Sample records for properties including large

  1. Predicting various biodiesel fuel properties

    USDA-ARS?s Scientific Manuscript database

    Several essential fuel properties of biodiesel are largely determined by the properties of the fatty esters which are its main components. These include cetane number, kinematic viscosity, oxidative stability, and cold flow which are contained in almost all biodiesel standards but also other propert...

  2. Method and Apparatus for Precisely Applying Large Planar Equi-Biaxial Strains to a Circular Membrane

    DTIC Science & Technology

    2013-04-01

    potential future Army applications. Electronic properties, such as dielectric strength , capacitance, resistance, and inductance, vary significantly and... dielectric strength and resistance are primarily determined by inherent bulk material properties, including microstructure, while shifts in inductance...less and a nominal thickness up to ~1 mm. 15. SUBJECT TERMS large planar equi-biaxial strain, membrane, dielectric elastomers, electromechanical

  3. Large truck crash profile : the 1998 national picture

    DOT National Transportation Integrated Search

    2000-01-01

    This annual edition of the Large Truck Crash Profile contains descriptive statistics about fatal and non-fatal (injury and property-damage-only) large truck crashes that occurred in 1998. The profile includes only some of the major aspects of truck c...

  4. Creep and tensile properties of several oxide-dispersion-strengthened nickel-base alloys at 1365 K

    NASA Technical Reports Server (NTRS)

    Wittenberger, J. D.

    1977-01-01

    The tensile properties at room temperature and at 1365 K and the tensile creep properties at low strain rates at 1365 K were measured for several oxide-dispersion-strengthened (ODS) alloys. The alloys examined included ODS Ni, ODS Ni-20Cr, and ODS Ni-16Cr-Al. Metallography of creep tested, large grain size ODS alloys indicated that creep of these alloys is an inhomogeneous process. All alloys appear to possess a threshold stress for creep. This threshold stress is believed to be associated with diffusional creep in the large grain size ODS alloys and normal dislocation motion in perfect single crystal (without transverse low angle boundaries) ODS alloys. Threshold stresses for large grain size ODS Ni-20Cr and Ni-16Cr-Al type alloys are dependent on the grain aspect ratio. Because of the deleterious effect of prior creep on room temperature mechanical properties of large grain size ODS alloys, it is speculated that the threshold stress may be the design limiting creep strength property.

  5. Continuum modeling of large lattice structures: Status and projections

    NASA Technical Reports Server (NTRS)

    Noor, Ahmed K.; Mikulas, Martin M., Jr.

    1988-01-01

    The status and some recent developments of continuum modeling for large repetitive lattice structures are summarized. Discussion focuses on a number of aspects including definition of an effective substitute continuum; characterization of the continuum model; and the different approaches for generating the properties of the continuum, namely, the constitutive matrix, the matrix of mass densities, and the matrix of thermal coefficients. Also, a simple approach is presented for generating the continuum properties. The approach can be used to generate analytic and/or numerical values of the continuum properties.

  6. A Metallurgical Investigation of Large Forged Discs of Low-carbon N-155 Alloy

    NASA Technical Reports Server (NTRS)

    Cross, Howard C; Freeman, J W

    1947-01-01

    Research was undertaken to ascertain the properties of better wrought heat resisting alloys in the form of large discs required for gas turbine rotors. The properties of large discs of low carbon N-155 alloy in both the as-forged and water-quenched and aged conditions were determined by means of stress-rupture and creep tests for time periods up to about 2000 hours at 1200, 1350, and 1500 F. Short-time tensile test, impact test, and time-total deformation characteristics are included. The principle results are given.

  7. Prediction of Solvent Physical Properties using the Hierarchical Clustering Method

    EPA Science Inventory

    Recently a QSAR (Quantitative Structure Activity Relationship) method, the hierarchical clustering method, was developed to estimate acute toxicity values for large, diverse datasets. This methodology has now been applied to the estimate solvent physical properties including sur...

  8. The Universe at Moderate Redshift

    NASA Technical Reports Server (NTRS)

    Cen, Renyue; Ostriker, Jeremiah P.

    1997-01-01

    The report covers the work done in the past year and a wide range of fields including properties of clusters of galaxies; topological properties of galaxy distributions in terms of galaxy types; patterns of gravitational nonlinear clustering process; development of a ray tracing algorithm to study the gravitational lensing phenomenon by galaxies, clusters and large-scale structure, one of whose applications being the effects of weak gravitational lensing by large-scale structure on the determination of q(0); the origin of magnetic fields on the galactic and cluster scales; the topological properties of Ly(alpha) clouds the Ly(alpha) optical depth distribution; clustering properties of Ly(alpha) clouds; and a determination (lower bound) of Omega(b) based on the observed Ly(alpha) forest flux distribution. In the coming year, we plan to continue the investigation of Ly(alpha) clouds using larger dynamic range (about a factor of two) and better simulations (with more input physics included) than what we have now. We will study the properties of galaxies on 1 - 100h(sup -1) Mpc scales using our state-of-the-art large scale galaxy formation simulations of various cosmological models, which will have a resolution about a factor of 5 (in each dimension) better than our current, best simulations. We will plan to study the properties of X-ray clusters using unprecedented, very high dynamic range (20,000) simulations which will enable us to resolve the cores of clusters while keeping the simulation volume sufficiently large to ensure a statistically fair sample of the objects of interest. The details of the last year's works are now described.

  9. Groups graded by root systems and property (T)

    PubMed Central

    Ershov, Mikhail; Jaikin-Zapirain, Andrei; Kassabov, Martin; Zhang, Zezhou

    2014-01-01

    We establish property (T) for a large class of groups graded by root systems, including elementary Chevalley groups and Steinberg groups of rank at least 2 over finitely generated commutative rings with 1. We also construct a group with property (T) which surjects onto all finite simple groups of Lie type and rank at least two. PMID:25425669

  10. Thermoelectric Properties of Complex Oxide Heterostructures

    NASA Astrophysics Data System (ADS)

    Cain, Tyler Andrew

    Thermoelectrics are a promising energy conversion technology for power generation and cooling systems. The thermal and electrical properties of the materials at the heart of thermoelectric devices dictate conversion efficiency and technological viability. Studying the fundamental properties of potentially new thermoelectric materials is of great importance for improving device performance and understanding the electronic structure of materials systems. In this dissertation, investigations on the thermoelectric properties of a prototypical complex oxide, SrTiO3, are discussed. Hybrid molecular beam epitaxy (MBE) is used to synthesize La-doped SrTiO3 thin films, which exhibit high electron mobilities and large Seebeck coefficients resulting in large thermoelectric power factors at low temperatures. Large interfacial electron densities have been observed in SrTiO3/RTiO 3 (R=Gd,Sm) heterostructures. The thermoelectric properties of such heterostructures are investigated, including the use of a modulation doping approach to control interfacial electron densities. Low-temperature Seebeck coefficients of extreme electron-density SrTiO3 quantum wells are shown to provide insight into their electronic structure.

  11. Information Management System Supporting a Multiple Property Survey Program with Legacy Radioactive Contamination.

    PubMed

    Stager, Ron; Chambers, Douglas; Wiatzka, Gerd; Dupre, Monica; Callough, Micah; Benson, John; Santiago, Erwin; van Veen, Walter

    2017-04-01

    The Port Hope Area Initiative is a project mandated and funded by the Government of Canada to remediate properties with legacy low-level radioactive waste contamination in the Town of Port Hope, Ontario. The management and use of large amounts of data from surveys of some 4800 properties is a significant task critical to the success of the project. A large amount of information is generated through the surveys, including scheduling individual field visits to the properties, capture of field data laboratory sample tracking, QA/QC, property report generation and project management reporting. Web-mapping tools were used to track and display temporal progress of various tasks and facilitated consideration of spatial associations of contamination levels. The IM system facilitated the management and integrity of the large amounts of information collected, evaluation of spatial associations, automated report reproduction and consistent application and traceable execution for this project.x. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  12. Accurate force field for molybdenum by machine learning large materials data

    NASA Astrophysics Data System (ADS)

    Chen, Chi; Deng, Zhi; Tran, Richard; Tang, Hanmei; Chu, Iek-Heng; Ong, Shyue Ping

    2017-09-01

    In this work, we present a highly accurate spectral neighbor analysis potential (SNAP) model for molybdenum (Mo) developed through the rigorous application of machine learning techniques on large materials data sets. Despite Mo's importance as a structural metal, existing force fields for Mo based on the embedded atom and modified embedded atom methods do not provide satisfactory accuracy on many properties. We will show that by fitting to the energies, forces, and stress tensors of a large density functional theory (DFT)-computed dataset on a diverse set of Mo structures, a Mo SNAP model can be developed that achieves close to DFT accuracy in the prediction of a broad range of properties, including elastic constants, melting point, phonon spectra, surface energies, grain boundary energies, etc. We will outline a systematic model development process, which includes a rigorous approach to structural selection based on principal component analysis, as well as a differential evolution algorithm for optimizing the hyperparameters in the model fitting so that both the model error and the property prediction error can be simultaneously lowered. We expect that this newly developed Mo SNAP model will find broad applications in large and long-time scale simulations.

  13. Psychometric properties of the Penn State Worry Questionnaire for children in a large clinical sample.

    PubMed

    Pestle, Sarah L; Chorpita, Bruce F; Schiffman, Jason

    2008-04-01

    The Penn State Worry Questionnaire for Children (PSWQ-C; Chorpita, Tracey, Brown, Collica, & Barlow, 1997) is a 14-item self-report measure of worry in children and adolescents. Although the PSWQ-C has demonstrated favorable psychometric properties in small clinical and large community samples, this study represents the first psychometric evaluation of the PSWQ-C in a large clinical sample (N = 491). Factor analysis indicated a two-factor structure, in contrast to all previously published findings on the measure. The PSWQ-C demonstrated favorable psychometric properties in this sample, including high internal consistency, high convergent validity with related constructs, and acceptable discriminative validity between diagnostic categories. The performance of the 3 reverse-scored items was closely examined, and results indicated retaining all 14 items.

  14. Engineering analyses of large precision cathode strip chambers for GEM

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Horvath, J.A.; Belser, F.C.; Pratuch, S.M.

    Structural analyses of large precision cathode strip chambers performed up to the date of this publication are documented. Mechanical property data for typical chamber materials are included. This information, originally intended to be an appendix to the {open_quotes}CSC Structural Design Bible,{close_quotes} is presented as a guide for future designers of large chambers.

  15. Evaluation of possibility to increasing sustainability of high-rise buildings through use university intellectual property

    NASA Astrophysics Data System (ADS)

    Potekhin, Igor; Mischenko, Valeryi; Mottaeva, Angela; Zheltenkov, Alexander

    2018-03-01

    In this article explained approach of valuation of intellectual property of Voronezh State Technical University, as her usefulness to increasing the sustainability and ecological safety of high-rise building. High-rise building is main type of buildings in modern cities. They include large volume of material mass, high volume of energy using and high volume of emissions. Using innovation solutions to improving ecology safety of high-rise buildings has large potential to city in whole. Explained in the article methods of calculation of effects helps to value sustainable solutions of present and future generations. Thus usefulness of patents express through usefulness regarding to high-rise building, including for sustainable development.

  16. Physical properties of the HIV-1 capsid from all-atom molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Perilla, Juan R.; Schulten, Klaus

    2017-07-01

    Human immunodeficiency virus type 1 (HIV-1) infection is highly dependent on its capsid. The capsid is a large container, made of ~1,300 proteins with altogether 4 million atoms. Although the capsid proteins are all identical, they nevertheless arrange themselves into a largely asymmetric structure made of hexamers and pentamers. The large number of degrees of freedom and lack of symmetry pose a challenge to studying the chemical details of the HIV capsid. Simulations of over 64 million atoms for over 1 μs allow us to conduct a comprehensive study of the chemical-physical properties of an empty HIV-1 capsid, including its electrostatics, vibrational and acoustic properties, and the effects of solvent (ions and water) on the capsid. The simulations reveal critical details about the capsid with implications to biological function.

  17. Low-dimensional carbon and MXene-based electrochemical capacitor electrodes.

    PubMed

    Yoon, Yeoheung; Lee, Keunsik; Lee, Hyoyoung

    2016-04-29

    Due to their unique structure and outstanding intrinsic physical properties such as extraordinarily high electrical conductivity, large surface area, and various chemical functionalities, low-dimension-based materials exhibit great potential for application in electrochemical capacitors (ECs). The electrical properties of electrochemical capacitors are determined by the electrode materials. Because energy charge storage is a surface process, the surface properties of the electrode materials greatly influence the electrochemical performance of the cell. Recently, graphene, a single layer of sp(2)-bonded carbon atoms arrayed into two-dimensional carbon nanomaterial, has attracted wide interest as an electrode material for electrochemical capacitor applications due to its unique properties, including a high electrical conductivity and large surface area. Several low-dimensional materials with large surface areas and high conductivity such as onion-like carbons (OLCs), carbide-derived carbons (CDCs), carbon nanotubes (CNTs), graphene, metal hydroxide, transition metal dichalcogenides (TMDs), and most recently MXene, have been developed for electrochemical capacitors. Therefore, it is useful to understand the current issues of low-dimensional materials and their device applications.

  18. 30 CFR 762.5 - Definitions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... quality. Historic lands means areas containing historic, cultural, or scientific resources. Examples of..., property or the environment, including areas subject to landslides, cave-ins, large or encroaching sand...

  19. Advanced electro-optical imaging techniques. [conference papers on sensor technology applicable to Large Space Telescope program

    NASA Technical Reports Server (NTRS)

    Sobieski, S. (Editor); Wampler, E. J. (Editor)

    1973-01-01

    The papers presented at the symposium are given which deal with the present state of sensors, as may be applicable to the Large Space Telescope (LST) program. Several aspects of sensors are covered including a discussion of the properties of photocathodes and the operational imaging camera tubes.

  20. University Faculty and the Value of Their Intellectual Property: Comparing IP in Teaching and Research

    ERIC Educational Resources Information Center

    Hentschke, Guilbert C.

    2017-01-01

    This chapter describes the protectionist and access functions of intellectual property for the teaching and research work of university faculty. The degree to which an individual piece of IP is protected or made accessible to others depends in large measure on its market-related characteristics, including costs of production, availability of…

  1. Membrane protein properties revealed through data-rich electrostatics calculations

    PubMed Central

    Guerriero, Christopher J.; Brodsky, Jeffrey L.; Grabe, Michael

    2015-01-01

    SUMMARY The electrostatic properties of membrane proteins often reveal many of their key biophysical characteristics, such as ion channel selectivity and the stability of charged membrane-spanning segments. The Poisson-Boltzmann (PB) equation is the gold standard for calculating protein electrostatics, and the software APBSmem enables the solution of the PB equation in the presence of a membrane. Here, we describe significant advances to APBSmem including: full automation of system setup, per-residue energy decomposition, incorporation of PDB2PQR, calculation of membrane induced pKa shifts, calculation of non-polar energies, and command-line scripting for large scale calculations. We highlight these new features with calculations carried out on a number of membrane proteins, including the recently solved structure of the ion channel TRPV1 and a large survey of 1,614 membrane proteins of known structure. This survey provides a comprehensive list of residues with large electrostatic penalties for being embedded in the membrane potentially revealing interesting functional information. PMID:26118532

  2. Membrane Protein Properties Revealed through Data-Rich Electrostatics Calculations.

    PubMed

    Marcoline, Frank V; Bethel, Neville; Guerriero, Christopher J; Brodsky, Jeffrey L; Grabe, Michael

    2015-08-04

    The electrostatic properties of membrane proteins often reveal many of their key biophysical characteristics, such as ion channel selectivity and the stability of charged membrane-spanning segments. The Poisson-Boltzmann (PB) equation is the gold standard for calculating protein electrostatics, and the software APBSmem enables the solution of the PB equation in the presence of a membrane. Here, we describe significant advances to APBSmem, including full automation of system setup, per-residue energy decomposition, incorporation of PDB2PQR, calculation of membrane-induced pKa shifts, calculation of non-polar energies, and command-line scripting for large-scale calculations. We highlight these new features with calculations carried out on a number of membrane proteins, including the recently solved structure of the ion channel TRPV1 and a large survey of 1,614 membrane proteins of known structure. This survey provides a comprehensive list of residues with large electrostatic penalties for being embedded in the membrane, potentially revealing interesting functional information. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. The ultraviolet extinction properties of the 30 Dor Nebula

    NASA Astrophysics Data System (ADS)

    De Marchi, Guido; Panagia, Nino

    2018-01-01

    Recent investigation of the extinction law in 30 Dor and the Tarantula Nebula, at optical and near infrared wavelengths, has revealed a ratio of total to selective extinction RV=AV/E(B-V) of about 4.5. This indicates a larger proportion of large grains than in the Galactic diffuse interstellar medium. Possible origins include coalescence of small grains, grain growth, selective destruction of small grains, and fresh injection of large grains. From a study of the ultraviolet extinction properties of three Wolf-Rayet stars in 30 Dor (R 139, R 140, R 145), observed with the International Ultraviolet Explorer, we show that the excess of large grains does not come at the expense of small grains, which are still present. Fresh injection of large grains by supernova explosions appears to be the dominant mechanism.

  4. Characterization of the electromechanical properties of EAP materials

    NASA Technical Reports Server (NTRS)

    Bar-Cohen, Yoseph; Sherrita, Stewart; Bhattachary, Kaushik; Lih, Shyh-Shiuh

    2001-01-01

    Electroactive polymers (EAP) are an emerging class of actuation materials. Their large electrically induced strains (longitudinal or bending), low density, mechanical flexibility, and ease of processing offer advantages over traditional electroactive materials. However, before the capability of these materials can be exploited, their electrical and mechanical behavior must be properly quantified. Two general types of EAP can be identified. The first type is ionic EAP, which requires relatively low voltages (<10V) to achieve large bending deflections. This class usually needs to be hydrated and electrochemical reactions may occur. The second type is Electronic-EAP and it involves electrostrictive and/or Maxwell stresses. This type of materials requires large electric fields (>100MV/m) to achieve longitudinal deformations at the range from 4 - 360%. Some of the difficulties in characterizing EAP include: nonlinear properties, large compliance (large mismatch with metal electrodes), nonhomogeneity resulting from processing, etc. To support the need for reliable data, the authors are developing characterization techniques to quantify the electroactive responses and material properties of EAP materials. The emphasis of the current study is on addressing electromechanical issues related to the ion-exchange type EAP also known as IPMC. The analysis, experiments and test results are discussed in this paper.

  5. Managing the risks of risk management on large fires

    Treesearch

    Donald G. MacGregor; Armando González-Cabán

    2013-01-01

    Large fires pose risks to a number of important values, including the ecology, property and the lives of incident responders. A relatively unstudied aspect of fire management is the risks to which incident managers are exposed due to organizational and sociopolitical factors that put them in a position of, for example, potential liability or degradation of their image...

  6. Characteristics of aluminum alloy microplastic deformation in different structural states

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seregin, G.V.; Efimenko, L.L.; Leonov, M.V.

    The solution to the problem of improving the mechanical properties (including cyclic strength) of structural materials is largely dependent on our knowledge of the laws governing the development of microplastic deformations in them. The effect of heat and mechanical treatment on the elastoplastic properties and fatigue resistance of the commercial aluminum alloys AK4-1 and D16 is analyzed.

  7. The effects of wildfire and environmental amenities on property values in northwest Montana, USA

    Treesearch

    Kyle M. Stetler; Tyron J. Venn; David E. Calkin

    2010-01-01

    This study employed the hedonic price framework to examine the effects of 256 wildfires and environmental amenities on home values in northwest Montana between June 1996 and January 2007. The study revealed environmental amenities, including proximity to lakes, national forests, Glacier National Park and golf courses, have large positive effects on property values in...

  8. Large-Scale functional network overlap is a general property of brain functional organization: Reconciling inconsistent fMRI findings from general-linear-model-based analyses

    PubMed Central

    Xu, Jiansong; Potenza, Marc N.; Calhoun, Vince D.; Zhang, Rubin; Yip, Sarah W.; Wall, John T.; Pearlson, Godfrey D.; Worhunsky, Patrick D.; Garrison, Kathleen A.; Moran, Joseph M.

