2015-01-01

    This study aims to analyze the process under which biology lessons are taught in terms of teaching quality criteria (TQC). Teaching quality is defined as the properties of efficient teaching and is considered to be the criteria used to measure teaching quality both in general and specific to a field. The data were collected through classroom…

  12. The response of hardwood flakes and flakeboard to high temperature drying

    Treesearch

    Walter L. Plagemann; Eddie W. Price; William E. Johns

    1982-01-01

    This study assesses the effect of high temperature drying on chemical and mechanical properties of flakes and correlates changes in flake quality with board properties. The high temperature drying of flakes was found to have a significant effect on the internal bond (IB) of the resulting panels. The highest IB values were observed in boards produced from flakes dried...

  13. Interface engineering in epitaxial growth of layered oxides via a conducting layer insertion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yun, Yu; Meng, Dechao; Wang, Jianlin

    2015-07-06

    There is a long-standing challenge in the fabrication of layered oxide epitaxial films due to their thermodynamic phase-instability and the large stacking layer number. Recently, the demand for high-quality thin films is strongly pushed by their promising room-temperature multiferroic properties. Here, we find that by inserting a conducting and lattice matched LaNiO{sub 3} buffer layer, high quality m = 5 Bi{sub 6}FeCoTi{sub 3}O{sub 18} epitaxial films can be fabricated using the laser molecular beam epitaxy, in which the atomic-scale sharp interface between the film and the metallic buffer layer explains the enhanced quality. The magnetic and ferroelectric properties of the high qualitymore » Bi{sub 6}FeCoTi{sub 3}O{sub 18} films are studied. This study demonstrates that insertion of the conducting layer is a powerful method in achieving high quality layered oxide thin films, which opens the door to further understand the underline physics and to develop new devices.« less

  14. Durable high strength cement concrete topping for asphalt roads

    NASA Astrophysics Data System (ADS)

    Vyrozhemskyi, Valerii; Krayushkina, Kateryna; Bidnenko, Nataliia

    2017-09-01

    Work on improving riding qualities of pavements by means of placing a thin cement layer with high roughness and strength properties on the existing asphalt pavement were conducted in Ukraine for the first time. Such pavement is called HPCM (High Performance Cementitious Material). This is a high-strength thin cement-layer pavement of 8-9 mm thickness reinforced with metal or polymer fiber of less than 5 mm length. Increased grip properties are caused by placement of stone material of 3-5 mm fraction on the concrete surface. As a result of the research, the preparation and placement technology of high-strength cement thin-layer pavement reinforced with fiber was developed to improve friction properties of existing asphalt pavements which ensures their roughness and durability. It must be emphasized that HPCM is a fundamentally new type of thin-layer pavement in which a rigid layer of 10 mm thickness is placed on a non-rigid base thereby improving riding qualities of asphalt pavement at any season of a year.

  15. Yeast-Leavened Laminated Salty Baked Goods: Flour and Dough Properties and Their Relationship with Product Technological Quality

    PubMed Central

    de la Horra, Ana E.; Steffolani, María Eugenia; Barrera, Gabriela N.; Ribotta, Pablo D.

    2015-01-01

    Summary The effect of protein composition and content on the characteristics and properties of laminated baked products has been studied for a long time. However, there are no flour quality parameters related to its suitability to produce yeast-leavened laminated salty baked products. The relationships among flour characteristics, laminated dough pieces and baked products were studied in order to establish flour quality parameters and help predict the quality of the products. Yeast-leavened salty laminated products made with hard wheat flour had better quality properties than the products made with soft wheat flour. Hydrophilic components and a high gluten network quality are responsible for the generation of a rigid structure and viscous dough. Consequently, during baking, the dough rises rather than extends laterally and does not experience any change in the expected shape. Among the analysed flour characteristics, glutenin macropolymer content, lactic acid and sodium carbonate solvent retention capacities together with dough viscosity and resistance to deformation were the variables which influenced the most the quality of yeast-leavened salty laminated products. PMID:27904379

  16. Yeast-Leavened Laminated Salty Baked Goods: Flour and Dough Properties and Their Relationship with Product Technological Quality.

    PubMed

    de la Horra, Ana E; Steffolani, María Eugenia; Barrera, Gabriela N; Ribotta, Pablo D; León, Alberto E

    2015-12-01

    The effect of protein composition and content on the characteristics and properties of laminated baked products has been studied for a long time. However, there are no flour quality parameters related to its suitability to produce yeast-leavened laminated salty baked products. The relationships among flour characteristics, laminated dough pieces and baked products were studied in order to establish flour quality parameters and help predict the quality of the products. Yeast-leavened salty laminated products made with hard wheat flour had better quality properties than the products made with soft wheat flour. Hydrophilic components and a high gluten network quality are responsible for the generation of a rigid structure and viscous dough. Consequently, during baking, the dough rises rather than extends laterally and does not experience any change in the expected shape. Among the analysed flour characteristics, glutenin macropolymer content, lactic acid and sodium carbonate solvent retention capacities together with dough viscosity and resistance to deformation were the variables which influenced the most the quality of yeast-leavened salty laminated products.

  17. Soil structural quality assessment for soil protection regulation

    NASA Astrophysics Data System (ADS)

    Johannes, Alice; Boivin, Pascal

    2017-04-01

    Soil quality assessment is rapidly developing worldwide, though mostly focused on the monitoring of arable land and soil fertility. Soil protection regulations assess soil quality differently, focusing on priority pollutants and threshold values. The soil physical properties are weakly considered, due to lack of consensus and experimental difficulties faced with characterization. Non-disputable, easy to perform and inexpensive methods should be available for environmental regulation to be applied, which is unfortunately not the case. As a consequence, quantitative soil physical protection regulation is not applied, and inexpensive soil physical quality indicators for arable soil management are not available. Overcoming these limitations was the objective of a research project funded by the Swiss federal office for environment (FOEN). The main results and the perspectives of application are given in this presentation. A first step of the research was to characterize soils in a good structural state (reference soils) under different land use. The structural quality was assessed with field expertise and Visual Evaluation of the Soil Structure (VESS), and the physical properties were assessed with Shrinkage analysis. The relationships between the physical properties and the soil constituents were linear and highly determined. They represent the reference properties of the corresponding soils. In a second step, the properties of physically degraded soils were analysed and compared to the reference properties. This allowed defining the most discriminant parameters departing the different structure qualities and their threshold limits. Equivalent properties corresponding to these parameters but inexpensive and easy to determine were defined and tested. More than 90% of the samples were correctly classed with this method, which meets, therefore, the requirements for practical application in regulation. Moreover, result-oriented agri-environmental schemes for soil quality are now proposed to farmers based on these indicators.

  18. Differences in Bone Quality between High versus Low Turnover Renal Osteodystrophy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Porter, Daniel S.; Pienkowski, David; Faugere, Marie-Claude

    2012-01-01

    Abnormal bone turnover is common in chronic kidney disease (CKD), but its effects on bone quality remain unclear. This study sought to quantify the relationship between abnormal bone turnover and bone quality. Iliac crest bone biopsies were obtained from CKD-5 patients on dialysis with low (n=18) or high (n=17) turnover, and from volunteers (n=12) with normal turnover and normal kidney function. Histomorphometric methods were used to quantify the microstructural parameters; Fourier transform infrared spectroscopy and nanoindentation were used to quantify the material and mechanical properties in bone. Reduced mineral-to-matrix ratio, mineral crystal size, stiffness and hardness were observed in bonemore » with high turnover compared to bone with normal or low turnover. Decreased cancellous bone volume and trabecular thickness were seen in bone with low turnover compared to bone with normal or high turnover. Bone quality, as defined by its microstructural, material, and mechanical properties, is related to bone turnover. These data suggest that turnover related alterations in bone quality may contribute to the known diminished mechanical competence of bone in CKD patients, albeit from different mechanisms for bone with high (material abnormality) vs. low (microstructural alteration) turnover. The present findings suggest that improved treatments for renal osteodystrophy should seek to avoid low or high bone turnover and aim for turnover rates as close to normal as possible.« less

  19. Systematic Review of Measurement Property Evidence for 8 Financial Management Instruments in Populations With Acquired Cognitive Impairment.

    PubMed

    Engel, Lisa; Chui, Adora; Beaton, Dorcas E; Green, Robin E; Dawson, Deirdre R

    2018-03-07

    To critically appraise the measurement property evidence (ie, psychometric) for 8 observation-based financial management assessment instruments. Seven databases were searched in May 2015. Two reviewers used an independent decision-agreement process to select studies of measurement property evidence relevant to populations with adulthood acquired cognitive impairment, appraise the quality of the evidence, and extract data. Twenty-one articles were selected. This review used the COnsensus-based Standards for the selection of health Measurement Instruments review guidelines and 4-point tool to appraise evidence. After appraising the methodologic quality, the adequacy of results and volume of evidence per instrument were synthesized. Measurement property evidence with high risk of bias was excluded from the synthesis. The volume of measurement property evidence per instrument is low; most instruments had 1 to 3 included studies. Many included studies had poor methodologic quality per measurement property evidence area examined. Six of the 8 instruments reviewed had supporting construct validity/hypothesis-testing evidence of fair methodologic quality. There is a dearth of acceptable quality content validity, reliability, and responsiveness evidence for all 8 instruments. Rehabilitation practitioners assess financial management functions in adults with acquired cognitive impairments. However, there is limited published evidence to support using any of the reviewed instruments. Practitioners should exercise caution when interpreting the results of these instruments. This review highlights the importance of appraising the quality of measurement property evidence before examining the adequacy of the results and synthesizing the evidence. Copyright © 2018 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.

  20. Product Design and Production Practice of 700MPa High Strength Hot Rolled Strip for Auto Axle Tube

    NASA Astrophysics Data System (ADS)

    Hui, Pan; Zhao-dong, Wang; Ya-jun, Hui; Yang, Cui; Xiang-tao, Deng; Chun-lin, Bao

    According to the technical specifications of 700MPa high strength automotive axle tube steel, a low cost of 0.07%C+1.5%Mn+0.05%Nb+0.10%Ti was designed. The high strength mainly relies on grain refinement strengthening and precipitation strengthening. The recrystallization, precipitation, and CCT curves of the 700MPa grade axle tube steel were studied in order to determine a reasonable TMCP process. By controlling the low level segregation band, low level of C and N content, 700MPa grade high strength automotive axle tube steel is successfully developed with excellent mechanical property, welding property, flattening and flaring property, torsion fatigue property, static torsional property and surface quality.

  1. Measurement properties of translated versions of neck-specific questionnaires: a systematic review

    PubMed Central

    2011-01-01

    Background Several disease-specific questionnaires to measure pain and disability in patients with neck pain have been translated. However, a simple translation of the original version doesn't guarantee similar measurement properties. The objective of this study is to critically appraise the quality of the translation process, cross-cultural validation and the measurement properties of translated versions of neck-specific questionnaires. Methods Bibliographic databases were searched for articles concerning the translation or evaluation of the measurement properties of a translated version of a neck-specific questionnaire. The methodological quality of the selected studies and the results of the measurement properties were critically appraised and rated using the COSMIN checklist and criteria for measurement properties. Results The search strategy resulted in a total of 3641 unique hits, of which 27 articles, evaluating 6 different questionnaires in 15 different languages, were included in this study. Generally the methodological quality of the translation process is poor and none of the included studies performed a cross-cultural adaptation. A substantial amount of information regarding the measurement properties of translated versions of the different neck-specific questionnaires is lacking. Moreover, the evidence for the quality of measurement properties of the translated versions is mostly limited or assessed in studies of poor methodological quality. Conclusions Until results from high quality studies are available, we advise to use the Catalan, Dutch, English, Iranian, Korean, Spanish and Turkish version of the NDI, the Chinese version of the NPQ, and the Finnish, German and Italian version of the NPDS. The Greek NDI needs cross-cultural validation and there is no methodologically sound information for the Swedish NDI. For all other languages we advise to translate the original version of the NDI. PMID:21645355

  2. Measurement properties of translated versions of neck-specific questionnaires: a systematic review.

    PubMed

    Schellingerhout, Jasper M; Heymans, Martijn W; Verhagen, Arianne P; de Vet, Henrica C; Koes, Bart W; Terwee, Caroline B

    2011-06-06

    Several disease-specific questionnaires to measure pain and disability in patients with neck pain have been translated. However, a simple translation of the original version doesn't guarantee similar measurement properties. The objective of this study is to critically appraise the quality of the translation process, cross-cultural validation and the measurement properties of translated versions of neck-specific questionnaires. Bibliographic databases were searched for articles concerning the translation or evaluation of the measurement properties of a translated version of a neck-specific questionnaire. The methodological quality of the selected studies and the results of the measurement properties were critically appraised and rated using the COSMIN checklist and criteria for measurement properties. The search strategy resulted in a total of 3641 unique hits, of which 27 articles, evaluating 6 different questionnaires in 15 different languages, were included in this study. Generally the methodological quality of the translation process is poor and none of the included studies performed a cross-cultural adaptation. A substantial amount of information regarding the measurement properties of translated versions of the different neck-specific questionnaires is lacking. Moreover, the evidence for the quality of measurement properties of the translated versions is mostly limited or assessed in studies of poor methodological quality. Until results from high quality studies are available, we advise to use the Catalan, Dutch, English, Iranian, Korean, Spanish and Turkish version of the NDI, the Chinese version of the NPQ, and the Finnish, German and Italian version of the NPDS. The Greek NDI needs cross-cultural validation and there is no methodologically sound information for the Swedish NDI. For all other languages we advise to translate the original version of the NDI.

  3. Statistical Properties of Differences between Low and High Resolution CMAQ Runs with Matched Initial and Boundary Conditions

    EPA Science Inventory

    The difficulty in assessing errors in numerical models of air quality is a major obstacle to improving their ability to predict and retrospectively map air quality. In this paper, using simulation outputs from the Community Multi-scale Air Quality Model (CMAQ), the statistic...

  4. Rapid determination of nanowires electrical properties using a dielectrophoresis-well based system

    NASA Astrophysics Data System (ADS)

    Constantinou, Marios; Hoettges, Kai F.; Krylyuk, Sergiy; Katz, Michael B.; Davydov, Albert; Rigas, Grigorios-Panagiotis; Stolojan, Vlad; Hughes, Michael P.; Shkunov, Maxim

    2017-03-01

    The use of high quality semiconducting nanomaterials for advanced device applications has been hampered by the unavoidable growth variability of electrical properties of one-dimensional nanomaterials, such as nanowires and nanotubes, thus highlighting the need for the characterization of efficient semiconducting nanomaterials. In this study, we demonstrate a low-cost, industrially scalable dielectrophoretic (DEP) nanowire assembly method for the rapid analysis of the electrical properties of inorganic single crystalline nanowires, by identifying key features in the DEP frequency response spectrum from 1 kHz to 20 MHz in just 60 s. Nanowires dispersed in anisole were characterized using a three-dimensional DEP chip (3DEP), and the resultant spectrum demonstrated a sharp change in nanowire response to DEP signal in 1-20 MHz frequency range. The 3DEP analysis, directly confirmed by field-effect transistor data, indicates that nanowires of higher quality are collected at high DEP signal frequency range above 10 MHz, whereas lower quality nanowires, with two orders of magnitude lower current per nanowire, are collected at lower DEP signal frequencies. These results show that the 3DEP platform can be used as a very efficient characterization tool of the electrical properties of rod-shaped nanoparticles to enable dielectrophoretic selective deposition of nanomaterials with superior conductivity properties.

  5. A comparison of indexing methods to evaluate quality of soils subjected to different erosion: the role of soil microbiological properties.

    NASA Astrophysics Data System (ADS)

    Romaniuk, Romina; Lidia, Giuffre; Alejandro, Costantini; Norberto, Bartoloni; Paolo, Nannipieri

    2010-05-01

    Soil quality assessment is needed to evaluate the soil conditions and sustainability of soil and crop management properties, and thus requires a systematic approach to select and interpret soil properties to be used as indicators. The aim of this work was to evaluate and compare different indexing methods to assess quality of an undisturbed grassland soil (UN), a degraded pasture soil (GL) and a no tilled soil (NT) with four different A horizon depths (25, 23, 19 and 14 cm) reflecting a diverse erosion. Twenty four soil properties were measured from 0 to10 (1) and 10 to 20 cm. (2) and a minimum data set was chosen by multivariate principal component analysis (PCA) considering all measured soil properties together (A), or according to their classification in physical, chemical or microbiological (B) properties. The measured soil properties involved either inexpensive or not laborious standard protocols, to be used in routine laboratory analysis (simple soil quality index - SSQI), or a more laborious, time consuming and expensive protocols to determine microbial diversity and microbial functionality by methyl ester fatty acids (PLFA) and catabolic response profiles (CRP), respectively (complex soil quality index - CSQI). The selected properties were linearly normalized and integrated by the weight additive method to calculate SSQI A, SSQI B, CSQI A and CSQI B indices. Two microbiological soil quality indices (MSQI) were also calculated: the MSQI 1 only considered microbiological properties according to the procedure used for calculating SQI; the MSQI 2 was calculated by considering microbial carbon biomass (MCB), microbial activity (Resp) and functional diversity determined by CPR (E). The soil quality indices were SSQI A = MCB 1 + Particulate Organic Carbon (POC)1 + Mean Weight Diameter (MWD)1; SSQI B = Saturated hydraulic conductivity (K) 1 + Total Organic Carbon (TOC) 1 + MCB 1; CSQI A = MCB 1 + POC 1 + MWD 1; CSQI B = K 1+ TOC 1+ 0.3 * (MCB 1+ i/a +POC 1) + 0,05 * (E + cy/pre), where i/a and cy/pre are the iso/anteiso and cyclopropyl/precursors ratios determined by PLFA; MSQI 1 (0,3 * (MCB 1+ i/a 1 +POC 1) + 0,05 * (E 1+ cy/pre 1) ) and MSQI 2 (MCB 1+Resp 1+ E 1). All the calculated indices differentiated references plots (UN and GL), from those under no tillage (NT) system. Values were similar in NT plots with low erosion levels (NT 25 and 23) but higher than values of plots with high erosion (NT 19 and 14). Soil quality indices constructed by procedure B, (SSQI B and CSQI B) differentiated among the studied plots with the same or higher sensitivity than the other indices and allowed evaluating the impact of soil management practices and erosion on soil physical, chemical and microbiological properties. The lack of indicators representing all soil properties (physical, chemical and biological) in SQI constructed by procedure A could decrease the index sensitivity to changes in management; and the same may happen when physical, chemical and biological properties present different weights into the calculated SQI. The inclusion of CRP and PLFA data in the indices slightly increased or did not increase the index sensitivity (CSQI A and CSQI B). Generally microbiological indices (MSQI 1 and MSQI 2) were highly sensitive to soil erosion. However, we suggest that indices integrating physical, chemical and microbiological properties may give a more complete view of the soil quality than indices only based on measurement of a few microbiological properties.

  6. Use of enzymes to minimize the rheological dough problems caused by high levels of damaged starch in starch-gluten systems.

    PubMed

    Barrera, Gabriela N; León, Alberto E; Ribotta, Pablo D

    2016-05-01

    During wheat milling, starch granules can experience mechanical damage, producing damaged starch. High levels of damaged starch modify the physicochemical properties of wheat flour, negatively affecting the dough behavior as well as the flour quality and cookie and bread making quality. The aim of this work was to evaluate the effect of α-amylase, maltogenic amylase and amyloglucosidase on dough rheology in order to propose alternatives to reduce the issues related to high levels of damaged starch. The dough with a high level of damaged starch became more viscous and resistant to deformations as well as less elastic and extensible. The soluble fraction of the doughs influenced the rheological behavior of the systems. The α-amylase and amyloglucosidase reduced the negative effects of high damaged starch contents, improving the dough rheological properties modified by damaged starch. The rheological behavior of dough with the higher damaged-starch content was related to a more open gluten network arrangement as a result of the large size of the swollen damaged starch granules. We can conclude that the dough rheological properties of systems with high damaged starch content changed positively as a result of enzyme action, particularly α-amylase and amyloglucosidase additions, allowing the use of these amylases and mixtures of them as corrective additives. Little information was reported about amyloglucosidase activity alone or combined with α-amylase. The combinations of these two enzymes are promising to minimize the negative effects caused by high levels of damaged starch on product quality. More research needs to be done on bread quality combining these two enzymes. © 2015 Society of Chemical Industry. © 2015 Society of Chemical Industry.

  7. America's Educational Failures: How Will They Affect Real Estate?

    ERIC Educational Resources Information Center

    Downs, Anthony

    Owners of all types of real properties, especially owners and occupants of big city downtown properties, have a high investment in the educational quality of the local labor force, and should encourage improvement even if it results in increased property taxes. Every real estate investment is "locked in" to the specific geographic…

  8. Microstructural Influence on Mechanical Properties in Plasma Microwelding of Ti6Al4V Alloy

    NASA Astrophysics Data System (ADS)

    Baruah, M.; Bag, S.

    2016-11-01

    The complexity of joining Ti6Al4V alloy enhances with reduction in sheet thickness. The present work puts emphasis on microplasma arc welding (MPAW) of 500-μm-thick Ti6Al4V alloy in butt joint configuration. Using controlled and regulated arc current, the MPAW process is specifically designed to use in joining of thin sheet components over a wide range of process parameters. The weld quality is assessed by carefully controlling the process parameters and by reducing the formation of oxides. The combined effect of welding speed and current on the weld joint properties is evaluated for joining of Ti6Al4V alloy. The macro- and microstructural characterizations of the weldment by optical microscopy as well as the analysis of mechanical properties by microtensile and microhardness test have been performed. The weld joint quality is affected by specifically designed fixture that controls the oxidation of the joint and introduces high cooling rate. Hence, the solidified microstructure of welded specimen influences the mechanical properties of the joint. The butt joint of titanium alloy by MPAW at optimal process parameters is of very high quality, without any internal defects and with minimum residual distortion.

  9. Changes in the Mg profile and in dislocations induced by high temperature annealing of blue LEDs

    NASA Astrophysics Data System (ADS)

    Meneghini, M.; Trivellin, N.; Berti, M.; Cesca, T.; Gasparotto, A.; Vinattieri, A.; Bogani, F.; Zhu, D.; Humphreys, C. J.; Meneghesso, G.; Zanoni, E.

    2013-03-01

    The efficiency of the injection and recombination processes in InGaN/GaN LEDs is governed by the properties of the active region of the devices, which strongly depend on the conditions used for the growth of the epitaxial material. To improve device quality, it is very important to understand how the high temperatures used during the growth process can modify the quality of the epitaxial material. With this paper we present a study of the modifications in the properties of InGaN/GaN LED structures induced by high temperature annealing: thermal stress tests were carried out at 900 °C, in nitrogen atmosphere, on selected samples. The efficiency and the recombination dynamics were evaluated by photoluminescence measurements (both integrated and time-resolved), while the properties of the epitaxial material were studied by Secondary Ion Mass Spectroscopy (SIMS) and Rutherford Backscattering (RBS) channeling measurements. Results indicate that exposure to high temperatures may lead to: (i) a significant increase in the photoluminescence efficiency of the devices; (ii) a decrease in the parasitic emission bands located between 380 nm and 400 nm; (iii) an increase in carrier lifetime, as detected by time-resolved photoluminescence measurements. The increase in device efficiency is tentatively ascribed to an improvement in the crystallographic quality of the samples.

  10. Growth of high-quality AlN epitaxial film by optimizing the Si substrate surface

    NASA Astrophysics Data System (ADS)

    Huang, Liegen; Li, Yuan; Wang, Wenliang; Li, Xiaochan; zheng, Yulin; Wang, Haiyan; Zhang, Zichen; Li, Guoqiang

    2018-03-01

    High-quality AlN epitaxial films have been grown on Si substrates by optimizing the hydrofluoric acid (HF) solution for cleaning of Si substrates. Effect of the Si substrate surface on the surface morphology and structural property of AlN epitaxial films is investigated in detail. It is revealed that as the concentration of HF solution increases from 0 to 2.0%, the surface morphology and the crystalline quality are initially improved and then get worse, and show an optimized value at 1.5%. The as-grown ∼200 nm-thick AlN epitaxial films on Si substrates grown with HF solution of 1.5% reveal the root-mean-square (RMS) surface roughness of 0.49 nm and the full-width at half-maximum for AlN(0002) X-ray rocking curve of 0.35°, indicating the smooth surface morphology and the high crystalline quality. The corresponding mechanism is proposed to interpret the effect of Si substrate surface on surface morphology and structural property of AlN epitaxial films, and provides an effective approach for the perspective fabrication of AlN-based devices.

  11. Food structure: Its formation and relationships with other properties.

    PubMed

    Joardder, Mohammad U H; Kumar, Chandan; Karim, M A

    2017-04-13

    Food materials are complex in nature as it has heterogeneous, amorphous, hygroscopic and porous properties. During processing, microstructure of food materials changes which significantly affects other properties of food. An appropriate understanding of the microstructure of the raw food material and its evolution during processing is critical in order to understand and accurately describe dehydration processes and quality anticipation. This review critically assesses the factors that influence the modification of microstructure in the course of drying of fruits and vegetables. The effect of simultaneous heat and mass transfer on microstructure in various drying methods is investigated. Effects of changes in microstructure on other functional properties of dried foods are discussed. After an extensive review of the literature, it is found that development of food structure significantly depends on fresh food properties and process parameters. Also, modification of microstructure influences the other properties of final product. An enhanced understanding of the relationships between food microstructure, drying process parameters and final product quality will facilitate the energy efficient optimum design of the food processor in order to achieve high-quality food.

  12. Regeneration of high-quality silk fibroin fiber by wet spinning from CaCl2-formic acid solvent.

    PubMed

    Zhang, Feng; Lu, Qiang; Yue, Xiaoxiao; Zuo, Baoqi; Qin, Mingde; Li, Fang; Kaplan, David L; Zhang, Xueguang

    2015-01-01

    Silks spun by silkworms and spiders feature outstanding mechanical properties despite being spun under benign conditions. The superior physical properties of silk are closely related to its complicated hierarchical structures constructed from nanoscale building blocks, such as nanocrystals and nanofibrils. Here, we report a novel silk dissolution behavior, which preserved nanofibrils in CaCl2-formic acid solution, that enables spinning of high-quality fibers with a hierarchical structure. This process is characterized by simplicity, high efficiency, low cost, environmental compatibility and large-scale industrialization potential, as well as having utility and potential for the recycling of silk waste and the production of silk-based functional materials. Copyright © 2014. Published by Elsevier Ltd.

  13. Fermi surface properties of NbAs2 studied by de Haas-van Alphen oscillation

    NASA Astrophysics Data System (ADS)

    Singha, Ratnadwip; Mandal, Prabhat

    2018-04-01

    We have grown high quality single crystal of NbAs2, a member of the transition metal dipnictide family and measured magnetotransport properties. Very large magnetoresistance ˜1.3×105 % has been observed at 2 K with 9 T magnetic field. The Fermi surface properties have been studied by de Haas-van Alphen oscillation technique. The Fermi surface is highly anisotropic and consists of multiple Fermi pockets. From quantum oscillation results, different Fermi surface related parameters have been quantified.

  14. Orthodontic soldering techniques: aspects of quality assurance in the dental laboratory.

    PubMed

    Heidemann, Jutta; Witt, Emil; Feeg, Martin; Werz, Rainer; Pieger, Klaus

    2002-07-01

    In Germany, the dental technician is required by the Medical Products Act (MPG) to produce workpieces of high safety and quality and to document these properties. Soldering continues to be the prevailing joining technique in the dental laboratory, although problems arise from the susceptibility to corrosion and the low strength of soldered joints. This study aimed to reveal sources of defects in dental laboratory workpieces in order to achieve optimization in terms of quality assurance. The joints were produced by various dental technicians using three different soldering techniques. These joining techniques were investigated for their quality and their corrosion properties during immersion in ferric chloride, orthodontic appliance cleanser, and artificial saliva. Observance of the soldering instructions by the dental technicians was checked. Corrosion attack was confirmed by scanning electron microscopy and by measuring the ion concentrations of copper, silver and zinc in the corrosive agents, using atomic emission spectroscopy with stimulation by inductively coupled plasma (ICP-AES analysis). Incomplete filling of the soldering gap, porosities resulting from the production process, poor corrosion properties, and in particular a high variability of the measured values point to insufficient reliability of two soldering techniques. Variations in quality were also detected among the technicians' modes of operation. The analyses confirm the need for quality assurance of soldering techniques and for increased support for alternative joining techniques such as laser welding in the future. The results of the studies on laser welding are presented in a separate publication.

  15. Quantifying and predicting meat and meat products quality attributes using electromagnetic waves: an overview.

    PubMed

    Damez, Jean-Louis; Clerjon, Sylvie

    2013-12-01

    The meat industry needs reliable meat quality information throughout the production process in order to guarantee high-quality meat products for consumers. Besides laboratory researches, food scientists often try to adapt their tools to industrial conditions and easy handling devices useable on-line and in slaughterhouses already exist. This paper overviews the recently developed approaches and latest research efforts related to assessing the quality of different meat products by electromagnetic waves and examines the potential for their deployment. The main meat quality traits that can be assessed using electromagnetic waves are sensory characteristics, chemical composition, physicochemical properties, health-protecting properties, nutritional characteristics and safety. A wide range of techniques, from low frequency, high frequency impedance measurement, microwaves, NMR, IR and UV light, to X-ray interaction, involves a wide range of physical interactions between the electromagnetic wave and the sample. Some of these techniques are now in a period of transition between experimental and applied utilization and several sensors and instruments are reviewed. Copyright © 2013 Elsevier Ltd. All rights reserved.

  16. Effects of fabrication methods on spin relaxation and crystallite quality in Tm-doped ? powders studied using spectral hole burning

    NASA Astrophysics Data System (ADS)

    Lutz, Thomas; Veissier, Lucile; Thiel, Charles W.; Woodburn, Philip J. T.; Cone, Rufus L.; Barclay, Paul E.; Tittel, Wolfgang

    2016-01-01

    High-quality rare-earth-ion (REI) doped materials are a prerequisite for many applications such as quantum memories, ultra-high-resolution optical spectrum analyzers and information processing. Compared to bulk materials, REI doped powders offer low-cost fabrication and a greater range of accessible material systems. Here we show that crystal properties, such as nuclear spin lifetime, are strongly affected by mechanical treatment, and that spectral hole burning can serve as a sensitive method to characterize the quality of REI doped powders. We focus on the specific case of thulium doped ? (Tm:YAG). Different methods for obtaining the powders are compared and the influence of annealing on the spectroscopic quality of powders is investigated on a few examples. We conclude that annealing can reverse some detrimental effects of powder fabrication and, in certain cases, the properties of the bulk material can be reached. Our results may be applicable to other impurities and other crystals, including color centers in nano-structured diamond.

  17. Growth and characterization of high quality ZnS thin films by RF sputtering

    NASA Astrophysics Data System (ADS)

    Mukherjee, C.; Rajiv, K.; Gupta, P.; Sinha, A. K.; Abhinandan, L.

    2012-06-01

    High optical quality ZnS films are deposited on glass and Si wafer by RF sputtering from pure ZnS target. Optical transmittance, reflectance, ellipsometry, FTIR and AFM measurements are carried out. Effect of substrate temperature and chamber baking for long duration on film properties have been studied. Roughness of the films as measured by AFM are low (1-2Å).

  18. Growth of urea crystals by physical vapor transport

    NASA Technical Reports Server (NTRS)

    Feigelson, R. S.; Route, R. K.; Kao, T.-M.

    1985-01-01

    This work demonstrates that high optical quality crystals of urea can be grown by the physical vapor transport method. The unique features of this method are compared with growth from methanol/water solutions. High growth rates, exceeding 2.5 mm/day, were achieved, and cm-size optical quality single crystals were obtained. Details of the growth technique and the physical properties of the crystals are presented.

  19. Predicting lignin depolymerization yields from quantifiable properties using fractionated biorefinery lignins

    USDA-ARS?s Scientific Manuscript database

    Lignin depolymerization to aromatic monomers with high yields and selectivity is essential for the economic feasibility of many lignin-valorization strategies within integrated biorefining processes. Importantly, the quality and properties of the lignin source play an essential role in impacting the...

  20. Potential of near infrared spectroscopy in cotton micronaire determination

    USDA-ARS?s Scientific Manuscript database

    Micronaire is one of important cotton properties as it reflects fiber maturity and fineness. Automation-based high volume instrumentation (HVITM) measurement has been well established as a primary and routine tool of providing fiber micronaire and other quality properties to cotton breeders and fibe...

  1. Use of near infrared spectroscopy in cotton micronaire assessment

    USDA-ARS?s Scientific Manuscript database

    Micronaire is one of important cotton properties as it reflects fiber maturity and fineness. Automation-based high volume instrumentation (HVITM) measurement has been well established as a primary and routine tool of providing fiber micronaire and other quality properties to cotton breeders and fibe...

  2. An ultrasonic system for determining papaya physiological properties

    NASA Astrophysics Data System (ADS)

    Ibrahim, Sallehuddin; Ramli, Azlin; Yunus, Mohd Amri Md

    2015-05-01

    There is an increasing need for high quality fruit. As such it is important to have a fast, accurate and reliable method for measuring and monitoring the quality of fruit from the field to the consumer. This paper presents an investigation on the use of a non-destructive ultrasonic system which can be used to measure the quality of papaya.

  3. ASTM Committee C28: International Standards for Properties and Performance of Advanced Ceramics, Three Decades of High-quality, Technically-rigorous Normalization

    NASA Technical Reports Server (NTRS)

    Jenkins, Michael G.; Salem, Jonathan A.

    2016-01-01

    Physical and mechanical properties and performance of advanced ceramics and glasses are difficult to measure correctly without the proper techniques. For over three decades, ASTM Committee C28 on Advanced Ceramics, has developed high quality, rigorous, full-consensus standards (e.g., test methods, practices, guides, terminology) to measure properties and performance of monolithic and composite ceramics that may be applied to glasses in some cases. These standards testing particulars for many mechanical, physical, thermal, properties and performance of these materials. As a result these standards provide accurate, reliable, repeatable and complete data. Within Committee C28 users, producers, researchers, designers, academicians, etc. have written, continually updated, and validated through round-robin test programs, nearly 50 standards since the Committees founding in 1986. This paper provides a retrospective review of the 30 years of ASTM Committee C28 including a graphical pictogram listing of C28 standards along with examples of the tangible benefits of advanced ceramics standards to demonstrate their practical applications.

  4. Comparative study of modified bitumen binder properties collected from mixing plant and quarry.

    NASA Astrophysics Data System (ADS)

    Mustafa Kamal, M.; Abu Bakar, R.; Hadithon, K. A.

    2017-11-01

    Quality control and assurance are essential in pavement construction. In general, the properties of bitumen change as it ages in bulk storage, transport, and storage on site. The minimization of bituminous hardening during storing, transportation and mixing depends on careful control of binder temperature. Hence therefore, bitumen should always be stored and handled at the lowest temperature possible, consistent with efficient use. The objective of the work is to monitor the quality of bitumen samples collected from mixing plant and quarry. Results showed that, samples modified bitumen which collected from quarry showed some adverse effects on rheological properties and physical properties after subjecting to high temperature storage within a period of time. The dynamic stiffness, elastic properties and other common binder properties were deteriorated too. The chemical changes that occurred during storage were analysed using Fourier transform infra-red spectroscopy (FTIR). Thus studies developed an understanding of bitumen ageing in storage.

  5. Guidelines on design and construction of high performance thin HMA overlays.

    DOT National Transportation Integrated Search

    2016-08-01

    Key Components of Mix Design and Material Properties: : High-quality aggregate - SAC A for high : volume roads : - PG 70 or 76 (Polymer Modified binders) : - RAP and RAS (shingles) not allowed : - Minimum binder content ( Over 6%) : - Pay for binder ...

  6. Hybrid III-V on Si grating as a broadband reflector and a high-Q resonator

    NASA Astrophysics Data System (ADS)

    Chung, Il-Sug; Taghizadeh, Alireza; Park, Gyeong Cheol

    2016-03-01

    Hybrid grating (HG) with a high-refractive-index cap layer added onto a high contrast grating (HCG), can provide a high reflectance close 100 % over a broader wavelength range than HCGs, or work as a ultrahigh quality (Q) factor resonator. The reflection and resonance properties of HGs have been investigated and the mechanisms leading to these properties are discussed. A HG reflector sample integrating a III-V cap layer with InGaAlAs quantum wells onto a Si grating has been fabricated and its reflection property has been characterized. The HG-based lasers have a promising prospect for silicon photonics light source or high-speed laser applications.

  7. Systematic review of measurement properties of self-reported instruments for evaluating self-care in adults.

    PubMed

    Matarese, Maria; Lommi, Marzia; De Marinis, Maria Grazia

    2017-06-01

    The aims of this study were as follows: to identify instruments developed to assess self-care in healthy adults; to determine the theory on which they were based; their validity and reliability properties and to synthesize the evidence on their measurement properties. Many instruments have been developed to assess self-care in many different populations and conditions. Clinicians and researchers should select the most appropriate self-care instrument based on the knowledge of their measurement properties. Systematic review of measurement instruments according to the protocol recommended by the COnsensus-based Standards for the selection of health Measurement INstruments (COSMIN) panel. PubMed, Embase, PsycINFO, Scopus and CINAHL databases were searched from inception to December 2015. Studies testing measurement properties of self-report instruments assessing self-care in healthy adults, published in the English language and in peer review journals were selected. Two reviewers independently appraised the methodological quality of the studies with the COSMIN checklist and the quality of results using specific quality criteria. Twenty-six articles were included in the review testing the measurement properties of nine instruments. Seven instruments were based on Orem's Self-care theory. Not all the measurement properties were evaluated for the identified instruments. No self-care instrument showed strong evidence supporting the evaluated measurement properties. Despite the development of several instruments to assess self-care in the adult population, no instrument can be fully recommended to clinical nurses and researchers. Further studies of high methodological quality are needed to confirm the measurement properties of these instruments. © 2016 John Wiley & Sons Ltd.

  8. Influence of Discharge Current on Phase Transition Properties of High Quality Polycrystalline VO2 Thin Film Fabricated by HiPIMS

    PubMed Central

    Lin, Tiegui; Wang, Jian; Liu, Gang; Wang, Langping; Wang, Xiaofeng; Zhang, Yufen

    2017-01-01

    To fabricate high-quality polycrystalline VO2 thin film with a metal–insulator transition (MIT) temperature less than 50 °C, high-power impulse magnetron sputtering with different discharge currents was employed in this study. The as-deposited VO2 films were characterized by a four-point probe resistivity measurement system, visible-near infrared (IR) transmittance spectra, X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and scanning electron microscopy. The resistivity results revealed that all the as-deposited films had a high resistance change in the phase transition process, and the MIT temperature decreased with the increased discharge current, where little deterioration in the phase transition properties, such as the resistance and transmittance changes, could be found. Additionally, XRD patterns at various temperatures exhibited that some reverse deformations that existed in the MIT process of the VO2 film, with a large amount of preferred crystalline orientations. The decrease of the MIT temperature with little deterioration on phase transition properties could be attributed to the reduction of the preferred grain orientations. PMID:28772990

  9. Assessment of aggregate quality and petrographic properties' influence on rock quality: A case study from Nordland county, Norway

    NASA Astrophysics Data System (ADS)

    Kløve Keiding, Jakob; Erichsen, Eyolf; Heldal, Tom; Aslaksen Aasly, Kari

    2017-04-01

    Good access to construction materials is crucial for future infrastructure development and continued economic growth. In Norway >80 % of construction materials come from crushed aggregates and represent an growing share of the consumption. Although recycling to some extend can cover the need for construction materials, economic growth, increasing population and urbanization necessitates exploitation of new rock resources in Norway as well as many other parts of the world. Aggregates must fulfill a number of technical requirements to ensure high quality and long life expectancy of new roads, buildings and structures. Aggregates also have to be extracted near the consumer market. Particularly for road construction strict criteria are in place for wearing course for roads with high traffic density. Thus knowledge of mechanical rock quality is paramount for both exploitation as well as future resource and land-use planning but is often not assessed or mapped beyond the quarry scale. The Geological survey of Norway runs a database with information about crushed aggregate deposits from >1500 Norwegian quarries and sample sites. Here we use mechanical test analyses from the database to assess the aggregate quality in the Nordland county, Norway. Maps have been produced linking bed rock geology with rock quality parameters. The survey documents that the county is challenged in meeting the requirements for roads with high traffic density and especially in the middle parts of the county many samples have weak mechanical properties. This to some degree reflect that weak Cambro-Silurian rocks like phyllite, schist, carbonate and greenstone are abundant in Nordland. Typically mechanically stronger rock types such as gabbro, monzonite and granite are also exposed in large parts of the county, but are also characterized by relative poor or very variable mechanical test quality. Preliminary results indicate that many intrinsic parameters influence the mechanical rock strength, but variable degrees of deformation in the different tectonostratigraphic units exposed in Nordland affects the rock mechanical properties and is a prominent feature of our mapping. Unsurprisingly rock type, mineralogy, grain size and rock texture are all important factors that have a major control on the mechanical behaviour of the rocks. However, this assessment shows that there is an intricate interaction between these parameters and the resulting mechanical properties at present making it difficult to assess mechanical quality accurately only based on petrographic examination.

  10. Elaboration and properties of hierarchically structured optical thin films of MIL-101(Cr).

    PubMed

    Demessence, Aude; Horcajada, Patricia; Serre, Christian; Boissière, Cédric; Grosso, David; Sanchez, Clément; Férey, Gérard

    2009-12-14

    Stable nanoparticles dispersions of the porous hybrid MIL-101(Cr) allow dip-coating of high quality optical thin films with dual hierarchical porous structure. Moreover, for the first time, mechanical and sorption properties of mesoporous MOFs based thin films are evaluated.

  11. Studies of Amylose Content in Potato Starch

    USDA-ARS?s Scientific Manuscript database

    Potato starch is typically low in amylose (~20-25%), but high amylose starch has superior nutritional qualities. The ratio between amylose and amylopectin is the most important property influencing the physical properties of starch. There is a strong case to be made for the development of food crops...

  12. SNOT-22: psychometric properties and cross-cultural adaptation into the Portuguese language spoken in Brazil.

    PubMed

    Caminha, Guilherme Pilla; Melo Junior, José Tavares de; Hopkins, Claire; Pizzichini, Emilio; Pizzichini, Marcia Margaret Menezes

    2012-12-01

    Rhinosinusitis is a highly prevalent disease and a major cause of high medical costs. It has been proven to have an impact on the quality of life through generic health-related quality of life assessments. However, generic instruments may not be able to factor in the effects of interventions and treatments. SNOT-22 is a major disease-specific instrument to assess quality of life for patients with rhinosinusitis. Nevertheless, there is still no validated SNOT-22 version in our country. Cross-cultural adaptation of the SNOT-22 into Brazilian Portuguese and assessment of its psychometric properties. The Brazilian version of the SNOT-22 was developed according to international guidelines and was broken down into nine stages: 1) Preparation 2) Translation 3) Reconciliation 4) Back-translation 5) Comparison 6) Evaluation by the author of the SNOT-22 7) Revision by committee of experts 8) Cognitive debriefing 9) Final version. Second phase: prospective study consisting of a verification of the psychometric properties, by analyzing internal consistency and test-retest reliability. Cultural adaptation showed adequate understanding, acceptability and psychometric properties. We followed the recommended steps for the cultural adaptation of the SNOT-22 into Portuguese language, producing a tool for the assessment of patients with sinonasal disorders of clinical importance and for scientific studies.

  13. Development of plasma assisted thermal vapor deposition technique for high-quality thin film.

    PubMed

    Lee, Kang-Il; Choi, Yong Sup; Park, Hyun Jae

    2016-12-01

    The novel technique of Plasma-Assisted Vapor Deposition (PAVD) is developed as a new deposition method for thin metal films. The PAVD technique yields a high-quality thin film without any heating of the substrate because evaporated particles acquire energy from plasma that is confined to the inside of the evaporation source. Experiments of silver thin film deposition have been carried out in conditions of pressure lower than 10 -3 Pa. Pure silver plasma generation is verified by the measurement of the Ag-I peak using optical emission spectroscopy. A four point probe and a UV-VIS spectrophotometer are used to measure the electrical and optical properties of the silver film that is deposited by PAVD. For an ultra-thin silver film with a thickness of 6.5 nm, we obtain the result of high-performance silver film properties, including a sheet resistance <20 Ω sq -1 and a visible-range transmittance >75%. The PAVD-film properties show a low sheet resistance of 30% and the same transmittance with conventional thermal evaporation film. In the PAVD source, highly energetic particles and UV from plasma do not reach the substrate because the plasma is completely shielded by the optimized nozzle of the crucible. This new PAVD technique could be a realistic solution to improve the qualities of transparent electrodes for organic light emission device fabrication without causing damage to the organic layers.

  14. Development of plasma assisted thermal vapor deposition technique for high-quality thin film

    NASA Astrophysics Data System (ADS)

    Lee, Kang-Il; Choi, Yong Sup; Park, Hyun Jae

    2016-12-01

    The novel technique of Plasma-Assisted Vapor Deposition (PAVD) is developed as a new deposition method for thin metal films. The PAVD technique yields a high-quality thin film without any heating of the substrate because evaporated particles acquire energy from plasma that is confined to the inside of the evaporation source. Experiments of silver thin film deposition have been carried out in conditions of pressure lower than 10-3 Pa. Pure silver plasma generation is verified by the measurement of the Ag-I peak using optical emission spectroscopy. A four point probe and a UV-VIS spectrophotometer are used to measure the electrical and optical properties of the silver film that is deposited by PAVD. For an ultra-thin silver film with a thickness of 6.5 nm, we obtain the result of high-performance silver film properties, including a sheet resistance <20 Ω sq-1 and a visible-range transmittance >75%. The PAVD-film properties show a low sheet resistance of 30% and the same transmittance with conventional thermal evaporation film. In the PAVD source, highly energetic particles and UV from plasma do not reach the substrate because the plasma is completely shielded by the optimized nozzle of the crucible. This new PAVD technique could be a realistic solution to improve the qualities of transparent electrodes for organic light emission device fabrication without causing damage to the organic layers.

  15. Different Polar Metabolites and Protein Profiles between High- and Low-Quality Japanese Ginjo Sake

    PubMed Central

    Takahashi, Kei; Kohno, Hiromi

    2016-01-01

    Japanese ginjo sake is a premium refined sake characterized by a pleasant fruity apple-like flavor and a sophisticated taste. Because of technical difficulties inherent in brewing ginjo sake, off-flavors sometimes occur. However, the metabolites responsible for off-flavors as well as those present or absent in higher quality ginjo sake remain uncertain. Here, the relationship between 202 polar chemical compounds in sake identified using capillary electrophoresis coupled with time-of-flight mass spectrometry and its organoleptic properties, such as quality and off-flavor, was examined. First, we found that some off-flavored sakes contained higher total amounts of metabolites than other sake samples. The results also identified that levels of 2-oxoglutaric acid and fumaric acid, metabolites in the tricarboxylic acid cycle, were highly but oppositely correlated with ginjo sake quality. Similarly, pyridoxine and pyridoxamine, co-enzymes for amino transferase, were also highly but oppositely correlated with ginjo sake quality. Additionally, pyruvic acid levels were associated with good quality as well. Compounds involved in the methionine salvage cycle, oxidative glutathione derivatives, and amino acid catabolites were correlated with low quality. Among off-flavors, an inharmonious bitter taste appeared attributable to polyamines. Furthermore, protein analysis displayed that a diversity of protein components and yeast protein (triosephosphate isomerase, TPI) leakage was linked to the overall metabolite intensity in ginjo sake. This research provides insight into the relationship between sake components and organoleptic properties. PMID:26939054

  16. High-quality bulk hybrid perovskite single crystals within minutes by inverse temperature crystallization

    NASA Astrophysics Data System (ADS)

    Saidaminov, Makhsud I.; Abdelhady, Ahmed L.; Murali, Banavoth; Alarousu, Erkki; Burlakov, Victor M.; Peng, Wei; Dursun, Ibrahim; Wang, Lingfei; He, Yao; Maculan, Giacomo; Goriely, Alain; Wu, Tom; Mohammed, Omar F.; Bakr, Osman M.

    2015-07-01

    Single crystals of methylammonium lead trihalide perovskites (MAPbX3; MA=CH3NH3+, X=Br- or I-) have shown remarkably low trap density and charge transport properties; however, growth of such high-quality semiconductors is a time-consuming process. Here we present a rapid crystal growth process to obtain MAPbX3 single crystals, an order of magnitude faster than previous reports. The process is based on our observation of the substantial decrease of MAPbX3 solubility, in certain solvents, at elevated temperatures. The crystals can be both size- and shape-controlled by manipulating the different crystallization parameters. Despite the rapidity of the method, the grown crystals exhibit transport properties and trap densities comparable to the highest quality MAPbX3 reported to date. The phenomenon of inverse or retrograde solubility and its correlated inverse temperature crystallization strategy present a major step forward for advancing the field on perovskite crystallization.

  17. Evaluation of fluorophores for optimal performance in localization-based super-resolution imaging

    PubMed Central

    Dempsey, Graham T.; Vaughan, Joshua C.; Chen, Kok Hao; Bates, Mark; Zhuang, Xiaowei

    2011-01-01

    One approach to super-resolution fluorescence imaging uses sequential activation and localization of individual fluorophores to achieve high spatial resolution. Essential to this technique is the choice of fluorescent probes — the properties of the probes, including photons per switching event, on/off duty cycle, photostability, and number of switching cycles, largely dictate the quality of super-resolution images. While many probes have been reported, a systematic characterization of the properties of these probes and their impact on super-resolution image quality has been described in only a few cases. Here, we quantitatively characterized the switching properties of 26 organic dyes and directly related these properties to the quality of super-resolution images. This analysis provides a set of guidelines for characterization of super-resolution probes and a resource for selecting probes based on performance. Our evaluation identified several photoswitchable dyes with good to excellent performance in four independent spectral ranges, with which we demonstrated low crosstalk, four-color super-resolution imaging. PMID:22056676

  18. Comparison of eating quality and physicochemical properties between Japanese and Chinese rice cultivars.

    PubMed

    Nakamura, Sumiko; Cui, Jing; Zhang, Xin; Yang, Fan; Xu, Ximing; Sheng, Hua; Ohtsubo, Ken'ichi

    2016-12-01

    In this study, we evaluated 16 Japanese and Chinese rice cultivars in terms of their main chemical components, iodine absorption curve, apparent amylose content (AAC), pasting property, resistant starch content, physical properties, sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis, and enzyme activity. Based on these quality evaluations, we concluded that Chinese rice varieties are characterized by a high protein and the grain texture after cooking has high hardness and low stickiness. In a previous study, we developed a novel formula for estimating AAC based on the iodine absorption curve. The validation test showed a determination coefficient of 0.996 for estimating AAC of Chinese rice cultivars as unknown samples. In the present study, we developed a novel formulae for estimating the balance degree of the surface layer of cooked rice (A3/A1: a ratio of workload of stickiness and hardness) based on the iodine absorption curve obtained using milled rice.

  19. Thermal and non-thermal preservation techniques of tiger nuts' beverage "horchata de chufa". Implications for food safety, nutritional and quality properties.

    PubMed

    Roselló-Soto, Elena; Poojary, Mahesha M; Barba, Francisco J; Koubaa, Mohamed; Lorenzo, Jose M; Mañes, Jordi; Moltó, Juan Carlos

    2018-03-01

    "Horchata de chufa" is a traditional Spanish beverage produced from tiger nuts (Cyperus esculentus L.). Due to its richness in nutritional compounds, it is highly perishable and its conservation by pasteurization and/or adding preservatives is required. Although efficient, conventional thermal treatment for pasteurization induces changes in the nutritional and sensory properties. Replacing conventional pasteurization by non-thermal technologies such as pulsed electric fields, ultraviolet, and high pressure, combined with moderate temperatures (<40°C) allows a reduction of energy consumption, along with the preservation of the most thermo-sensitive molecules. Accordingly, this review deals with the description of the most relevant non-thermal technologies applied to preserve "horchata" beverage in order to extend the shelf life and inactivate pathogenic microorganisms as well as to preserve the nutritional and quality properties of this food beverage. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Microwave flow and conventional heating effects on the physicochemical properties, bioactive compounds and enzymatic activity of tomato puree.

    PubMed

    Arjmandi, Mitra; Otón, Mariano; Artés, Francisco; Artés-Hernández, Francisco; Gómez, Perla A; Aguayo, Encarna

    2017-02-01

    Thermal processing causes a number of undesirable changes in physicochemical and bioactive properties of tomato products. Microwave (MW) technology is an emergent thermal industrial process that offers a rapid and uniform heating, high energy efficiency and high overall quality of the final product. The main quality changes of tomato puree after pasteurization at 96 ± 2 °C for 35 s, provided by a semi-industrial continuous microwave oven (MWP) under different doses (low power/long time to high power/short time) or by conventional method (CP) were studied. All heat treatments reduced colour quality, total antioxidant capacity and vitamin C, with a greater reduction in CP than in MWP. On the other hand, use of an MWP, in particular high power/short time (1900 W/180 s, 2700 W/160 s and 3150 W/150 s) enhanced the viscosity and lycopene extraction and decreased the enzyme residual activity better than with CP samples. For tomato puree, polygalacturonase was the more thermo-resistant enzyme, and could be used as an indicator of pasteurization efficiency. MWP was an excellent pasteurization technique that provided tomato puree with improved nutritional quality, reducing process times compared to the standard pasteurization process. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  1. Full-reference quality assessment of stereoscopic images by learning binocular receptive field properties.

    PubMed

    Shao, Feng; Li, Kemeng; Lin, Weisi; Jiang, Gangyi; Yu, Mei; Dai, Qionghai

    2015-10-01

    Quality assessment of 3D images encounters more challenges than its 2D counterparts. Directly applying 2D image quality metrics is not the solution. In this paper, we propose a new full-reference quality assessment for stereoscopic images by learning binocular receptive field properties to be more in line with human visual perception. To be more specific, in the training phase, we learn a multiscale dictionary from the training database, so that the latent structure of images can be represented as a set of basis vectors. In the quality estimation phase, we compute sparse feature similarity index based on the estimated sparse coefficient vectors by considering their phase difference and amplitude difference, and compute global luminance similarity index by considering luminance changes. The final quality score is obtained by incorporating binocular combination based on sparse energy and sparse complexity. Experimental results on five public 3D image quality assessment databases demonstrate that in comparison with the most related existing methods, the devised algorithm achieves high consistency with subjective assessment.

  2. Comparative relationship of fiber strength and yarn tenacity in four cotton cultivars

    USDA-ARS?s Scientific Manuscript database

    High volume instrumentation (HVITM) measurement is a primary and routine tool of providing fiber properties to cotton researchers. There have been considerable studies designed to derive yarn quality from acquired fiber quality data by various means, including HVI. There is also of desired informati...

  3. The prediction of leather mechanical properties from airborne ultrasonic testing of hides

    USDA-ARS?s Scientific Manuscript database

    High quality, clean, and well-preserved hides are paramount for competitiveness in both domestic and export markets. Currently, hides are visually inspected and ranked for quality and sale price, which is not reliable when hair is present on the hides. Advanced technologies are needed to nondestru...

  4. Miniature spinning: an improved cotton research tools

    USDA-ARS?s Scientific Manuscript database

    Cotton is a natural fiber and is highly variable. Researchers need to evaluate cotton fiber properties to aid in the development of improved varieties and to ensure that changes in agronomic practices do not harm fiber quality or processing propensity. There is a need for fiber quality evaluation be...

  5. The quality of dying and death measurement instruments: A systematic psychometric review.

    PubMed

    Gutiérrez Sánchez, Daniel; Pérez Cruzado, David; Cuesta-Vargas, Antonio I

    2018-04-19

    To identify instruments that could assess the quality of dying and death and their psychometric properties. To assess the methodological quality of studies on measurement properties. A high quality of death is regarded as a goal at the end of life and, therefore, an assessment of the end of life experience is essential. Many instruments have been developed to evaluate the quality of dying and death. The selection of the most appropriate measure to be used in clinical and research settings is crucial. Psychometric systematic review. We systematically searched ProQuest Medline, SciELO and ProQuest PsycINFO from 1970 - May 2016. Identification and evaluation of instruments that assessed quality of dying and death. Papers were evaluated by two independent reviewers according to the COSMIN checklist with a 4-point scale. A total of 19 studies were included in this review. Seven instruments were found that were specifically designed for assessing quality of dying and death. A retrospective carer proxy report to evaluate this construct was used in most of the papers. The methodological quality of the studies was fair for most of the psychometric characteristics analyzed. Many instruments have been developed to assess the quality of dying and death. The Quality of Dying and Death Questionnaire is the best available measure of the quality of dying and death. It is the only questionnaire identified in this review where all psychometric properties according to the COSMIN checklist have been evaluated. © 2018 John Wiley & Sons Ltd.

  6. Copper Oxide Nanomaterials Prepared by Solution Methods, Some Properties, and Potential Applications: A Brief Review

    PubMed Central

    Tran, Thi Ha; Nguyen, Viet Tuyen

    2014-01-01

    Cupric oxide (CuO), having a narrow bandgap of 1.2 eV and a variety of chemophysical properties, is recently attractive in many fields such as energy conversion, optoelectronic devices, and catalyst. Compared with bulk material, the advanced properties of CuO nanostructures have been demonstrated; however, the fact that these materials cannot yet be produced in large scale is an obstacle to realize the potential applications of this material. In this respect, chemical methods seem to be efficient synthesis processes which yield not only large quantities but also high quality and advanced material properties. In this paper, the effect of some general factors on the morphology and properties of CuO nanomaterials prepared by solution methods will be overviewed. In terms of advanced nanostructure synthesis, microwave method in which copper hydroxide nanostructures are produced in the precursor solution and sequentially transformed by microwave into CuO may be considered as a promising method to explore in the near future. This method produces not only large quantities of nanoproducts in a short reaction time of several minutes, but also high quality materials with advanced properties. A brief review on some unique properties and applications of CuO nanostructures will be also presented. PMID:27437488

  7. Mid-Frequency Sonar Interactions With Beaked Whales

    DTIC Science & Technology

    2009-09-30

    to acquire new high-resolution morphometric and physical-property data on beaked whales for use in the model. It is hoped that the availability of such... morphometric and physical-property data on beaked whales for use in the model. It is hoped that the availability of such a system, together with high-quality... morphometric data through computerized tomography (CT) scans on marine mammal carcasses, and constructing finite-element models of the anatomy

  8. Safeguarding Copyrighted Contents: Digital Libraries and Intellectual Property Management. CWRU's Rights Management System.

    ERIC Educational Resources Information Center

    Alrashid, Tareq M.; Barker, James A.; Christian, Brian S.; Cox, Steven C.; Rabne, Michael W.; Slotta, Elizabeth A.; Upthegrove, Luella R.

    1998-01-01

    Describes Case Western Reserve University's (CWRU's) digital library project that examines the networked delivery of full-text materials and high-quality images to provide students excellent supplemental instructional resources delivered directly to their dormitory rooms. Reviews intellectual property (IP) management requirements and describes…

  9. High Throughput Experimental Materials Database

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zakutayev, Andriy; Perkins, John; Schwarting, Marcus

    The mission of the High Throughput Experimental Materials Database (HTEM DB) is to enable discovery of new materials with useful properties by releasing large amounts of high-quality experimental data to public. The HTEM DB contains information about materials obtained from high-throughput experiments at the National Renewable Energy Laboratory (NREL).

  10. Evaluation of the measurement properties of self-reported health-related work-functioning instruments among workers with common mental disorders.

    PubMed

    Abma, Femke I; van der Klink, Jac J L; Terwee, Caroline B; Amick, Benjamin C; Bültmann, Ute

    2012-01-01

    During the past decade, common mental disorders (CMD) have emerged as a major public and occupational health problem in many countries. Several instruments have been developed to measure the influence of health on functioning at work. To select appropriate instruments for use in occupational health practice and research, the measurement properties (eg, reliability, validity, responsiveness) must be evaluated. The objective of this study is to appraise critically and compare the measurement properties of self-reported health-related work-functioning instruments among workers with CMD. A systematic review was performed searching three electronic databases. Papers were included that: (i) mainly focused on the development and/or evaluation of the measurement properties of a self-reported health-related work-functioning instrument; (ii) were conducted in a CMD population; and (iii) were fulltext original papers. Quality appraisal was performed using the consensus-based standards for the selection of health status measurement instruments (COSMIN) checklist. Five papers evaluating measurement properties of five self-reported health-related work-functioning instruments in CMD populations were included. There is little evidence available for the measurement properties of the identified instruments in this population, mainly due to low methodological quality of the included studies. The available evidence on measurement properties is based on studies of poor-to-fair methodological quality. Information on a number of measurement properties, such as measurement error, content validity, and cross-cultural validity is still lacking. Therefore, no evidence-based decisions and recommendations can be made for the use of health-related work functioning instruments. Studies of high methodological quality are needed to properly assess the existing instruments' measurement properties.

  11. High-Quality Reduced Graphene Oxide by a Dual-Function Chemical Reduction and Healing Process

    PubMed Central

    Some, Surajit; Kim, Youngmin; Yoon, Yeoheung; Yoo, HeeJoun; Lee, Saemi; Park, Younghun; Lee, Hyoyoung

    2013-01-01

    A new chemical dual-functional reducing agent, thiophene, was used to produce high-quality reduced graphene oxide (rGO) as a result of a chemical reduction of graphene oxide (GO) and the healing of rGO. Thiophene reduced GO by donation of electrons with acceptance of oxygen while it was converted into an intermediate oxidised polymerised thiophene that was eventually transformed into polyhydrocarbon by loss of sulphur atoms. Surprisingly, the polyhydrocarbon template helped to produce good-quality rGOC (chemically reduced) and high-quality rGOCT after thermal treatment. The resulting rGOCT nanosheets did not contain any nitrogen or sulphur impurities, were highly deoxygenated and showed a healing effect. Thus the electrical properties of the as-prepared rGOCT were superior to those of conventional hydrazine-produced rGO that require harsh reaction conditions. Our novel dual reduction and healing method with thiophene could potentially save energy and facilitate the commercial mass production of high-quality graphene. PMID:23722643

  12. Characterization of non-conductive materials using field emission scanning electron microscopy

    NASA Astrophysics Data System (ADS)

    Cao, Cong; Gao, Ran; Shang, Huayan; Peng, Tingting

    2016-01-01

    With the development of science and technology, field emission scanning electron microscope (FESEM) plays an important role in nano-material measurements because of its advantages of high magnification, high resolution and easy operation. A high-quality secondary electron image is a significant prerequisite for accurate and precise length measurements. In order to obtain high-quality secondary electron images, the conventional treatment method for non-conductive materials is coating conductive films with gold, carbon or platinum to reduce charging effects, but this method will cover real micro structures of materials, change the sample composition properties and meanwhile introduce a relatively big error to nano-scale microstructure measurements. This paper discusses how to reduce or eliminate the impact of charging effects on image quality to the greatest extent by changing working conditions, such as voltage, stage bias, scanning mode and so on without treatment of coating, to obtain real and high-quality microstructure information of materials.

  13. Application of ICME Methods for the Development of Rapid Manufacturing Technologies

    NASA Astrophysics Data System (ADS)

    Maiwald-Immer, T.; Göhler, T.; Fischersworring-Bunk, A.; Körner, C.; Osmanlic, F.; Bauereiß, A.

    Rapid manufacturing technologies are lately gaining interest as alternative manufacturing method. Due to the large parameter sets applicable in these manufacturing methods and their impact on achievable material properties and quality, support of the manufacturing process development by the use of simulation is highly attractive. This is especially true for aerospace applications with their high quality demands and controlled scatter in the resulting material properties. The applicable simulation techniques to these manufacturing methods are manifold. The paper will focus on the melt pool simulation for a SLM (selective laser melting) process which was originally developed for EBM (electron beam melting). It will be discussed in the overall context of a multi-scale simulation within a virtual process chain.

  14. Effect of Synthesis on Quality, Electronic Properties and Environmental Stability of Individual monolayer Ti3C2 MXene Flakes

    DOE PAGES

    Lipatov, A.; Alhabeb, M.; Lukatskaya, Maria R.; ...

    2016-01-01

    2D transition metal carbide Ti 3C 2T x (T stands for surface termination), the most widely studied MXene, has shown outstanding electrochemical properties and promise for a number of bulk applications. However, electronic properties of individual MXene flakes, which are important for understanding the potential of these materials, remain largely unexplored. Herein, a modified synthetic method is reported for producing high-quality monolayer Ti 3C 2T x flakes. Field-effect transistors (FETs) based on monolayer Ti 3C 2T x flakes are fabricated and their electronic properties are measured. Individual Ti3C2Tx flakes exhibit a high conductivity of 4600 ± 1100 S cm -1more » and field-effect electron mobility of 2.6 ± 0.7 cm2 V -1 s -1. The resistivity of multilayer Ti 3C 2T x films is only one order of magnitude higher than the resistivity of individual flakes, which indicates a surprisingly good electron transport through the surface terminations of different flakes, unlike in many other 2D materials. Finally, the fabricated FETs are used to investigate the environmental stability and kinetics of oxidation of Ti3C2Tx flakes in humid air. The high-quality Ti 3C 2T x flakes are reasonably stable and remain highly conductive even after their exposure to air for more than 24 h. It is demonstrated that after the initial exponential decay the conductivity of Ti 3C 2T x flakes linearly decreases with time, which is consistent with their edge oxidation.« less

  15. Biochar and the other COP21 agenda: the 4/1000 Initiative and climate solution right under our feet.

    NASA Astrophysics Data System (ADS)

    Gaspard, J., II; Burchell, A.; Shields, F.; Beierwaltes, W.; Parks, D.; Ranney, S.

    2016-12-01

    Anthropogenic activities have altered the global carbon cycle. Restoring degraded lands and increasing soil carbon will play an important role in addressing the challenges of food security, drought and mitigating anthropogenic emissions. Regenerative soil practices are crucial to limiting global temperature increase to 2°C (3.6°F)." To achieve this, scientists, policy makers and the business sector face a collaborative challenge of judiciously implementing solutions that work, are profitable and need to be included in every nation's climate toolbox. High-quality biochar provides an intriguing carbon management strategy. To understand temperature variation, feedstock properties and to produce biochar with reproducible and tunable properties, our thermal conversion kilns use advanced control technology to enable a slow pyrolysis process that is: (i) "feedstock-blind" (drought and pest-killed trees, agricultural waste, construction residue, etc.) and (ii) resilient to feedstock properties (moisture, composition). The result is a high-quality, stable biochar with a high carbon content, a well-defined pore structure that promotes water retention and microbe integration, desired ionic properties and thousand year residence times. Cost of production has reached a point that now assures profitability for specialty high-quality biochar sold to target drought, turf growth, plant disease suppression, adsorption of heavy metals from polluted waters, adsorption of excess phosphorus and nitrates in streams and lakes, production of durable construction materials and other industrial applications. Given published estimates of 1.5 - 2.9 MT CO2e/ MT biochar applied to soils, this translates to less than $20 /MT CO2 sequestered - and less the carbon-offset prices being discussed. This suggests commercial biochar strategies may be sufficiently economically attractive to now incentivize important agriculture, forest and grassland carbon storage policy decisions.

  16. Processing and damage recovery of intrinsic self-healing glass fiber reinforced composites

    NASA Astrophysics Data System (ADS)

    Sordo, Federica; Michaud, Véronique

    2016-08-01

    Glass fiber reinforced composites with a self-healing, supramolecular hybrid network matrix were produced using a modified vacuum assisted resin infusion moulding process adapted to high temperature processing. The quality and fiber volume fraction (50%) of the obtained materials were assessed through microscopy and matrix burn-off methods. The thermo-mechanical properties were quantified by means of dynamic mechanical analysis, revealing very high damping properties compared to traditional epoxy-based glass fiber reinforced composites. Self-healing properties were assessed by three-point bending tests. A high recovery of the flexural properties, around 72% for the elastic modulus and 65% of the maximum flexural stress, was achieved after a resting period of 24 h at room temperature. Recovery after low velocity impact events was also visually observed. Applications for this intrinsic and autonomic self-healing highly reinforced composite material point towards semi-structural applications where high damping and/or integrity recovery after impact are required.

  17. A systematic review investigating measurement properties of physiological tests in rugby.

    PubMed

    Chiwaridzo, Matthew; Oorschot, Sander; Dambi, Jermaine M; Ferguson, Gillian D; Bonney, Emmanuel; Mudawarima, Tapfuma; Tadyanemhandu, Cathrine; Smits-Engelsman, Bouwien C M

    2017-01-01

    This systematic review was conducted with the first objective aimed at providing an overview of the physiological characteristics commonly evaluated in rugby and the corresponding tests used to measure each construct. Secondly, the measurement properties of all identified tests per physiological construct were evaluated with the ultimate purpose of identifying tests with strongest level of evidence per construct. The review was conducted in two stages. In all stages, electronic databases of EBSCOhost, Medline and Scopus were searched for full-text articles. Stage 1 included studies examining physiological characteristics in rugby. Stage 2 included studies evaluating measurement properties of all tests identified in Stage 1 either in rugby or related sports such as Australian Rules football and Soccer. Two independent reviewers screened relevant articles from titles and abstracts for both stages. Seventy studies met the inclusion criteria for Stage 1. The studies described 63 tests assessing speed (8), agility/change of direction speed (7), upper-body muscular endurance (8), upper-body muscular power (6), upper-body muscular strength (5), anaerobic endurance (4), maximal aerobic power (4), lower-body muscular power (3), prolonged high-intensity intermittent running ability/endurance (5), lower-body muscular strength (5), repeated high-intensity exercise performance (3), repeated-sprint ability (2), repeated-effort ability (1), maximal aerobic speed (1) and abdominal endurance (1). Stage 2 identified 20 studies describing measurement properties of 21 different tests. Only moderate evidence was found for the reliability of the 30-15 Intermittent Fitness. There was limited evidence found for the reliability and/or validity of 5 m, 10 m, 20 m speed tests, 505 test, modified 505 test, L run test, Sergeant Jump test and bench press repetitions-to-fatigue tests. There was no information from high-quality studies on the measurement properties of all the other tests identified in stage 1. A number of physiological characteristics are evaluated in rugby. Each physiological construct has multiple tests for measurement. However, there is paucity of information on measurement properties from high-quality studies for the tests. This raises questions about the usefulness and applicability of these tests in rugby and creates a need for high-quality future studies evaluating measurement properties of these physiological tests. PROSPERO CRD 42015029747.

  18. ASTM Committee C28: International Standards for Properties and Performance of Advanced Ceramics-Three Decades of High-Quality, Technically-Rigorous Normalization

    NASA Technical Reports Server (NTRS)

    Jenkins, Michael G.; Salem, Jonathan A.

    2016-01-01

    Physical and mechanical properties and performance of advanced ceramics and glasses are difficult to measure correctly without the proper techniques. For over three decades, ASTM Committee C28 on Advanced Ceramics, has developed high-quality, technically-rigorous, full-consensus standards (e.g., test methods, practices, guides, terminology) to measure properties and performance of monolithic and composite ceramics that may be applied to glasses in some cases. These standards contain testing particulars for many mechanical, physical, thermal, properties and performance of these materials. As a result these standards are used to generate accurate, reliable, repeatable and complete data. Within Committee C28, users, producers, researchers, designers, academicians, etc. have written, continually updated, and validated through round-robin test programs, 50 standards since the Committee's founding in 1986. This paper provides a detailed retrospective of the 30 years of ASTM Committee C28 including a graphical pictogram listing of C28 standards along with examples of the tangible benefits of standards for advanced ceramics to demonstrate their practical applications.

  19. Effect of species, pretreatments, and drying methods on the functional and pasting properties of high-quality yam flour.

    PubMed

    Wahab, Bashirat A; Adebowale, Abdul-Rasaq A; Sanni, Silifat A; Sobukola, Olajide P; Obadina, Adewale O; Kajihausa, Olatundun E; Adegunwa, Mojisola O; Sanni, Lateef O; Tomlins, Keith

    2016-01-01

    The study investigated the functional properties of HQYF (high-quality yam flour) from tubers of four dioscorea species. The tubers were processed into HQYF using two pretreatments (potassium metabisulphite: 0.28%, 15 min; blanching: 70°C, 15 min) and drying methods (cabinet: 60°C, 48 h; sun drying: 3 days). Significant differences (P < 0.05) were observed in pasting characteristics of flours among the four species. The drying method significantly affected only the peak viscosity. The interactive effect of species, pretreatment, and drying methods on the functional properties was significant (P < 0.05) except for emulsification capacity, angle of repose, and least gelation concentration. The significant variation observed in most of the functional properties of the HQYF could contribute significantly to breeding programs of the yam species for diverse food applications. The pastes of flour from Dioscorea dumetorum pretreated with potassium metabisulphite and dried under a cabinet dryer were stable compared to other samples, hence will have better applications in products requiring lower retrogradation during freeze/thaw cycles.

  20. InGaAs quantum dots grown on B-type high index GaAs substrates: surface morphologies and optical properties

    NASA Astrophysics Data System (ADS)

    Liang, B. L.; Wang, Zh M.; Mazur, Yu I.; Strelchuck, V. V.; Holmes, K.; Lee, J. H.; Salamo, G. J.

    2006-06-01

    We systematically investigated the correlation between morphological and optical properties of InGaAs self-assembled quantum dots (QDs) grown by solid-source molecular beam epitaxy on GaAs (n 11)B (n = 9, 8, 7, 5, 3, 2) substrates. Remarkably, all InGaAs QDs on GaAs(n 11)B under investigation show optical properties superior to those for ones on GaAs(100) as regards the photoluminescence (PL) linewidth and intensity. The morphology for growth of InGaAs QDs on GaAs (n 11)B, where n = 9, 8, 7, 5, is observed to have a rounded shape with a higher degree of lateral ordering than that on GaAs(100). The optical property and the lateral ordering are best for QDs grown on a (511)B substrate surface, giving a strong correlation between lateral ordering and PL optical quality. Our results demonstrate the potential for high quality InGaAs QDs on GaAs(n 11)B for optoelectronic applications.