    2016-01-01

    Functional magnetic resonance imaging (fMRI) studies regularly use univariate general-linear-model-based analyses (GLM). Their findings are often inconsistent across different studies, perhaps because of several fundamental brain properties including functional heterogeneity, balanced excitation and inhibition (E/I), and sparseness of neuronal activities. These properties stipulate heterogeneous neuronal activities in the same voxels and likely limit the sensitivity and specificity of GLM. This paper selectively reviews findings of histological and electrophysiological studies and fMRI spatial independent component analysis (sICA) and reports new findings by applying sICA to two existing datasets. The extant and new findings consistently demonstrate several novel features of brain functional organization not revealed by GLM. They include overlap of large-scale functional networks (FNs) and their concurrent opposite modulations, and no significant modulations in activity of most FNs across the whole brain during any task conditions. These novel features of brain functional organization are highly consistent with the brain’s properties of functional heterogeneity, balanced E/I, and sparseness of neuronal activity, and may help reconcile inconsistent GLM findings. PMID:27592153

  9. Anthropometric sourcebook

    NASA Technical Reports Server (NTRS)

    Bond, R. L.; Jackson, J. T.; Louviere, A. J.; Thornton, W. E.

    1979-01-01

    Three-volume "Anthropometric Source Book' contains large body of anthropometric data, design information, and references. Subjects covered include variability in body size, mass distribution properties of human body, arm and leg reach, joint motion and numerous other materials.

  10. A polymer dataset for accelerated property prediction and design.

    PubMed

    Huan, Tran Doan; Mannodi-Kanakkithodi, Arun; Kim, Chiho; Sharma, Vinit; Pilania, Ghanshyam; Ramprasad, Rampi

    2016-03-01

    Emerging computation- and data-driven approaches are particularly useful for rationally designing materials with targeted properties. Generally, these approaches rely on identifying structure-property relationships by learning from a dataset of sufficiently large number of relevant materials. The learned information can then be used to predict the properties of materials not already in the dataset, thus accelerating the materials design. Herein, we develop a dataset of 1,073 polymers and related materials and make it available at http://khazana.uconn.edu/. This dataset is uniformly prepared using first-principles calculations with structures obtained either from other sources or by using structure search methods. Because the immediate target of this work is to assist the design of high dielectric constant polymers, it is initially designed to include the optimized structures, atomization energies, band gaps, and dielectric constants. It will be progressively expanded by accumulating new materials and including additional properties calculated for the optimized structures provided.

  11. Assesment of influncing factors on mechanical and electrical properties of Al/Cu joints

    NASA Astrophysics Data System (ADS)

    Selvaraj, R. Meby; Hynes, N. Rajesh Jesudoss

    2018-05-01

    Joining of dissimilar materials opens up challenging opportunities in todays technology. Al/Cu weldments are used in applications that demands corrosion resistance, thermal and electrical conducting properties. In dissimilar joining mechanical and thermal properties result in large stress gradients during heating. The Al-Cu joints are lighter, cheaper and have conductivity equal to copper alloy. The main scope of this study is to assess the influencing factors of Al/Cu joints in mechanical and electrical properties. It includes the influence of the dilution between the base metals, influence of physical properties, influence of welding parameters, influence of filler metal, influence of heat treatment, and influence of electrical properties

  12. Screening of high temperature adhesives for large area bonding

    NASA Technical Reports Server (NTRS)

    Stenersen, A. A.; Wykes, D. H.

    1980-01-01

    High temperature-resistant adhesive systems were screened for processability, mechanical and physical properties, operational capability at 589 K (600 F), and the ability to produce large area bonds of high quality in fabricating Space Shuttle components. The adhesives consisted primarily of polyimide systems, including FM34B-18, NR-150B2 (DuPont), PMR-15, LARC-13, LARC-160, Thermid 600, and AI-1130L (AMOCA). The processing studies included preparation of polyimide resins, fabrication of film adhesives, development of lay-up and cure procedures, fabrication of honeycomb sandwich panels, and fabrication of mid-plane bonded panels in joints up to 30.5 cm (12 in.) wide. The screening program included tests for tack and drape properties, reticulation and filleting characteristics, ability to produce void-free or low porosity bonds in mid-plane bonded panels, out-time stability, lap shear strength, climbing drum peel strength, and glass transition temperature (Tg). This paper describes the processing methods developed and the test results.

  13. Ground-based Remote Sensing for Quantifying Subsurface and Surface Co-variability to Scale Arctic Ecosystem Functioning

    NASA Astrophysics Data System (ADS)

    Oktem, R.; Wainwright, H. M.; Curtis, J. B.; Dafflon, B.; Peterson, J.; Ulrich, C.; Hubbard, S. S.; Torn, M. S.

    2016-12-01

    Predicting carbon cycling in Arctic requires quantifying tightly coupled surface and subsurface processes including permafrost, hydrology, vegetation and soil biogeochemistry. The challenge has been a lack of means to remotely sense key ecosystem properties in high resolution and over large areas. A particular challenge has been characterizing soil properties that are known to be highly heterogeneous. In this study, we exploit tightly-coupled above/belowground ecosystem functioning (e.g., the correlations among soil moisture, vegetation and carbon fluxes) to estimate subsurface and other key properties over large areas. To test this concept, we have installed a ground-based remote sensing platform - a track-mounted tram system - along a 70 m transect in the ice-wedge polygonal tundra near Barrow, Alaska. The tram carries a suite of near-surface remote sensing sensors, including sonic depth, thermal IR, NDVI and multispectral sensors. Joint analysis with multiple ground-based measurements (soil temperature, active layer soil moisture, and carbon fluxes) was performed to quantify correlations and the dynamics of above/belowground processes at unprecedented resolution, both temporally and spatially. We analyzed the datasets with particular focus on correlating key subsurface and ecosystem properties with surface properties that can be measured by satellite/airborne remote sensing over a large area. Our results provided several new insights about system behavior and also opens the door for new characterization approaches. We documented that: (1) soil temperature (at >5 cm depth; critical for permafrost thaw) was decoupled from soil surface temperature and was influenced strongly by soil moisture, (2) NDVI and greenness index were highly correlated with both soil moisture and gross primary productivity (based on chamber flux data), and (3) surface deformation (which can be measured by InSAR) was a good proxy for thaw depth dynamics at non-inundated locations.

  14. Upper atmosphere pollution measurements (GASP)

    NASA Technical Reports Server (NTRS)

    Rudey, R. A.; Holdeman, J. D.

    1975-01-01

    The environmental effects are discussed of engine effluents of future large fleets of aircraft operating in the stratosphere. Topics discussed include: atmospheric properties, aircraft engine effluents, upper atmospheric measurements, global air sampling, and data reduction and analysis

  15. Inherent smoothness of intensity patterns for intensity modulated radiation therapy generated by simultaneous projection algorithms

    NASA Astrophysics Data System (ADS)

    Xiao, Ying; Michalski, Darek; Censor, Yair; Galvin, James M.

    2004-07-01

    The efficient delivery of intensity modulated radiation therapy (IMRT) depends on finding optimized beam intensity patterns that produce dose distributions, which meet given constraints for the tumour as well as any critical organs to be spared. Many optimization algorithms that are used for beamlet-based inverse planning are susceptible to large variations of neighbouring intensities. Accurately delivering an intensity pattern with a large number of extrema can prove impossible given the mechanical limitations of standard multileaf collimator (MLC) delivery systems. In this study, we apply Cimmino's simultaneous projection algorithm to the beamlet-based inverse planning problem, modelled mathematically as a system of linear inequalities. We show that using this method allows us to arrive at a smoother intensity pattern. Including nonlinear terms in the simultaneous projection algorithm to deal with dose-volume histogram (DVH) constraints does not compromise this property from our experimental observation. The smoothness properties are compared with those from other optimization algorithms which include simulated annealing and the gradient descent method. The simultaneous property of these algorithms is ideally suited to parallel computing technologies.

  16. Large-Scale Disasters

    NASA Astrophysics Data System (ADS)

    Gad-El-Hak, Mohamed

    "Extreme" events - including climatic events, such as hurricanes, tornadoes, and drought - can cause massive disruption to society, including large death tolls and property damage in the billions of dollars. Events in recent years have shown the importance of being prepared and that countries need to work together to help alleviate the resulting pain and suffering. This volume presents a review of the broad research field of large-scale disasters. It establishes a common framework for predicting, controlling and managing both manmade and natural disasters. There is a particular focus on events caused by weather and climate change. Other topics include air pollution, tsunamis, disaster modeling, the use of remote sensing and the logistics of disaster management. It will appeal to scientists, engineers, first responders and health-care professionals, in addition to graduate students and researchers who have an interest in the prediction, prevention or mitigation of large-scale disasters.

  17. A new theory for multistep discretizations of stiff ordinary differential equations: Stability with large step sizes

    NASA Technical Reports Server (NTRS)

    Majda, G.

    1985-01-01

    A large set of variable coefficient linear systems of ordinary differential equations which possess two different time scales, a slow one and a fast one is considered. A small parameter epsilon characterizes the stiffness of these systems. A system of o.d.e.s. in this set is approximated by a general class of multistep discretizations which includes both one-leg and linear multistep methods. Sufficient conditions are determined under which each solution of a multistep method is uniformly bounded, with a bound which is independent of the stiffness of the system of o.d.e.s., when the step size resolves the slow time scale, but not the fast one. This property is called stability with large step sizes. The theory presented lets one compare properties of one-leg methods and linear multistep methods when they approximate variable coefficient systems of stiff o.d.e.s. In particular, it is shown that one-leg methods have better stability properties with large step sizes than their linear multistep counter parts. The theory also allows one to relate the concept of D-stability to the usual notions of stability and stability domains and to the propagation of errors for multistep methods which use large step sizes.

  18. A review of earth abundant ZnO-based materials for thermoelectric and photovoltaic applications

    NASA Astrophysics Data System (ADS)

    Wang, Yang; Zhou, Chuanle; Elquist, Aline M.; Ghods, Amirhossein; Saravade, Vishal G.; Lu, Na; Ferguson, Ian

    2018-02-01

    Zinc oxide (ZnO) is an earth abundant wide bandgap semiconductor of great interest in the recent years. ZnO has many unique properties, such as non-toxic, large direct bandgap, high exciton binding energy, high transparency in visible and infrared spectrum, large Seebeck coefficient, high thermal stability, high electron diffusivity, high electron mobility, and availability of various nanostructures, making it a promising material for many applications. The growth techniques of ZnO is reviewed in this work, including sputtering, PLD, MOCVD and MBE techniques, focusing on the crystalline quality, electrical and optical properties. The problem with p-type doping ZnO is also discussed, and the method to improve p-type doping efficiency is reviewed. This paper also summarizes the current state of art of ZnO in thermoelectric and photovoltaic applications, including the key parameters, different device structures, and future development.

  19. Overview of Sea-Ice Properties, Distribution and Temporal Variations, for Application to Ice-Atmosphere Chemical Processes.

    NASA Astrophysics Data System (ADS)

    Moritz, R. E.

    2005-12-01

    The properties, distribution and temporal variation of sea-ice are reviewed for application to problems of ice-atmosphere chemical processes. Typical vertical structure of sea-ice is presented for different ice types, including young ice, first-year ice and multi-year ice, emphasizing factors relevant to surface chemistry and gas exchange. Time average annual cycles of large scale variables are presented, including ice concentration, ice extent, ice thickness and ice age. Spatial and temporal variability of these large scale quantities is considered on time scales of 1-50 years, emphasizing recent and projected changes in the Arctic pack ice. The amount and time evolution of open water and thin ice are important factors that influence ocean-ice-atmosphere chemical processes. Observations and modeling of the sea-ice thickness distribution function are presented to characterize the range of variability in open water and thin ice.

  20. The statistical distribution of aerosol properties in sourthern West Africa

    NASA Astrophysics Data System (ADS)

    Haslett, Sophie; Taylor, Jonathan; Flynn, Michael; Bower, Keith; Dorsey, James; Crawford, Ian; Brito, Joel; Denjean, Cyrielle; Bourrianne, Thierry; Burnet, Frederic; Batenburg, Anneke; Schulz, Christiane; Schneider, Johannes; Borrmann, Stephan; Sauer, Daniel; Duplissy, Jonathan; Lee, James; Vaughan, Adam; Coe, Hugh

    2017-04-01

    The population and economy in southern West Africa have been growing at an exceptional rate in recent years and this trend is expected to continue, with the population projected to more than double to 800 million by 2050. This will result in a dramatic increase in anthropogenic pollutants, already estimated to have tripled between 1950 and 2000 (Lamarque et al., 2010). It is known that aerosols can modify the radiative properties of clouds. As such, the entrainment of anthropogenic aerosol into the large banks of clouds forming during the onset of the West African Monsoon could have a substantial impact on the region's response to climate change. Such projections, however, are greatly limited by the scarcity of observations in this part of the world. As part of the Dynamics-Aerosol-Chemistry-Cloud Interactions in West Africa (DACCIWA) project, three research aircraft were deployed, each carrying equipment capable of measuring aerosol properties in-situ. Instrumentation included Aerosol Mass Spectrometers (AMS), Single Particle Soot Photometers (SP2), Condensation Particle Counters (CPC) and Scanning Mobility Particle Sizers (SMPS). Throughout the intensive aircraft campaign, 155 hours of scientific flights covered an area including large parts of Benin, Togo, Ghana and parts of Côte D'Ivoire. Approximately 70 hours were dedicated to the measurement of cloud-aerosol interactions, with many other flights producing data contributing towards this objective. Using datasets collected during this campaign period, it is possible to build a robust statistical understanding of aerosol properties in this region for the first time, including size distributions and optical and chemical properties. Here, we describe preliminary results from aerosol measurements on board the three aircraft. These have been used to describe aerosol properties throughout the region and time period encompassed by the DACCIWA aircraft campaign. Such statistics will be invaluable for improving future projections of cloud properties and radiative effects in the region.

  1. Characterization of large 2219 aluminum alloy hand forgings for the space shuttle solid rocket booster

    NASA Technical Reports Server (NTRS)

    Brennecke, M. W.

    1978-01-01

    The mechanical properties, including fracture toughness, and stress corrosion properties of four types of 2219-T852 aluminum alloy hand forgings are presented. Weight of the forgings varied between 450 and 3500 lb at the time of heat treatment and dimensions exceeded the maximum covered in existing specifications. The forgings were destructively tested to develop reliable mechanical property data to replace estimates employed in the design of the Space Shuttle Solid Rocket Booster (SRB) and to establish minimum guaranteed properties for structural refinement and for entry into specification revisions. The report summarizes data required from the forgers and from the SRB Structures contractor.

  2. A brief historical introduction to Euler's formula for polyhedra, topology, graph theory and networks

    NASA Astrophysics Data System (ADS)

    Debnath, Lokenath

    2010-09-01

    This article is essentially devoted to a brief historical introduction to Euler's formula for polyhedra, topology, theory of graphs and networks with many examples from the real-world. Celebrated Königsberg seven-bridge problem and some of the basic properties of graphs and networks for some understanding of the macroscopic behaviour of real physical systems are included. We also mention some important and modern applications of graph theory or network problems from transportation to telecommunications. Graphs or networks are effectively used as powerful tools in industrial, electrical and civil engineering, communication networks in the planning of business and industry. Graph theory and combinatorics can be used to understand the changes that occur in many large and complex scientific, technical and medical systems. With the advent of fast large computers and the ubiquitous Internet consisting of a very large network of computers, large-scale complex optimization problems can be modelled in terms of graphs or networks and then solved by algorithms available in graph theory. Many large and more complex combinatorial problems dealing with the possible arrangements of situations of various kinds, and computing the number and properties of such arrangements can be formulated in terms of networks. The Knight's tour problem, Hamilton's tour problem, problem of magic squares, the Euler Graeco-Latin squares problem and their modern developments in the twentieth century are also included.

  3. Painting galaxies into dark matter halos using machine learning

    NASA Astrophysics Data System (ADS)

    Agarwal, Shankar; Davé, Romeel; Bassett, Bruce A.

    2018-05-01

    We develop a machine learning (ML) framework to populate large dark matter-only simulations with baryonic galaxies. Our ML framework takes input halo properties including halo mass, environment, spin, and recent growth history, and outputs central galaxy and halo baryonic properties including stellar mass (M*), star formation rate (SFR), metallicity (Z), neutral (H I) and molecular (H_2) hydrogen mass. We apply this to the MUFASA cosmological hydrodynamic simulation, and show that it recovers the mean trends of output quantities with halo mass highly accurately, including following the sharp drop in SFR and gas in quenched massive galaxies. However, the scatter around the mean relations is under-predicted. Examining galaxies individually, at z = 0 the stellar mass and metallicity are accurately recovered (σ ≲ 0.2 dex), but SFR and H I show larger scatter (σ ≳ 0.3 dex); these values improve somewhat at z = 1, 2. Remarkably, ML quantitatively recovers second parameter trends in galaxy properties, e.g. that galaxies with higher gas content and lower metallicity have higher SFR at a given M*. Testing various ML algorithms, we find that none perform significantly better than the others, nor does ensembling improve performance, likely because none of the algorithms reproduce the large observed scatter around the mean properties. For the random forest algorithm, we find that halo mass and nearby (˜200 kpc) environment are the most important predictive variables followed by growth history, while halo spin and ˜Mpc scale environment are not important. Finally we study the impact of additionally inputting key baryonic properties M*, SFR, and Z, as would be available e.g. from an equilibrium model, and show that particularly providing the SFR enables H I to be recovered substantially more accurately.

  4. A polymer dataset for accelerated property prediction and design

    DOE PAGES

    Huan, Tran Doan; Mannodi-Kanakkithodi, Arun; Kim, Chiho; ...

    2016-03-01

    Emerging computation- and data-driven approaches are particularly useful for rationally designing materials with targeted properties. Generally, these approaches rely on identifying structure-property relationships by learning from a dataset of sufficiently large number of relevant materials. The learned information can then be used to predict the properties of materials not already in the dataset, thus accelerating the materials design. Herein, we develop a dataset of 1,073 polymers and related materials and make it available at http://khazana.uconn.edu/. This dataset is uniformly prepared using first-principles calculations with structures obtained either from other sources or by using structure search methods. Because the immediate targetmore » of this work is to assist the design of high dielectric constant polymers, it is initially designed to include the optimized structures, atomization energies, band gaps, and dielectric constants. As a result, it will be progressively expanded by accumulating new materials and including additional properties calculated for the optimized structures provided.« less

  5. Photovoltaic Cell Having A P-Type Polycrystalline Layer With Large Crystals

    DOEpatents

    Albright, Scot P.; Chamberlin, Rhodes R.

    1996-03-26

    A photovoltaic cell has an n-type polycrystalline layer and a p-type polycrystalline layer adjoining the n-type polycrystalline layer to form a photovoltaic junction. The p-type polycrystalline layer comprises a substantially planar layer portion having relatively large crystals adjoining the n-type polycrystalline layer. The planar layer portion includes oxidized impurities which contribute to obtainment of p-type electrical properties in the planar layer portion.

  6. Nanocrystals for electronics.

    PubMed

    Panthani, Matthew G; Korgel, Brian A

    2012-01-01

    Semiconductor nanocrystals are promising materials for low-cost large-area electronic device fabrication. They can be synthesized with a wide variety of chemical compositions and size-tunable optical and electronic properties as well as dispersed in solvents for room-temperature deposition using various types of printing processes. This review addresses research progress in large-area electronic device applications using nanocrystal-based electrically active thin films, including thin-film transistors, light-emitting diodes, photovoltaics, and thermoelectrics.

  7. Stellar Evolution and Modelling Stars

    NASA Astrophysics Data System (ADS)

    Silva Aguirre, Víctor

    In this chapter I give an overall description of the structure and evolution of stars of different masses, and review the main ingredients included in state-of-the-art calculations aiming at reproducing observational features. I give particular emphasis to processes where large uncertainties still exist as they have strong impact on stellar properties derived from large compilations of tracks and isochrones, and are therefore of fundamental importance in many fields of astrophysics.

  8. Electrophysiological property and chemical sensitivity of primary afferent neurons that innervate rat whisker hair follicles.

    PubMed

    Ikeda, Ryo; Gu, Jianguo

    2016-01-01

    Whisker hair follicles are sensory organs that sense touch and perform tactile discrimination in animals, and they are sites where sensory impulses are initiated when whisker hairs touch an object. The sensory signals are then conveyed by whisker afferent fibers to the brain for sensory perception. Electrophysiological property and chemical sensitivity of whisker afferent fibers, important factors affecting whisker sensory processing, are largely not known. In the present study, we performed patch-clamp recordings from pre-identified whisker afferent neurons in whole-mount trigeminal ganglion preparations and characterized their electrophysiological property and sensitivity to ATP, serotonin and glutamate. Of 97 whisker afferent neurons examined, 67% of them are found to be large-sized (diameter ≥45 µm) cells and 33% of them are medium- to small-sized (diameter <45 µm) cells. Almost every large-sized whisker afferent neuron fires a single action potential but many (40%) small/medium-sized whisker afferent neurons fire multiple action potentials in response to prolonged stepwise depolarization. Other electrophysiological properties including resting membrane potential, action potential threshold, and membrane input resistance are also significantly different between large-sized and small/medium-sized whisker afferent neurons. Most large-sized and many small/medium-sized whisker afferent neurons are sensitive to ATP and/or serotonin, and ATP and/or serotonin could evoke strong inward currents in these cells. In contrast, few whisker afferent neurons are sensitive to glutamate. Our results raise a possibility that ATP and/or serotonin may be chemical messengers involving sensory signaling for different types of rat whisker afferent fibers.

  9. Application of conditional simulation of heterogeneous rock properties to seismic scattering and attenuation analysis in gas hydrate reservoirs

    NASA Astrophysics Data System (ADS)

    Huang, Jun-Wei; Bellefleur, Gilles; Milkereit, Bernd

    2012-02-01

    We present a conditional simulation algorithm to parameterize three-dimensional heterogeneities and construct heterogeneous petrophysical reservoir models. The models match the data at borehole locations, simulate heterogeneities at the same resolution as borehole logging data elsewhere in the model space, and simultaneously honor the correlations among multiple rock properties. The model provides a heterogeneous environment in which a variety of geophysical experiments can be simulated. This includes the estimation of petrophysical properties and the study of geophysical response to the heterogeneities. As an example, we model the elastic properties of a gas hydrate accumulation located at Mallik, Northwest Territories, Canada. The modeled properties include compressional and shear-wave velocities that primarily depend on the saturation of hydrate in the pore space of the subsurface lithologies. We introduce the conditional heterogeneous petrophysical models into a finite difference modeling program to study seismic scattering and attenuation due to multi-scale heterogeneity. Similarities between resonance scattering analysis of synthetic and field Vertical Seismic Profile data reveal heterogeneity with a horizontal-scale of approximately 50 m in the shallow part of the gas hydrate interval. A cross-borehole numerical experiment demonstrates that apparent seismic energy loss can occur in a pure elastic medium without any intrinsic attenuation of hydrate-bearing sediments. This apparent attenuation is largely attributed to attenuative leaky mode propagation of seismic waves through large-scale gas hydrate occurrence as well as scattering from patchy distribution of gas hydrate.

  10. Fabrication of near-net shape graphite/magnesium composites for large mirrors

    NASA Astrophysics Data System (ADS)

    Wendt, Robert; Misra, Mohan

    1990-10-01

    Successful development of space-based surveillance and laser systems will require large precision mirrors which are dimensionally stable under thermal, static, and dynamic (i.e., structural vibrations and retargeting) loading conditions. Among the advanced composites under consideration for large space mirrors, graphite fiber reinforced magnesium (Gr/Mg) is an ideal candidate material that can be tailored to obtain an optimum combination of properties, including a high modulus of elasticity, zero coefficient of thermal expansion, low density, and high thermal conductivity. In addition, an innovative technique, combining conventional filament winding and vacuum casting has been developed to produce near-net shape Gr/Mg composites. This approach can significantly reduce the cost of fabricating large mirrors by decreasing required machining. However, since Gr/Mg cannot be polished to a reflective surface, plating is required. This paper will review research at Martin Marietta Astronautics Group on Gr/Mg mirror blank fabrication and measured mechanical and thermal properties. Also, copper plating and polishing methods, and optical surface characteristics will be presented.

  11. Magnetic nanoparticles-based drug and gene delivery systems for the treatment of pulmonary diseases.

    PubMed

    El-Sherbiny, Ibrahim M; Elbaz, Nancy M; Sedki, Mohammed; Elgammal, Abdulaziz; Yacoub, Magdi H

    2017-02-01

    Magnetic nanoparticles (MNPs) have gained much attention due to their unique properties such as biocompatibility and biodegradability as well as magnetic and heat-medicated characteristics. Due to these inherent properties, MNPs have been widely used in various biomedical applications including targeted drug delivery and hyperthermia-based therapy. Hyperthermia is a promising approach for the thermal activation therapy of several diseases, including pulmonary diseases. Additionally, due to their large loading capacity and controlled release ability, several MNP-based drug delivery systems have been emerged for treatment of cystic fibrosis and lung cancer. This review provides an overview on the unique properties of MNPs and magnetic-mediated hyperthermia with emphasis on the recent biomedical applications of MNPs in treatment of both lung cancer and cystic fibrosis.

  12. Introducing improved structural properties and salt dependence into a coarse-grained model of DNA

    NASA Astrophysics Data System (ADS)

    Snodin, Benedict E. K.; Randisi, Ferdinando; Mosayebi, Majid; Šulc, Petr; Schreck, John S.; Romano, Flavio; Ouldridge, Thomas E.; Tsukanov, Roman; Nir, Eyal; Louis, Ard A.; Doye, Jonathan P. K.

    2015-06-01

    We introduce an extended version of oxDNA, a coarse-grained model of deoxyribonucleic acid (DNA) designed to capture the thermodynamic, structural, and mechanical properties of single- and double-stranded DNA. By including explicit major and minor grooves and by slightly modifying the coaxial stacking and backbone-backbone interactions, we improve the ability of the model to treat large (kilobase-pair) structures, such as DNA origami, which are sensitive to these geometric features. Further, we extend the model, which was previously parameterised to just one salt concentration ([Na+] = 0.5M), so that it can be used for a range of salt concentrations including those corresponding to physiological conditions. Finally, we use new experimental data to parameterise the oxDNA potential so that consecutive adenine bases stack with a different strength to consecutive thymine bases, a feature which allows a more accurate treatment of systems where the flexibility of single-stranded regions is important. We illustrate the new possibilities opened up by the updated model, oxDNA2, by presenting results from simulations of the structure of large DNA objects and by using the model to investigate some salt-dependent properties of DNA.

  13. Introducing improved structural properties and salt dependence into a coarse-grained model of DNA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Snodin, Benedict E. K., E-mail: benedict.snodin@chem.ox.ac.uk; Mosayebi, Majid; Schreck, John S.

    2015-06-21

    We introduce an extended version of oxDNA, a coarse-grained model of deoxyribonucleic acid (DNA) designed to capture the thermodynamic, structural, and mechanical properties of single- and double-stranded DNA. By including explicit major and minor grooves and by slightly modifying the coaxial stacking and backbone-backbone interactions, we improve the ability of the model to treat large (kilobase-pair) structures, such as DNA origami, which are sensitive to these geometric features. Further, we extend the model, which was previously parameterised to just one salt concentration ([Na{sup +}] = 0.5M), so that it can be used for a range of salt concentrations including thosemore » corresponding to physiological conditions. Finally, we use new experimental data to parameterise the oxDNA potential so that consecutive adenine bases stack with a different strength to consecutive thymine bases, a feature which allows a more accurate treatment of systems where the flexibility of single-stranded regions is important. We illustrate the new possibilities opened up by the updated model, oxDNA2, by presenting results from simulations of the structure of large DNA objects and by using the model to investigate some salt-dependent properties of DNA.« less

  14. Self-Consistent Field Theories for the Role of Large Length-Scale Architecture in Polymers

    NASA Astrophysics Data System (ADS)

    Wu, David

    At large length-scales, the architecture of polymers can be described by a coarse-grained specification of the distribution of branch points and monomer types within a molecule. This includes molecular topology (e.g., cyclic or branched) as well as distances between branch points or chain ends. Design of large length-scale molecular architecture is appealing because it offers a universal strategy, independent of monomer chemistry, to tune properties. Non-linear analogs of linear chains differ in molecular-scale properties, such as mobility, entanglements, and surface segregation in blends that are well-known to impact rheological, dynamical, thermodynamic and surface properties including adhesion and wetting. We have used Self-Consistent Field (SCF) theories to describe a number of phenomena associated with large length-scale polymer architecture. We have predicted the surface composition profiles of non-linear chains in blends with linear chains. These predictions are in good agreement with experimental results, including from neutron scattering, on a range of well-controlled branched (star, pom-pom and end-branched) and cyclic polymer architectures. Moreover, the theory allows explanation of the segregation and conformations of branched polymers in terms of effective surface potentials acting on the end and branch groups. However, for cyclic chains, which have no end or junction points, a qualitatively different topological mechanism based on conformational entropy drives cyclic chains to a surface, consistent with recent neutron reflectivity experiments. We have also used SCF theory to calculate intramolecular and intermolecular correlations for polymer chains in the bulk, dilute solution, and trapped at a liquid-liquid interface. Predictions of chain swelling in dilute star polymer solutions compare favorably with existing PRISM theory and swelling at an interface helps explain recent measurements of chain mobility at an oil-water interface. In collaboration with: Renfeng Hu, Colorado School of Mines, and Mark Foster, University of Akron. This work was supported by NSF Grants No. CBET- 0730692 and No. CBET-0731319.

  15. Tracheo-bronchial soft tissue and cartilage resonances in the subglottal acoustic input impedance.

    PubMed

    Lulich, Steven M; Arsikere, Harish

    2015-06-01

    This paper offers a re-evaluation of the mechanical properties of the tracheo-bronchial soft tissues and cartilage and uses a model to examine their effects on the subglottal acoustic input impedance. It is shown that the values for soft tissue elastance and cartilage viscosity typically used in models of subglottal acoustics during phonation are not accurate, and corrected values are proposed. The calculated subglottal acoustic input impedance using these corrected values reveals clusters of weak resonances due to soft tissues (SgT) and cartilage (SgC) lining the walls of the trachea and large bronchi, which can be observed empirically in subglottal acoustic spectra. The model predicts that individuals may exhibit SgT and SgC resonances to variable degrees, depending on a number of factors including tissue mechanical properties and the dimensions of the trachea and large bronchi. Potential implications for voice production and large pulmonary airway tissue diseases are also discussed.

  16. Using Self-Report Assessment Methods to Explore Facets of Mindfulness

    ERIC Educational Resources Information Center

    Baer, Ruth A.; Smith, Gregory T.; Hopkins, Jaclyn; Krietemeyer, Jennifer; Toney, Leslie

    2006-01-01

    The authors examine the facet structure of mindfulness using five recently developed mindfulness questionnaires. Two large samples of undergraduate students completed mindfulness questionnaires and measures of other constructs. Psychometric properties of the mindfulness questionnaires were examined, including internal consistency and convergent…

  17. Intelligent Transportation Systems, Building The ITI - Putting The National Architecture Into Action

    DOT National Transportation Integrated Search

    1998-09-01

    This National Truck Crash Profile contains descriptive statistics about fatal and non-fatal (injury and property-damage-only) large truck crashes that occurred in 1997. The profile includes only some of the major aspects of truck crashes. Additional ...

  18. Extremely large magnetoresistance and Kohler's rule in PdSn 4 : A complete study of thermodynamic, transport, and band-structure properties

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jo, Na Hyun; Wu, Yun; Wang, Lin-Lin

    The recently discovered material PtSn 4 is known to exhibit extremely large magnetoresistance (XMR) that also manifests Dirac arc nodes on the surface. PdSn 4 is isostructural to PtSn 4 with the same electron count. Here, we report on the physical properties of high-quality single crystals of PdSn 4 including specific heat, temperature- and magnetic-field-dependent resistivity and magnetization, and electronic band-structure properties obtained from angle-resolved photoemission spectroscopy (ARPES). We observe that PdSn 4 has physical properties that are qualitatively similar to those of PtSn 4 , but find also pronounced differences. Importantly, the Dirac arc node surface state of PtSnmore » 4 is gapped out for PdSn 4. By comparing these similar compounds, we address the origin of the extremely large magnetoresistance in PdSn 4 and PtSn 4; based on detailed analysis of the magnetoresistivity ρ ( H , T ) , we conclude that neither the carrier compensation nor the Dirac arc node surface state are the primary reason for the extremely large magnetoresistance. On the other hand, we also find that, surprisingly, Kohler's rule scaling of the magnetoresistance, which describes a self-similarity of the field-induced orbital electronic motion across different length scales and is derived for a simple electronic response of metals to an applied magnetic field is obeyed over the full range of temperatures and field strengths that we explore.« less

  19. Extremely large magnetoresistance and Kohler's rule in PdSn 4 : A complete study of thermodynamic, transport, and band-structure properties

    DOE PAGES

    Jo, Na Hyun; Wu, Yun; Wang, Lin-Lin; ...

    2017-10-27

    The recently discovered material PtSn 4 is known to exhibit extremely large magnetoresistance (XMR) that also manifests Dirac arc nodes on the surface. PdSn 4 is isostructural to PtSn 4 with the same electron count. Here, we report on the physical properties of high-quality single crystals of PdSn 4 including specific heat, temperature- and magnetic-field-dependent resistivity and magnetization, and electronic band-structure properties obtained from angle-resolved photoemission spectroscopy (ARPES). We observe that PdSn 4 has physical properties that are qualitatively similar to those of PtSn 4 , but find also pronounced differences. Importantly, the Dirac arc node surface state of PtSnmore » 4 is gapped out for PdSn 4. By comparing these similar compounds, we address the origin of the extremely large magnetoresistance in PdSn 4 and PtSn 4; based on detailed analysis of the magnetoresistivity ρ ( H , T ) , we conclude that neither the carrier compensation nor the Dirac arc node surface state are the primary reason for the extremely large magnetoresistance. On the other hand, we also find that, surprisingly, Kohler's rule scaling of the magnetoresistance, which describes a self-similarity of the field-induced orbital electronic motion across different length scales and is derived for a simple electronic response of metals to an applied magnetic field is obeyed over the full range of temperatures and field strengths that we explore.« less

  20. Extremely red quasars in BOSS

    NASA Astrophysics Data System (ADS)

    Hamann, Fred; Zakamska, Nadia L.; Ross, Nicholas; Paris, Isabelle; Alexandroff, Rachael M.; Villforth, Carolin; Richards, Gordon T.; Herbst, Hanna; Brandt, W. Niel; Cook, Ben; Denney, Kelly D.; Greene, Jenny E.; Schneider, Donald P.; Strauss, Michael A.

    2017-01-01

    Red quasars are candidate young objects in an early transition stage of massive galaxy evolution. Our team recently discovered a population of extremely red quasars (ERQs) in the Baryon Oscillation Spectroscopic Survey (BOSS) that has a suite of peculiar emission-line properties including large rest equivalent widths (REWs), unusual `wingless' line profiles, large N V/Lyα, N V/C IV, Si IV/C IV and other flux ratios, and very broad and blueshifted [O III] λ5007. Here we present a new catalogue of C IV and N V emission-line data for 216 188 BOSS quasars to characterize the ERQ line properties further. We show that they depend sharply on UV-to-mid-IR colour, secondarily on REW(C IV), and not at all on luminosity or the Baldwin Effect. We identify a `core' sample of 97 ERQs with nearly uniform peculiar properties selected via I-W3 ≥ 4.6 (AB) and REW(C IV) ≥ 100 Å at redshifts 2.0-3.4. A broader search finds 235 more red quasars with similar unusual characteristics. The core ERQs have median luminosity ˜ 47.1, sky density 0.010 deg-2, surprisingly flat/blue UV spectra given their red UV-to-mid-IR colours, and common outflow signatures including BALs or BAL-like features and large C IV emission-line blueshifts. Their SEDs and line properties are inconsistent with normal quasars behind a dust reddening screen. We argue that the core ERQs are a unique obscured quasar population with extreme physical conditions related to powerful outflows across the line-forming regions. Patchy obscuration by small dusty clouds could produce the observed UV extinctions without substantial UV reddening.

  1. A facile alternative technique for large-area graphene transfer via sacrificial polymer

    DOE PAGES

    Auchter, Eric; Marquez, Justin; Yarbro, Stephen L.; ...

    2017-12-07

    A novel method of transferring large-area graphene sheets onto a variety of substrates using Formvar (polyvinyl formal) is presented. Due to the ease at which formvar can be dissolved in chloroform this method allows for a consistent, a clean, and a more rapid transfer than other techniques including the PMMA assisted one. This novel transfer method is demonstrated by transferring large-area graphene onto a range of substrates including commercial TEM grids, silicon dioxide and glass. Raman spectroscopy was used to confirm the presence of graphene and characterize the morphological properties of the large-area sheets. SEM and AFM analyses demonstrated themore » effectiveness of our rapid transfer technique for clean crystalline large-area graphene sheets. The removal of the sacrificial polymer was found to be one to two orders of magnitude faster than PMMA methods. Ultimately this facile transfer technique offers new opportunities for a wide range of applications for large-area graphene through the utilization of a new sacrificial polymer.« less

  2. A facile alternative technique for large-area graphene transfer via sacrificial polymer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Auchter, Eric; Marquez, Justin; Yarbro, Stephen L.

    A novel method of transferring large-area graphene sheets onto a variety of substrates using Formvar (polyvinyl formal) is presented. Due to the ease at which formvar can be dissolved in chloroform this method allows for a consistent, a clean, and a more rapid transfer than other techniques including the PMMA assisted one. This novel transfer method is demonstrated by transferring large-area graphene onto a range of substrates including commercial TEM grids, silicon dioxide and glass. Raman spectroscopy was used to confirm the presence of graphene and characterize the morphological properties of the large-area sheets. SEM and AFM analyses demonstrated themore » effectiveness of our rapid transfer technique for clean crystalline large-area graphene sheets. The removal of the sacrificial polymer was found to be one to two orders of magnitude faster than PMMA methods. Ultimately this facile transfer technique offers new opportunities for a wide range of applications for large-area graphene through the utilization of a new sacrificial polymer.« less

  3. The Monoceros R2 Molecular Cloud

    NASA Astrophysics Data System (ADS)

    Carpenter, J. M.; Hodapp, K. W.

    2008-12-01

    The Monoceros R2 region was first recognized as a chain of reflection nebulae illuminated by A- and B-type stars. These nebulae are associated with a giant molecular cloud that is one of the closest massive star forming regions to the Sun. This chapter reviews the properties of the Mon R2 region, including the namesake reflection nebulae, the large scale molecula= r cloud, global star formation activity, and properties of prominent star forming regions in the cloud.

  4. Quantifying properties of hot and dense QCD matter through systematic model-to-data comparison

    DOE PAGES

    Bernhard, Jonah E.; Marcy, Peter W.; Coleman-Smith, Christopher E.; ...

    2015-05-22

    We systematically compare an event-by-event heavy-ion collision model to data from the CERN Large Hadron Collider. Using a general Bayesian method, we probe multiple model parameters including fundamental quark-gluon plasma properties such as the specific shear viscosity η/s, calibrate the model to optimally reproduce experimental data, and extract quantitative constraints for all parameters simultaneously. Furthermore, the method is universal and easily extensible to other data and collision models.

  5. Know the Planet, Know the Star: Precise Stellar Parameters with Kepler

    NASA Astrophysics Data System (ADS)

    Sandford, Emily; Kipping, David M.

    2017-01-01

    The Kepler space telescope has revolutionized exoplanetary science with unprecedentedly precise photometric measurements of the light curves of transiting planets. In addition to information about the planet and its orbit, encoded in each Kepler transiting planet light curve are certain properties of the host star, including the stellar density and the limb darkening profile. For planets with strong prior constraints on orbital eccentricity (planets to which we refer as “stellar anchors”), we may measure these stellar properties directly from the light curve. This method promises to aid greatly in the characterization of transiting planet host stars targeted by the upcoming NASA TESS mission and any long-period, singly-transiting planets discovered in the same systems. Using Bayesian inference, we fit a transit model, including a nonlinear limb darkening law, to a large sample of transiting planet hosts to measure their stellar properties. We present the results of our analysis, including posterior stellar density distributions for each stellar host, and show how the method yields superior precision to literature stellar properties in the majority of cases studied.