  1. Analysis of visual quality improvements provided by known tools for HDR content

    NASA Astrophysics Data System (ADS)

    Kim, Jaehwan; Alshina, Elena; Lee, JongSeok; Park, Youngo; Choi, Kwang Pyo

    2016-09-01

    In this paper, the visual quality of different solutions for high dynamic range (HDR) compression using MPEG test contents is analyzed. We also simulate the method for an efficient HDR compression which is based on statistical property of the signal. The method is compliant with HEVC specification and also easily compatible with other alternative methods which might require HEVC specification changes. It was subjectively tested on commercial TVs and compared with alternative solutions for HDR coding. Subjective visual quality tests were performed using SUHD TVs model which is SAMSUNG JS9500 with maximum luminance up to 1000nit in test. The solution that is based on statistical property shows not only improvement of objective performance but improvement of visual quality compared to other HDR solutions, while it is compatible with HEVC specification.

  2. Health-related quality of life questionnaires in individuals with haemophilia: a systematic review of their measurement properties.

    PubMed

    Limperg, P F; Terwee, C B; Young, N L; Price, V E; Gouw, S C; Peters, M; Grootenhuis, M A; Blanchette, V; Haverman, L

    2017-07-01

    The evaluation of health related quality of life (HRQOL) is essential for a full assessment of the influence of an illness on patients' lives. The aim of this paper is to critically appraise and compare the measurement properties of HRQOL questionnaires studied in haemophilia. Bibliographic databases (Embase, Medline, Cinahl and PsycInfo) were searched for articles evaluating measurement properties of HRQOL questionnaires in haemophilia. Articles were excluded that did not report HRQOL measurement properties, or when <50% of the study population had haemophilia. The methodological quality of the selected studies was evaluated using the COSMIN checklist. The measurement properties of the HRQL questionnaires were rated as 'positive', 'indeterminate' or 'negative', accompanied by levels of evidence. The search resulted in 1597 unique hits, of which 22 studies were included. These articles evaluated three questionnaires for children (CHO-KLAT, Haemo-QoL and one unnamed measure) and five for adults (Hemofilia-QoL, Haemophilia Well-Being Index, HAEMO-QoL-A, Haem-A-QoL, and SF-36). The CHO-KLAT was the paediatric measure that showed the strongest measurement properties in high-quality studies. The Haemophilia Well-Being Index and HAEMO-QoL-A performed best among the adult measures. None of the studies reported measurement error and responsiveness. Our findings suggest that there is no need for new disease-specific HRQOL questionnaires for haemophilia, but rather that additional research is necessary to document the measurement properties of the currently available questionnaires, specifically focusing on the structural validity, measurement error and responsiveness of these questionnaires. © 2017 John Wiley & Sons Ltd.

  3. Effects of growth temperature on the properties of InGaN channel heterostructures grown by pulsed metal organic chemical vapor deposition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Yachao; Zhou, Xiaowei; Xu, Shengrui

    Pulsed metal organic chemical vapor deposition (P-MOCVD) is introduced into the growth of high quality InGaN channel heterostructures. The effects of InGaN channel growth temperature on the structural and transport properties of the heterostructures are investigated in detail. High resolution x-ray diffraction (HRXRD) and Photoluminescence (PL) spectra indicate that the quality of InGaN channel strongly depends on the growth temperature. Meanwhile, the atomic force microscopy (AFM) results show that the interface morphology between the InGaN channel and the barrier layer also relies on the growth temperature. Since the variation of material properties of InGaN channel has a significant influence onmore » the electrical properties of InAlN/InGaN heterostructures, the optimal transport properties can be achieved by adjusting the growth temperature. A very high two dimension electron gas (2DEG) density of 1.92 × 10{sup 13} cm{sup −2} and Hall electron mobility of 1025 cm{sup 2}/(V⋅s) at room temperature are obtained at the optimal growth temperature around 740 °C. The excellent transport properties in our work indicate that the heterostructure with InGaN channel is a promising candidate for the microwave power devices, and the results in this paper will be instructive for further study of the InGaN channel heterostructures.« less

  4. Deposition of device quality low H content, amorphous silicon films

    DOEpatents

    Mahan, A.H.; Carapella, J.C.; Gallagher, A.C.

    1995-03-14

    A high quality, low hydrogen content, hydrogenated amorphous silicon (a-Si:H) film is deposited by passing a stream of silane gas (SiH{sub 4}) over a high temperature, 2,000 C, tungsten (W) filament in the proximity of a high temperature, 400 C, substrate within a low pressure, 8 mTorr, deposition chamber. The silane gas is decomposed into atomic hydrogen and silicon, which in turn collides preferably not more than 20--30 times before being deposited on the hot substrate. The hydrogenated amorphous silicon films thus produced have only about one atomic percent hydrogen, yet have device quality electrical, chemical, and structural properties, despite this lowered hydrogen content. 7 figs.

  5. Deposition of device quality low H content, amorphous silicon films

    DOEpatents

    Mahan, Archie H.; Carapella, Jeffrey C.; Gallagher, Alan C.

    1995-01-01

    A high quality, low hydrogen content, hydrogenated amorphous silicon (a-Si:H) film is deposited by passing a stream of silane gas (SiH.sub.4) over a high temperature, 2000.degree. C., tungsten (W) filament in the proximity of a high temperature, 400.degree. C., substrate within a low pressure, 8 mTorr, deposition chamber. The silane gas is decomposed into atomic hydrogen and silicon, which in turn collides preferably not more than 20-30 times before being deposited on the hot substrate. The hydrogenated amorphous silicon films thus produced have only about one atomic percent hydrogen, yet have device quality electrical, chemical, and structural properties, despite this lowered hydrogen content.

  6. Mechanical Characterization of Baslat Based Natural Hybrid Composites for Aerospace Applications

    NASA Astrophysics Data System (ADS)

    Alexander, J.; Elphej Churchill, S. J.

    2017-05-01

    Advanced composites have attracted aircraft designers due to its high strength to weight ratio, high stiffness to weight ratio, tailoring properties, hybridization of opposites etc. Moreover the cost reduction is also another important requirement of structural components. Basalt fibers are new entry in structural field which has excellent properties more or less equivalent to GFRP composites. Using these basalt fibres, new hybrid composites were developed by combining basalt fibres with natural fibres. The mechanical and thermal properties were determined and compared with BFRP and GFRP composites. Results proved that hybrid composites have some good qualities.

  7. Properties of Galvanized and Galvannealed Advanced High Strength Hot Rolled Steels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    V.Y. Guertsman; E. Essadiqi; S. Dionne

    2008-04-01

    The objectives of the project were (i) to develop the coating process information to achieve good quality coatings on 3 advanced high strength hot rolled steels while retaining target mechanical properties, (ii) to obtain precise knowledge of the behavior of these steels in the various forming operations and (iii) to establish accurate user property data in the coated conditions. Three steel substrates (HSLA, DP, TRIP) with compositions providing yield strengths in the range of 400-620 MPa were selected. Only HSLA steel was found to be suitable for galnaizing and galvannealing in the hot rolled condition.

  8. MOCVD Growth and Characterization of n-type Zinc Oxide Thin Films

    NASA Astrophysics Data System (ADS)

    Ben-Yaacov, Tammy

    In the past decade, there has been widespread effort in the development of zinc oxide as a II-V1 semiconductor material. ZnO has potential advantages in optoelectronip device applications due to its unique electrical and optical properties. What stands out among these properties is its wide direct bandgap of 3.37 eV and its high electrical conductivity and transparency in the visible and near-UV regions of the spectrum. ZnO can be grown heteroepitaxially on GaN under near lattice-matched conditions and homoepitaxially as well, as high-quality bulk ZnO substrates are commercially available. This dissertation focuses on the development of the growth of high-quality, single crystal n-type ZnO films, control of n-type conductivity, as well as its application as a transparent contact material in GaN-based devices. The first part of this dissertation is an extensive heteroepitaxial and homoepitaxial growth study presenting the properties of ZnO(0001) layers grown on GaN(0001) templates and ZnO(0001) substrates. We show that deposition on GaN requires a two-step growth technique involving the growth of a low temperature nucleation layer before growing a high temperature epitaxial layer in order to obtain smooth ZnO films with excellent crystal quality and step-flow surface morphology. We obtained homoepitaxial ZnO(0001) films of structural quality and surface morphology that is comparable to the as-received substrates, and showed that a high growth temperature (≥1000°C) is needed in order to achieve step-flow growth mode. We performed n-type doping experiments, and established the conditions for which Indium effectively controls the n-type conductivity of ZnO films grown on GaN(0001) templates. A peak carrier concentration of 3.22x 10 19cm-3 and minimum sheet resistance of 97 O/square was achieved, while simultaneously maintaining good morphology and crystal quality. Finally, we present In-doped ZnO films implemented as p-contacts for GaN-based solar cells and LEDs, and we investigate the n-ZnO/p-GaN interface. We show that ZnO has potential as an effective p-contact for these devices, and determine properties that still need improvement in order for ZnO to compete with other contact materials. We also compare the device performance to metal-contacted devices. In summary, this thesis describes the growth of ZnO(0001) films by MOCVD, the progress in developing ZnO material with excellent surface morphology, high crystal quality, and controllable n-type doping, as well as its application to GaN-based optoelectronic devices as a p-contact material.

  9. Field electron emission based on resonant tunneling in diamond/CoSi2/Si quantum well nanostructures

    PubMed Central

    Gu, Changzhi; Jiang, Xin; Lu, Wengang; Li, Junjie; Mantl, Siegfried

    2012-01-01

    Excellent field electron emission properties of a diamond/CoSi2/Si quantum well nanostructure are observed. The novel quantum well structure consists of high quality diamond emitters grown on bulk Si substrate with a nanosized epitaxial CoSi2 conducting interlayer. The results show that the main emission properties were modified by varying the CoSi2 thickness and that stable, low-field, high emission current and controlled electron emission can be obtained by using a high quality diamond film and a thicker CoSi2 interlayer. An electron resonant tunneling mechanism in this quantum well structure is suggested, and the tunneling is due to the long electron mean free path in the nanosized CoSi2 layer. This structure meets most of the requirements for development of vacuum micro/nanoelectronic devices and large-area cold cathodes for flat-panel displays. PMID:23082241

  10. Photonic devices on planar and curved substrates and methods for fabrication thereof

    DOEpatents

    Bartl, Michael H.; Barhoum, Moussa; Riassetto, David

    2016-08-02

    A versatile and rapid sol-gel technique for the fabrication of high quality one-dimensional photonic bandgap materials. For example, silica/titania multi-layer materials may be fabricated by a sol-gel chemistry route combined with dip-coating onto planar or curved substrate. A shock-cooling step immediately following the thin film heat-treatment process is introduced. This step was found important in the prevention of film crack formation--especially in silica/titania alternating stack materials with a high number of layers. The versatility of this sol-gel method is demonstrated by the fabrication of various Bragg stack-type materials with fine-tuned optical properties by tailoring the number and sequence of alternating layers, the film thickness and the effective refractive index of the deposited thin films. Measured optical properties show good agreement with theoretical simulations confirming the high quality of these sol-gel fabricated optical materials.

  11. Field electron emission based on resonant tunneling in diamond/CoSi2/Si quantum well nanostructures.

    PubMed

    Gu, Changzhi; Jiang, Xin; Lu, Wengang; Li, Junjie; Mantl, Siegfried

    2012-01-01

    Excellent field electron emission properties of a diamond/CoSi(2)/Si quantum well nanostructure are observed. The novel quantum well structure consists of high quality diamond emitters grown on bulk Si substrate with a nanosized epitaxial CoSi(2) conducting interlayer. The results show that the main emission properties were modified by varying the CoSi(2) thickness and that stable, low-field, high emission current and controlled electron emission can be obtained by using a high quality diamond film and a thicker CoSi(2) interlayer. An electron resonant tunneling mechanism in this quantum well structure is suggested, and the tunneling is due to the long electron mean free path in the nanosized CoSi(2) layer. This structure meets most of the requirements for development of vacuum micro/nanoelectronic devices and large-area cold cathodes for flat-panel displays.

  12. Femtopulse laser-based mask repair in the DUV wavelength regime

    NASA Astrophysics Data System (ADS)

    Ghadiali, Firoz; Tolani, Vikram; Nagpal, Rajesh; Robinson, Tod; LeClaire, Jeff; Bozak, Ron; Lee, David A.; White, Roy

    2006-05-01

    Deep ultraviolet (DUV) femtosecond-pulsed laser ablation has numerous highly desirable properties for subtractive photomask defect repair. These qualities include high removal rates, resolution better than the focused spot size, minimized redeposition of the ablated material (rollup and splatter), and a negligible heat affected zone. The optical properties of the photomask result in a broad repair process window because the absorber film (whether Cr or MoSi) and the transmissive substrate allow for a high degree of material removal selectivity. Repair results and process parameters from such a system are examined in light of theoretical considerations. In addition, the practical aspects of the operation of this system in a production mask house environment are reviewed from the standpoint of repair quality, capability, availability, and throughput. Focus is given to the benefit received by the mask shop, and to the technical performance of the system.

  13. Controlled assembly of graphene-capped nickel, cobalt and iron silicides

    PubMed Central

    Vilkov, O.; Fedorov, A.; Usachov, D.; Yashina, L. V.; Generalov, A. V.; Borygina, K.; Verbitskiy, N. I.; Grüneis, A.; Vyalikh, D. V.

    2013-01-01

    The unique properties of graphene have raised high expectations regarding its application in carbon-based nanoscale devices that could complement or replace traditional silicon technology. This gave rise to the vast amount of researches on how to fabricate high-quality graphene and graphene nanocomposites that is currently going on. Here we show that graphene can be successfully integrated with the established metal-silicide technology. Starting from thin monocrystalline films of nickel, cobalt and iron, we were able to form metal silicides of high quality with a variety of stoichiometries under a Chemical Vapor Deposition grown graphene layer. These graphene-capped silicides are reliably protected against oxidation and can cover a wide range of electronic materials/device applications. Most importantly, the coupling between the graphene layer and the silicides is rather weak and the properties of quasi-freestanding graphene are widely preserved. PMID:23835625

  14. Polymer matrix composites research at NASA Lewis Research Center

    NASA Technical Reports Server (NTRS)

    Serafini, T. T.

    1982-01-01

    The in situ polymerization of monomer reactants (PMR) approach was demonstrated to be a powerful approach for solving many of the processing difficulties associated with the use of high temperature resistant polymers as matrix resins in high performance composites. The PMR-15 polyimide provides the best overall balance of processing characteristics and elevated temperature properties. The excellent properties and commercial availability of composite materials based on PMR-15 led to their acceptance as viable engineering materials. The PMR-15 composites are used to produce a variety of high quality structural components.

  15. Effect of residual gas on structural, electrical and mechanical properties of niobium films deposited by magnetron sputtering deposition

    NASA Astrophysics Data System (ADS)

    Wang, Lanruo; Zhong, Yuan; Li, Jinjin; Cao, Wenhui; Zhong, Qing; Wang, Xueshen; Li, Xu

    2018-04-01

    Magnetron sputtering is an important method in the superconducting thin films deposition. The residual gas inside the vacuum chamber will directly affect the quality of the superconducting films. In this paper, niobium films are deposited by magnetron sputtering under different chamber residual gas conditions. The influence of baking and sputtering process on residual gas are studied as well. Surface morphology, electrical and mechanical properties of the films are analysed. The residual gas analysis result before the sputtering process could be regarded as a reference condition to achieve high quality superconducting thin films.

  16. Flying qualities and control system characteristics for superaugmented aircraft

    NASA Technical Reports Server (NTRS)

    Myers, T. T.; Mcruer, D. T.; Johnston, D. E.

    1984-01-01

    Aircraft-alone dynamics and superaugmented control system fundamental regulatory properties including stability and regulatory responses of the basic closed-loop systems; fundamental high and low frequency margins and governing factors; and sensitivity to aircraft and controller parameters are addressed. Alternative FCS mechanizations, and mechanizational side effects are also discussed. An overview of flying qualities considerations encompasses general pilot operations as a controller in unattended, intermittent and trim, and full-attention regulatory or command control; effective vehicle primary and secondary response properties to pilot inputs and disturbances; pilot control architectural possibilities; and comparison of superaugmented and conventional aircraft path responses for different forms of pilot control. Results of a simple experimental investigation into pilot dynamic behavior in attitude control of superaugmented aircraft configurations with high frequency time laps and time delays are presented.

  17. Pedagogical Tools for Teaching Supply and Demand Using Lessons from Transitional Economies

    ERIC Educational Resources Information Center

    Cech, Roman; Marks, Melanie Beth

    2007-01-01

    The typical method of presenting supply and demand in high school classes often leaves students with an impression that markets are simple and function effortlessly. In reality, the effectiveness of markets depends on the quality of complex institutions such as private property and property-rights enforcement. Students often do not realize that…

  18. Measuring the Rebound Resilience of a Bouncing Ball

    ERIC Educational Resources Information Center

    Wadhwa, Ajay

    2012-01-01

    Some balls which are made of high-quality rubber (an elastomeric) material, such as tennis or squash balls, could be used for the determination of an important property of such materials called resilience. Since a bouncing ball involves a single impact we call this property "rebound resilience" and express it as the ratio of the rebound height to…

  19. Crystal growth of Bi{sub 2}Te{sub 3} and noble cleaved (0001) surface properties

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Atuchin, V.V., E-mail: atuchin@thermo.isp.nsc.ru; Functional Electronics Laboratory, Tomsk State University, Tomsk 634050; Golyashov, V.A.

    2016-04-15

    A high quality Bi{sub 2}Te{sub 3} crystal has been grown by Bridgman method with the use of rotating heat field. The phase purity and bulk structural quality of the crystal have been verified by XRD analysis and rocking curve observation. The atomically smooth Bi{sub 2}Te{sub 3}(0001) surface with an excellent crystallographic quality is formed by cleavage in the air. The chemical and microstructural properties of the surface have been evaluated with RHEED, AFM, STM, SE and XPS. The Bi{sub 2}Te{sub 3}(0001) cleaved surface is formed by atomically smooth terraces with the height of the elemental step of ~1.04±0.1 nm, asmore » estimated by AFM. There is no surface oxidation process detected over a month keeping in the air at normal conditions, as shown by comparative core level photoelectron spectroscopy. - Graphical abstract: A high quality Bi{sub 2}Te{sub 3} crystal has been grown by Bridgman method with the use of rotating heat field and the Bi{sub 2}Te{sub 3}(0001) cleaved surface has been evaluated with RHEED, AFM, STM, SE and XPS. - Highlights: • High-quality Bi{sub 2}Te{sub 3} crystal of 10 mm in diameter and 50 mm long have been grown. • The high-purity cleaved Bi{sub 2}Te{sub 3}(0001) surface has been evaluated by RHEED, AFM, STM and XPS methods. • The Bi{sub 2}Te{sub 3} surface covered by atomically smooth (0001) terraces is chemically stable for a long time.« less

  20. Surface-emitting circular DFB, disk- and ring- Bragg resonator lasers with chirped gratings: a unified theory and comparative study.

    PubMed

    Sun, Xiankai; Yariv, Amnon

    2008-06-09

    We have developed a theory that unifies the analysis of the modal properties of surface-emitting chirped circular grating lasers. This theory is based on solving the resonance conditions which involve two types of reflectivities of chirped circular gratings. This approach is shown to be in agreement with previous derivations which use the characteristic equations. Utilizing this unified analysis, we obtain the modal properties of circular DFB, disk-, and ring- Bragg resonator lasers. We also compare the threshold gain, single mode range, quality factor, emission efficiency, and modal area of these types of circular grating lasers. It is demonstrated that, under similar conditions, disk Bragg resonator lasers have the highest quality factor, the highest emission efficiency, and the smallest modal area, indicating their suitability in low-threshold, high-efficiency, ultracompact laser design, while ring Bragg resonator lasers have a large single mode range, high emission efficiency, and large modal area, indicating their suitability for high-efficiency, large-area, high-power applications.

  1. High-Speed Friction Stir Welding of AA7075-T6 Sheet: Microstructure, Mechanical Properties, Micro-texture, and Thermal History

    NASA Astrophysics Data System (ADS)

    Zhang, Jingyi; Upadhyay, Piyush; Hovanski, Yuri; Field, David P.

    2018-01-01

    Friction stir welding (FSW) is a cost-effective and high-quality joining process for aluminum alloys (especially heat-treatable alloys) that is historically operated at lower joining speeds (up to hundreds of millimeters per minute). In this study, we present a microstructural analysis of friction stir welded AA7075-T6 blanks with high welding speeds up to 3 M/min. Textures, microstructures, mechanical properties, and weld quality are analyzed using TEM, EBSD, metallographic imaging, and Vickers hardness. The higher welding speed results in narrower, stronger heat-affected zones (HAZs) and also higher hardness in the nugget zones. The material flow direction in the nugget zone is found to be leaning towards the welding direction as the welding speed increases. Results are coupled with welding parameters and thermal history to aid in the understanding of the complex material flow and texture gradients within the welds in an effort to optimize welding parameters for high-speed processing.

  2. Assessment of physical and chemical indicators of sandy soil quality for sustainable crop production

    NASA Astrophysics Data System (ADS)

    Lipiec, Jerzy; Usowicz, Boguslaw

    2017-04-01

    Sandy soils are used in agriculture in many regions of the world. The share of sandy soils in Poland is about 55%. The aim of this study was to assess spatial variability of soil physical and chemical properties affecting soil quality and crop yields in the scale of field (40 x 600 m) during three years of different weather conditions. The experimental field was located on the post glacial and acidified sandy deposits of low productivity (Szaniawy, Podlasie Region, Poland). Physical soil quality indicators included: content of sand, silt, clay and water, bulk density and those chemical: organic carbon, cation exchange capacity, acidity (pH). Measurements of the most soil properties were done at spring and summer each year in topsoil and subsoil layer in 150 points. Crop yields were evaluated in places close to measuring points of the soil properties. Basic statistics including mean, standard deviation, skewness, kurtosis minimal, maximal and correlations between the soil properties and crop yields were calculated. Analysis of spatial dependence and distribution for each property was performed using geostatistical methods. Mathematical functions were fitted to the experimentally derived semivariograms that were used for mapping the soil properties and crop yield by kriging. The results showed that the largest variations had clay content (CV 67%) and the lowest: sand content (5%). The crop yield was most negatively correlated with sand content and most positively with soil water content and cation exchange capacity. In general the exponential semivariogram models fairly good matched to empirical data. The range of semivariogram models of the measured indicators varied from 14 m to 250 m indicate high and moderate spatial variability. The values of the nugget-to-sill+nugget ratios showed that most of the soil properties and crop yields exhibited strong and moderate spatial dependency. The kriging maps allowed identification of low yielding sub-field areas that correspond with low soil organic carbon and cation exchange capacity and high content of sand. These areas are considered as management zones to improve crop productivity and soil properties responsible for soil quality and functions. We conclude that soil organic carbon, cation exchange capacity and pH should be included as indicators of soil quality in sandy soils. The study was funded by HORIZON 2020, European Commission, Programme H2020-SFS-2015-2: Soil Care for profitable and sustainable crop production in Europe, project No. 677407 (SoilCare, 2016-2021).

  3. Synthesis and characterization of high-quality cobalt vanadate crystals and their applications in lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Bhuiyan, Md. Tofajjol Hossen; Rahman, Md. Afjalur; Rahman, Md. Atikur; Sultana, Rajia; Mostafa, Md. Rakib; Tania, Asmaul Husna; Sarker, Md. Abdur Razzaque

    2016-12-01

    High-quality cobalt vanadate crystals have been synthesized by solid-state reaction route. Structure and morphology of the synthesized powders were investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM), and Fourier transform infrared (FT-IR) spectroscopy. The XRD patterns revealed that the as prepared materials are of high crystallinity and high quality. The SEM images showed that the crystalline CoV2O6 material is very uniform and well separated, with particle (of) area 252 μm. The electronic and optical properties were investigated by impedance analyzer and UV-visible spectrophotometer. Temperature-dependent electrical resistivity was measured using four-probe technique. The crystalline CoV2O6 material is a semiconductor and its activation energy is 0.05 eV.

  4. High quality atomically thin PtSe2 films grown by molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Yan, Mingzhe; Wang, Eryin; Zhou, Xue; Zhang, Guangqi; Zhang, Hongyun; Zhang, Kenan; Yao, Wei; Lu, Nianpeng; Yang, Shuzhen; Wu, Shilong; Yoshikawa, Tomoki; Miyamoto, Koji; Okuda, Taichi; Wu, Yang; Yu, Pu; Duan, Wenhui; Zhou, Shuyun

    2017-12-01

    Atomically thin PtSe2 films have attracted extensive research interests for potential applications in high-speed electronics, spintronics and photodetectors. Obtaining high quality thin films with large size and controlled thickness is critical. Here we report the first successful epitaxial growth of high quality PtSe2 films by molecular beam epitaxy. Atomically thin films from 1 ML to 22 ML have been grown and characterized by low-energy electron diffraction, Raman spectroscopy and x-ray photoemission spectroscopy. Moreover, a systematic thickness dependent study of the electronic structure is revealed by angle-resolved photoemission spectroscopy (ARPES), and helical spin texture is revealed by spin-ARPES. Our work provides new opportunities for growing large size single crystalline films to investigate the physical properties and potential applications of PtSe2.

  5. Spring cleaning: rural water impacts, valuation, and property rights institutions.

    PubMed

    Kremer, Michael; Leino, Jessica; Miguel, Edward; Zwane, Alix Peterson

    2011-01-01

    Using a randomized evaluation in Kenya, we measure health impacts of spring protection, an investment that improves source water quality. We also estimate households' valuation of spring protection and simulate the welfare impacts of alternatives to the current system of common property rights in water, which limits incentives for private investment. Spring infrastructure investments reduce fecal contamination by 66%, but household water quality improves less, due to recontamination. Child diarrhea falls by one quarter. Travel-cost based revealed preference estimates of households' valuations are much smaller than both stated preference valuations and health planners' valuations, and are consistent with models in which the demand for health is highly income elastic. We estimate that private property norms would generate little additional investment while imposing large static costs due to above-marginal-cost pricing, private property would function better at higher income levels or under water scarcity, and alternative institutions could yield Pareto improvements.

  6. Proteins used as sweeteners: a review.

    PubMed

    Li, Xiaojian; Alexander, Kenneth S

    2007-01-01

    For the prevention of obesity, diabetes, dental caries, and some metabolic disorders, ingestion of sugar should be restricted. Although they have high-potency sweetness, artificial low-calorie sweeteners can have severe adverse effects. Public demand for natural and healthy flavors, as well as perceived problems with the toxicity and taste quality of existing synthetic sweeteners, have led to efforts to find natural proteins with high sweetness and tast-modifying properties. Some important properties of natural protein sweeteners and taste-modifying protein sweeteners are discussed in this review.

  7. Research of Influence Modification of Natural Concentrate on Quality Metal

    NASA Astrophysics Data System (ADS)

    Fedoseev, S. N.; Gizatulin, R. A.; Korotkova, E. A.

    2016-08-01

    Questions of increase of mechanical, technological and service properties of metal at minimum cost to produce it are relevant for the metallurgical enterprises. Modification of complex steel alloys containing reactive elements is one of the effective ways to improve the quality of steel. At the same time the direct costs for the use of modifiers are 0.2-0.3%, which little effect on the cost of production. The paper presents the results of the application of natural concentrates as a modifier steel. The effects on the metal quality changes due to the impact of the modification concentrates demonstrate the effectiveness of their application. As a result of modification decreased the content of nonmetallic inclusions and grain size. Reduction of impurity modified metal of was the cause more high plastic properties, especially, impact strength at ordinary and low temperatures of tests. Based on the experimental data evaluated hardening mechanisms that lead to a significant improvement of physic-mechanical properties of the metal workpiece after administration modifier.

  8. Chemical bath deposited (CBD) CuO thin films on n-silicon substrate for electronic and optical applications: Impact of growth time

    NASA Astrophysics Data System (ADS)

    Sultana, Jenifar; Paul, Somdatta; Karmakar, Anupam; Yi, Ren; Dalapati, Goutam Kumar; Chattopadhyay, Sanatan

    2017-10-01

    Thin film of p-type cupric oxide (p-CuO) is grown on silicon (n-Si) substrate by using chemical bath deposition (CBD) technique and a precise control of thickness from 60 nm to 178 nm has been achieved. The structural properties and stoichiometric composition of the grown films are observed to depend significantly on the growth time. The chemical composition, optical properties, and structural quality are investigated in detail by employing XRD, ellipsometric measurements and SEM images. Also, the elemental composition and the oxidation states of Cu and O in the grown samples have been studied in detail by XPS measurements. Thin film of 110 nm thicknesses exhibited the best performance in terms of crystal quality, refractive index, dielectric constant, band-gap, and optical properties. The study suggests synthesis route for developing high quality CuO thin film using CBD method for electronic and optical applications.

  9. High-quality fiber fabrication in buffered hydrofluoric acid solution with ultrasonic agitation.

    PubMed

    Zhong, Nianbing; Liao, Qiang; Zhu, Xun; Wang, Yongzhong; Chen, Rong

    2013-03-01

    An etching method for preparing high-quality fiber-optic sensors using a buffered etchant with ultrasonic agitation is proposed. The effects of etching conditions on the etch rate and surface morphology of the etched fibers are investigated. The effect of surface roughness is discussed on the fibers' optical properties. Linear etching behavior and a smooth fiber surface can be repeatedly obtained by adjusting the ultrasonic power and etchant pH. The fibers' spectral quality is improved as the ratio of the pit depth to size decreases, and the fibers with smooth surfaces are more sensitive to a bacterial suspension than those with rough surfaces.

  10. Method of fabricating optical waveguides by ion implantation doping

    DOEpatents

    Appleton, B.R.; Ashley, P.R.; Buchal, C.J.

    1987-03-24

    A method for fabricating high-quality optical waveguides in optical quality oxide crystals by ion implantation doping and controlled epitaxial recrystallization is provided. Masked LiNbO/sub 3/ crystals are implanted with high concentrations of Ti dopant at ion energies of about 360 keV while maintaining the crystal near liquid nitrogen temperature. Ion implantation doping produces an amorphous, Ti-rich nonequilibrium phase in the implanted region. Subsequent thermal annealing in a water-saturated oxygen atmosphere at up to 1000/degree/C produces solid-phase epitaxial regrowth onto the crystalline substrate. A high-quality crystalline layer results which incorporates the Ti into the crystal structure at much higher concentrations than is possible by standard diffusion techniques, and this implanted region has excellent optical waveguiding properties.

  11. High-Temperature Properties of Mold Flux Observed and Measured In Situ by Single/Double Hot-Thermocouple Technique

    NASA Astrophysics Data System (ADS)

    Wang, Wanlin; Lyu, Peisheng; Zhou, Lejun; Li, Huan; Zhang, Tongsheng

    2018-05-01

    Mold flux plays very important roles in the continuous casting process, and its high-temperature properties affect the quality of the final as-cast product greatly. Investigations on the melting, isothermal and nonisothermal crystallization, and phase evolution behaviors under a simulated temperature field for the mold flux system using the single/double hot-thermocouple technique (S/DHTT) were reviewed. Meanwhile, further in situ observations on the wetting behavior and heat transfer ability of the mold flux system were also carried out using the S/DHTT. The results summarized here provide a clear understanding of both the high-temperature properties of mold flux and the detailed application of advanced real-time visual high-temperature S/DHTT to this molten slag system.

  12. [New methods for the evaluation of bone quality. Assessment of bone structural property using imaging.

    PubMed

    Ito, Masako

    Structural property of bone includes micro- or nano-structural property of the trabecular and cortical bone, and macroscopic geometry. Radiological technique is useful to analyze the bone structural property;multi-detector row CT(MDCT)or high-resolution peripheral QCT(HR-pQCT)is available to analyze human bone in vivo . For the analysis of hip geometry, CT-based hip structure analysis(HSA)is available as well as DXA-based HSA. These structural parameters are related to biomechanical property, and these assessment tools provide information of pathological changes or the effects of anti-osteoporotic agents on bone.

  13. 2D photonic crystal layer assisted thiosilicate ceramic plate with red-emitting film for high quality w -LEDs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dai, Wubin; Lei, Yifeng; Zhou, Jia

    In this work, we have succeeded in obtaining high quality warm w-light-emitting-diodes (LEDs) by adopting hybrid two-dimensional (2D) structure of SiNx photonic crystal layer (PCL) assisted cyan-emitting ceramic-plate thiosilicate SrLa2Si2S8:Ce3+ with red-emitting film SrLiAl3N4:Eu2+ phosphor on a 430 nm blue LED chip at 350 mA. 2D SiNx PCL was capped with thiosilicate is because it can enhance the luminous efficacy and maintain the low correlated color temperature (CCT) and high color-rendering index (CRI). High luminous efficacy (82.3 lm/W), high special CRI (R9=75) as well as the low CCT (5431 K) of the optimal w-LED was obtained due to the assistancesmore » of 2D SiNx PCL and narrow-band red-emitting phosphor with the doping percentage at 10 wt%. The synthesis processes, structural analysis, optical properties and LED device performances were detailed investigated to find out the relationship between the optimum composition and good optical properties. Based on intriguing luminescence properties by the 2D SiNx PCL and red-emitting film phosphor introducing, we proclaim this method could also have high potential application in other phosphor-converted w-LEDs.« less

  14. Prediction of Viking lander camera image quality

    NASA Technical Reports Server (NTRS)

    Huck, F. O.; Burcher, E. E.; Jobson, D. J.; Wall, S. D.

    1976-01-01

    Formulations are presented that permit prediction of image quality as a function of camera performance, surface radiance properties, and lighting and viewing geometry. Predictions made for a wide range of surface radiance properties reveal that image quality depends strongly on proper camera dynamic range command and on favorable lighting and viewing geometry. Proper camera dynamic range commands depend mostly on the surface albedo that will be encountered. Favorable lighting and viewing geometries depend mostly on lander orientation with respect to the diurnal sun path over the landing site, and tend to be independent of surface albedo and illumination scattering function. Side lighting with low sun elevation angles (10 to 30 deg) is generally favorable for imaging spatial details and slopes, whereas high sun elevation angles are favorable for measuring spectral reflectances.

  15. Texture, composition and anatomy of spinach leaves in relation to nitrogen fertilization.

    PubMed

    Gutiérrez-Rodríguez, Eduardo; Lieth, Heiner J; Jernstedt, Judith A; Labavitch, John M; Suslow, Trevor V; Cantwell, Marita I

    2013-01-01

    The postharvest quality and shelf life of spinach are greatly influenced by cultural practices. Reduced spinach shelf life is a common quandary in the Salinas Valley, California, where current agronomic practices depend on high nitrogen (N) rates. This study aimed to describe the postharvest fracture properties of spinach leaves in relation to N fertilization, leaf age and spinach cultivar. Force-displacement curves, generated by a puncture test, showed a negative correlation between N fertilization and the toughness, stiffness and strength of spinach leaves (P > 0.05). Younger leaves (leaves 12 and 16) from all N treatments were tougher than older leaves (leaves 6 and 8) (P > 0.05). Leaves from the 50 and 75 ppm total N treatments irrespective of spinach cultivar had higher fracture properties and nutritional quality than leaves from other N treatments (P > 0.05). Total alcohol-insoluble residues (AIR) and pectins were present at higher concentrations in low-N grown plants. These plants also had smaller cells and intercellular spaces than high-N grown leaves (P > 0.05). Observed changes in physicochemical and mechanical properties of spinach leaves due to excess nitrogen fertilization were significantly associated with greater postharvest leaf fragility and lower nutritional quality. Copyright © 2012 Society of Chemical Industry.

  16. Physical properties of alternatives to the fully halogenated chlorofluorocarbons

    NASA Technical Reports Server (NTRS)

    Mclinden, Mark O.

    1990-01-01

    Presented here are recommended values and correlations of selected physical properties of several alternatives to the fully halogenated chlorocarbons. The quality of the data used in this compilation varies widely, ranging from well-documented, high accuracy measurements from published sources to completely undocumented values listed on anonymous data sheets. That some of the properties for some fluids are available only from the latter type of source is clearly not the desired state of affairs. While some would reject all such data, the compilation given here is presented in the spirit of laying out the present state of knowledge and making available a set of data in a timely manner, even though its quality is sometimes uncertain. The correlations presented here are certain to change quickly as additional information becomes available.

  17. Semiconductor quantum dots: synthesis and water-solubilization for biomedical applications.

    PubMed

    Yu, William W

    2008-10-01

    Quantum dots (QDs) are generally nanosized inorganic particles. They have distinctive size-dependent optical properties due to their very small size (mostly < 10 nm). QDs are regarded as promising new fluorescent materials for biological labeling and imaging because of their superior properties compared with traditional organic molecular dyes. These properties include high quantum efficiency, long-term photostability and very narrow emission but broad absorption spectra. Recent developments in synthesizing high quality semiconductor QDs (mainly metal-chalcogenide compounds) and forming biocompatible structures for biomedical applications are discussed in this paper. This information may facilitate the research to create new materials/technologies for future clinical applications.

  18. Effect of single- and two-cycle high hydrostatic pressure treatments on water properties, physicochemical and microbial qualities of minimally processed squids (todarodes pacificus).

    PubMed

    Zhang, Yifeng; Jiao, Shunshan; Lian, Zixuan; Deng, Yun; Zhao, Yanyun

    2015-05-01

    This study investigated the effect of single- and two-cycle high hydrostatic pressure (HHP) treatments on water properties, physicochemical, and microbial qualities of squids (Todarodes pacificus) during 4 °C storage for up to 10 d. Single-cycle treatments were applied at 200, 400, or 600 MPa for 20 min (S-200, S-400, and S-600), and two-cycle treatments consisted of two 10 min cycles at 200, 400, or 600 MPa, respectively (T-200, T-400, and T-600). HHP-treated samples had higher (P < 0.05) content of P2b (immobilized water) and P21 (myofibril water), but lower P22 (free water) than those of control. The single- and two-cycle HHP treatments at the same pressure level caused no significant difference in water state of squids. The two-cycle HHP treatment was more effective in controlling total volatile basic nitrogen, pH, and total plate counts (TPC) of squids during storage, in which TPC of S-600 and T-600 was 2.9 and 1.8 log CFU/g at 10 d, respectively, compared with 7.5 log CFU/g in control. HHP treatments delayed browning discoloration of the squids during storage, and the higher pressure level and two-cycle HHP were more effective. Water properties highly corresponded with color and texture indices of squids. This study demonstrated that the two-cycle HHP treatment was more effective in controlling microbial growth and quality deterioration while having similar impact on the physicochemical and water properties of squids in comparison with the single-cycle treatment, thus more desirable for extending shelf-life of fresh squids. © 2015 Institute of Food Technologists®

  19. Pediatric laryngeal simulator using 3D printed models: A novel technique.

    PubMed

    Kavanagh, Katherine R; Cote, Valerie; Tsui, Yvonne; Kudernatsch, Simon; Peterson, Donald R; Valdez, Tulio A

    2017-04-01

    Simulation to acquire and test technical skills is an essential component of medical education and residency training in both surgical and nonsurgical specialties. High-quality simulation education relies on the availability, accessibility, and reliability of models. The objective of this work was to describe a practical pediatric laryngeal model for use in otolaryngology residency training. Ideally, this model would be low-cost, have tactile properties resembling human tissue, and be reliably reproducible. Pediatric laryngeal models were developed using two manufacturing methods: direct three-dimensional (3D) printing of anatomical models and casted anatomical models using 3D-printed molds. Polylactic acid, acrylonitrile butadiene styrene, and high-impact polystyrene (HIPS) were used for the directly printed models, whereas a silicone elastomer (SE) was used for the casted models. The models were evaluated for anatomic quality, ease of manipulation, hardness, and cost of production. A tissue likeness scale was created to validate the simulation model. Fleiss' Kappa rating was performed to evaluate interrater agreement, and analysis of variance was performed to evaluate differences among the materials. The SE provided the most anatomically accurate models, with the tactile properties allowing for surgical manipulation of the larynx. Direct 3D printing was more cost-effective than the SE casting method but did not possess the material properties and tissue likeness necessary for surgical simulation. The SE models of the pediatric larynx created from a casting method demonstrated high quality anatomy, tactile properties comparable to human tissue, and easy manipulation with standard surgical instruments. Their use in a reliable, low-cost, accessible, modular simulation system provides a valuable training resource for otolaryngology residents. N/A. Laryngoscope, 127:E132-E137, 2017. © 2016 The American Laryngological, Rhinological and Otological Society, Inc.

  20. Examining the Psychometric Properties of the Infant-Toddler Environment Rating Scale-Revised Edition in a High-Stakes Context

    ERIC Educational Resources Information Center

    Bisceglia, Rossana; Perlman, Michal; Schaack, Diana; Jenkins, Jennifer

    2009-01-01

    The psychometric properties of the Infant-Toddler Environment Rating Scale-Revised Edition (ITERS-R) were examined using 153 classrooms from child-care centers where resources were tied to center performance. An exploratory factor analysis revealed that the scale measures one global aspect of quality. To decrease redundancy, subsets of items were…

  1. Effect of hydrostatic high-pressure processing on the chemical, functional, and rheological properties of starter-free Queso Fresco

    USDA-ARS?s Scientific Manuscript database

    Queso Fresco (QF), a popular high-moisture, high-pH Hispanic-style cheese sold in the U.S., underwent high-pressure processing (HPP), which has the potential to improve the safety of cheese, to determine the effects of this process on quality traits of the cheese. Starter-free rennet-set QF (manufa...

  2. Measurement properties of maximal cardiopulmonary exercise tests protocols in persons after stroke: A systematic review.

    PubMed

    Wittink, Harriet; Verschuren, Olaf; Terwee, Caroline; de Groot, Janke; Kwakkel, Gert; van de Port, Ingrid

    2017-11-21

    To systematically review and critically appraise the literature on measurement properties of cardiopulmonary exercise test protocols for measuring aerobic capacity, VO2max, in persons after stroke. PubMed, Embase and Cinahl were searched from inception up to 15 June 2016. A total of 9 studies were identified reporting on 9 different cardiopulmonary exercise test protocols. VO2max measured with cardiopulmonary exercise test and open spirometry was the construct of interest. The target population was adult persons after stroke. We included all studies that evaluated reliability, measurement error, criterion validity, content validity, hypothesis testing and/or responsiveness of cardiopulmonary exercise test protocols. Two researchers independently screened the literature, assessed methodological quality using the COnsensus-based Standards for the selection of health Measurement INstruments checklist and extracted data on measurement properties of cardiopulmonary exercise test protocols. Most studies reported on only one measurement property. Best-evidence synthesis was derived taking into account the methodological quality of the studies, the results and the consistency of the results. No judgement could be made on which protocol is "best" for measuring VO2max in persons after stroke due to lack of high-quality studies on the measurement properties of the cardiopulmonary exercise test.

  3. High-quality ZnO growth, doping, and polarization effect

    NASA Astrophysics Data System (ADS)

    Kun, Tang; Shulin, Gu; Jiandong, Ye; Shunming, Zhu; Rong, Zhang; Youdou, Zheng

    2016-03-01

    The authors have reported their recent progress in the research field of ZnO materials as well as the corresponding global advance. Recent results regarding (1) the development of high-quality epitaxy techniques, (2) the defect physics and the Te/N co-doping mechanism for p-type conduction, and (3) the design, realization, and properties of the ZnMgO/ZnO hetero-structures have been shown and discussed. A complete technology of the growth of high-quality ZnO epi-films and nano-crystals has been developed. The co-doping of N plus an iso-valent element to oxygen has been found to be the most hopeful path to overcome the notorious p-type hurdle. High mobility electrons have been observed in low-dimensional structures utilizing the polarization of ZnMgO and ZnO. Very different properties as well as new physics of the electrons in 2DEG and 3DES have been found as compared to the electrons in the bulk. Project supported by the National Natural Science Foundation of China (Nos. 61025020, 61274058, 61322403, 61504057, 61574075), the Natural Science Foundation of Jiangsu Province (Nos. BK2011437, BK20130013, BK20150585), the Priority Academic Program Development of Jiangsu Higher Education Institutions, and the Fundamental Research Funds for the Central Universities.

  4. Drifts in ADCC-related quality attributes of Herceptin®: Impact on development of a trastuzumab biosimilar.

    PubMed

    Kim, Seokkyun; Song, Jinsu; Park, Seungkyu; Ham, Sunyoung; Paek, Kyungyeol; Kang, Minjung; Chae, Yunjung; Seo, Heewon; Kim, Hyung-Chan; Flores, Michael

    A biosimilar product needs to demonstrate biosimilarity to the originator reference product, and the quality profile of the latter should be monitored throughout the period of the biosimilar's development to match the quality attributes of the 2 products that relate to efficacy and safety. For the development of a biosimilar version of trastuzumab, the reference product, Herceptin®, was extensively characterized for the main physicochemical and biologic properties by standard or state-of-the-art analytical methods, using multiple lots expiring between March 2015 and December 2019. For lots with expiry dates up to July 2018, a high degree of consistency was observed for all the tested properties. However, among the lots expiring in August 2018 or later, a downward drift was observed in %afucose (G0+G1+G2). Furthermore, the upward drift of %high mannose (M5+M6) was observed in the lots with expiry dates from June 2019 to December 2019. As a result, the combination of %afucose and %high mannose showed 2 marked drifts in the lots with expiry dates from August 2018 to December 2019, which was supported by the similar trend of biologic data, such as FcγRIIIa binding and antibody-dependent cell-mediated cytotoxicity (ADCC) activity. Considering that ADCC is one of the clinically relevant mechanisms of action for trastuzumab, the levels of %afucose and %high mannose should be tightly monitored as critical quality attributes for biosimilar development of trastuzumab.

  5. Drifts in ADCC-related quality attributes of Herceptin®: Impact on development of a trastuzumab biosimilar

    PubMed Central

    Kim, Seokkyun; Song, Jinsu; Park, Seungkyu; Ham, Sunyoung; Paek, Kyungyeol; Kang, Minjung; Chae, Yunjung; Seo, Heewon; Kim, Hyung-Chan; Flores, Michael

    2017-01-01

    ABSTRACT A biosimilar product needs to demonstrate biosimilarity to the originator reference product, and the quality profile of the latter should be monitored throughout the period of the biosimilar's development to match the quality attributes of the 2 products that relate to efficacy and safety. For the development of a biosimilar version of trastuzumab, the reference product, Herceptin®, was extensively characterized for the main physicochemical and biologic properties by standard or state-of-the-art analytical methods, using multiple lots expiring between March 2015 and December 2019. For lots with expiry dates up to July 2018, a high degree of consistency was observed for all the tested properties. However, among the lots expiring in August 2018 or later, a downward drift was observed in %afucose (G0+G1+G2). Furthermore, the upward drift of %high mannose (M5+M6) was observed in the lots with expiry dates from June 2019 to December 2019. As a result, the combination of %afucose and %high mannose showed 2 marked drifts in the lots with expiry dates from August 2018 to December 2019, which was supported by the similar trend of biologic data, such as FcγRIIIa binding and antibody-dependent cell-mediated cytotoxicity (ADCC) activity. Considering that ADCC is one of the clinically relevant mechanisms of action for trastuzumab, the levels of %afucose and %high mannose should be tightly monitored as critical quality attributes for biosimilar development of trastuzumab. PMID:28296619

  6. 3D printing functional materials and devices (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    McAlpine, Michael C.

    2017-05-01

    The development of methods for interfacing high performance functional devices with biology could impact regenerative medicine, smart prosthetics, and human-machine interfaces. Indeed, the ability to three-dimensionally interweave biological and functional materials could enable the creation of devices possessing unique geometries, properties, and functionalities. Yet, most high quality functional materials are two dimensional, hard and brittle, and require high crystallization temperatures for maximal performance. These properties render the corresponding devices incompatible with biology, which is three-dimensional, soft, stretchable, and temperature sensitive. We overcome these dichotomies by: 1) using 3D printing and scanning for customized, interwoven, anatomically accurate device architectures; 2) employing nanotechnology as an enabling route for overcoming mechanical discrepancies while retaining high performance; and 3) 3D printing a range of soft and nanoscale materials to enable the integration of a diverse palette of high quality functional nanomaterials with biology. 3D printing is a multi-scale platform, allowing for the incorporation of functional nanoscale inks, the printing of microscale features, and ultimately the creation of macroscale devices. This three-dimensional blending of functional materials and `living' platforms may enable next-generation 3D printed devices.

  7. Structural and Luminescence Properties of Lu2O3:Eu3+ F127 Tri-Block Copolymer Modified Thin Films Prepared by Sol-Gel Method

    PubMed Central

    de Jesus Morales Ramírez, Angel; Hernández, Margarita García; Murillo, Antonieta García; de Jesús Carrillo Romo, Felipe; Palmerin, Joel Moreno; Velazquez, Dulce Yolotzin Medina; Jota, María Luz Carrera

    2013-01-01

    Lu2O3:Eu3+ transparent, high density, and optical quality thin films were prepared using the sol-gel dip-coating technique, starting with lutetium and europium nitrates as precursors and followed by hydrolysis in an ethanol-ethylene glycol solution. Acetic acid and acetylacetonate were incorporated in order to adjust pH and as a sol stabilizer. In order to increment the thickness of the films and orient the structure, F127 Pluronic acid was incorporated during the sol formation. Structural, morphological, and optical properties of the films were investigated for different F127/Lu molar ratios (0–5) in order to obtain high optical quality films with enhanced thickness compared with the traditional method. X-ray diffraction (XRD) shows that the films present a highly oriented cubic structure <111> beyond 1073 K for a 3-layer film, on silica glass substrates. The thickness, density, porosity, and refractive index evolution of the films were investigated by means of m-lines microscopy along with the morphology by scanning electron microscope (SEM) and luminescent properties. PMID:28809336

  8. Ultrasonic Spray Drying vs High Vacuum and Microwaves Technology for Blueberries

    NASA Astrophysics Data System (ADS)

    Candia-Muñoz, N.; Ramirez-Bunster, M.; Vargas-Hernández, Y.; Gaete-Garretón, L.

    Interest in high quality foods: good taste and a high content of nutrients with healthy beneficial effects are increasing. Fruits have good properties but, they are lost because the oxidation process, additionally, for different reasons a 40% of harvested fruit are lost. To conserve the fruit properties an ultrasonic assisted spray dryer was developed and tested, comparing its results with microwave-vacuum drying technology. Results did shown taste, color, smell, particle shape and size distribution better than the conventional one. The antioxidants conservation were quite good except in the anthocyanins, in which the microwave and vacuum technology shown best results.

  9. A novel highly differentially expressed gene in wheat endosperm associated with bread quality

    PubMed Central

    Furtado, A.; Bundock, P. C.; Banks, P. M.; Fox, G.; Yin, X.; Henry, R. J.

    2015-01-01

    Analysis of gene expression in developing wheat seeds was used to identify a gene, wheat bread making (wbm), with highly differential expression (~1000 fold) in the starchy endosperm of genotypes varying in bread making quality. Several alleles differing in the 5’-upstream region (promoter) of this gene were identified, with one present only in genotypes with high levels of wbm expression. RNA-Seq analysis revealed low or no wbm expression in most genotypes but high expression (0.2-0.4% of total gene expression) in genotypes that had good bread loaf volume. The wbm gene is predicted to encode a mature protein of 48 amino acids (including four cysteine residues) not previously identified in association with wheat quality, possibly because of its small size and low frequency in the wheat gene pool. Genotypes with high wbm expression all had good bread making quality but not always good physical dough qualities. The predicted protein was sulphur rich suggesting the possibility of a contribution to bread loaf volume by supporting the crossing linking of proteins in gluten. Improved understanding of the molecular basis of differences in bread making quality may allow more rapid development of high performing genotypes with acceptable end-use properties and facilitate increased wheat production. PMID:26011437

  10. A novel highly differentially expressed gene in wheat endosperm associated with bread quality.

    PubMed

    Furtado, A; Bundock, P C; Banks, P M; Fox, G; Yin, X; Henry, R J

    2015-05-26

    Analysis of gene expression in developing wheat seeds was used to identify a gene, wheat bread making (wbm), with highly differential expression (~1000 fold) in the starchy endosperm of genotypes varying in bread making quality. Several alleles differing in the 5'-upstream region (promoter) of this gene were identified, with one present only in genotypes with high levels of wbm expression. RNA-Seq analysis revealed low or no wbm expression in most genotypes but high expression (0.2-0.4% of total gene expression) in genotypes that had good bread loaf volume. The wbm gene is predicted to encode a mature protein of 48 amino acids (including four cysteine residues) not previously identified in association with wheat quality, possibly because of its small size and low frequency in the wheat gene pool. Genotypes with high wbm expression all had good bread making quality but not always good physical dough qualities. The predicted protein was sulphur rich suggesting the possibility of a contribution to bread loaf volume by supporting the crossing linking of proteins in gluten. Improved understanding of the molecular basis of differences in bread making quality may allow more rapid development of high performing genotypes with acceptable end-use properties and facilitate increased wheat production.

  11. Particle size fractionation of high-amylose rice (Goami 2) flour as an oil barrier in a batter-coated fried system

    USDA-ARS?s Scientific Manuscript database

    The particle size effects of high-amylose rice (Goami 2) flour on quality attributes of frying batters were characterized in terms of physicochemical, rheological, and oil-resisting properties. High-amylose rice flours were fractionated into four fractions (70, 198, 256, and 415 µm) of which morpho...

  12. Modelling of beef sensory quality for a better prediction of palatability.

    PubMed

    Hocquette, Jean-François; Van Wezemael, Lynn; Chriki, Sghaier; Legrand, Isabelle; Verbeke, Wim; Farmer, Linda; Scollan, Nigel D; Polkinghorne, Rod; Rødbotten, Rune; Allen, Paul; Pethick, David W

    2014-07-01

    Despite efforts by the industry to control the eating quality of beef, there remains a high level of variability in palatability, which is one reason for consumer dissatisfaction. In Europe, there is still no reliable on-line tool to predict beef quality and deliver consistent quality beef to consumers. Beef quality traits depend in part on the physical and chemical properties of the muscles. The determination of these properties (known as muscle profiling) will allow for more informed decisions to be made in the selection of individual muscles for the production of value-added products. Therefore, scientists and professional partners of the ProSafeBeef project have brought together all the data they have accumulated over 20 years. The resulting BIF-Beef (Integrated and Functional Biology of Beef) data warehouse contains available data of animal growth, carcass composition, muscle tissue characteristics and beef quality traits. This database is useful to determine the most important muscle characteristics associated with a high tenderness, a high flavour or generally a high quality. Another more consumer driven modelling tool was developed in Australia: the Meat Standards Australia (MSA) grading scheme that predicts beef quality for each individual muscle×specific cooking method combination using various information on the corresponding animals and post-slaughter processing factors. This system has also the potential to detect variability in quality within muscles. The MSA system proved to be effective in predicting beef palatability not only in Australia but also in many other countries. The results of the work conducted in Europe within the ProSafeBeef project indicate that it would be possible to manage a grading system in Europe similar to the MSA system. The combination of the different modelling approaches (namely muscle biochemistry and a MSA-like meat grading system adapted to the European market) is a promising area of research to improve the prediction of beef quality. In both approaches, the volume of data available not only provides statistically sound correlations between various factors and beef quality traits but also a better understanding of the variability of beef quality according to various criteria (breed, age, sex, pH, marbling etc.). © 2013 The American Meat Science Association. All rights reserved.

  13. AERONET Version 3 Release: Providing Significant Improvements for Multi-Decadal Global Aerosol Database and Near Real-Time Validation

    NASA Technical Reports Server (NTRS)

    Holben, Brent; Slutsker, Ilya; Giles, David; Eck, Thomas; Smirnov, Alexander; Sinyuk, Aliaksandr; Schafer, Joel; Sorokin, Mikhail; Rodriguez, Jon; Kraft, Jason; hide

    2016-01-01

    Aerosols are highly variable in space, time and properties. Global assessment from satellite platforms and model predictions rely on validation from AERONET, a highly accurate ground-based network. Ver. 3 represents a significant improvement in accuracy and quality.

  14. Nanogranular soft magnetic material and on-package integrated inductors

    NASA Astrophysics Data System (ADS)

    Li, Liangliang

    2007-12-01

    Integrated inductors used in electronic circuits are mainly spiral-shaped aluminum devices fabricated on Si chip. They have several disadvantages---large silicon area consumption, high DC resistance and high cost. An attractive approach to address these issues is directly integrating inductors into package substrates, which provide plenty of usage area, low resistance and low cost. The goals of this dissertation are designing and fabricating magnetic and air-core inductors with characteristic low resistance and high quality factor on package substrates. The research work includes three parts which are summarized below. First, the CoFeHfO nanogranular magnetic material developed on Si wafers and package substrates by pulsed DC reactive sputtering were investigated. On Si wafers, the optimized CoFeHfO film has soft magnetic properties. On printed circuit board (PCB) substrates, these magnetic properties degrade due to the rough surface. Surface planarization such as chemical-mechanical polishing can be applied on PCB substrates to reduce the surface roughness and hence improve these properties. Second, on-package inductors with small resistances and high quality factors were designed, fabricated, measured and analyzed. Air-core and magnetic inductors (20 design variations) were built on 8-inch PCB substrates. The DC resistances of these inductors are less than 12 mO, one of the lowest values ever reported. The maximum quality factors can be as large as ˜80 at around 1 GHz for the air-core inductors and ˜25 at 200 MHz for the magnetic inductors. Third, inductor simulation was carried out to study the effects of magnetic materials on the properties of inductors using the Ansoft HFSS software package. The measurement data for the permeability spectra of the CoFeHfO film and the tensor nature of the permeability were taken into account in the simulation. The simulation results matched the experimental data for the inductances, resistances and quality factors. This established an accurate method for modeling high-frequency magnetic devices. Using this method, an inductor with a closed magnetic core was studied by varying the geometry of the core and copper coil. It has been found that the inductance of this inductor depends strongly on whether the permeability of the magnetic core is isotropic or anisotropic.

  15. Molybdenum-rhenium alloy based high-Q superconducting microwave resonators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Singh, Vibhor, E-mail: v.singh@tudelft.nl; Schneider, Ben H.; Bosman, Sal J.

    2014-12-01

    Superconducting microwave resonators (SMRs) with high quality factors have become an important technology in a wide range of applications. Molybdenum-Rhenium (MoRe) is a disordered superconducting alloy with a noble surface chemistry and a relatively high transition temperature. These properties make it attractive for SMR applications, but characterization of MoRe SMR has not yet been reported. Here, we present the fabrication and characterization of SMR fabricated with a MoRe 60–40 alloy. At low drive powers, we observe internal quality-factors as high as 700 000. Temperature and power dependence of the internal quality-factors suggest the presence of the two level systems from themore » dielectric substrate dominating the internal loss at low temperatures. We further test the compatibility of these resonators with high temperature processes, such as for carbon nanotube chemical vapor deposition growth, and their performance in the magnetic field, an important characterization for hybrid systems.« less

  16. [Polish adaptation and validation of Health-Related Quality of Life in Childhood Epilepsy Questionnaire].

    PubMed

    Mathiak, Krystyna A; Karzel, Katarzyna; Mathiak, Klaus; Ostaszewski, Paweł; Luba, Małgorzata; Wolańczyk, Tomasz

    2007-01-01

    Epilepsy is a frequent chronic disease in children, having a strong impact on a child's psychosocial functioning. Effective therapy must take into account the wide range of physical, psychological and social needs of patients. The importance of assessing patients' quality of life is becoming increasingly acknowledged. In addition to providing better health care, it may reveal how the disease and its psychosocial outcome interact. Quality of life in epilepsy can be assessed most reliably by disease-specific measures. Health-Related Quality of Life in Childhood Epilepsy (QOLCE) is an English parental questionnaire for children aged between 4 and 18 years. It contains 87 questions that fall into five domains: physical function, emotional well-being, cognitive function, social function and behavioural function. The original scale has a well-grounded theoretical background and good psychometric properties. The aim of the study was to create a Polish version of QOLCE and evaluate its psychometric properties. Parents of 87 patients suffering from epilepsy were recruited in neurological clinics in the Warsaw area. Reliability was very high (Cronbach's alpha = 0.97). The construct validity was confirmed by the correlation between subscales of QOLCE and the Child Behaviour Checklist, as well as selected clinical measures of child's health (duration of disease: r=-0.22, p=0.02; duration of treatment: r=-0.20, p=0.04; number of hospitalizations: r=-0.24, p=0.02). All the psychometric properties were similar to those of the original scale. A Polish scale examining the quality of life was created that takes into account a wide range of psychosocial problems. We confirmed very high reliability and good validity, and thus we recommend the inventory for both research on and clinical diagnostics of Polish children with epilepsy.

  17. The Mysteries of Diamonds: Bizarre History, Amazing Properties, Unique Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kagan, Harris

    2008-06-24

    Diamonds have been a prized material throughout history. They are scarce and beautiful, wars have been fought over them, and they remain today a symbol of wealth and power. Diamonds also have exceptional physical properties which can lead to unique applications in science. There are now techniques to artificially synthesize diamonds of extraordinarily high quality. In this talk, Professor Kagan will discuss the history of diamonds, their bizarre properties, and their manufacture and use for 21st century science.

  18. Toward a Simple Framework for Understanding the Influence of Litter Quality on Vertical and Horizontal Patterns of Soil Organic Matter Pools

    NASA Astrophysics Data System (ADS)

    Craig, M.; Phillips, R.

    2016-12-01

    Decades of research have revealed that plant litter quality fundamentally influences soil organic matter (SOM) properties. Yet we lack the predictive frameworks necessary to up-scale our understanding of these dynamics in biodiverse systems. Given that ectomycorrhizal (EM) and arbuscular mycorrhizal (AM) plants are thought to differ in their litter quality, we ask whether this dichotomy represents a framework for understanding litter quality effects on SOM in temperate forests. To do this, we sampled soils from 250 spatially referenced locations within a 25-Ha plot where 28,000 trees had been georeferenced, and analyzed spatial patterns of plant and SOM properties. We then examined the extent to which the dominance of AM- versus EM-trees relates to 1) the quality of litter inputs to forest soils and 2) the horizontal and vertical distribution of SOM fractions. We found that leaf litters produced by EM-associated trees were generally of lower quality, having a lower concentration of soluble compounds and higher C:N. Concomitant with this, we observed higher soil C:N under EM trees. Interestingly, this reflected greater N storage in AM-dominated soils rather than greater C storage in EM-dominated soils. These patterns were driven by the storage of SOM in N-rich fractions in AM-dominated soils. Specifically, trees with high litter quality were associated with greater amounts of deep and mineral-associated SOM; pools that are generally considered stable. Our results support the recent contention that high-quality plant inputs should lead to the formation of stable SOM and suggest that the AM-EM framework may provide a way forward for representing litter quality effects on SOM in earth system models.

  19. Impact of High Hydrostatic Pressure on the Shelling Efficacy, Physicochemical Properties, and Microstructure of Fresh Razor Clam (Sinonovacula constricta).

    PubMed

    Xuan, Xiao-Ting; Cui, Yan; Lin, Xu-Dong; Yu, Jing-Feng; Liao, Xiao-Jun; Ling, Jian-Gang; Shang, Hai-Tao

    2018-02-01

    The effects of high hydrostatic pressure (HHP) treatments (200, 300, and 400 MPa for 1, 3, 5 and 10 min) on the shelling efficacy (the rate of shelling, the rate of integrity and yield of razor clam meat) and the physicochemical (drip loss, water-holding capacity, pH, conductivity, lipid oxidation, Ca 2+ -ATPase activity, myofibrillar protein content), microbiological (total viable counts) and microstructural properties of fresh razor clam (Sinonovacula constricta) were investigated. HHP treatments significantly (P < 0.05) increased shelling efficiency, water-holding capacity, pH, conductivity, and lipid oxidation, and HHP-treated razor clam showed lower levels of microorganisms and drip loss than untreated razor clam. Levels of thiobarbituric acid reacting substances (TBA) in HHP-treated razor clam were greatly increased (up to 0.93 ± 0.09 mg MDA/kg at 400 MPa for 10 min) which was caused by the formation of hydroperoxides during HHP treatment. All HHP treatments were found to have adverse effects on the activity of Ca 2+ -ATPase and the content of myofibrillar protein (MP), which might be due to the substantial damage to the tertiary structure of proteins at high pressure. Moreover, scanning electron microscopy (SEM) revealed the compaction of the muscle fibers and a decrease in the extracellular space with increasing pressure and holding time. This phenomenon was mainly correlated with the compaction of muscle fibers and denaturation, aggregation, and gelation of muscle protein triggered by high pressure. In general, HHP could be applied as a safe and effective nonthermal technology to produce high-quality shelled razor clam. High hydrostatic pressure (HHP) is now well known as a nonthermal processing technology and becoming increasingly acknowledged. However, it has not been widely applied to shell seafood due to its uncertain influence on its quality and shelling property. This study could provide valuable information regarding the shelling efficacy, physicochemical properties, and microstructure of razor clam treated by HHP. And it demonstrated that HHP showed a positive impact on quality of razor clam treated by HHP. © 2018 Institute of Food Technologists®.

  20. Evaluation of beef eating quality by Irish consumers.

    PubMed

    McCarthy, S N; Henchion, M; White, A; Brandon, K; Allen, P

    2017-10-01

    A consumer's decision to purchase beef is strongly linked to its sensory properties and consistent eating quality is one of the most important attributes. Consumer taste panels were held according to the Meat Standards Australia guidelines and consumers scored beef according to its palatability attributes and completed a socio-demographic questionnaire. Consumers were able to distinguish between beef quality on a scale from unsatisfactory to premium with high accuracy. Premium cuts of beef scored significantly higher on all of the scales compared to poorer quality cuts. Men rated grilled beef higher on juiciness and flavour scales compared to women. Being the main purchaser of beef had no impact on rating scores. Overall the results show that consumers can judge eating quality with high accuracy. Further research is needed to determine how best to communicate inherent benefits that are not visible into extrinsic eating quality indicators, to provide the consumer with consistent indications of quality at the point of purchase. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. The interaction between reproductive cost and individual quality is mediated by oceanic conditions in a long-lived bird.

    PubMed

    Robert, Alexandre; Paiva, Vitor H; Bolton, Mark; Jiguet, Frédéric; Bried, Joël

    2012-08-01

    Environmental variability, costs of reproduction, and heterogeneity in individual quality are three important sources of the temporal and interindividual variations in vital rates of wild populations. Based on an 18-year monitoring of an endangered, recently described, long-lived seabird, Monteiro's Storm-Petrel (Oceanodroma monteiroi), we designed multistate survival models to separate the effects of the reproductive cost (breeders vs. nonbreeders) and individual quality (successful vs. unsuccessful breeders) in relation to temporally variable demographic and oceanographic properties. The analysis revealed a gradient of individual quality from nonbreeders, to unsuccessful breeders, to successful breeders. The survival rates of unsuccessful breeders (0.90 +/- 0.023, mean +/- SE) tended to decrease in years of high average breeding success and were more sensitive to oceanographic variation than those of both (high-quality) successful breeders (0.97 +/- 0.015) and (low-quality) nonbreeders (0.83 +/- 0.028). Overall, our results indicate that reproductive costs act on individuals of intermediate quality and are mediated by environmental harshness.

  2. Near-infrared Spectroscopy in the Brewing Industry.

    PubMed

    Sileoni, Valeria; Marconi, Ombretta; Perretti, Giuseppe

    2015-01-01

    This article offers an exhaustive description of the use of Near-Infrared (NIR) Spectroscopy in the brewing industry. This technique is widely used for quality control testing of raw materials, intermediates, and finished products, as well as process monitoring during malting and brewing. In particular, most of the reviewed works focus on the assessment of barley properties, aimed at quickly selecting the best barley varieties in order to produce a high-quality malt leading to high-quality beer. Various works concerning the use of NIR in the evaluation of raw materials, such as barley, malt, hop, and yeast, are also summarized here. The implementation of NIR sensors for the control of malting and brewing processes is also highlighted, as well as the use of NIR for quality assessment of the final product.

  3. High efficiency and enhanced ESD properties of UV LEDs by inserting p-GaN/p-AlGaN superlattice

    NASA Astrophysics Data System (ADS)

    Huang, Yong; Li, PeiXian; Yang, Zhuo; Hao, Yue; Wang, XiaoBo

    2014-05-01

    Significantly improved electrostatic discharge (ESD) properties of InGaN/GaN-based UV light-emitting diode (LED) with inserting p-GaN/p-AlGaN superlattice (p-SLs) layers (instead of p-AlGaN single layer) between multiple quantum wells and Mg-doped GaN layer are reported. The pass yield of the LEDs increased from 73.53% to 93.81% under negative 2000 V ESD pulses. In addition, the light output power (LOP) and efficiency droop at high injection current were also improved. The mechanism of the enhanced ESD properties was then investigated. After excluding the effect of capacitance modulation, high-resolution X-ray diffraction (XRD) and atomic force microscope (AFM) measurements demonstrated that the dominant mechanism of the enhanced ESD properties is the material quality improved by p-SLs, which indicated less leakage paths, rather than the current spreading improved by p-SLs.

  4. Measurement properties of questionnaires assessing participation in children and adolescents with a disability: a systematic review.

    PubMed

    Rainey, Linda; van Nispen, Ruth; van der Zee, Carlijn; van Rens, Ger

    2014-12-01

    To critically appraise the measurement properties of questionnaires measuring participation in children and adolescents (0-18 years) with a disability. Bibliographic databases were searched for studies evaluating the measurement properties of self-report or parent-report questionnaires measuring participation in children and adolescents (0-18 years) with a disability. The methodological quality of the included studies and the results of the measurement properties were evaluated using a checklist developed on consensus-based standards. The search strategy identified 3,977 unique publications, of which 22 were selected; these articles evaluated the development and measurement properties of eight different questionnaires. The Child and Adolescent Scale of Participation was evaluated most extensively, generally showing moderate positive results on content validity, internal consistency, reliability and construct validity. The remaining questionnaires also demonstrated positive results. However, at least 50 % of the measurement properties per questionnaire were not (or only poorly) assessed. Studies of high methodological quality, using modern statistical methods, are needed to accurately assess the measurement properties of currently available questionnaires. Moreover, consensus is required on the definition of the construct 'participation' to determine content validity and to enable meaningful interpretation of outcomes.

  5. Method of fabricating optical waveguides by ion implantation doping

    DOEpatents

    Appleton, Bill R.; Ashley, Paul R.; Buchal, Christopher J.

    1989-01-01

    A method for fabricating high-quality optical waveguides in optical quality oxide crystals by ion implantation doping and controlled epitaxial recrystallization is provided. Masked LiNbO.sub.3 crystals are implanted with high concentrations of Ti dopant at ion energies of about 350 keV while maintaining the crystal near liquid nitrogen temperature. Ion implantation doping produces an amorphous, Ti-rich nonequilibrium phase in the implanted region. Subsequent thermal annealing in a water-saturated oxygen atmosphere at up to 1000.degree. C. produces solid-phase epitaxial regrowth onto the crystalline substrate. A high-quality single crystalline layer results which incorporates the Ti into the crystal structure at much higher concentrations than is possible by standard diffusion techniques, and this implanted region has excellent optical waveguides properties.

  6. Child-Report Measures of Occupational Performance: A Systematic Review

    PubMed Central

    Totino, Rebekah; Doma, Kenji; Leicht, Anthony; Brown, Nicole; Cuomo, Belinda

    2016-01-01

    Introduction Improving occupational performance is a key service of occupational therapists and client-centred approach to care is central to clinical practice. As such it is important to comprehensively evaluate the quality of psychometric properties reported across measures of occupational performance; in order to guide assessment and treatment planning. Objective To systematically review the literature on the psychometric properties of child-report measures of occupational performance for children ages 2–18 years. Methods A systematic search of the following six electronic databases was conducted: CINAHL; PsycINFO; EMBASE; PubMed; the Health and Psychosocial Instruments (HAPI) database; and Google Scholar. The quality of the studies was evaluated against the COSMIN taxonomy of measurement properties and the overall quality of psychometric properties was evaluated using pre-set psychometric criteria. Results Fifteen articles and one manual were reviewed to assess the psychometric properties of the six measures–the PEGS, MMD, CAPE, PAC, COSA, and OSA- which met the inclusion criteria. Most of the measures had conducted good quality studies to evaluate the psychometric properties of measures (PEGS, CAPE, PAC, OSA); however, the quality of the studies for two of these measures was relatively weak (MMD, COSA). When integrating the quality of the psychometric properties of the measures with the quality of the studies, the PAC stood out as having superior psychometric qualities. Conclusions The overall quality of the psychometric properties of most measures was limited. There is a need for continuing research into the psychometric properties of child-report measures of occupational performance, and to revise and improve the psychometric properties of existing measures. PMID:26808674

  7. Hall effect measurements of high-quality M n3CuN thin films and the electronic structure

    NASA Astrophysics Data System (ADS)

    Matsumoto, Toshiki; Hatano, Takafumi; Urata, Takahiro; Iida, Kazumasa; Takenaka, Koshi; Ikuta, Hiroshi

    2017-11-01

    The physical properties of M n3CuN were studied using thin films. We found that an annealing process was very effective to improve the film quality, the key of which was the use of Ti that prevented the formation of oxide impurities. Using these high-quality thin films, we found strong strain dependence for the ferromagnetic transition temperature (TC) and a sign change of the Hall coefficient at TC. The analysis of Hall coefficient data revealed a sizable decrease of hole concentration and a large increase of electron mobility below TC, which is discussed in relation to the electronic structure of this material.