  6. The Characterization of Grade PCEA Recycle Graphite Pilot Scale Billets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burchell, Timothy D; Pappano, Peter J

    2010-10-01

    Here we report the physical properties of a series specimens machined from pilot scale (~ 152 mm diameter x ~305 mm length) grade PCEA recycle billets manufactured by GrafTech. The pilot scale billets were processed with increasing amounts of (unirradiated) graphite (from 20% to 100%) introduced to the formulation with the goal of determining if large fractions of recycle graphite have a deleterious effect on properties. The properties determined include Bulk Density, Electrical Resistivity, Elastic (Young s) Modulus, and Coefficient of Thermal Expansion. Although property variations were observed to be correlated with the recycle fraction, the magnitude of the variationsmore » was noted to be small.« less

  7. Green materials for sustainable development

    NASA Astrophysics Data System (ADS)

    Purwasasmita, B. S.

    2017-03-01

    Sustainable development is an integrity of multidiscipline concept combining ecological, social and economic aspects to construct a liveable human living system. The sustainable development can be support through the development of green materials. Green materials offers a unique characteristic and properties including abundant in nature, less toxic, economically affordable and versatility in term of physical and chemical properties. Green materials can be applied for a numerous field in science and technology applications including for energy, building, construction and infrastructures, materials science and engineering applications and pollution management and technology. For instance, green materials can be developed as a source for energy production. Green materials including biomass-based source can be developed as a source for biodiesel and bioethanol production. Biomass-based materials also can be transformed into advanced functionalized materials for advanced bio-applications such as the transformation of chitin into chitosan which further used for biomedicine, biomaterials and tissue engineering applications. Recently, cellulose-based material and lignocellulose-based materials as a source for the developing functional materials attracted the potential prospect for biomaterials, reinforcing materials and nanotechnology. Furthermore, the development of pigment materials has gaining interest by using the green materials as a source due to their unique properties. Eventually, Indonesia as a large country with a large biodiversity can enhance the development of green material to strengthen our nation competitiveness and develop the materials technology for the future.

  8. Evaluation of a Viscosity-Molecular Weight Relationship.

    ERIC Educational Resources Information Center

    Mathias, Lon J.

    1983-01-01

    Background information, procedures, and results are provided for a series of graduate/undergraduate polymer experiments. These include synthesis of poly(methylmethacrylate), viscosity experiment (indicating large effect even small amounts of a polymer may have on solution properties), and measurement of weight-average molecular weight by light…

  9. Post-wildfire management

    Treesearch

    Jonathan W. Long; Carl Skinner; Susan Charnley; Ken Hubbert; Lenya Quinn-Davidson; Marc Meyer

    2014-01-01

    Wildfires, especially large, severe, and unmanageable events, exert major influences on socioecological systems, not only through risks to life and property, but also losses of important values associated with mature forest stands. These events prompt decisions about post-wildfire management interventions, including short-term emergency responses, salvage logging, and...

  10. Network analysis of mesoscale optical recordings to assess regional, functional connectivity.

    PubMed

    Lim, Diana H; LeDue, Jeffrey M; Murphy, Timothy H

    2015-10-01

    With modern optical imaging methods, it is possible to map structural and functional connectivity. Optical imaging studies that aim to describe large-scale neural connectivity often need to handle large and complex datasets. In order to interpret these datasets, new methods for analyzing structural and functional connectivity are being developed. Recently, network analysis, based on graph theory, has been used to describe and quantify brain connectivity in both experimental and clinical studies. We outline how to apply regional, functional network analysis to mesoscale optical imaging using voltage-sensitive-dye imaging and channelrhodopsin-2 stimulation in a mouse model. We include links to sample datasets and an analysis script. The analyses we employ can be applied to other types of fluorescence wide-field imaging, including genetically encoded calcium indicators, to assess network properties. We discuss the benefits and limitations of using network analysis for interpreting optical imaging data and define network properties that may be used to compare across preparations or other manipulations such as animal models of disease.

  11. Approximate Model Checking of PCTL Involving Unbounded Path Properties

    NASA Astrophysics Data System (ADS)

    Basu, Samik; Ghosh, Arka P.; He, Ru

    We study the problem of applying statistical methods for approximate model checking of probabilistic systems against properties encoded as PCTL formulas. Such approximate methods have been proposed primarily to deal with state-space explosion that makes the exact model checking by numerical methods practically infeasible for large systems. However, the existing statistical methods either consider a restricted subset of PCTL, specifically, the subset that can only express bounded until properties; or rely on user-specified finite bound on the sample path length. We propose a new method that does not have such restrictions and can be effectively used to reason about unbounded until properties. We approximate probabilistic characteristics of an unbounded until property by that of a bounded until property for a suitably chosen value of the bound. In essence, our method is a two-phase process: (a) the first phase is concerned with identifying the bound k 0; (b) the second phase computes the probability of satisfying the k 0-bounded until property as an estimate for the probability of satisfying the corresponding unbounded until property. In both phases, it is sufficient to verify bounded until properties which can be effectively done using existing statistical techniques. We prove the correctness of our technique and present its prototype implementations. We empirically show the practical applicability of our method by considering different case studies including a simple infinite-state model, and large finite-state models such as IPv4 zeroconf protocol and dining philosopher protocol modeled as Discrete Time Markov chains.

  12. Validation of Satellite Derived Cloud Properties Over the Southeastern Pacific

    NASA Astrophysics Data System (ADS)

    Ayers, J.; Minnis, P.; Zuidema, P.; Sun-Mack, S.; Palikonda, R.; Nguyen, L.; Fairall, C.

    2005-12-01

    Satellite measurements of cloud properties and the radiation budget are essential for understanding meso- and large-scale processes that determine the variability in climate over the southeastern Pacific. Of particular interest in this region is the prevalent stratocumulus cloud deck. The stratocumulus albedos are directly related to cloud microphysical properties that need to be accurately characterized in Global Climate Models (GCMs) to properly estimate the Earth's radiation budget. Meteorological observations in this region are sparse causing large uncertainties in initialized model fields. Remote sensing from satellites can provide a wealth of information about the clouds in this region, but it is vital to validate the remotely sensed parameters and to understand their relationship to other parameters that are not directly observed by the satellites. The variety of measurements from the R/V Roger Revelle during the 2003 STRATUS cruise and from the R/V Ron Brown during EPIC 2001 and the 2004 STRATUS cruises are suitable for validating and improving the interpretation of the satellite derived cloud properties. In this study, satellite-derived cloud properties including coverage, height, optical depth, and liquid water path are compared with in situ measurements taken during the EPIC and STRATUS cruises. The remotely sensed values are derived from Geostationary Operational Environmental Satellite (GOES) imager data, Moderate Resolution Imaging Spectroradiometer (MODIS) data from the Terra and Aqua satellites, and from the Visible and Infrared Scanner (VIRS) aboard the Tropical Rainfall Measuring Mission (TRMM) satellite. The products from this study will include regional monthly cloud climatologies derived from the GOES data for the 2003 and 2004 cruises as well as micro and macro physical cloud property retrievals centered over the ship tracks from MODIS and VIRS.

  13. MOlecular MAterials Property Prediction Package (MOMAP) 1.0: a software package for predicting the luminescent properties and mobility of organic functional materials

    NASA Astrophysics Data System (ADS)

    Niu, Yingli; Li, Wenqiang; Peng, Qian; Geng, Hua; Yi, Yuanping; Wang, Linjun; Nan, Guangjun; Wang, Dong; Shuai, Zhigang

    2018-04-01

    MOlecular MAterials Property Prediction Package (MOMAP) is a software toolkit for molecular materials property prediction. It focuses on luminescent properties and charge mobility properties. This article contains a brief descriptive introduction of key features, theoretical models and algorithms of the software, together with examples that illustrate the performance. First, we present the theoretical models and algorithms for molecular luminescent properties calculation, which includes the excited-state radiative/non-radiative decay rate constant and the optical spectra. Then, a multi-scale simulation approach and its algorithm for the molecular charge mobility are described. This approach is based on hopping model and combines with Kinetic Monte Carlo and molecular dynamics simulations, and it is especially applicable for describing a large category of organic semiconductors, whose inter-molecular electronic coupling is much smaller than intra-molecular charge reorganisation energy.

  14. Effects of stochastic sodium channels on extracellular excitation of myelinated nerve fibers.

    PubMed

    Mino, Hiroyuki; Grill, Warren M

    2002-06-01

    The effects of the stochastic gating properties of sodium channels on the extracellular excitation properties of mammalian nerve fibers was determined by computer simulation. To reduce computation time, a hybrid multicompartment cable model including five central nodes of Ranvier containing stochastic sodium channels and 16 flanking nodes containing detenninistic membrane dynamics was developed. The excitation properties of the hybrid cable model were comparable with those of a full stochastic cable model including 21 nodes of Ranvier containing stochastic sodium channels, indicating the validity of the hybrid cable model. The hybrid cable model was used to investigate whether or not the excitation properties of extracellularly activated fibers were influenced by the stochastic gating of sodium channels, including spike latencies, strength-duration (SD), current-distance (IX), and recruitment properties. The stochastic properties of the sodium channels in the hybrid cable model had the greatest impact when considering the temporal dynamics of nerve fibers, i.e., a large variability in latencies, while they did not influence the SD, IX, or recruitment properties as compared with those of the conventional deterministic cable model. These findings suggest that inclusion of stochastic nodes is not important for model-based design of stimulus waveforms for activation of motor nerve fibers. However, in cases where temporal fine structure is important, for example in sensory neural prostheses in the auditory and visual systems, the stochastic properties of the sodium channels may play a key role in the design of stimulus waveforms.

  15. Viscoelastic and optical properties of four different PDMS polymers

    NASA Astrophysics Data System (ADS)

    Deguchi, Shinji; Hotta, Junya; Yokoyama, Sho; Matsui, Tsubasa S.

    2015-09-01

    Polydimethylsiloxane (PDMS) is the most commonly used silicone elastomer with a wide range of applications including microfluidics and microcontact printing. Various types of PDMS are currently available, and their bulk material properties have been extensively investigated. However, because the properties are rarely compared in a single study, it is often unclear whether the large disparity of the reported data is attributable to the difference in methodology or to their intrinsic characteristics. Here we report on viscoelastic properties and optical properties of four different PDMS polymers, i.e. Sylgard-184, CY52-276, SIM-360, and KE-1606. Our results show that all the PDMSs are highly elastic rather than viscoelastic at the standard base/curing agent ratios, and their quantified elastic modulus, refractive index, and optical cleanness are similar but distinct in magnitude.

  16. Earth Observations taken by the Expedition 35 Crew

    NASA Image and Video Library

    2013-03-16

    ISS035-E-005438 (16 March 2013) --- One of the Expedition 35 crew members on the International Space Station used a still camera with a 400 millimeter lens to record this nocturnal image of the Phoenix, Arizona area. Like many large urban areas of the central and western United States, the Phoenix metropolitan area is laid out along a regular grid of city blocks and streets. While visible during the day, this grid is most evident at night, when the pattern of street lighting is clearly visible from above – in the case of this photograph, from the low Earth orbit vantage point of the International Space Station. The urban grid form encourages growth of a city outwards along its borders, by providing optimal access to new real estate. Fueled by the adoption of widespread personal automobile use during the 20th century, the Phoenix metropolitan area today includes 25 other municipalities (many of them largely suburban and residential in character) linked by a network of surface streets and freeways. The image area includes parts of several cities in the metropolitan area including Phoenix proper (right), Glendale (center), and Peoria (left). While the major street grid is oriented north-south, the northwest-southeast oriented Grand Avenue cuts across it at image center. Grand Avenue is a major transportation corridor through the western metropolitan area; the lighting patterns of large industrial and commercial properties are visible along its length. Other brightly lit properties include large shopping centers, strip centers, and gas stations which tend to be located at the intersections of north-south and east-west trending streets. While much of the land area highlighted in this image is urbanized, there are several noticeably dark areas. The Phoenix Mountains at upper right are largely public park and recreational land. To the west (image lower left), agricultural fields provide a sharp contrast to the lit streets of neighboring residential developments. The Salt River channel appears as a dark ribbon within the urban grid at lower right.

  17. Analysis of terrestrial conditions and dynamics

    NASA Technical Reports Server (NTRS)

    Goward, S. N. (Principal Investigator)

    1984-01-01

    Land spectral reflectance properties for selected locations, including the Goddard Space Flight Center, the Wallops Flight Facility, a MLA test site in Cambridge, Maryland, and an acid test site in Burlington, Vermont, were measured. Methods to simulate the bidirectional reflectance properties of vegetated landscapes and a data base for spatial resolution were developed. North American vegetation patterns observed with the Advanced Very High Resolution Radiometer were assessed. Data and methods needed to model large-scale vegetation activity with remotely sensed observations and climate data were compiled.

  18. Characterization and properties of micro- and nanowires of controlled size, composition, and geometry fabricated by electrodeposition and ion-track technology

    PubMed Central

    2012-01-01

    Summary The combination of electrodeposition and polymeric templates created by heavy-ion irradiation followed by chemical track etching provides a large variety of poly- and single-crystalline nanowires of controlled size, geometry, composition, and surface morphology. Recent results obtained by our group on the fabrication, characterization and size-dependent properties of nanowires synthesized by this technique are reviewed, including investigations on electrical resistivity, surface plasmon resonances, and thermal instability. PMID:23365800

  19. Advanced earth observation spacecraft computer-aided design software: Technical, user and programmer guide

    NASA Technical Reports Server (NTRS)

    Farrell, C. E.; Krauze, L. D.

    1983-01-01

    The IDEAS computer of NASA is a tool for interactive preliminary design and analysis of LSS (Large Space System). Nine analysis modules were either modified or created. These modules include the capabilities of automatic model generation, model mass properties calculation, model area calculation, nonkinematic deployment modeling, rigid-body controls analysis, RF performance prediction, subsystem properties definition, and EOS science sensor selection. For each module, a section is provided that contains technical information, user instructions, and programmer documentation.

  20. Test and Evaluation of Architecture-Aware Compiler Environment

    DTIC Science & Technology

    2011-11-01

    biology, medicine, social sciences , and security applications. Challenges include extremely large graphs (the Facebook friend network has over...Operations with Temporal Binning ....................................................................... 32 4.12 Memory behavior and Energy per...five challenge problems empirically, exploring their scaling properties, computation and datatype needs, memory behavior , and temporal behavior

  1. Composition and temperature dependence of the dielectric, piezoelectric and elastic properties of pure PZT ceramics.

    PubMed

    Zhuang, Z Q; Haun, M J; Jang, S J; Cross, L E

    1989-01-01

    Pure (undoped) piezoelectric lead zirconate titanate (PZT) ceramic samples at compositions across the ferroelectric region of the phase diagram were prepared from sol-gel-derived fine powders. Excess lead oxide was included in the PZT powders to obtain dense (95-96% of theoretical density) ceramics with large grain size (>7 mum) and to control the lead stoichiometry. The dielectric, piezoelectric, and elastic properties were measured from 4.2 to 300 K. At very low temperatures, the extrinsic domain wall and thermal defect motions freeze out. The low-temperature dielectric data can be used to determine coefficients in a phenomenological theory. The extrinsic contribution to the properties can then be separated from the single-domain properties derived from the theory.

  2. Activity-Dependent Changes in the Firing Properties of Neocortical Fast-Spiking Interneurons in the Absence of Large Changes in Gene Expression

    PubMed Central

    Miller, Mark N.; Okaty, Benjamin W.; Kato, Saori; Nelson, Sacha B.

    2010-01-01

    The diverse cell types that comprise neocortical circuits each have characteristic integrative and firing properties that are specialized to perform specific functions within the network. Parvalbumin-positive fast-spiking (FS) interneurons are a particularly specialized cortical cell-type that controls the dynamics of ongoing activity and prevents runaway excitation by virtue of remarkably high firing rates, a feature that is permitted by narrow action potentials and the absence of spike-frequency adaptation. Although several neuronal intrinsic membrane properties undergo activity-dependent plasticity, the role of network activity in shaping and maintaining specialized, cell-type-specific firing properties is unknown. We tested whether the specialized firing properties of mature FS interneurons are sensitive to activity perturbations by inactivating a portion of motor cortex in vivo for 48 hours and measuring resulting plasticity of FS intrinsic and firing properties with whole-cell recording in acute slices. Many of the characteristic properties of FS interneurons, including non-adapting high-frequency spiking and narrow action potentials, were profoundly affected by activity deprivation both at an age just after maturation of FS firing properties and also a week after their maturation. Using microarray screening, we determined that although normal maturation of FS electrophysiological specializations is accompanied by large-scale transcriptional changes, the effects of deprivation on the same specializations involve more modest transcriptional changes, and may instead be primarily mediated by post-transcriptional mechanisms. PMID:21154910

  3. Statistical Analyses of Satellite Cloud Object Data from CERES. Part II; Tropical Convective Cloud Objects During 1998 El Nino and Validation of the Fixed Anvil Temperature Hypothesis

    NASA Technical Reports Server (NTRS)

    Xu, Kuan-Man; Wong, Takmeng; Wielicki, Bruce a.; Parker, Lindsay; Lin, Bing; Eitzen, Zachary A.; Branson, Mark

    2006-01-01

    Characteristics of tropical deep convective cloud objects observed over the tropical Pacific during January-August 1998 are examined using the Tropical Rainfall Measuring Mission/ Clouds and the Earth s Radiant Energy System single scanner footprint (SSF) data. These characteristics include the frequencies of occurrence and statistical distributions of cloud physical properties. Their variations with cloud-object size, sea surface temperature (SST), and satellite precessing cycle are analyzed in detail. A cloud object is defined as a contiguous patch of the Earth composed of satellite footprints within a single dominant cloud-system type. It is found that statistical distributions of cloud physical properties are significantly different among three size categories of cloud objects with equivalent diameters of 100 - 150 km (small), 150 - 300 km (medium), and > 300 km (large), respectively, except for the distributions of ice particle size. The distributions for the larger-size category of cloud objects are more skewed towards high SSTs, high cloud tops, low cloud-top temperature, large ice water path, high cloud optical depth, low outgoing longwave (LW) radiation, and high albedo than the smaller-size category. As SST varied from one satellite precessing cycle to another, the changes in macrophysical properties of cloud objects over the entire tropical Pacific were small for the large-size category of cloud objects, relative to those of the small- and medium-size categories. This result suggests that the fixed anvil temperature hypothesis of Hartmann and Larson may be valid for the large-size category. Combining with the result that a higher percentage of the large-size category of cloud objects occurs during higher SST subperiods, this implies that macrophysical properties of cloud objects would be less sensitive to further warming of the climate. On the other hand, when cloud objects are classified according to SSTs where large-scale dynamics plays important roles, statistical characteristics of cloud microphysical properties, optical depth and albedo are not sensitive to the SST, but those of cloud macrophysical properties are strongly dependent upon the SST. Frequency distributions of vertical velocity from the European Center for Medium-range Weather Forecasts model that is matched to each cloud object are used to interpret some of the findings in this study.

  4. The Relationship Between Galaxies and the Large-Scale Structure of the Universe

    NASA Astrophysics Data System (ADS)

    Coil, Alison L.

    2018-06-01

    I will describe our current understanding of the relationship between galaxies and the large-scale structure of the Universe, often called the galaxy-halo connection. Galaxies are thought to form and evolve in the centers of dark matter halos, which grow along with the galaxies they host. Large galaxy redshift surveys have revealed clear observational signatures of connections between galaxy properties and their clustering properties on large scales. For example, older, quiescent galaxies are known to cluster more strongly than younger, star-forming galaxies, which are more likely to be found in galactic voids and filaments rather than the centers of galaxy clusters. I will show how cosmological numerical simulations have aided our understanding of this galaxy-halo connection and what is known from a statistical point of view about how galaxies populate dark matter halos. This knowledge both helps us learn about galaxy evolution and is fundamental to our ability to use galaxy surveys to reveal cosmological information. I will talk briefly about some of the current open questions in the field, including galactic conformity and assembly bias.

  5. Molcas 8: New capabilities for multiconfigurational quantum chemical calculations across the periodic table.

    PubMed

    Aquilante, Francesco; Autschbach, Jochen; Carlson, Rebecca K; Chibotaru, Liviu F; Delcey, Mickaël G; De Vico, Luca; Fdez Galván, Ignacio; Ferré, Nicolas; Frutos, Luis Manuel; Gagliardi, Laura; Garavelli, Marco; Giussani, Angelo; Hoyer, Chad E; Li Manni, Giovanni; Lischka, Hans; Ma, Dongxia; Malmqvist, Per Åke; Müller, Thomas; Nenov, Artur; Olivucci, Massimo; Pedersen, Thomas Bondo; Peng, Daoling; Plasser, Felix; Pritchard, Ben; Reiher, Markus; Rivalta, Ivan; Schapiro, Igor; Segarra-Martí, Javier; Stenrup, Michael; Truhlar, Donald G; Ungur, Liviu; Valentini, Alessio; Vancoillie, Steven; Veryazov, Valera; Vysotskiy, Victor P; Weingart, Oliver; Zapata, Felipe; Lindh, Roland

    2016-02-15

    In this report, we summarize and describe the recent unique updates and additions to the Molcas quantum chemistry program suite as contained in release version 8. These updates include natural and spin orbitals for studies of magnetic properties, local and linear scaling methods for the Douglas-Kroll-Hess transformation, the generalized active space concept in MCSCF methods, a combination of multiconfigurational wave functions with density functional theory in the MC-PDFT method, additional methods for computation of magnetic properties, methods for diabatization, analytical gradients of state average complete active space SCF in association with density fitting, methods for constrained fragment optimization, large-scale parallel multireference configuration interaction including analytic gradients via the interface to the Columbus package, and approximations of the CASPT2 method to be used for computations of large systems. In addition, the report includes the description of a computational machinery for nonlinear optical spectroscopy through an interface to the QM/MM package Cobramm. Further, a module to run molecular dynamics simulations is added, two surface hopping algorithms are included to enable nonadiabatic calculations, and the DQ method for diabatization is added. Finally, we report on the subject of improvements with respects to alternative file options and parallelization. © 2015 Wiley Periodicals, Inc.

  6. Electrokinetic and hydrodynamic properties of charged-particles systems. From small electrolyte ions to large colloids

    NASA Astrophysics Data System (ADS)

    Nägele, G.; Heinen, M.; Banchio, A. J.; Contreras-Aburto, C.

    2013-11-01

    Dynamic processes in dispersions of charged spherical particles are of importance both in fundamental science, and in technical and bio-medical applications. There exists a large variety of charged-particles systems, ranging from nanometer-sized electrolyte ions to micron-sized charge-stabilized colloids. We review recent advances in theoretical methods for the calculation of linear transport coefficients in concentrated particulate systems, with the focus on hydrodynamic interactions and electrokinetic effects. Considered transport properties are the dispersion viscosity, self- and collective diffusion coefficients, sedimentation coefficients, and electrophoretic mobilities and conductivities of ionic particle species in an external electric field. Advances by our group are also discussed, including a novel mode-coupling-theory method for conduction-diffusion and viscoelastic properties of strong electrolyte solutions. Furthermore, results are presented for dispersions of solvent-permeable particles, and particles with non-zero hydrodynamic surface slip. The concentration-dependent swelling of ionic microgels is discussed, as well as a far-reaching dynamic scaling behavior relating colloidal long- to short-time dynamics.

  7. Grid indentation analysis of mechanical properties of composite electrodes in Li-ion batteries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vasconcelos, Luize Scalco de; Xu, Rong; Li, Jianlin

    We report that electrodes in commercial rechargeable batteries are microscopically heterogeneous materials. The constituent components, including active materials, polymeric binders, and porous conductive matrix, often have large variation in their mechanical properties, making the mechanical characterization of composite electrodes a challenging task. In a model system of LiNi 0.5Mn 0.3Co 0.2O 2 cathode, we employ the instrumented grid indentation to determine the elastic modulus and hardness of the constituent phases. The approach relies on a large array of nanoindentation experiments and statistical analysis of the resulting data provided that the maximum indentation depth is carefully chosen. The statistically extracted propertiesmore » of the active particles and the surrounding medium are in good agreement with the tests of targeted indentation at selected sites. Lastly, the combinatory technique of grid indentation and statistical deconvolution represents a fast and reliable route to quantify the mechanical properties of composite electrodes that feed the parametric input for the mechanics models.« less

  8. Statistical properties of correlated solar flares and coronal mass ejections in cycles 23 and 24

    NASA Astrophysics Data System (ADS)

    Aarnio, Alicia

    2018-01-01

    Outstanding problems in understanding early stellar systems include mass loss, angular momentum evolution, and the effects of energetic events on the surrounding environs. The latter of these drives much research into our own system's space weather and the development of predictive algorithms for geomagnetic storms. So dually motivated, we have leveraged a big-data approach to combine two decades of GOES and LASCO data to identify a large sample of spatially and temporally correlated solar flares and CMEs. In this presentation, we revisit the analysis of Aarnio et al. (2011), adding 10 years of data and further exploring the relationships between correlated flare and CME properties. We compare the updated data set results to those previously obtained, and discuss the effects of selecting smaller time windows within solar cycles 23 and 24 on the empirically defined relationships between correlated flare and CME properties. Finally, we discuss a newly identified large sample of potentially interesting correlated flares and CMEs perhaps erroneously excluded from previous searches.

  9. Grid indentation analysis of mechanical properties of composite electrodes in Li-ion batteries

    DOE PAGES

    Vasconcelos, Luize Scalco de; Xu, Rong; Li, Jianlin; ...

    2016-03-09

    We report that electrodes in commercial rechargeable batteries are microscopically heterogeneous materials. The constituent components, including active materials, polymeric binders, and porous conductive matrix, often have large variation in their mechanical properties, making the mechanical characterization of composite electrodes a challenging task. In a model system of LiNi 0.5Mn 0.3Co 0.2O 2 cathode, we employ the instrumented grid indentation to determine the elastic modulus and hardness of the constituent phases. The approach relies on a large array of nanoindentation experiments and statistical analysis of the resulting data provided that the maximum indentation depth is carefully chosen. The statistically extracted propertiesmore » of the active particles and the surrounding medium are in good agreement with the tests of targeted indentation at selected sites. Lastly, the combinatory technique of grid indentation and statistical deconvolution represents a fast and reliable route to quantify the mechanical properties of composite electrodes that feed the parametric input for the mechanics models.« less

  10. Flow cytometry of sputum: assessing inflammation and immune response elements in the bronchial airways**

    EPA Science Inventory

    Rationale: The evaluation of sputum leukocytes by flow cytometry is an opportunity to assess characteristics of cells residing in the central airways, yet it is hampered by certain inherent properties of sputum including mucus and large amounts of contaminating cells and debris. ...

  11. Using a Simple Optical Rangefinder To Teach Similar Triangles.

    ERIC Educational Resources Information Center

    Cuicchi, Paul M.; Hutchison, Paul S.

    2003-01-01

    Describes how the concept of similar triangles was taught using an optical method of estimating large distances as a corresponding activity. Includes the derivation of a formula to calculate one source of measurement error and is a nice exercise in the use of the properties of similar triangles. (Author/NB)

  12. Potential Means of Cost Reduction in Grade Crossing Motorist-Warning Control Equipment : Volume 2. Comparison of Solid State and Relay Devices and Techniques

    DOT National Transportation Integrated Search

    1977-12-01

    Consideration is given to the properties of solid-state circuits, miniature relays and large gravity-operated relays when applied to control systems for grade crossings equipped with train-activated motorist warnings. Factors discussed include origin...

  13. NASA Helps Search For and Study Sutter's Mill Meteorites (Reporter Package for Web and Centerpiece for TWAN)

    NASA Image and Video Library

    2012-05-09

    Reporter package about search for fragments from Sutter's Mill Meteor. Includes footage from NLSI of ground search and recovery of a large meteorite in the horse pasture of the de Haas family property. SOTs with Peter Jenniskens and Merv de Haas.

  14. Nonmarket resource valuation in the postfire environment

    Treesearch

    David Calkin; Greg Jones; Kevin Hyde

    2008-01-01

    After the containment of large wildland fires, major onsite and downstream effects including lost soil productivity, watershed response, increased vulnerability to invasive weeds, and downstream sedimentation can cause threats to human life and property. Burned Area Emergency Response (BAER) teams are responsible for developing treatment plans to mitigate negative...

  15. Thermophysical properties of liquid UO2, ZrO2 and corium by molecular dynamics and predictive models

    NASA Astrophysics Data System (ADS)

    Kim, Woong Kee; Shim, Ji Hoon; Kaviany, Massoud

    2017-08-01

    Predicting the fate of accident-melted nuclear fuel-cladding requires the understanding of the thermophysical properties which are lacking or have large scatter due to high-temperature experimental challenges. Using equilibrium classical molecular dynamics (MD), we predict the properties of melted UO2 and ZrO2 and compare them with the available experimental data and the predictive models. The existing interatomic potential models have been developed mainly for the polymorphic solid phases of these oxides, so they cannot be used to predict all the properties accurately. We compare and decipher the distinctions of those MD predictions using the specific property-related autocorrelation decays. The predicted properties are density, specific heat, heat of fusion, compressibility, viscosity, surface tension, and the molecular and electronic thermal conductivities. After the comparisons, we provide readily usable temperature-dependent correlations (including UO2-ZrO2 compounds, i.e. corium melt).

  16. Sensitivity of Asteroid Impact Risk to Uncertainty in Asteroid Properties and Entry Parameters

    NASA Astrophysics Data System (ADS)

    Wheeler, Lorien; Mathias, Donovan; Dotson, Jessie L.; NASA Asteroid Threat Assessment Project

    2017-10-01

    A central challenge in assessing the threat posed by asteroids striking Earth is the large amount of uncertainty inherent throughout all aspects of the problem. Many asteroid properties are not well characterized and can range widely from strong, dense, monolithic irons to loosely bound, highly porous rubble piles. Even for an object of known properties, the specific entry velocity, angle, and impact location can swing the potential consequence from no damage to causing millions of casualties. Due to the extreme rarity of large asteroid strikes, there are also large uncertainties in how different types of asteroids will interact with the atmosphere during entry, how readily they may break up or ablate, and how much surface damage will be caused by the resulting airbursts or impacts.In this work, we use our Probabilistic Asteroid Impact Risk (PAIR) model to investigate the sensitivity of asteroid impact damage to uncertainties in key asteroid properties, entry parameters, or modeling assumptions. The PAIR model combines physics-based analytic models of asteroid entry and damage in a probabilistic Monte Carlo framework to assess the risk posed by a wide range of potential impacts. The model samples from uncertainty distributions of asteroid properties and entry parameters to generate millions of specific impact cases, and models the atmospheric entry and damage for each case, including blast overpressure, thermal radiation, tsunami inundation, and global effects. To assess the risk sensitivity, we alternately fix and vary the different input parameters and compare the effect on the resulting range of damage produced. The goal of these studies is to help guide future efforts in asteroid characterization and model refinement by determining which properties most significantly affect the potential risk.

  17. Fissile material detector

    DOEpatents

    Ivanov, Alexander I.; Lushchikov, Vladislav I.; Shabalin, Eugeny P.; Maznyy, Nikita G.; Khvastunov, Michael M.; Rowland, Mark

    2002-01-01

    A detector for fissile materials which provides for integrity monitoring of fissile materials and can be used for nondestructive assay to confirm the presence of a stable content of fissile material in items. The detector has a sample cavity large enough to enable assay of large items of arbitrary configuration, utilizes neutron sources fabricated in spatially extended shapes mounted on the endcaps of the sample cavity, incorporates a thermal neutron filter insert with reflector properties, and the electronics module includes a neutron multiplicity coincidence counter.

  18. Nonlinear Finite Element Analysis of Shells with Large Aspect Ratio

    NASA Technical Reports Server (NTRS)

    Chang, T. Y.; Sawamiphakdi, K.

    1984-01-01

    A higher order degenerated shell element with nine nodes was selected for large deformation and post-buckling analysis of thick or thin shells. Elastic-plastic material properties are also included. The post-buckling analysis algorithm is given. Using a square plate, it was demonstrated that the none-node element does not have shear locking effect even if its aspect ratio was increased to the order 10 to the 8th power. Two sample problems are given to illustrate the analysis capability of the shell element.

  19. Rotation analysis on large complex superconducting cables based on numerical modeling and experiments

    NASA Astrophysics Data System (ADS)

    Qin, Jinggang; Yue, Donghua; Zhang, Xingyi; Wu, Yu; Liu, Xiaochuan; Liu, Huajun; Jin, Huan; Dai, Chao; Nijhuis, Arend; Zhou, Chao; Devred, Arnaud

    2018-07-01

    The conductors used in large fusion reactors, e.g. ITER, CFETR and DEMO, are made of cable-in-conduit conductor (CICC) with large diameters up to about 50 mm. The superconducting and copper strands are cabled around a central spiral and then wrapped with stainless-steel tape of 0.1 mm thickness. The cable is then inserted into a jacket under tensile force that increases with the length of insertion. Because the cables are long and with a large diameter, the insertion force could reach values of about 40 kN. The large tensile force could lead to significant rotation forces. This may lead to an increase of the twist pitch, especially for the final one. Understanding the twist pitch variation is very important; in particular, the twist pitch of a cable inside a CICC strongly affects its properties, especially for Nb3Sn conductors. In this paper, a simplified numerical model was used to analyze the cable rotation, including material properties, cabling tension as well as wrap tension. Several rotation experiments with tensile force have been performed to verify the numerical results for CFETR CSMC cables. The results show that the numerical analysis is consistent with the experiments and provides the optimal cabling conditions for large superconducting cables.

  20. Development of carbon slurry fuels for transportation (hybrid fuels, phase 2)

    NASA Technical Reports Server (NTRS)

    Ryan, T. W., III; Dodge, L. G.

    1984-01-01

    Slurry fuels of various forms of solids in diesel fuel are developed and evaluated for their relative potential as fuel for diesel engines. Thirteen test fuels with different solids concentrations are formulated using eight different materials. A variety of properties are examined including ash content, sulfur content, particle size distribution, and rheological properties. Attempts are made to determine the effects of these variations on these fuel properties on injection, atomization, and combustion processes. The slurries are also tested in a single cylinder CLR engine in both direct injection and prechamber configurations. The data includes the normal performance parameters as well as heat release rates and emissions. The slurries perform very much like the baseline fuel. The combustion data indicate that a large fraction (90 percent or more) of the solids are burning in the engine. It appears that the prechamber engine configuration is more tolerant of the slurries than the direct injection configuration.

  1. Potential Antiosteoporotic Agents from Plants: A Comprehensive Review

    PubMed Central

    Jia, Min; Nie, Yan; Cao, Da-Peng; Xue, Yun-Yun; Wang, Jie-Si; Zhao, Lu; Rahman, Khalid; Zhang, Qiao-Yan; Qin, Lu-Ping

    2012-01-01

    Osteoporosis is a major health hazard and is a disease of old age; it is a silent epidemic affecting more than 200 million people worldwide in recent years. Based on a large number of chemical and pharmacological research many plants and their compounds have been shown to possess antiosteoporosis activity. This paper reviews the medicinal plants displaying antiosteoporosis properties including their origin, active constituents, and pharmacological data. The plants reported here are the ones which are commonly used in traditional medical systems and have demonstrated clinical effectiveness against osteoporosis. Although many plants have the potential to prevent and treat osteoporosis, so far, only a fraction of these plants have been thoroughly investigated for their physiological and pharmacological properties including their mechanism of action. An attempt should be made to highlight plant species with possible antiosteoporosis properties and they should be investigated further to help with future drug development for treating this disease. PMID:23365596

  2. Actin dynamics, architecture, and mechanics in cell motility.

    PubMed

    Blanchoin, Laurent; Boujemaa-Paterski, Rajaa; Sykes, Cécile; Plastino, Julie

    2014-01-01

    Tight coupling between biochemical and mechanical properties of the actin cytoskeleton drives a large range of cellular processes including polarity establishment, morphogenesis, and motility. This is possible because actin filaments are semi-flexible polymers that, in conjunction with the molecular motor myosin, can act as biological active springs or "dashpots" (in laymen's terms, shock absorbers or fluidizers) able to exert or resist against force in a cellular environment. To modulate their mechanical properties, actin filaments can organize into a variety of architectures generating a diversity of cellular organizations including branched or crosslinked networks in the lamellipodium, parallel bundles in filopodia, and antiparallel structures in contractile fibers. In this review we describe the feedback loop between biochemical and mechanical properties of actin organization at the molecular level in vitro, then we integrate this knowledge into our current understanding of cellular actin organization and its physiological roles.

  3. Nonlinear Dynamical Model of a Soft Viscoelastic Dielectric Elastomer

    NASA Astrophysics Data System (ADS)

    Zhang, Junshi; Chen, Hualing; Li, Dichen

    2017-12-01

    Actuated by alternating stimulation, dielectric elastomers (DEs) show a behavior of complicated nonlinear vibration, implying a potential application as dynamic electromechanical actuators. As is well known, for a vibrational system, including the DE system, the dynamic properties are significantly affected by the geometrical sizes. In this article, a nonlinear dynamical model is deduced to investigate the geometrical effects on dynamic properties of viscoelastic DEs. The DEs with square and arbitrary rectangular geometries are considered, respectively. Besides, the effects of tensile forces on dynamic performances of rectangular DEs with comparably small and large geometrical sizes are explored. Phase paths and Poincaré maps are utilized to detect the periodicity of the nonlinear vibrations of DEs. The resonance characteristics of DEs incorporating geometrical effects are also investigated. The results indicate that the dynamic properties of DEs, including deformation response, vibrational periodicity, and resonance, are tuned when the geometrical sizes vary.

  4. Mineral texture based seismic properties of meta-sedimentary and meta-igneous rocks in the orogenic wedge of the Central Scandinavian Caledonides

    NASA Astrophysics Data System (ADS)

    Almqvist, B. S. G.; Czaplinska, D.; Piazolo, S.

    2015-12-01

    Progress in seismic methods offers the possibility to visualize in ever greater detail the structure and composition of middle to lower continental crust. Ideally, the seismic parameters, including compressional (Vp) and shear (Vs) wave velocities, anisotropy and Vp/Vs-ratio, allow the inference of detailed and quantitative information on the deformation conditions, chemical composition, temperature and the amount and geometry of fluids and melts in the crust. However, such inferences regarding the crust should be calibrated with known mineral and rock physical properties. Seismic properties calculated from the crystallographic preferred orientation (CPO) and laboratory measurements on representative core material allow us to quantify the interpretations from seismic data. The challenge of such calibrations lies in the non-unique interpretation of seismic data. A large catalogue of physical rock properties is therefore useful, with as many constraining geophysical parameters as possible (including anisotropy and Vp/Vs ratio). We present new CPO data and modelled seismic properties for amphibolite and greenschist grade rocks representing the orogenic wedge in the Central Scandinavian Caledonides. Samples were collected from outcrops in the field and from a 2.5 km long drill core, which penetrated an amphibolite-grade allochthonous unit composed of meta-sedimentary and meta-igneous rocks, as well as mica and chlorite-rich mylonites. The textural data was acquired using large area electron backscatter diffraction (EBSD) maps, and the chemical composition of minerals obtained by energy dispersive x-ray (EDS). Based on the texture data, we compare and evaluate some of the existing methods to calculate texture-based seismic properties of rocks. The suite of samples consists of weakly anisotropic rocks such as felsic gneiss and calc-silicates, and more anisotropic amphibolite, metagabbro, mica-schist. The newly acquired dataset provides a range of seismic properties that improves compositional and structural characterization of deformed middle and lower crust.