  8. Psychometric Properties of the "Aberrant Behavior Checklist," the "Anxiety, Depression and Mood Scale," the "Assessment of Dual Diagnosis" and the "Social Performance Survey Schedule" in Adults with Intellectual Disabilities

    ERIC Educational Resources Information Center

    Rojahn, Johannes; Rowe, Ellen W.; Kasdan, Shana; Moore, Linda; van Ingen, Daniel J.

    2011-01-01

    Progress in clinical research and in empirically supported interventions in the area of psychopathology in intellectual disabilities (ID) depends on high-quality assessment instruments. To this end, psychometric properties of four instruments were examined: the "Aberrant Behavior Checklist" (ABC), the "Assessment of Dual…

  9. Evaluation of seed chemical quality traits and sensory properties of natto soybean.

    PubMed

    Yoshikawa, Yoko; Chen, Pengyin; Zhang, Bo; Scaboo, Andrew; Orazaly, Moldir

    2014-06-15

    Natto is a popular soyfood in Japan, and the U.S. is the largest supplier of natto soybeans. However, information on natto seed chemical and sensory properties is very limited. The objectives of this study were to evaluate differences of seed chemical and sensory properties among natto types and determine heritability and correlation. A total of 15 small-seeded natto genotypes (three superior, nine moderate and three inferior) were evaluated for protein, oil, calcium, manganese, boron and sugar content and processed into a natto product to evaluate appearance, stickiness, flavor, texture and shelf-life. The superior natto group had a higher sugar content but lower protein plus oil, calcium, manganese and boron content than other two groups. Most seed quality traits exhibited high heritability. The natto sensory preference was positively correlated with sucrose and oil content, but negatively correlated with seed hardness, protein, protein plus oil, calcium, manganese, and boron contents. Selecting soybean lines with low protein, protein plus oil, calcium, manganese, and boron content while with high sucrose will be an effective approach for soybean breeding for natto production. Published by Elsevier Ltd.

  10. Topographic modelling of haptic properties of tissue products

    NASA Astrophysics Data System (ADS)

    Rosen, B.-G.; Fall, A.; Rosen, S.; Farbrot, A.; Bergström, P.

    2014-03-01

    The way a product or material feels when touched, haptics, has been shown to be a property that plays an important role when consumers determine the quality of products For tissue products in constant touch with the skin, softness" becomes a primary quality parameter. In the present work, the relationship between topography and the feeling of the surface has been investigated for commercial tissues with varying degree of texture from the low textured crepe tissue to the highly textured embossed- and air-dried tissue products. A trained sensory panel at was used to grade perceived haptic "roughness". The technique used to characterize the topography was Digital light projection (DLP) technique, By the use of multivariate statistics, strong correlations between perceived roughness and topography were found with predictability of above 90 percent even though highly textured products were included. Characterization was made using areal ISO 25178-2 topography parameters in combination with non-contacting topography measurement. The best prediction ability was obtained when combining haptic properties with the topography parameters auto-correlation length (Sal), peak material volume (Vmp), core roughness depth (Sk) and the maximum height of the surface (Sz).

  11. Antimicrobial edible films and coatings for meat and meat products preservation.

    PubMed

    Sánchez-Ortega, Irais; García-Almendárez, Blanca E; Santos-López, Eva María; Amaro-Reyes, Aldo; Barboza-Corona, J Eleazar; Regalado, Carlos

    2014-01-01

    Animal origin foods are widely distributed and consumed around the world due to their high nutrients availability but may also provide a suitable environment for growth of pathogenic and spoilage microorganisms. Nowadays consumers demand high quality food with an extended shelf life without chemical additives. Edible films and coatings (EFC) added with natural antimicrobials are a promising preservation technology for raw and processed meats because they provide good barrier against spoilage and pathogenic microorganisms. This review gathers updated research reported over the last ten years related to antimicrobial EFC applied to meat and meat products. In addition, the films gas barrier properties contribute to extended shelf life because physicochemical changes, such as color, texture, and moisture, may be significantly minimized. The effectiveness showed by different types of antimicrobial EFC depends on meat source, polymer used, film barrier properties, target microorganism, antimicrobial substance properties, and storage conditions. The perspective of this technology includes tailoring of coating procedures to meet industry requirements and shelf life increase of meat and meat products to ensure quality and safety without changes in sensory characteristics.

  12. Effect of roasting conditions on the composition and antioxidant properties of defatted walnut flour.

    PubMed

    Santos, Joana; Alvarez-Ortí, Manuel; Sena-Moreno, Estela; Rabadán, Adrián; Pardo, José E; Beatriz Pp Oliveira, M

    2018-03-01

    Walnut oil extraction by pressure systems produces a press cake as a by-product, with many of the beneficial walnut properties. The objective of this work was to evaluate the composition and antioxidant properties of walnut flours submitted to different roasting protocols (50, 100 and 150 °C during 30, 60 and 120 min). All walnut flours had about 42% protein and a significant amount of dietary fibre (17%), not being affected by the roasting process. Nonetheless, the fat content increased around 50% in walnuts flours subjected to longer and higher roasting temperatures (150 °C). The lipid fraction showed a good nutritional quality with a high vitamin E content (mainly γ-tocopherol) and fatty acid profile rich in linoleic and linolenic acids. The high phenolic content also provides great antioxidant capacity to the flours. Mild roasting of walnuts did not affect the quality of the flours that could be used as a functional ingredient in the food industry. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  13. Antimicrobial Edible Films and Coatings for Meat and Meat Products Preservation

    PubMed Central

    Sánchez-Ortega, Irais; García-Almendárez, Blanca E.; Santos-López, Eva María; Amaro-Reyes, Aldo; Barboza-Corona, J. Eleazar; Regalado, Carlos

    2014-01-01

    Animal origin foods are widely distributed and consumed around the world due to their high nutrients availability but may also provide a suitable environment for growth of pathogenic and spoilage microorganisms. Nowadays consumers demand high quality food with an extended shelf life without chemical additives. Edible films and coatings (EFC) added with natural antimicrobials are a promising preservation technology for raw and processed meats because they provide good barrier against spoilage and pathogenic microorganisms. This review gathers updated research reported over the last ten years related to antimicrobial EFC applied to meat and meat products. In addition, the films gas barrier properties contribute to extended shelf life because physicochemical changes, such as color, texture, and moisture, may be significantly minimized. The effectiveness showed by different types of antimicrobial EFC depends on meat source, polymer used, film barrier properties, target microorganism, antimicrobial substance properties, and storage conditions. The perspective of this technology includes tailoring of coating procedures to meet industry requirements and shelf life increase of meat and meat products to ensure quality and safety without changes in sensory characteristics. PMID:25050387

  14. Development of a Hot Working Steel Based on a Controlled Gas-Metal-Reaction

    NASA Astrophysics Data System (ADS)

    Ritzenhoff, Roman; Gharbi, Mohammad Malekipour

    As a result of cost sensitiveness, the demand on hot working steels with advanced characteristics and properties are ascending. We have used a controlled gas-metal-reaction in a P-ESR furnace to produce high quality hot working steel. These types of materials are also known as High Nitrogen Steels (HNS). An overview of the development in a pressurized induction furnace to the final industrial scale using P-ESR will be provided. Different heat treatment strategies are conducted and their effect on mechanical properties is investigated.

  15. Mechanical properties of metal-organic frameworks: An indentation study on epitaxial thin films

    NASA Astrophysics Data System (ADS)

    Bundschuh, S.; Kraft, O.; Arslan, H. K.; Gliemann, H.; Weidler, P. G.; Wöll, C.

    2012-09-01

    We have determined the hardness and Young's modulus of a highly porous metal-organic framework (MOF) using a standard nanoindentation technique. Despite the very low density of these films, 1.22 g cm-3, Young's modulus reaches values of almost 10 GPa for HKUST-1, demonstrating that this porous coordination polymer is substantially stiffer than normal polymers. This progress in characterizing mechanical properties of MOFs has been made possible by the use of high quality, oriented thin films grown using liquid phase epitaxy on modified Au substrates.

  16. Classification of soft-shell materials for leisure outdoor jackets by clo defined from thermal properties testing

    NASA Astrophysics Data System (ADS)

    Tesinova, P.; Steklova, P.; Duchacova, T.

    2017-10-01

    Materials for outdoor activities are produced in various combinations and lamination helps to combine two or more components for gaining high comfort properties and lighten the structure. Producers can choose exact suitable material for construction of part or set of so called layered clothing for expected activity. Decreasing the weight of materials when preserving of high quality of water-vapour permeability, wind resistivity and hydrostatic resistivity and other comfort and usage properties is a big task nowadays. This paper is focused on thermal properties as an important parameter for being comfort during outdoor activities. Softshell materials were chosen for testing and computation of clo. Results compared with standardised clo table helps us to classify thermal insulation of the set of fabrics when defining proper clothing category.

  17. Long-term Effect of Pig Slurry Application on Soil Carbon Storage, Quality and Yield Sustainability in Murcia Region, Spain

    NASA Astrophysics Data System (ADS)

    Büyükkılıç Yanardaǧ, Asuman

    2013-04-01

    Sustainability of agriculture is now a major global concern, especially since the 1980s. Soil organic matter is very important in the proper functions of the soil, which is also a good indicator of soil quality. This is due to its influence on many of the chemical, physical, and biological processes that control the capacity of a soil to perform properly. Understanding of nutrient supply through organic matter mineralization in agricultural systems is essential for maintaining long-term quality and productivity. The composition of pig manure will have a profound impact on soil properties, quality and crop yield when used in agriculture. We studied the effects of pig slurry (PS) application as an organic fertilizer, trying to determine the optimum amount that can be added to the soil, and the effect on soil properties, quality, and productivity. We applied 3 different doses on silty loam soils: Single (D1), Double (D2), Triple (D3) and unfertilized plots (C) served as controls. Samples were collected at two different levels, surface (0-30 cm) and subsurface (30-60 cm). D1 application dose, which is the agronomic rate of N-requirement (170 kg N/ha/yr) (European Directive 91/676/CEE), is very appropriate in term of sustainable agriculture and also can improve physical, chemical and biological soil properties. Therefore that the long-term use of PS with low dose may necessarily enhance soil quality in the long term. There are many factors to be considered when attempting to assess the overall net impact of a management practice on productivity. Additions of pig manure to soils at agronomic rates (170 kg N ha-1 yr-1) to match crop nutrient requirements are expected to have a positive impact on soil productivity. Therefore, the benefits from the use of application depend on the management of PS, carbon and environmental quality. However, PS have high micronutrient contents, and for this reason the application of high doses can pollute soils and damage human, animal and plant health, which is not suitable in term of sustainable agriculture. Keywords: Management, Pig slurry, Productivity, Quality, Soil.

  18. Psychometric Properties of the Persian Translation of the Sexual Quality of Life–Male Questionnaire

    PubMed Central

    Maasoumi, Raziyeh; Mokarami, Hamidreza; Nazifi, Morteza; Stallones, Lorann; Taban, Abrahim; Yazdani Aval, Mohsen; Samimi, Kazem

    2016-01-01

    Sexual dysfunction has been demonstrated to be related to a poor quality of life. These dysfunctions are especially prevalent among men. This cross-sectional study aimed to investigate the psychometric properties of the Persian translation of the Sexual Quality of Life–Male (SQOL-M), translated and adapted to measure sexual quality of life among Iranian men. Forward–backward procedures were applied in translating the original SQOL-M into Persian, and then the psychometric properties of the Persian translation of the SQOL-M were studied. A total of 181 participants (23-60 years old) were included in the study. Validity was assessed by construct validity using confirmatory factor analysis, convergent validity, and content validity. The international index of erectile function (IIEF) and the work ability index were used to study the convergent validity. Reliability was evaluated through internal consistency and test–retest reliability analyses. The results from confirmatory factor analysis confirmed a one-factor solution for the Persian version of the SQOL-M. Content validity of the translated measure was endorsed by 10 specialists. Pearson correlations indicated that work ability index score, dimensions of the IIEF, and the IIEF total score were positively correlated with the Persian version of the SQOL-M (p < .001). Reliability evaluation indicated a high internal consistency and test–retest reliability. The Cronbach’s alpha coefficient and intraclass correlation coefficients were .96 and .95, respectively. Results indicated that the Persian version of the SQOL-M has good to excellent psychometric properties and can be used to assess the sexual quality of life among Iranian men. PMID:26856758

  19. Psychometric Properties of the Persian Translation of the Sexual Quality of Life-Male Questionnaire.

    PubMed

    Maasoumi, Raziyeh; Mokarami, Hamidreza; Nazifi, Morteza; Stallones, Lorann; Taban, Abrahim; Yazdani Aval, Mohsen; Samimi, Kazem

    2017-05-01

    Sexual dysfunction has been demonstrated to be related to a poor quality of life. These dysfunctions are especially prevalent among men. This cross-sectional study aimed to investigate the psychometric properties of the Persian translation of the Sexual Quality of Life-Male (SQOL-M), translated and adapted to measure sexual quality of life among Iranian men. Forward-backward procedures were applied in translating the original SQOL-M into Persian, and then the psychometric properties of the Persian translation of the SQOL-M were studied. A total of 181 participants (23-60 years old) were included in the study. Validity was assessed by construct validity using confirmatory factor analysis, convergent validity, and content validity. The international index of erectile function (IIEF) and the work ability index were used to study the convergent validity. Reliability was evaluated through internal consistency and test-retest reliability analyses. The results from confirmatory factor analysis confirmed a one-factor solution for the Persian version of the SQOL-M. Content validity of the translated measure was endorsed by 10 specialists. Pearson correlations indicated that work ability index score, dimensions of the IIEF, and the IIEF total score were positively correlated with the Persian version of the SQOL-M ( p < .001). Reliability evaluation indicated a high internal consistency and test-retest reliability. The Cronbach's alpha coefficient and intraclass correlation coefficients were .96 and .95, respectively. Results indicated that the Persian version of the SQOL-M has good to excellent psychometric properties and can be used to assess the sexual quality of life among Iranian men.

  20. Shape memory alloys: Properties and biomedical applications

    NASA Astrophysics Data System (ADS)

    Mantovani, Diego

    2000-10-01

    Shape memory alloys provide new insights for the design of biomaterials in bioengineering for the design of artificial organs and advanced surgical instruments, since they have specific characteristics and unusual properties. This article will examine (a) the four properties of shape memory alloys, (b) medical applications with high potential for improving the present and future quality of life, and (c) concerns regarding the biocom-patibility properties of nickel-titanium alloys. In particular, the long-term challenges of using shape memory alloys will be discussed, regarding corrosion and potential leakage of elements and ions that could be toxic to cells, tissues and organs.

  1. Structural and electrical characterization of ultra-thin SrTiO3 tunnel barriers grown over YBa2Cu3O7 electrodes for the development of high Tc Josephson junctions.

    PubMed

    Félix, L Avilés; Sirena, M; Guzmán, L A Agüero; Sutter, J González; Vargas, S Pons; Steren, L B; Bernard, R; Trastoy, J; Villegas, J E; Briático, J; Bergeal, N; Lesueur, J; Faini, G

    2012-12-14

    The transport properties of ultra-thin SrTiO(3) (STO) layers grown over YBa(2)Cu(3)O(7) electrodes were studied by conductive atomic force microscopy at the nano-scale. A very good control of the barrier thickness was achieved during the deposition process. A phenomenological approach was used to obtain critical parameters regarding the structural and electrical properties of the system. The STO layers present an energy barrier of 0.9 eV and an attenuation length of 0.23 nm, indicating very good insulating properties for the development of high-quality Josephson junctions.

  2. Effect of Quality Grade and Storage Time on the Palatability, Physicochemical and Microbial Quality of Hanwoo Striploin Beef

    PubMed Central

    Yim, Dong-Gyun

    2015-01-01

    The effects of quality grade and storage time on physicochemical, sensory properties and microbial population of Hanwoo striploin beef were investigated. After a total of 30 Hanwoo beef were slaughtered, the cold carcasses were graded by official meat grader at 24 h postmortem. The carcasses were categorized into five groups (quality grade 1++, 1+, 1, 2, and 3) and were vacuum-packaged and stored. The samples were kept for 1, 4, 6, 8, 11, 13, 15, 18, 20, 22 and 25 d for analyses. As the quality grade was increased, moisture, protein and ash contents decreased (p<0.05). Higher quality grade corresponded with higher fat contents. The shear force values decreased with increasing quality grade and showed decreases sharply during the first 4 d (p<0.05). pH, water holding capacity, cooking loss, and volatile basic nitrogen for grade 1++ groups were lower than for grade 3 (p<0.05). CIE L* and b* values increased as increased quality grade (p<0.05). Meat color decreased until 13 d and fluctuated after 15 d of storage (p<0.05). Regarding the sensory scores, higher quality grade corresponded with higher juiciness, tenderness, flavor, fatty and palatability scores (p<0.05). Generally, increased storage time for 15 d improved sensory scores attributes. Results indicate that a high quality grade could positively influence physicochemical and sensory properties. PMID:26761865

  3. High-temperature Y267 EPDM elastomer: field and laboratory experiences, August 1981

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hirasuna, A.R.; Friese, G.J.; Stephens, C.A.

    1982-03-01

    Experiences which indicate the superiority of Y267 EPDM elastomer for high-temperature brines and other environments uses are summarized. Its good processing qualities, extremely good thermochemical stability, extremely good mechanical properties, its low-cost constituents, and its good performance in hydrocarbons are described in some case histories. (MCW)

  4. Chemical solution synthesis and ferromagnetic resonance of epitaxial thin films of yttrium iron garnet

    NASA Astrophysics Data System (ADS)

    Lucas, Irene; Jiménez-Cavero, Pilar; Vila-Fungueiriño, J. M.; Magén, Cesar; Sangiao, Soraya; de Teresa, José Maria; Morellón, Luis; Rivadulla, Francisco

    2017-12-01

    We report the fabrication of epitaxial Y3F e5O12 (YIG) thin films on G d3G a5O12 (111) using a chemical solution method. Cubic YIG is a ferrimagnetic material at room temperature, with excellent magneto-optical properties, high electrical resistivity, and a very narrow ferromagnetic resonance, which makes it particularly suitable for applications in filters and resonators at microwave frequencies. But these properties depend on the precise stoichiometry and distribution of F e3 + ions among the octahedral/tetrahedral sites of a complex structure, which hampered the production of high-quality YIG thin films by affordable chemical methods. Here we report the chemical solution synthesis of YIG thin films, with excellent chemical, crystalline, and magnetic homogeneity. The films show a very narrow ferromagnetic resonance (long spin relaxation time), comparable to that obtained from high-vacuum physical deposition methods. These results demonstrate that chemical methods can compete to develop nanometer-thick YIG films with the quality required for spintronic devices and other high-frequency applications.

  5. Olive (Olea europaea L.) tree nitrogen status is a key factor for olive oil quality.

    PubMed

    Erel, Ran; Kerem, Zohar; Ben-Gal, Alon; Dag, Arnon; Schwartz, Amnon; Zipori, Isaac; Basheer, Loai; Yermiyahu, Uri

    2013-11-27

    The influence of macronutrient status on olive oil properties was studied for three years. Data were analyzed by a multivariate model considering N, P, K, and fruiting year as explanatory factors. Oil quality parameters were primarily associated with N concentration in leaves and fruits which increased with N in irrigation solution. The effect of P on oil quality was mainly indirect since increased P availability increased N accumulation. The potassium level had negligible effects. The oil phenolic content decreased linearly as a function of increased leaf N, indicating protein-phenol competition in leaves. The overall saturation level of the fatty acids decreased with fruit N, resulting in increased polyunsaturated fatty acids. Free fatty acids increased with increased levels of fruit N. High fruit load tended to reduce fruit N and subsequently improve oil quality. The effect of N on oil properties depended solely on its concentration in leaves or fruits, regardless of the cause.

  6. Synthesis and properties of high quality Bi-2212 whiskers

    NASA Astrophysics Data System (ADS)

    Tange, M.; Amano, T.; Nishizaki, S.; Yoshizaki, R.

    2004-08-01

    The whiskers synthesized by employing a new and simple method show the residual resistivity of 16 (±10) μ Ω cm at 0 K limit in transport and exhibit the second peak effect in magnetization measurement.

  7. Low-Energy Electronic Properties of Clean CaRuO3: Elusive Landau Quasiparticles

    NASA Astrophysics Data System (ADS)

    Schneider, M.; Geiger, D.; Esser, S.; Pracht, U. S.; Stingl, C.; Tokiwa, Y.; Moshnyaga, V.; Sheikin, I.; Mravlje, J.; Scheffler, M.; Gegenwart, P.

    2014-05-01

    We have prepared high-quality epitaxial thin films of CaRuO3 with residual resistivity ratios up to 55. Shubnikov-de Haas oscillations in the magnetoresistance and a T2 temperature dependence in the electrical resistivity only below 1.5 K, the coefficient of which is substantially suppressed in large magnetic fields, establish CaRuO3 as a Fermi liquid (FL) with an anomalously low coherence scale. At T >1.5 K non-Fermi-liquid (NFL) behavior is found in the electrical resistivity. The high sample quality allows access to the intrinsic electronic properties via THz spectroscopy. For frequencies below 0.6 THz, the conductivity is Drude-like and can be modeled by FL concepts; for higher frequencies, non-Drude behavior is found, which is inconsistent with FL predictions. This establishes CaRuO3 as a prime example of optical NFL behavior in the THz range.

  8. Perovskite Solar Cells: From the Atomic Level to Film Quality and Device Performance.

    PubMed

    Saliba, Michael; Correa-Baena, Juan-Pablo; Grätzel, Michael; Hagfeldt, Anders; Abate, Antonio

    2018-03-01

    Organic-inorganic perovskites have made tremendous progress in recent years due to exceptional material properties such as high panchromatic absorption, charge carrier diffusion lengths, and a sharp optical band edge. The combination of high-quality semiconductor performance with low-cost deposition techniques seems to be a match made in heaven, creating great excitement far beyond academic ivory towers. This is particularly true for perovskite solar cells (PSCs) that have shown unprecedented gains in efficiency and stability over a time span of just five years. Now there are serious efforts for commercialization with the hope that PSCs can make a major impact in generating inexpensive, sustainable solar electricity. In this Review, we will focus on perovskite material properties as well as on devices from the atomic to the thin film level to highlight the remaining challenges and to anticipate the future developments of PSCs. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Out of the Autoclave Fabrication of LaRC[TradeMark] PETI-9 Polyimide Laminates

    NASA Technical Reports Server (NTRS)

    Cano, Robert J.; Jensen, Brian J.

    2013-01-01

    The NASA Langley Research Center developed polyimide system, LaRC PETI-9, has successfully been processed into composites by high temperature vacuum assisted resin transfer molding (HT-VARTM). To extend the application of this high use temperature material to other out-of-autoclave (OOA) processing techniques, the fabrication of PETI- 9 laminates was evaluated using only a vacuum bag and oven cure. A LaRC PETI-9 polyimide solution in NMP was prepared and successfully utilized to fabricate unidirectional IM7 carbon fiber prepreg that was subsequently processed into composites with a vacuum bag and oven cure OOA process. Composite panels of good quality were successfully fabricated and mechanically tested. Processing characteristics, composite panel quality and mechanical properties are presented in this work. The resultant properties are compared to previously developed LaRC material systems processed by both autoclave and OOA techniques including the well characterized, autoclave processed LaRC PETI-5.

  10. Effects of Data Quality on the Characterization of Aerosol Properties from Multiple Sensors

    NASA Technical Reports Server (NTRS)

    Petrenko, Maksym; Ichoku, Charles; Leptoukh, Gregory

    2011-01-01

    Cross-comparison of aerosol properties between ground-based and spaceborne measurements is an important validation technique that helps to investigate the uncertainties of aerosol products acquired using spaceborne sensors. However, it has been shown that even minor differences in the cross-characterization procedure may significantly impact the results of such validation. Of particular consideration is the quality assurance I quality control (QA/QC) information - an auxiliary data indicating a "confidence" level (e.g., Bad, Fair, Good, Excellent, etc.) conferred by the retrieval algorithms on the produced data. Depending on the treatment of available QA/QC information, a cross-characterization procedure has the potential of filtering out invalid data points, such as uncertain or erroneous retrievals, which tend to reduce the credibility of such comparisons. However, under certain circumstances, even high QA/QC values may not fully guarantee the quality of the data. For example, retrievals in proximity of a cloud might be particularly perplexing for an aerosol retrieval algorithm, resulting in an invalid data that, nonetheless, could be assigned a high QA/QC confidence. In this presentation, we will study the effects of several QA/QC parameters on cross-characterization of aerosol properties between the data acquired by multiple spaceborne sensors. We will utilize the Multi-sensor Aerosol Products Sampling System (MAPSS) that provides a consistent platform for multi-sensor comparison, including collocation with measurements acquired by the ground-based Aerosol Robotic Network (AERONET), The multi-sensor spaceborne data analyzed include those acquired by the Terra-MODIS, Aqua-MODIS, Terra-MISR, Aura-OMI, Parasol-POLDER, and CalipsoCALIOP satellite instruments.

  11. A Reproducible Approach of Preparing High-Quality Overdoped Bi 2 Sr 2 CaCu 2 O 8+δ Single Crystals by Oxygen Annealing and Quenching Method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Yu-Xiao; Zhao, Lin; Gu, Gen-Da

    2016-06-01

    Here, we report a reproducible approach in preparing high-quality overdoped Bi 2Sr 2 CaCu 2 O 8+δ (Bi2212) single crystals by annealing Bi2212 crystals in high oxygen pressure followed by a fast quenching. High-quality overdoped and heavily overdoped Bi2212 single crystals are obtained by controlling the annealing oxygen pressure. Furthermore, we find that, beyond a limit of oxygen pressure that can achieve most heavily overdoped Bi2212 with a T c ~63 K, the annealed Bi2212 begins to decompose. This accounts for the existence of the hole-doping limit and thus the T c limit in the heavily overdoped region of Bi2212more » by the oxygen annealing process. Our results provide a reliable way in preparing high-quality overdoped and heavily overdoped Bi2212 crystals that are important for studies of the physical properties, electronic structure and superconductivity mechanism of the cuprate superconductors.« less

  12. High quality thin films of thermoelectric misfit cobalt oxides prepared by a chemical solution method

    PubMed Central

    Rivas-Murias, Beatriz; Manuel Vila-Fungueiriño, José; Rivadulla, Francisco

    2015-01-01

    Misfit cobaltates ([Bi/Ba/Sr/Ca/CoO]nRS[CoO2]q) constitute the most promising family of thermoelectric oxides for high temperature energy harvesting. However, their complex structure and chemical composition makes extremely challenging their deposition by high-vacuum physical techniques. Therefore, many of them have not been prepared as thin films until now. Here we report the synthesis of high-quality epitaxial thin films of the most representative members of this family of compounds by a water-based chemical solution deposition method. The films show an exceptional crystalline quality, with an electrical conductivity and thermopower comparable to single crystals. These properties are linked to the epitaxial matching of the rock-salt layers of the structure to the substrate, producing clean interfaces free of amorphous phases. This is an important step forward for the integration of these materials with complementary n-type thermoelectric oxides in multilayer nanostructures. PMID:26153533

  13. Effect of extrusion conditions and lipoxygenase inactivation treatment on the physical and nutritional properties of corn/cowpea (Vigna unguiculata) blends.

    PubMed

    Sosa-Moguel, Odri; Ruiz-Ruiz, Jorge; Martínez-Ayala, Alma; González, Rolando; Drago, Silvina; Betancur-Ancona, David; Chel-Guerrero, Luis

    2009-01-01

    The influence of lipoxygenase inactivation and extrusion cooking on the physical and nutritional properties of corn/cowpea (Vigna unguiculata) blends was studied. Corn was blended in an 80:15 proportion with cowpea flour treated to inactivate lipoxygenase (CI) or non-inactivated cowpea flour (CNI). Extrusion variables were temperature (150 degrees C, 165 degrees C and 180 degrees C) and moisture (15%, 17% and 19%). Based on their physical properties, the 165 degrees C/15% corn:CNI, and 165 degrees C/15% corn:CI, and 150 degrees C/15% corn:CI blends were chosen for nutritional quality analysis. Extrudate chemical composition indicated high crude protein levels compared with standard corn-based products. With the exception of lysine, essential amino acids content in the three treatments met FAO requirements. Extrusion and lipoxygenase inactivation are promising options for developing corn/cowpea extruded snack products with good physical properties and nutritional quality.

  14. Analysis of physical and chemical properties of hard-to-recover oil of a low quality class in the Russian Arctic

    NASA Astrophysics Data System (ADS)

    Yashchenko, I. G.; Polishchuk, Y. M.

    2017-12-01

    Using a global database on physical and chemical properties of oils, the distribution of viscous, heavy, waxy and highly resinous oils is analyzed in terms of volumes of their reserves. It is known that heavy and viscous oils account for slightly more than 33% of the total samples. Resinous and paraffin oils account for less than 30% in the total samples. The criteria necessary to classify oils as hard-to-recover oil reserves are determined. Features of physical and chemical properties of these oils are studied under various conditions. The results of a comparative analysis of hard-to-recover oils of a low quality from the main basins of the Arctic zone of Russia are given, which made it possible to establish features of physical and chemical properties of oil. The results of the research can be used to develop new and improve existing methods and technologies for oil production and refining.

  15. Impact of lysine and liquid smoke as flavor enhancers on the quality of low-fat Bologna-type sausages with 50% replacement of NaCl by KCl.

    PubMed

    Dos Santos Alves, Larissa Aparecida Agostinho; Lorenzo, José Manuel; Gonçalves, Carlos Antonio Alvarenga; Dos Santos, Bibiana Alves; Heck, Rosane Teresinha; Cichoski, Alexandre José; Campagnol, Paulo Cezar Bastianello

    2017-01-01

    Low-fat Bologna-type sausages were produced with 50% of NaCl replaced by KCl and with addition of lysine and/or liquid smoke as flavor enhancers. The influence of sodium reduction on technological, physicochemical, and microbiological properties was determined. In addition, the sensory properties were evaluated using a Check all that apply questionnaire (CATA) and a consumer study. The partial replacement of NaCl by KCl did not have negative impacts on physicochemical, technological, and microbiological properties. However, the addition of KCl affected the sensory acceptance, as consumers identified by CATA questionnaire a reduction in salty taste and an increase in bitter, astringent, and metallic taste. The isolated or combined addition of lysine and liquid smoke reduced the sensory quality defects caused by the addition of KCl. Therefore, high quality low-fat Bologna-type sausages with sodium reduction close to 50% can be produced by replacing 50% NaCl by KCl and with addition of 1% lysine and/or 0.1% liquid smoke. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Improved optoelectronics properties of ITO-based transparent conductive electrodes with the insertion of Ag/Ni under-layer

    NASA Astrophysics Data System (ADS)

    Ali, Ahmad Hadi; Abu Bakar, Ahmad Shuhaimi; Hassan, Zainuriah

    2014-10-01

    ITO-based transparent conductive electrodes (TCE) with Ag/Ni thin metal under-layer were deposited on Si and glass substrates by thermal evaporator and RF magnetron sputtering system. Ceramic ITO with purity of 99.99% and In2O3:SnO2 weight ratio of 90:10 was used as a target at room temperature. Post-deposition annealing was performed on the TCE at moderate temperature of 500 °C, 600 °C and 700 °C under N2 ambient. It was observed that the structural properties, optical transmittance, electrical characteristics and surface morphology were improved significantly after the post-annealing process. Post-annealed ITO/Ag/Ni at 600 °C shows the best quality of TCE with figure-of-merit (FOM) of 1.5 × 10-2 Ω-1 and high optical transmittance of 83% at 470 nm as well as very low electrical resistivity of 4.3 × 10-5 Ω-cm. The crystalline quality and surface morphological plays an important role in determining the quality of the TCE multilayer thin films properties.

  17. Gram-scale synthesis of single-crystalline graphene quantum dots with superior optical properties.

    PubMed

    Wang, Liang; Wang, Yanli; Xu, Tao; Liao, Haobo; Yao, Chenjie; Liu, Yuan; Li, Zhen; Chen, Zhiwen; Pan, Dengyu; Sun, Litao; Wu, Minghong

    2014-10-28

    Graphene quantum dots (GQDs) have various alluring properties and potential applications, but their large-scale applications are limited by current synthetic methods that commonly produce GQDs in small amounts. Moreover, GQDs usually exhibit polycrystalline or highly defective structures and thus poor optical properties. Here we report the gram-scale synthesis of single-crystalline GQDs by a facile molecular fusion route under mild and green hydrothermal conditions. The synthesis involves the nitration of pyrene followed by hydrothermal treatment in alkaline aqueous solutions, where alkaline species play a crucial role in tuning their size, functionalization and optical properties. The single-crystalline GQDs are bestowed with excellent optical properties such as bright excitonic fluorescence, strong excitonic absorption bands extending to the visible region, large molar extinction coefficients and long-term photostability. These high-quality GQDs can find a large array of novel applications in bioimaging, biosensing, light emitting diodes, solar cells, hydrogen production, fuel cells and supercapacitors.

  18. The quality of geological information derivable from high resolution reflectance spectra - Results for mafic silicates

    NASA Technical Reports Server (NTRS)

    Cloutis, E. A.; Lambert, J.; Smith, D. G. W.; Gaffey, M. J.

    1987-01-01

    High-resolution visible and near-infrared diffuse reflectance spectra of mafic silicates can be deconvolved to yield quantitative information concerning mineral mixture properties, and the results can be directly applied to remotely sensed data. Spectral reflectance measurements of laboratory mixtures of olivine, orthophyroxene, and clinopyroxene with known chemistries, phase abundances, and particle size distributions have been utilized to develop correlations between spectral properties and the physicochemical parameters of the samples. A large number of mafic silicate spectra were measured and examined for systematic variations in spectral properties as a function of chemistry, phase abundance, and particle size. Three classes of spectral parameters (ratioed, absolute, and wavelength) were examined for any correlations. Each class is sensitive to particular mafic silicate properties. Spectral deconvolution techniques have been developed for quantifying, with varying degrees of accuracy, the assemblage properties (chemistry, phase abundance, and particle size).

  19. Nanomechanics of cellulose crystals and cellulose-based polymer composites

    NASA Astrophysics Data System (ADS)

    Pakzad, Anahita

    Cellulose-polymer composites have potential applications in aerospace and transportation areas where lightweight materials with high mechanical properties are needed. In addition, these economical and biodegradable composites have been shown to be useful as polymer electrolytes, packaging structures, optoelectronic devices, and medical implants such as wound dressing and bone scaffolds. In spite of the above mentioned advantages and potential applications, due to the difficulties associated with synthesis and processing techniques, application of cellulose crystals (micro and nano sized) for preparation of new composite systems is limited. Cellulose is hydrophilic and polar as opposed to most of common thermoplastics, which are non-polar. This results in complications in addition of cellulose crystals to polymer matrices, and as a result in achieving sufficient dispersion levels, which directly affects the mechanical properties of the composites. As in other composite materials, the properties of cellulose-polymer composites depend on the volume fraction and the properties of individual phases (the reinforcement and the polymer matrix), the dispersion quality of the reinforcement through the matrix and the interaction between CNCs themselves and CNC and the matrix (interphase). In order to develop economical cellulose-polymer composites with superior qualities, the properties of individual cellulose crystals, as well as the effect of dispersion of reinforcements and the interphase on the properties of the final composites should be understood. In this research, the mechanical properties of CNC polymer composites were characterized at the macro and nano scales. A direct correlation was made between: - Dispersion quality and macro-mechanical properties - Nanomechanical properties at the surface and tensile properties - CNC diameter and interphase thickness. Lastly, individual CNCs from different sources were characterized and for the first time size-scale effect on their nanomechanical properties were reported. Then the effect of CNC surface modification on the mechanical properties was studied and correlated to the crystalline structure of these materials.

  20. Measurement Properties of the Functional Rating Index: A systematic Review and Meta-analysis.

    PubMed

    Bai, Zhongfei; Shu, Tian; Lu, Jiani; Niu, Wenxin

    2018-04-13

    A systematic review and meta-analysis. To assess the measurement properties of the Functional Rating Index (FRI) and determine whether its measurement properties are comparable with other region-specific questionnaires. In addition to low back pain (LBP) and neck pain (NP), multi-region spinal pain (SP) is a common problem with a considerable prevalence in the general population. The FRI was built to assess physical functioning in patients with SP. However, a systematic review assessing evidence of its measurement properties in separated populations and a comparison with other questionnaires regarding each measurement property is lacking. Articles concerning the FRI's measurement properties or head-to-head comparison with other questionnaires on measurement properties were obtained from MEDLINE, Embase, CINAHL, and PsycINFO. Two reviewers independently reviewed the articles, extracted data, and conducted the methodological quality assessment. The COnsensus-based Standards for the selection of health Measurement INstruments (COSMIN) checklist was used to assess the methodological quality of the included studies. A total of 18 studies evaluating the FRI's measurement properties, including seven that carried out head-to-head comparisons in at least one measurement property with other questionnaires, were included in the current review. Our findings show strong positive evidence for structural validity and internal consistency in patients with SP and LBP. Evidence for most of the FRI's measurement properties is limited, conflicting, or even unknown. The current evidence shows that the FRI is comparable with both the ODI and the NDI in responsiveness. However, relevant information about the majority of the other measurement properties is lacking. Our finding suggests that clinicians and researchers should use the FRI with caution until there are more studies with high methodological quality that support the view that it is positive in all measurement properties, especially in regard to patients with multi-region SP. 1.

  1. Reliable Exfoliation of Large-Area High-Quality Flakes of Graphene and Other Two-Dimensional Materials.

    PubMed

    Huang, Yuan; Sutter, Eli; Shi, Norman N; Zheng, Jiabao; Yang, Tianzhong; Englund, Dirk; Gao, Hong-Jun; Sutter, Peter

    2015-11-24

    Mechanical exfoliation has been a key enabler of the exploration of the properties of two-dimensional materials, such as graphene, by providing routine access to high-quality material. The original exfoliation method, which remained largely unchanged during the past decade, provides relatively small flakes with moderate yield. Here, we report a modified approach for exfoliating thin monolayer and few-layer flakes from layered crystals. Our method introduces two process steps that enhance and homogenize the adhesion force between the outermost sheet in contact with a substrate: Prior to exfoliation, ambient adsorbates are effectively removed from the substrate by oxygen plasma cleaning, and an additional heat treatment maximizes the uniform contact area at the interface between the source crystal and the substrate. For graphene exfoliation, these simple process steps increased the yield and the area of the transferred flakes by more than 50 times compared to the established exfoliation methods. Raman and AFM characterization shows that the graphene flakes are of similar high quality as those obtained in previous reports. Graphene field-effect devices were fabricated and measured with back-gating and solution top-gating, yielding mobilities of ∼4000 and 12,000 cm(2)/(V s), respectively, and thus demonstrating excellent electrical properties. Experiments with other layered crystals, e.g., a bismuth strontium calcium copper oxide (BSCCO) superconductor, show enhancements in exfoliation yield and flake area similar to those for graphene, suggesting that our modified exfoliation method provides an effective way for producing large area, high-quality flakes of a wide range of 2D materials.

  2. Assessing the persistence, bioaccumulation potential and toxicity of brominated flame retardants: data availability and quality for 36 alternative brominated flame retardants.

    PubMed

    Stieger, Greta; Scheringer, Martin; Ng, Carla A; Hungerbühler, Konrad

    2014-12-01

    Polybrominated diphenylethers (PBDEs) and hexabromocyclododecane (HBCDD) are major brominated flame retardants (BFRs) that are now banned or under restrictions in many countries because of their persistence, bioaccumulation potential and toxicity (PBT properties). However, there is a wide range of alternative BFRs, such as decabromodiphenyl ethane and tribromophenol, that are increasingly used as replacements, but which may possess similar hazardous properties. This necessitates hazard and risk assessments of these compounds. For a set of 36 alternative BFRs, we searched 25 databases for chemical property data that are needed as input for a PBT assessment. These properties are degradation half-life, bioconcentration factor (BCF), octanol-water partition coefficient (Kow), and toxic effect concentrations in aquatic organisms. For 17 of the 36 substances, no data at all were found for these properties. Too few persistence data were available to even assess the quality of these data in a systematic way. The available data for Kow and toxicity show surprisingly high variability, which makes it difficult to identify the most reliable values. We propose methods for systematic evaluations of PBT-related chemical property data that should be performed before data are included in publicly available databases. Using these methods, we evaluated the data for Kow and toxicity in more detail and identified several inaccurate values. For most of the 36 alternative BFRs, the amount and the quality of the PBT-related property data need to be improved before reliable hazard and risk assessments of these substances can be performed. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. A Systematic Review of Measurement Properties of Patient-Reported Outcome Measures Used in Patients Undergoing Total Knee Arthroplasty.

    PubMed

    Gagnier, Joel J; Mullins, Megan; Huang, Hsiaomin; Marinac-Dabic, Danica; Ghambaryan, Anna; Eloff, Benjamin; Mirza, Faisal; Bayona, Manuel

    2017-05-01

    While clinical research on total knee arthroplasty (TKA) outcomes is prevalent in the literature, studies often have poor methodological and reporting quality. A high-quality patient-reported outcome instrument is reliable, valid, and responsive. Many studies evaluate these properties, but none have done so with a systematic and accepted method. The objectives of this study were to identify patient-reported outcome measures (PROMs) for TKA, and to critically appraise, compare, and summarize their psychometric properties using accepted methods. MEDLINE, EMBASE, SCOPUS, Web of Science, PsycINFO, and SPORTDiscus were systematically searched for articles with the following inclusion criteria: publication before December 2014, English language, non-generic PRO, and evaluation in the TKA population. Methodological quality and evidence of psychometric properties were assessed with the COnsensus-based standards for the selection of health Status Measurement INstruments (COSMIN) checklist and criteria for psychometric evidence proposed by the COSMIN group and Terwee et al. One-hundred fifteen studies on 32 PROMs were included in this review. Only the Work, Osteoarthritis or joint-Replacement Questionnaire, the Oxford Knee Score, and the Western Ontario and McMaster Universities Arthritis Index had 4 or more properties with positive evidence. Most TKA PROMs have limited evidence for their psychometric properties. Although not all the properties were studied, the Work, Osteoarthritis or joint-Replacement Questionnaire, with the highest overall ratings, could be a useful PROM for evaluating patients undergoing TKA. The methods and reporting of this literature can improve by following accepted guidelines. Published by Elsevier Inc.

  4. Properties and Frequency Conversion of High-Brightness Diode-Laser Systems

    NASA Astrophysics Data System (ADS)

    Boller, Klaus-Jochen; Beier, Bernard; Wallenstein, Richard

    An overview of recent developments in the field of high-power, high-brightness diode-lasers, and the optically nonlinear conversion of their output into other wavelength ranges, is given. We describe the generation of continuous-wave (CW) laser beams at power levels of several hundreds of milliwatts to several watts with near-perfect spatial and spectral properties using Master-Oscillator Power-Amplifier (MOPA) systems. With single- or double-stage systems, using amplifiers of tapered or rectangular geometry, up to 2.85 W high-brightness radiation is generated at wavelengths around 810nm with AlGaAs diodes. Even higher powers, up to 5.2W of single-frequency and high spatial quality beams at 925nm, are obtained with InGaAs diodes. We describe the basic properties of the oscillators and amplifiers used. A strict proof-of-quality for the diode radiation is provided by direct and efficient nonlinear optical conversion of the diode MOPA output into other wavelength ranges. We review recent experiments with the highest power levels obtained so far by direct frequency doubling of diode radiation. In these experiments, 100mW single-frequency ultraviolet light at 403nm was generated, as well as 1W of single-frequency blue radiation at 465nm. Nonlinear conversion of diode radiation into widely tunable infrared radiation has recently yielded record values. We review the efficient generation of widely tunable single-frequency radiation in the infrared with diode-pumped Optical Parametric Oscillators (OPOs). With this system, single-frequency output radiation with powers of more than 0.5W was generated, widely tunable around wavelengths of 2.1,m and 1.65,m and with excellent spectral and spatial quality. These developments are clear indicators of recent advances in the field of high-brightness diode-MOPA systems, and may emphasize their future central importance for applications within a vast range of optical wavelengths.

  5. Single-electron random-number generator (RNG) for highly secure ubiquitous computing applications

    NASA Astrophysics Data System (ADS)

    Uchida, Ken; Tanamoto, Tetsufumi; Fujita, Shinobu

    2007-11-01

    Since the security of all modern cryptographic techniques relies on unpredictable and irreproducible digital keys generated by random-number generators (RNGs), the realization of high-quality RNG is essential for secure communications. In this report, a new RNG, which utilizes single-electron phenomena, is proposed. A room-temperature operating silicon single-electron transistor (SET) having nearby an electron pocket is used as a high-quality, ultra-small RNG. In the proposed RNG, stochastic single-electron capture/emission processes to/from the electron pocket are detected with high sensitivity by the SET, and result in giant random telegraphic signals (GRTS) on the SET current. It is experimentally demonstrated that the single-electron RNG generates extremely high-quality random digital sequences at room temperature, in spite of its simple configuration. Because of its small-size and low-power properties, the single-electron RNG is promising as a key nanoelectronic device for future ubiquitous computing systems with highly secure mobile communication capabilities.

  6. High-quality crystalline yttria-stabilized-zirconia thin layer for photonic applications

    NASA Astrophysics Data System (ADS)

    Marcaud, Guillaume; Matzen, Sylvia; Alonso-Ramos, Carlos; Le Roux, Xavier; Berciano, Mathias; Maroutian, Thomas; Agnus, Guillaume; Aubert, Pascal; Largeau, Ludovic; Pillard, Valérie; Serna, Samuel; Benedikovic, Daniel; Pendenque, Christopher; Cassan, Eric; Marris-Morini, Delphine; Lecoeur, Philippe; Vivien, Laurent

    2018-03-01

    Functional oxides are considered as promising materials for photonic applications due to their extraordinary and various optical properties. Especially, yttria-stabilized zirconia (YSZ) has a high refractive index (˜2.15), leading to a good confinement of the optical mode in waveguides. Furthermore, YSZ can also be used as a buffer layer to expand toward a large family of oxides-based thin-films heterostructures. In this paper, we report a complete study of the structural properties of YSZ for the development of integrated optical devices on sapphire in telecom wavelength range. The substrate preparation and the epitaxial growth using pulsed-laser deposition technique have been studied and optimized. High-quality YSZ thin films with remarkably sharp x-ray diffraction rocking curve peaks in 10-3∘ range have then been grown on sapphire (0001). It was demonstrated that a thermal annealing of sapphire substrate before the YSZ growth allowed controlling the out-of-plane orientation of the YSZ thin film. Single-mode waveguides were finally designed, fabricated, and characterized for two different main orientations of high-quality YSZ (001) and (111). Propagation loss as low as 2 dB/cm at a wavelength of 1380 nm has been demonstrated for both orientations. These results pave the way for the development of a functional oxides-based photonics platform for numerous applications including on-chip optical communications and sensing.

  7. Composition, structure, physicochemical properties, and modifications of cassava starch.

    PubMed

    Zhu, Fan

    2015-05-20

    Cassava is highly tolerant to harsh climatic conditions and has great productivity on marginal lands. The supply of cassava starch, the major component of the root, is thus sustainable and cheap. This review summarizes the current knowledge of the composition, physical and chemical structures, physicochemical properties, nutritional quality, and modifications of cassava starch. Research opportunities to better understand this starch are provided. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Fish trypsins: potential applications in biomedicine and prospects for production.

    PubMed

    Jesús-de la Cruz, Kristal; Álvarez-González, Carlos Alfonso; Peña, Emyr; Morales-Contreras, José Antonio; Ávila-Fernández, Ángela

    2018-04-01

    In fishes, trypsins are adapted to different environmental conditions, and the biochemical and kinetic properties of a broad variety of native isoforms have been studied. Proteolytic enzymes remain in high demand in the detergent, food, and feed industries; however, our analysis of the literature showed that, in the last decade, some fish trypsins have been studied for the synthesis of industrial peptides and for specific biomedical uses as antipathogenic agents against viruses and bacteria, which have been recently patented. In addition, innovative strategies of trypsin administration have been studied to ensure that trypsins retain their properties until they exert their action. Biomedical uses require the production of high-quality enzymes. In this context, the production of recombinant trypsins is an alternative. For this purpose, E. coli -based systems have been tested for the production of fish trypsins; however, P. pastoris -based systems also seem to show great potential in the production of fish trypsins with higher production quality. On the other hand, there is a lack of information regarding the specific structures, biochemical and kinetic properties, and characteristics of trypsins produced using heterologous systems. This review describes the potential uses of fish trypsins in biomedicine and the enzymatic and structural properties of native and recombinant fish trypsins obtained to date, outlining some prospects for their study.

  9. How best to assess quality of life in informal carers of people with dementia; A systematic review of existing outcome measures

    PubMed Central

    Robinson, Jonah; Robalino, Shannon; Finch, Tracy; McColl, Elaine

    2018-01-01

    Background In the UK, there are currently 800 000 people living with dementia. This number is expected to double in the next 20 years. Two-thirds of people with dementia live in the community supported by informal carers. Caring for a person with dementia has adverse effects on psychological, physical, social wellbeing and quality of life. The measurement of quality of life of carers of people with dementia is increasingly of interest to health and social care practitioners and commissioners, policymakers, and carers themselves. However, there is lack of consensus on the most suitable instrument(s) for undertaking this. Methods A systematic review of the literature using COSMIN methodology. Searching of electronic databases (Medline, PsycINFO, CINAHL and Web of Science), reference list and citation searching of key papers was undertaken. COSMIN methodology was used to simultaneously extract data from and assess methodological quality of included studies, and make a recommendation for the instrument with the most high quality evidence for its measurement properties. Results Ten instruments were suitable for inclusion in this review. The Carer well-being and support questionnaire (CWS) has the best quality evidence for the greatest number of measurement of properties. The Caregiver Well-Being Scale is also worthy of consideration. There is not presently a measure which could be recommended for use in economic evaluations, however the Impact of Alzheimer’s Disease on the Caregiver questionnaire (IADCQ) could potentially be used following further investigation of its measurement properties in a representative population. Conclusion The CWS is the most appropriate instrument to recommend for the assessment of quality of life in informal carers of people with dementia at present. All instruments included in this review would benefit from more rigorous evaluation of their measurement properties. PMID:29538433

  10. Does management intensity in inter rows effect soil physical properties in Austrian and Romanian vineyards?

    NASA Astrophysics Data System (ADS)

    Bauer, Thomas; Strauss, Peter; Stiper, Katrin; Klipa, Vladimir; Popescu, Daniela; Winter, Silvia; Zaller, Johann G.

    2016-04-01

    Successful viticulture is mainly influenced by soil and climate. The availability of water during the growing season highly influences wine quality and quantity. To protect soil from being eroded most of the winegrowers keep the inter row zones of the vineyards green. Greening also helps to provide water-stress to the grapes for harvesting high quality wines. However, these greening strategies concerning the intensity of inter row management differ from farm to farm and are mainly based on personal experience of the winegrowers. However to what extent different inter row management practices affect soil physical properties are not clearly understood yet. To measure possible effects of inter row management in vineyards on soil physical parameters we selected paired vineyards with different inter row management in Austria and Romania. In total more than 7000 soil analysis were conducted for saturated and unsaturated hydraulic conductivity, soil water retention, water stable aggregates, total organic carbon, cation exchange capacity, potassium, phosphorous, soil texture, bulk density and water infiltration. The comparison between high intensity management with at least one soil disturbance per year, medium intensity with one soil disturbance every second inter row per year and low intensity management with no soil disturbance since at least 5 years indicates that investigated soil physical properties did not improve for the upper soil layer (3-8cm). This is in contrast to general perceptions of improved soil physical properties due to low intensity of inter row management, i.e. permanent vegetated inter rows. This may be attributed to long term and high frequency mechanical stress by agricultural machinery in inter rows.

  11. The relation between residual stress, interfacial structure and the joint property in the SiO2f/SiO2-Nb joints.

    PubMed

    Ma, Qiang; Li, Zhuo Ran; Yang, Lai Shan; Lin, Jing Huang; Ba, Jin; Wang, Ze Yu; Qi, Jun Lei; Feng, Ji Cai

    2017-06-23

    In order to achieve a high-quality joint between SiO 2f /SiO 2 and metals, it is necessary to address the poor wettability of SiO 2f /SiO 2 and the high residual stress in SiO 2f /SiO 2 -Nb joint. Here, we simultaneously realize good wettability and low residual stress in SiO 2f /SiO 2 -Nb joint by combined method of HF etching treatment and Finite Element Analysis (FEA). After etching treatment, the wettability of E-SiO 2f /SiO 2 was improved, and the residual stress in the joint was decreased. In order to better control the quality of joints, efforts were made to understand the relationship between surface structure of E-SiO 2f /SiO 2 and residual stress in joint using FEA. Based on the direction of FEA results, a relationship between residual stress, surface structure and joint property in the brazed joints were investigated by experiments. As well the FEA and the brazing test results both realized the high-quality joint of E-SiO 2f /SiO 2 -Nb and the shear strength of the joint reached 61.9 MPa.

  12. Systematic review of the properties of tools used to measure outcomes in anxiety intervention studies for children with autism spectrum disorders.

    PubMed

    Wigham, Sarah; McConachie, Helen

    2014-01-01

    Evidence about relevant outcomes is required in the evaluation of clinical interventions for children with autism spectrum disorders (ASD). However, to date, the variety of outcome measurement tools being used, and lack of knowledge about the measurement properties of some, compromise conclusions regarding the most effective interventions. This two-stage systematic review aimed to identify the tools used in studies evaluating interventions for anxiety for high-functioning children with ASD in middle childhood, and then to evaluate the tools for their appropriateness and measurement properties. Electronic databases including Medline, PsychInfo, Embase, and the Cochrane database and registers were searched for anxiety intervention studies for children with ASD in middle childhood. Articles examining the measurement properties of the tools used were then searched for using a methodological filter in PubMed, and the quality of the papers evaluated using the COSMIN checklist. Ten intervention studies were identified in which six tools measuring anxiety and one of overall symptom change were used as primary outcomes. One further tool was included as it is recommended for standard use in UK children's mental health services. Sixty three articles on the properties of the tools were evaluated for the quality of evidence, and the quality of the measurement properties of each tool was summarised. Overall three questionnaires were found robust in their measurement properties, the Spence Children's Anxiety Scale, its revised version - the Revised Children's Anxiety and Depression Scale, and also the Screen for Child Anxiety Related Emotional Disorders. Crucially the articles on measurement properties provided almost no evidence on responsiveness to change, nor on the validity of use of the tools for evaluation of interventions for children with ASD. CRD42012002684.

  13. Systematic Review of the Properties of Tools Used to Measure Outcomes in Anxiety Intervention Studies for Children with Autism Spectrum Disorders

    PubMed Central

    Wigham, Sarah; McConachie, Helen

    2014-01-01

    Background Evidence about relevant outcomes is required in the evaluation of clinical interventions for children with autism spectrum disorders (ASD). However, to date, the variety of outcome measurement tools being used, and lack of knowledge about the measurement properties of some, compromise conclusions regarding the most effective interventions. Objectives This two-stage systematic review aimed to identify the tools used in studies evaluating interventions for anxiety for high-functioning children with ASD in middle childhood, and then to evaluate the tools for their appropriateness and measurement properties. Methods Electronic databases including Medline, PsychInfo, Embase, and the Cochrane database and registers were searched for anxiety intervention studies for children with ASD in middle childhood. Articles examining the measurement properties of the tools used were then searched for using a methodological filter in PubMed, and the quality of the papers evaluated using the COSMIN checklist. Results Ten intervention studies were identified in which six tools measuring anxiety and one of overall symptom change were used as primary outcomes. One further tool was included as it is recommended for standard use in UK children's mental health services. Sixty three articles on the properties of the tools were evaluated for the quality of evidence, and the quality of the measurement properties of each tool was summarised. Conclusions Overall three questionnaires were found robust in their measurement properties, the Spence Children's Anxiety Scale, its revised version – the Revised Children's Anxiety and Depression Scale, and also the Screen for Child Anxiety Related Emotional Disorders. Crucially the articles on measurement properties provided almost no evidence on responsiveness to change, nor on the validity of use of the tools for evaluation of interventions for children with ASD. PROSPERO Registration number CRD42012002684. PMID:24465519

  14. High-speed atomic force microscopy and peak force tapping control

    NASA Astrophysics Data System (ADS)

    Hu, Shuiqing; Mininni, Lars; Hu, Yan; Erina, Natalia; Kindt, Johannes; Su, Chanmin

    2012-03-01

    ITRS Roadmap requires defect size measurement below 10 nanometers and challenging classifications for both blank and patterned wafers and masks. Atomic force microscope (AFM) is capable of providing metrology measurement in 3D at sub-nanometer accuracy but has long suffered from drawbacks in throughput and limitation of slow topography imaging without chemical information. This presentation focus on two disruptive technology developments, namely high speed AFM and quantitative nanomechanical mapping, which enables high throughput measurement with capability of identifying components through concurrent physical property imaging. The high speed AFM technology has allowed the imaging speed increase by 10-100 times without loss of the data quality. Such improvement enables the speed of defect review on a wafer to increase from a few defects per hour to nearly 100 defects an hour, approaching the requirements of ITRS Roadmap. Another technology development, Peak Force Tapping, substantially simplified the close loop system response, leading to self-optimization of most challenging samples groups to generate expert quality data. More importantly, AFM also simultaneously provides a series of mechanical property maps with a nanometer spatial resolution during defect review. These nanomechanical maps (including elastic modulus, hardness, and surface adhesion) provide complementary information for elemental analysis, differentiate defect materials by their physical properties, and assist defect classification beyond topographic measurements. This paper will explain the key enabling technologies, namely high speed tip-scanning AFM using innovative flexure design and control algorithm. Another critical element is AFM control using Peak Force Tapping, in which the instantaneous tip-sample interaction force is measured and used to derive a full suite of physical properties at each imaging pixel. We will provide examples of defect review data on different wafers and media disks. The similar AFM-based defect review capacity was also applied to EUV masks.

  15. 36 CFR 294.41 - Definitions.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... fires; or (ii) Landscape patterns; and (4) Vegetation attributes have been significantly altered from... semi-primitive motorized classes of dispersed recreation; (6) Reference landscapes; (7) Natural-appearing landscapes with high scenic quality; (8) Traditional cultural properties and sacred sites; and (9...

  16. 36 CFR 294.41 - Definitions.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... fires; or (ii) Landscape patterns; and (4) Vegetation attributes have been significantly altered from... semi-primitive motorized classes of dispersed recreation; (6) Reference landscapes; (7) Natural-appearing landscapes with high scenic quality; (8) Traditional cultural properties and sacred sites; and (9...

  17. Improving the properties of reclaimed asphalt pavement for roadway base applications.

    DOT National Transportation Integrated Search

    2012-08-01

    The objective of this study was to improve Reclaimed Asphalt Pavements (RAP) strength in base course : applications while reducing creep to an acceptable level using compaction techniques, fractionating, : blending with high quality base course ag...

  18. Evolution of Structural and Optical Properties of ZnO Nanorods Grown on Vacuum Annealed Seed Crystallites

    PubMed Central

    Khan, Fasihullah; Ajmal, Hafiz Muhammad Salman; Huda, Noor Ul; Kim, Ji Hyun; Kim, Sam-Dong

    2018-01-01

    In this study, the ambient condition for the as-coated seed layer (SL) annealing at 350 °C is varied from air or nitrogen to vacuum to examine the evolution of structural and optical properties of ZnO nanorods (NRs). The NR crystals of high surface density (~240 rods/μm2) and aspect ratio (~20.3) show greatly enhanced (002) degree of orientation and crystalline quality, when grown on the SLs annealed in vacuum, compared to those annealed in air or nitrogen ambient. This is due to the vacuum-annealed SL crystals of a highly preferred orientation toward (002) and large grain sizes. X-ray photoelectron spectroscopy also reveals that the highest O/Zn atomic ratio of 0.89 is obtained in the case of vacuum-annealed SL crystals, which is due to the effective desorption of hydroxyl groups and other contaminants adsorbed on the surface formed during aqueous solution-based growth process. Near band edge emission (ultra violet range of 360–400 nm) of the vacuum-annealed SLs is also enhanced by 44% and 33% as compared to those annealed in air and nitrogen ambient, respectively, in photoluminescence with significant suppression of visible light emission associated with deep level transition. Due to this improvement of SL optical crystalline quality, the NR crystals grown on the vacuum-annealed SLs produce ~3 times higher ultra violet emission intensity than the other samples. In summary, it is shown that the ZnO NRs preferentially grow along the wurtzite c-axis direction, thereby producing the high crystalline quality of nanostructures when they grow on the vacuum-annealed SLs of high crystalline quality with minimized impurities and excellent preferred orientation. The ZnO nanostructures of high crystalline quality achieved in this study can be utilized for a wide range of potential device applications such as laser diodes, light-emitting diodes, piezoelectric transducers and generators, gas sensors, and ultraviolet detectors. PMID:29373523

  19. Hydrogeologic Heterogeneity Enhances the Transfer of Salt Toward the High-Quality Deep Aquifers of the Western San Joaquin Valley (CA, USA)

    NASA Astrophysics Data System (ADS)

    Henri, C. V.; Harter, T.; Zhang, H.

    2016-12-01

    Increasing anthropogenic and drought stresses lead salinity to be of serious concern within regard to with the sustainability of regional groundwater quality. Agricultural basins of the Central Valley, CA (USA) are, and will continue to be, impacted by salinity issues in the coming future decades and or centuries. The aquifer system below the Western San Joaquin Valley is characterized by a shallow unconfined aquifer with high salinity overlying high quality semi-confined and deeper confined aquifers. A key challenge in the area is to predict if, when and how water traveling from the the low-quality shallow groundwater will reach and degrade the deeper semi-confined and confined aquifers. Previous studies, accounting for a simplified description of the aquifer hydraulic properties in their flow model, concluded that saline shallow groundwater would need 200-400 years to reach the semi-confined aquifer and 250-600 years to impact the deeper confined aquifer. However, well known heterogeneities in aquifer hydraulic properties significantly impact contaminant transport due to preferential flow paths and increased dispersion. Our study aims to (1) better understand the impact of heterogeneous hydraulic properties on the distribution of travel times from non-point source contamination, and (2) reassess the temporal scale of salt transfer into the deeper aquifers of the Western San Joaquin Valley. A detailed non-stationary geostatistical model was developed to describe the spatial variability of hydrofacies in great detail at the basin scale. The hydraulic properties corresponding to each hydrofacies are then calibrated in order to reproduce water fluxes previously modeled and calibrated. Subsequently, we use the random-walk particle tracking method to simulate the advective-dispersive transport of salt throughout the study area from a non-point source zone represented by the entire top layer of the model. The flux concentrations of solute crossing a series of monitoring wells and the bottom edge of the system are recorded over a period of 2000 years. The travel-time analysis from these breakthrough curves indicates that a significant portion of injected salt is very likely to reach the deeper confined aquifer within the next 50 to 100 years in zones with high aquifer connectivity.

  20. The Grassmannian Atlas: A General Framework for Exploring Linear Projections of High-Dimensional Data

    DOE PAGES

    Liu, S.; Bremer, P. -T; Jayaraman, J. J.; ...

    2016-06-04

    Linear projections are one of the most common approaches to visualize high-dimensional data. Since the space of possible projections is large, existing systems usually select a small set of interesting projections by ranking a large set of candidate projections based on a chosen quality measure. However, while highly ranked projections can be informative, some lower ranked ones could offer important complementary information. Therefore, selection based on ranking may miss projections that are important to provide a global picture of the data. Here, the proposed work fills this gap by presenting the Grassmannian Atlas, a framework that captures the global structuresmore » of quality measures in the space of all projections, which enables a systematic exploration of many complementary projections and provides new insights into the properties of existing quality measures.« less

  1. Growth of CdZnTe Crystals for Radiation Detector Applications by Directional Solidification

    NASA Technical Reports Server (NTRS)

    Su, Ching-Hua

    2014-01-01

    Advances in Cadmium Zinc Telluride (Cd(sub 1-x)Zn(sub x)Te) growth techniques are needed for the production of large-scale arrays of gamma and x-ray astronomy. The research objective is to develop crystal growth recipes and techniques to obtain large, high quality CdZnTe single crystal with reduced defects, such as charge trapping, twinning, and tellurium precipitates, which degrade the performance of CdZnTe and, at the same time, to increase the yield of usable material from the CdZnTe ingot. A low gravity material experiment, "Crystal Growth of Ternary Compound Semiconductors in Low Gravity Environment", will be performed in the Material Science Research Rack (MSRR) on International Space Station (ISS). One section of the flight experiment is the melt growth of CdZnTe ternary compounds. This talk will focus on the ground-based studies on the growth of Cd(sub 0.80)Zn(sub 0.20)Te crystals for radiation detector applications by directional solidification. In this investigation, we have improved the properties that are most critical for the detector applications (electrical properties and crystalline quality): a) Electrical resistivity: use high purity starting materials (with reproducible impurity levels) and controlled Cd over pressure during growth to reproducibly balance the impurity levels and Cd vacancy concentration b) Crystalline quality: use ultra-clean growth ampoule (no wetting after growth), optimized thermal profile and ampoule design, as well as a technique for supercool reduction to growth large single crystal with high crystalline quality

  2. Food quality inspection by speckle decorrelation properties of bacteria colonies

    NASA Astrophysics Data System (ADS)

    Bianco, V.; Mandracchia, B.; Nazzaro, F.; Marchesano, V.; Gennari, O.; Paturzo, M.; Grilli, S.; Ferraro, P.

    2017-06-01

    The development of tools for rapid food quality inspection is a highly pursued goal. These could be valuable devices to be used by food producers in factories or the customers themselves in specific installations at the marketplace. Here we show how speckle patterns in coherent imaging systems can be can be employed as indicators of the presence of bacteria colonies contaminating food or water. Speckle decorrelation is induced by the self-propelling movement of these organisms when they interact with coherent light. Hence, their presence can be detected using a simple setup in a condition in which the single element cannot be imaged, but the properties of the ensemble can be exploited. Thanks to the small magnification factor we set, our system can inspect a large Field-of-View (FoV). We show the possibility to discriminate between fresh and contaminated food, thus paving the way to the rapid food quality testing by consumers at the marketplace.

  3. Volatile composition and sensory properties of Vanilla × tahitensis bring new insights for vanilla quality control.

    PubMed

    Brunschwig, Christel; Rochard, Sophie; Pierrat, Alexandre; Rouger, Anne; Senger-Emonnot, Perrine; George, Gérard; Raharivelomanana, Phila

    2016-02-01

    Vanilla × tahitensis produced in French Polynesia has a unique flavour among vanilla species. However, data on volatiles and sensory properties remain limited. In this study, the volatile composition and sensory properties of V. × tahitensis from three Polynesian cultivars and two origins (French Polynesia/Papua New Guinea) were determined by gas chromatography-mass spectrometry and quantitative descriptive analysis, respectively, and compared to Vanilla planifolia. Vanilla species, origins and cultivars were differentiated by their volatile and sensory profiles using principal component analysis. The V. × tahitensis flavour from French Polynesia was characterized by a well-balanced sensory profile, having strong anise and caramel notes due to high levels of anisyl compounds. V. × tahitensis from Papua New Guinea was distinct from that of French Polynesia, having strong spicy, fruity, brown rum notes due to p-vinylguaiacol, p-cresol and esters. Vanilla planifolia showed stronger phenolic, woody, smoky notes due to guaiacol, creosol and phenol, which were found to be biomarkers of the species. Vanilla sensory properties were linked by partial least squares regression to key volatile compounds like guaiacol or creosol, which are indicators of lower quality. This study brings new insights to vanilla quality control, with a focus on key volatile compounds, irrespective of origin. © 2015 Society of Chemical Industry.

  4. High quality superconducting titanium nitride thin film growth using infrared pulsed laser deposition

    NASA Astrophysics Data System (ADS)

    Torgovkin, A.; Chaudhuri, S.; Ruhtinas, A.; Lahtinen, M.; Sajavaara, T.; Maasilta, I. J.

    2018-05-01

    Superconducting titanium nitride (TiN) thin films were deposited on magnesium oxide, sapphire and silicon nitride substrates at 700 °C, using a pulsed laser deposition (PLD) technique, where infrared (1064 nm) pulses from a solid-state laser were used for the ablation from a titanium target in a nitrogen atmosphere. Structural studies performed with x-ray diffraction showed the best epitaxial crystallinity for films deposited on MgO. In the best films, superconducting transition temperatures, T C, as high as 4.8 K were observed, higher than in most previous superconducting TiN thin films deposited with reactive sputtering. A room temperature resistivity down to ∼17 μΩ cm and residual resistivity ratio up to 3 were observed in the best films, approaching reported single crystal film values, demonstrating that PLD is a good alternative to reactive sputtering for superconducting TiN film deposition. For less than ideal samples, the suppression of the film properties were correlated mostly with the unintended incorporation of oxygen (5–10 at%) in the film, and for high oxygen content films, vacuum annealing was also shown to increase the T C. On the other hand, superconducting properties were surprisingly insensitive to the nitrogen content, with high quality films achieved even in the highly nitrogen rich, Ti:N = 40/60 limit. Measures to limit oxygen exposure during deposition must be taken to guarantee the best superconducting film properties, a fact that needs to be taken into account with other deposition methods, as well.

  5. Effect of brewing time and temperature on antioxidant capacity and phenols of white tea: Relationship with sensory properties.

    PubMed

    Pérez-Burillo, S; Giménez, R; Rufián-Henares, J A; Pastoriza, S

    2018-05-15

    White tea is highly consumed due to its sensory properties and health benefits, although most scientific reports don't include the analysis of both properties. Therefore, the objective of the present study was to unravel the best brewing conditions for optimal extraction of the bioactive compounds and antioxidant capacity, while realising the best sensory properties. Infusions of eighty commercial teas (sold in bags or leaves) were obtained at different time-temperature ratios, studying bioactive compounds (caffeine and individual catechins), antioxidant capacity and sensory analysis. Brewing at 98 °C for 7 min was the best condition to obtain a high content of antioxidant polyphenols and pleasant sensory properties. Those teas sold in bags give rise to tea brews with almost double antioxidant capacity. In conclusion, it is very important to link sensory and chemical data to obtain optimal sensorial quality and the highest healthy properties in white tea infusions. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. What Adherence Measures Should Be Used in Trials of Home-Based Rehabilitation Interventions? A Systematic Review of the Validity, Reliability, and Acceptability of Measures.

    PubMed

    Frost, Rachael; Levati, Sara; McClurg, Doreen; Brady, Marian; Williams, Brian

    2017-06-01

    To systematically review methods for measuring adherence used in home-based rehabilitation trials and to evaluate their validity, reliability, and acceptability. In phase 1 we searched the CENTRAL database, NHS Economic Evaluation Database, and Health Technology Assessment Database (January 2000 to April 2013) to identify adherence measures used in randomized controlled trials of allied health professional home-based rehabilitation interventions. In phase 2 we searched the databases of MEDLINE, Embase, CINAHL, Allied and Complementary Medicine Database, PsycINFO, CENTRAL, ProQuest Nursing and Allied Health, and Web of Science (inception to April 2015) for measurement property assessments for each measure. Studies assessing the validity, reliability, or acceptability of adherence measures. Two reviewers independently extracted data on participant and measure characteristics, measurement properties evaluated, evaluation methods, and outcome statistics and assessed study quality using the COnsensus-based Standards for the selection of health Measurement INstruments checklist. In phase 1 we included 8 adherence measures (56 trials). In phase 2, from the 222 measurement property assessments identified in 109 studies, 22 high-quality measurement property assessments were narratively synthesized. Low-quality studies were used as supporting data. StepWatch Activity Monitor validly and acceptably measured short-term step count adherence. The Problematic Experiences of Therapy Scale validly and reliably assessed adherence to vestibular rehabilitation exercises. Adherence diaries had moderately high validity and acceptability across limited populations. The Borg 6 to 20 scale, Bassett and Prapavessis scale, and Yamax CW series had insufficient validity. Low-quality evidence supported use of the Joint Protection Behaviour Assessment. Polar A1 series heart monitors were considered acceptable by 1 study. Current rehabilitation adherence measures are limited. Some possess promising validity and acceptability for certain parameters of adherence, situations, and populations and should be used in these situations. Rigorous evaluation of adherence measures in a broader range of populations is needed. Copyright © 2016 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.

  7. Characterization of high molecular weight glutenin subunits in Thinopyrum intermedium, Th. bessarabicum, Lophopyrum elongatum, Aegilops markgrafii, and their addition lines in wheat

    USDA-ARS?s Scientific Manuscript database

    High molecular weight (HMW) glutenin subunits (GSs) play an important role in determining dough viscoelastic properties and end-use quality in cultivated wheat, and they are also excellent protein markers for genotype identification. The HMW-GSs in wheat species (Triticum ssp.) and Aegilops tauschii...

  8. Registration of 'Bolles' hard red spring wheat with high grain protein concentration and superior baking quality

    USDA-ARS?s Scientific Manuscript database

    The hard red spring wheat market class in the U.S. commands the highest prices on the worldwide wheat markets because of its high protein content, strong gluten, and good baking properties. ‘Bolles’ (PI 678430), a hard red spring wheat cultivar, was released by the University of Minnesota Agricultu...

  9. Strength and Stiffness Properties of Sweetgum and Yellow-poplar Structural Lumber

    Treesearch

    Timothy D. Faust; Robert H. McAlister; Stanley J. Zarnoch

    1990-01-01

    The forest resource base in the Southeast is rapidly changing. Dwindling reserves of high quality pine sawlogs will provide incentives to utilize low-density hardwoods such as yellow-poplar and sweetgum for structural lumber. Inventories of sweetgum (Liriodendron tulipifera L.) are currently high and growth is exceeding removals. The mechanical propertiees of dimension...

  10. Full-color large-scaled computer-generated holograms using RGB color filters.

    PubMed

    Tsuchiyama, Yasuhiro; Matsushima, Kyoji

    2017-02-06

    A technique using RGB color filters is proposed for creating high-quality full-color computer-generated holograms (CGHs). The fringe of these CGHs is composed of more than a billion pixels. The CGHs reconstruct full-parallax three-dimensional color images with a deep sensation of depth caused by natural motion parallax. The simulation technique as well as the principle and challenges of high-quality full-color reconstruction are presented to address the design of filter properties suitable for large-scaled CGHs. Optical reconstructions of actual fabricated full-color CGHs are demonstrated in order to verify the proposed techniques.

  11. Predicting rheological behavior and baking quality of wheat flour using a GlutoPeak test.

    PubMed

    Rakita, Slađana; Dokić, Ljubica; Dapčević Hadnađev, Tamara; Hadnađev, Miroslav; Torbica, Aleksandra

    2018-06-01

    The purpose of this research was to gain an insight into the ability of the GlutoPeak instrument to predict flour functionality for bread making, as well as to determine which of the GlutoPeak parameters show the best potential in predicting dough rheological behavior and baking performance. Obtained results showed that GlutoPeak parameters correlated better with the indices of extensional rheological tests which consider constant dough hydration than with those which were performed at constant dough consistency. The GlutoPeak test showed that it is suitable for discriminating wheat varieties of good quality from those of poor quality, while the most discriminating index was maximum torque (MT). Moreover, MT value of 50 BU and aggregation energy value of 1,300 GPU were set as limits of wheat flour quality. The backward stepwise regression analysis revealed that a high-level prediction of indices which are highly affected by protein content (gluten content, flour water absorption, and dough tenacity) was achieved by using the GlutoPeak indices. Concerning bread quality, a moderate prediction of specific loaf volume and an intense level prediction of breadcrumb textural properties were accomplished by using the GlutoPeak parameters. The presented results indicated that the application of this quick test in wheat transformation chain for the assessment of baking quality would be useful. Baking test is considered as the most reliable method for assessing wheat-baking quality. However, baking test requires trained stuff, time, and large sample amount. These disadvantages have led to a growing demand to develop new rapid tests which would enable prediction of baked product quality with a limited flour size. Therefore, we tested the possibility of using a GlutoPeak tester to predict loaf volume and breadcrumb textural properties. Discrimination of wheat varieties according to quality with a restricted flour amount was also examined. Furthermore, we proposed the limit values of GlutoPeak parameters which would be highly beneficial for millers and bakers when determine suitability of flour for end-use. © 2017 Wiley Periodicals, Inc.

  12. Measurement properties of rheumatoid arthritis-specific quality-of-life questionnaires: systematic review of the literature.

    PubMed

    Lee, Jiyeon; Kim, Soo Hyun; Moon, Seung Hei; Lee, Eun-Hyun

    2014-12-01

    This study conducted a systematic review of the methodological quality of the psychometric evaluation process and the quality of measurement properties of rheumatoid arthritis (RA)-specific health-related quality-of-life (HRQOL) questionnaires with the purpose of obtaining the best evidence to help in the selection of the most appropriate instrument for measuring HRQOL in RA patients. A systematic literature search was performed to identify RA-specific HRQOL questionnaires in databases. The methodological quality of the studies was assessed using the Consensus-based Standards for the Selection of Health Measurement Instruments checklist. The quality of the measurement properties was assessed using quality criteria. The evidence regarding the measurement properties was pooled using best-evidence synthesis, with considerations of the number and methodological quality of the studies, and the consistency of their findings in terms of the quality of the measurement properties. The search identified 37 studies describing 9 instruments. Best-evidence synthesis suggested that the Rheumatoid Arthritis Quality of Life (RAQoL) questionnaire had the strongest positive evidence, especially with respect to reliability, measurement error, and content validity, and moderate positive evidence with respect to hypothesis testing and responsiveness. The current evidence suggests that the best-validated instrument among the RA-specific HRQOL measures is the RAQoL questionnaire in terms of both methodological quality in the process of psychometric evaluation and the quality of the measurement properties. However, there is limited evidence regarding internal consistency and structural validity of the RAQoL. Further efforts are warranted to establish the psychometric quality of this questionnaire.

  13. Measurements of Thermophysical Properties of Molten Silicon and Geranium

    NASA Technical Reports Server (NTRS)

    Rhim, Won-Kyu

    2001-01-01

    The objective of this ground base program is to measure thermophysical properties of molten/ undercooled silicon, germanium, and Si-Ge alloys using a high temperature electrostatic levitator and in clearly assessing the need of the microgravity environment to achieve the objective with higher degrees of accuracy. Silicon and germanium are two of the most important semiconductors for industrial applications: silicon is unsurpassed as a microelectronics material, occupying more than 95% of the electronics market. Si-Ge alloy is attracting keen interest for advanced electronic and optoelectronic applications in view of its variable band gap and lattice parameter depending upon its composition. Accurate thermophysical properties of these materials are very much needed in the semiconductor industry for the growth of large high quality crystals.

  14. The structure and properties of the modified nitrogenated high-chromium steel for welding the parts of oil and gas equipment

    NASA Astrophysics Data System (ADS)

    Sokolov, G. N.; Artem'ev, A. A.; Dubcov, Yu. N.; Eremin, E. N.; Litvinenko-Ar'kov, V. B.

    2017-08-01

    The influence of nitrogen and titanium carbonitride particles on the structure and properties of high-chromium steel, deposited by flux cored wire, has been studied. It has been shown that the quality formation of the weld metal and pore absence in it are achieved with nitrogen concentration in wire filler no more than 0.32 mass%. It has been found that in adding titanium carbonitride particles from 0.2 to 0.6 mass% to wire filler the effect of weld Fe-C-Cr-Mo-Ni-N system metal modification is implemented and its operational properties increase. The developed flux cored wire has been recommended for oil and gas equipment welding.

  15. A thermoplastic polyimidesulfone

    NASA Technical Reports Server (NTRS)

    St.clair, T. L.; Yamaki, D. A.

    1982-01-01

    A polymer system has been prepared which has the excellent thermoplastic properties generally associated with polysulfones, and the solvent resistance and thermal stability of aromatic polyimides. This material, with improved processability over the base polyimide, can be processed in the 260-325 C range in such a manner as to yield high quality, tough unfilled moldings; strong, high-temperature-resistant adhesive bonds; and well consolidated, graphite-fiber-reinforced moldings (composities). The unfilled moldings have physical properties that are similar to aromatic polysulfones which demonstrates the potential as an engineering thermoplastic. The adhesive bonds exhibit excellent retention of initial strength levels even after thermal aging for 5000 hours at 232 C. The graphite-fiber-reinforced moldings have mechanical properties which makes this polymer attractive for the fabrication of structural composites.

  16. Properties of high-quality long natural cellulose fibers from rice straw.

    PubMed

    Reddy, Narendra; Yang, Yiqi

    2006-10-18

    This paper reports the structure and properties of novel long natural cellulose fibers obtained from rice straw. Rice straw fibers have 64% cellulose with 63% crystalline cellulose, strength of 3.5 g/denier (450 MPa), elongation of 2.2%, and modulus of 200 g/denier (26 GPa), similar to that of linen fibers. The rice straw fibers reported here have better properties than any other natural cellulose fiber obtained from an agricultural byproduct. With a worldwide annual availability of 580 million tons, rice straw is an annually renewable, abundant, and cheap source for natural cellulose fibers. Using rice straw for high-value fibrous applications will help to add value to the rice crops, provide a sustainable resource for fibers, and also benefit the environment.

  17. Rating the methodological quality in systematic reviews of studies on measurement properties: a scoring system for the COSMIN checklist.

    PubMed

    Terwee, Caroline B; Mokkink, Lidwine B; Knol, Dirk L; Ostelo, Raymond W J G; Bouter, Lex M; de Vet, Henrica C W

    2012-05-01

    The COSMIN checklist is a standardized tool for assessing the methodological quality of studies on measurement properties. It contains 9 boxes, each dealing with one measurement property, with 5-18 items per box about design aspects and statistical methods. Our aim was to develop a scoring system for the COSMIN checklist to calculate quality scores per measurement property when using the checklist in systematic reviews of measurement properties. The scoring system was developed based on discussions among experts and testing of the scoring system on 46 articles from a systematic review. Four response options were defined for each COSMIN item (excellent, good, fair, and poor). A quality score per measurement property is obtained by taking the lowest rating of any item in a box ("worst score counts"). Specific criteria for excellent, good, fair, and poor quality for each COSMIN item are described. In defining the criteria, the "worst score counts" algorithm was taken into consideration. This means that only fatal flaws were defined as poor quality. The scores of the 46 articles show how the scoring system can be used to provide an overview of the methodological quality of studies included in a systematic review of measurement properties. Based on experience in testing this scoring system on 46 articles, the COSMIN checklist with the proposed scoring system seems to be a useful tool for assessing the methodological quality of studies included in systematic reviews of measurement properties.

  18. ESTIMATION OF CHEMICAL SPECIFIC PARAMETERS WITHIN PHYSIOLOGICALLY BASED PHARMACOKINETIC/PHARMACODYNAMIC MODELS

    EPA Science Inventory

    While relationships between chemical structure and observed properties or activities (QSAR - quantitative structure activity relationship) can be used to predict the behavior of unknown chemicals, this method is semiempirical in nature relying on high quality experimental data to...

  19. [Spatial distribution characteristics of the physical and chemical properties of water in the Kunes River after the supply of snowmelt during spring].

    PubMed

    Liu, Xiang; Guo, Ling-Peng; Zhang, Fei-Yun; Ma, Jie; Mu, Shu-Yong; Zhao, Xin; Li, Lan-Hai

    2015-02-01

    Eight physical and chemical indicators related to water quality were monitored from nineteen sampling sites along the Kunes River at the end of snowmelt season in spring. To investigate the spatial distribution characteristics of water physical and chemical properties, cluster analysis (CA), discriminant analysis (DA) and principal component analysis (PCA) are employed. The result of cluster analysis showed that the Kunes River could be divided into three reaches according to the similarities of water physical and chemical properties among sampling sites, representing the upstream, midstream and downstream of the river, respectively; The result of discriminant analysis demonstrated that the reliability of such a classification was high, and DO, Cl- and BOD5 were the significant indexes leading to this classification; Three principal components were extracted on the basis of the principal component analysis, in which accumulative variance contribution could reach 86.90%. The result of principal component analysis also indicated that water physical and chemical properties were mostly affected by EC, ORP, NO3(-) -N, NH4(+) -N, Cl- and BOD5. The sorted results of principal component scores in each sampling sites showed that the water quality was mainly influenced by DO in upstream, by pH in midstream, and by the rest of indicators in downstream. The order of comprehensive scores for principal components revealed that the water quality degraded from the upstream to downstream, i.e., the upstream had the best water quality, followed by the midstream, while the water quality at downstream was the worst. This result corresponded exactly to the three reaches classified using cluster analysis. Anthropogenic activity and the accumulation of pollutants along the river were probably the main reasons leading to this spatial difference.

  20. Health-related quality of life questionnaire for polycystic ovary syndrome (PCOSQ-50): development and psychometric properties.

    PubMed

    Nasiri-Amiri, Fatemeh; Ramezani Tehrani, Fahimeh; Simbar, Masoumeh; Montazeri, Ali; Mohammadpour, Reza Ali

    2016-07-01

    The determinants of the health-related quality of life of women with polycystic ovary syndrome are not fully understood. The aim of this study was to develop a comprehensive instrument to assess the health-related quality of life of Iranian women with PCOS and to assess its psychometric properties. We used a mixed-method, sequential, exploratory design including both qualitative [in-depth interview to define the components of health-related quality of life questionnaire (PCOSQ)] and quantitative approaches (to assess the psychometric properties of PCOSQ). A preliminary questionnaire was developed including 147 items which emerged from the qualitative phase of the study. Considering the optimum cutoff points for content validity ratio (CVR), content validity index (CVI), and impact score, items of the preliminary questionnaire were reduced from 147 to 88 items. Finally, by excluding highly correlated items using the exploratory factor analysis, a 50-item questionnaire was obtained. The Kaiser criteria (eigenvalues >1) and Scree plot tests demonstrated that six factors were optimum with an estimated 47.3 % of variance. Assessment of the psychometric properties of the questionnaire demonstrated a mean CVI = 0.92, CVR = 0.91, Cronbach's alpha for whole questionnaire = 0.88 (0.61-0.88 for subscales), Spearman's correlation coefficients of test-retest = 0.75, and the intra-class correlation coefficient for the PCOS questionnaire subscales ranging from 0.57 to 0.88. Eventually the final questionnaire included 50 items in six domains, 'psychosocial and emotional,' 'fertility,' 'sexual function,' 'obesity and menstrual disorders,' 'hirsutism,' and 'coping' and rated on a 5-point Likert scale. The PCOSQ-50 is a valid and reliable instrument for the assessment of quality of life of women with PCOS, capable of assessing some obscure aspects overlooked by previous HRQL questionnaires.

  1. High Power Laser Welding. [of stainless steel and titanium alloy structures

    NASA Technical Reports Server (NTRS)

    Banas, C. M.

    1972-01-01

    A review of recent developments in high power, carbon dixoide laser welding is presented. Deep penetration welding in stainless steel to 0.5-in. thick, high speed welding in thin gage rimmed steel and gas shielded welding in Ti-6Al-4V alloy are described. The effects of laser power, power density, focusing optics, gas-shielding techniques, material properties and weld speed on weld quality and penetration are discussed. It is shown that laser welding performance in thin materials is comparable to that of electron beams. It is further shown that high quality welds, as evidenced by NDT, mechanical and metal-lographic tests, can be achieved. The potential of the laser for industrial welding applications is indicated.

  2. Laser hardening techniques on steam turbine blade and application

    NASA Astrophysics Data System (ADS)

    Yao, Jianhua; Zhang, Qunli; Kong, Fanzhi; Ding, Qingming

    Different laser surface hardening techniques, such as laser alloying and laser solution strengthening were adopted to perform modification treatment on the local region of inset edge for 2Cr13 and 17-4PH steam turbine blades to prolong the life of the blades. The microstructures, microhardness and anti-cavitation properties were investigated on the blades after laser treatment. The hardening mechanism and technique adaptability were researched. Large scale installation practices confirmed that the laser surface modification techniques are safe and reliable, which can improve the properties of blades greatly with advantages of high automation, high quality, little distortion and simple procedure.

  3. Ozone treatment of shell eggs to preserve functional quality and enhance shelf life during storage.

    PubMed

    Yüceer, Muhammed; Aday, Mehmet Seçkin; Caner, Cengiz

    2016-06-01

    Eggs have long been recognised as a source of high-quality proteins. Many methods exist to extend shelf life of food and one of them is ozone treatment, which is an emerging technology for disinfecting surfaces in the food industry. This study aimed to extend the shelf life of fresh eggs using gaseous ozone treatments at concentrations of 2, 4 and 6 ppm with exposure times of 2 and 5 min during storage for 6 weeks at 24 °C. The effect of the treatments on interior quality and functional properties of eggs is also reported. Ozone concentration and exposure time significantly affected the Haugh unit (HU), yolk index, albumen pH, relative whipping capacity (RWC), and albumen viscosity of eggs during the storage. Control eggs had the highest albumen pH and lowest albumen viscosity. Attributes such as albumen pH and RWC of eggs exposed to ozone treatments were better than the control samples. The measurement results showed that ozone concentration at 6 ppm and exposure time of 5 min can be applied to fresh eggs and extend shelf life up to 6 weeks at 24 °C storage period. Ozone treatments helped to maintain egg quality for a longer time. Ozone concentrations at 2 and 4 ppm showed promising results in maintaining internal quality and functional properties of fresh eggs during storage. Ozone at high concentration (6 ppm) caused a detrimental effect on eggshell quality. As a result, this study demonstrated that ozone treatments of 2, and especially 4 and 6 ppm concentration maintained eggshell quality during the storage. © 2015 Society of Chemical Industry. © 2015 Society of Chemical Industry.

  4. Patient-reported outcome instruments that evaluate adherence behaviours in adults with asthma: A systematic review of measurement properties.

    PubMed

    Gagné, Myriam; Boulet, Louis-Philippe; Pérez, Norma; Moisan, Jocelyne

    2018-04-30

    To systematically identify the measurement properties of patient-reported outcome instruments (PROs) that evaluate adherence to inhaled maintenance medication in adults with asthma. We conducted a systematic review of six databases. Two reviewers independently included studies on the measurement properties of PROs that evaluated adherence in asthmatic participants aged ≥18 years. Based on the COnsensus-based Standards for the selection of health Measurement INstruments (COSMIN), the reviewers (1) extracted data on internal consistency, reliability, measurement error, content validity, structural validity, hypotheses testing, cross-cultural validity, criterion validity, and responsiveness; (2) assessed the methodological quality of the included studies; (3) assessed the quality of the measurement properties (positive or negative); and (4) summarised the level of evidence (limited, moderate, or strong). We screened 6,068 records and included 15 studies (14 PROs). No studies evaluated measurement error or responsiveness. Based on methodological and measurement property quality assessments, we found limited positive evidence of: (a) internal consistency of the Adherence Questionnaire, Refined Medication Adherence Reason Scale (MAR-Scale), Medication Adherence Report Scale for Asthma (MARS-A), and Test of the Adherence to Inhalers (TAI); (b) reliability of the TAI; and (c) structural validity of the Adherence Questionnaire, MAR-Scale, MARS-A, and TAI. We also found limited negative evidence of: (d) hypotheses testing of Adherence Questionnaire; (e) reliability of the MARS-A; and (f) criterion validity of the MARS-A and TAI. Our results highlighted the need to conduct further high-quality studies that will positively evaluate the reliability, validity, and responsiveness of the available PROs. This article is protected by copyright. All rights reserved.

  5. Delaminated Transfer of CVD Graphene

    NASA Astrophysics Data System (ADS)

    Clavijo, Alexis; Mao, Jinhai; Tilak, Nikhil; Altvater, Michael; Andrei, Eva

    Single layer graphene is commonly synthesized by dissociation of a carbonaceous gas at high temperatures in the presence of a metallic catalyst in a process known as Chemical Vapor Deposition or CVD. Although it is possible to achieve high quality graphene by CVD, the standard transfer technique of etching away the metallic catalyst is wasteful and jeopardizes the quality of the graphene film by contamination from etchants. Thus, development of a clean transfer technique and preservation of the parent substrate remain prominent hurdles to overcome. In this study, we employ a copper pretreatment technique and optimized parameters for growth of high quality single layer graphene at atmospheric pressure. We address the transfer challenge by utilizing the adhesive properties between a polymer film and graphene to achieve etchant-free transfer of graphene films from a copper substrate. Based on this concept we developed a technique for dry delamination and transferring of graphene to hexagonal boron nitride substrates, which produced high quality graphene films while at the same time preserving the integrity of the copper catalyst for reuse. DOE-FG02-99ER45742, Ronald E. McNair Postbaccalaureate Achievement Program.

  6. Instruments evaluating the quality of the clinical learning environment in nursing education: A systematic review of psychometric properties.

    PubMed

    Mansutti, Irene; Saiani, Luisa; Grassetti, Luca; Palese, Alvisa

    2017-03-01

    The clinical learning environment is fundamental to nursing education paths, capable of affecting learning processes and outcomes. Several instruments have been developed in nursing education, aimed at evaluating the quality of the clinical learning environments; however, no systematic review of the psychometric properties and methodological quality of these studies has been performed to date. The aims of the study were: 1) to identify validated instruments evaluating the clinical learning environments in nursing education; 2) to evaluate critically the methodological quality of the psychometric property estimation used; and 3) to compare psychometric properties across the instruments available. A systematic review of the literature (using the Preferred Reporting Items for Systematic Reviews and Meta-Analysis guidelines) and an evaluation of the methodological quality of psychometric properties (using the COnsensus-based Standards for the selection of health Measurement INstruments guidelines). The Medline and CINAHL databases were searched. Eligible studies were those that satisfied the following criteria: a) validation studies of instruments evaluating the quality of clinical learning environments; b) in nursing education; c) published in English or Italian; d) before April 2016. The included studies were evaluated for the methodological quality of the psychometric properties measured and then compared in terms of both the psychometric properties and the methodological quality of the processes used. The search strategy yielded a total of 26 studies and eight clinical learning environment evaluation instruments. A variety of psychometric properties have been estimated for each instrument, with differing qualities in the methodology used. Concept and construct validity were poorly assessed in terms of their significance and rarely judged by the target population (nursing students). Some properties were rarely considered (e.g., reliability, measurement error, criterion validity), whereas others were frequently estimated, but using different coefficients and statistical analyses (e.g., internal consistency, structural validity), thus rendering comparison across instruments difficult. Moreover, the methodological quality adopted in the property assessments was poor or fair in most studies, compromising the goodness of the psychometric values estimated. Clinical learning placements represent the key strategies in educating the future nursing workforce: instruments evaluating the quality of the settings, as well as their capacity to promote significant learning, are strongly recommended. Studies estimating psychometric properties, using an increased quality of research methodologies are needed in order to support nursing educators in the process of clinical placements accreditation and quality improvement. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Enhanced Efficiency and Stability of Perovskite Solar Cells via Anti-Solvent Treatment in Two-Step Deposition Method.

    PubMed

    Li, Minghua; Yan, Xiaoqin; Kang, Zhuo; Liao, Xinqin; Li, Yong; Zheng, Xin; Lin, Pei; Meng, Jingjing; Zhang, Yue

    2017-03-01

    The low-cost inorganic-organic lead halide perovskite materials become particularly promising for solar cells with high photovoltaic conversion efficiency. The uniform and pinhole-free perovskite films play an important role for high-performance solar cells. We demonstrate an antisolvent treatment by controlling the PbI 2 morphology to enhance the perovskite conversion and photophysical properties, including high absorption, crystallinity, and rapid carrier transfer. The fabricated perovskite solar cells show tremendous PCE improvement to about 16.1% from 12% with less hysteresis, and retain over 90% initial PCE after 30 days in ambient and dark atmosphere. In prospect, this antisolvent treatment will be a feasible route to prepare high-quality perovskite films including favorite photophysical properties.

  8. Optical Spectroscopy of Distant Red Galaxies

    NASA Astrophysics Data System (ADS)

    Wuyts, Stijn; van Dokkum, Pieter G.; Franx, Marijn; Förster Schreiber, Natascha M.; Illingworth, Garth D.; Labbé, Ivo; Rudnick, Gregory

    2009-11-01

    We present optical spectroscopic follow-up of a sample of distant red galaxies (DRGs) with K tot s,Vega < 22.5, selected by (J - K)Vega>2.3, in the Hubble Deep Field South (HDFS), the MS 1054-03 field, and the Chandra Deep Field South (CDFS). Spectroscopic redshifts were obtained for 15 DRGs. Only two out of 15 DRGs are located at z < 2, suggesting a high efficiency to select high-redshift sources. From other spectroscopic surveys in the CDFS targeting intermediate to high-redshift populations selected with different criteria, we find spectroscopic redshifts for a further 30 DRGs. We use the sample of spectroscopically confirmed DRGs to establish the high quality (scatter in Δz/(1 + z) of ~0.05) of their photometric redshifts in the considered deep fields, as derived with EAZY. Combining the spectroscopic and photometric redshifts, we find that 74% of DRGs with K tot s,Vega < 22.5 lie at z>2. The combined spectroscopic and photometric sample is used to analyze the distinct intrinsic and observed properties of DRGs at z < 2 and z>2. In our photometric sample to K tot s,Vega < 22.5, low-redshift DRGs are brighter in Ks than high-redshift DRGs by 0.7 mag, and more extincted by 1.2 mag in AV . Our analysis shows that the DRG criterion selects galaxies with different properties at different redshifts. Such biases can be largely avoided by selecting galaxies based on their rest-frame properties, which requires very good multi-band photometry and high quality photometric redshifts.

  9. ECG compression using non-recursive wavelet transform with quality control

    NASA Astrophysics Data System (ADS)

    Liu, Je-Hung; Hung, King-Chu; Wu, Tsung-Ching

    2016-09-01

    While wavelet-based electrocardiogram (ECG) data compression using scalar quantisation (SQ) yields excellent compression performance, a wavelet's SQ scheme, however, must select a set of multilevel quantisers for each quantisation process. As a result of the properties of multiple-to-one mapping, however, this scheme is not conducive for reconstruction error control. In order to address this problem, this paper presents a single-variable control SQ scheme able to guarantee the reconstruction quality of wavelet-based ECG data compression. Based on the reversible round-off non-recursive discrete periodised wavelet transform (RRO-NRDPWT), the SQ scheme is derived with a three-stage design process that first uses genetic algorithm (GA) for high compression ratio (CR), followed by a quadratic curve fitting for linear distortion control, and the third uses a fuzzy decision-making for minimising data dependency effect and selecting the optimal SQ. The two databases, Physikalisch-Technische Bundesanstalt (PTB) and Massachusetts Institute of Technology (MIT) arrhythmia, are used to evaluate quality control performance. Experimental results show that the design method guarantees a high compression performance SQ scheme with statistically linear distortion. This property can be independent of training data and can facilitate rapid error control.

  10. Airborne High Spectral Resolution Lidar Aerosol Measurements during MILAGRO and TEXAQS/GOMACCS

    NASA Technical Reports Server (NTRS)

    Ferrare, Richard; Hostetler, Chris; Hair, John; Cook Anthony; Harper, David; Burton, Sharon; Clayton, Marian; Clarke, Antony; Russell, Phil; Redemann, Jens

    2007-01-01

    Two1 field experiments conducted during 2006 provided opportunities to investigate the variability of aerosol properties near cities and the impacts of these aerosols on air quality and radiative transfer. The Megacity Initiative: Local and Global Research Observations (MILAGRO) /Megacity Aerosol Experiment in Mexico City (MAX-MEX)/Intercontinental Chemical Transport Experiment-B (INTEX-B) joint experiment conducted during March 2006 investigated the evolution and transport of pollution from Mexico City. The Texas Air Quality Study (TEXAQS)/Gulf of Mexico Atmospheric Composition and Climate Study (GoMACCS) (http://www.al.noaa.gov/2006/) conducted during August and September 2006 investigated climate and air quality in the Houston/Gulf of Mexico region. During both missions, the new NASA Langley airborne High Spectral Resolution Lidar (HSRL) was deployed on the NASA Langley B200 King Air aircraft and measured profiles of aerosol extinction, backscattering, and depolarization to: 1) characterize the spatial and vertical distributions of aerosols, 2) quantify aerosol extinction and optical thickness contributed by various aerosol types, 3) investigate aerosol variability near clouds, 4) evaluate model simulations of aerosol transport, and 5) assess aerosol optical properties derived from a combination of surface, airborne, and satellite measurements.

  11. Learning the specific quality of taste reinforcement in larval Drosophila.

    PubMed

    Schleyer, Michael; Miura, Daisuke; Tanimura, Teiichi; Gerber, Bertram

    2015-01-27

    The only property of reinforcement insects are commonly thought to learn about is its value. We show that larval Drosophila not only remember the value of reinforcement (How much?), but also its quality (What?). This is demonstrated both within the appetitive domain by using sugar vs amino acid as different reward qualities, and within the aversive domain by using bitter vs high-concentration salt as different qualities of punishment. From the available literature, such nuanced memories for the quality of reinforcement are unexpected and pose a challenge to present models of how insect memory is organized. Given that animals as simple as larval Drosophila, endowed with but 10,000 neurons, operate with both reinforcement value and quality, we suggest that both are fundamental aspects of mnemonic processing-in any brain.

  12. Systematic review on measurement properties of questionnaires assessing the neighbourhood environment in the context of youth physical activity behaviour

    PubMed Central

    2013-01-01

    Background High-quality measurement instruments for assessing the neighbourhood environment are a prerequisite for identifying associations between the neighbourhood environment and a person’s physical activity. The aim of this systematic review was to identify reliable and valid questionnaires assessing neighbourhood environmental attributes in the context of physical activity behaviours in children and adolescents. In addition, current gaps and best practice models in instrumentation and their evaluation are discussed. Methods We conducted a systematic literature search using six databases (Web of Science, Medline, TRID, SportDISCUS, PsycARTICLES and PsycINFO). Two independent reviewers screened the identified English-language peer-reviewed journal articles. Only studies examining the measurement properties of self- or proxy-report questionnaires on any aspects of the neighbourhood environment in children and adolescents aged 3 to 18 years were included. The methodological quality of the included studies was assessed using the COSMIN checklists. Results We identified 13 questionnaires on attributes of the neighbourhood environment. Most of these studies were conducted in the United States (n = 7). Eight studies evaluated self-report measures, two studies evaluated parent-report measures and three studies included both administration types. While eight studies had poor methodological quality, we identified three questionnaires with substantial test-retest reliability and two questionnaires with acceptable convergent validity based on sufficient evidential basis. Conclusions Based on the results of this review, we recommend that cross-culturally adapted questionnaires should be used and that existing questionnaires should be evaluated especially in diverse samples and in countries other than the United States. Further, high-quality studies on measurement properties should be promoted and measurement models (formative vs. reflexive) should be specified to ensure that appropriate methods for psychometric testing are applied in future studies. PMID:23663328

  13. Systematic review on measurement properties of questionnaires assessing the neighbourhood environment in the context of youth physical activity behaviour.

    PubMed

    Reimers, Anne K; Mess, Filip; Bucksch, Jens; Jekauc, Darko; Woll, Alexander

    2013-05-11

    High-quality measurement instruments for assessing the neighbourhood environment are a prerequisite for identifying associations between the neighbourhood environment and a person's physical activity. The aim of this systematic review was to identify reliable and valid questionnaires assessing neighbourhood environmental attributes in the context of physical activity behaviours in children and adolescents. In addition, current gaps and best practice models in instrumentation and their evaluation are discussed. We conducted a systematic literature search using six databases (Web of Science, Medline, TRID, SportDISCUS, PsycARTICLES and PsycINFO). Two independent reviewers screened the identified English-language peer-reviewed journal articles. Only studies examining the measurement properties of self- or proxy-report questionnaires on any aspects of the neighbourhood environment in children and adolescents aged 3 to 18 years were included. The methodological quality of the included studies was assessed using the COSMIN checklists. We identified 13 questionnaires on attributes of the neighbourhood environment. Most of these studies were conducted in the United States (n = 7). Eight studies evaluated self-report measures, two studies evaluated parent-report measures and three studies included both administration types. While eight studies had poor methodological quality, we identified three questionnaires with substantial test-retest reliability and two questionnaires with acceptable convergent validity based on sufficient evidential basis. Based on the results of this review, we recommend that cross-culturally adapted questionnaires should be used and that existing questionnaires should be evaluated especially in diverse samples and in countries other than the United States. Further, high-quality studies on measurement properties should be promoted and measurement models (formative vs. reflexive) should be specified to ensure that appropriate methods for psychometric testing are applied in future studies.

  14. Quantitative properties of clustering within modern microscopic nuclear models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Volya, A.; Tchuvil’sky, Yu. M., E-mail: tchuvl@nucl-th.sinp.msu.ru

    2016-09-15

    A method for studying cluster spectroscopic properties of nuclear fragmentation, such as spectroscopic amplitudes, cluster form factors, and spectroscopic factors, is developed on the basis of modern precision nuclear models that take into account the mixing of large-scale shell-model configurations. Alpha-cluster channels are considered as an example. A mathematical proof of the need for taking into account the channel-wave-function renormalization generated by exchange terms of the antisymmetrization operator (Fliessbach effect) is given. Examples where this effect is confirmed by a high quality of the description of experimental data are presented. By and large, the method in question extends substantially themore » possibilities for studying clustering phenomena in nuclei and for improving the quality of their description.« less

  15. Controlled Synthesis of Ultralong Carbon Nanotubes with Perfect Structures and Extraordinary Properties.

    PubMed

    Zhang, Rufan; Zhang, Yingying; Wei, Fei

    2017-02-21

    Carbon nanotubes (CNTs) have drawn intensive research interest in the past 25 years due to their excellent properties and wide applications. Ultralong CNTs refers to the horizontally aligned CNT arrays which are usually grown on flat substrates, parallel with each other with large intertube distances. They usually have perfect structures, excellent properties, and lengths up to centimeters, even decimeters. Ultralong CNTs are promising candidates as building blocks for transparent displays, nanoelectronics, superstrong tethers, aeronautics and aerospace materials, etc. The controlled synthesis of ultralong CNTs with perfect structures is the key to fully exploit the extraordinary properties of CNTs. CNTs are typical one-dimensional single-crystal nanomaterials. It has always been a great challenge how to grow macroscale single-crystals with no defects. Thus, the synthesis of ultralong CNTs with no defect is of significant importance from both fundamental and industrial aspects. In this Account, we focus on our progress on the controlled synthesis of ultralong CNTs with perfect structures and excellent properties. A deep understanding of the CNT growth mechanism is the first step for the controlled synthesis of ultralong CNTs with high quality. We first introduce the growth mechanism for ultralong CNTs and the main factor affecting their structures. We then discuss the strategies to control the defects in the as-grown ultralong CNTs. With these approaches, ultralong high-quality CNTs with different structures can be obtained. By completely eliminating the factors which may induce defects in the CNT walls, ultralong CNTs with perfect structures can be obtained. Their chiral indices keep unchanged for several centimeters long along the axial direction of the CNTs. The defect-free structures render the ultralong CNTs with excellent electrical, mechanical and thermal properties. The as-grown ultralong CNTs exhibit superhigh mechanical strength (>100 GPa) and their breaking strain (>17.5%) reach the theoretical limits. They also show excellent electrical and thermal properties. In addition, centimeters long CNTs showed macroscale interwall superlubricious properties due to their defect-free structures. Ultralong, defect-free CNTs with controlled structures are highly desirable for many high-end applications. We hope that this Account will shed light on the controlled synthesis of ultralong CNTs with perfect structures and excellent properties. Moreover, the growth mechanism and controlled synthesis of ultralong CNTs with perfect structures also offers a good model for other one-dimensional nanomaterials.

  16. Operational Determination of Physical and Mechanical Properties of Cast Samples of High-Strength Iron by Means of a Magnetic-Mechanical Method

    NASA Astrophysics Data System (ADS)

    Slyusarev, Yu. K.; Braga, A. V.; Slyusarev, I. Yu.

    2017-09-01

    The effect of the chemical composition of high-strength cast iron VCh35 on the content, shape and diameter of graphite inclusions and on the presence of structurally-free cementite and defects is studied. A relationship is determined between the structure and metallurgical defects and characteristics of the mechanical and magnetic rigidity of cast samples. Relationships are established in a group of factors and property characteristics: chemical composition - microstructure - mechanical rigidity - magnetic stiffness. The basis of a method is established making it possible to perform operative non-destructive monitoring of the melt quality preparation for high-strength iron casting.

  17. The Influence of Fuelbed Physical Properties on Biomass Burning Emissions

    NASA Astrophysics Data System (ADS)

    Urbanski, S. P.; Lincoln, E.; Baker, S. P.; Richardson, M.

    2014-12-01

    Emissions from biomass fires can significantly degrade regional air quality and therefore are of major concern to air regulators and land managers in the U.S. and Canada. Accurately estimating emissions from different fire types in various ecosystems is crucial to predicting and mitigating the impact of fires on air quality. The physical properties of ecosystems' fuelbeds can heavily influence the combustion processes (e.g. flaming or smoldering) and the resultant emissions. However, despite recent progress in characterizing the composition of biomass smoke, significant knowledge gaps remain regarding the linkage between basic fuelbed physical properties and emissions. In laboratory experiments we examined the effects of fuelbed properties on combustion efficiency (CE) and emissions for an important fuel component of temperate and boreal forests - conifer needles. The bulk density (BD), depth (DZ), and moisture content (MC) of Ponderosa Pine needle fuelbeds were manipulated in 75 burns for which gas and particle emissions were measured. We found CE was negatively correlated with BD, DZ and MC and that the emission factors of species associated with smoldering combustion processes (CO, CH4, particles) were positively correlated with these fuelbed properties. The study indicates the physical properties of conifer needle fuelbeds have a significant effect on CE and hence emissions. However, many of the emission models used to predict and manage smoke impacts on air quality assume conifer litter burns by flaming combustion with a high CE and correspondingly low emissions of CO, CH4, particles, and organic compounds. Our results suggest emission models underestimate emissions from fires involving a large component of conifer needles. Additionally, our findings indicate that laboratory studies of emissions should carefully control fuelbed physical properties to avoid confounding effects that may obscure the effects being tested and lead to erroneous interpretations.

  18. Does nutrition affect bone porosity and mineral tissue distribution in deer antlers? The relationship between histology, mechanical properties and mineral composition.

    PubMed

    Landete-Castillejos, T; Currey, J D; Ceacero, F; García, A J; Gallego, L; Gomez, S

    2012-01-01

    It is well known that porosity has an inverse relationship with the mechanical properties of bones. We examined cortical and trabecular porosity of antlers, and mineral composition, thickness and mechanical properties in the cortical wall. Samples belonged to two deer populations: a captive population of an experimental farm having a high quality diet, and a free-ranging population feeding on plants of lower nutritive quality. As shown for minerals and mechanical properties in previous studies by our group, cortical and trabecular porosity increased from the base distally. Cortical porosity was always caused by the presence of incomplete primary osteons. Porosity increased along the length of the antler much more in deer with lower quality diet. Despite cortical porosity being inversely related to mechanical properties and positively with K, Zn and other minerals indicating physiological effort, it was these minerals and not porosity that statistically better explained variability in mechanical properties. Histochemistry showed that the reason for this is that Zn is located around incomplete osteons and also in complete osteons that were still mineralizing, whereas K is located in non-osteonal bone, which constitutes a greater proportion of bone where osteons are incompletely mineralized. This suggests that, K, Zn and other minerals indicate reduction in mechanical performance even with little porosity. If a similar process occurred in internal bones, K, Zn and other minerals in the bone may be an early indicator of decrease in mechanical properties and future osteoporosis. In conclusion, porosity is related to diet and physiological effort in deer. Copyright © 2011 Elsevier Inc. All rights reserved.

  19. Study on parameters affecting the mechanical properties of dry fiber bundles during continuous composite manufacturing processes

    NASA Astrophysics Data System (ADS)

    Maier, A.; Schledjewski, R.

    2016-07-01

    For continuous manufacturing processes mechanical preloading of the fibers occurs during the delivery of the fibers from the spool creel to the actual manufacturing process step. Moreover preloading of the dry roving bundles might be mandatory, e.g. during winding, to be able to produce high quality components. On the one hand too high tensile loads within dry roving bundles might result in a catastrophic failure and on the other hand the part produced under too low pre-tension might have low quality and mechanical properties. In this work, load conditions influencing mechanical properties of dry glass fiber bundles during continuous composite manufacturing processes were analyzed. Load conditions, i.e. fiber delivery speed, necessary pre-tension and other effects of the delivery system during continuous fiber winding, were chosen in process typical ranges. First, the strain rate dependency under static tensile load conditions was investigated. Furthermore different free gauge lengths up to 1.2 m, interactions between fiber points of contact regarding influence of sizing as well as impregnation were tested and the effect of twisting on the mechanical behavior of dry glass fiber bundles during the fiber delivery was studied.

  20. Superior material qualities and transport properties of InGaN channel heterostructure grown by pulsed metal organic chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Ya-Chao, Zhang; Xiao-Wei, Zhou; Sheng-Rui, Xu; Da-Zheng, Chen; Zhi-Zhe, Wang; Xing, Wang; Jin-Feng, Zhang; Jin-Cheng, Zhang; Yue, Hao

    2016-01-01

    Pulsed metal organic chemical vapor deposition is introduced into the growth of InGaN channel heterostructure for improving material qualities and transport properties. High-resolution transmission electron microscopy imaging shows the phase separation free InGaN channel with smooth and abrupt interface. A very high two-dimensional electron gas density of approximately 1.85 × 1013 cm-2 is obtained due to the superior carrier confinement. In addition, the Hall mobility reaches 967 cm2/V·s, owing to the suppression of interface roughness scattering. Furthermore, temperature-dependent Hall measurement results show that InGaN channel heterostructure possesses a steady two-dimensional electron gas density over the tested temperature range, and has superior transport properties at elevated temperatures compared with the traditional GaN channel heterostructure. The gratifying results imply that InGaN channel heterostructure grown by pulsed metal organic chemical vapor deposition is a promising candidate for microwave power devices. Project supported by the National Natural Science Foundation of China (Grant Nos. 61306017, 61334002, 61474086, and 11435010) and the Young Scientists Fund of the National Natural Science Foundation of China (Grant No. 61306017).

  1. High-Speed Friction Stir Welding of AA7075-T6 Sheet: Microstructure, Mechanical Properties, Micro-texture, and Thermal History

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Jingyi; Upadhyay, Piyush; Hovanski, Yuri

    Friction-stir-welding (FSW) is a cost-effective and high quality joining process for aluminum alloys (especially heat-treatable allo ys) that has been applied successfully in the aerospace industry. However, the full potential of FSW on more cost-sensitive applications is still limited by the production rate, namely the welding speed of the process. The majority of literature evaluating FSW of aluminum alloys is based on welds made in the range of welding speeds around hundreds of millimeters per minute, and only a handful are at a moderate speed of 1 m/min. In this study we present a microstructural analysis of friction stir weldedmore » AA7075-T6 blanks with welding speeds up to 3 m/min. Textures, microstructures, mechanical properties, and weld quality are analyzed using TEM, EBSD, metallographic imaging, and Vickers hardness. Results are coupled with welding parameters to aid in the understanding of the complex material flow and texture gradients within the welds in an effort to optimize welding parameters for high speed processing.« less

  2. Dielectric and electromechanical properties of rare earth calcium oxyborate piezoelectric crystals at high temperatures.

    PubMed

    Yu, Fapeng; Zhang, Shujun; Zhao, Xian; Yuan, Duorong; Qin, Lifeng; Wang, Qing-Ming; Shrout, Thomas R

    2011-04-01

    The electrical resistivity, dielectric, and electromechanical properties of ReCa(4)O(BO(3))(3) (ReCOB; Re = Er, Y, Gd, Sm, Nd, Pr, and La) piezoelectric crystals were investigated as a function of temperature up to 1000 °C. Of the studied crystals, ErCOB and YCOB were found to possess extremely high resistivity (p): p > 3 × 10(7) ω.cm at 1000 °C. The property variation in ReCOB crystals is discussed with respect to their disordered structure. The highest electromechanical coupling factor κ(26) and piezoelectric coefficient d(26) at 1000°C, were achieved in PrCOB crystals, with values being on the order of 24.7% and 13.1 pC/N, respectively. The high thermal stability of the electromechanical properties, with variation less than 25%, together with the low dielectric loss (<46%) and high mechanical quality factor (>1500) at elevated temperatures of 1000 °C, make ErCOB, YCOB, and GdCOB crystals promising for ultrahigh temperature electromechanical applications. © 2011 IEEE

  3. 7 CFR 766.110 - Conservation Contract.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... floodplains; (iii) Areas of high water quality or scenic value; (iv) Historic or cultural properties listed in..., or 50 years. (e) Conservation management plan. The Agency, through the recommendations of the Conservation Contract review team, is responsible for approving the conservation management plan. (f...

  4. 7 CFR 766.110 - Conservation Contract.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... floodplains; (iii) Areas of high water quality or scenic value; (iv) Historic or cultural properties listed in..., or 50 years. (e) Conservation management plan. The Agency, through the recommendations of the Conservation Contract review team, is responsible for approving the conservation management plan. (f...

  5. Recent advances in magnetic nanoparticles with bulk-like properties

    NASA Astrophysics Data System (ADS)

    Batlle, Xavier

    2013-03-01

    Magnetic nanoparticles (NP) are an excellent example of nanostructured materials and exhibit fascinating properties with applications in high-density recording and biomedicine. Controlling the effects of the nanostructure and surface chemistry and magnetism at the monolayer level have become relevant issues. As the size is reduced below 100 nm, deviations from bulk behavior have been attributed to finite-size effects and changes in the magnetic ordering at the surface, thus giving rise to a significant decrease in the magnetization and increase in the magnetic anisotropy. The existence of a surface spin glass-like state due to magnetic frustration has been widely suggested in ferrimagnetic NP. However, in this talk, we will show that high crystal quality magnetite Fe3-xO4 NP of about a few nanometers in diameter and coated with different organic surfactants display bulk-like structural, magnetic and electronic properties. Magnetic measurements, transmission electron microscopy, X-ray absorption and magnetic circular dichroism and Monte Carlo simulations, evidenced that none of the usual particle-like behavior is observed in high quality NP of a few nm. Consequently, the magnetic and electronic disorder phenomena typically observed in those single-phase ferrimagnetic NP should not be considered as an intrinsic effect. We also performed a real-space characterization at the sub-nanometer scale, combining scanning transmission electron microscopy, electron energy loss spectroscopy and electron magnetic chiral dichroism. For the first time, we found that the surface magnetization is as high as about 70% of that of the core. The comparison to density functional theory suggested the relevance of the strong surface bond between the Fe ions and the organic surfactant. All the foregoing demonstrates the key role of both the crystal quality and surface bond on the physical properties of ferrimagnetic NP and paves the way to the fabrication of the next generation of NP with optimal magnetic properties. Some bio-applications will also be discussed. In collaboration with A Labarta, N Perez, O Iglesias, A Fraile, C Moya(U Barcelona); A Roca, MP Morales, CJ Serna (ICMM-CSIC); F Bartolome, LM Garcia, J. Bartolome (CSIC-U Zaragoza); R Mejias, DF Barber (CNB-CSIC); M Varela, J Gazquez, J Salafranca, SJ Pennycook (ORNL), ST Pantelides (Vanderbilt U).

  6. Super-high color rendering properties of color temperature tunable white LEDs based on high quality InP/ZnS quantum dots via myristic acid passivation and Ag doping

    NASA Astrophysics Data System (ADS)

    Yang, Wu; Zhang, Wanlu; Zhang, Guilin; Zhu, Jiatao; He, Guoxing; Guo, Ruiqian

    2018-07-01

    We reported two types of tunable white LEDs (WLEDs) based on high quality the single emissive InP/ZnS quantum dots (QDs) and the dual emissive Ag:InP/ZnS QDs via myristic acid (MA) passivation and Ag doping. The WLEDs with three color InP/ZnS QDs could realize color rendering indices (CRIs) of 97-98, color quality scales (CQSs) of 94-98, and limited luminous efficacies (LLEs) of 238-246 lm/W at correlated color temperatures (CCTs) of 2700 K to 6500 K, and the WLEDs with dual emissive Ag:InP/ZnS and red emissive InP/ZnS QDs could realize CRIs of 90-93, CQSs of 90-93, and LLEs of 223-242 lm/W at CCTs of 2700 K to 4000 K. Finally, their luminous efficacies were estimated.

  7. Control of Ga-oxide interlayer growth and Ga diffusion in SiO2/GaN stacks for high-quality GaN-based metal-oxide-semiconductor devices with improved gate dielectric reliability

    NASA Astrophysics Data System (ADS)

    Yamada, Takahiro; Watanabe, Kenta; Nozaki, Mikito; Yamada, Hisashi; Takahashi, Tokio; Shimizu, Mitsuaki; Yoshigoe, Akitaka; Hosoi, Takuji; Shimura, Takayoshi; Watanabe, Heiji

    2018-01-01

    A simple and feasible method for fabricating high-quality and highly reliable GaN-based metal-oxide-semiconductor (MOS) devices was developed. The direct chemical vapor deposition of SiO2 films on GaN substrates forming Ga-oxide interlayers was carried out to fabricate SiO2/GaO x /GaN stacked structures. Although well-behaved hysteresis-free GaN-MOS capacitors with extremely low interface state densities below 1010 cm-2 eV-1 were obtained by postdeposition annealing, Ga diffusion into overlying SiO2 layers severely degraded the dielectric breakdown characteristics. However, this problem was found to be solved by rapid thermal processing, leading to the superior performance of the GaN-MOS devices in terms of interface quality, insulating property, and gate dielectric reliability.

  8. Studies on Hot-Melt Prepregging on PRM-II-50 Polyimide Resin with Graphite Fibers

    NASA Technical Reports Server (NTRS)

    Shin, E. Eugene; Sutter, James K.; Juhas, John; Veverka, Adrienne; Klans, Ojars; Inghram, Linda; Scheiman, Dan; Papadopoulos, Demetrios; Zoha, John; Bubnick, Jim

    2004-01-01

    A second generation PMR (in situ Polymerization of Monomer Reactants) polyimide resin PMR-II-50, has been considered for high temperature and high stiffness space propulsion composites applications for its improved high temperature performance. As part of composite processing optimization, two commercial prepregging methods: solution vs. hot-melt processes were investigated with M40J fabrics from Toray. In a previous study a systematic chemical, physical, thermal and mechanical characterization of these composites indicated the poor resin-fiber interfacial wetting, especially for the hot-melt process, resulted in poor composite quality. In order to improve the interfacial wetting, optimization of the resin viscosity and process variables were attempted in a commercial hot-melt prepregging line. In addition to presenting the results from the prepreg quality optimization trials, the combined effects of the prepregging method and two different composite cure methods, i.e. hot press vs. autoclave on composite quality and properties are discussed.

  9. Studies on Hot-Melt Prepregging of PMR-II-50 Polyimide Resin with Graphite Fibers

    NASA Technical Reports Server (NTRS)

    Shin, E. Eugene; Sutter, James K.; Juhas, John; Veverka, Adrienne; Klans, Ojars; Inghram, Linda; Scheiman, Dan; Papadopoulos, Demetrios; Zoha, John; Bubnick, Jim

    2003-01-01

    A Second generation PMR (in situ Polymerization of Monomer Reactants) polyimide resin, PMR-II-50, has been considered for high temperature and high stiffness space propulsion composites applications for its improved high temperature performance. As part of composite processing optimization, two commercial prepregging methods: solution vs. hot-melt processes were investigated with M40J fabrics from Toray. In a previous study a systematic chemical, physical, thermal and mechanical characterization of these composites indicated that poor resin-fiber interfacial wetting, especially for the hot-melt process, resulted in poor composite quality. In order to improve the interfacial wetting, optimization of the resin viscosity and process variables were attempted in a commercial hot-melt prepregging line. In addition to presenting the results from the prepreg quality optimization trials, the combined effects of the prepregging method and two different composite cure methods, i.e., hot press vs. autoclave on composite quality and properties are discussed.

  10. [Experience of the implementation of the method of the integral assessment of drinking water on indicators of chemical harmlessness in St. Petersburg].

    PubMed

    Mel'tser, A V; Erastova, N V; Kiselev, A V

    2013-01-01

    Providing population with quality drinking water--one of the priority tasks of the state policy aimed at maintaining the health of citizens. Hygienic rating of the drinking water quality envisages requirements to assurance its safety in the epidemiological and radiation relations, harmlessness of chemical composition and good organoleptic properties. There are numerous data proving the relationship between the chemical composition of drinking water and human health, and therefore the issue of taking a hygienically sound measures to improve the efficiency of water treatment has more and more priority. High water quality--the result of complex solution of tasks, including an integral approach to assessment of the quality of drinking water the use of hygienically sound decisions in the modernization of water treatment systems. The results of the integral assessment of drinking water on the properties of harmlessness have shown its actuality in the development and implementation of management decisions. The use of the spatial characteristics of integrated indices permits to visualize changes in the quality of drinking water in all stages of production and transportation from the position of health risks, evaluate the effectiveness of technological solutions and set priorities for investing.

  11. Metabolic Changes during Storage of Brassica napus Seeds under Moist Conditions and the Consequences for the Sensory Quality of the Resulting Virgin Oil.

    PubMed

    Bonte, Anja; Schweiger, Rabea; Pons, Caroline; Wagner, Claudia; Brühl, Ludger; Matthäus, Bertrand; Müller, Caroline

    2017-12-20

    Virgin rapeseed (Brassica napus) oil is a valuable niche product, if delivered with a high quality. In this study, the effects of moist storage of B. napus seeds for 1 to 4 days on the seed metabolome and the chemo-sensory properties of the produced oils were determined. The concentrations of several primary metabolites, including monosaccharides and amino acids, rapidly increased in the seeds, probably indicating the breakdown of storage compounds to support seed germination. Seed concentrations of indole glucosinolates increased with a slight time offset suggesting that amino acids may be used to modify secondary metabolism. The volatile profiles of the oils were pronouncedly influenced by moist seed storage, with the sensory quality of the oils decreasing. This study provides a direct time-resolved link between seed metabolism under moist conditions and the quality of the resulting oils, thereby emphasizing the crucial role of dry seed storage in ensuring high oil quality.

  12. The Portuguese version of the Epilepsy Surgery Inventory (ESI-55): cross-cultural adaptation and evaluation of psychometric properties.

    PubMed

    Alonso, Neide Barreira; Ciconelli, Rozana Mesquita; da Silva, Tatiana Indelicato; Westphal-Guitti, Ana Carolina; Azevedo, Auro Mauro; da Silva Noffs, Maria Helena; Caboclo, Luís Otávio Sales Ferreira; Sakamoto, Américo Ceiki; Targas Yacubian, Elza Márcia

    2006-08-01

    The purpose of this study was to develop a Portuguese version of the Epilepsy Surgery Inventory (ESI-55) and to assess its psychometric properties. Sixty patients with temporal lobe epilepsy related to unilateral mesial temporal sclerosis who underwent presurgical evaluation at the Universidade Federal de São Paulo (UNIFESP) formed the sample for this study. The psychometric properties of the ESI-55 included: reliability, validity, and responsiveness. Internal consistency was high in all domains (Cronbach's alpha ranging from 0.76 for Social Function to 0.88 for Physical Function) except Overall Quality of Life (alpha=0.45). Test-retest reliability after 1 week was good, with the intraclass correlation coefficient ranging from 0.79 (Energy/Fatigue) to 0.92 (Role Limitations due to Emotional Problems). Interrater reliability ranged from 0.84 (Cognitive Function) to 0.94 (Role Limitations due to Physical Problems). For construct validity, we verified a high correlation between the ESI-55 and Health Assessment Questionnaire-8 for the Physical Function domain (Pearson linear correlation=-0.84), and a moderate correlation for the Pain domain (P=-0.58), but for the other subscales no correlation was detected. Beck Depression Inventory and ESI-55 domains were highly statistically correlated (ANOVA: P<0.005), but there was no association of the Cognitive Function and Role Limitations due to Memory Problems subscales with neuropsychological evaluation (Pearson coefficient: P>0.05). With respect to demographic characteristics, a statistically significant correlation was observed for the variable educational level (Student t, P<0.005) and ESI-55 scores. There was a high correlation between seizure frequency and ESI-55 domains for clinical variables (ANOVA, P<0.005). Surgical treatment in this series improved health-related quality of life in the seizure-free group in three domains--Health Perception (1.24), Emotional Well-Being (1.32), and Energy/Fatigue (1.48)-as reflected by the standard response mean and the effect size of the sample. Our results support the psychometric properties of the Portuguese version of the ESI-55 as a measure of health-related quality of life.

  13. CF60 Concrete Composition Design and Application on Fudiankou Xijiang Super Large Bridge

    NASA Astrophysics Data System (ADS)

    Qiu, Yi Mei; Wen, Sen Yuan; Chen, Jun Xiang

    2018-06-01

    Guangxi Wuzhou City Ring Road Fudiankou Xijiang super large bridge CF60 concrete is a new multi-phase composite high-performance concrete, this paper for the Fudiankou Xijiang bridge structure and characteristics of the project, in accordance with the principle of local materials and technical specification requirements, combined with the site conditions of CF60 engineering high performance concrete component materials, proportion and the technical performance, quantify the main physical and mechanical performance index. Analysis main influencing factors of the technical indicators, reasonable adjustment of concrete mix design parameters, and the use of technical means of admixture and multi-function composite admixture of concrete, obtain the optimal proportion of good work, process, mechanical properties stability and durability of engineering properties, recommend and verification of concrete mix; to explore the CF60 high performance concrete Soil in the Fudiankou Xijiang bridge application technology, detection and tracking the quality of concrete construction, concrete structure during the construction of the key technology and control points is proposed, evaluation of CF60 high performance concrete in the actual engineering application effect and benefit to ensure engineering quality of bridge structure and service life, and super long span bridge engineering construction to provide basis and reference.

  14. Microbial Diversity of Commercial Makgeolli and Its Influence on the Organoleptic Characteristics of Korean Rice Sourdough, Jeung-Pyun.

    PubMed

    Park, Jaehyung; Seo, Ji Sun; Kim, Seul-Ah; Shin, So-Yeon; Park, Jong-Hyun; Han, Nam Soo

    2017-10-28

    Sourdough is made by fermentation of dough by lactic acid bacteria (LAB) and yeast to improve bread properties like volume, flavor, and texture. A Korean traditional sourdough was made by fermenting rice flour with rice wine (makgeolli) and used to make sponge-like bread (jeung-pyun). The aim of this study was to investigate the microbial diversity of makgeolli products and their influence on the organoleptic quality of jeung-pyun. Three commercial makgeolli were tested for jeung-pyun production, with each product exhibiting varied dough swelling rates and organoleptic qualities, and among them, J-product was ranked highest in texture and taste. Microbial analysis of the three makgeolli also showed a big difference in their population and diversity. J-product had the highest LAB and yeast counts, and the predominant species were Lactobacillus casei, Lactobacillus brevis, Leuconostoc pseudomenteroides, and Saccharomyces cerevisiae . Using J-product, sourdough was fermented at 25°C, 30°C, and 35°C, and the microbial growth in and textural properties of jeung-pyun were examined by instrumental and sensory tests. At high temperature (35°C), the rates of dough swelling and acidification were fast due to rapid microbial growth mainly caused by LAB, resulting in a short leavening time and soft and sour jeung-pyun. Sensory tests showed consumer preference for the soft and mild-sour jeung-pyun. This study shows that LAB in makgeolli play key roles in production of jeung-pyun, influencing the textural and sensory properties. For the production of high-quality jeung-pyun, development of LAB starters with high gas productivity and low acidity and establishment of an optimal fermentation procedure for rice dough are necessary.

  15. Seam-weld quality of modern ERW/HFI line pipe

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Groeneveld, T.P.; Barnes, C.R.

    1991-09-01

    This study was undertaken to determine whether the seam-weld quality of modern ERW (electric resistance-welded)/HFI (high-frequency induction) welded pipe has been improved and justifies more widespread use of this type of pipe in critical applications. Wider use of ERW/HFI line pipe in gas-transmission lines would be expected to reduce construction costs. Five recently produced, heavy wall pipes fabricated using high-frequency electric-resistance welding (ERW) processes to make the seam weld and one pipe fabricated using the high-frequency induction (HFI) welding process to make the seam weld were studied. Four of the pipes were Grade X-60, one was Grade X-65, and onemore » was Grade X-70. All of the pipes were produced from microalloyed, controlled-rolled steels, and the weld zones were post-weld normalized. Ultrasonic inspection of the seam welds in the six pipe sections evaluated revealed no indications of defects. The tensile properties of all of the weld zones exceeded the minimum specified yield strengths for the respective grades of pipe and all of the pipes exhibited ductile failures either in the weld zone or in the base metal. Five of the six pipes exhibited ductile failures either in the weld zone or in the base metal. Five of the six pipes exhibited relatively low 85% shear area transition temperatures and relatively high upper-shelf energy absorptions as determined with Charpy V-notch specimens. In addition, for two of the three joints of pipe for which the properties were determined at both ends of the pipe, the tensile and impact properties showed little variation from end-to-end. However, for the other joint of pipe, the impact properties varied substantially from one end to the other.« less

  16. Transition-metal dichalcogenides heterostructure saturable absorbers for ultrafast photonics.

    PubMed

    Chen, Hao; Yin, Jinde; Yang, Jingwei; Zhang, Xuejun; Liu, Mengli; Jiang, Zike; Wang, Jinzhang; Sun, Zhipei; Guo, Tuan; Liu, Wenjun; Yan, Peiguang

    2017-11-01

    In this Letter, high-quality WS 2 film and MoS 2 film were vertically stacked on the tip of a single-mode fiber in turns to form heterostructure (WS 2 -MoS 2 -WS 2 )-based saturable absorbers with all-fiber integrated features. Their nonlinear saturable absorption properties were remarkable, such as a large modulation depth (∼16.99%) and a small saturable intensity (6.23  MW·cm -2 ). Stable pulses at 1.55 μm with duration as short as 296 fs and average power as high as 25 mW were obtained in an erbium-doped fiber laser system. The results demonstrate that the proposed heterostructures own remarkable nonlinear optical properties and offer a platform for adjusting nonlinear optical properties by stacking different transition-metal dichalcogenides or modifying the thickness of each layer, paving the way for engineering functional ultrafast photonics devices with desirable properties.

  17. Influence of the Grain Size on the Properties of CH3NH3PbI3 Thin Films.

    PubMed

    Shargaieva, Oleksandra; Lang, Felix; Rappich, Jörg; Dittrich, Thomas; Klaus, Manuela; Meixner, Matthias; Genzel, Christoph; Nickel, Norbert H

    2017-11-08

    Hybrid perovskites have already shown a huge success as an absorber in solar cells, resulting in the skyrocketing rise in the power conversion efficiency to more than η = 22%. Recently, it has been established that the crystal quality is one of the most important parameters to obtain devices with high efficiencies. However, the influence of the crystal quality on the material properties is not fully understood. Here, the influence of the morphology on electronic properties of CH 3 NH 3 PbI 3 thin films is investigated. Postannealing was used to vary the average grain size continuously from ≈150 to ≈1000 nm. Secondary grain growth is thermally activated with an activation energy of E a = 0.16 eV. The increase in the grain size leads to an enhancement of the photoluminescence, indicating an improvement in the material quality. According to surface photovoltage measurements, the charge-carrier transport length exhibits a linear increase with increasing grain size. The charge-carrier diffusion length is limited by grain boundaries. Moreover, an improved morphology leads to a drastic increase in power conversion efficiency of the devices.

  18. The Effect of the Kind of Sands and Additions on the Mechanical Behaviour of S.C.C

    NASA Astrophysics Data System (ADS)

    Zeghichi, L.; Benghazi, Z.; Baali, L.

    The sand is an inert element essential in the composition of concrete; its use ensures granular continuity between the cement and gravel for better cohesion of concrete. This paper presents the results of a study that investigated the influence of sand quality on the properties of fresh and hardened self-compacting concrete (SCC). The dune sands are very fine materials characterized by a high intergranular porosity, high surface area and low fineness modulus; on the other hand crushed (manufactured) sand has a high rate into thin and irregular shapes which are influencing the workability of concrete. The amount of dune sand varies from (0% 50%, to 100%) by weight of fine aggregates. The effect of additions is also treated (blast furnace slag and lime stone) The results show that the rheological properties favour the use of dune sands; however the mechanical properties support the use of crushed sand.

  19. The characterization of high-density polyethylene/organoclay nanocomposites

    NASA Astrophysics Data System (ADS)

    Rodrigues, Tathiane Cordeiro; Tavares, Maria Inês Bruno; Soares, Igor Lopes; Moreira, Ana M.

    2009-01-01

    Polymeric nanocomposites, which are hybrids of polymers and modified inorganic clay with organic surfactants, are extremely attractive in both science and industry. These materials present improvements in such polymer properties as modulus, heat capacity, thermal stability, flame resistance, and so on. Research has been conducted in recent decades to obtain high-quality materials that can be used in applications like food packing, car components, and combustible cells. Polymeric nanocomposites present many advantages in relation to composites due to the quantity of filler added to the polymer and also to the improved properties. In a composite, the quantity of filler must be as high as possible (i.e., over 30%). In the polymeric nanocomposite the quantity of filler varies from 1% to 5% because of the nanosize of the particles. These nanoparticles often have a large surface area that results in improved polymer-matrix properties.

  20. Thin Hydrogel Films for Optical Biosensor Applications

    PubMed Central

    Mateescu, Anca; Wang, Yi; Dostalek, Jakub; Jonas, Ulrich

    2012-01-01

    Hydrogel materials consisting of water-swollen polymer networks exhibit a large number of specific properties highly attractive for a variety of optical biosensor applications. This properties profile embraces the aqueous swelling medium as the basis of biocompatibility, non-fouling behavior, and being not cell toxic, while providing high optical quality and transparency. The present review focuses on some of the most interesting aspects of surface-attached hydrogel films as active binding matrices in optical biosensors based on surface plasmon resonance and optical waveguide mode spectroscopy. In particular, the chemical nature, specific properties, and applications of such hydrogel surface architectures for highly sensitive affinity biosensors based on evanescent wave optics are discussed. The specific class of responsive hydrogel systems, which can change their physical state in response to externally applied stimuli, have found large interest as sophisticated materials that provide a complex behavior to hydrogel-based sensing devices. PMID:24957962

  1. Effect of high-pressure homogenization on different matrices of food supplements.

    PubMed

    Martínez-Sánchez, Ascensión; Tarazona-Díaz, Martha Patricia; García-González, Antonio; Gómez, Perla A; Aguayo, Encarna

    2016-12-01

    There is a growing demand for food supplements containing high amounts of vitamins, phenolic compounds and mineral content that provide health benefits. Those functional compounds have different solubility properties, and the maintenance of their compounds and the guarantee of their homogenic properties need the application of novel technologies. The quality of different drinkable functional foods after thermal processing (0.1 MPa) or high-pressure homogenization under two different conditions (80 MPa, 33 ℃ and 120 MPa, 43 ℃) was studied. Physicochemical characteristics and sensory qualities were evaluated throughout the six months of accelerated storage at 40 ℃ and 75% relative humidity (RH). Aroma and color were better maintained in high-pressure homogenization-treated samples than the thermally treated ones, which contributed significantly to extending their shelf life. The small particle size obtained after high-pressure homogenization treatments caused differences in turbidity and viscosity with respect to heat-treated samples. The use of high-pressure homogenization, more specifically, 120 MPa, provided active ingredient homogeneity to ensure uniform content in functional food supplements. Although the effect of high-pressure homogenization can be affected by the food matrix, high-pressure homogenization can be implemented as an alternative to conventional heat treatments in a commercial setting within the functional food supplement or pharmaceutical industry. © The Author(s) 2016.

  2. Additives for cement compositions based on modified peat

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kopanitsa, Natalya, E-mail: kopanitsa@mail.ru; Sarkisov, Yurij, E-mail: sarkisov@tsuab.ru; Gorshkova, Aleksandra, E-mail: kasatkina.alexandra@gmail.com

    High quality competitive dry building mixes require modifying additives for various purposes to be included in their composition. There is insufficient amount of quality additives having stable properties for controlling the properties of cement compositions produced in Russia. Using of foreign modifying additives leads to significant increasing of the final cost of the product. The cost of imported modifiers in the composition of the dry building mixes can be up to 90% of the material cost, depending on the composition complexity. Thus, the problem of import substitution becomes relevant, especially in recent years, due to difficult economic situation. The articlemore » discusses the possibility of using local raw materials as a basis for obtaining dry building mixtures components. The properties of organo-mineral additives for cement compositions based on thermally modified peat raw materials are studied. Studies of the structure and composition of the additives are carried out by physicochemical research methods: electron microscopy and X-ray analysis. Results of experimental research showed that the peat additives contribute to improving of cement-sand mortar strength and hydrophysical properties.« less

  3. Long Distance Enhancement of Nonlinear Optical Properties Using Low Concentration of Plasmonic Nanostructures in Dye Doped Monolithic SolGel Materials (Postprint)

    DTIC Science & Technology

    2016-05-31

    www.MaterialsViews.com Synthesis of the Gold Nanoparticles : The Au nanospheres were prepared according to previously reported procedure using the...Au Nanoparticles Using Specifi c Silicone : The synthesis of the functional silicone was previously reported as well as the surface modifi cation of...types of gold nanoparticles (AuNPs) are prepared and polished to high optical quality. Their photophysical properties are investigated. The glass

  4. Physical activity questionnaires for youth: a systematic review of measurement properties.

    PubMed

    Chinapaw, Mai J M; Mokkink, Lidwine B; van Poppel, Mireille N M; van Mechelen, Willem; Terwee, Caroline B

    2010-07-01

    Because of the diversity in available questionnaires, it is not easy for researchers to decide which instrument is most suitable for his or her specific demands. Therefore, we systematically summarized and appraised studies examining measurement properties of self-administered and proxy-reported physical activity (PA) questionnaires in youth. Literature was identified through searching electronic databases (PubMed, EMBASE using 'EMBASE only' and SportDiscus) until May 2009. Studies were included if they reported on the measurement properties of self-administered and proxy-reported PA questionnaires in youth (mean age <18 years) and were published in the English language. Methodological quality and results of included studies was appraised using a standardized checklist (qualitative attributes and measurement properties of PA questionnaires [QAPAQ]). We included 54 manuscripts examining 61 versions of questionnaires. None of the included questionnaires showed both acceptable reliability and validity. Only seven questionnaires received a positive rating for reliability. Reported validity varied, with correlations between PA questionnaires and accelerometers ranging from very low to high (previous day PA recall: correlation coefficient [r] = 0.77). In general, PA questionnaires for adolescents correlated better with accelerometer scores than did those for children. From this systematic review, we conclude that no questionnaires were available with both acceptable reliability and validity. Considerably more high-quality research is required to examine the validity and reliability of promising PA questionnaires for youth.

  5. Electronic and magnetic properties of epitaxial SrRh O 3 films

    DOE PAGES

    Nichols, John A.; Yuk, Simuck F.; Sohn, Changhee; ...

    2017-06-16

    The strong interplay of fundamental order parameters in complex oxides is known to give rise to exotic physical phenomena. The 4$d$ transition-metal oxide SrRh O 3 has generated much interest, but advances have been hindered by difficulties in preparing single-crystalline phases. Here we epitaxially stabilize high-quality single-crystalline SrRh O 3 films and investigate their structural, electronic, and magnetic properties. Lastly, we determine that their properties significantly differ from the paramagnetic metallic ground state that governs bulk samples and are strongly related to rotations of Rh O 6 octahedra.

  6. An investigation of the operating characteristics of two PTW diamond detectors in photon and electron beams.

    PubMed

    De Angelis, C; Onori, S; Pacilio, M; Cirrone, G A P; Cuttone, G; Raffaele, L; Bucciolini, M; Mazzocchi, S

    2002-02-01

    The dosimetric properties of two PTW Riga diamond detectors type 60003 were studied in high-energy photon and electron therapy beam. Properties under study were current-voltage characteristic, polarization effect, time stability of response, dose response, dose-rate dependence, temperature stability, and beam quality dependence of the sensitivity factor. Differences were shown between the two detectors for most of the previous properties. Also, the observed behavior was, to some extent, different from what was reported in the PTW technical specifications. The necessity to characterize each diamond detector individually was addressed.

  7. High Spectral Resolution LIDAR as a Tool for Air Quality Research

    NASA Astrophysics Data System (ADS)

    Eloranta, E. W.; Spuler, S.; Hayman, M. M.

    2017-12-01

    Many aspects of air quality research require information on the vertical distribution of pollution. Traditional measurements, obtained from surface based samplers, or passive satellite remote sensing, do not provide vertical profiles. Lidar can provide profiles of aerosol properties. However traditional backscatter lidar suffers from uncertain calibrations with poorly constrained algorithms. These problems are avoided using High Spectral Resolution Lidar (HSRL) which provides absolutely calibrated vertical profiles of aerosol properties. The University of Wisconsin HSRL systems measure 532 nm wavelength aerosol backscatter cross-sections, extinction cross-sections, depolarization, and attenuated 1064 nm backscatter. These instruments are designed for long-term deployment at remote sites with minimal local support. Processed data is provided for public viewing and download in real-time on our web site "http://hsrl.ssec.wisc.edu". Air pollution applications of HSRL data will be illustrated with examples acquired during air quality field programs including; KORUS-AQ, DISCOVER-AQ, LAMOS and FRAPPE. Observations include 1) long range transport of dust, air pollution and smoke. 2) Fumigation episodes where elevated pollution is mixed down to the surface. 3) visibility restrictions by aerosols and 4) diurnal variations in atmospheric optical depth. While HSRL is powerful air quality research tool, its application in routine measurement networks is hindered by the high cost of current systems. Recent technical advances promise a next generation HSRL using telcom components to greatly reduce system cost. This paper will present data generated by a prototype low cost system constructed at NCAR. In addition to lower cost, operation at a non-visible near 780 nm infrared wavelength removes all FAA restrictions on the operation.

  8. Fabrication of semiconductor-polymer compound nonlinear photonic crystal slab with highly uniform infiltration based on nano-imprint lithography technique.

    PubMed

    Qin, Fei; Meng, Zi-Ming; Zhong, Xiao-Lan; Liu, Ye; Li, Zhi-Yuan

    2012-06-04

    We present a versatile technique based on nano-imprint lithography to fabricate high-quality semiconductor-polymer compound nonlinear photonic crystal (NPC) slabs. The approach allows one to infiltrate uniformly polystyrene materials that possess large Kerr nonlinearity and ultrafast nonlinear response into the cylindrical air holes with diameter of hundred nanometers that are perforated in silicon membranes. Both the structural characterization via the cross-sectional scanning electron microscopy images and the optical characterization via the transmission spectrum measurement undoubtedly show that the fabricated compound NPC samples have uniform and dense polymer infiltration and are of high quality in optical properties. The compound NPC samples exhibit sharp transmission band edges and nondegraded high quality factor of microcavities compared with those in the bare silicon PC. The versatile method can be expanded to make general semiconductor-polymer hybrid optical nanostructures, and thus it may pave the way for reliable and efficient fabrication of ultrafast and ultralow power all-optical tunable integrated photonic devices and circuits.

  9. Changes in protein structures to improve the rheology and texture of reduced-fat sausages using high pressure processing.