  5. David Adler Lectureship Award: n-point Correlation Functions in Heterogeneous Materials.

    NASA Astrophysics Data System (ADS)

    Torquato, Salvatore

    2009-03-01

    The determination of the bulk transport, electromagnetic, mechanical, and optical properties of heterogeneous materials has a long and venerable history, attracting the attention of some of the luminaries of science, including Maxwell, Lord Rayleigh, and Einstein. The bulk properties can be shown to depend rigorously upon infinite sets of various n-point correlation functions. Many different types of correlation functions arise, depending on the physics of the problem. A unified approach to characterize the microstructure and bulk properties of a large class of disordered materials is developed [S. Torquato, Random Heterogeneous Materials: Microstructure and Macroscopic Properties (Springer-Verlag, New York, 2002)]. This is accomplished via a canonical n-point function Hn from which one can derive exact analytical expressions for any microstructural function of interest. This microstructural information can then be used to estimate accurately the bulk properties of the material. Unlike homogeneous materials, seemingly different bulk properties (e.g., transport and mechanical properties) of a heterogeneous material can be linked to one another because of the common microstructure that they share. Such cross-property relations can be used to estimate one property given a measurement of another. A recently identified decorrelation principle, roughly speaking, refers to the phenomenon that unconstrained correlations that exist in low-dimensional disordered materials vanish as the space dimension becomes large. Among other results, this implies that in sufficiently high dimensions the densest spheres packings may be disordered (rather than ordered) [S. Torquato and F. H. Stillinger, ``New Conjectural Lower Bounds on the Optimal Density of Sphere Packings," Experimental Mathematics, 15, 307 (2006)].

  6. CycloPs: generating virtual libraries of cyclized and constrained peptides including nonnatural amino acids.

    PubMed

    Duffy, Fergal J; Verniere, Mélanie; Devocelle, Marc; Bernard, Elise; Shields, Denis C; Chubb, Anthony J

    2011-04-25

    We introduce CycloPs, software for the generation of virtual libraries of constrained peptides including natural and nonnatural commercially available amino acids. The software is written in the cross-platform Python programming language, and features include generating virtual libraries in one-dimensional SMILES and three-dimensional SDF formats, suitable for virtual screening. The stand-alone software is capable of filtering the virtual libraries using empirical measurements, including peptide synthesizability by standard peptide synthesis techniques, stability, and the druglike properties of the peptide. The software and accompanying Web interface is designed to enable the rapid generation of large, structurally diverse, synthesizable virtual libraries of constrained peptides quickly and conveniently, for use in virtual screening experiments. The stand-alone software, and the Web interface for evaluating these empirical properties of a single peptide, are available at http://bioware.ucd.ie .

  7. Bar Evolution and Bar Properties from Disc Galaxies in the Early Universe

    NASA Astrophysics Data System (ADS)

    Hutchinson-Smith, Tenley; Simmons, Brooke

    2017-01-01

    Bars in disc galaxies indicate a large collection of stars in a specific configuration of orbits that give the galaxy center a rectangular looking feature. Astronomers have discovered that these bars affect the distribution of matter in galaxies, and are also related to galaxy stellar mass and star formation history. Little is known about the specifics of how bars evolve and drive the evolution of their host galaxies because only a handful of bars have been studied in detail so far. I have examined a sample of 8,221 barred galaxies from the early universe to identify and examine correlations with galaxy properties. The data comes from Galaxy Zoo, an online citizen science project that allows anyone to classify and measure detailed properties of galaxies. I present results including the fraction of galaxies in the sample that have bars, and the variation of galaxy properties with bar length, including galaxy color and stellar mass. I also compare these results to barred galaxies in the local universe. I will discuss the implications of these results in the context of galaxy evolution overall, including the effect of dark matter on bars and galaxy evolution.

  8. Extreme-value statistics reveal rare failure-critical defects in additive manufacturing

    DOE PAGES

    Boyce, Brad L.; Salzbrenner, Bradley C.; Rodelas, Jeffrey M.; ...

    2017-04-21

    Additive manufacturing enables the rapid, cost effective production of large populations of material test coupons such as tensile bars. By adopting streamlined test methods including ‘drop-in’ grips and non-contact extensometry, testing these large populations becomes more efficient. Unlike hardness tests, the tensile test provides a direct measure of yield strength, flow properties, and ductility, which can be directly incorporated into solid mechanics simulations. In the present work, over 1000 nominally identical tensile tests were used to explore the effect of process variability on the mechanical property distributions of a precipitation hardened stainless steel, 17-4PH, produced by a laser powder bedmore » fusion process, also known as direct metal laser sintering. With this large dataset, rare defects are revealed that affect only ~2% of the population, stemming from a single build lot of material. Lastly, the rare defects caused a substantial loss in ductility and were associated with an interconnected network of porosity.« less

  9. Transmission of vibration across honeycombs and its detection by bee leg receptors

    PubMed

    Sandeman; Tautz; Lindauer

    1996-01-01

    Vibration of the rims of open cells in a honeycomb, applied in the plane of the comb face, is transmitted across the comb. Attenuation or amplification of the vibratory signal depends on its frequency and on the type of comb. In general, framed combs, both large and small, strongly attenuate higher frequencies, whereas these are amplified in small open combs. The very poor transmission properties of the large framed combs used in commercial hives may explain the bees' habit of freeing an area of comb from the frame in those areas used for dancing. Extracellular electrical recordings from the leg of a honeybee detect large action potentials from receptors that monitor extension of the tibia on the femur. Measurements of threshold displacement amplitudes show these receptors to be sensitive to low frequencies. The amplification properties of unframed combs extend the range of these receptor systems to include frequencies that are emitted by the bee during its dance, namely the 15 Hz abdomen waggle and 250 Hz thorax vibration.

  10. Fertilizer nitrogen, soil chemical properties, and their determinacy on rice yield: Evidence from 92 paddy fields of a large-scale farm in the Kanto Region of Japan

    NASA Astrophysics Data System (ADS)

    Li, D.; Nanseki, T.; Chomei, Y.; Yokota, S.

    2017-07-01

    Rice, a staple crop in Japan, is at risk of decreasing production and its yield highly depends on soil fertility. This study aimed to investigate determinants of rice yield, from the perspectives of fertilizer nitrogen and soil chemical properties. The data were sampled in 2014 and 2015 from 92 peat soil paddy fields on a large-scale farm located in the Kanto Region of Japan. The rice variety used was the most widely planted Koshihikari in Japan. Regression analysis indicated that fertilizer nitrogen significantly affected the yield, with a significant sustained effect to the subsequent year. Twelve soil chemical properties, including pH, cation exchange capacity, content of pyridine base elements, phosphoric acid, and silicic acid, were estimated. In addition to silicic acid, magnesia, in forms of its exchangeable content, saturation, and ratios to potassium and lime, positively affected the yield, while phosphoric acid negatively affected the yield. We assessed the soil chemical properties by soil quality index and principal component analysis. Positive effects were identified for both approaches, with the former performing better in explaining the rice yield. For soil quality index, the individual standardized soil properties and margins for improvement were indicated for each paddy field. Finally, multivariate regression on the principal components identified the most significant properties.

  11. Advanced millimeter wave imaging systems

    NASA Technical Reports Server (NTRS)

    Schuchardt, J. M.; Gagliano, J. A.; Stratigos, J. A.; Webb, L. L.; Newton, J. M.

    1980-01-01

    Unique techniques are being utilized to develop self-contained imaging radiometers operating at single and multiple frequencies near 35, 95 and 183 GHz. These techniques include medium to large antennas for high spatial resolution, lowloss open structures for RF confinemnt and calibration, wide bandwidths for good sensitivity plus total automation of the unit operation and data collection. Applications include: detection of severe storms, imaging of motor vehicles, and the remote sensing of changes in material properties.

  12. Advance finite element modeling of rotor blade aeroelasticity

    NASA Technical Reports Server (NTRS)

    Straub, F. K.; Sangha, K. B.; Panda, B.

    1994-01-01

    An advanced beam finite element has been developed for modeling rotor blade dynamics and aeroelasticity. This element is part of the Element Library of the Second Generation Comprehensive Helicopter Analysis System (2GCHAS). The element allows modeling of arbitrary rotor systems, including bearingless rotors. It accounts for moderately large elastic deflections, anisotropic properties, large frame motion for maneuver simulation, and allows for variable order shape functions. The effects of gravity, mechanically applied and aerodynamic loads are included. All kinematic quantities required to compute airloads are provided. In this paper, the fundamental assumptions and derivation of the element matrices are presented. Numerical results are shown to verify the formulation and illustrate several features of the element.

  13. Multidimensional Fuel Performance Code: BISON

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    BISON is a finite element based nuclear fuel performance code applicable to a variety of fuel forms including light water reactor fuel rods, TRISO fuel particles, and metallic rod and plate fuel (Refs. [a, b, c]). It solves the fully-coupled equations of thermomechanics and species diffusion and includes important fuel physics such as fission gas release and material property degradation with burnup. BISON is based on the MOOSE framework (Ref. [d]) and can therefore efficiently solve problems on 1-, 2- or 3-D meshes using standard workstations or large high performance computers. BISON is also coupled to a MOOSE-based mesoscale phasemore » field material property simulation capability (Refs. [e, f]). As described here, BISON includes the code library named FOX, which was developed concurrent with BISON. FOX contains material and behavioral models that are specific to oxide fuels.« less

  14. Pushing the boundaries of high power lasers: low loss, large area CVD diamond

    NASA Astrophysics Data System (ADS)

    Wickham, Benjamin; Schoofs, Frank; Olsson-Robbie, Stefan; Bennett, Andrew; Balmer, Richard

    2018-02-01

    Synthetic CVD diamond has exceptional properties, including broad spectral transmission, physical and chemical robustness, and the highest thermal conductivity of any known material, making diamond an attractive material for medium to high power optical and laser applications, minimizing the detrimental effects of thermal lensing and radiation damage. Example applications include ATR prisms, Raman laser crystals, extra- and intra-cavity laser cooling. In each case the demands on the fundamental material properties and fabrication routes are slightly different. In recent years, there has been good progress in the development of low-loss, single crystal diamond, suitable for higher power densities, higher pulse rates and more demanding intra- and extra-cavity thermal management. The adoption of single crystal diamond in this area has however, been hindered by the availability of large area, low birefringence plates. To address this, we report a combination of CVD growth and processing methods that have enabled the manufacture of large, low defect substrates. A final homoepitaxial, low absorption synthesis stage has produced plates with large area (up to 16 mm edge length), low absorption (α<0.005 cm-1 at 1064 nm), and low birefringence (Δn <10-5), suitable for double-sided intra-cavity cooling. We demonstrate the practical advances in synthesis, including increasing the size while reducing in-use losses compared to previous generations of single crystal material, and practical developments in processing and implementation of the single crystal diamond parts, optimizing them for use in a state-of-the-art femto-second pulsed Ti:Sa thin disk gain module, all made in collaboration with the wider European FP7 funded Ti:Sa TD consortium.

  15. TRPC Channel Structure and Properties.

    PubMed

    Feng, Shengjie

    2017-01-01

    TRPC channels are the first identified members in the TRP family. They function as either homo- or heterotetramers regulating intracellular Ca 2+ concentration in response to numerous physiological or pathological stimuli. TRPC channels are nonselective cation channels permeable to Ca 2+ . The properties and the functional domains of TRPC channels have been identified by electrophysiological and biochemical methods. However, due to the large size, instability, and flexibility of their complexes, the structures of the members in TRPC family remain unrevealed. More efforts should be made on structure analysis and generating good tools, including specific antibodies, agonist, and antagonist.

  16. Molecules with enhanced electronic polarizabilities based on defect-like states in conjugated polymers

    NASA Technical Reports Server (NTRS)

    Beratan, David N. (Inventor)

    1991-01-01

    Highly conjugated organic polymers typically have large non-resonant electronic susceptibilities, which give the molecules unusual optical properties. To enhance these properties, defects are introduced into the polymer chain. Examples include light doping of the conjugated polymer and synthesis, conjugated polymers which incorporate either electron donating or accepting groups, and conjugated polymers which contain a photoexcitable species capable of reversibly transferring its electron to an acceptor. Such defects in the chain permit enhancement of the second hyperpolarizability by at least an order of magnitude.

  17. Quadratic integrand double-hybrid made spin-component-scaled

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brémond, Éric, E-mail: eric.bremond@iit.it; Savarese, Marika; Sancho-García, Juan C.

    2016-03-28

    We propose two analytical expressions aiming to rationalize the spin-component-scaled (SCS) and spin-opposite-scaled (SOS) schemes for double-hybrid exchange-correlation density-functionals. Their performances are extensively tested within the framework of the nonempirical quadratic integrand double-hybrid (QIDH) model on energetic properties included into the very large GMTKN30 benchmark database, and on structural properties of semirigid medium-sized organic compounds. The SOS variant is revealed as a less computationally demanding alternative to reach the accuracy of the original QIDH model without losing any theoretical background.

  18. QSPR models for various physical properties of carbohydrates based on molecular mechanics and quantum chemical calculations.

    PubMed

    Dyekjaer, Jane Dannow; Jónsdóttir, Svava Osk

    2004-01-22

    Quantitative Structure-Property Relationships (QSPR) have been developed for a series of monosaccharides, including the physical properties of partial molar heat capacity, heat of solution, melting point, heat of fusion, glass-transition temperature, and solid state density. The models were based on molecular descriptors obtained from molecular mechanics and quantum chemical calculations, combined with other types of descriptors. Saccharides exhibit a large degree of conformational flexibility, therefore a methodology for selecting the energetically most favorable conformers has been developed, and was used for the development of the QSPR models. In most cases good correlations were obtained for monosaccharides. For five of the properties predictions were made for disaccharides, and the predicted values for the partial molar heat capacities were in excellent agreement with experimental values.

  19. Evaluation of Degradation Properties of Polyglycolide and Its Potential as Delivery Vehicle for Anticancer Agents

    NASA Astrophysics Data System (ADS)

    Noorsal, K.; Ghani, S. M.; Yunos, D. M.; Mohamed, M. S. W.; Yahya, A. F.

    2010-03-01

    Biodegradable polymers offer a unique combination of properties that can be tailored to suit nearly any controlled drug delivery application. The most common biodegradable polymers used for biomedical applications are semicrystalline polyesters and polyethers which possess good mechanical properties and have been used in many controlled release applications. Drug release from these polymers may be controlled by several mechanisms and these include diffusion of drug through a matrix, dissolution of polymer matrix and degradation of the polymer. This study aims to investigate the degradation and drug release properties of polyglycolide (1.03 dL/g), in which, cis platin, an anticancer agent was used as the model drug. The degradation behaviour of the chosen polymer is thought to largely govern the release of the anticancer agent in vitro.

  20. Transition Probabilities and Different Levels of Prominence in Segmentation

    ERIC Educational Resources Information Center

    Ordin, Mikhail; Nespor, Marina

    2013-01-01

    A large body of empirical research demonstrates that people exploit a wide variety of cues for the segmentation of continuous speech in artificial languages, including rhythmic properties, phrase boundary cues, and statistical regularities. However, less is known regarding how the different cues interact. In this study we addressed the question of…

  1. Thermal activated ("thermal") battery technology. Part IIIa: FeS 2 cathode material

    NASA Astrophysics Data System (ADS)

    Masset, Patrick J.; Guidotti, Ronald A.

    This article presents an overview of the pyrite FeS 2 used as cathode material in thermally activated ("thermal") batteries. A large emphasis was placed on the physicochemical properties and electrochemical performance of the pyrite FeS 2, including the discharge mechanisms, self-discharge phenomena, and recent developments.

  2. Development and Examination of the Social Appearance Anxiety Scale

    ERIC Educational Resources Information Center

    Hart, Trevor A.; Flora, David B.; Palyo, Sarah A.; Fresco, David M.; Holle, Christian; Heimberg, Richard G.

    2008-01-01

    The Social Appearance Anxiety Scale (SAAS) was created to measure anxiety about being negatively evaluated by others because of one's overall appearance, including body shape. This study examined the psychometric properties of the SAAS in three large samples of undergraduate students (respective ns = 512, 853, and 541). The SAAS demonstrated a…

  3. 75 FR 55745 - Corrosion-Resistant Carbon Steel Flat Products From the Republic of Korea: Preliminary Results...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-14

    ... with corrosion-resistant metals such as zinc, aluminum, or zinc-, aluminum-, nickel- or iron-based... medium-sized company, or any large company that is not included in the five largest conglomerates based... property tax based on the location of its manufacturing facilities, Suncheon Works, in the Yulchon...

  4. The impacts of inherent soil properties, environmental conditions, and restoration time on ecological benefits during CRP restoration

    USDA-ARS?s Scientific Manuscript database

    The Conservation Reserve Program (CRP) has numerous benefits including reduced soil erosion, increased C sequestration, and biodiversity through the conversion of highly erodible cropland to grasslands. The rate and magnitude of these changes varies and the factors that impact these changes are larg...

  5. Deformation Mechanisms and Biocompatibility of the Superelastic Ti-23Nb-0.7Ta-2Zr-0.5N Alloy

    NASA Astrophysics Data System (ADS)

    Castany, P.; Gordin, D. M.; Drob, S. I.; Vasilescu, C.; Mitran, V.; Cimpean, A.; Gloriant, T.

    2016-03-01

    In this study, we have synthesized a new Ti-23Nb-0.7Ta-2Zr-0.5N alloy composition with the aim to obtain useful mechanical properties to be used in medicine such as high strength, good superelastic property, low modulus, and large ductility. Thus, mechanical properties including superelasticity and plasticity were investigated in relation with the different deformation mechanisms observed (stress-induced martensitic transformation, twinning and dislocation slip). On the other hand, the corrosion resistance in simulated body fluid (Ringer solution) and the in vitro cell behavior (MG63 human osteoblasts) of such biomedical alloy were also evaluated in order to assess its biocompatibility.

  6. Mechanical and Electrical Properties of a Polyimide Film Significantly Enhanced by the Addition of Single-Wall Carbon Nanotubes

    NASA Technical Reports Server (NTRS)

    Meador, Michael A.

    2005-01-01

    Single-wall carbon nanotubes have been shown to possess a combination of outstanding mechanical, electrical, and thermal properties. The use of carbon nanotubes as an additive to improve the mechanical properties of polymers and/or enhance their thermal and electrical conductivity has been a topic of intense interest. Nanotube-modified polymeric materials could find a variety of applications in NASA missions including large-area antennas, solar arrays, and solar sails; radiation shielding materials for vehicles, habitats, and extravehicular activity suits; and multifunctional materials for vehicle structures and habitats. Use of these revolutionary materials could reduce vehicle weight significantly and improve vehicle performance and capabilities.

  7. 0ħω MEC effect on M1 properties of middle pf-shell nuclei

    NASA Astrophysics Data System (ADS)

    Nakada, H.; Sebe, T.

    1994-09-01

    M1 properties of middle pf-shell nuclei are studied within the framework of a large-scale shell-model calculation, by including two-body operators originating from the MEC effect within the 0ħω space. This MEC effect tends to enhance the M1 matrix elements slightly. However, the 0ħω MEC effect does not change the previous results so much, which have shown notable quenching in the magnetic moments of 55Co and 57Ni due to the 0ħω CP effect, while the 0ħω MEC effect should be kept track of in discussing the M1 properties with ⪅ 10% accuracy.

  8. A Review of Stellar Abundance Databases and the Hypatia Catalog Database

    NASA Astrophysics Data System (ADS)

    Hinkel, Natalie Rose

    2018-01-01

    The astronomical community is interested in elements from lithium to thorium, from solar twins to peculiarities of stellar evolution, because they give insight into different regimes of star formation and evolution. However, while some trends between elements and other stellar or planetary properties are well known, many other trends are not as obvious and are a point of conflict. For example, stars that host giant planets are found to be consistently enriched in iron, but the same cannot be definitively said for any other element. Therefore, it is time to take advantage of large stellar abundance databases in order to better understand not only the large-scale patterns, but also the more subtle, small-scale trends within the data.In this overview to the special session, I will present a review of large stellar abundance databases that are both currently available (i.e. RAVE, APOGEE) and those that will soon be online (i.e. Gaia-ESO, GALAH). Additionally, I will discuss the Hypatia Catalog Database (www.hypatiacatalog.com) -- which includes abundances from individual literature sources that observed stars within 150pc. The Hypatia Catalog currently contains 72 elements as measured within ~6000 stars, with a total of ~240,000 unique abundance determinations. The online database offers a variety of solar normalizations, stellar properties, and planetary properties (where applicable) that can all be viewed through multiple interactive plotting interfaces as well as in a tabular format. By analyzing stellar abundances for large populations of stars and from a variety of different perspectives, a wealth of information can be revealed on both large and small scales.