    PubMed

    Yang, Huijuan; Khan, Muhammad Ammar; Yu, Xiaobo; Zheng, Haibo; Han, Minyi; Xu, Xinglian; Zhou, Guanghong

    2016-11-01

    This study investigated the role of high-pressure processing (HPP) for improving the functional properties of meat batters and the textural properties of reduced-fat sausages. Application of 200MPa pressure at 10°C for 2min to pork batters containing various fat contents (0-30%) affected their rheological properties, cooking losses, color, textual properties and their protein imaging. The results revealed that both application of 200MPa and increasing fat content decreased cooking loss, as well as improved the textural and rheological properties. Cooking losses, texture and sensory evaluation of 200MPa treated sausages having 20% fat were similar to those of the 0.1MPa treated sausages having 30% fat. Principal component analysis revealed that certain quality attributes were affected differently by the levels of fat addition and by HPP. These findings indicated the potential of HPP for improving yield and texture of emulsion-type sausages having reduced fat contents. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Synthesis and characterization of transparent conductive zinc oxide thin films by sol-gel spin coating method

    NASA Astrophysics Data System (ADS)

    Winarski, David

    Zinc oxide has been given much attention recently as it is promising for various semiconductor device applications. ZnO has a direct band gap of 3.3 eV, high exciton binding energy of 60 meV and can exist in various bulk powder and thin film forms for different applications. ZnO is naturally n-type with various structural defects, which sparks further investigation into the material properties. Although there are many potential applications for this ZnO, an overall lack of understand and control of intrinsic defects has proven difficult to obtain consistent, repeatable results. This work studies both synthesis and characterization of zinc oxide in an effort to produce high quality transparent conductive oxides. The sol-gel spin coating method was used to obtain highly transparent ZnO thin films with high UV absorbance. This research develops a new more consistent method for synthesis of these thin films, providing insight for maintaining quality control for each step in the procedure. A sol-gel spin coating technique is optimized, yielding highly transparent polycrystalline ZnO thin films with tunable electrical properties. Annealing treatment in hydrogen and zinc atmospheres is researched in an effort to increase electrical conductivity and better understand intrinsic properties of the material. These treatment have shown significant effects on the properties of ZnO. Characterization of doped and undoped ZnO synthesized by the sol-gel spin coating method was carried out using scanning electron microscopy, UV-Visible range absorbance, X-ray diffraction, and the Hall Effect. Treatment in hydrogen shows an overall decrease in the number of crystal phases and visible absorbance while zinc seems to have the opposite effect. The Hall Effect has shown that both annealing environments increase the n-type conductivity, yielding a ZnO thin film with a carrier concentration as high as 3.001 x 1021 cm-3.

  11. Optical Relaxation Time Enhancement in Graphene-Passivated Metal Films

    NASA Astrophysics Data System (ADS)

    Chugh, Sunny; Mehta, Ruchit; Man, Mengren; Chen, Zhihong

    2016-07-01

    Due to the small skin depth in metals at optical frequencies, their plasmonic response is strongly dictated by their surface properties. Copper (Cu) is one of the standard materials of choice for plasmonic applications, because of its high conductivity and CMOS compatibility. However, being a chemically active material, it gets easily oxidized when left in ambient environment, causing an inevitable degradation in its plasmonic resonance. Here, for the first time, we report a strong enhancement in the optical relaxation time in Cu by direct growth of few-layer graphene that is shown to act as an excellent passivation layer protecting Cu surface from any deterioration. Spectroscopic ellipsometry measurements reveal a 40-50% reduction in the total scattering rate in Cu itself, which is attributed to an improvement in its surface properties. We also study the impact of graphene quality and show that high quality graphene leads to an even larger improvement in electron scattering rate. These findings are expected to provide a big push towards graphene-protected Cu plasmonics.

  12. Gluten-free breads and cookies of raw and popped amaranth flours with attractive technological and nutritional qualities.

    PubMed

    de la Barca, Ana María Calderón; Rojas-Martínez, María Elvira; Islas-Rubio, Alma Rosa; Cabrera-Chávez, Francisco

    2010-09-01

    Gluten-free bakery foodstuffs are a challenge for technologists and nutritionists since alternative ingredients used in their formulations have poor functional and nutritional properties. Therefore, gluten-free bread and cookies using raw and popped amaranth, a grain with high quality nutrients and promising functional properties, were formulated looking for the best combinations. The best formulation for bread included 60-70% popped amaranth flour and 30-40% raw amaranth flour which produced loaves with homogeneous crumb and higher specific volume (3.5 ml/g) than with other gluten-free breads. The best cookies recipe had 20% of popped amaranth flour and 13% of whole-grain popped amaranth. The expansion factor was similar to starch-based controls and the hardness was similar (10.88 N) to other gluten-free cookies. Gluten content of the final products was around 12 ppm. The functionality of amaranth-based doughs was acceptable although hydrocolloids were not added and the final gluten-free products had a high nutritional value.

  13. Electron-beam induced nano-etching of suspended graphene

    PubMed Central

    Sommer, Benedikt; Sonntag, Jens; Ganczarczyk, Arkadius; Braam, Daniel; Prinz, Günther; Lorke, Axel; Geller, Martin

    2015-01-01

    Besides its interesting physical properties, graphene as a two-dimensional lattice of carbon atoms promises to realize devices with exceptional electronic properties, where freely suspended graphene without contact to any substrate is the ultimate, truly two-dimensional system. The practical realization of nano-devices from suspended graphene, however, relies heavily on finding a structuring method which is minimally invasive. Here, we report on the first electron beam-induced nano-etching of suspended graphene and demonstrate high-resolution etching down to ~7 nm for line-cuts into the monolayer graphene. We investigate the structural quality of the etched graphene layer using two-dimensional (2D) Raman maps and demonstrate its high electronic quality in a nano-device: A 25 nm-wide suspended graphene nanoribbon (GNR) that shows a transport gap with a corresponding energy of ~60 meV. This is an important step towards fast and reliable patterning of suspended graphene for future ballistic transport, nano-electronic and nano-mechanical devices. PMID:25586495

  14. Dynamic-Receive Focusing with High-Frequency Annular Arrays

    NASA Astrophysics Data System (ADS)

    Ketterling, J. A.; Mamou, J.; Silverman, R. H.

    High-frequency ultrasound is commonly employed for ophthalmic and small-animal imaging because of the fine-resolution images it affords. Annular arrays allow improved depth of field and lateral resolution versus commonly used single-element, focused transducers. The best image quality from an annular array is achieved by using synthetic transmit-to-receive focusing while utilizing data from all transmit-to-receive element combinations. However, annular arrays must be laterally scanned to form an image and this requires one pass for each of the array elements when implementing full synthetic transmit-to-receive focusing. A dynamic-receive focusing approach permits a single pass, although at a sacrifice of depth of field and lateral resolution. A five-element, 20-MHz annular array is examined to determine the acoustic beam properties for synthetic and dynamic-receive focusing. A spatial impulse response model is used to simulate the acoustic beam properties for each focusing case and then data acquired from a human eye-bank eye are processed to demonstrate the effect of each approach on image quality.

  15. Effect of HDPE plastic waste towards batako properties

    NASA Astrophysics Data System (ADS)

    Nursyamsi, N.; Indrawan, I.; Theresa, V.

    2018-02-01

    Indonesia is the world’s second largest producer of plastic waste to the sea, after China. Most of the plastic waste is polyethylene. Polyethylene is a polymer consisting of long chains of ethylene monomers. Moreover, polyethylene is plastic that has characteristics such as; thermoplastic, elastic, non-translucent, odorless, slightly opaque and transparent, resistant to impact and has a resistance of up to 135 degrees Celsius. The type of HDPE plastic (high-density polyethylene), which has been cleaned and chopped as a substitute of fine aggregate, is used in the brick’s making process. HDPE has a stronger, harder, smoother and more resistant to high-temperature properties. In this study, a weight variation of 0%, 10%, and 20% of HDPE plastic wastes was used from the total weight of sand as a substitution. Furthermore, the tensile and compressive strength were tested on day 7. Based on the research, the quality of the specimen achieved was categorized in quality III according to SNI 03-0349-1989.

  16. On pictures and stuff: image quality and material appearance

    NASA Astrophysics Data System (ADS)

    Ferwerda, James A.

    2014-02-01

    Realistic images are a puzzle because they serve as visual representations of objects while also being objects themselves. When we look at an image we are able to perceive both the properties of the image and the properties of the objects represented by the image. Research on image quality has typically focused improving image properties (resolution, dynamic range, frame rate, etc.) while ignoring the issue of whether images are serving their role as visual representations. In this paper we describe a series of experiments that investigate how well images of different quality convey information about the properties of the objects they represent. In the experiments we focus on the effects that two image properties (contrast and sharpness) have on the ability of images to represent the gloss of depicted objects. We found that different experimental methods produced differing results. Specifically, when the stimulus images were presented using simultaneous pair comparison, observers were influenced by the surface properties of the images and conflated changes in image contrast and sharpness with changes in object gloss. On the other hand, when the stimulus images were presented sequentially, observers were able to disregard the image plane properties and more accurately match the gloss of the objects represented by the different quality images. These findings suggest that in understanding image quality it is useful to distinguish between quality of the imaging medium and the quality of the visual information represented by that medium.

  17. Impact of Triticum mosaic virus infection on hard winter wheat milling and bread baking quality.

    PubMed

    Miller, Rebecca A; Martin, T Joe; Seifers, Dallas L

    2012-03-15

    Triticum mosaic virus (TriMV) is a newly discovered wheat virus. Information regarding the effect of wheat viruses on milling and baking quality is limited. The objective of this study was to determine the impact of TriMV infection on the kernel characteristics, milling yield and bread baking quality of wheat. Commercial hard winter varieties evaluated included RonL, Danby and Jagalene. The TriMV resistance of RonL is low, while that of Danby and Jagalene is unknown. KS96HW10-3, a germplasm with high TriMV resistance, was included as a control. Plots of each variety were inoculated with TriMV at the two- to three-leaf stage. Trials were conducted at two locations in two crop years. TriMV infection had no effect on the kernel characteristics, flour yield or baking properties of KS96HW10-3. The effect of TriMV on the kernel characteristics of RonL, Danby and Jagalene was not consistent between crop years and presumably an environmental effect. The flour milling and bread baking properties of these three varieties were not significantly affected by TriMV infection. TriMV infection of wheat plants did not affect harvested wheat kernel characteristics, flour milling properties or white pan bread baking quality. Copyright © 2011 Society of Chemical Industry.

  18. The roles of buffer layer thickness on the properties of the ZnO epitaxial films

    NASA Astrophysics Data System (ADS)

    Tang, Kun; Huang, Shimin; Gu, Shulin; Zhu, Shunming; Ye, Jiandong; Xu, Zhonghua; Zheng, Youdou

    2016-12-01

    In this article, the authors have investigated the optimization of the buffer thickness for obtaining high-quality ZnO epi-films on sapphire substrates. The growth mechanism of the buffers with different thickness has been clearly revealed, including the initial nucleation and vertical growth, the subsequent lateral growth with small grain coalescence, and the final vertical growth along the existing larger grains. Overall, the quality of the buffer improves with increasing thickness except the deformed surface morphology. However, by a full-scale evaluation of the properties for the epi-layers, the quality of the epi-film is briefly determined by the surface morphology of the buffer, rather than the structural, optical, or electrical properties of it. The best quality epi-layer has been grown on the buffer with a smooth surface and well-coalescent grains. Meanwhile, due to the huge lattice mismatch between sapphire and ZnO, dislocations are inevitably formed during the growth of buffers. More importantly, as the film grows thicker, the dislocations may attracting other smaller dislocations and defects to reduce the total line energy and thus result in the formation of V-shape defects, which are connected with the bottom of the threading dislocations in the buffers. The V-defects appear as deep and large hexagonal pits from top view and they may act as electron traps which would affect the free carrier concentration of the epi-layers.

  19. A thermoplastic polyimidesulfone. [synthesis of processable and solvent resistant system

    NASA Technical Reports Server (NTRS)

    St. Clair, T. L.; Yamaki, D. A.

    1984-01-01

    A polymer system has been prepared which has the excellent thermoplastic properties generally associated with polysulfones, and the solvent resistance and thermal stability of aromatic polyimides. This material, with improved processability over the base polyimide, can be processed in the 260-325 C range in such a manner as to yield high quality, tough unfilled moldings; strong, high-temperature-resistant adhesive bonds; and well consolidated, graphite-fiber-reinforced moldings (composites). The unfilled moldings have physical properties that are similar to aromatic polysulfones which demonstrates the potential as an engineering thermoplastic. The adhesive bonds exhibit excellent retention of initial strength levels even after thermal aging for 5000 hours at 232 C. The graphite-fiber-reinforced moldings have mechanical properties which makes this polymer attractive for the fabrication of structural composites.

  20. Effects of Zn on the grain boundary properties of La 2-xSr xCu 1-yZn yO 4 superconductors

    NASA Astrophysics Data System (ADS)

    Naqib, S. H.; Islam, R. S.

    2010-12-01

    The properties of the grain boundaries (GBs) are of significant importance in high- T c cuprates. Most large scale applications of cuprate superconductors involve usage of sintered compounds. The critical current density and the ability to trap high magnetic flux inside the sample depend largely on the quality of the GBs. Zn has the ability to pin vortices but it also degrades superconductivity. In this study we have investigated the effect of Zn impurity on the intergrain coupling properties in high-quality La 2-xSr xCu 1-yZn yO 4 sintered samples with different hole concentrations, p (≡ x), over a wide range of Zn contents ( y) using field-dependent AC susceptibility (ACS) measurements. The ACS results enabled us to determine the superconducting transition temperature T c, and the temperature T gcp, at which the randomly oriented superconducting grains become coupled as a function of hole and disorder contents. We have analyzed the behavior of the GBs from the systematic evolution of the values of T gcp( p, y), T c( p, y), and from the contribution to the field-dependent ACS signal coming from the intergrain shielding current. Zn suppresses both T c and T gcp in a similar fashion. The hole content and the carrier localization due to Zn substitution seem to have significant effect on the coupling properties of the GBs. We have discussed the possible implications of these findings in detail in this article.

  1. Magnetic field extraction of trap-based electron beams using a high-permeability grid

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hurst, N. C.; Danielson, J. R.; Surko, C. M., E-mail: csurko@physics.ucsd.edu

    2015-07-15

    A method to form high quality electrostatically guided lepton beams is explored. Test electron beams are extracted from tailored plasmas confined in a Penning-Malmberg trap. The particles are then extracted from the confining axial magnetic field by passing them through a high magnetic permeability grid with radial tines (a so-called “magnetic spider”). An Einzel lens is used to focus and analyze the beam properties. Numerical simulations are used to model non-adiabatic effects due to the spider, and the predictions are compared with the experimental results. Improvements in beam quality are discussed relative to the use of a hole in amore » high permeability shield (i.e., in lieu of the spider), and areas for further improvement are described.« less

  2. Influence of a Boron Precursor on the Growth and Optoelectronic Properties of Electrodeposited Zinc Oxide Thin Film.

    PubMed

    Tsin, Fabien; Thomere, Angélica; Bris, Arthur Le; Collin, Stéphane; Lincot, Daniel; Rousset, Jean

    2016-05-18

    Highly transparent and conductive materials are required for many industrial applications. One of the interesting features of ZnO is the possibility to dope it using different elements, hence improving its conductivity. Results concerning the zinc oxide thin films electrodeposited in a zinc perchlorate medium containing a boron precursor are presented in this study. The addition of boron to the electrolyte leads to significant effects on the morphology and crystalline structure as well as an evolution of the optical properties of the material. Varying the concentration of boric acid from 0 to 15 mM strongly improves the compactness of the deposit and increases the band gap from 3.33 to 3.45 eV. Investigations were also conducted to estimate and determine the influence of boric acid on the electrical properties of the ZnO layers. As a result, no doping effect effect by boron was demonstrated. However, the role of boric acid on the material quality has also been proven and discussed. Boric acid strongly contributes to the growth of high quality electrodeposited zinc oxide. The high doping level of the film can be attributed to the perchlorate ions introduced in the bath. Finally, a ZnO layer electrodeposited in a boron rich electrolyte was tested as front contact of a Cu(In, Ga)(S, Se)2 based solar cell. An efficiency of 12.5% was measured with a quite high fill factor (>70%) which confirms the high conductivity of the ZnO thin film.

  3. Highly dispersible diamond nanoparticles for pretreatment of diamond films on Si substrate

    NASA Astrophysics Data System (ADS)

    Zhao, Shenjie; Huang, Jian; Zhou, Xinyu; Ren, Bing; Tang, Ke; Xi, Yifan; Wang, Lin; Wang, Linjun; Lu, Yicheng

    2018-03-01

    High quality diamond film on Si substrate was synthesized by coating diamond nanoparticles prepared by polyglycerol grafting (ND-PG) dispersion as pre-treatment method. Transmission electron microscope indicates that ND-PG is much more dispersible than untreated nanoparticles in organic solvents. The surface morphology was characterized by scanning electron microscope while atomic force microscope was conducted to measure the surface roughness. Microstructure properties were carried out by Raman spectroscopy and X-ray diffraction. The results revealed an increase in nucleation density, an acceleration of growth rate and an improvement of film crystalline quality by using spin-coating ND-PG pretreatment.

  4. Heteroepitaxial Growth of Ferromagnetic MnSb(0001) Films on Ge/Si(111) Virtual Substrates.

    PubMed

    Burrows, Christopher W; Dobbie, Andrew; Myronov, Maksym; Hase, Thomas P A; Wilkins, Stuart B; Walker, Marc; Mudd, James J; Maskery, Ian; Lees, Martin R; McConville, Christopher F; Leadley, David R; Bell, Gavin R

    2013-11-06

    Molecular beam epitaxial growth of ferromagnetic MnSb(0001) has been achieved on high quality, fully relaxed Ge(111)/Si(111) virtual substrates grown by reduced pressure chemical vapor deposition. The epilayers were characterized using reflection high energy electron diffraction, synchrotron hard X-ray diffraction, X-ray photoemission spectroscopy, and magnetometry. The surface reconstructions, magnetic properties, crystalline quality, and strain relaxation behavior of the MnSb films are similar to those of MnSb grown on GaAs(111). In contrast to GaAs substrates, segregation of substrate atoms through the MnSb film does not occur, and alternative polymorphs of MnSb are absent.

  5. Enabling High Performance Instruments for Astronomy and Space Exploration and ALD

    NASA Technical Reports Server (NTRS)

    Greer, Frank; Lee, M. C.; Hoenk, M. E.; Jones, T. J.; Jacquot, B. C.; Dickie, M.; Monacos, S.; Nikzad, S.; Day, P.; Leduc, R.; hide

    2012-01-01

    Benefits of ALD for NASA instruments and applications: a) Ultrathin, highly conformal, and uniform films over arbitrarily large surface area. b). High quality films (density, roughness, conductivity, etc.) . Angstrom level control of stoichiometry, interfaces, and surface properties: 1) Multilayer nanolaminates/nanocomposites. 2) Low temperature surface engineering. Flight applications enabled by ALD: a) Anti-reflective coatings/Mirrors/Filters/Optics for UV/Vis/NIR Detectors. b) Superconducting Films for Submillimeter Astronomy.

  6. Durum wheat (Triticum turgidum spp. durum, cultivar Senatore Cappelli) production systems effects on grain and flours functional properties under Mediterranean conditions

    NASA Astrophysics Data System (ADS)

    Cavoski, Ivana; Turk, Jelena; Chami, Ziad Al

    2015-04-01

    The main goal of organic farming is the "production of high quality products". Integrity and vital quality of products should be preserved along the entire production chain. In order to evaluate the effect of organic vs. conventional production systems on durum wheat phenolic acids and antioxidant activity open field experiment has been carried out. During the whole process chain from field to fork, there are various factors influencing the quality of the end product. Organic production should rely on genotypes with high nitrogen use efficiency, disease and pest resistance, weed competitiveness and tolerance especially under Mediterranean conditions. In this study, production systems differed according to the practices and inputs applied to manage the soil fertility and plant protection. In conventional system, synthetic fertilizers and pesticides were used. Whereas, in the two organic systems, cow manure with fertilizers and temporary intercropping with fava bean (Vicia faba) and fertilizers were used to manage soil fertility. Biopesticides were used for plant protection for organic systems. One treatment without inputs was used as a control in order to evaluate environmental site and cultivar effect. Quantity of free, free and conjugated and bounded phenolic acids were evaluated in relation to overall quality and production systems. In addition, antioxidant capacities of each fraction by different assays were assessed. The organic production method assured higher overall quality in paricular functional properties compared to the conventional one. Therefore, understanding the functional links between production systems variables and physiological responses is essential to improve and standardize the quality of organic durum wheat products. Keywords: organic farming, soil fertility management, phenolic acids, antioxidant activity.

  7. Low-molecular-weight glutenin subunits from the 1U genome of Aegilops umbellulata confer superior dough rheological properties and improve breadmaking quality of bread wheat.

    PubMed

    Wang, Jian; Wang, Chang; Zhen, Shoumin; Li, Xiaohui; Yan, Yueming

    2018-04-01

    Wheat-related genomes may carry new glutenin genes with the potential for quality improvement of breadmaking. In this study, we estimated the gluten quality properties of the wheat line CNU609 derived from crossing between Chinese Spring (CS, Triticum aestivum L., 2n = 6x = 42, AABBDD) and the wheat Aegilops umbellulata (2n = 2x = 14, UU) 1U(1B) substitution line, and investigated the function of 1U-encoded low-molecular-weight glutenin subunits (LMW-GS). The main quality parameters of CNU609 were significantly improved due to introgression of the 1U genome, including dough development time, stability time, farinograph quality number, gluten index, loaf size and inner structure. Glutenin analysis showed that CNU609 and CS had the same high-molecular-weight glutenin subunit (HMW-GS) composition, but CNU609 carried eight specific 1U genome-encoded LMW-GS. The introgression of the 1U-encoded LMW-GS led to more and larger protein body formation in the CNU609 endosperm. Two new LMW-m type genes from the 1U genome, designated Glu-U3a and Glu-U3b, were cloned and characterized. Secondary structure prediction implied that both Glu-U3a and Glu-U3b encode subunits with high α-helix and β-strand content that could benefit the formation of superior gluten structure. Our results indicate that the 1U genome has superior LMW-GS that can be used as new gene resources for wheat gluten quality improvement. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  8. Recycled blocks with improved sound and fire insulation containing construction and demolition waste.

    PubMed

    Leiva, Carlos; Solís-Guzmán, Jaime; Marrero, Madelyn; García Arenas, Celia

    2013-03-01

    The environmental problem posed by construction and demolition waste (C&D waste) is derived not only from the high volume produced, but also from its treatment and disposal. Treatment plants receive C&D waste which is then transformed into a recycled mixed aggregate. The byproduct is mainly used for low-value-added applications such as land escape restoration, despite the high quality of the aggregate. In the present work, the chemical composition properties and grading curve properties of these aggregates are defined. Furthermore, the resulting recycled concrete with a high proportion of recycled composition, from 20% to 100% replacement of fine and coarse aggregate, is characterized physically and mechanically. An environmental study of the new construction material when all aggregates are substituted by C&D waste shows a low toxicity level, similar to that of other construction materials. The new material also has improved properties with respect to standard concrete such as high fire resistance, good heat insulation, and acoustic insulation. Copyright © 2012 Elsevier Ltd. All rights reserved.

  9. Preparation of High Purity CdTe for Nuclear Detector: Electrical and Nuclear Characterization

    NASA Astrophysics Data System (ADS)

    Zaiour, A.; Ayoub, M.; Hamié, A.; Fawaz, A.; Hage-ali, M.

    High purity crystal with controllable electrical properties, however, control of the electrical properties of CdTe has not yet been fully achieved. Using the refined Cd and Te as starting materials, extremely high-purity CdTe single crystals were prepared by the traditional vertical THM. The nature of the defects involved in the transitions was studied by analyzing the position of the energy levels by TSC method. The resolution of 4.2 keV (FWHM) confirms the high quality and stability of the detectors: TSC spectrum was in coherence with detectors spectrum with a horizontal plate between 0.2 and 0.6 eV. The enhancement in resolution of detectors with a full width at half- maximum (less than 0.31 meV), lead to confirm that the combination of vacuum distillation and zone refining was very effective to obtain more purified CdTe single crystals for photovoltaic or nuclear detectors with better physical properties.

  10. Growth control of oxygen stoichiometry in homoepitaxial SrTiO3 films by pulsed laser epitaxy in high vacuum

    PubMed Central

    Lee, Ho Nyung; Ambrose Seo, Sung S.; Choi, Woo Seok; Rouleau, Christopher M.

    2016-01-01

    In many transition metal oxides, oxygen stoichiometry is one of the most critical parameters that plays a key role in determining the structural, physical, optical, and electrochemical properties of the material. However, controlling the growth to obtain high quality single crystal films having the right oxygen stoichiometry, especially in a high vacuum environment, has been viewed as a challenge. In this work, we show that, through proper control of the plume kinetic energy, stoichiometric crystalline films can be synthesized without generating oxygen defects even in high vacuum. We use a model homoepitaxial system of SrTiO3 (STO) thin films on single crystal STO substrates. Physical property measurements indicate that oxygen vacancy generation in high vacuum is strongly influenced by the energetics of the laser plume, and it can be controlled by proper laser beam delivery. Therefore, our finding not only provides essential insight into oxygen stoichiometry control in high vacuum for understanding the fundamental properties of STO-based thin films and heterostructures, but expands the utility of pulsed laser epitaxy of other materials as well. PMID:26823119

  11. Resonant optical transducers for in-situ gas detection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bond, Tiziana C.; Cole, Garrett; Goddard, Lynford

    Configurations for in-situ gas detection are provided, and include miniaturized photonic devices, low-optical-loss, guided-wave structures and state-selective adsorption coatings. High quality factor semiconductor resonators have been demonstrated in different configurations, such as micro-disks, micro-rings, micro-toroids, and photonic crystals with the properties of very narrow NIR transmission bands and sensitivity up to 10.sup.-9 (change in complex refractive index). The devices are therefore highly sensitive to changes in optical properties to the device parameters and can be tunable to the absorption of the chemical species of interest. Appropriate coatings applied to the device enhance state-specific molecular detection.

  12. Resonant optical transducers for in-situ gas detection

    DOEpatents

    Bond, Tiziana C; Cole, Garrett; Goddard, Lynford

    2016-06-28

    Configurations for in-situ gas detection are provided, and include miniaturized photonic devices, low-optical-loss, guided-wave structures and state-selective adsorption coatings. High quality factor semiconductor resonators have been demonstrated in different configurations, such as micro-disks, micro-rings, micro-toroids, and photonic crystals with the properties of very narrow NIR transmission bands and sensitivity up to 10.sup.-9 (change in complex refractive index). The devices are therefore highly sensitive to changes in optical properties to the device parameters and can be tunable to the absorption of the chemical species of interest. Appropriate coatings applied to the device enhance state-specific molecular detection.

  13. Properties of high quality GaP single crystals grown by computer controlled liquid encapsulated Czochralski technique

    NASA Astrophysics Data System (ADS)

    Kokubun, Y.; Washizuka, S.; Ushizawa, J.; Watanabe, M.; Fukuda, T.

    1982-11-01

    The properties of GaP single crystals grown by an automatically diameter controlled liquid encapsulated Czochralski technique using a computer have been studied. A dislocation density less than 5×104 cm-2 has been observed for crystal grown in a temperature gradient lower than 70 °C/cm near the solid-liquid interface. Crystals have about 10% higher electron mobility than that of commercially available coracle controlled crystals and have 0.2˜0.5 compensation ratios. Yellow light emitting diodes using computer controlled (100) substrates have shown extremely high external quantum efficiency of 0.3%.

  14. Growth of monolayer MoS2 films in a quasi-closed crucible encapsulated substrates by chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Yang, Yong; Pu, Hongbin; Lin, Tao; Li, Lianbi; Zhang, Shan; Sun, Gaopeng

    2017-07-01

    Monolayer molybdenum disulfide (m-MoS2) has attracted significant interest due to its unique electronic and optical properties. Herein, we report the successful fabrication of high quality and continuous m-MoS2 films in a quasi-closed crucible encapsulated substrates via a three-zone chemical vapor deposition (CVD) system. Quasi-closed crucible lowers the concentration of precursors around substrates and makes the sulfurization rate gentle, which is beneficial for invariable m-MoS2 growth. Characterization results indicate that as-grown m-MoS2 films are of high crystallinity and high quality comparable to the exfoliated MoS2. This approach is also adapted to the growth of other transition metal dichalcogenides.

  15. Design of monoalcohol - Copolymer system for high quality silver nanowires.

    PubMed

    Sugiyama, Shintaro; Yokoyama, Shun; Cuya Huaman, Jhon L; Ida, Shohei; Matsumoto, Takatoshi; Kodama, Daisuke; Sato, Kimitaka; Miyamura, Hiroshi; Hirokawa, Yoshitsugu; Balachandran, Jeyadevan

    2018-05-14

    Research to improve the dimensional properties of silver nanowires (Ag NWs) for transparent conductive film (TCF) applications are being carried out intensively. However, the protocol for the designed synthesis of high-quality Ag NWs is yet to be developed due to the inadequacy of knowledge on the role of parameters. Here, we attempt to elucidate the role played by the parameters and propose a monoalcohol-copolymer based system for the designed synthesis of Ag NWs superior in quality to the one synthesized using conventional ethylene glycol (EG)-polyvinylpyrrolidone (PVP) system. The key findings of the study are as follows: (1) the solubility of Ag source and the partially formed AgCl particles in monoalcohols was found to play an important role not only in the reduction to metallic Ag but also on the uniaxial growth, (2) the adsorption of capping agents on Ag NWs was carried through O and N atoms in the base molecule and their binding energies indicated that the strength is the key parameter to obtain Ag NWs with high aspect ratio, (3) the properties of nanowire could be enhanced through copolymerization of VP and base molecules that have O- and N-based ligands, and (4) the influence of copolymerization on the physical and chemical properties of the surface active agent has been theoretically and experimentally verified. Consequently, we succeeded in the development of a new technique to synthesize high yield of Ag NWs with improved aspect ratio than EG-PVP system by using benzyl alcohol as reducing solvent and N-vinylpyrrolidone/N,N-diethylaminoethyl metacrylate copolymer as a capping agent. The optical transmittance and electrical resistivity of TCFs prepared using the Ag NWs with an average diameter of 43 nm, and an average length of 13 μm were 98.6% and R: 49.1 Ω/□, respectively. Copyright © 2018 Elsevier Inc. All rights reserved.

  16. Matlab fractal techniques used to study the structural degradation caused by alpha radiation to laser mirrors

    NASA Astrophysics Data System (ADS)

    Ioan, M.-R.

    2018-01-01

    Almost all optical diagnostic systems associated with classical particle accelerators or with new state-of-the-art particle accelerators, such as those developed within the European Collaboration ELI-NP (Extreme Light Infrastructure-Nuclear Physics) (involving extreme power laser beams), contain in their infrastructure high quality laser mirrors, used for their reflectivity and/or their partial transmittance. These high quality mirrors facilitate the extraction and handling of optical signals. When optical mirrors are exposed to high energy ionizing radiation fields, their optical and structural properties will change over time and their functionality will be affected, meaning that they will provide imprecise information. In some experiments, being exposed to mixed laser and accelerated particle beams, the deterioration of laser mirrors is even more acute, since the destruction mechanisms of both types of beams are cumulated. The main task of the work described in this paper was to find a novel specific method to analyse and highlight such degradation processes. By using complex fractal techniques integrated in a MATLAB code, the effects induced by alpha radiation to laser mirrors were studied. The fractal analysis technique represents an alternative approach to the classical Euclidean one. It can be applied for the characterization of the defects occurred in mirrors structure due to their exposure to high energy alpha particle beams. The proposed method may be further integrated into mirrors manufacturing process, as a testing instrument, to obtain better quality mirrors (enhanced resistance to high energy ionizing beams) by using different types of reflective coating materials and different deposition techniques. Moreover, the effect of high energy alpha ionizing particles on the optical properties of the exposed laser mirrors was studied by using spectrophotometric techniques.

  17. [Application of THz technology to nondestructive detection of agricultural product quality].

    PubMed

    Jiang, Yu-ying; Ge, Hong-yi; Lian, Fei-yu; Zhang, Yuan; Xia, Shan-hong

    2014-08-01

    With recent development of THz sources and detector, applications of THz radiation to nondestructive testing and quality control have expanded in many fields, such as agriculture, safety inspection and quality control, medicine, biochemistry, communication etc. Compared with other detection technique, being a new kind of technique, THz radiation has low energy, good perspectivity, and high signal-to-noise ratio, and thus can obtain physical, chemical and biological information. This paper first introduces the basic concept of THz radiation and the major properties, then gives an extensive review of recent research progress in detection of the quality of agricultural products via THz technique, analyzes the existing shortcomings of THz detection and discusses the outlook of potential application, finally proposes the new application of THz technique to detection of quality of stored grain.

  18. Evaluation of interaction properties of geosynthetics in cohesive soils : LTRC reinforced-soil test wall.

    DOT National Transportation Integrated Search

    2004-01-01

    This report presents the construction and performance evaluation of the LTRC reinforced-soil test wall. The 20 ft. high, 160 ft. long wall was constructed using low quality backfill. Its vertical front facing was constructed with modular blocks. It c...

  19. An analytical study of electric vehicle handling dynamics

    NASA Technical Reports Server (NTRS)

    Greene, J. E.; Segal, D. J.

    1979-01-01

    Hypothetical electric vehicle configurations were studied by applying available analytical methods. Elementary linearized models were used in addition to a highly sophisticated vehicle dynamics computer simulation technique. Physical properties of specific EV's were defined for various battery and powertrain packaging approaches applied to a range of weight distribution and inertial properties which characterize a generic class of EV's. Computer simulations of structured maneuvers were performed for predicting handling qualities in the normal driving range and during various extreme conditions related to accident avoidance. Results indicate that an EV with forward weight bias will possess handling qualities superior to a comparable EV that is rear-heavy or equally balanced. The importance of properly matching tires, suspension systems, and brake system front/rear torque proportioning to a given EV configuration during the design stage is demonstrated.

  20. Correlating thermoelectric properties with microstructure in Bi 0.8 Sb 0.2 thin films

    DOE PAGES

    Siegal, M. P.; Lima-Sharma, A. L.; Sharma, P. A.; ...

    2017-04-03

    The room temperature electronic transport properties of 100 nm-thick thermoelectric Bi 0.8Sb 0.2 films, sputter-deposited onto quartz substrates and post-annealed in an ex-situ furnace, systematically correlate with the overall microstructural quality, improving with increasing annealing temperature until close to the melting point for the alloy composition. Furthermore, the optimized films have high crystalline quality with ~99% of the grains oriented with the trigonal axis perpendicular to the substrate surface. Film resistivities and Seebeck coefficients are accurately measured by preventing deleterious surface oxide formation via a SiN capping layer and using Nd-doped Al for contacts. Our resulting values are similar tomore » single crystals and significantly better than previous reports from films and polycrystalline bulk alloys.« less

  1. Effect of cultivar and roasting technique on sensory quality of Bierzo roasted pepper.

    PubMed

    Guerra, Marcos; Sanz, Miguel A; Valenciano, José B; Casquero, Pedro A

    2011-10-01

    Pepper (Capsicum annuum L.) is one of the main horticultural products in the world. Roasted pepper is a high quality transformed product in the Iberian Peninsula, and obtained the recognition of 'Protected Geographical Indication' (PGI) of 'Pimiento Asado del Bierzo' in 2002. Roasted pepper has been traditionally processed with a steel-sheet hob. However, there are no data available about the effect of roasting technique in the quality of roasted pepper. The objective of this work was to compare the sensory quality of roasted pepper using industrial roasting techniques. Sensory properties that showed significant differences between roasting techniques were colour, thickness and charred remains (appearance descriptors), bitterness (taste descriptor) and smokiness (after-taste descriptor). Higher value of descriptors such as colour, charred remains and smokiness for peppers elaborated in a rotary oven, helped roasted pepper to reach a higher level of overall quality, although rotary oven samples reached the lowest roast yield. Roasting technique, rather than landrace, had the greatest effect on the sensory quality of roasted pepper, so the rotary oven was the roasting technique that achieved the highest quality score. This will contribute to improve sensory quality and marketing of PGI 'Pimiento Asado del Bierzo' in high quality markets. Copyright © 2011 Society of Chemical Industry.

  2. Fruit and Vegetable Quality Assessment via Dielectric Sensing

    PubMed Central

    El Khaled, Dalia; Novas, Nuria; Gazquez, Jose A.; Garcia, Rosa M.; Manzano-Agugliaro, Francisco

    2015-01-01

    The demand for improved food quality has been accompanied by a technological boost. This fact enhances the possibility of improving the quality of horticultural products, leading towards healthier consumption of fruits and vegetables. A better electrical characterization of the dielectric properties of fruits and vegetables is required for this purpose. Moreover, a focused study of dielectric spectroscopy and advanced dielectric sensing is a highly interesting topic. This review explains the dielectric property basics and classifies the dielectric spectroscopy measurement techniques. It comprehensively and chronologically covers the dielectric experiments explored for fruits and vegetables, along with their appropriate sensing instrumentation, analytical modelling methods and conclusions. An in-depth definition of dielectric spectroscopy and its usefulness in the electric characterization of food materials is presented, along with the various sensor techniques used for dielectric measurements. The collective data are tabulated in a summary of the dielectric findings in horticultural field investigations, which will facilitate more advanced and focused explorations in the future. PMID:26131680

  3. Comparison of different drying methods on Chinese ginger (Zingiber officinale Roscoe): Changes in volatiles, chemical profile, antioxidant properties, and microstructure.

    PubMed

    An, Kejing; Zhao, Dandan; Wang, Zhengfu; Wu, Jijun; Xu, Yujuan; Xiao, Gengsheng

    2016-04-15

    Nowadays, food industry is facing challenges in preserving better quality of fruit and vegetable products after processing. Recently, many attentions have been drawn to ginger rhizome processing due to its numerous health promoting properties. In our study, ginger rhizome slices were subjected to air-drying (AD), freeze drying (FD), infrared drying (IR), microwave drying (MD) and intermittent microwave & convective drying (IM&CD). Quality attributes of the dried samples were compared in terms of volatile compounds, 6, 8, 10-gingerols, 6-shogaol, antioxidant activities and microstructure. Results showed that AD and IR were good drying methods to preserve volatiles. FD, IR and IM&CD led to higher retention of gingerols, TPC, TFC and better antioxidant activities. However, FD and IR had relative high energy consumption and drying time. Therefore, considering about the quality retention and energy consumption, IM&CD would be very promising for thermo sensitive material. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. The Polish version of Skindex-29: psychometric properties of an instrument to measure quality of life in dermatology.

    PubMed

    Janowski, Konrad; Steuden, Stanisława; Bereza, Bernarda

    2014-02-01

    Skin conditions have a negative impact on quality of life and it is necessary to quantify this impact. Skindex-29 is a self-report questionnaire developed to measure dermatology-specific quality of life. The objective of this study is to adapt this questionnaire to Polish conditions. The adaptation procedure involved the works on the linguistic content of the items and testing psychometric properties of the Polish version of Skindex-29, including item characteristics, factorial structure, aspects of reliability and validity. Two-hundred and ninety patients (63.4% women and 35.2% men) suffering from a range of skin conditions were recruited from several dermatological out-patient and in-patient clinics in Poland. Quality of life was measured using Skindex-29 and appropriate clinical data were collected. The global score of Skindex-29 showed the normal distribution. Cronbach's α reliability coefficients were found to be high to very high for all Skindex-29 indexes. Factor analysis yielded four factors, in contrast to the original version of the questionnaire, for which a three-factor solution had been reported. Skindex-29 validity was demonstrated by showing the differences in the quality of life scores across different diagnostic categories, and between in-patients and out-patients. Skindex-29 global scores were found to be significantly predicted by the localization of the skin lesions on legs, anogenital areas and palms. The findings of this study support reliability and validity of the Polish version of Skindex-29, but they also raise questions to its three-factor structure.

  5. Visible and near-infrared bulk optical properties of raw milk.

    PubMed

    Aernouts, B; Van Beers, R; Watté, R; Huybrechts, T; Lammertyn, J; Saeys, W

    2015-10-01

    The implementation of optical sensor technology to monitor the milk quality on dairy farms and milk processing plants would support the early detection of altering production processes. Basic visible and near-infrared spectroscopy is already widely used to measure the composition of agricultural and food products. However, to obtain maximal performance, the design of such optical sensors should be optimized with regard to the optical properties of the samples to be measured. Therefore, the aim of this study was to determine the visible and near-infrared bulk absorption coefficient, bulk scattering coefficient, and scattering anisotropy spectra for a diverse set of raw milk samples originating from individual cow milkings, representing the milk variability present on dairy farms. Accordingly, this database of bulk optical properties can be used in future simulation studies to efficiently optimize and validate the design of an optical milk quality sensor. In a next step of the current study, the relation between the obtained bulk optical properties and milk quality properties was analyzed in detail. The bulk absorption coefficient spectra were found to mainly contain information on the water, fat, and casein content, whereas the bulk scattering coefficient spectra were found to be primarily influenced by the quantity and the size of the fat globules. Moreover, a strong positive correlation (r ≥ 0.975) was found between the fat content in raw milk and the measured bulk scattering coefficients in the 1,300 to 1,400 nm wavelength range. Relative to the bulk scattering coefficient, the variability on the scattering anisotropy factor was found to be limited. This is because the milk scattering anisotropy is nearly independent of the fat globule and casein micelle quantity, while it is mainly determined by the size of the fat globules. As this study shows high correlations between the sample's bulk optical properties and the milk composition and fat globule size, a sensor that allows for robust separation between the absorption and scattering properties would enable accurate prediction of the raw milk quality parameters. Copyright © 2015 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  6. Measurement properties of asthma-specific quality-of-life measures: protocol for a systematic review.

    PubMed

    Apfelbacher, Christian; Paudyal, Priya; Bülbül, Alpaslan; Smith, Helen

    2014-07-24

    Asthma is a frequent chronic inflammatory disease of the airways, and the assessment of health-related quality of life (HrQoL) is important in both research and routine care. Various asthma-specific measures of HrQoL exist but there is uncertainty which measures are best suited for use in research and routine care. Therefore, the aim of the proposed research is a comprehensive systematic assessment of the measurement properties of the existing measures that were developed to measure asthma-specific quality of life. This study is a systematic review of the measurement properties of asthma-specific measures of health-related quality of life. PubMed and Embase will be searched using a selection of relevant search terms. Eligible studies will be primary empirical studies evaluating, describing or comparing measurement properties of asthma-specific HRQL tools. Eligibility assessment and data abstraction will be performed independently by two reviewers. Evidence tables will be generated for study characteristics, instrument characteristics, measurement properties and interpretability. The quality of the measurement properties will be assessed using predefined criteria. Methodological quality of studies will be assessed using the COnsensus-based Standards for the selection of health Measurement INstruments (COSMIN) checklist. A best evidence synthesis will be undertaken if more than one study have investigated a particular measurement property. The proposed systematic review will produce a comprehensive assessment of measurement properties of existing measures of asthma-specific health-related quality of life. We also aim to derive recommendations in order to help researchers and practitioners alike in the choice of instrument. PROSPERO registration number: CRD42014010491.

  7. Influence of color on dielectric properties of marinated poultry breast meat.

    PubMed

    Samuel, D; Trabelsi, S

    2012-08-01

    The dielectric behavior of foods when exposed to radio-frequency and microwave electric fields is highly influenced by moisture content and the degree of water binding with constituents of the food materials. The ability to correlate specific food quality characteristics with the dielectric properties can lead to the development of rapid, nondestructive techniques for such quality measurements. Water-holding capacity is a critical attribute in meat quality. Up to 50% of raw poultry meat in the United States is marinated with mixtures of water, salts, and phosphates. The objective of this study was to determine if variations in breast meat color would affect the dielectric properties of marinated poultry meat over a broad frequency range from 500 MHz to 50 GHz. Poultry meat was obtained from a local commercial plant in Georgia (USA). Color and pH measurements were taken on the breast filets. Groups of breast filets were sorted into classes of pale and normal before adding marination pickup percentages of 0, 5, 10, and 15. Breast filets were vacuum-tumbled and weighed for pickup percentages. Dielectric properties of the filets were measured with a coaxial open-ended probe on samples equilibrated to 25°C. Samples from pale meat exhibited higher dielectric properties than samples from normal meat. No differences could be observed between samples from pale and normal meat after marination of the samples. Overall, dielectric properties increased as the marination pickup increased (α=0.05). Marination pickup strongly influenced the dielectric loss factor. Differences between samples marinated at different pickup levels were more pronounced at lower frequencies for the dielectric loss factor. As frequency increased, the differences between samples decreased. Differences in dielectric constant between samples were not as consistent as those seen with the dielectric loss factor.

  8. Gadolinia fuel performance in BWRs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bailey, W.E.; Crowther, R.L.

    1985-11-01

    Gadolinia has the unique property of having a high neutron absorption cross section coupled with a burnup rate that can approximately match the uranium 235 depletion. These qualities and others make gadolinia an ideal burnable absorber, and it has been used in all General Electric-designed boiling water reactors. Fabrication corrosion properties, and performance of gadolinia-containing fuel elements are discussed. Development of a reliable and efficient set of local and global gadolinia-urania design methods has been an arduous process that has taken approx.15 years to accomplish.

  9. Molecular-beam epitaxy of (Zn,Mn)Se on Si(100)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Slobodskyy, T.; Ruester, C.; Fiederling, R.

    2004-12-20

    We have investigated the growth by molecular-beam epitaxy of the II-VI diluted magnetic semiconductor (Zn,Mn)Se on As-passivated Si(100) substrates. The growth start has been optimized by using low-temperature epitaxy. Surface properties were assessed by Nomarski and scanning electron microscopy. Optical properties of (Zn,Mn)Se have been studied by photoluminescence and a giant Zeeman splitting of up to 30 meV has been observed. Our observations indicate a high crystalline quality of the epitaxial films.

  10. Gaia: automated quality assessment of protein structure models.

    PubMed

    Kota, Pradeep; Ding, Feng; Ramachandran, Srinivas; Dokholyan, Nikolay V

    2011-08-15

    Increasing use of structural modeling for understanding structure-function relationships in proteins has led to the need to ensure that the protein models being used are of acceptable quality. Quality of a given protein structure can be assessed by comparing various intrinsic structural properties of the protein to those observed in high-resolution protein structures. In this study, we present tools to compare a given structure to high-resolution crystal structures. We assess packing by calculating the total void volume, the percentage of unsatisfied hydrogen bonds, the number of steric clashes and the scaling of the accessible surface area. We assess covalent geometry by determining bond lengths, angles, dihedrals and rotamers. The statistical parameters for the above measures, obtained from high-resolution crystal structures enable us to provide a quality-score that points to specific areas where a given protein structural model needs improvement. We provide these tools that appraise protein structures in the form of a web server Gaia (http://chiron.dokhlab.org). Gaia evaluates the packing and covalent geometry of a given protein structure and provides quantitative comparison of the given structure to high-resolution crystal structures. dokh@unc.edu Supplementary data are available at Bioinformatics online.

  11. Observation of biexcitonic emission at extremely low power density in tungsten disulfide atomic layers grown on hexagonal boron nitride.

    PubMed

    Okada, Mitsuhiro; Miyauchi, Yuhei; Matsuda, Kazunari; Taniguchi, Takashi; Watanabe, Kenji; Shinohara, Hisanori; Kitaura, Ryo

    2017-03-23

    Monolayer transition metal dichalcogenides (TMDCs) including WS 2 , MoS 2 , WSe 2 and WS 2 , are two-dimensional semiconductors with direct bandgap, providing an excellent field for exploration of many-body effects in 2-dimensions (2D) through optical measurements. To fully explore the physics of TMDCs, the prerequisite is preparation of high-quality samples to observe their intrinsic properties. For this purpose, we have focused on high-quality samples, WS 2 grown by chemical vapor deposition method with hexagonal boron nitride as substrates. We observed sharp exciton emissions, whose linewidth is typically 22~23 meV, in photoluminescence spectra at room temperature, which result clearly demonstrates the high-quality of the current samples. We found that biexcitons formed with extremely low-excitation power (240 W/cm 2 ) at 80 K, and this should originate from the minimal amount of localization centers in the present high-quality samples. The results clearly demonstrate that the present samples can provide an excellent field, where one can observe various excitonic states, offering possibility of exploring optical physics in 2D and finding new condensates.

  12. Preserving Cellulose Structure: Delignified Wood Fibers for Paper Structures of High Strength and Transparency.

    PubMed

    Yang, Xuan; Berthold, Fredrik; Berglund, Lars A

    2018-05-23

    To expand the use of renewable materials, paper products with superior mechanical and optical properties are needed. Although beating, bleaching, and additives are known to improve industrially produced Kraft pulp papers, properties are limited by the quality of the fibers. While the use of nanocellulose has been shown to significantly increase paper properties, the current cost associated with their production has limited their industrial relevance. Here, using a simple mild peracetic acid (PAA) delignification process on spruce, we produce hemicellulose-rich holocellulose fibers (28.8 wt %) with high intrinsic strength (1200 MPa for fibers with microfibrillar angle smaller than 10°). We show that PAA treatment causes less cellulose/hemicellulose degradation and better preserves cellulose nanostructure in comparison to conventional Kraft pulping. High-density holocellulose papers with superior mechanical properties (Young's modulus of 18 GPa and ultimate strength of 195 MPa) are manufactured using a water-based hot-pressing process, without the use of beating or additives. We propose that the preserved hemicelluloses act as "glue" in the interfiber region, improving both mechanical and optical properties of papers. Holocellulose fibers may be affordable and applicable candidates for making special paper/composites where high mechanical performance and/or optical transmittance are of interest.

  13. Explosive Welding in the 1990's

    NASA Technical Reports Server (NTRS)

    Lalwaney, N. S.; Linse, V. D.

    1985-01-01

    Explosive bonding is a unique joining process with the serious potential to produce composite materials capable of fulfilling many of the high performance materials capable of fulfilling many of the high performance materials needs of the 1990's. The process has the technological versatility to provide a true high quality metallurgical compatible and incompatible systems. Metals routinely explosively bonded include a wide variety of combinations of reactive and refractory metals, low and high density metals and their alloys, corrosion resistant and high strength alloys, and common steels. The major advantage of the process is its ability to custom design and engineer composites with physical and/or mechanical properties that meet a specific or unusual performance requirement. Explosive bonding offers the designer unique opportunities in materials selection with unique combinations of properties and high integrity bonds that cannot be achieved by any other metal joining process. The process and some applications are discussed.

  14. Density of photonic states in cholesteric liquid crystals

    NASA Astrophysics Data System (ADS)

    Dolganov, P. V.

    2015-04-01

    Density of photonic states ρ (ω ) , group vg, and phase vph velocity of light, and the dispersion relation between wave vector k , and frequency ω (k ) were determined in a cholesteric photonic crystal. A highly sensitive method (measurement of rotation of the plane of polarization of light) was used to determine ρ (ω ) in samples of different quality. In high-quality samples a drastic increase in ρ (ω ) near the boundaries of the stop band and oscillations related to Pendellösung beatings are observed. In low-quality samples photonic properties are strongly modified. The maximal value of ρ (ω ) is substantially smaller, and density of photonic states increases near the selective reflection band without oscillations in ρ (ω ) . Peculiarities of ρ (ω ) , vg, and ω (k ) are discussed. Comparison of the experimental results with theory was performed.

  15. Containerless measurements on liquids at high temperatures

    NASA Technical Reports Server (NTRS)

    Weber, Richard

    1993-01-01

    The application of containerless techniques for measurements of the thermophysical properties of high temperature liquids is reviewed. Recent results obtained in the materials research laboratories at Intersonics are also presented. Work to measure high temperature liquid properties is motivated by both the need for reliable property data for modeling of industrial processes involving molten materials and generation of data form basic modeling of materials behavior. The motivation for this work and examples of variations in thermophysical property values from the literature are presented. The variations may be attributed to changes in the specimen properties caused by chemical changes in the specimen and/or to measurement errors. The two methods used to achieve containerless conditions were aeroacoustic levitation and electromagnetic levitation. Their qualities are presented. The accompanying slides show the layout of levitation equipment and present examples of levitated metallic and ceramic specimens. Containerless techniques provide a high degree of control over specimen chemistry, nucleation and allow precise control of liquid composition to be achieved. Effects of minor additions can thus be measured in a systematic way. Operation in reduced gravity enables enhanced control of liquid motion which can allow measurement of liquid transport properties. Examples of nucleation control, the thermodynamics of oxide contamination removal, and control of the chromium content of liquid aluminum oxide by high temperature containerless processes are presented. The feasibility of measuring temperature, emissivity, liquidus temperature, enthalpy, surface tension, density, viscosity, and thermal diffusivity are discussed in the final section of the paper.

  16. Influence of natural factors on the quality of midwestern streams and rivers

    USGS Publications Warehouse

    Porter, Stephen D.; Harris, Mitchell A.; Kalkhoff, Stephen J.

    2001-01-01

    Streams flowing through cropland in the Midwestern Corn Belt differ considerably in their chemical and ecological characteristics, even though agricultural land use is highly intensive throughout the entire region. These differences likely are attributable to differences in riparian vegetation, soil properties, and hydrology. This conclusion is based on results from a study of the upper Midwest region conducted during seasonally low-flow conditions in August 1997 by the U.S. Geological Survey (USGS) National Water Quality Assessment (NAWQA) Program. This report summarizes significant results from the study and presents some implications for the design and interpretation of water-quality monitoring and assessment studies based on these results.

  17. Influence of quality control variables on failure of graphite/epoxy under extreme moisture conditions

    NASA Technical Reports Server (NTRS)

    Clements, L. L.; Lee, P. R.

    1980-01-01

    Tension tests on graphite/epoxy composites were performed to determine the influence of various quality control variables on failure strength as a function of moisture and moderate temperatures. The extremely high and low moisture contents investigated were found to have less effect upon properties than did temperature or the quality control variables of specimen flaws and prepreg batch to batch variations. In particular, specimen flaws were found to drastically reduce the predicted strength of the composite, whereas specimens from different batches of prepreg displayed differences in strength as a function of temperature and extreme moisture exposure. The findings illustrate the need for careful specimen preparation, studies of flaw sensitivity, and careful quality control in any study of composite materials.

  18. Identification of regional soil quality factors and indicators: a case study on an alluvial plain (central Turkey)

    NASA Astrophysics Data System (ADS)

    Şeker, Cevdet; Hüseyin Özaytekin, Hasan; Negiş, Hamza; Gümüş, İlknur; Dedeoğlu, Mert; Atmaca, Emel; Karaca, Ümmühan

    2017-05-01

    Sustainable agriculture largely depends on soil quality. The evaluation of agricultural soil quality is essential for economic success and environmental stability in rapidly developing regions. In this context, a wide variety of methods using vastly different indicators are currently used to evaluate soil quality. This study was conducted in one of the most important irrigated agriculture areas of Konya in central Anatolia, Turkey, to analyze the soil quality indicators of Çumra County in combination with an indicator selection method, with the minimum data set using a total of 38 soil parameters. We therefore determined a minimum data set with principle component analysis to assess soil quality in the study area and soil quality was evaluated on the basis of a scoring function. From the broad range of soil properties analyzed, the following parameters were chosen: field capacity, bulk density, aggregate stability, and permanent wilting point (from physical soil properties); electrical conductivity, Mn, total nitrogen, available phosphorus, pH, and NO3-N (from chemical soil properties); and urease enzyme activity, root health value, organic carbon, respiration, and potentially mineralized nitrogen (from biological properties). According to the results, the chosen properties were found as the most sensitive indicators of soil quality and they can be used as indicators for evaluating and monitoring soil quality at a regional scale.

  19. Fruit quality traits of ten California-grown pomegranate cultivars harvested over three months

    USDA-ARS?s Scientific Manuscript database

    Pomegranate (Punica granatum L.) is a deciduous tree crop. Its fruit are known to have relatively high concentrations of polyphenolic compounds and antioxidant properties. The USDA-ARS pomegranate germplasm collection maintains over 250 cultivars, but most have not been evaluated for optimal harvest...

  20. Papaya fruit quality management during the postharvest supply chain

    USDA-ARS?s Scientific Manuscript database

    Papayas are popular in tropical and subtropical regions and are being exported in large volumes to Europe, the U.S. and Japan. The fruit has excellent taste, exotic flavor and nutritional properties, being rich in vitamins A, C, and antioxidants. However, due to its highly perishable nature it has n...

  1. OPERA: A QSAR tool for physicochemical properties and environmental fate predictions (ACS Spring meeting)

    EPA Science Inventory

    The collection of chemical structures and associated experimental data for QSAR modeling is facilitated by the increasing number and size of public databases. However, the performance of QSAR models highly depends on the quality of the data used and the modeling methodology. The ...

  2. Resolving drivers of variability in estuarine metabolism from in situ and experimental measurements at paired sites in a warm temperate Pensacola Bay, Florida

    EPA Science Inventory

    We investigated the integrated ecosystem properties (gross production, respiration, and net ecosystem metabolism) in the Pensacola Bay estuary, using a combination of instrument deployments and plankton metabolism experiments. High-frequency water quality data were collected from...

  3. Consolidation and fabrication techniques for vanadium-20 w/o titanium /TV-20/

    NASA Technical Reports Server (NTRS)

    Burt, W. R.; Karasek, F. J.; Kramer, W. C.; Mayfield, R. M.; Mc Gowan, R. D.

    1968-01-01

    Tests of the mechanical properties, fuel compatibility, sodium corrosion and irradiation behavior were made for vanadium and vanadium alloy. Improved methods for consolidation and fabrication of bar, rod, sheet, and high-quality, small diameter, thin-wall tubing of vanadium-20 without titanium are reported.

  4. A comparative study on the quality of bio-oil derived from green macroalga Enteromorpha clathrata over metal modified ZSM-5 catalysts.

    PubMed

    Wang, Shuang; Cao, Bin; Liu, Xinlin; Xu, Lujiang; Hu, Yamin; Afonaa-Mensah, Stephen; Abomohra, Abd El-Fatah; He, Zhixia; Wang, Qian; Xu, Shannan

    2018-05-01

    The green macroalga Enteromorpha clathrata was pyrolyzed with or without catalysts at the temperature of 550 °C for producing high-quality bio-oil. The ZSM-5 and 1,2,3 mmol Mg-Ce/ZSM-5 catalysts were introduced to investigate the yields and components distribution of bio-oil. Increase of bio-oil production was obtained with the use of ZSM-5 and 1,2,3 mmol Mg-Ce/ZSM-5 catalysts. The 1 mmol Mg-Ce/ZSM-5 catalyst exhibited more promising property for promoting the relative content of C 5 -C 7 compounds, and decreasing the relative content of acids in bio-oil. The results suggested that E. clathrata had potential as pyrolysis feedstocks for producing the high-quality bio-oil with large amounts of C 5 -C 7 compounds and low relative content of acids when the 1 mmol Mg-Ce/ZSM-5 catalyst was used. Furthermore, the physicochemical properties of ZSM-5 and 1 mmol Mg-Ce/ZSM-5 catalysts were investigated by scanning electron microscopy, transmission electron microscopy, X-ray diffraction, X-ray photoelectron spectroscopy and temperature-programmed desorption of ammonia. Copyright © 2018 Elsevier Ltd. All rights reserved.

  5. Structural and electrical properties of Ge-on-Si(0 0 1) layers with ultra heavy n-type doping grown by MBE

    NASA Astrophysics Data System (ADS)

    Yurasov, D. V.; Antonov, A. V.; Drozdov, M. N.; Yunin, P. A.; Andreev, B. A.; Bushuykin, P. A.; Baydakova, N. A.; Novikov, A. V.

    2018-06-01

    In this paper we report about the formation of ultra heavy doped n-Ge layers on Si(0 0 1) substrates by molecular beam epitaxy and their characterization by different independent techniques. Combined study of structural and electrical properties of fabricated layers using secondary ion mass spectroscopy, X-ray diffraction, Hall effect and reflection measurements was carried out and it has revealed the achievable charge carrier densities exceeding 1020 cm-3 without deterioration of crystalline quality of such doped layers. It was also shown that X-ray analysis can be used as a fast, reliable and non-destructive method for evaluation of the electrically active Sb concentration in heavy doped Ge layers. The appropriate set of doping density allowed to adjust the plasmonic resonance position in Ge:Sb layers in a rather wide range reaching the wavelength of 3.6 μm for the highest doping concentration. Room temperature photoluminescence confirmed the high crystalline quality of such doped layers. Our results indicated the attainability of high electron concentration in Ge:Sb layers grown on Si substrates without crystalline quality deterioration which may find potential applications in the fields of Si-based photonics and mid-IR plasmonics.

  6. Effect of high-pressure processing and thermal pasteurization on overall quality parameters of white grape juice.

    PubMed

    Chang, Yin-Hsuan; Wu, Sz-Jie; Chen, Bang-Yuan; Huang, Hsiao-Wen; Wang, Chung-Yi

    2017-08-01

    The aim of this study was to investigate the microbial levels, physicochemical and antioxidant properties and polyphenol oxidase (PPO) and peroxidase (POD) activities as well as to conduct a sensory analysis of white grape juice treated with high-pressure processing (HPP) and thermal pasteurization (TP), over a period of 20 days of refrigerated storage. HPP treatment of 600 MPa and TP significantly reduced aerobic bacteria, coliform and yeast/mold counts. At day 20 of storage, HPP-600 juice displayed no significant differences compared with fresh juice in terms of physicochemical properties such as titratable acidity, pH and soluble solids, and retained less than 50% PPO and POD activities. Although significant differences were observed in the color, antioxidant contents and antioxidant capacity of HPP-treated juice, the extent of these differences was substantially lower than that in TP-treated juice, indicating that HPP treatment can better retain the quality of grape juice. Sensory testing showed no significant difference between HPP-treated juice and fresh juice, while TP reduced the acceptance of grape juice. This study shows that HPP treatment maintained the overall quality parameters of white grape juice, thus effectively extending the shelf life during refrigerated storage. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  7. Intrinsic phonon bands in high quality monolayer T' molybdenum ditelluride

    NASA Astrophysics Data System (ADS)

    Chen, Shao-Yu; Naylor, Carl; Goldstein, Thomas; Johnson, Charlie; Yan, Jun

    Distorted octahedral (T') transition metal dichalcogenide (TMDC) is a type of layered semimetal that has attracted significant recent attention because of its fascination physical, chemical and nontrivial topological properties. Unlike its hexagonal counterpart, monolayer (1L) T'-TMDC is challenging to work with due to rapid sample degradation in air. In this talk, I will discuss well-protected 1L-T' - MoTe2 that exhibits sharp and robust intrinsic Raman bands, with intensities about one order of magnitude stronger than those from bulk T'-MoTe2. The high quality samples enable us to reveal for the first time the set of all nine even-parity zone-center optical phonons. Crystal angle and light polarization resolved measurements further indicate that all the intrinsic Raman modes belong to either z-mode (vibrating along the zigzag Mo atomic chain) or m-modes (vibrating in the mirror plane). Moreover, with the knowledge of vibrational symmetry, we can effectively distinguish the intrinsic modes from Te-metalloid-like modes with energy around 122 and 141 cm-1 which are associated to the sample degradation. Our studies offer a powerful non-destructive method for assessing sample quality, providing the fingerprint as well as key insights in understanding the fundamental properties of 1L T'-TMDCs.

  8. Gas barrier properties of bio-inspired Laponite-LC polymer hybrid films.

    PubMed

    Tritschler, Ulrich; Zlotnikov, Igor; Fratzl, Peter; Schlaad, Helmut; Grüner, Simon; Cölfen, Helmut

    2016-05-26

    Bio-inspired Laponite (clay)-liquid crystal (LC) polymer composite materials with high clay fractions (>80%) and a high level of orientation of the clay platelets, i.e. with structural features similar to the ones found in natural nacre, have been shown to exhibit a promising behavior in the context of reduced oxygen transmission. Key characteristics of these bio-inspired composite materials are their high inorganic content, high level of exfoliation and orientation of the clay platelets, and the use of a LC polymer forming the organic matrix in between the Laponite particles. Each single feature may be beneficial to increase the materials gas barrier property rendering this composite a promising system with advantageous barrier capacities. In this detailed study, Laponite/LC polymer composite coatings with different clay loadings were investigated regarding their oxygen transmission rate. The obtained gas barrier performance was linked to the quality, respective Laponite content and the underlying composite micro- and nanostructure of the coatings. Most efficient oxygen barrier properties were observed for composite coatings with 83% Laponite loading that exhibit a structure similar to sheet-like nacre. Further on, advantageous mechanical properties of these Laponite/LC polymer composites reported previously give rise to a multifunctional composite system.

  9. Material quality development during the automated tow placement process

    NASA Astrophysics Data System (ADS)

    Tierney, John Joseph

    Automated tow placement (ATP) of thermoplastic composites builds on the existing industrial base for equipment, robotics and kinematic placement of material with the aim of further cost reduction by eliminating the autoclave entirely. During ATP processing, thermoplastic composite tows are deposited on a preconsolidated substrate at rates ranging from 10--100mm/s and consolidated using the localized application of heat and pressure by a tow placement head mounted on a robot. The process is highly non-isothermal subjecting the material to multiple heating and cooling rates approaching 1000°C/sec. The requirement for the ATP process is to achieve the same quality in seconds (low void content, full translation of mechanical properties and degree of bonding and minimal warpage) as the autoclave process achieves in hours. The scientific challenge was to first understand and then model the relationships between processing, material response, microstructure and quality. The important phenomena affecting quality investigated in this study include a steady state heat transfer simulation, consolidation and deconsolidation (void dynamics), intimate contact and polymer interdiffusion (degree of bonding/mechanical properties) and residual stress and warpage (crystallization and viscoelastic response). A fundamental understanding of the role of materials related to these mechanisms and their relationship to final quality is developed and applied towards a method of process control and optimization.

  10. Using mixed inocula of Saccharomyces cerevisiae killer strains to improve the quality of traditional sparkling-wine.

    PubMed

    Velázquez, Rocío; Zamora, Emiliano; Álvarez, Manuel; Álvarez, María L; Ramírez, Manuel

    2016-10-01

    The quality of traditional sparkling-wine depends on the aging process in the presence of dead yeast cells. These cells undergo a slow autolysis process thereby releasing some compounds, mostly colloidal polymers such as polysaccharides and mannoproteins, which influence the wine's foam properties and mouthfeel. Saccharomyces cerevisiae killer yeasts were tested to increase cell death and autolysis during mixed-yeast-inoculated second fermentation and aging. These yeasts killed sensitive strains in killer plate assays done under conditions of low pH and temperature similar to those used in sparkling-wine making, although some strains showed a different killer behaviour during the second fermentation. The fast killer effect improved the foam quality and mouthfeel of the mixed-inoculated wines, while the slow killer effect gave small improvements over single-inoculated wines. The effect was faster under high-pressure than under low-pressure conditions. Wine quality improvement did not correlate with the polysaccharide, protein, mannan, or aromatic compound concentrations, suggesting that the mouthfeel and foaming quality of sparkling wine are very complex properties influenced by other wine compounds and their interactions, as well as probably by the specific chemical composition of a given wine. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. A random optimization approach for inherent optic properties of nearshore waters

    NASA Astrophysics Data System (ADS)

    Zhou, Aijun; Hao, Yongshuai; Xu, Kuo; Zhou, Heng

    2016-10-01

    Traditional method of water quality sampling is time-consuming and highly cost. It can not meet the needs of social development. Hyperspectral remote sensing technology has well time resolution, spatial coverage and more general segment information on spectrum. It has a good potential in water quality supervision. Via the method of semi-analytical, remote sensing information can be related with the water quality. The inherent optical properties are used to quantify the water quality, and an optical model inside the water is established to analysis the features of water. By stochastic optimization algorithm Threshold Acceptance, a global optimization of the unknown model parameters can be determined to obtain the distribution of chlorophyll, organic solution and suspended particles in water. Via the improvement of the optimization algorithm in the search step, the processing time will be obviously reduced, and it will create more opportunity for the increasing the number of parameter. For the innovation definition of the optimization steps and standard, the whole inversion process become more targeted, thus improving the accuracy of inversion. According to the application result for simulated data given by IOCCG and field date provided by NASA, the approach model get continuous improvement and enhancement. Finally, a low-cost, effective retrieval model of water quality from hyper-spectral remote sensing can be achieved.

  12. Effects of Carcass Weight and Back-fat Thickness on Carcass Properties of Korean Native Pigs.

    PubMed

    Kim, Gye-Woong; Kim, Hack-Youn

    2017-01-01

    Our study analyzed the carcass properties of 170 Korean native pigs in relation to carcass weight and back-fat thickness to provide general data for the production and distribution of high quality pig meat. The 70-74 kg group showed highest yield (73.41%). The ≥80 kg group showed the highest thickest back-fat (24.13 mm) ( p <0.05). The ≥80 kg group showed the best quality grade (1.00). Back-fat thickness showed significant differences in the weight among groups ( p <0.05). The ≥25 mm group showed the highest carcass weight (75.93 kg). The thickest back-fat group (≥25 mm) showed the highest yield (73.03%). There were significant differences in back-fat thickness among groups ( p <0.05), and the ≥25 mm group showed the highest thickness back-fat (27.60 mm). We found a strong positive correlation between carcass weight and back-fat thickness (r=0.346) as well as meat quality grade (r=0.739). Back-fat thickness had a relatively strong positive correlation with meat quality grade (r=0.444). Therefore, there are required to manage the breeding through selection of excellent native species for increasing their carcass weight and enhance meat quality.

  13. Effects of Carcass Weight and Back-fat Thickness on Carcass Properties of Korean Native Pigs

    PubMed Central

    2017-01-01

    Our study analyzed the carcass properties of 170 Korean native pigs in relation to carcass weight and back-fat thickness to provide general data for the production and distribution of high quality pig meat. The 70-74 kg group showed highest yield (73.41%). The ≥80 kg group showed the highest thickest back-fat (24.13 mm) (p<0.05). The ≥80 kg group showed the best quality grade (1.00). Back-fat thickness showed significant differences in the weight among groups (p<0.05). The ≥25 mm group showed the highest carcass weight (75.93 kg). The thickest back-fat group (≥25 mm) showed the highest yield (73.03%). There were significant differences in back-fat thickness among groups (p<0.05), and the ≥25 mm group showed the highest thickness back-fat (27.60 mm). We found a strong positive correlation between carcass weight and back-fat thickness (r=0.346) as well as meat quality grade (r=0.739). Back-fat thickness had a relatively strong positive correlation with meat quality grade (r=0.444). Therefore, there are required to manage the breeding through selection of excellent native species for increasing their carcass weight and enhance meat quality. PMID:28747824

  14. Cotton fiber quality characterization with light scattering and fourier transform infrared techniques.

    PubMed

    Thomasson, J A; Manickavasagam, S; Mengüç, M P

    2009-03-01

    Fiber quality measurement is critical to assessing the value of a bale of cotton for various textile purposes. An instrument that could measure numerous cotton quality properties by optical means could be made simpler and faster than current fiber quality measurement instruments, and it might be more amenable to on-line measurement at processing facilities. To that end, a laser system was used to investigate cotton fiber samples with respect to electromagnetic scattering at various wavelengths, polarization angles, and scattering angles. A Fourier transform infrared (FT-IR) instrument was also used to investigate the transmission of electromagnetic energy at various mid-infrared wavelengths. Cotton samples were selected to represent a wide range of micronaire values. Varying the wavelength of the laser at a fixed polarization resulted in little variation in scattered light among the cotton samples. However, varying the polarization at a fixed wavelength produced notable variation, indicating that polarization might be used to differentiate among cotton samples with respect to certain fiber properties. The FT-IR data in the 12 to 22 microm range produced relatively large differences in the amount of scattered light among all samples, and FT-IR data at certain combinations of fixed wavelengths were highly linearly related to certain measures of cotton quality including micronaire.

  15. 38 CFR 36.4354 - Estate of veteran in real property.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ..., That the limitations on the quantum or quality of the estate or property that are indicated in this...) The following limitations on the quantum or quality of the estate or property shall be deemed for the...

  16. 38 CFR 36.4354 - Estate of veteran in real property.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ..., That the limitations on the quantum or quality of the estate or property that are indicated in this...) The following limitations on the quantum or quality of the estate or property shall be deemed for the...

  17. 38 CFR 36.4354 - Estate of veteran in real property.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ..., That the limitations on the quantum or quality of the estate or property that are indicated in this...) The following limitations on the quantum or quality of the estate or property shall be deemed for the...

  18. 38 CFR 36.4354 - Estate of veteran in real property.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ..., That the limitations on the quantum or quality of the estate or property that are indicated in this...) The following limitations on the quantum or quality of the estate or property shall be deemed for the...

  19. 38 CFR 36.4354 - Estate of veteran in real property.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ..., That the limitations on the quantum or quality of the estate or property that are indicated in this...) The following limitations on the quantum or quality of the estate or property shall be deemed for the...

  20. Measuring quality in community based housing support - the QPC-H instrument.

    PubMed

    Lundqvist, Lars-Olov; Rask, Mikael; Brunt, David; Ivarsson, Ann-Britt; Schröder, Agneta

    2016-04-18

    Purpose - The purpose of this paper is to test the psychometric properties and dimensionality of the instrument Quality in Psychiatric Care-Housing (QPC-H) and briefly describe the residents' perception of quality of housing support. Design/methodology/approach - A sample of 174 residents from 22 housing support services in nine Swedish municipalities participated in the study. Confirmatory factor analysis (CFA) revealed that the QPC-H consisted of six dimensions and had a factor structure largely corresponding to that found among other instruments in the Quality in Psychiatric Care (QPC) family of instruments. Findings - CFA revealed that the QPC-H consisted of six dimensions and had a factor structure largely corresponding to that found among other instruments in the QPC family of instruments. The internal consistency of the factors was acceptable except in the case of secure and secluded environment, probably due to few numbers of items. With this exception, the QPC-H shows adequate psychometric properties. Social implications - The residents' ratings of quality of housing service were generally high; the highest rating was for secluded environment and the lowest for participation. This dimension would thus seem to indicate an important area for improvement. Originality/value - The QPC-H includes important aspects of residents' assessment of quality of housing service and offers a simple and inexpensive way to evaluate housing support services from the residents' perspective.

  1. Screening and transport in 2D semiconductor systems at low temperatures

    PubMed Central

    Das Sarma, S.; Hwang, E. H.

    2015-01-01

    Low temperature carrier transport properties in 2D semiconductor systems can be theoretically well-understood within RPA-Boltzmann theory as being limited by scattering from screened Coulomb disorder arising from random quenched charged impurities in the environment. In this work, we derive a number of analytical formula, supported by realistic numerical calculations, for the relevant density, mobility, and temperature range where 2D transport should manifest strong intrinsic (i.e., arising purely from electronic effects) metallic temperature dependence in different semiconductor materials arising entirely from the 2D screening properties, thus providing an explanation for why the strong temperature dependence of the 2D resistivity can only be observed in high-quality and low-disorder 2D samples and also why some high-quality 2D materials manifest much weaker metallicity than other materials. We also discuss effects of interaction and disorder on the 2D screening properties in this context as well as compare 2D and 3D screening functions to comment why such a strong intrinsic temperature dependence arising from screening cannot occur in 3D metallic carrier transport. Experimentally verifiable predictions are made about the quantitative magnitude of the maximum possible low-temperature metallicity in 2D systems and the scaling behavior of the temperature scale controlling the quantum to classical crossover. PMID:26572738

  2. Improving quality of an innovative pea puree by high hydrostatic pressure.

    PubMed

    Klug, Tâmmila Venzke; Martínez-Sánchez, Ascensión; Gómez, Perla A; Collado, Elena; Aguayo, Encarna; Artés, Francisco; Artés-Hernández, Francisco

    2017-10-01

    The food industry is continuously innovating to fulfill consumer demand for new, healthy, ready-to-eat products. Pea purees could satisfy this trend by increasing the intake of legumes, which are an important source of nutrients. Moreover, sensorial properties like viscosity could be improved by high hydrostatic pressure (HHP). In this study the effect of a boiling treatment (10 min) followed by HHP at 550 kPa (0, 5 or 10 min) on the rheological properties, associated with enzymatic activity and particle size, as well as on the microbial and sensory quality of a pea-based puree stored for 36 days at 5 °C, has been assessed. The particle size of pea puree decreased after all processing treatments, but increased during storage in HHP-treated samples. Conversely, boiling treatment showed an increase in polygalacturonase activity at the end of the storage period, with a decrease in particle size, viscosity and stability. However, 5 min of 550 kPa HHP showed the highest mean particle size, mean surface diameter and viscosity regarding the remaining treatments. The microbial load remained low during storage. HHP treatment can be used by the food industry to improve the rheological properties, viscosity and stability of pea purees. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  3. Trends in Surface-Water Quality at Selected Ambient-Monitoring Network Stations in Kentucky, 1979-2004

    USGS Publications Warehouse

    Crain, Angela S.; Martin, Gary R.

    2009-01-01

    Increasingly complex water-management decisions require water-quality monitoring programs that provide data for multiple purposes, including trend analyses, to detect improvement or deterioration in water quality with time. Understanding surface-water-quality trends assists resource managers in identifying emerging water-quality concerns, planning remediation efforts, and evaluating the effectiveness of the remediation. This report presents the results of a study conducted by the U.S. Geological Survey, in cooperation with the Kentucky Energy and Environment Cabinet-Kentucky Division of Water, to analyze and summarize long-term water-quality trends of selected properties and water-quality constituents in selected streams in Kentucky's ambient stream water-quality monitoring network. Trends in surface-water quality for 15 properties and water-quality constituents were analyzed at 37 stations with drainage basins ranging in size from 62 to 6,431 square miles. Analyses of selected physical properties (temperature, specific conductance, pH, dissolved oxygen, hardness, and suspended solids), for major ions (chloride and sulfate), for selected metals (iron and manganese), for nutrients (total phosphorus, total nitrogen, total Kjeldahl nitrogen, nitrite plus nitrate), and for fecal coliform were compiled from the Commonwealth's ambient water-quality monitoring network. Trend analyses were completed using the S-Plus statistical software program S-Estimate Trend (S-ESTREND), which detects trends in water-quality data. The trend-detection techniques supplied by this software include the Seasonal Kendall nonparametric methods for use with uncensored data or data censored with only one reporting limit and the Tobit-regression parametric method for use with data censored with multiple reporting limits. One of these tests was selected for each property and water-quality constituent and applied to all station records so that results of the trend procedure could be compared among stations. Flow-adjustment procedures were used with these techniques at all stations to remove the effects of streamflow on water-quality variability. Flow adjustments were used for all constituents, except temperature. A decreasing trend indicates a decrease in concentration of a particular constituent; whereas, an increasing trend indicates an increase in concentration and potential degradation in water quality. Trend results varied statewide by station and by physical property and water-quality constituent. The results for all stations and all physical properties and water-quality constituents examined had at least one statistically significant (p-value <0.05) increasing or decreasing trend during the specified period of record. Water temperature and concentrations of dissolved oxygen had no significant decreasing trends at any station. Water temperature had one significant increasing trend at the South Fork Cumberland River near Blue Heron station. Specific conductance and concentrations of hardness had one significant decreasing trend at the South Fork Cumberland River near Blue Heron station. pH also had a significant decreasing trend at the Mud River near Gus station. Concentrations of total suspended solids had 1 increasing trend at the Kentucky River at High Bridge station and 10 decreasing trends with 5 of those stations located in the Cumberland River Basin. Major ions analyzed for trends included chloride and sulfate. Concentrations of chloride at the 37 stations had increasing trends at 15 stations, decreasing trends at 3 stations, and no significant trend in concentration over time at 19 stations. Most of the increasing trends in concentrations of chloride are located in the northern part of Kentucky, possibly indicating an increase in the use of road salts for road deicing and (or) the result of resource extraction (oil, gas, and coal). Increasing trends of sulfate concentrations were detected at seven stations, all located in the Appalachian

  4. Crystal growth of HVPE-GaN doped with germanium

    NASA Astrophysics Data System (ADS)

    Iwinska, M.; Takekawa, N.; Ivanov, V. Yu.; Amilusik, M.; Kruszewski, P.; Piotrzkowski, R.; Litwin-Staszewska, E.; Lucznik, B.; Fijalkowski, M.; Sochacki, T.; Teisseyre, H.; Murakami, H.; Bockowski, M.

    2017-12-01

    Crystallization by hydride vapor phase epitaxy method of gallium nitride single crystals doped with germanium and properties of the obtained material are described in this paper. Growth was performed in hydrogen and nitrogen carrier gas. The results were studied and compared. Influence of different flows of germanium tetrachloride, precursor of germanium, on the grown crystals was investigated. Ammonothermal GaN substrates were used as seeds for crystallization. Structural, electrical, and optical properties of HVPE-GaN doped with germanium are presented and discussed in detail. They were compared to properties of HVPE-GaN doped with silicon and also grown on native seeds of high quality.

  5. Exploring constructs of well-being, happiness and quality of life.

    PubMed

    Medvedev, Oleg N; Landhuis, C Erik

    2018-01-01

    Existing definitions of happiness, subjective well-being, and quality of life suggest conceptual overlap between these constructs. This study explored the relationship between these well-being constructs by applying widely used measures with satisfactory psychometric properties. University students ( n = 180) completed widely used well-being measures including the Oxford Happiness Questionnaire (OHQ), the World Health Organization Quality of Life Questionnaire, the Satisfaction with Life Scale, and the Positive and Negative Affect Scale. We analyzed the data using correlation, regression, and exploratory factor analysis. All included well-being measures demonstrated high loadings on the global well-being construct that explains about 80% of the variance in the OHQ, the psychological domain of Quality of Life and subjective well-being. The results show high positive correlations between happiness, psychological and health domains of quality of life, life satisfaction, and positive affect. Social and environmental domains of quality of life were poor predictors of happiness and subjective well-being after controlling for psychological quality of life. Together, these data provide support for a global well-being dimension and interchangeable use of terms happiness, subjective well-being, and psychological quality of life with the current sample and measures. Further investigation with larger heterogeneous samples and other well-being measures is warranted.

  6. Exploring constructs of well-being, happiness and quality of life

    PubMed Central

    Landhuis, C. Erik

    2018-01-01

    Background Existing definitions of happiness, subjective well-being, and quality of life suggest conceptual overlap between these constructs. This study explored the relationship between these well-being constructs by applying widely used measures with satisfactory psychometric properties. Materials and Methods University students (n = 180) completed widely used well-being measures including the Oxford Happiness Questionnaire (OHQ), the World Health Organization Quality of Life Questionnaire, the Satisfaction with Life Scale, and the Positive and Negative Affect Scale. We analyzed the data using correlation, regression, and exploratory factor analysis. Results All included well-being measures demonstrated high loadings on the global well-being construct that explains about 80% of the variance in the OHQ, the psychological domain of Quality of Life and subjective well-being. The results show high positive correlations between happiness, psychological and health domains of quality of life, life satisfaction, and positive affect. Social and environmental domains of quality of life were poor predictors of happiness and subjective well-being after controlling for psychological quality of life. Conclusion Together, these data provide support for a global well-being dimension and interchangeable use of terms happiness, subjective well-being, and psychological quality of life with the current sample and measures. Further investigation with larger heterogeneous samples and other well-being measures is warranted. PMID:29876148

  7. Wafer scale millimeter-wave integrated circuits based on epitaxial graphene in high data rate communication.

    PubMed

    Habibpour, Omid; He, Zhongxia Simon; Strupinski, Wlodek; Rorsman, Niklas; Zirath, Herbert

    2017-02-01

    In recent years, the demand for high data rate wireless communications has increased dramatically, which requires larger bandwidth to sustain multi-user accessibility and quality of services. This can be achieved at millimeter wave frequencies. Graphene is a promising material for the development of millimeter-wave electronics because of its outstanding electron transport properties. Up to now, due to the lack of high quality material and process technology, the operating frequency of demonstrated circuits has been far below the potential of graphene. Here, we present monolithic integrated circuits based on epitaxial graphene operating at unprecedented high frequencies (80-100 GHz). The demonstrated circuits are capable of encoding/decoding of multi-gigabit-per-second information into/from the amplitude or phase of the carrier signal. The developed fabrication process is scalable to large wafer sizes.

  8. Self-Functionalization Behind a Solution-Processed NiOx Film Used As Hole Transporting Layer for Efficient Perovskite Solar Cells.

    PubMed

    Ciro, John; Ramírez, Daniel; Mejía Escobar, Mario Alejandro; Montoya, Juan Felipe; Mesa, Santiago; Betancur, Rafael; Jaramillo, Franklin

    2017-04-12

    Fabrication of solution-processed perovskite solar cells (PSCs) requires the deposition of high quality films from precursor inks. Frequently, buffer layers of PSCs are formed from dispersions of metal oxide nanoparticles (NPs). Therefore, the development of trustable methods for the preparation of stable colloidal NPs dispersions is crucial. In this work, a novel approach to form very compact semiconducting buffer layers with suitable optoelectronic properties is presented through a self-functionalization process of the nanocrystalline particles by their own amorphous phase and without adding any other inorganic or organic functionalization component or surfactant. Such interconnecting amorphous phase composed by residual nitrate, hydroxide, and sodium ions, proved to be fundamental to reach stable colloidal dispersions and contribute to assemble the separate crystalline nickel oxide NPs in the final film, resulting in a very homogeneous and compact layer. A proposed mechanism behind the great stabilization of the nanoparticles is exposed. At the end, the self-functionalized nickel oxide layer exhibited high optoelectronic properties enabling perovskite p-i-n solar cells as efficient as 16.6% demonstrating the pertinence of the presented strategy to obtain high quality buffer layers processed in solution at room temperature.

  9. Preclinical and clinical properties of trimegestone: a potent and selective progestin.

    PubMed

    Sitruk-Ware, Regine; Bossemeyer, Ronald; Bouchard, Phillipe

    2007-06-01

    Trimegestone (TMG) is a novel, 19-norpregnane progestin with potent and selective properties. In preclinical studies, TMG has been shown to provide high endometrial selectivity. Further, TMG has high affinity and selectivity for the progesterone receptor and lacks the agonist effects of other steroid hormones. In clinical studies, TMG has been shown to have high endometrial safety and an improved bleeding profile along with improved tolerability compared with other progestins. In addition, TMG also does not impede the beneficial effects of estrogen, especially on bone, and does not compromise quality of life. The preclinical findings of lack of mineralocorticoid activity of TMG were supported in clinical findings, with neutral effect on body weight. Similarly, the smaller effect of TMG on the GABA-ergic (gamma-aminobutyric acid) system in preclinical studies is consistent with the improvement of central nervous system-related effects on depressed mood and sleep quality in clinical studies. Low-dose estradiol/TMG regimens provide rapid relief from menopausal symptoms, reducing the number and severity of hot flushes as effectively as 2 mg 17beta-estradiol/1 mg norethisterone acetate. Therefore, it may be concluded that TMG provides a clinically proven option in hormone therapy for both clinicians and patients.

  10. A succinct rating scale for radiology report quality

    PubMed Central

    Yang, Chengwu; Ouyang, Tao; Peterson, Christine M; Sarwani, Nabeel I; Tappouni, Rafel; Bruno, Michael

    2014-01-01

    Context: Poorly written radiology reports are common among residents and are a significant challenge for radiology education. While training may improve report quality, a professionally developed reliable and valid scale to measure report quality does not exist. Objectives: To develop a measurement tool for report quality, the quality of report scale, with rigorous validation through empirical data. Methods: A research team of an experienced psychometrician and six senior radiologists conducted qualitative and quantitative studies. Five items were identified for the quality of report scale, each measuring a distinct aspect of report quality. Two dedicated training sessions were designed and implemented to help residents generate high-quality reports. In a blinded fashion, the quality of report scale was applied to 804 randomly selected reports issued before (n = 403) and after (n = 401) training. Full-scale psychometrical assessments were implemented onto the quality of report scale’s item- and scale-scores from the reports. The quality of report scale scores were correlated with report professionalism and attendings’ preference and were compared pre-/post-training. Results: The quality of report scale showed sound psychometrical properties, with high validity and reliability. Reports with higher quality of report scale score were more professional and preferable by attendings. Training improved the quality of report scale score, empirically validating the quality of report scale further. Conclusion: While succinct and practitioner friendly, the quality of report scale is a reliable and valid measure of radiology report quality and has the potential to be easily adapted to other fields such as pathology, where similar training would be beneficial. PMID:26770756

  11. Learning the specific quality of taste reinforcement in larval Drosophila

    PubMed Central

    Schleyer, Michael; Miura, Daisuke; Tanimura, Teiichi; Gerber, Bertram

    2015-01-01

    The only property of reinforcement insects are commonly thought to learn about is its value. We show that larval Drosophila not only remember the value of reinforcement (How much?), but also its quality (What?). This is demonstrated both within the appetitive domain by using sugar vs amino acid as different reward qualities, and within the aversive domain by using bitter vs high-concentration salt as different qualities of punishment. From the available literature, such nuanced memories for the quality of reinforcement are unexpected and pose a challenge to present models of how insect memory is organized. Given that animals as simple as larval Drosophila, endowed with but 10,000 neurons, operate with both reinforcement value and quality, we suggest that both are fundamental aspects of mnemonic processing—in any brain. DOI: http://dx.doi.org/10.7554/eLife.04711.001 PMID:25622533

  12. Analysis of apple beverages treated with high-power ultrasound: a quality function deployment approach.

    PubMed

    Režek Jambrak, Anet; Šimunek, Marina; Grbeš, Franjo; Mandura, Ana; Djekic, Ilija

    2018-04-01

    The objective of this paper was to demonstrate application of quality function deployment in analysing effects of high power ultrasound on quality properties of apple juices and nectars. In order to develop a quality function deployment model, joint with instrumental analysis of treated samples, a field survey was performed to identify consumer preferences towards quality characteristics of juices/nectar. Based on field research, the three most important characteristics were 'taste' and 'aroma' with 28.5% of relative absolute weight importance, followed by 'odour' (16.9%). The quality function deployment model showed that the top three 'quality scores' for apple juice were treatments with amplitude 90 µm, 9 min treatment time and sample temperature 40 °C; 60 µm, 9 min, 60 °C; and 90 µm, 6 min, 40 °C. For nectars, the top three were treatments 120 µm, 9 min, 20 °C; 60 µm, 9 min, 60 °C; and A2.16 60 µm, 9 min, 20 °C. This type of quality model enables a more complex measure of large scale of different quality parameters. Its simplicity should be understood as its practical advantage and, as such, this tool can be a part of design quality when using novel preservation technologies. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  13. Rasch analysis of the carers quality of life questionnaire for parkinsonism.

    PubMed

    Pillas, Marios; Selai, Caroline; Schrag, Anette

    2017-03-01

    To assess the psychometric properties of the Carers Quality of Life Questionnaire for Parkinsonism using a Rasch modeling approach and determine the optimal cut-off score. We performed a Rasch analysis of the survey answers of 430 carers of patients with atypical parkinsonism. All of the scale items demonstrated acceptable goodness of fit to the Rasch model. The scale was unidimensional and no notable differential item functioning was detected in the items regarding age and disease type. Rating categories were functioning adequately in all scale items. The scale had high reliability (.95) and construct validity and a high degree of precision, distinguishing between 5 distinct groups of carers with different levels of quality of life. A cut-off score of 62 was found to have the optimal screening accuracy based on Hospital Anxiety and Depression Scale subscores. The results suggest that the Carers Quality of Life Questionnaire for Parkinsonism is a useful scale to assess carers' quality of life and allows analyses requiring interval scaling of variables. © 2016 International Parkinson and Movement Disorder Society. © 2016 International Parkinson and Movement Disorder Society.

  14. Comprehensive Performance Study of Magneto Cantilevers as a Candidate Model for Biological Sensors used in Lab-on-a-Chip Applications

    PubMed Central

    Saberkari, Hamidreza; Ghavifekr, Habib Badri; Shamsi, Mousa

    2015-01-01

    In recent years, demand for biological sensors which are capable of fast and accurate detection of minor amounts of pathogens in real-time form has been intensified. Acoustic wave (AW) devices whose performance is determined by mass sensitivity parameters and quality factor are used in biological sensors as platforms with high quality. Yet, current AW devices are facing many challenges such as the low value of their quality factor in practical applications and also their difficulty to use in liquids. The main focus of this article is to study on the magnetostrictive sensors which include milli/microcantilever (MSMC) type. In comparison with AW devices, MSMC has a lot of advantages; (1) its actuation and sensing unit is wirelessly controlled. (2) Its fabrication process is easy. (3) It works well in liquids. (4) It has a high-quality factor (in the air > 500). Simulation results demonstrate that the amount of quality factor depends on environment properties (density and viscosity), MSMC geometry, and its resonant behavior of harmonic modes. PMID:26120566

  15. Liquid Metal Engineering by Application of Intensive Melt Shearing

    NASA Astrophysics Data System (ADS)

    Patel, Jayesh; Zuo, Yubo; Fan, Zhongyun

    In all casting processes, liquid metal treatment is an essential step in order to produce high quality cast products. A new liquid metal treatment technology has been developed which comprises of a rotor/stator set-up that delivers high shear rate to the liquid melt. It generates macro-flow in a volume of melt for distributive mixing and intensive shearing for dispersive mixing. The high shear device exhibits significantly enhanced kinetics for phase transformations, uniform dispersion, distribution and size reduction of solid particles and gas bubbles, improved homogenisation of chemical composition and temperature fields and also forced wetting of usually difficult-to-wet solid particles in the liquid metal. Hence, it can benefit various casting processes to produce high quality cast products with refined microstructure and enhanced mechanical properties. Here, we report an overview on the application of the new high shear technology to the processing of light metal alloys.

  16. Micro-pulling-down furnace modification and single crystal fibers growth

    NASA Astrophysics Data System (ADS)

    Yuan, Dongsheng; Jia, Zhitai; Li, Yang; Wu, Baiyi; Tao, Xutang

    2016-03-01

    Single crystal fiber (SCF) combines the excellent instinct properties of conventional bulk laser crystals, and the special geometry advantage of active optical fibers. YAG and LuAG are proper host candidates for single crystal fiber laser with high thermal conductivity. Despite a lower thermal conductivity for pure crystal than YAG, LuAG crystal is easier to obtain homogeneous optical quality, and has a thermal conductivity nearly independent from the doping level. Micropulling- down (μ-PD) has relatively small thermal gradient, and here we use μ-PD to carry out high quality SCFs. Through the μ-PD furnace manufactured by ourselves, crystal fibers with different diameters have been grown successfully. We designed and fabricated a method to adjust the thermal distribution, and with the favor of pulling-down rate, the specific diameter can be controlled perfectly. The crystalline quality and homogeneity along the whole fiber were investigated, and LuAG SCF was confirmed to have a fine crystal quality for laser.

  17. Stepwise heating in Stille polycondensation toward no batch-to-batch variations in polymer solar cell performance.

    PubMed

    Lee, Sang Myeon; Park, Kwang Hyun; Jung, Seungon; Park, Hyesung; Yang, Changduk

    2018-05-14

    For a given π-conjugated polymer, the batch-to-batch variations in molecular weight (M w ) and polydispersity index (Ð) can lead to inconsistent process-dependent material properties and consequent performance variations in the device application. Using a stepwise-heating protocol in the Stille polycondensation in conjunction with optimized processing, we obtained an ultrahigh-quality PTB7 polymer having high M w and very narrow Ð. The resulting ultrahigh-quality polymer-based solar cells demonstrate up to 9.97% power conversion efficiencies (PCEs), which is over 24% enhancement from the control devices fabricated with commercially available PTB7. Moreover, we observe almost negligible batch-to-batch variations in the overall PCE values from ultrahigh-quality polymer-based devices. The proposed stepwise polymerization demonstrates a facile and effective strategy for synthesizing high-quality semiconducting polymers that can significantly improve device yield in polymer-based solar cells, an important factor for the commercialization of organic solar cells, by mitigating device-to-device variations.

  18. Tungsten-encapsulated gadolinium nanoislands with enhanced magnetocaloric response

    DOE PAGES

    Logan, Jonathan M.; Rosenmann, Daniel; Sangpo, Tenzin; ...

    2017-07-03

    Here, we report a method for growing chemically pure, oxide-free, air-stable Gd nanoislands with enhanced magnetic properties. These nanoislands are grown by solid-state dewetting and are fully encapsulated in tungsten such that they remain stable in ambient environments. They display good crystalline properties with hexagonally close-packed crystal structure and strong preferential orientation. We show that the choice of substrate strongly affects their shape, crystal orientation, and magnetic properties. The temperature-dependent magnetic coercivity and remanence of the Gd islands can vary by as much as a factor of three depending on the substrate used. The magneto- caloric properties of Gd islandsmore » grown on a sapphire substrate exceed those of high-quality Gd thin films.« less

  19. Quality of health literacy instruments used in children and adolescents: a systematic review.

    PubMed

    Guo, Shuaijun; Armstrong, Rebecca; Waters, Elizabeth; Sathish, Thirunavukkarasu; Alif, Sheikh M; Browne, Geoffrey R; Yu, Xiaoming

    2018-06-14

    Improving health literacy at an early age is crucial to personal health and development. Although health literacy in children and adolescents has gained momentum in the past decade, it remains an under-researched area, particularly health literacy measurement. This study aimed to examine the quality of health literacy instruments used in children and adolescents and to identify the best instrument for field use. Systematic review. A wide range of settings including schools, clinics and communities. Children and/or adolescents aged 6-24 years. Measurement properties (reliability, validity and responsiveness) and other important characteristics (eg, health topics, components or scoring systems) of health literacy instruments. There were 29 health literacy instruments identified from the screening process. When measuring health literacy in children and adolescents, researchers mainly focus on the functional domain (basic skills in reading and writing) and consider participant characteristics of developmental change (of cognitive ability), dependency (on parents) and demographic patterns (eg, racial/ethnic backgrounds), less on differential epidemiology (of health and illness). The methodological quality of included studies as assessed via measurement properties varied from poor to excellent. More than half (62.9%) of measurement properties were unknown, due to either poor methodological quality of included studies or a lack of reporting or assessment. The 8-item Health Literacy Assessment Tool (HLAT-8) showed best evidence on construct validity, and the Health Literacy Measure for Adolescents showed best evidence on reliability. More rigorous and high-quality studies are needed to fill the knowledge gap in measurement properties of health literacy instruments. Although it is challenging to draw a robust conclusion about which instrument is the most reliable and the most valid, this review provides important evidence that supports the use of the HLAT-8 to measure childhood and adolescent health literacy in future school-based research. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  20. Isolation and characterization of EMS-induced Dy10 and Ax1 high molecular weight glutenin subunit deficient mutant lines of elite hexaploid wheat (Triticum aestivum L.) cv. Summit

    USDA-ARS?s Scientific Manuscript database

    The mixing properties of the dough are critical in the production of bread and other food products derived from wheat. The high molecular weight glutenin subunits (HMW-GS) are major determinants of wheat dough processing qualities. The different alleles of the HMW-GS genes in hexaploid wheat vary ...

  1. Learn from the burn: The High Park Fire 5 years later

    Treesearch

    Sue Miller; Charles Rhodes; Pete Robichaud; Sandra Ryan; Jen Kovecses; Carl Chambers; Sara Rathburn; Jared Heath; Stephanie Kampf; Codie Wilson; Dan Brogan; Brad Piehl; Mary Ellen Miller; John Giordanengo; Erin Berryman; Monique Rocca

    2017-01-01

    It has been 5 years since the High Park Fire burned over 85,000 acres in Northern Colorado, causing extensive property damage, loss of life, and severe impacts to the water quality of the Poudre River. In the fall of 2016, a conference was organized by the USFS Rocky Mountain Research Station and the Coalition for the Poudre River Watershed to discuss what has been...

  2. Bioaugmentation for Aerobic Bioremediation of RDX Contaminated Groundwater

    DTIC Science & Technology

    2016-01-06

    Subsequent higher concentration (15 to 24 mM) fructose additions during high carbon biostimulation in DW-1 and MW-28 resulted in a slight decrease in pH ...that has suitable transport properties and high RDX degradation rates for a given site may not be able to be developed; (2) the selected...phase; attached cells were not measured. Minimal secondary groundwater quality degradation pH , dissolved oxygen (O2), oxidation

  3. A systematic review of psychometric testing of instruments that measure intention to work with older people.

    PubMed

    Che, Chong Chin; Hairi, Noran Naqiah; Chong, Mei Chan

    2017-09-01

    To review systematically the psychometric properties of instruments used to measure intention to work with older people. Nursing students are part of the future healthcare workforce; thus, being aware of their intention to work with older people would give valuable insights to nursing education and practice. Despite a plethora of research on measuring intention to work with older people, a valid and reliable instrument has not been identified. A systematic literature review of evidence and psychometric properties. Eight database searches were conducted between 2006 - 2016. English articles were selected based on inclusion and exclusion criteria. The COSMIN checklist was used to assess instruments reporting a psychometric evaluation of validity and reliability. Of 41 studies identified for full text review, 36 met the inclusion criteria. Seven different types of instruments were identified for psychometric evaluation. Measures of reliability were reported in eight papers and validity in five papers. Evidence for each measurement property was limited, with each instrument demonstrating a lack of information on measurement properties. Based on the COSMIN checklist, the overall quality of the psychometric properties was rated as poor to good. No single instrument was found to be optimal for use. Studies of high methodological quality are needed to properly assess the measurement properties of the instruments that are currently available. Until such studies are available, we recommend using existing instruments with caution. © 2017 John Wiley & Sons Ltd.

  4. Fertilizer nitrogen, soil chemical properties, and their determinacy on rice yield: Evidence from 92 paddy fields of a large-scale farm in the Kanto Region of Japan

    NASA Astrophysics Data System (ADS)

    Li, D.; Nanseki, T.; Chomei, Y.; Yokota, S.

    2017-07-01

    Rice, a staple crop in Japan, is at risk of decreasing production and its yield highly depends on soil fertility. This study aimed to investigate determinants of rice yield, from the perspectives of fertilizer nitrogen and soil chemical properties. The data were sampled in 2014 and 2015 from 92 peat soil paddy fields on a large-scale farm located in the Kanto Region of Japan. The rice variety used was the most widely planted Koshihikari in Japan. Regression analysis indicated that fertilizer nitrogen significantly affected the yield, with a significant sustained effect to the subsequent year. Twelve soil chemical properties, including pH, cation exchange capacity, content of pyridine base elements, phosphoric acid, and silicic acid, were estimated. In addition to silicic acid, magnesia, in forms of its exchangeable content, saturation, and ratios to potassium and lime, positively affected the yield, while phosphoric acid negatively affected the yield. We assessed the soil chemical properties by soil quality index and principal component analysis. Positive effects were identified for both approaches, with the former performing better in explaining the rice yield. For soil quality index, the individual standardized soil properties and margins for improvement were indicated for each paddy field. Finally, multivariate regression on the principal components identified the most significant properties.

  5. Thermoelectric properties of epitaxial β-FeSi2 thin films grown on Si(111) substrates with various film qualities

    NASA Astrophysics Data System (ADS)

    Watanabe, Kentaro; Taniguchi, Tatsuhiko; Sakane, Shunya; Aoki, Shunsuke; Suzuki, Takeyuki; Fujita, Takeshi; Nakamura, Yoshiaki

    2017-05-01

    Si-based epitaxial β-FeSi2 thin films are attractive as materials for on-chip thermoelectric power generators. We investigated the structure, crystallinity, and thermoelectric properties of β-FeSi2 thin films epitaxially grown on Si(111) substrates by using three different techniques: conventional reactive deposition epitaxy followed by molecular beam epitaxy (RDE+MBE), solid phase epitaxy (SPE) based on codeposition of Fe and Si presented previously, and SPE followed by MBE (SPE+MBE) presented newly by this work. Their epitaxial growth temperatures were fixed at 530 °C for comparison. RDE+MBE thin films exhibited high crystalline quality, but rough surfaces and rugged β-FeSi2/Si(111) interfaces. On the other hand, SPE thin films showed flat surfaces and abrupt β-FeSi2/Si(111) interfaces but low crystallinity. We found that SPE+MBE thin films realized crystallinity higher than SPE thin films, and also had flatter surfaces and sharper interfaces than RDE+MBE thin films. In SPE+MBE thin film growth, due to the initial SPE process with low temperature codeposition, thermal interdiffusion of Fe and Si was suppressed, resulting in the surface flatness and abrupt interface. Second high temperature MBE process improved the crystallinity. We also investigated thermoelectric properties of these β-FeSi2 thin films. Structural factors affecting the thermoelectric properties of RDE+MBE, SPE, and SPE+MBE thin films were investigated.

  6. Spontaneous doping on high quality talc-graphene-hBN van der Waals heterostructures

    NASA Astrophysics Data System (ADS)

    Mania, E.; Alencar, A. B.; Cadore, A. R.; Carvalho, B. R.; Watanabe, K.; Taniguchi, T.; Neves, B. R. A.; Chacham, H.; Campos, L. C.

    2017-09-01

    Steady doping, added to its remarkable electronic properties, would make graphene a valuable commodity in the solar cell market, as energy power conversion could be substantially increased. Here we report a graphene van der Waals heterostructure which is able to spontaneously dope graphene (p-type) up to n ~ 2.2  ×  1013 cm-2 while providing excellent charge mobility (μ ~ 25 000 cm2 V-1 s-1). Such properties are achieved via deposition of graphene on atomically flat layered talc, a natural and abundant dielectric crystal. Raman investigation shows a preferential charge accumulation on graphene-talc van der Waals heterostructures, which are investigated through the electronic properties of talc/graphene/hBN heterostructure devices. These heterostructures preserve graphene’s good electronic quality, verified by the observation of quantum Hall effect at low magnetic fields (B  =  0.4 T) at T  =  4.2 K. In order to investigate the physical mechanisms behind graphene-on-talc p-type doping, we performed first-principles calculations of their interface structural and electronic properties. In addition to potentially improving solar cell efficiency, graphene doping via van der Waals stacking is also a promising route towards controlling the band gap opening in bilayer graphene, promoting a steady n or p type doping in graphene and, eventually, providing a new path to access superconducting states in graphene, predicted to exist only at very high doping.

  7. Plasmonic Films Can Easily Be Better: Rules and Recipes

    PubMed Central

    2015-01-01

    High-quality materials are critical for advances in plasmonics, especially as researchers now investigate quantum effects at the limit of single surface plasmons or exploit ultraviolet- or CMOS-compatible metals such as aluminum or copper. Unfortunately, due to inexperience with deposition methods, many plasmonics researchers deposit metals under the wrong conditions, severely limiting performance unnecessarily. This is then compounded as others follow their published procedures. In this perspective, we describe simple rules collected from the surface-science literature that allow high-quality plasmonic films of aluminum, copper, gold, and silver to be easily deposited with commonly available equipment (a thermal evaporator). Recipes are also provided so that films with optimal optical properties can be routinely obtained. PMID:25950012

  8. Selected highly charged ions as prospective candidates for optical clocks with quality factors larger than 1015

    NASA Astrophysics Data System (ADS)

    Yu, Yan-mei; Sahoo, B. K.

    2018-04-01

    The Ni12 +, Cu13 +, Pd12 +, and Ag13 + highly charged ions (HCIs) are proposed for making very accurate optical clocks with the fractional uncertainties below 10-19 level. These HCIs have simple atomic energy levels, clock transitions with quality factors larger than 1015, and optical magnetic-dipole (M 1 ) transitions that can be used for laser cooling and detecting quantum jumps on the clock transitions by the shelving method. To demonstrate the projected fractional uncertainties, we estimate orders of magnitude of the Zeeman, Stark, blackbody radiation, and electric quadrupole shifts of the clock transitions by performing calculations of the relevant atomic properties in the above HCIs.

  9. Effects of selected pectinolytic bacterial strains on water-retting of hemp and fibre properties.

    PubMed

    Di Candilo, M; Bonatti, P M; Guidetti, C; Focher, B; Grippo, C; Tamburini, E; Mastromei, G

    2010-01-01

    To study the effect of selected bacterial strains on hemp water-retting and properties of retted fibre. The trials were performed in laboratory tanks. The traditional water-retting process, without inoculum addition, was compared to a process modified by inoculating water tanks with two selected pectinolytic bacteria: the anaerobic strain Clostridium sp. L1/6 and the aerobic strain Bacillus sp. ROO40B. Six different incubation times were compared. Half the fibre obtained from each tank was combed. Micromorphological analyses were performed by scanning electron microscopy on uncombed and combed fibres. Moreover, organoleptic and chemical analyses of uncombed fibres were performed. The inoculum, besides speeding up the process, significantly improved the fibre quality. The fibre was not damaged by mechanical hackling, thanks to the good retting level obtained by the addition of selected strains, differently to what happened with the traditionally retted fibre. The best fibre quality was obtained after 3-4 days of retting with the addition of the bacterial inoculum. Retting is the major limitation to an efficient production of high-quality hemp fibres. The water-retting process and fibre quality were substantially improved by simultaneously inoculating water tanks with two selected pectinolytic strains.

  10. Modelling spatio-temporal heterogeneities in groundwater quality in Ghana: a multivariate chemometric approach.

    PubMed

    Armah, Frederick Ato; Paintsil, Arnold; Yawson, David Oscar; Adu, Michael Osei; Odoi, Justice O

    2017-08-01

    Chemometric techniques were applied to evaluate the spatial and temporal heterogeneities in groundwater quality data for approximately 740 goldmining and agriculture-intensive locations in Ghana. The strongest linear and monotonic relationships occurred between Mn and Fe. Sixty-nine per cent of total variance in the dataset was explained by four variance factors: physicochemical properties, bacteriological quality, natural geologic attributes and anthropogenic factors (artisanal goldmining). There was evidence of significant differences in means of all trace metals and physicochemical parameters (p < 0.001) between goldmining and non-goldmining locations. Arsenic and turbidity produced very high value F's demonstrating that 'physical properties and chalcophilic elements' was the function that most discriminated between non-goldmining and goldmining locations. Variations in Escherichia coli and total coliforms were observed between the dry and wet seasons. The overall predictive accuracy of the discriminant function showed that non-goldmining locations were classified with slightly better accuracy (89%) than goldmining areas (69.6%). There were significant differences between the underlying distributions of Cd, Mn and Pb in the wet and dry seasons. This study emphasizes the practicality of chemometrics in the assessment and elucidation of complex water quality datasets to promote effective management of groundwater resources for sustaining human health.

  11. Impact of production practices on physicochemical properties of rice grain quality.

    PubMed

    Bryant, Rolfe J; Anders, Merle; McClung, Anna

    2012-02-01

    Rice growers are interested in new technologies that can reduce input costs while maintaining high field yields and grain quality. The bed-and-furrow (BF) water management system benefits farmers through decreased water usage, labor, and fuel as compared to standard flood management. Fertilizer inputs can be reduced by producing rice in rotation with soybeans, a nitrogen-fixing crop, and with the use of slow-release fertilizers that reduce nitrogen volatilization and run-off. However, the influence of these cultural management practices on rice physicochemical properties is unknown. Our objective was to evaluate the influence of nitrogen fertilizer source, water management system, and crop rotation on rice grain quality. Grain protein concentration was lower in a continuous rice production system than in a rice-soybean rotation. Neither amylose content nor gelatinization temperature was altered by fertilizer source, crop rotation, or water management. BF water management decreased peak and breakdown viscosities relative to a flooded system. Peak and final paste viscosities were decreased by all fertilizer sources, whereas, crop rotation had no influence on the Rapid Visco Analyser profile. Sustainable production systems that decrease water use and utilize crop rotations and slow-release fertilizers have no major impact on rice physicochemical properties. Published 2011 by John Wiley & Sons, Ltd.

  12. Biologically relevant photoacoustic imaging phantoms with tunable optical and acoustic properties

    PubMed Central

    Vogt, William C.; Jia, Congxian; Wear, Keith A.; Garra, Brian S.; Joshua Pfefer, T.

    2016-01-01

    Abstract. Established medical imaging technologies such as magnetic resonance imaging and computed tomography rely on well-validated tissue-simulating phantoms for standardized testing of device image quality. The availability of high-quality phantoms for optical-acoustic diagnostics such as photoacoustic tomography (PAT) will facilitate standardization and clinical translation of these emerging approaches. Materials used in prior PAT phantoms do not provide a suitable combination of long-term stability and realistic acoustic and optical properties. Therefore, we have investigated the use of custom polyvinyl chloride plastisol (PVCP) formulations for imaging phantoms and identified a dual-plasticizer approach that provides biologically relevant ranges of relevant properties. Speed of sound and acoustic attenuation were determined over a frequency range of 4 to 9 MHz and optical absorption and scattering over a wavelength range of 400 to 1100 nm. We present characterization of several PVCP formulations, including one designed to mimic breast tissue. This material is used to construct a phantom comprised of an array of cylindrical, hemoglobin-filled inclusions for evaluation of penetration depth. Measurements with a custom near-infrared PAT imager provide quantitative and qualitative comparisons of phantom and tissue images. Results indicate that our PVCP material is uniquely suitable for PAT system image quality evaluation and may provide a practical tool for device validation and intercomparison. PMID:26886681

  13. Development of solvent-free offset ink using vegetable oil esters and high molecular-weight resin.

    PubMed

    Park, Jung Min; Kim, Young Han; Kim, Sung Bin

    2013-01-01

    In the development of solvent-free offset ink, the roles of resin molecular weight and used solvent on the ink performance were evaluated by examining the relationship between the various properties of resin and solvent and print quality. To find the best performing resin, the soy-oil fatty acid methyl ester (FAME) was applied to the five modified-phenolic resins having different molecular weights. It is found from the experimental results that the ink made of higher molecular weight and better solubility resin gives better printability and print quality. It is because larger molecular weight resin with better solubility gives higher rate of ink transfer. From the ink application of different esters to high molecular weight resin, the best printing performance was yielded from the soy-oil fatty acid butyl ester (FABE). It is due to its high kinematic viscosity resulting in the smallest change of ink transfer weight upon multiple number of printing, which improves the stability of ink quality.

  14. Sn-doped Bi 1.1Sb 0.9Te 2S bulk crystal topological insulator with excellent properties

    DOE PAGES

    S. K. Kushwaha; Pletikosic, I.; Liang, T.; ...

    2016-04-27

    A long-standing issue in topological insulator research has been to find a bulk single crystal material that provides a high quality platform for characterizing topological surface states without interference from bulk electronic states. This material would ideally be a bulk insulator, have a surface state Dirac point energy well isolated from the bulk valence and conduction bands, display quantum oscillations from the surface state electrons, and be growable as large, high quality bulk single crystals. Here we show that this materials obstacle is overcome by bulk crystals of lightly Sn-doped Bi 1.1Sb 0.9Te 2S grown by the Vertical Bridgeman method.more » We characterize Sn-BSTS via angle-resolved photoemission spectroscopy, scanning tunneling microscopy, transport studies, X-ray diffraction, and Raman scattering. We present this material as a high quality topological insulator that can be reliably grown as bulk single crystals and thus studied by many researchers interested in topological surface states.« less

  15. Advanced Capacitor with SiC for High Temperature Applications

    NASA Astrophysics Data System (ADS)

    Tsao, B. H.; Ramalingam, M. L.; Bhattacharya, R. S.; Carr, Sandra Fries

    1994-07-01

    An advanced capacitor using SiC as the dielectric material has been developed for high temperature, high power, and high density electronic components for aircraft and aerospace application. The conventional capacitor consists of a large number of metallized polysulfone films that are arranged in parallel and enclosed in a sealed metal case. However, problems with electrical failure, thermal failure, and dielectric flow were experienced by Air Force suppliers for the component and subsystem for lack of suitable properties of the dielectric material. The high breakdown electrical field, high thermal conductivity, and high temperature operational resistance of SiC compared to similar properties of the conventional ceramic and polymer capacitor would make it a better choice for a high temperature, and high power capacitor. The quality of the SiC film was evaluated. The electrical parameters, such as the capacitance, dissipation factor, equivalent series resistance, and dielectric withstand voltage, were evaluated. The prototypical capacitors are currently being fabricated using SiC film.

  16. Exploiting mAb structure characteristics for a directed QbD implementation in early process development.

    PubMed

    Karlberg, Micael; von Stosch, Moritz; Glassey, Jarka

    2018-03-07

    In today's biopharmaceutical industries, the lead time to develop and produce a new monoclonal antibody takes years before it can be launched commercially. The reasons lie in the complexity of the monoclonal antibodies and the need for high product quality to ensure clinical safety which has a significant impact on the process development time. Frameworks such as quality by design are becoming widely used by the pharmaceutical industries as they introduce a systematic approach for building quality into the product. However, full implementation of quality by design has still not been achieved due to attrition mainly from limited risk assessment of product properties as well as the large number of process factors affecting product quality that needs to be investigated during the process development. This has introduced a need for better methods and tools that can be used for early risk assessment and predictions of critical product properties and process factors to enhance process development and reduce costs. In this review, we investigate how the quantitative structure-activity relationships framework can be applied to an existing process development framework such as quality by design in order to increase product understanding based on the protein structure of monoclonal antibodies. Compared to quality by design, where the effect of process parameters on the drug product are explored, quantitative structure-activity relationships gives a reversed perspective which investigates how the protein structure can affect the performance in different unit operations. This provides valuable information that can be used during the early process development of new drug products where limited process understanding is available. Thus, quantitative structure-activity relationships methodology is explored and explained in detail and we investigate the means of directly linking the structural properties of monoclonal antibodies to process data. The resulting information as a decision tool can help to enhance the risk assessment to better aid process development and thereby overcome some of the limitations and challenges present in QbD implementation today.

  17. Power ultrasound as a pretreatment to convective drying of mulberry (Morus alba L.) leaves: Impact on drying kinetics and selected quality properties.

    PubMed

    Tao, Yang; Wang, Ping; Wang, Yilin; Kadam, Shekhar U; Han, Yongbin; Wang, Jiandong; Zhou, Jianzhong

    2016-07-01

    The effect of ultrasound pretreatment prior to convective drying on drying kinetics and selected quality properties of mulberry leaves was investigated in this study. Ultrasound pretreatment was carried out at 25.2-117.6 W/L for 5-15 min in a continuous mode. After sonication, mulberry leaves were dried in a hot-air convective dryer at 60 °C. The results revealed that ultrasound pretreatment not only affected the weight of mulberry leaves, it also enhanced the convective drying kinetics and reduced total energy consumption. The drying kinetics was modeled using a diffusion model considering external resistance and effective diffusion coefficient De and mass transfer coefficient hm were identified. Both De and hm during convective drying increased with the increase of acoustic energy density (AED) and ultrasound duration. However, De and hm increased slowly at high AED levels. Furthermore, ultrasound pretreatment had a more profound influence on internal mass transfer resistance than on external mass transfer resistance during drying according to Sherwood numbers. Regarding the quality properties, the color, antioxidant activity and contents of several bioactive compounds of dried mulberry leaves pretreated by ultrasound at 63.0 W/L for 10 min were similar to that of mulberry leaves without any pretreatments. Overall, ultrasound pretreatment is effective to shorten the subsequent drying time of mulberry leaves without damaging the quality of final product. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Solid recovered fuel: influence of waste stream composition and processing on chlorine content and fuel quality.

    PubMed

    Velis, Costas; Wagland, Stuart; Longhurst, Phil; Robson, Bryce; Sinfield, Keith; Wise, Stephen; Pollard, Simon

    2012-02-07

    Solid recovered fuel (SRF) produced by mechanical-biological treatment (MBT) of municipal waste can replace fossil fuels, being a CO(2)-neutral, affordable, and alternative energy source. SRF application is limited by low confidence in quality. We present results for key SRF properties centered on the issue of chlorine content. A detailed investigation involved sampling, statistical analysis, reconstruction of composition, and modeling of SRF properties. The total chlorine median for a typical plant during summer operation was 0.69% w/w(d), with lower/upper 95% confidence intervals of 0.60% w/w(d) and 0.74% w/w(d) (class 3 of CEN Cl indicator). The average total chlorine can be simulated, using a reconciled SRF composition before shredding to <40 mm. The relative plastics vs paper mass ratios in particular result in an SRF with a 95% upper confidence limit for ash content marginally below the 20% w/w(d) deemed suitable for certain power plants; and a lower 95% confidence limit of net calorific value (NCV) at 14.5 MJ kg(ar)(-1). The data provide, for the first time, a high level of confidence on the effects of SRF composition on its chlorine content, illustrating interrelationships with other fuel properties. The findings presented here allow rational debate on achievable vs desirable MBT-derived SRF quality, informing the development of realistic SRF quality specifications, through modeling exercises, needed for effective thermal recovery.

  19. Synergistic effect of Aspergillus tubingensis CTM 507 glucose oxidase in presence of ascorbic acid and alpha amylase on dough properties, baking quality and shelf life of bread.

    PubMed

    Kriaa, Mouna; Ouhibi, Rabeb; Graba, Héla; Besbes, Souhail; Jardak, Mohamed; Kammoun, Radhouane

    2016-02-01

    The impact of Aspergillus tubingensis glucose oxidase (GOD) in combination with α-amylase and ascorbic acid on dough properties, qualities and shelf life of bread was investigated. Regression models of alveograph and texture parameters of dough and bread were adjusted. Indeed, the mixture of GOD (44 %) and ascorbic acid (56 %) on flour containing basal improver showed its potential as a corrective action to get better functional and rheological properties of dough and bread texture. Furthermore, wheat flour containing basal additives and enriched with GOD (63.8 %), ascorbic acid (32 %) and α- amylase (4.2 %) led to high technological bread making parameters, to decrease the crumb firmness and chewiness and to improve elasticity, adhesion, cohesion and specific volume of bread. In addition to that, the optimized formulation addition significantly reduced water activity and therefore decreased bread susceptibility to microbial spoilage. These findings demonstrated that GOD could partially substitute not only ascorbic acid but also α-amylase. The generated models allowed to predict the behavior of wheat flour containing additives in the range of values tested and to define the additives formula that led to desired rheological and baking qualities of dough. This fact provides new perspectives to compensate flour quality deficiencies at the moment of selecting raw materials and technological parameters reducing the production costs and facilitating gluten free products development. Graphical abstractᅟ.

  20. Evaluation of cross-cultural adaptation and measurement properties of breast cancer-specific quality-of-life questionnaires: a systematic review.

    PubMed

    Oliveira, Indiara Soares; da Cunha Menezes Costa, Lucíola; Fagundes, Felipe Ribeiro Cabral; Cabral, Cristina Maria Nunes

    2015-05-01

    To assess the procedures of translation, cross-cultural adaptation, and measurement properties of breast cancer-specific quality-of-life questionnaires. Searches were conducted in the databases MEDLINE, EMBASE, CINAHL, and SciELO using the keywords: "Questionnaires," "Quality of life," and "Breast cancer." The studies were analyzed in terms of methodological quality according to the guidelines for the procedure of cross-cultural adaptation and the quality criteria for measurement properties of questionnaires. We found 24 eligible studies. Most of the articles assessed the translation and measurement properties of the instrument EORTC QLQ-BR23. Description about translation and cross-cultural adaptation was incomplete in 11 studies. Translation and back translation were the most tested phases, and synthesis of the translation was the most omitted phase in the articles. Information on assessing measurement properties was provided incompletely in 23 articles. Internal consistency was the most tested property in all of the eligible articles, but none of them provided information on agreement. Construct validity was adequately tested in only three studies that used the FACT-B and QLQ-BR23. Eight articles provided information on reliability; however, only four found positive classification. Responsiveness was tested in four articles, and ceiling and floor effects were tested in only three articles. None of the instruments showed fully adequate quality. There is limited evidence on cross-cultural adaptations and measurement properties; therefore, it is recommended that caution be exercised when using breast cancer-specific quality-of-life questionnaires that have been translated, adapted, and tested.

  1. The quality of instruments to assess the process of shared decision making: A systematic review.

    PubMed

    Gärtner, Fania R; Bomhof-Roordink, Hanna; Smith, Ian P; Scholl, Isabelle; Stiggelbout, Anne M; Pieterse, Arwen H

    2018-01-01

    To inventory instruments assessing the process of shared decision making and appraise their measurement quality, taking into account the methodological quality of their validation studies. In a systematic review we searched seven databases (PubMed, Embase, Emcare, Cochrane, PsycINFO, Web of Science, Academic Search Premier) for studies investigating instruments measuring the process of shared decision making. Per identified instrument, we assessed the level of evidence separately for 10 measurement properties following a three-step procedure: 1) appraisal of the methodological quality using the COnsensus-based Standards for the selection of health status Measurement INstruments (COSMIN) checklist, 2) appraisal of the psychometric quality of the measurement property using three possible quality scores, 3) best-evidence synthesis based on the number of studies, their methodological and psychometrical quality, and the direction and consistency of the results. The study protocol was registered at PROSPERO: CRD42015023397. We included 51 articles describing the development and/or evaluation of 40 shared decision-making process instruments: 16 patient questionnaires, 4 provider questionnaires, 18 coding schemes and 2 instruments measuring multiple perspectives. There is an overall lack of evidence for their measurement quality, either because validation is missing or methods are poor. The best-evidence synthesis indicated positive results for a major part of instruments for content validity (50%) and structural validity (53%) if these were evaluated, but negative results for a major part of instruments when inter-rater reliability (47%) and hypotheses testing (59%) were evaluated. Due to the lack of evidence on measurement quality, the choice for the most appropriate instrument can best be based on the instrument's content and characteristics such as the perspective that they assess. We recommend refinement and validation of existing instruments, and the use of COSMIN-guidelines to help guarantee high-quality evaluations.

  2. Nutritional Quality and Physicochemical Characteristics of Defatted Bovine Liver Treated by Supercritical Carbon Dioxide and Organic Solvent

    PubMed Central

    Kang, Sung-Won; Kim, Hye-Min; Rahman, M. Shafiur; Kim, Ah-Na; Yang, Han-Sul

    2017-01-01

    Defatted bovine liver (DBL) is a potential source of protein and minerals. Supercritical carbon dioxide (SC-CO2) and a traditional organic solvent method were used to remove lipid from bovine liver, and the quality characteristics of a control bovine liver (CBL), bovine liver defatted by SC-CO2 (DBLSC-CO2) at different pressures, and bovine liver defatted by organic solvent (DBL-OS) were compared. The DBLSC-CO2 samples had significantly higher (p<0.05) protein, amino acid, carbohydrate, and fiber contents than CBL and DBL-OS. There was a higher yield of lipid from CBL when using SC-CO2 than the organic solvent method. SDS-PAGE analysis demonstrated that the CBL and DBLSC-CO2 had protein bands of a similar intensity and area, whereas DBL-OS appeared extremely poor bands or no bands due to the degradation of proteins, particularly in the 50 to 75 kDa and 20 to 25 kDa molecular weight ranges. In addition, DBLSC-CO2 was shown to have superior functional properties in terms of total soluble content, water and oil absorption, and foaming and emulsification properties. Therefore, SC-CO2 treatment offers a nutritionally and environmentally friendly approach for the removal of lipid from high protein food sources. In addition, SC-CO2 may be a better substitute of traditional organic solvent extraction for producing more stable and high quality foods with high-protein, fat-free, and low calorie contents. PMID:28316468

  3. Nutritional Quality and Physicochemical Characteristics of Defatted Bovine Liver Treated by Supercritical Carbon Dioxide and Organic Solvent.

    PubMed

    Kang, Sung-Won; Kim, Hye-Min; Rahman, M Shafiur; Kim, Ah-Na; Yang, Han-Sul; Choi, Sung-Gil

    2017-01-01

    Defatted bovine liver (DBL) is a potential source of protein and minerals. Supercritical carbon dioxide (SC-CO 2 ) and a traditional organic solvent method were used to remove lipid from bovine liver, and the quality characteristics of a control bovine liver (CBL), bovine liver defatted by SC-CO 2 (DBLSC-CO 2 ) at different pressures, and bovine liver defatted by organic solvent (DBL-OS) were compared. The DBLSC-CO 2 samples had significantly higher ( p <0.05) protein, amino acid, carbohydrate, and fiber contents than CBL and DBL-OS. There was a higher yield of lipid from CBL when using SC-CO 2 than the organic solvent method. SDS-PAGE analysis demonstrated that the CBL and DBLSC-CO 2 had protein bands of a similar intensity and area, whereas DBL-OS appeared extremely poor bands or no bands due to the degradation of proteins, particularly in the 50 to 75 kDa and 20 to 25 kDa molecular weight ranges. In addition, DBLSC-CO 2 was shown to have superior functional properties in terms of total soluble content, water and oil absorption, and foaming and emulsification properties. Therefore, SC-CO 2 treatment offers a nutritionally and environmentally friendly approach for the removal of lipid from high protein food sources. In addition, SC-CO 2 may be a better substitute of traditional organic solvent extraction for producing more stable and high quality foods with high-protein, fat-free, and low calorie contents.

  4. Advanced Taste Sensors Based on Artificial Lipids with Global Selectivity to Basic Taste Qualities and High Correlation to Sensory Scores

    PubMed Central

    Kobayashi, Yoshikazu; Habara, Masaaki; Ikezazki, Hidekazu; Chen, Ronggang; Naito, Yoshinobu; Toko, Kiyoshi

    2010-01-01

    Effective R&D and strict quality control of a broad range of foods, beverages, and pharmaceutical products require objective taste evaluation. Advanced taste sensors using artificial-lipid membranes have been developed based on concepts of global selectivity and high correlation with human sensory score. These sensors respond similarly to similar basic tastes, which they quantify with high correlations to sensory score. Using these unique properties, these sensors can quantify the basic tastes of saltiness, sourness, bitterness, umami, astringency and richness without multivariate analysis or artificial neural networks. This review describes all aspects of these taste sensors based on artificial lipid, ranging from the response principle and optimal design methods to applications in the food, beverage, and pharmaceutical markets. PMID:22319306

  5. A facile and green preparation of high-quality CdTe semiconductor nanocrystals at room temperature

    NASA Astrophysics Data System (ADS)

    Liu, Yan; Shen, Qihui; Yu, Dongdong; Shi, Weiguang; Li, Jixue; Zhou, Jianguang; Liu, Xiaoyang

    2008-06-01

    One chemical reagent, hydrazine hydrate, was discovered to accelerate the growth of semiconductor nanocrystals (cadmium telluride) instead of additional energy, which was applied to the synthesis of high-quality CdTe nanocrystals at room temperature and ambient conditions within several hours. Under this mild condition the mercapto stabilizers were not destroyed, and they guaranteed CdTe nanocrystal particle sizes with narrow and uniform distribution over the largest possible range. The CdTe nanocrystals (photoluminescence emission range of 530-660 nm) synthesized in this way had very good spectral properties; for instance, they showed high photoluminescence quantum yield of up to 60%. Furthermore, we have succeeded in detecting the living Borrelia burgdorferi of Lyme disease by its photoluminescence image using CdTe nanocrystals.

  6. Screening of Functional Rhizopus stolonifer for Alcohol Fermentation and Production of High Quality Korean Traditional Rice Wine

    PubMed Central

    Song, Jung-Hwa; Kim, Jae-Ho; Ahn, Byung-Hak

    2010-01-01

    Different strains of mold were screened for the production of high quality Korean traditional rice wine with anti-hypertension and good acceptability. We isolated 867 nuruk mold strains and selected 24 for further study based on measurement of amylase activity. Among them, mold No. 17 showed high ethanol production upon fermentation with Saccharomyces cerevisiae as well as anti-hypertensive properties. The No. 17 strain was therefore selected as the functional mold and later identified as Rhizopus stolonifer based on molecular biological characteristics. Optimal fermentation conditions for the brewing of anti-hypertensive traditional rice wine comprised the addition of R. stolonifer No. 17 koji at a concentration of 35 sp/g and a fermentation period of 10 days at 25℃ using S. cerevisiae. PMID:23956639

  7. Screening of Functional Rhizopus stolonifer for Alcohol Fermentation and Production of High Quality Korean Traditional Rice Wine.

    PubMed

    Song, Jung-Hwa; Kim, Jae-Ho; Ahn, Byung-Hak; Lee, Jong-Soo

    2010-06-01

    Different strains of mold were screened for the production of high quality Korean traditional rice wine with anti-hypertension and good acceptability. We isolated 867 nuruk mold strains and selected 24 for further study based on measurement of amylase activity. Among them, mold No. 17 showed high ethanol production upon fermentation with Saccharomyces cerevisiae as well as anti-hypertensive properties. The No. 17 strain was therefore selected as the functional mold and later identified as Rhizopus stolonifer based on molecular biological characteristics. Optimal fermentation conditions for the brewing of anti-hypertensive traditional rice wine comprised the addition of R. stolonifer No. 17 koji at a concentration of 35 sp/g and a fermentation period of 10 days at 25℃ using S. cerevisiae.

  8. A review of earth abundant ZnO-based materials for thermoelectric and photovoltaic applications

    NASA Astrophysics Data System (ADS)

    Wang, Yang; Zhou, Chuanle; Elquist, Aline M.; Ghods, Amirhossein; Saravade, Vishal G.; Lu, Na; Ferguson, Ian

    2018-02-01

    Zinc oxide (ZnO) is an earth abundant wide bandgap semiconductor of great interest in the recent years. ZnO has many unique properties, such as non-toxic, large direct bandgap, high exciton binding energy, high transparency in visible and infrared spectrum, large Seebeck coefficient, high thermal stability, high electron diffusivity, high electron mobility, and availability of various nanostructures, making it a promising material for many applications. The growth techniques of ZnO is reviewed in this work, including sputtering, PLD, MOCVD and MBE techniques, focusing on the crystalline quality, electrical and optical properties. The problem with p-type doping ZnO is also discussed, and the method to improve p-type doping efficiency is reviewed. This paper also summarizes the current state of art of ZnO in thermoelectric and photovoltaic applications, including the key parameters, different device structures, and future development.

  9. High Temperature Transfer Molding Resins: Preliminary Composite Properties of PETI-375

    NASA Technical Reports Server (NTRS)

    Connell, J. W.; Smith, J. G., Jr.; Hergenrother, P. M.; Criss, J. M., Jr.

    2004-01-01

    As part of an ongoing effort to develop materials for resin transfer molding (RTM) of high performance/high temperature composites, a new phenylethynyl containing imide designated as PETI-375 has been under evaluation. PETI-375 was prepared using 2,3,3 ,4 - biphenyltetracarboxylic dianhydride (a-BPDA), 1,3-bis(4-aminophenoxy)benzene and 2,2 - bis(trifluoromethyl)benzidine and endcapped with 4-phenylethynylphthalic anhydride. This material exhibited a stable melt viscosity of 0.1-0.4 Pa sec at 280 C. High quality, void-free laminates were fabricated by high temperature RTM using unsized T-650 carbon fabric and evaluated. After curing for 1 hour at 371 C, the laminates exhibited a glass transition temperature of approx. 375 C by thermomechanical analysis. The laminates were essentially void and microcrack free as evidenced by optical microscopic examination. The chemistry, physical, and composite properties of PETI-375 will be discussed.

  10. A quality by design approach to investigate the effect of mannitol and dicalcium phosphate qualities on roll compaction.

    PubMed

    Souihi, Nabil; Dumarey, Melanie; Wikström, Håkan; Tajarobi, Pirjo; Fransson, Magnus; Svensson, Olof; Josefson, Mats; Trygg, Johan

    2013-04-15

    Roll compaction is a continuous process for solid dosage form manufacturing increasingly popular within pharmaceutical industry. Although roll compaction has become an established technique for dry granulation, the influence of material properties is still not fully understood. In this study, a quality by design (QbD) approach was utilized, not only to understand the influence of different qualities of mannitol and dicalcium phosphate (DCP), but also to predict critical quality attributes of the drug product based solely on the material properties of that filler. By describing each filler quality in terms of several representative physical properties, orthogonal projections to latent structures (OPLS) was used to understand and predict how those properties affected drug product intermediates as well as critical quality attributes of the final drug product. These models were then validated by predicting product attributes for filler qualities not used in the model construction. The results of this study confirmed that the tensile strength reduction, known to affect plastic materials when roll compacted, is not prominent when using brittle materials. Some qualities of these fillers actually demonstrated improved compactability following roll compaction. While direct compression qualities are frequently used for roll compacted drug products because of their excellent flowability and good compaction properties, this study revealed that granules from these qualities were more poor flowing than the corresponding powder blends, which was not seen for granules from traditional qualities. The QbD approach used in this study could be extended beyond fillers. Thus any new compound/ingredient would first be characterized and then suitable formulation characteristics could be determined in silico, without running any additional experiments. Copyright © 2013 Elsevier B.V. All rights reserved.

  11. Effect of arsenic on the optical properties of GaSb-based type II quantum wells with quaternary GaInAsSb layers

    NASA Astrophysics Data System (ADS)

    Janiak, F.; Motyka, M.; Sek, G.; Dyksik, M.; Ryczko, K.; Misiewicz, J.; Weih, R.; Höfling, S.; Kamp, M.; Patriarche, G.

    2013-12-01

    Optical properties of molecular beam epitaxially grown type II "W" shaped GaSb/AlSb/InAs/GaIn(As)Sb/InAs/AlSb/GaSb quantum wells (QWs) designed for the active region of interband cascade lasers have been investigated. Temperature dependence of Fourier-transformed photoluminescence and photoreflectance was employed to probe the effects of addition of arsenic into the original ternary valence band well of GaInSb. It is revealed that adding arsenic provides an additional degree of freedom in terms of band alignment and strain tailoring and allows enhancing the oscillator strength of the active type II transition. On the other hand, however, arsenic incorporation apparently also affects the structural and optical material quality via generating carrier trapping states at the interfaces, which can deteriorate the radiative efficiency. These have been evidenced in several spectroscopic features and are also confirmed by cross-sectional transmission electron microscopy images. While arsenic incorporation into type II QWs is a powerful heterostructure engineering tool for optoelectronic devices, a compromise has to be found between ideal band structure properties and high quality morphological properties.

  12. Characterization of rice physicochemical properties local rice germplasm from Tana Toraja regency of South Sulawesi

    NASA Astrophysics Data System (ADS)

    Masniawati, A.; Marwah Asrul, Nur Al; Johannes, E.; Asnady, M.

    2018-03-01

    The research about the characterization of physicochemical properties from local rice germplasm of Tana Toraja’s Regency, South Sulawesi aims to determine the physicochemical properties of rice as a parameter to indicate the quality of cooking. Local varieties categorized as germplasm that needs to be protected for future varietal improvement.In this research, the researchers used seven varieties of local rice. The parameters analyzed including physicochemical properties of amylose content, protein content, gel consistency, and gelatinization temperature. Percentage of amylose content ranged from 2 to 18 %. Pare Bumbungan and Pare Lalodo are categorized as waxy rice and Pare Ambo, Pare Bau, Pare Kobo, Pare Rogon and Pare Tallang are categorized as low amylose content. The percentage of protein content ranged from 7.3 to 9.5 %. Gelatinization temperature of rice showed high gelatinization temperature. Pare Bumbungan, Pare Kobo, Pare Lalodo, and Pare Rogon are categorized as soft gel consistency (˃50 mm). Pare Ambo, Pare Bau and Pare Tallang are categorized as medium gel consistency (36-50m). Pare Rogon and Pare Kobo are two kinds of rice varieties according to the quality of cooking criteria for consumers in Indonesia.

  13. Structure of scintillations in Neptune's occultation shadow

    NASA Technical Reports Server (NTRS)

    Hubbard, W. B.; Lellouch, Emmanuel; Sicardy, Bruno; Brahic, Andre; Vilas, Faith

    1988-01-01

    An exceptionally high-quality data set from a Neptune occultation is used here to derive a number of new results about the statistical properties of the fluctuations of the intensity distribution in various parts of Neptune's occultation shadow. An approximate numerical ray-tracing model which successfully accounts for many of the qualitative aspects of the observed intensity fluctuation distribution is introduced. Strong refractive scintillation is simulated by including the effects of 'turbulence' with projected atmospheric properties allowed to vary in both the direction perpendicular and parallel to the limb, and an explicit two-dimensional picture of a typical intensity distribution throughout an occulting planet's shadow is presented. The results confirm the existence of highly anisotropic turbulence.

  14. Fabrication of an Fe80.5Si7.5B6Nb5Cu Amorphous-Nanocrystalline Powder Core with Outstanding Soft Magnetic Properties

    NASA Astrophysics Data System (ADS)

    Zhang, Zongyang; Liu, Xiansong; Feng, Shuangjiu; Rehman, Khalid Mehmood Ur

    2018-03-01

    In this study, the melt spinning method was used to develop Fe80.5Si7.5B6Nb5Cu amorphous ribbons in the first step. Then, the Fe80.5Si7.5B6Nb5Cu amorphous-nanocrystalline core with a compact microstructure was obtained by multiple processes. The main properties of the magnetic powder core, such as micromorphology, thermal behavior, permeability, power loss and quality factor, have been analyzed. The obtained results show that an Fe80.5Si7.5B6Nb5Cu amorphous-nanocrystalline duplex core has high permeability (54.8-57), is relatively stable at different frequencies and magnetic fields, and the maximum power loss is only 313 W/kg; furthermore, it has a good quality factor.

  15. Development of LaRC 160/NR150B2 polyimide graphite hybrid composites. [for shuttle applications

    NASA Technical Reports Server (NTRS)

    Maximovich, M. G.; Bergren, O.; Lockerby, S.

    1980-01-01

    A method for co-curing NR150B2 and LaRC 160 prepregs into hybrid composites was developed. The processing characteristics and the properties of the hybrid composites were compared with those of laminates fabricated from the individual component prepregs. Resin forms were selected and optimized and a new NR150 formulation was investigated. The new formulation greatly facilitated the processing and the performance of this system. Quality control techniques were evaluated and developed, high quality laminates were fabricated from both individual resin systems, and hybrid laminates were successfully co-cured. Optimum hybrid forms were investigated and several novel approaches were explored. An optimum hybrid system was developed that utilizes a LaRC curing schedule but shows no degradation of mechanical properties after aging 500 hr in air at 260 C.

  16. Overview on the General Approaches to Improve Gluten-Free Pasta and Bread

    PubMed Central

    Padalino, Lucia; Conte, Amalia; Del Nobile, Matteo Alessandro

    2016-01-01

    The use of gluten-free products is increasing since a growing number of people are suffering from celiac disease and thereby need gluten-free diet. Gluten is responsible for the visco-elastic characteristics of wheat-based products; therefore, its lack makes the gluten-free products not similar to wheat-based product, with scarce textural properties. This reason constitutes the major industrial limitation. Thus, obtaining good-quality gluten-free products represents a technological challenge. This review reports the main strategies adopted to produce high quality gluten-free pasta and bread. They are mainly obtained by the utilization of specific ingredients (hydrocolloids, proteins or enzymes) to be incorporated into the standard formulation or the adoption of proper technological variables that can enhance above all the functional properties, the texture and the taste. PMID:28231182

  17. Main Parameters of Soil Quality and it's Management Under Changing Climate

    NASA Astrophysics Data System (ADS)

    László Phd, M., ,, Dr.