  9. Investigation on the Size Effect in Large-Scale Beta-Processed Ti-17 Disks Based on Quantitative Metallography

    NASA Astrophysics Data System (ADS)

    Zhang, Saifei; Zeng, Weidong; Gao, Xiongxiong; Zhao, Xingdong; Li, Siqing

    2017-10-01

    The present study investigates the mechanical properties of large-scale beta-processed Ti-17 forgings because of the increasing interest in beta thermal-mechanical processing method for fabricating compressor disks or blisks in aero-engines due to its advantage in damage tolerance performance. Three Ti-17 disks with different weights of 57, 250 and 400 kg were prepared by beta processing techniques firstly for comparative study. The results reveal a significant `size effect' in beta-processed Ti-17 disks, i.e., dependences of high cycle fatigue, tensile properties and fracture toughness of beta-processed Ti-17 disks on disk size (or weight). With increasing disk weight from 57 to 400 kg, the fatigue limit (fatigue strength at 107 cycles, R = -1) was reduced from 583 to 495 MPa, tensile yield strength dropped from 1073 to 1030 MPa, while fracture toughness ( K IC) rose from 70.9 to 95.5 MPaṡm1/2. Quantitative metallography analysis shows that the `size effect' of mechanical properties can be attributed to evident differences between microstructures of the three disk forgings. With increasing disk size, nearly all microstructural components in the basket-weave microstructure, including prior β grain, α layers at β grain boundaries (GB- α) and α lamellas at the interior of the grains, get coarsened to different degrees. Further, the microstructural difference between the beta-processed disks is proved to be the consequence of longer pre-forging soaking time and lower post-forging cooling rate for large disks than small ones. Finally, suggestions are made from the perspective of microstructural control on how to improve mechanical properties of large-scale beta-processed Ti-17 forgings.

  10. Carbon Nanofibers and Their Composites: A Review of Synthesizing, Properties and Applications

    PubMed Central

    Feng, Lichao; Xie, Ning; Zhong, Jing

    2014-01-01

    Carbon nanofiber (CNF), as one of the most important members of carbon fibers, has been investigated in both fundamental scientific research and practical applications. CNF composites are able to be applied as promising materials in many fields, such as electrical devices, electrode materials for batteries and supercapacitors and as sensors. In these applications, the electrical conductivity is always the first priority need to be considered. In fact, the electrical property of CNF composites largely counts on the dispersion and percolation status of CNFs in matrix materials. In this review, the electrical transport phenomenon of CNF composites is systematically summarized based on percolation theory. The effects of the aspect ratio, percolation backbone structure and fractal characteristics of CNFs and the non-universality of the percolation critical exponents on the electrical properties are systematically reviewed. Apart from the electrical property, the thermal conductivity and mechanical properties of CNF composites are briefly reviewed, as well. In addition, the preparation methods of CNFs, including catalytic chemical vapor deposition growth and electrospinning, and the preparation methods of CNF composites, including the melt mixing and solution process, are briefly introduced. Finally, their applications as sensors and electrode materials are described in this review article. PMID:28788657

  11. Spatio-Temporal Data Analysis at Scale Using Models Based on Gaussian Processes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stein, Michael

    Gaussian processes are the most commonly used statistical model for spatial and spatio-temporal processes that vary continuously. They are broadly applicable in the physical sciences and engineering and are also frequently used to approximate the output of complex computer models, deterministic or stochastic. We undertook research related to theory, computation, and applications of Gaussian processes as well as some work on estimating extremes of distributions for which a Gaussian process assumption might be inappropriate. Our theoretical contributions include the development of new classes of spatial-temporal covariance functions with desirable properties and new results showing that certain covariance models lead tomore » predictions with undesirable properties. To understand how Gaussian process models behave when applied to deterministic computer models, we derived what we believe to be the first significant results on the large sample properties of estimators of parameters of Gaussian processes when the actual process is a simple deterministic function. Finally, we investigated some theoretical issues related to maxima of observations with varying upper bounds and found that, depending on the circumstances, standard large sample results for maxima may or may not hold. Our computational innovations include methods for analyzing large spatial datasets when observations fall on a partially observed grid and methods for estimating parameters of a Gaussian process model from observations taken by a polar-orbiting satellite. In our application of Gaussian process models to deterministic computer experiments, we carried out some matrix computations that would have been infeasible using even extended precision arithmetic by focusing on special cases in which all elements of the matrices under study are rational and using exact arithmetic. The applications we studied include total column ozone as measured from a polar-orbiting satellite, sea surface temperatures over the Pacific Ocean, and annual temperature extremes at a site in New York City. In each of these applications, our theoretical and computational innovations were directly motivated by the challenges posed by analyzing these and similar types of data.« less

  12. Pre-supernova models for massive stars produced with large nuclear reaction network by MESA

    NASA Astrophysics Data System (ADS)

    Park, Byeongchan; Kwak, Kyujin

    2018-04-01

    Core-collapsed Supernova (CCSN) is one of violent phenomena in the universe. CCSN generates heavy elements and leaves a neutron star behind. It has been known that the physical properties of CCSN depend on those of pre-supernova such as mass, metallicities including distribution of elements, and the density and temperature profile which are obtained from the stellar evolution calculation. In particular, the production of heavy elements in CCSN is sensitive to the abundance profiles in the pre-supernova models. In this study, we evolve a massive main sequence star with 15Msun and solar metallicity to the pre-supernova stage by using two different networks, small and large. The large nuclear reaction network includes more than four times isotopes than the small network. Our calculations were done by MESA (Modules for Experiments in Stellar Astrophysics) which allowed us to use the large network containing about a hundred isotopes. We compare the results obtained with two networks.

  13. Modeling coupled Thermo-Hydro-Mechanical processes including plastic deformation in geological porous media

    NASA Astrophysics Data System (ADS)

    Kelkar, S.; Karra, S.; Pawar, R. J.; Zyvoloski, G.

    2012-12-01

    There has been an increasing interest in the recent years in developing computational tools for analyzing coupled thermal, hydrological and mechanical (THM) processes that occur in geological porous media. This is mainly due to their importance in applications including carbon sequestration, enhanced geothermal systems, oil and gas production from unconventional sources, degradation of Arctic permafrost, and nuclear waste isolation. Large changes in pressures, temperatures and saturation can result due to injection/withdrawal of fluids or emplaced heat sources. These can potentially lead to large changes in the fluid flow and mechanical behavior of the formation, including shear and tensile failure on pre-existing or induced fractures and the associated permeability changes. Due to this, plastic deformation and large changes in material properties such as permeability and porosity can be expected to play an important role in these processes. We describe a general purpose computational code FEHM that has been developed for the purpose of modeling coupled THM processes during multi-phase fluid flow and transport in fractured porous media. The code uses a continuum mechanics approach, based on control volume - finite element method. It is designed to address spatial scales on the order of tens of centimeters to tens of kilometers. While large deformations are important in many situations, we have adapted the small strain formulation as useful insight can be obtained in many problems of practical interest with this approach while remaining computationally manageable. Nonlinearities in the equations and the material properties are handled using a full Jacobian Newton-Raphson technique. Stress-strain relationships are assumed to follow linear elastic/plastic behavior. The code incorporates several plasticity models such as von Mises, Drucker-Prager, and also a large suite of models for coupling flow and mechanical deformation via permeability and stresses/deformations. In this work we present several example applications of such models.

  14. Modified Continuum Mechanics Modeling on Size-Dependent Properties of Piezoelectric Nanomaterials: A Review

    PubMed Central

    Yan, Zhi; Jiang, Liying

    2017-01-01

    Piezoelectric nanomaterials (PNs) are attractive for applications including sensing, actuating, energy harvesting, among others in nano-electro-mechanical-systems (NEMS) because of their excellent electromechanical coupling, mechanical and physical properties. However, the properties of PNs do not coincide with their bulk counterparts and depend on the particular size. A large amount of efforts have been devoted to studying the size-dependent properties of PNs by using experimental characterization, atomistic simulation and continuum mechanics modeling with the consideration of the scale features of the nanomaterials. This paper reviews the recent progresses and achievements in the research on the continuum mechanics modeling of the size-dependent mechanical and physical properties of PNs. We start from the fundamentals of the modified continuum mechanics models for PNs, including the theories of surface piezoelectricity, flexoelectricity and non-local piezoelectricity, with the introduction of the modified piezoelectric beam and plate models particularly for nanostructured piezoelectric materials with certain configurations. Then, we give a review on the investigation of the size-dependent properties of PNs by using the modified continuum mechanics models, such as the electromechanical coupling, bending, vibration, buckling, wave propagation and dynamic characteristics. Finally, analytical modeling and analysis of nanoscale actuators and energy harvesters based on piezoelectric nanostructures are presented. PMID:28336861

  15. Modified Continuum Mechanics Modeling on Size-Dependent Properties of Piezoelectric Nanomaterials: A Review.

    PubMed

    Yan, Zhi; Jiang, Liying

    2017-01-26

    Piezoelectric nanomaterials (PNs) are attractive for applications including sensing, actuating, energy harvesting, among others in nano-electro-mechanical-systems (NEMS) because of their excellent electromechanical coupling, mechanical and physical properties. However, the properties of PNs do not coincide with their bulk counterparts and depend on the particular size. A large amount of efforts have been devoted to studying the size-dependent properties of PNs by using experimental characterization, atomistic simulation and continuum mechanics modeling with the consideration of the scale features of the nanomaterials. This paper reviews the recent progresses and achievements in the research on the continuum mechanics modeling of the size-dependent mechanical and physical properties of PNs. We start from the fundamentals of the modified continuum mechanics models for PNs, including the theories of surface piezoelectricity, flexoelectricity and non-local piezoelectricity, with the introduction of the modified piezoelectric beam and plate models particularly for nanostructured piezoelectric materials with certain configurations. Then, we give a review on the investigation of the size-dependent properties of PNs by using the modified continuum mechanics models, such as the electromechanical coupling, bending, vibration, buckling, wave propagation and dynamic characteristics. Finally, analytical modeling and analysis of nanoscale actuators and energy harvesters based on piezoelectric nanostructures are presented.

  16. The GRIDView Visualization Package

    NASA Astrophysics Data System (ADS)

    Kent, B. R.

    2011-07-01

    Large three-dimensional data cubes, catalogs, and spectral line archives are increasingly important elements of the data discovery process in astronomy. Visualization of large data volumes is of vital importance for the success of large spectral line surveys. Examples of data reduction utilizing the GRIDView software package are shown. The package allows users to manipulate data cubes, extract spectral profiles, and measure line properties. The package and included graphical user interfaces (GUIs) are designed with pipeline infrastructure in mind. The software has been used with great success analyzing spectral line and continuum data sets obtained from large radio survey collaborations. The tools are also important for multi-wavelength cross-correlation studies and incorporate Virtual Observatory client applications for overlaying database information in real time as cubes are examined by users.

  17. Finding and estimating chemical property data for environmental assessment.

    PubMed

    Boethling, Robert S; Howard, Philip H; Meylan, William M

    2004-10-01

    The ability to predict the behavior of a chemical substance in a biological or environmental system largely depends on knowledge of the physicochemical properties and reactivity of that substance. We focus here on properties, with the objective of providing practical guidance for finding measured values and using estimation methods when necessary. Because currently available computer software often makes it more convenient to estimate than to retrieve measured values, we try to discourage irrational exuberance for these tools by including comprehensive lists of Internet and hard-copy data resources. Guidance for assessors is presented in the form of a process to obtain data that includes establishment of chemical identity, identification of data sources, assessment of accuracy and reliability, substructure searching for analogs when experimental data are unavailable, and estimation from chemical structure. Regarding property estimation, we cover estimation from close structural analogs in addition to broadly applicable methods requiring only the chemical structure. For the latter, we list and briefly discuss the most widely used methods. Concluding thoughts are offered concerning appropriate directions for future work on estimation methods, again with an emphasis on practical applications.

  18. Botulinum Neurotoxins: Biology, Pharmacology, and Toxicology

    PubMed Central

    Pirazzini, Marco; Rossetto, Ornella; Eleopra, Roberto

    2017-01-01

    The study of botulinum neurotoxins (BoNT) is rapidly progressing in many aspects. Novel BoNTs are being discovered owing to next generation sequencing, but their biologic and pharmacological properties remain largely unknown. The molecular structure of the large protein complexes that the toxin forms with accessory proteins, which are included in some BoNT type A1 and B1 pharmacological preparations, have been determined. By far the largest effort has been dedicated to the testing and validation of BoNTs as therapeutic agents in an ever increasing number of applications, including pain therapy. BoNT type A1 has been also exploited in a variety of cosmetic treatments, alone or in combination with other agents, and this specific market has reached the size of the one dedicated to the treatment of medical syndromes. The pharmacological properties and mode of action of BoNTs have shed light on general principles of neuronal transport and protein-protein interactions and are stimulating basic science studies. Moreover, the wide array of BoNTs discovered and to be discovered and the production of recombinant BoNTs endowed with specific properties suggest novel uses in therapeutics with increasing disease/symptom specifity. These recent developments are reviewed here to provide an updated picture of the biologic mechanism of action of BoNTs, of their increasing use in pharmacology and in cosmetics, and of their toxicology. PMID:28356439

  19. Botulinum Neurotoxins: Biology, Pharmacology, and Toxicology.

    PubMed

    Pirazzini, Marco; Rossetto, Ornella; Eleopra, Roberto; Montecucco, Cesare

    2017-04-01

    The study of botulinum neurotoxins (BoNT) is rapidly progressing in many aspects. Novel BoNTs are being discovered owing to next generation sequencing, but their biologic and pharmacological properties remain largely unknown. The molecular structure of the large protein complexes that the toxin forms with accessory proteins, which are included in some BoNT type A1 and B1 pharmacological preparations, have been determined. By far the largest effort has been dedicated to the testing and validation of BoNTs as therapeutic agents in an ever increasing number of applications, including pain therapy. BoNT type A1 has been also exploited in a variety of cosmetic treatments, alone or in combination with other agents, and this specific market has reached the size of the one dedicated to the treatment of medical syndromes. The pharmacological properties and mode of action of BoNTs have shed light on general principles of neuronal transport and protein-protein interactions and are stimulating basic science studies. Moreover, the wide array of BoNTs discovered and to be discovered and the production of recombinant BoNTs endowed with specific properties suggest novel uses in therapeutics with increasing disease/symptom specifity. These recent developments are reviewed here to provide an updated picture of the biologic mechanism of action of BoNTs, of their increasing use in pharmacology and in cosmetics, and of their toxicology. Copyright © 2017 by The Author(s).

  20. Orientation Encoding and Viewpoint Invariance in Face Recognition: Inferring Neural Properties from Large-Scale Signals.

    PubMed

    Ramírez, Fernando M

    2018-05-01

    Viewpoint-invariant face recognition is thought to be subserved by a distributed network of occipitotemporal face-selective areas that, except for the human anterior temporal lobe, have been shown to also contain face-orientation information. This review begins by highlighting the importance of bilateral symmetry for viewpoint-invariant recognition and face-orientation perception. Then, monkey electrophysiological evidence is surveyed describing key tuning properties of face-selective neurons-including neurons bimodally tuned to mirror-symmetric face-views-followed by studies combining functional magnetic resonance imaging (fMRI) and multivariate pattern analyses to probe the representation of face-orientation and identity information in humans. Altogether, neuroimaging studies suggest that face-identity is gradually disentangled from face-orientation information along the ventral visual processing stream. The evidence seems to diverge, however, regarding the prevalent form of tuning of neural populations in human face-selective areas. In this context, caveats possibly leading to erroneous inferences regarding mirror-symmetric coding are exposed, including the need to distinguish angular from Euclidean distances when interpreting multivariate pattern analyses. On this basis, this review argues that evidence from the fusiform face area is best explained by a view-sensitive code reflecting head angular disparity, consistent with a role of this area in face-orientation perception. Finally, the importance is stressed of explicit models relating neural properties to large-scale signals.

  1. Beach Nourishment Dynamics in a Coupled Large-Scale Coastal Change and Economic Optimization Model

    NASA Astrophysics Data System (ADS)

    McNamara, D. E.; Murray, B.; Smith, M.

    2008-12-01

    Global climate change is predicted to have significant consequences for shoreline evolution from both sea level rise and changing wave climates. Because many coastal communities actively defend against erosion, changing environmental conditions will influence rates of nourishment. Over large coastal regions, including many towns, the anticipated future rate of nourishment is assumed to be proportional to the expected evolution of the shoreline in the region. This view neglects the possibility of strong coupling between the spatial patterns of nourishment and the distribution of property values within the region. To explore the impact of this coupling, we present a numerical model that incorporates the physical forces of alongshore sediment transport and erosion due to sea level rise as well as the economic forces that drive beach replenishment including the economic benefits of enhanced or maintained beach width and the costs of replenishing. Results are presented for a Carolina-like coastline and show how natural shoreline change rates are altered as the wave climate changes (because of changing storm behaviors). Results also show that the nourishment rate is conserved for varying property value distributions when the nourishment cost is unrelated to past nourishment and, in contrast, increasing nourishment cost as available sand for nourishment is depleted causes strong coupling between the property value distribution and erosion patterns. This strong coupling significantly alters the rate of nourishment and hence the depletion of available sand for nourishing.

  2. Non-perturbative Approach to Equation of State and Collective Modes of the QGP

    NASA Astrophysics Data System (ADS)

    Liu, Y. F. Shuai; Rappxs, Ralf

    2018-01-01

    We discuss a non-perturbative T-matrix approach to investigate the microscopic structure of the quark-gluon plasma (QGP). Utilizing an effective Hamiltonian which includes both light- and heavy-parton degrees of freedoms. The basic two-body interaction includes color-Coulomb and confining contributions in all available color channels, and is constrained by lattice-QCD data for the heavy-quark free energy. The in-medium T-matrices and parton spectral functions are computed selfconsistently with full account of off-shell properties encoded in large scattering widths. We apply the T-matrices to calculate the equation of state (EoS) for the QGP, including a ladder resummation of the Luttinger-Ward functional using a matrix-log technique to account for the dynamical formation of bound states. It turns out that the latter become the dominant degrees of freedom in the EoS at low QGP temperatures indicating a transition from parton to hadron degrees of freedom. The calculated spectral properties of one- and two-body states confirm this picture, where large parton scattering rates dissolve the parton quasiparticle structures while broad resonances start to form as the pseudocritical temperature is approached from above. Further calculations of transport coefficients reveal a small viscosity and heavy-quark diffusion coefficient.

  3. Super-micron Particles over US Coastal Region: Seasonal Changes from TCAP data

    NASA Astrophysics Data System (ADS)

    Kassianov, E.; Pekour, M. S.; Flynn, C. J.; Berg, L. K.; Fast, J. D.; Zelenyuk, A.; Tomlinson, J. M.; Chand, D.; Barnard, J.; Jefferson, A.

    2016-12-01

    Numerous studies have demonstrated that wind-blown dust and ocean wave breaking are two major sources of atmospheric super-micron particles. However, the fate of generated super-micron particles and their relative contribution to the aerosol microphysical and optical properties is not well understood especially for coastal regions with complex interplay of local and large-scale flow patterns. To estimate this contribution, we take advantage of an integrated dataset collected from ground-based observations during the recent Two-Column Aerosol Project (TCAP; http://campaign.arm.gov/tcap/) over the North Atlantic Ocean and US coastal region (Cape Cod, MA, USA). This region represents a crossroads of flow patterns with pronounced seasonal changes. Conducted from June 2012 through June 2013, TCAP involved one-month summer and winter periods of intensive aircraft observations that included the U.S. Department of Energy (DOE) Gulfstream-159 (G-1) aircraft. Aerosol size spectra, chemical composition and total scattering data were collected with high temporal resolution (<1 min) during the TCAP flights. The twelve-month TCAP dataset integrates ground-based observations from a suite of instruments for measuring cloud, aerosol and radiative properties, including the Multi-Filter Rotating Shadowband Radiometer (MFRSR), a Scanning Mobility Particle Sizer (SMPS), an Aerodynamic Particle Sizer (APS) and a three-wavelength nephelometer. To demonstrate the importance of super-micron particles on the climate-relevant aerosol microphysical and optical properties, we examine data from the ground-based and airborne instruments. In particular, we show that the contribution of super-micron particles to the total scattering can be large (up to 50%) during winter period and this large contribution is mostly associated with sea-salt particles. The expected application of our results to the evaluation and improvement of regional and global climate models will be discussed as well.