    2009-04-01

    Reviewing Paper Introduction: Malcolm summarised the topic of soil quality and it's management in a well synthetized form in 2000. So, the soils are fundamental to the well-being and productivity of agricultural and natural ecosystems. Soil quality is a concept being developed to characterize the usefulness and health of soils. Soil quality includes soil fertility, potential productivity, contaminant levels and their effects, resource sustainability and environmental quality. A general definition of soil quality is the degree of fitness of a soil for a specific use. The existence of multiple definitions suggests that the soil quality concept continues to evolve (Kádár, 1992; Várallyay, 1992, 1994, 2005; Németh, 1996; Malcolm, 2000; Márton, 2005; Márton et al. 2007). Recent attention has focused on the sustainability of human uses of soil, based on concerns that soil quality may be declining (Boehn and Anderson, 1997). We use sustainable to mean that a use or management of soil will sustain human well-being over time. Lal (1995) described the land resources of the world (of which soil is one component) as "finite, fragile, and nonrenewable," and reported that only about 22% (3.26 billion ha) of the total land area on the globe is suitable for cultivation and at present, only about 3% (450 million ha) has a high agricultural production capacity. Because soil is in large but finite supply, and some soil components cannot be renewed within a human time frame, the condition of soils in agriculture and the environment is an issue of global concern (Howard, 1993; FAO, 1997). Concerns include soil losses from erosion, maintaining agricultural productivity and system sustainability, protecting natural areas, and adverse effects of soil contamination on human health (Haberern, 1992; Howard, 1993; Sims et al., 1997). Parr et al. (1992) state, "...soil degradation is the single most destructive force diminishing the world's soil resource base." Soil quality guidelines are intended to protect the ability of ecosystems to function properly (Kádár, 1992; Várallyay, 1992, 1994, 2005; Cook and Hendershot, 1996; Németh, 1996; Malcolm, 2000; Márton, 2005; Márton et al. 2007). The Hungarian Ministry of Environment and Water (HMEW, 2004) suggests that the Hungarian Regions should adopt a national policy "...that seeks to conserve and enhance soil quality...". Useful evaluation of soil quality requires agreement about why soil quality is important, how it is defined, how it should be measured, and how to respond to measurements with management, restoration, or conservation practices. Because determining soil quality requires one or more value judgments and because we have much to learn about soil, these issues are not easily addressed (Várallyay, 1992, 1994, 2005; Cook and Hendershot, 1996; Németh, 1996; Malcolm, 2000). Definitions of soil quality have been based both on human uses of soil and on the functions of soil within natural and agricultural ecosystems. For purposes of this work, we are showing soil quality within the context of managed agricultural ecosystems. To many in agriculture and agricultural research, productivity is analogous to soil quality. Maintaining soil quality is also a human health concern because air, groundwater and surface water consumed by humans can be adversely affected by mismanaged and contaminated soils, and because humans may be exposed to contaminated soils in residential areas (Kádár, 1992; Várallyay, 2005; Cook and Hendershot, 1996; Németh, 1996; Malcolm, 2000; Márton et al. 2007). Contamination may include heavy metals, toxic elements, excess nutrients, volatile and nonvolatile organics, explosives, radioactive isotopes and inhalable fibers (Sheppard et al., 1992; Cook and Hendershot, 1996). Soil quality is not determined by any single conserving or degrading process or property, and soil has both dynamic and relatively static properties that also vary spatially (Carter et al., 1997). Gregorich et al. (1994) state that "soil quality is a composite measure of both a soil's ability to function and how well it functions, relative to a specific use." Increasingly, contemporary discussion of soil quality includes the environmental cost of production and the potential for reclamation of degraded soils (Várallyay, 2005). Reasons for assessing soil quality in an agricultural or managed system may be somewhat different than reasons for assessing soil quality in a natural ecosystem. In an agricultural context, soil quality may be managed, to maximize production without adverse environmental effect, while in a natural ecosystem, soil quality may be observed, as a baseline value or set of values against which future changes in the system may be compared (Várallyay, 1994; Cook and Hendershot, 1996; Németh, 1996; Malcolm, 2000; Márton et al. 2007). Soil quality has historically been equated with agricultural productivity, and thus is not a new idea. Soil conservation practices to maintain soil productivity are as old as agriculture itself, with documentation dating to the Roman Empire (Jenny, 1961). The Storie Index (Storie, 1932) and USDA Land Capability Classification (Klingebiel and Montgomery, 1973) were developed to separate soils into different quality classes. Soil quality is implied in many decisions farmers make about land purchases and management, and in the economic value rural assessors place on agricultural land for purposes of taxation. Beginning in the 1930s, soil productivity ratings were developed in the United States and elsewhere to help farmers select crops and management practices that would maximize production and minimize erosion or other adverse environmental effects (Huddleston, 1984). These rating systems are important predecessors of recent attempts to quantitatively assess soil quality. In the 1970s, attempts were made to identify and protect soils of the highest productive capacity by defining "prime agricultural lands" (Miller, 1979). An idea related to soil quality is "carrying capacity". Carrying capacity is the number of individuals that can be supported in a given area (Budd, 1992). Soils with high productivity have high carrying capacity, and are considered to be high quality. Sustainability implies that a system does not exceed its carrying capacity over time. Recent attempts to define soil quality and develop indices to measure it have many of the properties of the earlier soil productivity ratings (Doran and Jones, 1996; Snakin et al., 1996; Seybold et al., 1997). Cox (1995) calls for national goals for soil quality that "... recognize the inherent links between soil, water and air quality." Haberern (1992) suggests that the decade of the 1990s is the time to study the soil as we have recognized and studied air quality and water quality in the preceding two decades. Air and water quality standards are generally based on maximum allowable concentrations of materials hazardous to human health. They are specified and enforced by regulators according to public uses of these resources. The result is that changes in air and water quality are now monitored to protect human health. With few exceptions, soil quality standards have not been set, nor have regulations been created regarding maintenance of soil quality (Várallyay, 2005; Cook and Hendershot, 1996; Malcolm, 2000; Márton et al. 2007). To the extent that soil has been the disposal site of hazardous wastes, as well as a pathway by which contamination or other applied chemicals may present a human health risk, sporadic 40 regulations of soil quality (in terms of contamination) does exist in the 27 European Union (EU) countries for not just new ones but an estimated 30 000 existing chemicals, today. These regulations are in the form of laws regulating hazardous waste, toxic substances, and pesticides. However, these standards are often contradictory, inconsistent with each other and with current methods of assessing risk. For example, in the United States, federal regulations supporting CERCLA (40 CFR) is a list of "hazardous substances" and the levels in various media (e.g., soil, water) to which the Environmental Protection Agency (EPA) must respond with a cleanup effort. However, EPA has fielded considerable controversy about contaminant levels and chemical forms that legitimately constitute a human health risk. Target cleanup levels have also been subject to debate and legislation. Soil quality assessment requires definition of a "clean" soil (Sims et al., 1997). From this point of view, good quality soil has been defined as posing "...no harm to any normal use by humans, plants or animals; not adversely affecting natural cycles or functions; and not contaminating other components of the environment" (Moen, 1988). The parallel to air and water quality is easy to draw on a conceptual level, but designation of soil quality standards is significantly complicated by soil variability and heterogeneity (Smith et al., 1993). Among the authors (Merker, 1956; Odell et al. 1984; Johnston et al., 1986; Reganold et al., 1990; Granatstein and Bezdicek, 1992; Kádár, 1992; Beke et al., 1994; Jenkinson et al., 1994; Schjenning et al., 1994; Murata et al., 1995; Biederbeck et al., 1996; Lindert et al., 1996; Romig et al., 1995; Warkentin, 1995; Carter et al., 1997; Gerzabeck et al., 1997; Seybold et al., 1997; Malcolm, 2000; Várallyay, 2005) and organizations defining soil quality are Larson and Pierce (1991), Karlen et al. (1997). The next section reviews some of the definitions and soil characteristics used to define soil quality. The reader should understand that the definition of soil quality and selection of soil characteristics needed to quantify soil quality are continuing to evolve. For example, Bouma (1989) recognized that an essential problem with definitions that produce carefully limited suitability classes is that empirical decisions must be made to separate the classes along what is essentially a continuum. That is, if soil organic matter is part of a soil quality definition, where on the continuum of soil organic matter content does one draw the line between a high quality and low quality soil? Does high organic matter content always indicate high soil quality? These are non-trivial questions under discussion by the soil science community. Carter et al. (1997) suggest a framework for evaluating soil quality that includes: 1. describing each soil function on which quality is to be based, 2. selecting soil characteristics or properties that influence the capacity of the soil to provide each function, 3. choosing indicators of characteristics that can be measured, and 4. using methods that provide accurate measurement of those indicators. The following soil functions appear frequently in the soil science literature: 1. soil maintains biological activity/productivity (Karlen et al., 1997), serves as medium for plant/crop growth (Arshad and Coen, 1992), supports plant productivity/yield (Arshad and Coen, 1992), supports human/animal health (Karlen et al., 1997); 2. partitions and regulates water/ solute flow through environment (Larson and Pierce, 1991; Arshad and Coen, 1992); 3. serves as an environmental buffer/filter (Larson and Pierce, 1991), maintains environmental quality (Arshad and Ccen, 1992); 4. cycles nutrients, water, energy and other elements through the biosphere (Anderson and Gregorich, 1984). Clearly, these functions are interrelated. Later in this chapter, discussion focuses on the first and third functions (productivity and environmental buffering) as encompassing those aspects of soil quality most debated in the literature. Larson and Pierce (1991) defined soil quality as "the capacity of a soil to function within the ecosystem boundaries and interact positively with the environment external to that ecosystem." Three soil functions are considered essential: provide a medium for plant growth, regulate and partition waterllow through the environment, and serve as an effective environmental filter. Arshad and Coen (1992) define soil quality as "the sustaining capability of a soil to accept, store and recycle water, minerals and energy for production of crops at optimum levels while preserving a healthy environment." They discuss terrain, climate and hydrology as site factors that contribute to soil quality and suggest that socioeconomic factors such as land use, operator and management should be included in a soil quality analysis. This approach is consistent with the FAO approach to land quality analysis (FAO, 1997). Karlen et al. (1992) define soil quality as "the ability of the soil to serve as a natural medium for the growth of plants that sustain human and animal life." Their definition is based on the role of soil quality in the long-term productivity of soil and maintenance of environmental quality. Doran and Parkin (1994) defined soil quality as "the capacity of a soil to function within ecosystem boundaries to sustain biological productivity, maintain environmental quality, and promote plant and animal health." Gregorich et al. (1994) define soil quality as "a composite measure of both a soil's ability to function and how well it functions relative to a specific use" or "the degree of fitness of a soil for a specific use." The Soil Science Society of America Ad Hoc Committee on Soil Health proposed that soil quality is "the capacity of a specific kind of soil to function, within natural or managed ecosystem boundaries, to sustain plant and animal productivity, maintain or enhance water and air quality, and support human health and habitation" (Karlen et al., 1997). This definition requires that five functions must be evaluated to describe soil quality: 1. sustaining biological activity, diversity, and productivity; 2. regulating and partitioning water and solute flow; 3. filtering, buffering, degrading, immobilizing and detoxifying organic and inorganic materials, including industrial and municipal byproducts and atmospheric deposition; 4. storing and cycling nutrients and other elements within the earth's biosphere; and 5. providing support of socioeconomic structures and protection for archeological treasures associated with human habitation. No soil is likely to successfully provide all of these functions, some of which occur in natural ecosystems and some of which are the result of human modification. We can summarize by saying that soil quality depends on the extent to which soil functions to benefit humans. Thus, for food production or mediation of contamination, soil quality means the extent to which a soil fulfills the role we have defined for it. Within agriculture, high quality equates to maintenance of high productivity without significant soil or environmental degradation. The Glossary of Soil Science terms produced by the Soil Science Society of America (1996) states that soil quality is an inherent attribute of a soil that is inferred from soil characteristics or indirect observations. To proceed from a dictionary definition to a measure of soil quality, a minimum dataset (MDS) of soil characteristics that represents soil quality must be selected and quantified (Papendick et al., 1995). The MDS may include biological, chemical or physical soil characteristics [Organic matter (OM), Aggregation (A), Bulk density (BD), Depth to hardpan (DH), Electrical conductivity (EC), Fertility (F), Respiration (R), pH, Soil test (ST), Yield (Y), Infiltration (I), Mineralizable nitrogen potential (MNP), Water holding capacity (WHC)]. For agriculture, the measurement of properties should lead to a relatively simple and accurate way to rank soils based on potential plant production without soil degradation. Unfortunately, commonly identified soil quality parameters may not correlate well with yield (Reganold, 1988). In the next section, we consider these four points concerning the selection and quantification of soil characteristics: 1. soil characteristics may be desirable or undesirable, 2. soil renewability involves judgment of the extent to which soil characteristics can be controlled or managed, 3. rates of change in soil characteristics vary, and 4. there may be significant temporal or spatial variation in soil characteristics. Components of soil quality definitions may include desirable and undesirable characteristics. Desirable soil characteristics may either be the presence of a property that benefits soil productivity and/or other important soil functions, or the absence of a property that is detrimental to these functions. A soil characteristic may include a range of values that contributes positively to quality and a range that contributes negatively. Soil pH, for example, may be a positive or negative characteristic depending on its value. Larson and Pierce (1991) suggest that ranges of property values can be defined as optimal, suboptimal or superoptimal. A pH range of 6 to 7.5 is optimal for production of most crops. Outside of this range, pH is suboptimal and soil quality is lower than at the optimal pH range. The complexity of the soil quality concept is illustrated by the fact that the choice of optimal pH range is crop or use dependent. Letey (1985) suggested that identification of a range of water content that is nonlimiting to plant productivity might be a good way of assessing the collective effect of soil physical characteristics that contribute to crop productivity. For soils of decreasing quality, the width of the nonlimiting water range decreases. Undesirable soil characteristics may be either the presence of contaminants or a range of values of soil characteristics that contribute negatively to soil quality. The presence of chemicals that inhibit plant root growth or the absence of nutrients that result in low yields or poor crop quality are examples of undesirable soil characteristics that lower soil quality. The extent to which soil is viewed as a renewable resource shapes our approach to soil quality. "Soil" in this context is the natural, three-dimensional, horizonated individual, not something created by earth moving machinery. For the purpose of assessing human impact on sustainability of soil quality, it may be appropriate to use only those soil properties that are slowly or nonrenewable. Shorter term assessments may be based on those properties that change rapidly and are subject to easy management. Willis and Evans (1977) argued that soil is not renewable over the short term based on studies that suggest that 30 to more than 1,000 years are required to develop 25 mm of surface soil from parent material by natural processes. Jenny (1980) also argued that soil is not renewable over the time scale to which humans relate. Howard (1993) suggests defining soil quality based on undisturbed natural soils and to set quality standards based on changes in soils which cannot be reversed naturally or by ecological approaches. The renewability of soil depends on the soil property considered. For example, once soil depth is reduced by wind or water erosion so that it is too shallow to support crops, it is not renewable within a human or management time frame. Some important soil characteristics are slowly renewable. Organic matter, most nutrients and some physical properties may be renewed through careful long-term management. Certain chemical properties (pH, salinity, N, P, K content) may be altered to a more satisfactory range for agriculture within a growing season or two, while removal of unwanted chemicals may take much longer. No soil property is permanent, but rates and frequency of change vary widely among properties. Soil properties also vary with ecosystem, arguably depending most on climate. In rangelands, for example, temporal variability is high and relatively unpredictable due to the strong dependence of soil properties on soil wetness (Herrick and Whitford, 1995). Variability in soil wetness is not restricted to rangelands and may be an especially important determinant of microbial community structure and function in both irrigated and rainfed agricultural systems. Arnold et al. (1990) suggest that changes in soil properties can be nonsystematic, periodic, or trend. Nonsystematic changes are short term and unpredictable. Periodic are predictable and trend changes tend to be in one direction over time. Carter et al. (1997) distinguish between dynamic soil properties that are most subject to change through human use and are strongly influenced by agronomic practices, and intrinsic or static properties that are not subject to rapid change or management. Examples of dynamic soil characteristics are the size, membership, distribution, and activity of a soil's microbiological community; the soil solution composition, pH, and nutrient ion concentrations, and the exchangeable cation population. Soils respond quickly to changes in conditions such as water content. As a result, the optimal frequency and distribution of soil measurements vary with the property being measured. Soil mineralogy, particle size distribution and soil depth are static soil quality indicators. Although changes occur continuously, they are slow under natural conditions. Organic matter content may be a dynamic variable, but the chemical properties of organic matter may change only over periods on the order of 100 to 1,500 years depending on texture. Soil properties that change quickly present a problem because many measurements are needed to know the average value and to determine if changes in the average indicate improvement or degradation of soil quality. Conversely, properties that change very slowly are insensitive measures of short-term changes in soil quality. Papendick et al. (1995) argue that the MDS required for soil quality analysis includes a mix of "dynamic" and relatively "static" properties. A soil quality assessment must specify area. One could use the pedon (the three-dimensional soil individual) as the unit of measure, or a soil map unit, a landscape, a field or an entire watershed. The choice will depend to some degree on what property is of interest and the spatial variability of the property. Karlen et al. (1997) propose that soil quality can be evaluated at scales ranging from points to regional, national and international. They suggest that the more detailed scales provide an opportunity to "understand" soil quality while larger scale approaches provide interdisciplinary monitoring of soil quality and changes in soil quality. Pennock et al. (1994) discuss scaling up data from discrete sampling points to landscape and regional scales. Soil physical characteristics [Aeration (A), Aggregate stability (AS), Bulk density (BD), Clay mineralogy (CM), Color (C), Consistence (dry (CD), moist (CM), wet (CW)), Depth to root limiting layer (DRLL), Hydraulic conductivity (HC), Oxygen diffusion rate (ODR), Particle size distribution (PSD), Penetration resistence (PR), Pore connectivity (PC), Pore size distribution (PSD), Soil strength (SS), Soil tilth (ST), Structure type (STY), Temperature (T), Total porosity (TP), Water-holding capacity (WHC)] are a necessary part of soil quality assessment because they often cannot be easily improved (Wagenet and Hutson, 1997). Larson and Pierce (1991) summarize the physical indicators of soil quality as those properties that influence crop production by determining: 1. whether a soil can accommodate unobstructed root growth and provide pore space of sufficient size and continuity for root penetration and expansion, 2. the extent to which the soil matrix will resist deformation, and 3. the capacity of soil for water supply and aeration. Factors such as effective rooting depth, porosity or pore size distribution, bulk density, hydraulic conductivity, soil strength and particle size distribution capture these soil functions (Malcolm, 2000; Várallyay, 2005). Reganold and Palmer (1995) use texture, color, dry and moist consistence, structure type, a structure index, bulk density of the 0-5 cm zone, penetration resistance of 0 to 20 and 20 to 40 cm zones and topsoil thickness as physical determinants of soil quality. Letey (1994) suggests that structure, texture, bulk density, and profile characteristics affect management practices in agriculture but are not directly related to plant productivity. He proposes that water potential, oxygen diffusion rate, temperature, and mechanical resistance directly affect plant growth, and thus are the best indicators of the physical quality of a soil for production. Soil tilth, a poorly defined term that describes the physical condition of soil, also may be an indicator of a soil's ability to support crops. Farmers may assess soil tilth by kicking a soil clod. More formal measurements to describe soil ti]th include bulk density, porosity, structure, roughness and aggregate characteristics (Karlen et al., 1992). Many of the processes that contribute to soil structure, aggregate stability, bulk density and porosity are not well understood, making soil tilth a difficult parameter to quantify. Soil depth is an easily measured and independent property that provides direct information about a soil's ability to support plants. Effective soil depth is the depth available for roots to explore for water and nutrients. Layers that restrict root growth or water movement include hard rock, naturally dense soil layers such as fragipans, petrocalcic and, petroferric horizons, duripans, and human-induced layers of high bulk density such as plow pans and traffic pans. Effective soil depth is a problem for agricultural use of over 50% of soils in Africa (Eswaran et al., 1997). Soil depth requirements vary with crop or species. Many vegetable crops, for example, are notably shallow rooted while grain crops and some legumes like alfalfa are deep rooted. Variation will be even greater in unmanaged, natural systems. Wheat yield in Colorado was shown to decrease from 2,700 to 1,150 kg ha' over a 60-yr period of cultivation primarily due to decrease in soil depth (Bowman et al., 1990). Assessment of soil quality based on soil chemistry, whether the property is a contaminant or part of a healthy system, requires a sampling protocol, a method of chemical analysis, an understanding of how its chemistry affects biological systems and interacts with mineral forms, methods for location of possible contamination, and standards for soil characterization (Várallyay, 2005; Németh, 1996; Malcolm, 2000). Some soil chemical properties suggested as soil quality indicators are: Base saturation percentage (BSP), Cation exchange capacity (CEC), Contaminant availability (CA), Contaminant concentration (CC), Contaminant mobility (CM), Contaminant presence (CP), Electrical conductivity (EC), ESP, Nutrient cycling rates (NCR), Ph, Plant nutrient availability (PNA), Plant nutrient content (PNC) and SAR. Nutrient availability depends on soil physical and chemical processes, such as weathering and buffering, and properties such as organic matter content, CEC and pH (Kádár, 1992; Várallyay, 1992, 1994, 2005; Németh, 1996; Malcolm, 2000; Márton, 2005; Márton et al. 2007). At low and high pH, for example, some nutrients become unavailable to plants and some toxic elements become more available. Larson and Pierce (1991) chose those chemical properties that either inhibit root growth or that affect nutrient supply due to the quantity present or the availability. Reganold and Palmer (1995) used chemical parameters related to nutrient availability as measures of soil quality, including CEC, total N and P, pH and extractable P, S, Ca, Mg and K. Karlen et al. (1992) suggest that total and available plant nutrients, and nutrient cycling rates, should be included in soil quality assessments. Soil properties may be severely compromised by intended or unintended human additions of chemical compounds and soil productivity reduced if unwanted chemicals exceed safe thresholds. Data are required to determine whether or not a site is significantly polluted and if it requires clean-up (Sims et al., 1997). International standard methods have been created to maintain the quality of measurements (Hortensius and Welling, 1996). A difficult determination is the level of each chemical that is considered an ecological risk. Beck et al. (1995) provide a list of levels for organic chemicals adopted by The Netherlands and Canada. EPA uses similar lists for compounds considered hazardous (e.g., 40 CFR). Sims et al. (1997) argue that clean and unclean are two extremes of a continuum and that it is more appropriate to define the physical, chemical and biological state of the soil as acceptable or unacceptable. In The Netherlands, soil quality reference values have been created for heavy metals and organic chemicals based on a linear relationship with soil clay and organic matter content. The Dutch Ministry of Housing, Physical Planning and Environment has used the maximum of a range of reference values for a given substance as a provisional reference value for good soil quality (Howard, 1993). The focus of many soil quality definitions is soil biology [Organic carbon (OC), Microbial biomass (MB), C and N, Total bacterial biomass (TBB), Total fungal biomass (TFB), Potentially mineralizable N (PMN), Soil respiration (SR), Enzymes (Dehydrogenase, Phosphatase, Arlysulfatase), Biomass C/total organic carbon, Respiration/biomass, Microbial community fingerprinting (MCF), Substrate utilization (SU), Fatty acid analysis (FAA), Nucleic acid analysis (NAA)]. Soil supports a diverse population of organisms, ranging in size from viruses to large mammals, that usually interacts positively with plants and other system components (Paul and Clark, 1996). However, some soil organisms such as nematodes, bacterial and fungal pathogens reduce plant productivity. Many proposed soil quality definitions focus on the presence of beneficial rather than absence of detrimental organisms, although both are critically important. Various measures of microbial community viability have been suggested as measures or indices of soil quality. Community level studies consider species diversity and frequency of occurrence of species. Visser and Parkinson (1992) found that diverse soil microbiological criteria may be used to indicate deteriorating or improving soil quality. They suggested testing the biological criteria for soil quality at three levels: population, community and ecosystem. Microorganisms and microbial communities are dynamic and diverse, making them sensitive to changes in soil conditions (Kennedy and Papendick, 1995). Their populations include fungi, bacteria including actinomycetes, protozoa, and algae. Soil microorganisms form crucial symbiotic relationships with plants, including mycorrhizal infection for P and N acquisition and bacterial infection for fixation of atmospheric N. Authors emphasizing use of biological factors as indicators of soil quality often equate soil quality with relatively dynamic properties such as microbial biomass, microbial respiration, organic matter mineralization and denitrification, and organic matter content (Yakovchenko et al., 1996; Franzluebbers and Arshad, 1997), or soil microbial C, phospholipid analyses and soil enzymes (Gregorich et al., 1997), or total organic C and N (Franco-Vizcaino, 1997). Visser and Parkinson (1992) question the suitability of enzyme assays for microbial activity and soil quality assessments. Waksman (1927), who studied measurements of soil microorganisms that could indicate soil fertility, found that physical and chemical factors as well as soil biology were needed to predict soil fertility. Meso- and macrofauna populations have also been considered as part of soil quality definitions (Berry, 1994). One could choose to use presence or absence of a particular species or population of a particular species as a measure of soil quality. Stork and Eggleton (1992) discuss species richness as a powerful indicator of invertebrate community and soil quality, although determining the number of species is a problem. They suggest that keystone species, taxonomic diversity at the group level, and species richness of several dominant groups of invertebrates can be used as part of a soil quality definition. Measuring soil fauna populations involves decisions about which organisms to measure and how to measure them. An example is the earthworm population, the size of which is frequently mentioned as an important measure of soil quality. Measurement choices include numbers of organisms per volume or weight of soil, number of species, or a combination of numbers of organisms and species. Reganold and Palmer (1995) use total earthworms per square meter, total earthworm weight (g m-') and average individual earthworm weight as biological indicators of soil quality. Measurement of one or more components of the N cycle including ammonification, nitrification and nitrogen fixation, may be used to assess soil fertility and soil quality (Visser and Parkinson, 1992). Presumably, high rates of N turnover may infer a dynamic and healthy soil biological community. In contrast, low soil quality or poor soil health may be inferred from lack of N turnover. The interpretation of N turnover rates is highly dependent on the kinds of substrates added to soils and climate variables such as soil temperature and moisture. One needs to be careful when comparing N turnover rates within soils and among different soils to be sure that the cause of differences is a soil quality parameter and not natural variability. Presence of pesticide residues, for example, may reduce N turnover rate. In such an instance, both the presence of the pesticide and the N turnover rate would be needed to determine that the soil quality had been impaired. Production incorporates use of and need for functioning soil resources in agriculture, and environmental buffering incorporates the direct and indirect effects of human use on ecosystem function and human health (Kádár, 1992; Várallyay, 1992, 1994, 2005; Németh, 1996; Malcolm, 2000; Márton, 2005; Márton et al. 2007). Worldwide agriculture is the most extensive human land use, and soil characteristics are a critical determinant of agricultural productivity. Agriculture includes irrigated and rainfed cultivated cropland, permanent crops such as orchards and vineyards, irrigated pasture, range, and forestry. Each cropping system has distinct soil and soil management conditions for optimal production. It has been suggested that soil productivity is the net resultant of soil degradation processes and soil conservation practices (Parr et al., 1990). An appropriate definition of soil quality and the criteria necessary to evaluate and monitor soil quality is a step toward "the development of systematic criteria of sustainability". Issues to be considered when discussing soil quality for agriculture include: 1. How are productivity and sustainability related? 2. Is the cropping system in question cultivated or non-cultivated? 3. Is the cropping system in question an irrigated or dryland system? Sustainability of agricultural systems is critical to human welfare and is an a subject of research and debate (Letey, 1994). High productivity and sustainability must be converging goals if the growing human population is to be fed without destroying the resources necessary to produce food. Sustainability implies that a system is at a desirable steady state. Thermodynamically, soil is an open system through which matter and energy flow and a steady state is characterized by a minimum production of entropy (Andiscott, 1995). Ellert et al. (1997) review related literature on ways of assessing soil function on an ecosystem scale, commenting that the complexity and organization of living systems, which seem to defy the second law of thermodynamics (increasing disorder/entropy), may provide a means to broadly assess ecosystem function. The purpose of agriculture is to provide products for human sustenance and by definition is not sustainable unless the nutrients removed in the products are returned to the soil. Many of the arguments about the sustainability of agricultural systems relate to the form in which nutrients are most sustainably returned. No agricultural system will be sustainable in the long run without management that considers nutrient cycling and energy budgets. The more intense the agricultural system, the more energy and resources must be expended to maintain the system. The relative quality of a soil for agriculture can depend on the resources available to farmers. In the United States, resources may be readily available for management of dynamic soil properties such as nutrient or water status. In other countries, farmers may be resource poor, and agricultural systems are generally low input, meaning that large-scale irrigation is absent, use of fertilizers, pesticides, and herbicides is minimal, and high energy, mechanized equipment is not available (Eswaran et a1.,1997). This means, for example, that soil quality for agriculture will be more dependent on climate than if the same soils were part of a highly managed, irrigated system. Similarly, sustainability is more dependent on maintenance of dynamic soil properties because resources may not exist to remedy losses (Várallyay, 2005; Malcolm, 2000; Márton et al. 2007). It is difficult to overstate the importance of irrigation to food production. One-third of the total global harvest of food comes from the 17% (250 million ha) of the world's cropland that is irrigated (Hoffman et al., 1990); three-quarters of which are in developing countries (Tribe, 1994). India, China, the former Soviet Union, the United States and Pakistan have the greatest area of irrigated land. Should soil quality criteria be the same for irrigated and dryland agriculture? Sojka (1996) suggests that the arid and semi-arid soils that support most irrigated agriculture have thin erodible surfaces, characteristics that would classify such soils as having poor quality. Yet under irrigation, they feed much of the world. Without irrigation, for example, in many African soils, moisture stress becomes a significant factor limiting production, and the water-holding capacity of a soil becomes crucial (Eswaran et al., 1997). This suggests that a standard set of criteria based on potential productivity is not a sufficient definition of soil quality. Soils that are not cultivated are a much larger component of agriculture, broadly defined, than those that are cultivated. About 65% of the land in the United States is forest (284 million ha) or range land (312 million ha), with only about 284 million hacultivated (NRC,1994). Herrick and Whitford (1995) suggest that range land soils, which often serve multiple uses, present unique challenges and opportunities for assessing soil quality because spatial and temporal variability are higher than in cropped systems. On range lands and forest lands, food, fiber, timber production, biomass for fuel, wildlife, biodiversity, recreation, and water supply are all potential uses that may have diverse criteria for quality soils. Herrick and Whitford (1995) give the example of a thick O horizon that may be an indicator of good timber production but has no predictive value of soil quality for the rancher. The National Research Council (NRC, 1994) recommends that range land health be determined using three criteria: degree of soil stability and watershed function, integrity of nutrient cycles and energy flows, and presence of functioning recovery mechanisms. Soil erosion by wind and water and infiltration or capture of precipitation were selected as processes that could be used as indicators of soil stability and watershed function. Specific indicators or properties need to be related to these two broad processes. The amount of nutrients available, the speed with which nutrients cycle, and measures of the integrity of energy flow through the system were considered fundamental components of range land health. Finally, the capacity of range land ecosystems to react to change depends on recovery mechanisms that result in capture and cycling of nutrients, capture of energy, conservation of nutrients, energy and water, and resilience to change. Specific indicators include status of vegetation, age class and distribution (Kádár, 1992; Várallyay, 1992, 1994, 2005; Németh, 1996; Malcolm, 2000; Márton et al. 2007). The evaluation of land quality for forestry is a well-known practice. Indices range from quantitative through semi-quantitative to qualitative. Quantitative evaluations, such as site index, use regression equations to predict tree height at a predetermined tree age based on soil and climate data. Qualitative evaluations assign land to classes based on soil and climate properties. In soil science, the term "buffer" refers collectively to processes that constrain shifts in the dissolved concentration of any ion when it is added to or removed from the soil system (Singer and Munns, 1996). Soils "buffer" nutrients as well as contaminants and other solutes, via sorption to or incorporation into clay and organic materials. The extent to which a soil immobilizes or chemically alters substances that are toxic, thus effectively detoxifying them, reflects "quality" in the sense that humans or other biological components of the system are protected from harm. This is the basis for the European concept of soil quality (Moen, 1988; Siegrist, 1989; Denneman and Robberse, 1990). Lack of soil function in this category is reflected as direct toxicity or as contamination of air or water. Identifying substances that qualify as "contaminants" can be challenging because some, such as nitrates and phosphates, are important plant nutrients as well as potential water pollutants. An example is agricultural runoff containing N03 or soluble P (Yli-Halla et al., 1995). This chapter does not attempt a comprehensive review of research in this area, which is covered in an earlier chapter, but instead presents a few sample articles pertinent to this aspect of soil quality. Holden and Firestone (1997) define soil quality in this context as "the degree to which the physical, chemical, and biological characteristics of the soil serve to attenuate environmental pollution." Howard (1993) defines the ecological risk of a chemical in the environment as "the probability that a random species in a large community is exposed to a concentration of the chemical greater than its no-effect level." The extent to which a soil is capable of reducing the probability of exposure is a measure of its quality. A well-studied example of a common soil contaminant is Pb (McBride et al., 1997). Although legislated limits may be on a concentration basis in soil (e.g., 500 ftg kg-'), risk assessment techniques have attempted to account for the chemical form of Pb present, as well as the observed relative relationship between the amount of Pb present in soil and blood levels in local residents (Bowers and Gauthier, 1994). Critics have questioned analytical techniques used to determine bioavailable levels of Pb in soil, as well as the degree to which toxicity data account for its chemical fate and ecologically damaging properties (Cook and Hendershot, 1996). Natural variability of soils and variation within a soil series make average values or average background values inadequate for soil quality assessments. In addition, bioaccumulation and toxicity need to be considered when establishing levels of toxicants that may not be exceeded in a "high quality" soil for a given use (Traas et al. 1996). Another example is the effect of heavy metals such as Cr(VI) on soil biological properties. Based on a study of three New Zealand soils of contrasting texture, organic matter content, and CEC, Speir et al. (1995) propose an "ecological dose value" that represents the inhibitory effects of a heavy metal (in this case, Cr(VI)) on the kinetics of soil biological properties, and serves as a generic index for determination of permissible concentration levels for heavy metals in soils. A single soil characteristic is of limited use in evaluating differences in soil quality (Reganold and Palmer, 1995). Using more than one quantitative variable requires some system for combining the measurements into a useful index (Halvorson et al., 1996). The region, crop, or general soil use for which an index was created will likely limit its effectiveness outside the scope of its intended application. Even an index designed only to rate productivity is not likely to be useful for all crops and soils, leading Gersmehl and Brown (1990) to advocate regionally targeted systems. Rice is a good example of a crop requiring significantly different soil properties than other crops. It is a food staple for a large proportion of the world population. Approximately 146 million ha were in rice production in 1989 (FAO, 1989) mainly (90%) in Asia. High quality soils for paddy rice may be poor quality for most other irrigated and dryland crops because they may be saline or sodic, and high in clay with slow infiltration and permeability. These physical and chemical properties often constrain production of other crops. Although they are not reviewed here, various land suitability classifications specifically for rice have been developed since the turn of the century (Dent, 1978). Examples of several soil quality indexing systems are presented in the following sections. To some extent, recent attempts to enumerate the factors of soil quality resemble Jenny's (1941) introduction of the interrelated factors of soil formation. An index is categorized here as nonquantitative if it does not combine evaluated parameters into a numerical index that rates soils along a continuous scale. Examples are the USDA Land Capability Classification and the US Bureau of Reclamation (USBR) Irrigation Suitability. The purpose of the Land Capability Classification (LCC) was to place arable soils into groups based on their ability to sustain common cultivated crops that do not require specialized site conditioning or treatment (Klingebiel and Montgomery, 1973). Nonarable soils, unsuitable for long-term, sustained cultivation, are grouped according to their ability to support permanent vegetation, and according to the risk of soil damage if mismanaged. The LCC combines three rating values at different levels of abstraction: capability class, subclass, and unit. At the most general level, soils are placed in eight classes according to whether they (a) are capable of producing adapted plants under good management (classes I to N), (b) are capable of producing specialized crops under highly intensive management involving "elaborate practices for soil and water conservation" (classes V to VII), or (c) do not return on-site benefits as a result of management inputs for crops, grasses or trees without major reclamation (Klingebiel and Montgomery, 1973). The four possible limitations/hazards under the subclass rating are erosion hazard, wetness, rooting zone limitations and climate. The capability unit groups soils that have about the same responses to systems of management and have longtime estimated yields that do not vary by more than 25% under comparable management. The issue of critical limits is a difficult one in soils because of the range of potential uses and the interactions among variables (Arshad and Ccen, 1992). Several studies have shown that lands of higher LCC have higher productivity than lands of lower LCC (Patterson and Mackintosh, 1976; van Vliet et al., 1979; Reganold and Singer, 1984). In a study of 744 alfalfa, corn, cotton, sugar beet and wheat growing fields in the San Joaquin Valley of California, those with LCC ratings between 1 and 3 had significantly lower input/output ratios than fields with ratings between 3.01 and 6 (Reganold and Singer, 1984). This suggests that use of the LCC system provides an economically meaningful assessment of soil quality for agriculture. This was a frequently used system of land evaluation for irrigation in the Western US during the period of rapid expansion of water delivery systems (McRae and Burnham, 1981). It combines social and economic evaluations of the land with soil and other ecological variables to determine if the land has the productive capacity, once irrigated, to repay the investment necessary to bring water to an area. It recognizes the unique importance of irrigation to agriculture and the special qualities of soils that make them irrigable. Quantitative systems result in a numerical index, typically with the highest number being assigned to the best quality soils. Systems may be additive, multiplicative or more complex functions. They have two important advantages over nonquantitative systems: 1. they are easier to use with GIS and other automated data retrieval and display systems, and 2. they typically provide a continuous scale of assessment. No single national system is presently in use but several state or regional systems exist. Although he considered the productivity of the land to be dependent on 32 soil, climate and vegetative properties [Surface conditions: Physiographic position, Slope, Microrelief, Erosion deposition, External drainage, runoff. Soil physical conditions: Soil color, Soil depth, Soil density and porosity, Soil permeability, Soil texture, Stoniness, Soil structure, Soil workability-consistence, Internal drainage, Water-holding capacity, Plant-available water. Soil chemical conditions: Organic matter, Nitrogen, Reaction, Calcium carbonate, bases, Exchange capacity, Salts: Cl, SO Na, Toxicities, e.g., B, Available P, Available K, Minor elements, e.g., Zn, Fe, Fertility. Mineralogical conditions: Mineralogy. Climate: Precipitation Temperature Growing season Winds. Vegetativé cover: Natural vegetation], only nine properties were used in the SIR, because incorporating a greater number of factors made the system unwieldy. The nine factors are soil morphology (A), surface texture (B), slope (C), and six variables (X.) that rate drainage class, sodicity, acidity, erosion, microrelief and fertility; rated from 1% to 100%. These are converted to their decimal value and multiplied together (Storie, 1964). Values for each factor were derived from Storie's experience mapping and evaluating soils in California, and in soil productivity studies in cooperation with the California Agricultural Experiment Station cost-efficiency projects relating to orchard crops, grapes and cotton. In describing the SIR (SIR= [AxBxCxIIXi]x100), Storie (1932, 1964) explicitly mentioned "soil quality". Soils that were deep, had no restricting subsoil horizons, and held water well had the greatest potential for the widest range of crops. The usefulness of the SIR as a soil quality index would be greatest if there was a statistically significant relationship between SIR values and an economic indicator of land value. Reganold and Singer (1984) found that area-weighted average SIR values between 60 and 100 for 744 fields in the San Joaquin Valley of California had lower but statistically insignificant input/output ratios than fields with indices < 60. The lack of statistical significance does not mean that better quality lands could not be farmed at economically lower cost or at higher cost and higher output than the lower quality lands. We productivity index model (PI) was developed to evaluate soil productivity in the top 100 cm, especially with reference to potential productivity loss due to soil erosion (Neill, 1979; Kiniry et al., 1983). The PI model rates soils on the sufficiency for root growth based on potential available water storage capacity, bulk density, aeration, pH, and electrical conductivity. A value from zero to one is assigned to each property describing the importance of that parameter for root development. The product of these five index values is used to describe the fractional sufficiency of any soil layer for root development. Pierce et al. (1983) modified the PI to include the assumption that nutrients were not limiting and that climate, management and plant differences are constant. A number of authors found that it is useful to various degrees (Gantzer and McCarty, 1987; Lindstrom et al., 1992). Parr et al. (1992) suggest that a SQI could take the form of Equation: SQI = f (SP, P, E, H, ER, BD, FQ, MI) where SQI is a function of soil properties (SP), potential productivity (P), environmental factors (E), human and animal health (H), erodibility (ER), biological diversity (BD), food quality and safety (FQ) and management inputs (MI). Determination of the specific measurable indicators of each variable and the interactions among these diverse variables is a daunting task. Moreover, the mathematical method of combining these factors, as well as the resulting value that would indicate a high quality soil, is not specified. The inclusion of variables BD, FQ and MI make this a land quality index as suggested by FAO (1997). Larson and Pierce (1991) defined soil quality (Q) as the state of existence of soil relative to a standard or in terms of a degree of excellence. They argue that defining Q in terms of productivity is too limiting and does not serve us well. Rather, Q is defined as the sum of individual soil qualities q. and expressed as Equation: Q=f(qi ...qn). These authors do not identify the best subset of properties or their functional and quantitative relationship, but do suggest that a MDS should be selected from those soil characteristics in which changes are measurable and relatively rapid (i.e., "dynamic" properties), arguing that it is more important to know about changes in soil quality (dQ) than the magnitude of Q (Larson and Pierce, 1991). Changes in soil quality are a function of changes in soil characteristics (q) over time (t): dQ = f[(qi.t - qit0 )... (qn.t-qnt0)]. If dQ/dt is ≥0, the soil or ecosystem is improving relative to the standard at time to. If dQ/dt <0, soil degradation is occurring. Time zero can be selected to meet management needs or goals. If there is a drastic change in management, time zero can be defined as prior to the change. If a longer time period of comparison is considered more appropriate, properties of an uncultivated or pristine soil could be used. The MDS recommended by Larson and Pierce (1991) includes N mineralization potential or P buffering capacity, total organic C, labile organic C, texture, plant-available water capacity, structure (bulk density is recommended as a surrogate variable), strength, maximum rooting depth, pH and EC. In instances when data are unavailable, pedotransfer functions (Bouma, 1989) can be used to estimate values of soil characteristics. These estimates can then be used as part of the minimum dataset to estimate soil quality or changes in soil quality brought about by management. Although this is a quantitative system, some qualitative judgments are needed to make decisions about changes in soil quality. In particular, interpretation of the meaning of magnitude of changes in a characteristic or the number of characteristics to change from time zero to the time of the measurement is qualitative. The authors do not address how large a change in pH, soil depth, bulk density or organic C represents serious soil degradation, or the values that define soil as high or low quality. Karlen et al. (1994) developed QI based on a 10-year crop residue management study. QI is based on four soil functions: (1) accommodating water entry, (2) retaining and supplying water to plants, (3) resisting degradation, and (4) supporting plant growth. Numerous properties were measured and values normalized based on standard scoring functions. One function is based on the concept that more of a property is better, one that less is better and the third that an optimum is better. Lower threshold values receive a score of zero, upper threshold values receive a score of one, and baseline values receive a score of one-half. Priorities are then assigned to each value. For example, aggregate stability was given the highest weight among factors important in water entry. After normalizing, each value is then multiplied by its weighting factor (wt) and products are summed Equation: QI=qwe (wt) + qwt (wt)+qrd (wt) + qspg (wt). Subscripts refer to the four main functions described earlier. It should also be noted that resisting degradation (rd) and sustaining plant growth (spg) are assigned secondary and tertiary levels of properties that themselves are normalized and weighted before a final value is calculated and incorporated into Equation. The resulting index resulted in values between zero and one. Of the three systems in the study, the one with the highest rate of organic matter return to the soil had the highest index value, and the soil with the lowest had the lowest value. The authors suggest that this demonstrates the usefulness of the index for monitoring the status and change in status of a soil as a function of management. They also suggest that the index and the soil characteristics that go into the index may change as the index is refined (Karlen et al. 1994). Snakin et al. (1996) developed an index of soil degradation that assigns three separate values from one to five reflecting the degree to which a soil's physical, chemical, and biological properties are degraded, as well as the rate of degradation. The Canadian soil capability classification system is similar to the older US systems and is quantitative. In a study in southwestern Ontario, Patterson and Mackintosh (1976) found that high gross returns per ha were three times as likely if the productivity index of land, based on the soil capability classification, was between 90 and 100 than if it fell between 80 and 89. Smith et al. (1993) and Halvorson et al. (1996) propose a multiple-variable indicator transform procedure to combine values or ranges of values that represent the best estimate of soil quality. Their system converts measured data values into a single value according to specified criteria. They do not attempt to define soil quality or specify what soil characteristics are to be used. They combine this procedure with kriging to develop maps that indicate the probabilities of meeting a soil quality criterion on a landscape level. Critical threshold values must be known, assumed, or determined in order to separate different soil qualities. Numerous additive productivity rating systems have been developed for specific states, as reviewed by Huddleston (1984). In these systems, soil properties are assigned numerical values according to their expected impact on plant growth. The index is usually calculated as the sum of the values assigned to each property with 100 the maximum value. Huddleston (1984) notes advantages and disadvantages to such a system which are similar to those for many of the soil quality indices previously discussed. Additive systems become complex as the number of factors, cropping systems, and soil and climatic conditions increases. A unique problem of subtractive systems (one in which 100 is the starting point and values are deducted for problem conditions) is that negative values result when multiple factors are less than satisfactory. Soil quality is a concept being developed to characterize the usefulness and health of soils, because soils are fundamental to the well-being and productivity of agricultural and natural ecosystems. It is a compound characteristic that cannot be directly measured. Many definitions of soil quality can be found in the literature and no set of soil characteristics has been universally adopted to quantify definitions. Soil quality is often equated with agricultural productivity and sustainability. An approach toward developing soil quality definitions is one that assesses soil quality in the context of a soil's potential to perform given functions in a system; e.g., maintains productivity, partitions and regulates water and solute flow through an ecosystem, serves as an environmental buffer, and cycles nutrients, water, and energy through the biosphere. Air and water quality standards are usually based on maximum allowable concentrations of materials hazardous to human health. A definition of soil quality based on this concept would encompass only a fraction of the important roles soils play in agriculture and the environment but could be essential to soil remediation. To proceed from a definition to a measure of soil quality, a minimum dataset of soil characteristics that represent soil quality must be selected and quantified. Many soil physical, chemical and biological properties have been suggested to separate soils of different quality. These include desirable and undesirable properties. Desirable soil characteristics may either be the presence of a property that benefits crop productivity and environmental buffering and/or other important soil functions, or the absence of a property that is detrimental to these functions. In particular, absence of contaminants is an important soil quality characteristic. In selecting characteristics, it is necessary to recognize that some soil properties are static, in the sense that they change slowly over time and others are dynamic. In addition, spatial and temporal variability of soil properties must be considered when selecting the properties used to assess soil quality. A single soil property is of limited use in evaluating soil quality. Qualitative and quantitative soil quality indices have been suggested that combine quantitative values of soil properties. Quantitative systems may be additive, multiplicative or more complex functions. Regardless of the definition or suite of soil variables chosen to define and quantify soil quality, it is critical to human welfare that soils be managed to provide for human health and well-being while minimizing soil and environmental degradation. References Anderson, D.W., E.G. Gregorich. 1984. Effect of soil erosion on soil quality and productivity. p. 105-113. In Soil erosion and degradation. Proc. 2nd Ann. Western Prov. Conf. Rational. Water Soil Res. Manag. Sask., Saskatoon, Canada. Andiscott, T.M. 1995. Entropy and sustainability. Europ. J. Soil Sci. 46:161-168. Arnold, R.W., I. Zaboles., V.C. Targulian (ed.). 1990. Global soil change. Report of an IIASA-ISSS-UNEP task force on the role of soil in global change. International Institute for Applied Systems Analysis, Laxanberg, Austria. Arshad, M-A., G.M. Coen. 1992. Characterization of soil quality: Physical and chemical criteria. Am. J. Altern. Agr. 725-3 I . Beck, A.J., S.C. Wilson., R.E. Alcock., K.C. Jones. 1995. Kinetic constraints on the loss of organic chemicals from contaminated soils: Implications for soil-quality limits. Critical Rev. Environ. Sci. Technol. 25:1-43. Beke, G.J., H.H. Janzen., T. Entz. 1994. Salinity and nutrient distribution in soil profiles of long-term crop rota-tions. Can. J. Soil Sci. 74:229-234. Berry, E.C. 1994. Earthworms and other fauna in the soil, p. 61-90. In J.L. Hatfield and B A. Stewart (ed.) Soil biology: effects on soil quality. Lewis Publishers, Boca Raton, FL. Biederbeck, V.O., C.A. Campbell., H.U. Krainetz., D. Curtain., O.T Bouman. 1996. Soil microbial and biochemical properties after ten years of fertilization with urea and anhydrous ammonia. Can. J. Soil Sci. 76:7-14. Boehn, M.M., D.W. Anderson. 1997. A landscape-scale study of soil quality in three prairie farming systems. Soil Sci. Soc. Am. J. 61:1147-1159. Bouma, J. 1989. Land qualities in space and time. p. 3-13. In J. Bouma and A.K. Bregt (ed.) Land qualities in space and time. Pudoc, Wageningen, Netherlands. Bouma, J., A.K. Bregt (ed.). 1989. Land qualities in space and time. Pudoc, Wageningen, Netherlands. Bowers, T.S., T.D. Gauhier. 1994. Use of the output of a lead risk assessment model to establish soil lead cleanup levels. Environ. Geochem. Health 16:191-196. Bowman, R.A., J.D. Reeder., G.E. Schuman. 1990. Evaluation of selected soil physical, chemical and biological parameters as indicators of soil productivity. Proc. Int. Conf. on Soil Quality in Semi-arid Ag. 2:64-70. Univ. of Saskatchewan, Saskatoon, Canada. Budd, W.W. 1992. What capacity the land? J. Soil Water Conserv. 47:28-31. Carter, MR., E.G. Gregorich., D.W Anderson., J.W. Doran., H.H. Janzen., F.J. Pierce. 1997. Concepts of soil quality and their significance: /n E.G. Gregorich and M. Carter (ed.) Soil quality for crop production and ecosys-tem health. Elsevier Science Publishers, Amsterdam, Netherlands. Cook, N., W.H. Hendershot. 1996. The problem of establishing ecologically based soil quality criteria: The case of lead. Can J. Soil Sci. 76:335-342. Cox, C. 1995. Soil quality: Goals for national policy. J. Soil Water Conserv. 50:223. Denneman, C.A.J., J.G. Robberse. 1990. Ecotoxicological risk assessment as a base for development of soil quality criteria. p. 157-164. In F Arendt, M. Hinsenveld and W.J. van den Brink (ed.) Contaminated soil '90. Proc. Intl. KfK/I'NO Conf. on Contaminated Soil, Karlsruhe, Germany, Kluwer Academic Publishers, Dordrecht, Neth-erlands. Dent, F.J. 1978. Land suitability classification. p. 273-293. In Soils and rice. International Ri

  18. Liquid crystal polyester-carbon fiber composites

    NASA Technical Reports Server (NTRS)

    Chung, T. S.

    1984-01-01

    Liquid crystal polymers (LCP) have been developed as a thermoplastic matrix for high performance composites. A successful melt impregnation method has been developed which results in the production of continuous carbon fiber (CF) reinforced LCP prepreg tape. Subsequent layup and molding of prepreg into laminates has yielded composites of good quality. Tensile and flexural properties of LCP/CF composites are comparable to those of epoxy/CF composites. The LCP/CF composites have better impact resistance than the latter, although epoxy/CF composites possess superior compression and shear strength. The LCP/CF composites have good property retention until 200 F (67 % of room temperature value). Above 200 F, mechanical properties decrease significantly. Experimental results indicate that the poor compression and shear strength may be due to the poor interfacial adhesion between the matrix and carbon fiber as adequate toughness of the LCP matrix. Low mechanical property retention at high temperatures may be attributable to the low beta-transition temperature (around 80 C) of the LCP matrix material.

  19. Abbott Physicochemical Tiering (APT)--a unified approach to HTS triage.

    PubMed

    Cox, Philip B; Gregg, Robert J; Vasudevan, Anil

    2012-07-15

    The selection of the highest quality chemical matter from high throughput screening (HTS) is the ultimate aim of any triage process. Typically there are many hundreds or thousands of hits capable of modulating a given biological target in HTS with a wide range of physicochemical properties that should be taken into consideration during triage. Given the multitude of physicochemical properties that define drug-like space, a system needs to be in place that allows for a rapid selection of chemical matter based on a prioritized range of these properties. With this goal in mind, we have developed a tool, coined Abbott Physicochemical Tiering (APT) that enables hit prioritization based on ranges of these important physicochemical properties. This tool is now used routinely at Abbott to help prioritize hits out of HTS during the triage process. Herein we describe how this tool was developed and validated using Abbott internal high throughput ADME data (HT-ADME). Copyright © 2012 Elsevier Ltd. All rights reserved.

  20. A new approach to epitaxially grow high-quality GaN films on Si substrates: the combination of MBE and PLD.

    PubMed

    Wang, Wenliang; Wang, Haiyan; Yang, Weijia; Zhu, Yunnong; Li, Guoqiang

    2016-04-22

    High-quality GaN epitaxial films have been grown on Si substrates with Al buffer layer by the combination of molecular beam epitaxy (MBE) and pulsed laser deposition (PLD) technologies. MBE is used to grow Al buffer layer at first, and then PLD is deployed to grow GaN epitaxial films on the Al buffer layer. The surface morphology, crystalline quality, and interfacial property of as-grown GaN epitaxial films on Si substrates are studied systematically. The as-grown ~300 nm-thick GaN epitaxial films grown at 850 °C with ~30 nm-thick Al buffer layer on Si substrates show high crystalline quality with the full-width at half-maximum (FWHM) for GaN(0002) and GaN(102) X-ray rocking curves of 0.45° and 0.61°, respectively; very flat GaN surface with the root-mean-square surface roughness of 2.5 nm; as well as the sharp and abrupt GaN/AlGaN/Al/Si hetero-interfaces. Furthermore, the corresponding growth mechanism of GaN epitaxial films grown on Si substrates with Al buffer layer by the combination of MBE and PLD is hence studied in depth. This work provides a novel and simple approach for the epitaxial growth of high-quality GaN epitaxial films on Si substrates.

  1. Combinatorial materials synthesis and high-throughput screening: an integrated materials chip approach to mapping phase diagrams and discovery and optimization of functional materials.

    PubMed

    Xiang, X D

    Combinatorial materials synthesis methods and high-throughput evaluation techniques have been developed to accelerate the process of materials discovery and optimization and phase-diagram mapping. Analogous to integrated circuit chips, integrated materials chips containing thousands of discrete different compositions or continuous phase diagrams, often in the form of high-quality epitaxial thin films, can be fabricated and screened for interesting properties. Microspot x-ray method, various optical measurement techniques, and a novel evanescent microwave microscope have been used to characterize the structural, optical, magnetic, and electrical properties of samples on the materials chips. These techniques are routinely used to discover/optimize and map phase diagrams of ferroelectric, dielectric, optical, magnetic, and superconducting materials.

  2. Enabling High Performance Instruments for UV Astronomy and Space Exploration with ALD

    NASA Technical Reports Server (NTRS)

    Greer, F.; Hoenk, M. E.; Jones, T. J.; Jacquot, B. C.; Monacos, S.; Nikzad, S.; Hamden, E.; Schiminovich, D.

    2011-01-01

    Benefits of Atomic Layer Deposition (ALD) for UV instruments and application are: (1) Ultrathin, highly conformal, and uniform films over arbitrarily large surface area (2) High quality films (density, roughness, conductivity, etc.) (3) Angstrom level control of stoichiometry, interfaces, and surface properties (3a) Multilayer nanolaminates/nanocomposites (3b) Low temperature surface engineering UV flight applications enabled by ALD. (1) Anti -reflective coatings/Mirrors/Filters/Optics for UV/Vis/NIR Detectors (2) Surface Passivation for III -N detectors

  3. Quinoa (Chenopodium quinoa Willd.): composition, chemistry, nutritional, and functional properties.

    PubMed

    Abugoch James, Lilian E

    2009-01-01

    Quinoa (Chenopodium quinoa Willd.), which is considered a pseudocereal or pseudograin, has been recognized as a complete food due to its protein quality. It has remarkable nutritional properties; not only from its protein content (15%) but also from its great amino acid balance. It is an important source of minerals and vitamins, and has also been found to contain compounds like polyphenols, phytosterols, and flavonoids with possible nutraceutical benefits. It has some functional (technological) properties like solubility, water-holding capacity (WHC), gelation, emulsifying, and foaming that allow diversified uses. Besides, it has been considered an oil crop, with an interesting proportion of omega-6 and a notable vitamin E content. Quinoa starch has physicochemical properties (such as viscosity, freeze stability) which give it functional properties with novel uses. Quinoa has a high nutritional value and has recently been used as a novel functional food because of all these properties; it is a promising alternative cultivar.

  4. a Low-Cost and Lightweight 3d Interactive Real Estate-Purposed Indoor Virtual Reality Application

    NASA Astrophysics Data System (ADS)

    Ozacar, K.; Ortakci, Y.; Kahraman, I.; Durgut, R.; Karas, I. R.

    2017-11-01

    Interactive 3D architectural indoor design have been more popular after it benefited from Virtual Reality (VR) technologies. VR brings computer-generated 3D content to real life scale and enable users to observe immersive indoor environments so that users can directly modify it. This opportunity enables buyers to purchase a property off-the-plan cheaper through virtual models. Instead of showing property through 2D plan or renders, this visualized interior architecture of an on-sale unbuilt property is demonstrated beforehand so that the investors have an impression as if they were in the physical building. However, current applications either use highly resource consuming software, or are non-interactive, or requires specialist to create such environments. In this study, we have created a real-estate purposed low-cost high quality fully interactive VR application that provides a realistic interior architecture of the property by using free and lightweight software: Sweet Home 3D and Unity. A preliminary study showed that participants generally liked proposed real estate-purposed VR application, and it satisfied the expectation of the property buyers.

  5. Improved growth of GaN layers on ultra thin silicon nitride/Si (1 1 1) by RF-MBE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kumar, Mahesh; Roul, Basanta; Central Research Laboratory, Bharat Electronics, Bangalore 560013

    High-quality GaN epilayers were grown on Si (1 1 1) substrates by molecular beam epitaxy using a new growth process sequence which involved a substrate nitridation at low temperatures, annealing at high temperatures, followed by nitridation at high temperatures, deposition of a low-temperature buffer layer, and a high-temperature overgrowth. The material quality of the GaN films was also investigated as a function of nitridation time and temperature. Crystallinity and surface roughness of GaN was found to improve when the Si substrate was treated under the new growth process sequence. Micro-Raman and photoluminescence (PL) measurement results indicate that the GaN filmmore » grown by the new process sequence has less tensile stress and optically good. The surface and interface structures of an ultra thin silicon nitride film grown on the Si surface are investigated by core-level photoelectron spectroscopy and it clearly indicates that the quality of silicon nitride notably affects the properties of GaN growth.« less

  6. Influence of man-made aluminosilicate raw materials on physical and mechanical properties of building materials.

    NASA Astrophysics Data System (ADS)

    Volodchenko, A. A.; Lesovik, V. S.; Stoletov, A. A.; Glagolev, E. S.; Volodchenko, A. N.; Magomedov, Z. G.

    2018-03-01

    It has been identified that man-made aluminosilicate raw materials represented by clay rock of varied genesis can be used as energy-efficient raw materials to obtain efficient highly-hollow non-autoclaved silicate materials. A technique of structure formation in the conditions of pressureless steam treatment has been offered. Cementing compounds of non- autoclaved silicate materials based on man-made aluminosilicate raw materials possess hydraulic properties that are conditioned by the process of further formation and recrystallization of calcium silicate hydrates, which optimizes the ratio between gellike and crystalline components and densifies the cementing compound structure, which leads to improvement of performance characteristics. Increasing the performance characteristics of the obtained products is possible by changing the molding conditions. For this reason, in order to create high-density material packaging and, as a result, to increase the strength properties of the products, it is reasonable to use higher pressure, under which raw brick is formed, which will facilitate the increase of quality of highly-hollow products.

  7. Chemical composition and functional characteristics of dietary fiber-rich powder obtained from core of maize straw.

    PubMed

    Lv, Jin-Shun; Liu, Xiao-Yan; Zhang, Xiao-Pan; Wang, Lin-Shuang

    2017-07-15

    A novel dietary fiber (MsCDF) based core of maize straw (Core) was prepared by using high boiling solvent of sodium peroxide by high pressure pretreatment (HBSHP). The composition of MsCDF, and several physicochemical properties for MsCDF related to its nutritional quality were investigated. The results revealed that the MsCDF contains high contents total dietary fiber (TDF), soluble dietary fiber (SDF), insoluble dietary fiber (IDF) and two main monosaccharaides, xylose and glucose. Meanwhile, the studies of physicochemical properties of MsCDF indicated that MsCDF performed well water-holding capacity (WHC), oil-holding capacity (OHC), Swelling, solubility (SOL), Glucose dialysis retardation index (GDRI) and adsorption capacity on cholesterol. The results of this study serve as evidence that MsCDF can be used as a functional food additive, Core can be used as a crude material to produce MsCDF and the technology of HBSHP can be used to modify the physico-chemical properties of Core. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. A high-throughput screening approach for the optoelectronic properties of conjugated polymers.

    PubMed

    Wilbraham, Liam; Berardo, Enrico; Turcani, Lukas; Jelfs, Kim E; Zwijnenburg, Martijn A

    2018-06-25

    We propose a general high-throughput virtual screening approach for the optical and electronic properties of conjugated polymers. This approach makes use of the recently developed xTB family of low-computational-cost density functional tight-binding methods from Grimme and co-workers, calibrated here to (TD-)DFT data computed for a representative diverse set of (co-)polymers. Parameters drawn from the resulting calibration using a linear model can then be applied to the xTB derived results for new polymers, thus generating near DFT-quality data with orders of magnitude reduction in computational cost. As a result, after an initial computational investment for calibration, this approach can be used to quickly and accurately screen on the order of thousands of polymers for target applications. We also demonstrate that the (opto)electronic properties of the conjugated polymers show only a very minor variation when considering different conformers and that the results of high-throughput screening are therefore expected to be relatively insensitive with respect to the conformer search methodology applied.

  9. High Temperature, High Power Piezoelectric Composite Transducers

    PubMed Central

    Lee, Hyeong Jae; Zhang, Shujun; Bar-Cohen, Yoseph; Sherrit, StewarT.

    2014-01-01

    Piezoelectric composites are a class of functional materials consisting of piezoelectric active materials and non-piezoelectric passive polymers, mechanically attached together to form different connectivities. These composites have several advantages compared to conventional piezoelectric ceramics and polymers, including improved electromechanical properties, mechanical flexibility and the ability to tailor properties by using several different connectivity patterns. These advantages have led to the improvement of overall transducer performance, such as transducer sensitivity and bandwidth, resulting in rapid implementation of piezoelectric composites in medical imaging ultrasounds and other acoustic transducers. Recently, new piezoelectric composite transducers have been developed with optimized composite components that have improved thermal stability and mechanical quality factors, making them promising candidates for high temperature, high power transducer applications, such as therapeutic ultrasound, high power ultrasonic wirebonding, high temperature non-destructive testing, and downhole energy harvesting. This paper will present recent developments of piezoelectric composite technology for high temperature and high power applications. The concerns and limitations of using piezoelectric composites will also be discussed, and the expected future research directions will be outlined. PMID:25111242

  10. Instruments to assess patients with rotator cuff pathology: a systematic review of measurement properties.

    PubMed

    Longo, Umile Giuseppe; Saris, Daniël; Poolman, Rudolf W; Berton, Alessandra; Denaro, Vincenzo

    2012-10-01

    The aims of this study were to obtain an overview of the methodological quality of studies on the measurement properties of rotator cuff questionnaires and to describe how well various aspects of the design and statistical analyses of studies on measurement properties are performed. A systematic review of published studies on the measurement properties of rotator cuff questionnaires was performed. Two investigators independently rated the quality of the studies using the Consensus-based Standards for the selection of health Measurement Instruments checklist. This checklist was developed in an international Delphi consensus study. Sixteen studies were included, in which two measurement instruments were evaluated, namely the Western Ontario Rotator Cuff Index and the Rotator Cuff Quality-of-Life Measure. The methodological quality of the included studies was adequate on some properties (construct validity, reliability, responsiveness, internal consistency, and translation) but need to be improved on other aspects. The most important methodological aspects that need to be developed are as follows: measurement error, content validity, structural validity, cross-cultural validity, criterion validity, and interpretability. Considering the importance of adequate measurement properties, it is concluded that, in the field of rotator cuff pathology, there is room for improvement in the methodological quality of studies measurement properties. II.

  11. Environmental Quality Assessment of Built Areas with High Vacancy

    NASA Astrophysics Data System (ADS)

    Jiang, Y.; Yuan, Y.; Neale, A. C.

    2015-12-01

    Around the world, many urban areas are challenged by vacant and abandoned residential and business property. High vacancy areas have often been associated with increasing public safety problems and declining property values and subsequent tax base. High vacancy can lead to visible signs of city decline and significant barriers to the revitalization of cities. Addressing the problem of vacancy requires knowledge of vacancy patterns and their possible contributing factors. In this study, we evaluated the ten year (2005-2015) urban environmental changes for some high vacancy areas. Social and economic variables derived from U.S. census data such as non-white population, employment rate, housing price, and environmental variables derived from National Land Cover Data such as land cover and impervious area, were used as the basis for analysis. Correlation analysis and principle components analysis were performed at the Census Block Group level. Three components were identified and interpreted as economic status, urbanness, and greenness. A synthetic Urban Environmental Quality (UEQ) index was developed by integrating the three principle components according to their weights. Comparisons of the UEQ indices between the 2005 and 2015 in the increasingly high vacancy area provided useful information for investigating the possible associations between social, economic, and environmental factors, and the vacancy status. This study could provide useful information for understanding the complex issues leading to vacancy and facilitating future rehabilitation of vacant urban area.

  12. Measurement properties of performance-based outcome measures to assess physical function in young and middle-aged people known to be at high risk of hip and/or knee osteoarthritis: a systematic review.

    PubMed

    Kroman, S L; Roos, E M; Bennell, K L; Hinman, R S; Dobson, F

    2014-01-01

    To systematically appraise the evidence on measurement properties of performance-based outcome measures to assess physical function in young and middle-aged people known to be at high risk of hip and/or knee osteoarthritis (OA). Electronic searches were performed in MEDLINE, CINAHL, Scopus and SPORTDiscus in May 2013. Two reviewers independently rated the measurement properties using the 4-point COSMIN checklist. Best evidence synthesis was made using COSMIN quality, consistency and direction of findings and sample size. Twenty of 2736 papers were eligible for inclusion and 24 different performance-based outcome measures knee or obese populations were evaluated. No tests related to hip populations were included. Twenty-five measurement properties including reliability (nine studies), construct validity (hypothesis testing) (nine studies), measurement error (three studies), structural validity (two studies), interpretability (one study) and responsiveness (one study) were evaluated. A positive rating was given to 12.5% (30/240) of all possible measurement ratings. Tests were grouped into two categories based on the population characteristics. The one-legged hop for distance, followed by the 6-m timed hop and cross over hop for distance were the best-rated tests for the knee-injured population. Whereas the 6-min walk test was the only included test for the obese population. This review highlights the many gaps in knowledge about the measurement properties of performance-based outcome measures for young and middle-aged people known to be at high risk of hip and/or knee OA. There is a need for consensus on which outcome measures should be used and/or combined when assessing physical function in this population. Further good quality research is required. Copyright © 2013 Osteoarthritis Research Society International. Published by Elsevier Ltd. All rights reserved.

  13. An assessment of optical properties of dissolved organic material as quantitative source indicators in the Santa Ana River basin, Southern California

    USGS Publications Warehouse

    Bergamaschi, Brian A.; Kalve, Erica; Guenther, Larry; Mendez, Gregory O.; Belitz, Kenneth

    2005-01-01

    The ability to rapidly, reliably, and inexpensively characterize sources of dissolved organic material (DOM) in watersheds would allow water management agencies to more quickly identify problems in water sources, and to more efficiently allocate water resources by, for example, permitting real-time identification of high-quality water suitable for ground-water recharge, or poor-quality water in need of mitigation. This study examined the feasibility of using easily measurable intrinsic optical properties' absorbance and fluorescence spectra, as quantitative indicators of DOM sources and, thus, a predictor of water quality. The study focused on the Santa Ana River Basin, in southern California, USA, which comprises an area of dense urban development and an area of intense dairy production. Base flow in the Santa Ana Basin is primarily tertiary treated wastewater discharge. Available hydrologic data indicate that urban and agricultural runoff degrades water quality during storm events by introducing pathogens, nutrients, and other contaminants, including significant amounts of DOM. These conditions provide the basis for evaluating the use of DOM optical properties as a tracer of DOM from different sources. Sample spectra representing four principal DOM sources were identified among all samples collected in 1999 on the basis of basin hydrology, and the distribution of spectral variability within all the sample data. A linear mixing model provided quantitative estimates of relative endmember contribution to sample spectra for monthly, storm, and diurnal samples. The spectral properties of the four sources (endmembers), Pristine Water, Wastewater, Urban Water, and Dairy Water, accounted for 94 percent of the variability in optical properties observed in the study, suggesting that all important DOM sources were represented. The scale and distribution of the residual spectra, that not explained by the endmembers, suggested that the endmember spectra selected did not adequately represent Urban Water base flow. However, model assignments of sources generally agreed well with those expected, based on sampling location and hydrology. The results suggest that with a fuller characterization of the endmember spectra, analysis of optical properties will provide rapid quantitative estimates of the relative contribution of DOM sources in the Santa Ana Basin.

  14. Optical Properties of InGaAsN/GaAs Quantum Well and Quantum Dot Structures for Longwavelength Emission

    DTIC Science & Technology

    2000-06-23

    when Nitrogen concentration is increased [91. In molecular beam epitaxy (MBE) one of the reasons of this is the surface quality degradation due to the...cavity surface emitting laser ( VCSEL ) emitting at 1.18 /tm was also reported [7 1. The main problem in the InGaAsN epitaxy is a large difference in the...vertical cavity surface emitting lasers ( VCSELs ). This stimulates attempts to fabricate high quality 1.3 /tm lasers on GaAs substrates. The best results

  15. Growth control of oxygen stoichiometry in homoepitaxial SrTiO 3 films by pulsed laser epitaxy in high vacuum

    DOE PAGES

    Lee, Ho Nyung; Ambrose Seo, Sung S.; Choi, Woo Seok; ...

    2016-01-29

    In many transition metal oxides, oxygen stoichiometry is one of the most critical parameters that plays a key role in determining the structural, physical, optical, and electrochemical properties of the material. However, controlling the growth to obtain high quality single crystal films having the right oxygen stoichiometry, especially in a high vacuum environment, has been viewed as a challenge. In this work, we show that, through proper control of the plume kinetic energy, stoichiometric crystalline films can be synthesized without generating oxygen defects even in high vacuum. We use a model homoepitaxial system of SrTiO 3 (STO) thin films onmore » single crystal STO substrates. Physical property measurements indicate that oxygen vacancy generation in high vacuum is strongly influenced by the energetics of the laser plume, and it can be controlled by proper laser beam delivery. Thus, our finding not only provides essential insight into oxygen stoichiometry control in high vacuum for understanding the fundamental properties of STO-based thin films and heterostructures, but it expands the utility of pulsed laser epitaxy of other materials as well.₃« less

  16. Physical properties of microencapsulated gamma-3 salmon oil with egg white powder

    USDA-ARS?s Scientific Manuscript database

    Microencapsulated salmon oil with egg white powders are a good source of high quality protein and amino acids including leucine and omega-3 fatty acids, which may be beneficial for athletes. The study demonstrated that egg white powders containing omega-3 salmon oil can be effectively produced by sp...

  17. High resistance to thermal decomposition in brown cotton is linked to tannis and sodium content

    USDA-ARS?s Scientific Manuscript database

    Brown cotton (Gossypium hirsutum L.) fibers (SA-1 and MC-BL) studied were inferior to white cotton fiber Sure-Grow 747 (SG747) in fiber quality, i.e., shorter length, fewer twists, and lower crystallinity, but exhibited superior thermal properties in thermogravimetry (TG), differential thermogravime...

  18. Free online access to experimental and predicted chemical properties through the EPA’s CompTox Chemistry Dashboard (ACS Spring meeting)

    EPA Science Inventory

    The increasing number and size of public databases is facilitating the collection of chemical structures and associated experimental data for QSAR modeling. However, the performance of QSAR models is highly dependent not only on the modeling methodology, but also on the quality o...

  19. Growth rate and surfactant-assisted enhancements of rare-earth arsenide InGaAs nanocomposites for terahertz generation

    NASA Astrophysics Data System (ADS)

    Salas, R.; Guchhait, S.; Sifferman, S. D.; McNicholas, K. M.; Dasika, V. D.; Jung, D.; Krivoy, E. M.; Lee, M. L.; Bank, S. R.

    2017-09-01

    We report the effects of the growth rate on the properties of iii-v nanocomposites containing rare-earth-monopnictide nanoparticles. In particular, the beneficial effects of surfactant-assisted growth of LuAs:In0.53Ga0.47As nanocomposites were found to be most profound at reduced LuAs growth rates. Substantial enhancement in the electrical and optical properties that are beneficial for ultrafast photoconductors was observed and is attributed to the higher structural quality of the InGaAs matrix in this new growth regime. The combined enhancements enabled a >50% increase in the amount of LuAs that could be grown without degrading the quality of the InGaAs overgrowth. Dark resistivity increased by ˜25× while maintaining carrier mobilities over 3000 cm2/V s; carrier lifetimes were reduced by >2×, even at high depositions of LuAs. The combined growth rate and surfactant enhancements offer a previously unexplored regime to enable high-performance fast photoconductors that may be integrated with telecom components for compact, broadly tunable, heterodyne THz source and detectors.

  20. Evaluation of the local homogeneity fluctuation of sinter of the small chip size MLCCs by means of mid-infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Tsuzuku, Koichiro; Hagiwara, Tomoya; Takeoka, Shunsuke; Ikemoto, Yuka

    2008-05-01

    Vibration bands of dielectric ceramics appear at a mid-infrared (MIR) and those position and shape are changed owing to change environment of crystal lattice. Therefore, micro-focus MIR spectroscopy is a one of useful tool to evaluate very small size capacitor (e.g. smaller than 0.5 mm in chip size). Very small size multi-layer capacitor: MLCC are one of very important device to produce high quality electrical products such as cell phone, etc. Quality and reliability of MLCC are corresponding to not only average dielectric properties but also local fluctuation of them. Furthermore, local fluctuation of dielectric properties of MLCC could evaluate with MIR spectroscopy. It is possible to obtain a satisfied MIR spectrum from small size samples performed by a micro-focus spectrometer combined with synchrotron radiation as a high luminance light source at beam line BL43IR of SPring-8. From the above result, it is possible to evaluate the degree of homogeneity by comparing the shape change of Ti-O peak on IR spectra.

  1. A Multi-Omics Approach to Evaluate the Quality of Milk Whey Used in Ricotta Cheese Production

    PubMed Central

    Sattin, Eleonora; Andreani, Nadia A.; Carraro, Lisa; Lucchini, Rosaria; Fasolato, Luca; Telatin, Andrea; Balzan, Stefania; Novelli, Enrico; Simionati, Barbara; Cardazzo, Barbara

    2016-01-01

    In the past, milk whey was only a by-product of cheese production, but currently, it has a high commercial value for use in the food industries. However, the regulation of whey management (i.e., storage and hygienic properties) has not been updated, and as a consequence, its microbiological quality is very challenging for food safety. The Next Generation Sequencing (NGS) technique was applied to several whey samples used for Ricotta production to evaluate the microbial community composition in depth using both RNA and DNA as templates for NGS library construction. Whey samples demonstrating a high microbial and aerobic spore load contained mostly Firmicutes; although variable, some samples contained a relevant amount of Gammaproteobacteria. Several lots of whey acquired as raw material for Ricotta production presented defective organoleptic properties. To define the volatile compounds in normal and defective whey samples, a headspace gas chromatography/mass spectrometry (GC/MS) analysis was conducted. The statistical analysis demonstrated that different microbial communities resulted from DNA or cDNA library sequencing, and distinguishable microbiota composed the communities contained in the organoleptic-defective whey samples. PMID:27582735

  2. Thermal oxidation of silicon in a residual oxygen atmosphere—the RESOX process—for self-limiting growth of thin silicon dioxide films

    NASA Astrophysics Data System (ADS)

    Wright, Jason T.; Carbaugh, Daniel J.; Haggerty, Morgan E.; Richard, Andrea L.; Ingram, David C.; Kaya, Savas; Jadwisienczak, Wojciech M.; Rahman, Faiz

    2016-10-01

    We describe in detail the growth procedures and properties of thermal silicon dioxide grown in a limited and dilute oxygen atmosphere. Thin thermal oxide films have become increasingly important in recent years due to the continuing down-scaling of ultra large scale integration metal oxide silicon field effect transistors. Such films are also of importance for organic transistors where back-gating is needed. The technique described here is novel and allows self-limited formation of high quality thin oxide films on silicon surfaces. This technique is easy to implement in both research laboratory and industrial settings. Growth conditions and their effects on film growth have been described. Properties of the resulting oxide films, relevant for microelectronic device applications, have also been investigated and reported here. Overall, our findings are that thin, high quality, dense silicon dioxide films of thicknesses up to 100 nm can be easily grown in a depleted oxygen environment at temperatures similar to that used for usual silicon dioxide thermal growth in flowing dry oxygen.

  3. Effect of high hydrostatic pressure processing and squeezing pressure on some quality properties of pomegranate juice against thermal treatment

    NASA Astrophysics Data System (ADS)

    Subasi, B. G.; Alpas, H.

    2017-01-01

    The aim of this study was to investigate the effect of high hydrostatic pressure (HHP) treatment (200, 300, 400 MPa; 5°C, 15°C and 25°C; 5 and 10 min) on some quality properties of pomegranate juice. Juice samples are obtained under industrial conditions at two different squeezing pressure levels (100 and 150 psi - 0.689 and 1.033 MPa, respectively). Results are compared against conventional thermal treatment (85°C/10 min) and raw sample. For all three processing temperature, HHP combinations at 400 MPa for 10 min were sufficient to decrease the microbial load around 4.0 log cycles for both squeeze levels. All HHP treatments showed no significant decrease at antioxidant activity, total phenolic content and monomeric anthocyanin pigment concentrations, while there was a significant decrease (p ≤ .05) in thermal-treated samples. Being the highest sugar alcohol in pomegranate juice, mannitol content must be considered for determining the authenticity, and mannitol content increased with squeezing pressure and thermal treatment.

  4. Effects of Dietary Fiber Extracted from Pumpkin (Cucurbita maxima Duch.) on the Physico-Chemical and Sensory Characteristics of Reduced-Fat Frankfurters.

    PubMed

    Kim, Cheon-Jei; Kim, Hyun-Wook; Hwang, Ko-Eun; Song, Dong-Heon; Ham, Youn-Kyung; Choi, Ji-Hun; Kim, Young-Boong; Choi, Yun-Sang

    2016-01-01

    In this study, we investigated the effects of reducing fat levels from 30% to 25, 20, and 15% by substituting pork fat with water and pumpkin fiber (2%) on the quality of frankfurters compared with control. Decreasing the fat concentration from 30% to 15% significantly increased moisture content, redness of meat batter and frankfurter, cooking loss, and water exudation, and decreased fat content, energy value, pH, and lightness of meat batter and frankfurter, hardness, cohesiveness, gumminess, chewiness, and apparent viscosity. The addition of 2% pumpkin fiber was significantly increased moisture content, yellowness of meat batter and frankfurter, hardness, cohesiveness, gumminess, chewiness, and apparent viscosity, whereas reduced cooking loss and emulsion stability. The treatment of reduced-fat frankfurters formulated with 20 and 25% fat levels and with pumpkin fiber had sensory properties similar to the high-fat control frankfurters. The results demonstrate that when the reduced-fat frankfurter with 2% added pumpkin fiber and water replaces fat levels can be readily made with high quality and acceptable sensory properties.

  5. Effects of Dietary Fiber Extracted from Pumpkin (Cucurbita maxima Duch.) on the Physico-Chemical and Sensory Characteristics of Reduced-Fat Frankfurters

    PubMed Central

    Kim, Cheon-Jei; Kim, Hyun-Wook; Hwang, Ko-Eun; Song, Dong-Heon; Ham, Youn-Kyung; Choi, Ji-Hun

    2016-01-01

    In this study, we investigated the effects of reducing fat levels from 30% to 25, 20, and 15% by substituting pork fat with water and pumpkin fiber (2%) on the quality of frankfurters compared with control. Decreasing the fat concentration from 30% to 15% significantly increased moisture content, redness of meat batter and frankfurter, cooking loss, and water exudation, and decreased fat content, energy value, pH, and lightness of meat batter and frankfurter, hardness, cohesiveness, gumminess, chewiness, and apparent viscosity. The addition of 2% pumpkin fiber was significantly increased moisture content, yellowness of meat batter and frankfurter, hardness, cohesiveness, gumminess, chewiness, and apparent viscosity, whereas reduced cooking loss and emulsion stability. The treatment of reduced-fat frankfurters formulated with 20 and 25% fat levels and with pumpkin fiber had sensory properties similar to the high-fat control frankfurters. The results demonstrate that when the reduced-fat frankfurter with 2% added pumpkin fiber and water replaces fat levels can be readily made with high quality and acceptable sensory properties. PMID:27433101

  6. Variability in the chemistry of private drinking water supplies and the impact of domestic treatment systems on water quality.

    PubMed

    Ander, E L; Watts, M J; Smedley, P L; Hamilton, E M; Close, R; Crabbe, H; Fletcher, T; Rimell, A; Studden, M; Leonardi, G

    2016-12-01

    Tap water from 497 properties using private water supplies, in an area of metalliferous and arsenic mineralisation (Cornwall, UK), was measured to assess the extent of compliance with chemical drinking water quality standards, and how this is influenced by householder water treatment decisions. The proportion of analyses exceeding water quality standards were high, with 65 % of tap water samples exceeding one or more chemical standards. The highest exceedances for health-based standards were nitrate (11 %) and arsenic (5 %). Arsenic had a maximum observed concentration of 440 µg/L. Exceedances were also high for pH (47 %), manganese (12 %) and aluminium (7 %), for which standards are set primarily on aesthetic grounds. However, the highest observed concentrations of manganese and aluminium also exceeded relevant health-based guidelines. Significant reductions in concentrations of aluminium, cadmium, copper, lead and/or nickel were found in tap waters where households were successfully treating low-pH groundwaters, and similar adventitious results were found for arsenic and nickel where treatment was installed for iron and/or manganese removal, and successful treatment specifically to decrease tap water arsenic concentrations was observed at two properties where it was installed. However, 31 % of samples where pH treatment was reported had pH < 6.5 (the minimum value in the drinking water regulations), suggesting widespread problems with system maintenance. Other examples of ineffectual treatment are seen in failed responses post-treatment, including for nitrate. This demonstrates that even where the tap waters are considered to be treated, they may still fail one or more drinking water quality standards. We find that the degree of drinking water standard exceedances warrant further work to understand environmental controls and the location of high concentrations. We also found that residents were more willing to accept drinking water with high metal (iron and manganese) concentrations than international guidelines assume. These findings point to the need for regulators to reinforce the guidance on drinking water quality standards to private water supply users, and the benefits to long-term health of complying with these, even in areas where treated mains water is widely available.

  7. Synthesis and Superconducting Properties of the High Transition Temperature Superconductor BARIUM(1-X) Potassium(x)bismuth Trioxide

    NASA Astrophysics Data System (ADS)

    Folkerts, Timothy John

    A systematic study of Ba_ {1-x}K_ xBiO_3 (BKBO) in the range 0 <= x <= 0.5 is presented in this work, concentrating especially on the superconducting range 0.35 <= x <= 0.5. Samples were studied using powder x-ray diffraction, thermal analysis, magnetization as a function of both temperature and applied field, and resistivity as a function of both temperature and pressure. Particular effort went into producing high quality samples. This proved difficult because of the moisture sensitivity of the starting materials and of the intermediate products, and because of the tendency of the material to phase separate into regions of varying potassium concentrations. Once synthesis techniques were developed which allowed production of high quality samples, systematic studies could be undertaken. The sharpness of the powder x-ray diffraction peaks, along with least squares fits, were used to determine phase purity and to exclude poor quality samples. The lattice parameters of the remaining samples were seen to obey Vegard's Law. Magnetization studies as a function of temperature were used to determine the superconducting transition temperature (T_ c). Onsets for superconductivity were observed as high as 30 K for samples with broad transitions, although samples with sharp transitions had a maximum T_ c of only 28.8 K. This high T_ c, as well as the crystal structure clearly link BKBO to the high T_ c superconductors. Hysteresis measurements were undertaken to determine the upper and lower critical fields, critical currents, and the normal state susceptibility. Estimates of the coherence length, penetration depth, and the electronic contribution to the specific heat based on these measurements agree well with BCS theory. Resistivity data are quit dependent on sample quality, as well as potassium doping. At low potassium concentrations, the material is semiconducting, while at higher potassium concentrations where the material is superconducting, the normal state resistivity of Ba_ {1-x}K_ xBiO_3 is nearly temperature independent. This is in contrast to other oxide superconductors, which typically show metallic behavior. We conclude that the BCS theory adequately describes the properties of Ba_{1-x }K_ xBiO_3, as determined in this study.

  8. Two-Dimensional CH₃NH₃PbI₃ Perovskite: Synthesis and Optoelectronic Application.

    PubMed

    Liu, Jingying; Xue, Yunzhou; Wang, Ziyu; Xu, Zai-Quan; Zheng, Changxi; Weber, Bent; Song, Jingchao; Wang, Yusheng; Lu, Yuerui; Zhang, Yupeng; Bao, Qiaoliang

    2016-03-22

    Hybrid organic-inorganic perovskite materials have received substantial research attention due to their impressively high performance in photovoltaic devices. As one of the oldest functional materials, it is intriguing to explore the optoelectronic properties in perovskite after reducing it into a few atomic layers in which two-dimensional (2D) confinement may get involved. In this work, we report a combined solution process and vapor-phase conversion method to synthesize 2D hybrid organic-inorganic perovskite (i.e., CH3NH3PbI3) nanocrystals as thin as a single unit cell (∼1.3 nm). High-quality 2D perovskite crystals have triangle and hexagonal shapes, exhibiting tunable photoluminescence while the thickness or composition is changed. Due to the high quantum efficiency and excellent photoelectric properties in 2D perovskites, a high-performance photodetector was demonstrated, in which the current can be enhanced significantly by shining 405 and 532 nm lasers, showing photoresponsivities of 22 and 12 AW(-1) with a voltage bias of 1 V, respectively. The excellent optoelectronic properties make 2D perovskites building blocks to construct 2D heterostructures for wider optoelectronic applications.

  9. Topological Insulators and Superconductors for Innovative Devices

    DTIC Science & Technology

    2015-03-20

    bulk-sensitive experiment with hard x ray or low-energy photons.) This demon- strates that the bulk band gap can be enhanced by taking advantage of the...crystallinity in X - ray Laue analysis, and their detailed transport properties are described in the Supplementary Information. ARPES measurements were...high quality of our fi lms grown at high temperatures, including ultrathin ones, is evident from the X - ray diffraction patterns shown in Figure 2 d

  10. Ultrasound Elasticity Imaging System with Chirp-Coded Excitation for Assessing Biomechanical Properties of Elasticity Phantom

    PubMed Central

    Chun, Guan-Chun; Chiang, Hsing-Jung; Lin, Kuan-Hung; Li, Chien-Ming; Chen, Pei-Jarn; Chen, Tainsong

    2015-01-01

    The biomechanical properties of soft tissues vary with pathological phenomenon. Ultrasound elasticity imaging is a noninvasive method used to analyze the local biomechanical properties of soft tissues in clinical diagnosis. However, the echo signal-to-noise ratio (eSNR) is diminished because of the attenuation of ultrasonic energy by soft tissues. Therefore, to improve the quality of elastography, the eSNR and depth of ultrasound penetration must be increased using chirp-coded excitation. Moreover, the low axial resolution of ultrasound images generated by a chirp-coded pulse must be increased using an appropriate compression filter. The main aim of this study is to develop an ultrasound elasticity imaging system with chirp-coded excitation using a Tukey window for assessing the biomechanical properties of soft tissues. In this study, we propose an ultrasound elasticity imaging system equipped with a 7.5-MHz single-element transducer and polymethylpentene compression plate to measure strains in soft tissues. Soft tissue strains were analyzed using cross correlation (CC) and absolution difference (AD) algorithms. The optimal parameters of CC and AD algorithms used for the ultrasound elasticity imaging system with chirp-coded excitation were determined by measuring the elastographic signal-to-noise ratio (SNRe) of a homogeneous phantom. Moreover, chirp-coded excitation and short pulse excitation were used to measure the elasticity properties of the phantom. The elastographic qualities of the tissue-mimicking phantom were assessed in terms of Young’s modulus and elastographic contrast-to-noise ratio (CNRe). The results show that the developed ultrasound elasticity imaging system with chirp-coded excitation modulated by a Tukey window can acquire accurate, high-quality elastography images. PMID:28793718

  11. Understanding and development of manufacturable screen-printed contacts on high sheet-resistance emitters for low-cost silicon solar cells

    NASA Astrophysics Data System (ADS)

    Hilali, Mohamed M.

    2005-11-01

    A simple cost-effective approach was proposed and successfully employed to fabricate high-quality screen-printed (SP) contacts to high sheet-resistance emitters (100 O/sq) to improve the Si solar cell efficiency. Device modeling was used to quantify the performance enhancement possible from the high sheet-resistance emitter for various cell designs. It was found that for performance enhancement from the high sheet-resistance emitter, certain cell design criteria must be satisfied. Model calculations showed that in order to achieve any performance enhancement over the conventional ˜40 O/sq emitter, the high sheet resistance emitter solar cell must have a reasonably good (<120,000 cm/s) or low front-surface recombination velocity (FSRV). Model calculations were also performed to establish requirements for high fill factors (FFs). The results showed that the series resistance should be less than 0.8 O-cm2, the shunt resistance should be greater than 1000 O-cm2, and the junction leakage current should be less than 25 nA/cm2. Analytical microscopy and surface analysis techniques were used to study the Ag-Si contact interface of different SP Ag pastes. Physical and electrical properties of SP Ag thick-film contacts were studied and correlated to understand and achieve good-quality ohmic contacts to high sheet-resistance emitters for solar cells. This information was then used to define the criteria for high-quality screen-printed contacts. The role of paste constituents and firing scheme on contact quality were investigated to tailor the high-quality screen-printed contact interface structure that results in high performance solar cells. Results indicated that small particle size, high glass transition temperature, rapid firing and less aggressive glass frit help in producing high-quality contacts. Based on these results high-quality SP contacts with high FFs > 0.78 on high sheet-resistance emitters were achieved for the first time using a simple single-step firing process. This technology was applied to different substrates (monocrystalline and multicrystalline) and surfaces (textured and planar). Cell efficiencies of ˜16.2% on low-cost EFG ribbon substrates were achieved on high sheet-resistance emitters with SP contacts. A record high-efficiency SP solar cell of 19% with textured high sheet-resistance emitter was also fabricated and modeled.

  12. Analysis of the Relationships between Waste Cooking Oil Qualities and Rejuvenated Asphalt Properties

    PubMed Central

    Zhang, Dong; Chen, Meizhu; Wu, Shaopeng; Liu, Jingxiang; Amirkhanian, Serji

    2017-01-01

    Waste cooking oil (WCO), in many cases, can rejuvenate aged asphalt and restore its properties. However, the influence of WCO qualities on rejuvenation behaviors of aged asphalt has not been investigated in detail. The objective of this paper was to evaluate the effects of WCO viscosity and acid value on the basic, rheological, and chemical properties of a typical rejuvenated asphalt. Penetration, ring and ball (R and B) softening point, and ductility were tested to evaluate the influence of WCO qualities on basic properties of rejuvenated asphalts. Then, the rheological properties of rejuvenated asphalt were characterized based on rotational viscometer (RV), dynamic shear rheometer (DSR), and bending beam rheometer (BBR) test results. Further, SARA (saturates, aromatics, resins, and asphaltenes) fraction analysis and Fourier transform infrared spectroscopy (FTIR) tests were performed to investigate the effects of WCO qualities on asphalt chemical composition. Finally, grey correlation coefficients were calculated and the relationships between WCO qualities and rejuvenated asphalt properties were quantitatively evaluated. The experimental results indicated that WCO qualities influence the rejuvenation behaviors of aged asphalt significantly, and the WCO with higher qualities (low acid value and viscosity, as defined in this research) tends to achieve better rejuvenation effects. Based on the results of grey correlation analyses, the acid value is, relatively, a better indicator than viscosity in predicting the rejuvenation efficiency of WCO. The rejuvenation thresholds of WCO are varied with the categories of properties of rejuvenated asphalts, and WCO with an acid value of 0.4–0.7 mg KOH/g, or a viscosity of 140–540 mm2/s, can meet all of the performance requirements for asphalt rejuvenation used in this research. PMID:28772862

  13. Analysis of the Relationships between Waste Cooking Oil Qualities and Rejuvenated Asphalt Properties.

    PubMed

    Zhang, Dong; Chen, Meizhu; Wu, Shaopeng; Liu, Jingxiang; Amirkhanian, Serji

    2017-05-06

    Waste cooking oil (WCO), in many cases, can rejuvenate aged asphalt and restore its properties. However, the influence of WCO qualities on rejuvenation behaviors of aged asphalt has not been investigated in detail. The objective of this paper was to evaluate the effects of WCO viscosity and acid value on the basic, rheological, and chemical properties of a typical rejuvenated asphalt. Penetration, ring and ball (R and B) softening point, and ductility were tested to evaluate the influence of WCO qualities on basic properties of rejuvenated asphalts. Then, the rheological properties of rejuvenated asphalt were characterized based on rotational viscometer (RV), dynamic shear rheometer (DSR), and bending beam rheometer (BBR) test results. Further, SARA (saturates, aromatics, resins, and asphaltenes) fraction analysis and Fourier transform infrared spectroscopy (FTIR) tests were performed to investigate the effects of WCO qualities on asphalt chemical composition. Finally, grey correlation coefficients were calculated and the relationships between WCO qualities and rejuvenated asphalt properties were quantitatively evaluated. The experimental results indicated that WCO qualities influence the rejuvenation behaviors of aged asphalt significantly, and the WCO with higher qualities (low acid value and viscosity, as defined in this research) tends to achieve better rejuvenation effects. Based on the results of grey correlation analyses, the acid value is, relatively, a better indicator than viscosity in predicting the rejuvenation efficiency of WCO. The rejuvenation thresholds of WCO are varied with the categories of properties of rejuvenated asphalts, and WCO with an acid value of 0.4-0.7 mg KOH/g, or a viscosity of 140-540 mm²/s, can meet all of the performance requirements for asphalt rejuvenation used in this research.

  14. Thermal Diffusivity for III-VI Semiconductor Melts at Different Temperatures

    NASA Technical Reports Server (NTRS)

    Ban, H.; Li, C.; Lin, B.; Emoto, K.; Scripa, R. N.; Su, C.-H.; Lehoczky, S. L.

    2004-01-01

    The change of the thermal properties of semiconductor melts reflects the structural changes inside the melts, and a fundamental understanding of this structural transformation is essential for high quality semiconductor crystal growth process. This paper focused on the technical development and the measurement of thermal properties of III-VI semiconductor melts at high temperatures. Our previous work has improved the laser flash method for the specialized quartz sample cell. In this paper, we reported the results of our recent progress in further improvements of the measurement system by minimizing the free convection of the melt, adding a front IR detector, and placing the sample cell in a vacuum environment. The results for tellurium and selenium based compounds, some of which have never been reported in the literature, were obtained at different temperatures as a function of time. The data were compared with other measured thermophysical properties to shed light on the structural transformations of the melt.

  15. Mechanical characterization of SiC particulate & E-glass fiber reinforced Al 3003 hybrid metal matrix composites

    NASA Astrophysics Data System (ADS)

    Narayana, K. S. Lakshmi; Shivanand, H. K.

    2018-04-01

    Metal matrix composites constitute a class of low cost high quality materials which offer high performance for various industrial applications. The orientation of this research is towards the study of mechanical properties of as cast silicon carbide (SiC) particulates and Short E-Glass fibers reinforced Aluminum matrix composites (AMCs). The Hybrid metal matrix composite is developed by reinforcing SiC particulates of 100 microns and short E-Glass fibers of 2-3 mm length with Al 3003 in different compositions. The vortex method of stir casting was employed, in which the reinforcements were introduced into the vortex created by the molten metal by means of mechanical stirrer. The mechanical properties of the prepared metal matrix composites were analyzed. From the studies it was noticed that an improvement in mechanical properties of the reinforced alloys compared to unreinforced alloys.

  16. Noncontact conductivity and dielectric measurement for high throughput roll-to-roll nanomanufacturing

    NASA Astrophysics Data System (ADS)

    Orloff, Nathan D.; Long, Christian J.; Obrzut, Jan; Maillaud, Laurent; Mirri, Francesca; Kole, Thomas P.; McMichael, Robert D.; Pasquali, Matteo; Stranick, Stephan J.; Alexander Liddle, J.

    2015-11-01

    Advances in roll-to-roll processing of graphene and carbon nanotubes have at last led to the continuous production of high-quality coatings and filaments, ushering in a wave of applications for flexible and wearable electronics, woven fabrics, and wires. These applications often require specific electrical properties, and hence precise control over material micro- and nanostructure. While such control can be achieved, in principle, by closed-loop processing methods, there are relatively few noncontact and nondestructive options for quantifying the electrical properties of materials on a moving web at the speed required in modern nanomanufacturing. Here, we demonstrate a noncontact microwave method for measuring the dielectric constant and conductivity (or geometry for samples of known dielectric properties) of materials in a millisecond. Such measurement times are compatible with current and future industrial needs, enabling real-time materials characterization and in-line control of processing variables without disrupting production.

  17. The MAC aerosol climatology

    NASA Astrophysics Data System (ADS)

    Kinne, S.

    2015-12-01

    Aerosol is highly diverse in space and time. And many different aerosol optical properties are needed (consistent to each other) for the determination of radiative effects. To sidestep a complex (and uncertain) aerosol treatment (emission to mass to optics) a monthly gridded climatology for aerosol properties has been developed. This MPI Aerosol Climatology (MAC) is strongly tied to observational statistics for aerosol column optical properties by AERONET (over land) and by MAN (over oceans). To fill spatial gaps, to address decadal change and to address vertical variability, these sparsely distributed local data are extended with central data of an ensemble of output from global models with complex aerosol modules. This data merging in performed for aerosol column amount (AOD), for aerosol size (AOD,fine) and for aerosol absorption (AAOD). The resulting MAC aerosol climatology is an example for the combination of high quality local observations with spatial, temporal and vertical context from model simulations.

  18. Noncontact conductivity and dielectric measurement for high throughput roll-to-roll nanomanufacturing

    PubMed Central

    Orloff, Nathan D.; Long, Christian J.; Obrzut, Jan; Maillaud, Laurent; Mirri, Francesca; Kole, Thomas P.; McMichael, Robert D.; Pasquali, Matteo; Stranick, Stephan J.; Alexander Liddle, J.

    2015-01-01

    Advances in roll-to-roll processing of graphene and carbon nanotubes have at last led to the continuous production of high-quality coatings and filaments, ushering in a wave of applications for flexible and wearable electronics, woven fabrics, and wires. These applications often require specific electrical properties, and hence precise control over material micro- and nanostructure. While such control can be achieved, in principle, by closed-loop processing methods, there are relatively few noncontact and nondestructive options for quantifying the electrical properties of materials on a moving web at the speed required in modern nanomanufacturing. Here, we demonstrate a noncontact microwave method for measuring the dielectric constant and conductivity (or geometry for samples of known dielectric properties) of materials in a millisecond. Such measurement times are compatible with current and future industrial needs, enabling real-time materials characterization and in-line control of processing variables without disrupting production. PMID:26592441

  19. Genesis analysis of high-gamma ray sandstone reservoir and its log evaluation techniques: a case study from the Junggar basin, northwest China.

    PubMed

    Wang, Liang; Mao, Zhiqiang; Sun, Zhongchun; Luo, Xingping; Song, Yong; Liu, Zhen

    2013-01-01

    In the Junggar basin, northwest China, many high gamma-ray (GR) sandstone reservoirs are found and routinely interpreted as mudstone non-reservoirs, with negative implications for the exploration and exploitation of oil and gas. Then, the high GR sandstone reservoirs' recognition principles, genesis, and log evaluation techniques are systematically studied. Studies show that the sandstone reservoirs with apparent shale content greater than 50% and GR value higher than 110API can be regarded as high GR sandstone reservoir. The high GR sandstone reservoir is mainly and directly caused by abnormally high uranium enrichment, but not the tuff, feldspar or clay mineral. Affected by formation's high water sensitivity and poor borehole quality, the conventional logs can not recognize reservoir and evaluate the physical property of reservoirs. Then, the nuclear magnetic resonance (NMR) logs is proposed and proved to be useful in reservoir recognition and physical property evaluation.

  20. Genesis Analysis of High-Gamma Ray Sandstone Reservoir and Its Log Evaluation Techniques: A Case Study from the Junggar Basin, Northwest China

    PubMed Central

    Wang, Liang; Mao, Zhiqiang; Sun, Zhongchun; Luo, Xingping; Song, Yong; Liu, Zhen

    2013-01-01

    In the Junggar basin, northwest China, many high gamma-ray (GR) sandstone reservoirs are found and routinely interpreted as mudstone non-reservoirs, with negative implications for the exploration and exploitation of oil and gas. Then, the high GR sandstone reservoirs' recognition principles, genesis, and log evaluation techniques are systematically studied. Studies show that the sandstone reservoirs with apparent shale content greater than 50% and GR value higher than 110API can be regarded as high GR sandstone reservoir. The high GR sandstone reservoir is mainly and directly caused by abnormally high uranium enrichment, but not the tuff, feldspar or clay mineral. Affected by formation's high water sensitivity and poor borehole quality, the conventional logs can not recognize reservoir and evaluate the physical property of reservoirs. Then, the nuclear magnetic resonance (NMR) logs is proposed and proved to be useful in reservoir recognition and physical property evaluation. PMID:24078797

  1. Microgravity Production of Nanoparticles of Novel Materials Using Plasma Synthesis

    NASA Technical Reports Server (NTRS)

    Frenklach, Michael; Fernandez-Pello, Carlos

    2001-01-01

    The research goal is to study the formation in reduced gravity of high quality nanoparticulate of novel materials using plasma synthesis. Particular emphasis will be placed on the production of powders of non-oxide materials like diamond, SiC, SiN, c-BN, etc. The objective of the study is to investigate the effect of gravity on plasma synthesis of these materials, and to determine how the microgravity synthesis can improve the quality and yield of the nanoparticles. It is expected that the reduced gravity will aid in the understanding of the controlling mechanisms of plasma synthesis, and will increase the yield, and quality of the synthesized powder. These materials have properties of interest in several industrial applications, such as high temperature load bearings or high speed metal machining. Furthermore, because of the nano-meter size of the particulate produced in this process, they have specific application in the fabrication of MEMS based combustion systems, and in the development and growth of nano-systems and nano-structures of these materials. These are rapidly advancing research areas, and there is a great need for high quality nanoparticles of different materials. One of the primary systems of interest in the project will be gas-phase synthesis of nanopowder of non-oxide materials.

  2. CVD growth of large-area and high-quality HfS2 nanoforest on diverse substrates

    NASA Astrophysics Data System (ADS)

    Zheng, Binjie; Wang, Zegao; Qi, Fei; Wang, Xinqiang; Yu, Bo; Zhang, Wanli; Chen, Yuanfu

    2018-03-01

    Two-dimensional layered transition metal dichalcogenides (TMDs) have attracted burgeoning attention due to their various properties and wide potential applications. As a new TMD, hafnium disulfide (HfS2) is theoretically predicted to have better electrical performance than widely studied MoS2. The experimental researches also confirmed the extraordinary feature in electronics and optoelectronics. However, the maximal device performance may not be achieved due to its own limitation of planar structure and challenge of transfer without contamination. Here, through the chemical vapor deposition (CVD) technique, inch-size HfS2 nanoforest has been directly grown on diverse objective substrates covering insulating, semiconducting and conducting substrates. This direct CVD growth without conventional transfer process avoids contamination and degradation in quality, suggesting its promising and wide applications in high-quality and multifarious devices. It is noted that all the HfS2 nanoforests grown on diverse substrates are constructed with vertically aligned few-layered HfS2 nanosheets with high crystalline quality and edge orientation. Moreover, due to its unique structure, the HfS2 nanoforest owns abundant exposed edge sites and large active surface area, which is essential to apply in high-performance catalyst, sensor, and energy storage or field emitter.

  3. Wafer scale millimeter-wave integrated circuits based on epitaxial graphene in high data rate communication

    PubMed Central

    Habibpour, Omid; He, Zhongxia Simon; Strupinski, Wlodek; Rorsman, Niklas; Zirath, Herbert

    2017-01-01

    In recent years, the demand for high data rate wireless communications has increased dramatically, which requires larger bandwidth to sustain multi-user accessibility and quality of services. This can be achieved at millimeter wave frequencies. Graphene is a promising material for the development of millimeter-wave electronics because of its outstanding electron transport properties. Up to now, due to the lack of high quality material and process technology, the operating frequency of demonstrated circuits has been far below the potential of graphene. Here, we present monolithic integrated circuits based on epitaxial graphene operating at unprecedented high frequencies (80–100 GHz). The demonstrated circuits are capable of encoding/decoding of multi-gigabit-per-second information into/from the amplitude or phase of the carrier signal. The developed fabrication process is scalable to large wafer sizes. PMID:28145513

  4. High-quality III-nitride films on conductive, transparent (2̅01)-oriented β-Ga2O3 using a GaN buffer layer

    PubMed Central

    Muhammed, M. M.; Roldan, M. A.; Yamashita, Y.; Sahonta, S.-L.; Ajia, I. A.; Iizuka, K.; Kuramata, A.; Humphreys, C. J.; Roqan, I. S.

    2016-01-01

    We demonstrate the high structural and optical properties of InxGa1−xN epilayers (0 ≤ x ≤ 23) grown on conductive and transparent (01)-oriented β-Ga2O3 substrates using a low-temperature GaN buffer layer rather than AlN buffer layer, which enhances the quality and stability of the crystals compared to those grown on (100)-oriented β-Ga2O3. Raman maps show that the 2″ wafer is relaxed and uniform. Transmission electron microscopy (TEM) reveals that the dislocation density reduces considerably (~4.8 × 107 cm−2) at the grain centers. High-resolution TEM analysis demonstrates that most dislocations emerge at an angle with respect to the c-axis, whereas dislocations of the opposite phase form a loop and annihilate each other. The dislocation behavior is due to irregular (01) β-Ga2O3 surface at the interface and distorted buffer layer, followed by relaxed GaN epilayer. Photoluminescence results confirm high optical quality and time-resolved spectroscopy shows that the recombination is governed by bound excitons. We find that a low root-mean-square average (≤1.5 nm) of InxGa1−xN epilayers can be achieved with high optical quality of InxGa1−xN epilayers. We reveal that (01)-oriented β-Ga2O3 substrate has a strong potential for use in large-scale high-quality vertical light emitting device design. PMID:27412372

  5. High-quality III-nitride films on conductive, transparent (2̅01)-oriented β-Ga2O3 using a GaN buffer layer.

    PubMed

    Muhammed, M M; Roldan, M A; Yamashita, Y; Sahonta, S-L; Ajia, I A; Iizuka, K; Kuramata, A; Humphreys, C J; Roqan, I S

    2016-07-14

    We demonstrate the high structural and optical properties of InxGa1-xN epilayers (0 ≤ x ≤ 23) grown on conductive and transparent (01)-oriented β-Ga2O3 substrates using a low-temperature GaN buffer layer rather than AlN buffer layer, which enhances the quality and stability of the crystals compared to those grown on (100)-oriented β-Ga2O3. Raman maps show that the 2″ wafer is relaxed and uniform. Transmission electron microscopy (TEM) reveals that the dislocation density reduces considerably (~4.8 × 10(7) cm(-2)) at the grain centers. High-resolution TEM analysis demonstrates that most dislocations emerge at an angle with respect to the c-axis, whereas dislocations of the opposite phase form a loop and annihilate each other. The dislocation behavior is due to irregular (01) β-Ga2O3 surface at the interface and distorted buffer layer, followed by relaxed GaN epilayer. Photoluminescence results confirm high optical quality and time-resolved spectroscopy shows that the recombination is governed by bound excitons. We find that a low root-mean-square average (≤1.5 nm) of InxGa1-xN epilayers can be achieved with high optical quality of InxGa1-xN epilayers. We reveal that (01)-oriented β-Ga2O3 substrate has a strong potential for use in large-scale high-quality vertical light emitting device design.

  6. Development of a quality control test procedure for characterizing fracture properties of asphalt mixtures.

    DOT National Transportation Integrated Search

    2011-06-01

    The main objective of this study is to investigate the use of the semi-circular bend (SCB) : test as a quality assurance/quality control (QA/QC) measure for field construction. : Comparison of fracture properties from the SCB test and fatigue beam te...

  7. Patient-Reported Outcomes for Quality of Life Assessment in Atrial Fibrillation: A Systematic Review of Measurement Properties.

    PubMed

    Kotecha, Dipak; Ahmed, Amar; Calvert, Melanie; Lencioni, Mauro; Terwee, Caroline B; Lane, Deirdre A

    2016-01-01

    Atrial fibrillation is a large and growing burden across all types of healthcare. Both incidence and prevalence are expected to double in the next 20 years, with huge impact on hospital admissions, costs and patient quality of life. Patient wellbeing determines the management strategy for atrial fibrillation, including the use of rhythm control therapy and the clinical success of heart rate control. Hence, evaluation of quality of life is an emerging and important part of the assessment of patients with atrial fibrillation. Although a number of questionnaires to assess quality of life in atrial fibrillation are available, a comprehensive overview of their measurement properties is lacking. We performed a systematic review of the measurement properties of atrial fibrillation-specific health-related quality of life questionnaires. Methodological quality was assessed using the Consensus based Standards for selection of health Measurement Instruments (COSMIN) checklist, with measurement properties rated for quality against optimal criteria and levels of evidence. We screened 2,216 articles, of which eight articles describing five questionnaires were eligible for inclusion: Atrial Fibrillation 6 (AF6), Atrial Fibrillation Effect on QualiTy-of-Life (AFEQT), Atrial Fibrillation Quality of Life Questionnaire (AFQLQ), Atrial Fibrillation Quality of Life (AFQoL), and Quality of Life in Atrial Fibrillation (QLAF). Good reliability (internal consistency and test-retest reliability) was demonstrated for AF6, AFEQT, AFQLQ and AFQoL. Content, construct and criterion validity were positively rated only in AFEQT. Responsiveness was positively rated only in AFEQT, but with limited evidence. Overall, AFEQT showed strong positive evidence for 2 of 9 measurement properties, compared to one for AFQoL and none for the remaining questionnaires. Given the low ratings for many measurement properties, no single questionnaire can be recommended, although AFEQT performed strongest. Further studies to robustly assess reliability, validity and responsiveness of AF-specific quality of life questionnaires are required. This review consolidates the current evidence for quality of life assessment in patients with atrial fibrillation and identifies priority areas for future research.

  8. Crystal and Particle Engineering Strategies for Improving Powder Compression and Flow Properties to Enable Continuous Tablet Manufacturing by Direct Compression.

    PubMed

    Chattoraj, Sayantan; Sun, Changquan Calvin

    2018-04-01

    Continuous manufacturing of tablets has many advantages, including batch size flexibility, demand-adaptive scale up or scale down, consistent product quality, small operational foot print, and increased manufacturing efficiency. Simplicity makes direct compression the most suitable process for continuous tablet manufacturing. However, deficiencies in powder flow and compression of active pharmaceutical ingredients (APIs) limit the range of drug loading that can routinely be considered for direct compression. For the widespread adoption of continuous direct compression, effective API engineering strategies to address power flow and compression problems are needed. Appropriate implementation of these strategies would facilitate the design of high-quality robust drug products, as stipulated by the Quality-by-Design framework. Here, several crystal and particle engineering strategies for improving powder flow and compression properties are summarized. The focus is on the underlying materials science, which is the foundation for effective API engineering to enable successful continuous manufacturing by the direct compression process. Copyright © 2018 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  9. Effect of high-dose irradiation and autoclave treatment on microbial safety and quality of ready-to-eat Bulgogi sauce

    NASA Astrophysics Data System (ADS)

    Park, Jin-Gyu; Song, Beom-Seok; Kim, Jae-Hun; Han, In-Jun; Yoon, Yohan; Chung, Hyung-Wook; Kim, Eun-Jeong; Gao, Meixu; Lee, Ju-Woon

    2012-08-01

    In Korea, commercialized sauce for ready-to-eat (RTE) Bulgogi is usually manufactured using heat treatment to ensure that it has a long shelf-life. However, heat treatment may adversely affect the taste and flavor of the sauce, thus, the development of suitable sterilizing methods for RTE sauces is necessary to preserve the quality of the sauce during long storage periods. In this study, total bacterial growth, the viscosity, and the sensory properties of Bulgogi sauce were compared between sterilization with gamma irradiation (0-40 kGy) and autoclave treatment during storage at 35 °C for 90 days. No bacterial growth was observed following irradiation at more than 10 kGy or after autoclave treatment. However, the viscosity and sensory properties of samples gamma-irradiated at above 10 kGy or autoclave-treated were significantly changed, even though autoclave treatment induced a burnt taste and flavor. Therefore, a gamma irradiation of 10 kGy was effective to prepare ready-to-eat Bulgogi sauce with microbial safety and original sensory qualities.

  10. The effect of pigment matrix, temperature and amount of carrier on the yield and final color properties of spray dried purple corn (Zea mays L.) cob anthocyanin powders.

    PubMed

    Lao, Fei; Giusti, M Monica

    2017-07-15

    Spray drying is an economic technique to produce anthocyanin-based colorants. High pigments yields with minimum color degradation are desirable to maximize quality and profits. This study evaluated the impacts of purple corncob (PCC) anthocyanin extraction matrices (hot water, 40% ethanol, C18 purified), drying inlet temperature (130, 150, 170°C) and amount of carrier (2%, 5%, 10% maltodextrin) on the yields and quality of PCC anthocyanin powders. Monomeric and polymeric anthocyanins, color properties (CIELch, haze), and pigments composition before and after spray drying were determined. The yield and final color quality of spray dried PCC anthocyanins were affected (p<0.05) by all parameters evaluated. The pigment matrix, inlet temperature, and carrier amount had biggest impacts on product water solubility, pigments degradation and yield, respectively. The optimal combination of hot water extracts spray dried with 5% maltodextrin at 150°C gave the highest pigment yield (∼90%) with good solubility with the least color loss. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Spectral properties of molecular iodine in absorption cells filled to specified saturation pressure.

    PubMed

    Hrabina, Jan; Šarbort, Martin; Acef, Ouali; Burck, Frédéric Du; Chiodo, Nicola; Holá, Miroslava; Číp, Ondřej; Lazar, Josef

    2014-11-01

    We present the results of measurement and evaluation of spectral properties of iodine absorption cells filled at certain saturation pressure. A set of cells made of borosilicate glass instead of common fused silica was tested for their spectral properties in greater detail with special care for the long-term development of the absorption media purity. The results were compared with standard fused silica cells and the high quality of iodine was verified. A measurement method based on an approach relying on measurement of linewidth of the hyperfine transitions is proposed as a novel technique for iodine cell absorption media purity evaluation. A potential application in laser metrology of length is also discussed.

  12. NASA COAST and OCEANIA Airborne Missions Support Ecosystem and Water Quality Research in the Coastal Zone

    NASA Technical Reports Server (NTRS)

    Guild, Liane; Kudela, Raphael; Hooker, Stanford; Morrow, John; Russell, Philip; Palacios, Sherry; Livingston, John M.; Negrey, Kendra; Torres-Perez, Juan; Broughton, Jennifer

    2014-01-01

    NASA has a continuing requirement to collect high-quality in situ data for the vicarious calibration of current and next generation ocean color satellite sensors and to validate the algorithms that use the remotely sensed observations. Recent NASA airborne missions over Monterey Bay, CA, have demonstrated novel above- and in-water measurement capabilities supporting a combined airborne sensor approach (imaging spectrometer, microradiometers, and a sun photometer). The results characterize coastal atmospheric and aquatic properties through an end-to-end assessment of image acquisition, atmospheric correction, algorithm application, plus sea-truth observations from state-of-the-art instrument systems. The primary goal is to demonstrate the following in support of calibration and validation exercises for satellite coastal ocean color products: 1) the utility of a multi-sensor airborne instrument suite to assess the bio-optical properties of coastal California, including water quality; and 2) the importance of contemporaneous atmospheric measurements to improve atmospheric correction in the coastal zone. The imaging spectrometer (Headwall) is optimized in the blue spectral domain to emphasize remote sensing of marine and freshwater ecosystems. The novel airborne instrument, Coastal Airborne In-situ Radiometers (C-AIR) provides measurements of apparent optical properties with high dynamic range and fidelity for deriving exact water leaving radiances at the land-ocean boundary, including radiometrically shallow aquatic ecosystems. Simultaneous measurements supporting empirical atmospheric correction of image data are accomplished using the Ames Airborne Tracking Sunphotometer (AATS-14). Flight operations are presented for the instrument payloads using the Center for Interdisciplinary Remotely-Piloted Aircraft Studies (CIRPAS) Twin Otter flown over Monterey Bay during the seasonal fall algal bloom in 2011 (COAST) and 2013 (OCEANIA) to support bio-optical measurements of phytoplankton for coastal zone research.

  13. Torrefaction of landfill food waste for possible application in biomass co-firing.

    PubMed

    Pahla, G; Ntuli, F; Muzenda, E

    2018-01-01

    Greenhouse gas emissions and municipal solid waste management have presented challenges globally. This study aims to produce a high-quality biochar with properties close to bituminous coal from landfill food waste (FW). FW was analyzed by proximate and ultimate analyses to determine its fuel properties and elemental composition before torrefaction. Temperature was varied from 200 to 300 °C at a constant residence time of 40 min and 10 °C/min heating rate. Calorific value, mass yield, energy yield and energy density were computed and used to determine the quality of the resulting biochar. Quality of raw food waste was also determined by elemental analysis. Thermal evolution was then investigated using hyphenated Thermogravimetric Analysis (TGA) and Fourier Transform Infra-Red Spectrometry (FTIR). Torrefaction was done at 225 °C, 275 °C and 300 °C. The calorific value was upgraded from 19.76 MJ/kg for dried raw food waste to 26.15 MJ/kg for torrefied food waste at the appropriate conditions which were 275 °C, 40 min and 10 °C/min. The higher heating value was comparable to that of bituminous coal from Anglo Mafube in South Africa. Elemental analysis of biochar showed an increase in carbon content with temperature due to loss of oxygen containing volatiles. This agreed with TG curves and FTIR spectra which confirmed release of H 2 O, CO and CO 2 . This resulted in a more hydrophobic solid fuel with high energy density. Food waste can therefore be upgraded to a biochar with similar fuel properties as pulverized coal used in coal fired boilers. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. High thermoelectric properties of (Sb, Bi)2Te3 nanowire arrays by tilt-structure engineering

    NASA Astrophysics Data System (ADS)

    Tan, Ming; Hao, Yanming; Deng, Yuan; Chen, Jingyi

    2018-06-01

    In this paper, we present an innovative tilt-structure design concept for (Sb, Bi)2Te3 nanowire array assembled by high-quality nanowires with well oriented growth, utilizing a simple vacuum thermal evaporation technique. The unusual tilt-structure (Sb, Bi)2Te3 nanowire array with a tilted angle of 45° exhibits a high thermoelectric dimensionless figure-of-merit ZT = 1.72 at room temperature. The relatively high ZT value in contrast to that of previously reported (Sb, Bi)2Te3 materials and the vertical (Sb, Bi)2Te3 nanowire arrays evidently reveals the crucial role of the unique tilt-structure in favorably influencing carrier and phonon transport properties, resulting in a significantly improved ZT value. The transport mechanism of such tilt-structure is proposed and investigated. This method opens a new approach to optimize nano-structure in thin films for next-generation thermoelectric materials and devices.

  15. A Survey of Near-infrared Diffuse Interstellar Bands

    NASA Astrophysics Data System (ADS)

    Hamano, Satochi; Kobayashi, Naoto; Kawakita, Hideyo; Ikeda, Yuji; Kondo, Sohei; Sameshima, Hiroaki; Arai, Akira; Matsunaga, Noriyuki; Yasui, Chikako; Mizumoto, Misaki; Fukue, Kei; Izumi, Natsuko; Otsubo, Shogo; Takenada, Keiichi

    2018-04-01

    We propose a study of interstellar molecules with near-infrared (NIR) high-resolution spectroscopy as a science case for the 3.6-m Devasthal Optical Telescope (DOT). In particular, we present the results obtained on-going survey of diffuse interstellar bands (DIBs) in NIR with the newly developed NIR high-resolution spectrograph WINERED, which offers a high sensitivity in the wavelength range of 0.91-1.36 µm. Using the WINERED spectrograph attached to the 1.3-m Araki telescope in Japan, we obtained high-quality spectra of a number of early-type stars in various environments, such as diffuse interstellar clouds, dark clouds and star-forming regions, to investigate the properties of NIR DIBs and constrain their carriers. As a result, we successfully identified about 50 new NIR DIBs, where only five fairly strong DIBs had been identified previously. Also, some properties of DIBs in the NIR are discussed to constrain the carriers of DIBs.

  16. Low toxicity high temperature PMR polyimide

    NASA Technical Reports Server (NTRS)

    Pater, Ruth H. (Inventor)

    1992-01-01

    In-situ polymerization of monomer reactants (PMR) type polyimides constitute an important class of ultra high performance composite matrix resins. PMR-15 is the best known and most widely used PMR polyimide. An object of the present invention is to provide a substantially improved high temperature PMR-15 system that exhibits better processability, toughness, and thermo-oxidative stability than PMR-15, as well as having a low toxicity. Another object is to provide new PMR polyimides that are useful as adhesives, moldings, and composite matrices. By the present invention, a new PMR polyimide comprises a mixture of the following compounds: 3,4'-oxydianiline (3,4'-ODA), NE, and BTDE which are then treated with heat. This PMR was designated LaRC-RP46 and has a broader processing window, better reproducibility of high quality composite parts, better elevated temperature mechanical properties, and higher retention of mechanical properties at an elevated temperature, particularly, at 371 C.

  17. Room-Temperature Triple-Ligand Surface Engineering Synergistically Boosts Ink Stability, Recombination Dynamics, and Charge Injection toward EQE-11.6% Perovskite QLEDs.

    PubMed

    Song, Jizhong; Li, Jinhang; Xu, Leimeng; Li, Jianhai; Zhang, Fengjuan; Han, Boning; Shan, Qingsong; Zeng, Haibo

    2018-06-10

    Developing low-cost and high-quality quantum dots (QDs) or nanocrystals (NCs) and their corresponding efficient light-emitting diodes (LEDs) is crucial for the next-generation ultra-high-definition flexible displays. Here, there is a report on a room-temperature triple-ligand surface engineering strategy to play the synergistic role of short ligands of tetraoctylammonium bromide (TOAB), didodecyldimethylammonium bromide (DDAB), and octanoic acid (OTAc) toward "ideal" perovskite QDs with a high photoluminescence quantum yield (PLQY) of >90%, unity radiative decay in its intrinsic channel, stable ink characteristics, and effective charge injection and transportation in QD films, resulting in the highly efficient QD-based LEDs (QLEDs). Furthermore, the QD films with less nonradiative recombination centers exhibit improved PL properties with a PLQY of 61% through dopant engineering in A-site. The robustness of such properties is demonstrated by the fabrication of green electroluminescent LEDs based on CsPbBr 3 QDs with the peak external quantum efficiency (EQE) of 11.6%, and the corresponding peak internal quantum efficiency (IQE) and power efficiency are 52.2% and 44.65 lm W -1 , respectively, which are the most-efficient perovskite QLEDs with colloidal CsPbBr 3 QDs as emitters up to now. These results demonstrate that the as-obtained QD inks have a wide range application in future high-definition QD displays and high-quality lightings. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Tree species traits influence soil physical, chemical, and biological properties in high elevation forests.

    PubMed

    Ayres, Edward; Steltzer, Heidi; Berg, Sarah; Wallenstein, Matthew D; Simmons, Breana L; Wall, Diana H

    2009-06-18

    Previous studies have shown that plants often have species-specific effects on soil properties. In high elevation forests in the Southern Rocky Mountains, North America, areas that are dominated by a single tree species are often adjacent to areas dominated by another tree species. Here, we assessed soil properties beneath adjacent stands of trembling aspen, lodgepole pine, and Engelmann spruce, which are dominant tree species in this region and are distributed widely in North America. We hypothesized that soil properties would differ among stands dominated by different tree species and expected that aspen stands would have higher soil temperatures due to their open structure, which, combined with higher quality litter, would result in increased soil respiration rates, nitrogen availability, and microbial biomass, and differences in soil faunal community composition. We assessed soil physical, chemical, and biological properties at four sites where stands of aspen, pine, and spruce occurred in close proximity to one-another in the San Juan Mountains, Colorado. Leaf litter quality differed among the tree species, with the highest nitrogen (N) concentration and lowest lignin:N in aspen litter. Nitrogen concentration was similar in pine and spruce litter, but lignin:N was highest in pine litter. Soil temperature and moisture were highest in aspen stands, which, in combination with higher litter quality, probably contributed to faster soil respiration rates from stands of aspen. Soil carbon and N content, ammonium concentration, and microbial biomass did not differ among tree species, but nitrate concentration was highest in aspen soil and lowest in spruce soil. In addition, soil fungal, bacterial, and nematode community composition and rotifer, collembolan, and mesostigmatid mite abundance differed among the tree species, while the total abundance of nematodes, tardigrades, oribatid mites, and prostigmatid mites did not. Although some soil characteristics were unaffected by tree species identity, our results clearly demonstrate that these dominant tree species are associated with soils that differ in several physical, chemical, and biotic properties. Ongoing environmental changes in this region, e.g. changes in fire regime, frequency of insect outbreaks, changes in precipitation patterns and snowpack, and land-use change, may alter the relative abundance of these tree species over coming decades, which in turn will likely alter the soils.

  19. Retrieval of tropospheric aerosol properties over land from visible and near-infrared spectral reflectance: Application over Maryland

    NASA Astrophysics Data System (ADS)

    Levy, Robert Carroll

    Aerosols are major components of the Earth's global climate system, affecting the radiation budget and cloud processes of the atmosphere. When located near the surface, high concentrations lead to lowered visibility, increased health problems and generally reduced quality of life for the human population. Over the United States mid-Atlantic region, aerosol pollution is a problem mainly during the summer. Satellites, such as the MODerate Imaging Spectrometer (MODIS), from their vantage point above the atmosphere, provide unprecedented coverage of global and regional aerosols over land. During MODIS' eight-year operation, exhaustive data validation and analyses have shown how the algorithm should be improved. This dissertation describes the development of the 'second-generation' operational algorithm for retrieval of global tropospheric aerosol properties over dark land surfaces, from MODIS-observed spectral reflectance. New understanding about global aerosol properties, land surface reflectance characteristics, and radiative transfer properties were learned in the process. This new operational algorithm performs a simultaneous inversion of reflectance in two visible channels (0.47 and 0.66 mum) and one shortwave infrared channel (2.12 mum), thereby having increased sensitivity to coarse aerosol. Inversion of the three channels retrieves the aerosol optical depth (tau) at 0.55 mum, the percentage of non-dust (fine model) aerosol (eta) and the surface reflectance. This algorithm is applied globally, and retrieves tau that is highly correlated (y = 0.02 + 1.0x, R=0.9) with ground-based sunphotometer measurements. The new algorithm estimates the global, over-land, long-term averaged tau ˜ 0.21, a 25% reduction from previous MODIS estimates. This leads to reducing estimates of global, non-desert, over-land aerosol direct radiative effect (all aerosols) by 1.7 W·m-2 (0.5 W·m-2 over the entire globe), which significantly impacts assessment of aerosol direct radiative forcing (contribution from anthropogenic aerosols only). Over the U.S. mid-Atlantic region, validated retrievals of tau (an integrated column property) can help to estimate surface PM2.5 concentration, a monitored criteria air quality property. The 3-dimensional aerosol loading in the region is characterized using aircraft measurements and the Community Multi-scale Air Quality Model (CMAQ) model, leading to some convergence of observed quantities and modeled processes.

  20. Metabolic profiling of a range of peach fruit varieties reveals high metabolic diversity and commonalities and differences during ripening.

    PubMed

    Monti, Laura L; Bustamante, Claudia A; Osorio, Sonia; Gabilondo, Julieta; Borsani, Julia; Lauxmann, Martin A; Maulión, Evangelina; Valentini, Gabriel; Budde, Claudio O; Fernie, Alisdair R; Lara, María V; Drincovich, María F

    2016-01-01

    Peach (Prunus persica) fruits from different varieties display differential organoleptic and nutritional properties, characteristics related to their chemical composition. Here, chemical biodiversity of peach fruits from fifteen varieties, at harvest and after post-harvest ripening, was explored by gas chromatography-mass spectrometry. Metabolic profiling revealed that metabolites involved in organoleptic properties (sugars, organic and amino acids), stress tolerance (raffinose, galactinol, maltitol), and with nutritional properties (amino, caffeoylquinic and dehydroascorbic acids) displayed variety-dependent levels. Peach varieties clustered into four groups: two groups of early-harvest varieties with higher amino acid levels; two groups of mid- and late-harvest varieties with higher maltose levels. Further separation was mostly dependent on organic acids/raffinose levels. Variety-dependent and independent metabolic changes associated with ripening were detected; which contribute to chemical diversity or can be used as ripening markers, respectively. The great variety-dependent diversity in the content of metabolites that define fruit quality reinforces metabolomics usage as a tool to assist fruit quality improvement in peach. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Effect of buckwheat flour on cooking quality and some chemical, antinutritional and sensory properties of erişte, Turkish noodle.

    PubMed

    Bilgiçli, Nermin

    2009-01-01

    In this study, wheat flour used in erişte production was replaced with whole buckwheat flour (BWF) up to a 40% level to improve the nutritional properties of erişte. The chemical composition, phytic acid content, color values, cooking quality and sensory properties of erişte samples were determined. High levels of BWF in erişte formulation increased the ash, cellulose and fat content when compared with a control made by wheat flour. The 40% BWF supplementation instead of wheat flour decreased the starch content from 65.4% to 58.4%. Increasing the BWF level in the erişte sample resulted in an expected increase (P<0.05) in the phytic acid content and potassium, magnesium and phosphorus amounts. Significant decreases were observed in water uptake and volume increase values with BWF addition levels over 20%. BWF gave darker erişte samples in color. erişte containing BWF up to a 25% level were appreciated by the panelists, especially in terms of overall acceptability.

  2. Assessment of Surface Area Characteristics of Dental Implants with Gradual Bioactive Surface Treatment

    NASA Astrophysics Data System (ADS)

    Czan, Andrej; Babík, Ondrej; Miklos, Matej; Záušková, Lucia; Mezencevová, Viktória

    2017-10-01

    Since most of the implant surface is in direct contact with bone tissue, shape and integrity of said surface has great influence on successful osseointegration. Among other characteristics that predetermine titanium of different grades of pureness as ideal biomaterial, titanium shows high mechanical strength making precise miniature machining increasingly difficult. Current titanium-based implants are often anodized due to colour coding. This anodized layer has important functional properties for right usage and also bio-compatibility of dental implants. Physical method of anodizing and usage of anodizing mediums has a significant influence on the surface quality and itself functionality. However, basic requirement of the dental implant with satisfactory properties is quality of machined surface before anodizing. Roughness, for example, is factor affecting of time length of anodizing operation and so whole productivity. The paper is focused on monitoring of surface and area characteristics, such as roughness or surface integrity after different cutting conditions of miniature machining of dental implants and their impact on suitability for creation of satisfactory anodized layer with the correct biocompatible functional properties.

  3. Genotypic diversity and environmental stability of starch physicochemical properties in the USDA rice mini-core collection.

    PubMed

    Li, Kehu; Bao, Jinsong; Corke, Harold; Sun, Mei

    2017-04-15

    The USDA rice mini-core collection consists of 217 accessions representative of a world-wide germplam bank. We investigated its genotypic diversity in starch physicochemical properties and the effects of genotype, environment and G×E interaction in this study. High genotypic diversity was found in all 18 measured starch quality traits in the mini-core rice in two location-years in China. Genotype, environment and G×E effects on these traits were analysed using 115 common accessions successfully produced in both environments. Thermal properties (T o , T p and T c ) were very stable whereas most other traits differed significantly between environments. However, when these accessions were divided into five subgroups based on amylose content, environment was found to have differential effects. G×E interaction also played a significant role in determining the starch traits. These findings will provide guidance for selection from the diverse genotypes in the USDA mini-core collection for cultivation and for developing cultivars with desired cooking and eating quality. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Effects of high-temperature pressure cooking and traditional cooking on soymilk: Protein particles formation and sensory quality.

    PubMed

    Zuo, Feng; Peng, Xingyun; Shi, Xiaodi; Guo, Shuntang

    2016-10-15

    This study focused on the effect of high-temperature pressure cooking on the sensory quality of soymilk. Soymilk was prepared by high-temperature pressure cooking (105-125°C and 0.12-0.235MPa) and traditional cooking (97°C and 0.1MPa). The size distribution and composition of protein particles and the rheological properties of soymilk were compared. Results showed that the content of protein particles and the average size of soymilk particles were higher in high-temperature pressure cooking than in traditional cooking (p<0.05). High-temperature pressure cooking affected soymilk protein denaturation and favored protein aggregation. Similar to traditional soymilk, soymilk cooked at 115°C was categorized as a Newtonian fluid but was found with increased viscosity in the rheological test. Soymilk cooked at 115°C for 10min exhibited a homogeneous, smooth, and creamy texture with a high acceptability in the sensory test. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Growth and Photovoltaic Properties of High-Quality GaAs Nanowires Prepared by the Two-Source CVD Method.

    PubMed

    Wang, Ying; Yang, Zaixing; Wu, Xiaofeng; Han, Ning; Liu, Hanyu; Wang, Shuobo; Li, Jun; Tse, WaiMan; Yip, SenPo; Chen, Yunfa; Ho, Johnny C

    2016-12-01

    Growing high-quality and low-cost GaAs nanowires (NWs) as well as fabricating high-performance NW solar cells by facile means is an important development towards the cost-effective next-generation photovoltaics. In this work, highly crystalline, dense, and long GaAs NWs are successfully synthesized using a two-source method on non-crystalline SiO2 substrates by a simple solid-source chemical vapor deposition method. The high V/III ratio and precursor concentration enabled by this two-source configuration can significantly benefit the NW growth and suppress the crystal defect formation as compared with the conventional one-source system. Since less NW crystal defects would contribute fewer electrons being trapped by the surface oxides, the p-type conductivity is then greatly enhanced as revealed by the electrical characterization of fabricated NW devices. Furthermore, the individual single NW and high-density NW parallel arrays achieved by contact printing can be effectively fabricated into Schottky barrier solar cells simply by employing asymmetric Ni-Al contacts, along with an open circuit voltage of ~0.3 V. All these results indicate the technological promise of these high-quality two-source grown GaAs NWs, especially for the realization of facile Schottky solar cells utilizing the asymmetric Ni-Al contact.

  6. Light quality and efficiency of consumer grade solid state lighting products

    NASA Astrophysics Data System (ADS)

    Dam-Hansen, Carsten; Corell, Dennis Dan; Thorseth, Anders; Poulsen, Peter Behrensdorff

    2013-03-01

    The rapid development in flux and efficiency of Light Emitting Diodes (LED) has resulted in a flooding of the lighting market with Solid State Lighting (SSL) products. Many traditional light sources can advantageously be replaced by SSL products. There are, however, large variations in the quality of these products, and some are not better than the ones they are supposed to replace. A lack of quality demands and standards makes it difficult for consumers to get an overview of the SSL products. Here the results of a two year study investigating SSL products on the Danish market are presented. Focus has been on SSL products for replacement of incandescent lamps and halogen spotlights. The warm white light and good color rendering properties of these traditional light sources are a must for lighting in Denmark and the Nordic countries. 266 SSL replacement lamps have been tested for efficiency and light quality with respect to correlated color temperature and color rendering properties. This shows a trade-off between high color rendering warm white light and energy efficiency. The lumen and color maintenance over time has been investigated and results for products running over 11000 h will be presented. A new internet based SSL product selection tool will be shown. Here the products can be compared on efficiency, light quality parameters, thus providing a better basis for the selection of SSL products for consumers.

  7. Electrochemical deposition onto self-assembled monolayers: new insights into micro- and nanofabrication.

    PubMed

    Schilardi, Patricia L; Dip, Patricio; dos Santos Claro, Paula C; Benítez, Guillermo A; Fonticelli, Mariano H; Azzaroni, Omar; Salvarezza, Roberto C

    2005-12-16

    Pattern transfer with high resolution is a frontier topic in the emerging field of nanotechnologies. Electrochemical molding is a possible route for nanopatterning metal, alloys and oxide surfaces with high resolution in a simple and inexpensive way. This method involves electrodeposition onto a conducting master covered by a self-assembled alkanethiolate monolayer (SAMs). This molecular film enables direct surface-relief pattern transfer from the conducting master to the inner face of the electrodeposit, and also allows an easy release of the electrodeposited film due their excellent anti-adherent properties. Replicas of the original conductive master can be also obtained by a simple two-step procedure. SAM quality and stability under electrodeposition conditions combined with the formation of smooth electrodeposits are crucial to obtain high-quality pattern transfer with sub-50 nm resolution.

  8. Producing gallium arsenide crystals in space

    NASA Technical Reports Server (NTRS)

    Randolph, R. L.

    1984-01-01

    The production of high quality crystals in space is a promising near-term application of microgravity processing. Gallium arsenide is the selected material for initial commercial production because of its inherent superior electronic properties, wide range of market applications, and broad base of on-going device development effort. Plausible product prices can absorb the high cost of space transportation for the initial flights provided by the Space Transportation System. The next step for bulk crystal growth, beyond the STS, is planned to come later with the use of free flyers or a space station, where real benefits are foreseen. The use of these vehicles, together with refinement and increasing automation of space-based crystal growth factories, will bring down costs and will support growing demands for high quality GaAs and other specialty electronic and electro-optical crystals grown in space.

  9. Sensitometric and image analysis of T-grain film.

    PubMed

    Thunthy, K H; Weinberg, R

    1986-08-01

    The new Kodak T-grain film is the result of a new technology that makes fast films with high image resolution. The purpose of the investigation was to determine the sensitometric properties and image quality of a T-grain film (T-Mat G) and also to compare this film with a green-sensitive orthochromatic film (Ortho G) and a blue-sensitive film (XRP). The criteria for film evaluation were relative speed, average contrast, exposure latitude, and image resolution. The results showed that the T-Mat G film is twice as fast as the X-Omat RP film and, one and one-third times as fast as the Ortho G film. T-Mat G also produces high resolution and high contrast. This is contrary to the widely held notion that speed is inversely proportional to image quality.

  10. Effect of structure and morphology on thermal and electrical properties of polycarbonate film capacitors

    NASA Astrophysics Data System (ADS)

    Yen, S. P. S.; Lewis, C. R.

    Research is reported to identify polycarbonate (PC) film characteristics and fabrication procedures which extend the reliable performance range of PC capacitors to 125 C without derating, and establish quality control techniques and transfer technology to US PC film manufacturers. The approach chosen to solve these problems was to develop techniques for fabricating biaxially oriented (BX) 2 microns or thinner PC film with a low dissipation factor up to 140 C; isotropic dimensional stability; high crystallinity; and high voltage breakdown strength. The PC film structure and morphology was then correlated to thermal and electrical capacitor behavior. Analytical techniques were developed to monitor film quality during capacitor fabrication, and as a result, excellent performance was demonstrated during initial capacitor testing.

  11. Investigation of trapping levels in p-type Zn3P2 nanowires using transport and optical properties

    NASA Astrophysics Data System (ADS)

    Lombardi, G. A.; de Oliveira, F. M.; Teodoro, M. D.; Chiquito, A. J.

    2018-05-01

    Here, we report the synthesis and structural characterization of high-quality Zn3P2 nanowires via chemical vapour deposition. Structural and morphological characterization studies revealed a reliable growth process of long, uniform, and single-crystalline nanowires. From temperature dependent transport and photoluminescence measurements, we have observed the contribution of different acceptor levels (15, 50, 70, 90, and 197 meV) to the conduction mechanisms. These levels were associated with zinc vacancies and phosphorous interstitial atoms which assigned a p-type character to this semiconductor. From time resolved photoluminescence experiments, a 91 ps lifetime decay was found. Such a fast lifetime decay is in agreement with the exciton transition along the bulk emission from high quality crystalline nanowires.

  12. Microscopic Nanomechanical Dissipation in Gallium Arsenide Resonators.

    PubMed

    Hamoumi, M; Allain, P E; Hease, W; Gil-Santos, E; Morgenroth, L; Gérard, B; Lemaître, A; Leo, G; Favero, I

    2018-06-01

    We report on a systematic study of nanomechanical dissipation in high-frequency (≈300  MHz) gallium arsenide optomechanical disk resonators, in conditions where clamping and fluidic losses are negligible. Phonon-phonon interactions are shown to contribute with a loss background fading away at cryogenic temperatures (3 K). Atomic layer deposition of alumina at the surface modifies the quality factor of resonators, pointing towards the importance of surface dissipation. The temperature evolution is accurately fitted by two-level systems models, showing that nanomechanical dissipation in gallium arsenide resonators directly connects to their microscopic properties. Two-level systems, notably at surfaces, appear to rule the damping and fluctuations of such high-quality crystalline nanomechanical devices, at all temperatures from 3 to 300 K.

  13. Sorption of lead ions on diatomite and manganese oxides modified diatomite.

    PubMed

    Al-Degs, Y; Khraisheh, M A; Tutunji, M F

    2001-10-01

    Naturally occurring diatomaceous earth (diatomite) has been tested as a potential sorbent for Pb(II) ions. The intrinsic exchange properties were further improved by modification with manganese oxides. Modified adsorbent (referred to as Mn-diatomite) showed a higher tendency for adsorbing lead ions from solution at pH 4. The high performance exhibited by Mn-diatomite was attributed to increased surface area and higher negative surface charge after modification. Scanning electron microscope pictures revealed a birnessite structure of manganese oxides, which was featured by a plate-like-crystal structure. Diatomite filtration quality was improved after modification by manganese oxides. Good filtration qualities combined with high exchange capacity emphasised the potential use of Mn-diatomite in filtration systems.

  14. Development and testing of a superconducting link for an IR detector

    NASA Technical Reports Server (NTRS)

    Caton, R.; Selim, R.

    1991-01-01

    The development and testing of a ceramic superconducting link for an infrared detector is summarized. Areas of study included the materials used, the electrical contacts, radiation and temperature cycling effects, aging, thermal conductivity, and computer models of an ideal link. Materials' samples were processed in a tube furnace at temperatures of 840 C to 865 C for periods up to 17 days and transition temperatures and critical current densities were recorded. The project achieved better quality high superconducting transition temperature material through improved processing and also achieved high quality electrical contacts. Studies on effects of electron irradiation, temperature cycling, and aging on superconducting properties indicate that the materials will be suitable for space applications. Various presentations and publications on the study's results are reported.

  15. Microscopic Nanomechanical Dissipation in Gallium Arsenide Resonators

    NASA Astrophysics Data System (ADS)

    Hamoumi, M.; Allain, P. E.; Hease, W.; Gil-Santos, E.; Morgenroth, L.; Gérard, B.; Lemaître, A.; Leo, G.; Favero, I.

    2018-06-01

    We report on a systematic study of nanomechanical dissipation in high-frequency (≈300 MHz ) gallium arsenide optomechanical disk resonators, in conditions where clamping and fluidic losses are negligible. Phonon-phonon interactions are shown to contribute with a loss background fading away at cryogenic temperatures (3 K). Atomic layer deposition of alumina at the surface modifies the quality factor of resonators, pointing towards the importance of surface dissipation. The temperature evolution is accurately fitted by two-level systems models, showing that nanomechanical dissipation in gallium arsenide resonators directly connects to their microscopic properties. Two-level systems, notably at surfaces, appear to rule the damping and fluctuations of such high-quality crystalline nanomechanical devices, at all temperatures from 3 to 300 K.

  16. Chemical Composition and Antioxidant Properties of Powders Obtained from Different Plum Juice Formulations.

    PubMed

    Michalska, Anna; Wojdyło, Aneta; Łysiak, Grzegorz P; Figiel, Adam

    2017-01-17

    Among popular crops, plum ( Prunus domestica L.) has received special attention due to its health-promoting properties. The seasonality of this fruit makes it impossible to consume it throughout the year, so new products in a powder form may offer an alternative to fresh consumption and may be used as high-quality natural food ingredients. A 100% plum (cultivar "Valor") juice was mixed with three different concentrations of maltodextrin or subjected to sugars removal by amberlite-XAD column, and dried using the freeze, spray, and vacuum (40, 60, and 80 °C) drying techniques. The identification and quantification of phenolic acids, flavonols, and anthocyanins in plum powders was performed by LC-MS QTof and UPLC-PDA, respectively. l-ascorbic acid, hydroxymethylfurfural, and antioxidant capacity were measured by the Trolox equivalent antioxidant capacity (TEAC) ABTS and ferric reducing antioxidant potential (FRAP) methods in order to compare the influence of the drying methods on product quality. The results indicated that the profile of polyphenolic compounds in the plum juice powders significantly differed from the whole plum powders. The drying of a sugar free plum extract resulted in higher content of polyphenolic compounds, l-ascorbic acid and antioxidant capacity, but lower content of hydroxymethylfurfural, regardless of drying method applied. Thus, the formulation of plum juice before drying and the drying method should be carefully selected in order to obtain high-quality powders.

  17. Optical properties of beryllium-doped GaSb epilayers grown on GaAs substrate

    NASA Astrophysics Data System (ADS)

    Deng, Zhuo; Chen, Baile; Chen, Xiren; Shao, Jun; Gong, Qian; Liu, Huiyun; Wu, Jiang

    2018-05-01

    In this work, the effects of p-type beryllium (Be) doping on the optical properties of GaSb epilayers grown on GaAs substrate by Molecular Beam Epitaxy (MBE) have been studied. Temperature- and excitation power-dependent photoluminescence (PL) measurements were performed on both nominally undoped and intentionally Be-doped GaSb layers. Clear PL emissions are observable even at the temperature of 270 K from both layers, indicating the high material quality. In the Be-doped GaSb layer, the transition energies of main PL features exhibit red-shift up to ∼7 meV, and the peak widths characterized by Full-Width-at-Half-Maximum (FWHM) also decrease. In addition, analysis on the PL integrated intensity in the Be-doped sample reveals a gain of emission signal, as well as a larger carrier thermal activation energy. These distinctive PL behaviors identified in the Be-doped GaSb layer suggest that the residual compressive strain is effectively relaxed in the epilayer, due possibly to the reduction of dislocation density in the GaSb layer with the intentional incorporation of Be dopants. Our results confirm the role of Be as a promising dopant in the improvement of crystalline quality in GaSb, which is a crucial factor for growth and fabrication of high quality strain-free GaSb-based devices on foreign substrates.

  18. Chemical Composition and Antioxidant Properties of Powders Obtained from Different Plum Juice Formulations

    PubMed Central

    Michalska, Anna; Wojdyło, Aneta; Łysiak, Grzegorz P.; Figiel, Adam

    2017-01-01

    Among popular crops, plum (Prunus domestica L.) has received special attention due to its health-promoting properties. The seasonality of this fruit makes it impossible to consume it throughout the year, so new products in a powder form may offer an alternative to fresh consumption and may be used as high-quality natural food ingredients. A 100% plum (cultivar “Valor”) juice was mixed with three different concentrations of maltodextrin or subjected to sugars removal by amberlite-XAD column, and dried using the freeze, spray, and vacuum (40, 60, and 80 °C) drying techniques. The identification and quantification of phenolic acids, flavonols, and anthocyanins in plum powders was performed by LC-MS QTof and UPLC-PDA, respectively. l-ascorbic acid, hydroxymethylfurfural, and antioxidant capacity were measured by the Trolox equivalent antioxidant capacity (TEAC) ABTS and ferric reducing antioxidant potential (FRAP) methods in order to compare the influence of the drying methods on product quality. The results indicated that the profile of polyphenolic compounds in the plum juice powders significantly differed from the whole plum powders. The drying of a sugar free plum extract resulted in higher content of polyphenolic compounds, l-ascorbic acid and antioxidant capacity, but lower content of hydroxymethylfurfural, regardless of drying method applied. Thus, the formulation of plum juice before drying and the drying method should be carefully selected in order to obtain high-quality powders. PMID:28106740

  19. "TPSX: Thermal Protection System Expert and Material Property Database"

    NASA Technical Reports Server (NTRS)

    Squire, Thomas H.; Milos, Frank S.; Rasky, Daniel J. (Technical Monitor)

    1997-01-01

    The Thermal Protection Branch at NASA Ames Research Center has developed a computer program for storing, organizing, and accessing information about thermal protection materials. The program, called Thermal Protection Systems Expert and Material Property Database, or TPSX, is available for the Microsoft Windows operating system. An "on-line" version is also accessible on the World Wide Web. TPSX is designed to be a high-quality source for TPS material properties presented in a convenient, easily accessible form for use by engineers and researchers in the field of high-speed vehicle design. Data can be displayed and printed in several formats. An information window displays a brief description of the material with properties at standard pressure and temperature. A spread sheet window displays complete, detailed property information. Properties which are a function of temperature and/or pressure can be displayed as graphs. In any display the data can be converted from English to SI units with the click of a button. Two material databases included with TPSX are: 1) materials used and/or developed by the Thermal Protection Branch at NASA Ames Research Center, and 2) a database compiled by NASA Johnson Space Center 9JSC). The Ames database contains over 60 advanced TPS materials including flexible blankets, rigid ceramic tiles, and ultra-high temperature ceramics. The JSC database contains over 130 insulative and structural materials. The Ames database is periodically updated and expanded as required to include newly developed materials and material property refinements.

  20. The effects of straw or straw-derived gasification biochar applications on soil quality and crop productivity: A farm case study.

    PubMed

    Hansen, Veronika; Müller-Stöver, Dorette; Imparato, Valentina; Krogh, Paul Henning; Jensen, Lars Stoumann; Dolmer, Anders; Hauggaard-Nielsen, Henrik

    2017-01-15

    Thermal gasification of straw is a highly efficient technology that produces bioenergy and gasification biochar that can be used as a soil amendment, thereby returning non-renewable nutrients and stable carbon, and securing soil quality and crop productivity. A Danish on-farm field study investigated the impact of traditional straw incorporation vs. straw removal for thermal gasification bioenergy production and the application of straw gasification biochar (GB) on soil quality and crop production. Two rates of GB were applied over three successive years in which the field was cropped with winter wheat (Triticum aestivum L.), winter oilseed rape (Brassica napus L.) and winter wheat, respectively, to assess the potential effects on the soil carbon pool, soil microorganisms, earthworms, soil chemical properties and crop yields. The application of GB did not increase the soil organic carbon content significantly and had no effect on crop yields. The application of straw and GB had a positive effect on the populations of bacteria and protists, but no effect on earthworms. The high rate of GB increased soil exchangeable potassium content and soil pH indicating its potassium bioavailability and liming properties. These results suggest, that recycling GB into agricultural soils has the potential to be developed into a system combining bioenergy generation from agricultural residues and crop production, while maintaining soil quality. However, future studies should be undertaken to assess its long-term effects and to identify the optimum balance between straw removal and biochar application rate. Copyright © 2016. Published by Elsevier Ltd.

Top