  4. Properties of on-line social systems

    NASA Astrophysics Data System (ADS)

    Grabowski, A.; Kruszewska, N.; Kosiński, R. A.

    2008-11-01

    We study properties of five different social systems: (i) internet society of friends consisting of over 106 people, (ii) social network consisting of 3 × 104 individuals, who interact in a large virtual world of Massive Multiplayer Online Role Playing Games (MMORPGs), (iii) over 106 users of music community website, (iv) over 5 × 106 users of gamers community server and (v) over 0.25 × 106 users of books admirer website. Individuals included in large social network form an Internet community and organize themselves in groups of different sizes. The destiny of those systems, as well as the method of creating of new connections, are different, however we found that the properties of these networks are very similar. We have found that the network components size distribution follow the power-law scaling form. In all five systems we have found interesting scaling laws concerning human dynamics. Our research has shown how long people are interested in a single task, how much time they devote to it and how fast they are making friends. It is surprising that the time evolution of an individual connectivity is very similar in each system.

  5. Contributions to the NUCLEI SciDAC-3 Project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bogner, Scott; Nazarewicz, Witek

    This is the Final Report for Michigan State University for the NUCLEI SciDAC-3 project. The NUCLEI project, as defined by the scope of work, has developed, implemented and run codes for large-scale computations of many topics in low-energy nuclear physics. Physics studied included the properties of nuclei and nuclear decays, nuclear structure and reactions, and the properties of nuclear matter. The computational techniques used included Configuration Interaction, Coupled Cluster, and Density Functional methods. The research program emphasized areas of high interest to current and possible future DOE nuclear physics facilities, including ATLAS at ANL and FRIB at MSU (nuclear structuremore » and reactions, and nuclear astrophysics), TJNAF (neutron distributions in nuclei, few body systems, and electroweak processes), NIF (thermonuclear reactions), MAJORANA and FNPB (neutrinoless double-beta decay and physics beyond the Standard Model), and LANSCE (fission studies).« less

  6. Nuclear Computational Low Energy Initiative (NUCLEI)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reddy, Sanjay K.

    This is the final report for University of Washington for the NUCLEI SciDAC-3. The NUCLEI -project, as defined by the scope of work, will develop, implement and run codes for large-scale computations of many topics in low-energy nuclear physics. Physics to be studied include the properties of nuclei and nuclear decays, nuclear structure and reactions, and the properties of nuclear matter. The computational techniques to be used include Quantum Monte Carlo, Configuration Interaction, Coupled Cluster, and Density Functional methods. The research program will emphasize areas of high interest to current and possible future DOE nuclear physics facilities, including ATLAS andmore » FRIB (nuclear structure and reactions, and nuclear astrophysics), TJNAF (neutron distributions in nuclei, few body systems, and electroweak processes), NIF (thermonuclear reactions), MAJORANA and FNPB (neutrino-less double-beta decay and physics beyond the Standard Model), and LANSCE (fission studies).« less

  7. Quenched Large Deviations for Simple Random Walks on Percolation Clusters Including Long-Range Correlations

    NASA Astrophysics Data System (ADS)

    Berger, Noam; Mukherjee, Chiranjib; Okamura, Kazuki

    2018-03-01

    We prove a quenched large deviation principle (LDP) for a simple random walk on a supercritical percolation cluster (SRWPC) on {Z^d} ({d ≥ 2}). The models under interest include classical Bernoulli bond and site percolation as well as models that exhibit long range correlations, like the random cluster model, the random interlacement and the vacant set of random interlacements (for {d ≥ 3}) and the level sets of the Gaussian free field ({d≥ 3}). Inspired by the methods developed by Kosygina et al. (Commun Pure Appl Math 59:1489-1521, 2006) for proving quenched LDP for elliptic diffusions with a random drift, and by Yilmaz (Commun Pure Appl Math 62(8):1033-1075, 2009) and Rosenbluth (Quenched large deviations for multidimensional random walks in a random environment: a variational formula. Ph.D. thesis, NYU, arXiv:0804.1444v1) for similar results regarding elliptic random walks in random environment, we take the point of view of the moving particle and prove a large deviation principle for the quenched distribution of the pair empirical measures of the environment Markov chain in the non-elliptic case of SRWPC. Via a contraction principle, this reduces easily to a quenched LDP for the distribution of the mean velocity of the random walk and both rate functions admit explicit variational formulas. The main difficulty in our set up lies in the inherent non-ellipticity as well as the lack of translation-invariance stemming from conditioning on the fact that the origin belongs to the infinite cluster. We develop a unifying approach for proving quenched large deviations for SRWPC based on exploiting coercivity properties of the relative entropies in the context of convex variational analysis, combined with input from ergodic theory and invoking geometric properties of the supercritical percolation cluster.

  8. Quenched Large Deviations for Simple Random Walks on Percolation Clusters Including Long-Range Correlations

    NASA Astrophysics Data System (ADS)

    Berger, Noam; Mukherjee, Chiranjib; Okamura, Kazuki

    2017-12-01

    We prove a quenched large deviation principle (LDP) for a simple random walk on a supercritical percolation cluster (SRWPC) on {Z^d} ({d ≥ 2} ). The models under interest include classical Bernoulli bond and site percolation as well as models that exhibit long range correlations, like the random cluster model, the random interlacement and the vacant set of random interlacements (for {d ≥ 3} ) and the level sets of the Gaussian free field ({d≥ 3} ). Inspired by the methods developed by Kosygina et al. (Commun Pure Appl Math 59:1489-1521, 2006) for proving quenched LDP for elliptic diffusions with a random drift, and by Yilmaz (Commun Pure Appl Math 62(8):1033-1075, 2009) and Rosenbluth (Quenched large deviations for multidimensional random walks in a random environment: a variational formula. Ph.D. thesis, NYU, arXiv:0804.1444v1) for similar results regarding elliptic random walks in random environment, we take the point of view of the moving particle and prove a large deviation principle for the quenched distribution of the pair empirical measures of the environment Markov chain in the non-elliptic case of SRWPC. Via a contraction principle, this reduces easily to a quenched LDP for the distribution of the mean velocity of the random walk and both rate functions admit explicit variational formulas. The main difficulty in our set up lies in the inherent non-ellipticity as well as the lack of translation-invariance stemming from conditioning on the fact that the origin belongs to the infinite cluster. We develop a unifying approach for proving quenched large deviations for SRWPC based on exploiting coercivity properties of the relative entropies in the context of convex variational analysis, combined with input from ergodic theory and invoking geometric properties of the supercritical percolation cluster.

  9. High resolution micro-CT of low attenuating organic materials using large area photon-counting detector

    NASA Astrophysics Data System (ADS)

    Kumpová, I.; Vavřík, D.; Fíla, T.; Koudelka, P.; Jandejsek, I.; Jakůbek, J.; Kytýř, D.; Zlámal, P.; Vopálenský, M.; Gantar, A.

    2016-02-01

    To overcome certain limitations of contemporary materials used for bone tissue engineering, such as inflammatory response after implantation, a whole new class of materials based on polysaccharide compounds is being developed. Here, nanoparticulate bioactive glass reinforced gelan-gum (GG-BAG) has recently been proposed for the production of bone scaffolds. This material offers promising biocompatibility properties, including bioactivity and biodegradability, with the possibility of producing scaffolds with directly controlled microgeometry. However, to utilize such a scaffold with application-optimized properties, large sets of complex numerical simulations using the real microgeometry of the material have to be carried out during the development process. Because the GG-BAG is a material with intrinsically very low attenuation to X-rays, its radiographical imaging, including tomographical scanning and reconstructions, with resolution required by numerical simulations might be a very challenging task. In this paper, we present a study on X-ray imaging of GG-BAG samples. High-resolution volumetric images of investigated specimens were generated on the basis of micro-CT measurements using a large area flat-panel detector and a large area photon-counting detector. The photon-counting detector was composed of a 010× 1 matrix of Timepix edgeless silicon pixelated detectors with tiling based on overlaying rows (i.e. assembled so that no gap is present between individual rows of detectors). We compare the results from both detectors with the scanning electron microscopy on selected slices in transversal plane. It has been shown that the photon counting detector can provide approx. 3× better resolution of the details in low-attenuating materials than the integrating flat panel detectors. We demonstrate that employment of a large area photon counting detector is a good choice for imaging of low attenuating materials with the resolution sufficient for numerical simulations.

  10. Review of Large Spacecraft Deployable Membrane Antenna Structures

    NASA Astrophysics Data System (ADS)

    Liu, Zhi-Quan; Qiu, Hui; Li, Xiao; Yang, Shu-Li

    2017-11-01

    The demand for large antennas in future space missions has increasingly stimulated the development of deployable membrane antenna structures owing to their light weight and small stowage volume. However, there is little literature providing a comprehensive review and comparison of different membrane antenna structures. Space-borne membrane antenna structures are mainly classified as either parabolic or planar membrane antenna structures. For parabolic membrane antenna structures, there are five deploying and forming methods, including inflation, inflation-rigidization, elastic ribs driven, Shape Memory Polymer (SMP)-inflation, and electrostatic forming. The development and detailed comparison of these five methods are presented. Then, properties of membrane materials (including polyester film and polyimide film) for parabolic membrane antennas are compared. Additionally, for planar membrane antenna structures, frame shapes have changed from circular to rectangular, and different tensioning systems have emerged successively, including single Miura-Natori, double, and multi-layer tensioning systems. Recent advances in structural configurations, tensioning system design, and dynamic analysis for planar membrane antenna structures are investigated. Finally, future trends for large space membrane antenna structures are pointed out and technical problems are proposed, including design and analysis of membrane structures, materials and processes, membrane packing, surface accuracy stability, and test and verification technology. Through a review of large deployable membrane antenna structures, guidance for space membrane-antenna research and applications is provided.

  11. A Database Approach for Predicting and Monitoring Baked Anode Properties

    NASA Astrophysics Data System (ADS)

    Lauzon-Gauthier, Julien; Duchesne, Carl; Tessier, Jayson

    2012-11-01

    The baked anode quality control strategy currently used by most carbon plants based on testing anode core samples in the laboratory is inadequate for facing increased raw material variability. The low core sampling rate limited by lab capacity and the common practice of reporting averaged properties based on some anode population mask a significant amount of individual anode variability. In addition, lab results are typically available a few weeks after production and the anodes are often already set in the reduction cells preventing early remedial actions when necessary. A database approach is proposed in this work to develop a soft-sensor for predicting individual baked anode properties at the end of baking cycle. A large historical database including raw material properties, process operating parameters and anode core data was collected from a modern Alcoa plant. A multivariate latent variable PLS regression method was used for analyzing the large database and building the soft-sensor model. It is shown that the general low frequency trends in most anode physical and mechanical properties driven by raw material changes are very well captured by the model. Improvements in the data infrastructure (instrumentation, sampling frequency and location) will be necessary for predicting higher frequency variations in individual baked anode properties. This paper also demonstrates how multivariate latent variable models can be interpreted against process knowledge and used for real-time process monitoring of carbon plants, and detection of faults and abnormal operation.

  12. From properties to materials: An efficient and simple approach.

    PubMed

    Huwig, Kai; Fan, Chencheng; Springborg, Michael

    2017-12-21

    We present an inverse-design method, the poor man's materials optimization, that is designed to identify materials within a very large class with optimized values for a pre-chosen property. The method combines an efficient genetic-algorithm-based optimization, an automatic approach for generating modified molecules, a simple approach for calculating the property of interest, and a mathematical formulation of the quantity whose value shall be optimized. In order to illustrate the performance of our approach, we study the properties of organic molecules related to those used in dye-sensitized solar cells, whereby we, for the sake of proof of principle, consider benzene as a simple test system. Using a genetic algorithm, the substituents attached to the organic backbone are varied and the best performing molecules are identified. We consider several properties to describe the performance of organic molecules, including the HOMO-LUMO gap, the sunlight absorption, the spatial distance of the orbitals, and the reorganisation energy. The results show that our method is able to identify a large number of good candidate structures within a short time. In some cases, chemical/physical intuition can be used to rationalize the substitution pattern of the best structures, although this is not always possible. The present investigations provide a solid foundation for dealing with more complex and technically relevant systems such as porphyrins. Furthermore, our "properties first, materials second" approach is not limited to solar-energy harvesting but can be applied to many other fields, as briefly is discussed in the paper.

  13. From properties to materials: An efficient and simple approach

    NASA Astrophysics Data System (ADS)

    Huwig, Kai; Fan, Chencheng; Springborg, Michael

    2017-12-01

    We present an inverse-design method, the poor man's materials optimization, that is designed to identify materials within a very large class with optimized values for a pre-chosen property. The method combines an efficient genetic-algorithm-based optimization, an automatic approach for generating modified molecules, a simple approach for calculating the property of interest, and a mathematical formulation of the quantity whose value shall be optimized. In order to illustrate the performance of our approach, we study the properties of organic molecules related to those used in dye-sensitized solar cells, whereby we, for the sake of proof of principle, consider benzene as a simple test system. Using a genetic algorithm, the substituents attached to the organic backbone are varied and the best performing molecules are identified. We consider several properties to describe the performance of organic molecules, including the HOMO-LUMO gap, the sunlight absorption, the spatial distance of the orbitals, and the reorganisation energy. The results show that our method is able to identify a large number of good candidate structures within a short time. In some cases, chemical/physical intuition can be used to rationalize the substitution pattern of the best structures, although this is not always possible. The present investigations provide a solid foundation for dealing with more complex and technically relevant systems such as porphyrins. Furthermore, our "properties first, materials second" approach is not limited to solar-energy harvesting but can be applied to many other fields, as briefly is discussed in the paper.

  14. Positive effects of afforestation efforts on the health of urban soils

    Treesearch

    Emily E. Oldfield; Alexander J. Felson; Stephen A. Wood; Richard A. Hallett; Michael S. Strickland; Mark A. Bradford

    2014-01-01

    Large-scale tree planting projects in cities are increasingly implemented as a strategy to improve the urban environment. Trees provide multiple benefits in cities, including reduction of urban temperatures, improved air quality, mitigation of storm-water run-off, and provision of wildlife habitat. How urban afforestation affects the properties and functions of urban...

  15. Statistics of stable marriages

    NASA Astrophysics Data System (ADS)

    Dzierzawa, Michael; Oméro, Marie-José

    2000-11-01

    In the stable marriage problem N men and N women have to be matched by pairs under the constraint that the resulting matching is stable. We study the statistical properties of stable matchings in the large N limit using both numerical and analytical methods. Generalizations of the model including singles and unequal numbers of men and women are also investigated.

  16. Cryo-Infrared Optical Characterization at NASA GSFC

    NASA Technical Reports Server (NTRS)

    Boucarut, Ray; Quijada, Manuel A.; Henry, Ross M.

    2004-01-01

    The development of large space infrared optical systems, such as the Next Generation Space Telescope (NGST), has increased requirements for measurement accuracy in the optical properties of materials. Many materials used as optical components in infrared optical systems, have strong temperature dependence in their optical properties. Unfortunately, data on the temperature dependence of most of these materials is sparse. In this paper, we provide a description of the capabilities existing in the Optics Branch at the Goddard Space Flight Center that enable the characterization of the refractive index and absorption coefficient changes and other optical properties in infrared materials at cryogenic temperatures. Details of the experimental apparatus, which include continuous flow liquid helium optical cryostat, and a Fourier Transform Infrared (FTIR) spectrometer are discussed.

  17. Bio-Optical Properties of the Arabian Sea as Determined by In-Situ and SeaWifs Data

    NASA Technical Reports Server (NTRS)

    Trees, Charles C.

    1998-01-01

    The overall objective of this work was to characterize optical and fluorescence properties in the euphotic zone during two British Ocean Flux Study (BOFS) Arabian Sea cruises. This was later expanded in 1995 to include three U.S. Joint Global Ocean Flux Study (JGOFS) Arabian Sea Cruises. The region was to be divided into one or more "bio-optical provinces", within each of which a single set of regression models was to be developed to relate the vertical distribution of irradiance attenuation and normalized fluorescence (SF and NF) to remote sensing reflectance and diffuse attenuation coefficient [K(490)]. The working hypothesis was that over relatively large spatial and temporal scales, the vertical profiles of bio-optical properties were predictable.

  18. Nanobiotechnology of Carbon Dots: A Review.

    PubMed

    Durán, Nelson; Simões, Mateus B; de Moraes, Ana C M; Fávaro, Wagner J; Seabra, Amedea B

    2016-07-01

    In recent years, carbon dots (CDs) have gained increasing attention owing to their unique properties and enormous potential for several biomedical and technological applications. CDs are biocompatible, have a small size with a relatively large surface area, are photostable, and have customizable photoluminescence properties. This review is divided into the following discussions of CDs: general definitions; an overview of recent reviews; methods of green and classical synthesis; applications in bioimaging, involving supercapacitors, nanocarriers and nanomedicine; toxicological evaluations (including cytotoxic, genotoxic and anti-cancer properties of CDs); their conjugation with enzymes, biosensors, and cell labeling. Finally the remaining drawbacks and challenges of CD applications are highlighted. In this context, this article aims to provide critical insight and inspire further developments in the synthesis and application of CDs.

  19. The effect of disorder of small spheres on the photonic properties of the inverse binary NaCl-like structure

    NASA Astrophysics Data System (ADS)

    Pattabhiraman, Harini; Dijkstra, Marjolein

    2017-09-01

    Inverse opal structures are experimentally realisable photonic band gap materials. They suffer from the drawback of possessing band gaps that are extremely susceptible to structural disorders. A binary colloidal NaCl lattice, which is also experimentally realisable, is a promising alternative to these opals. In this work, we systematically analyse the effect of structural disorder of the small spheres on the photonic properties of an inverse binary NaCl lattice with a size ratio of 0.30 between the small and large spheres. The types of structural disorders studied include the position of the small spheres in the octahedral void of the large spheres, polydispersity in size of the small spheres, and the fraction of small spheres in the crystal. We find a low susceptibility of the band gap of the inverse NaCl lattice to the disorder of the small spheres.

  20. The dependence of the soft X ray spectral slope with radio property, luminosity, and redshift, for a large sample of AGN from the Einstein IPC data base

    NASA Technical Reports Server (NTRS)

    Brunner, H.; Worrall, D. M.; Wilkes, Belinda J.; Elvis, Martin

    1989-01-01

    The dependence of the soft X-ray spectral slope on radio, optical and X-ray properties, and on redshift are reported for a large sample of Active Galactic Nuclei (AGN). The sample includes 317 optically and radio-selected AGN from a preliminary version of the Einstein Imaging Proportional Counter (IPC) quasar and AGN data base. The main results are: the difference in X-ray slope between radio-loud and radio-quiet AGN were confirmed for an independent and much larger sample of sources; a difference in X-ray slope between flat and steep radio spectrum AGN is observed only in high luminosity sub-sample; in flat radio spectrum AGNs there is an indication for a dependence of the X-ray spectral index on X-ray luminosity redshift and alpha sub 0x.

  1. Measures for a transdimensional multiverse

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schwartz-Perlov, Delia; Vilenkin, Alexander, E-mail: dperlov@cosmos.phy.tufts.edu, E-mail: vilenkin@cosmos.phy.tufts.edu

    2010-06-01

    The multiverse/landscape paradigm that has emerged from eternal inflation and string theory, describes a large-scale multiverse populated by ''pocket universes'' which come in a huge variety of different types, including different dimensionalities. In order to make predictions in the multiverse, we need a probability measure. In (3+1)d landscapes, the scale factor cutoff measure has been previously shown to have a number of attractive properties. Here we consider possible generalizations of this measure to a transdimensional multiverse. We find that a straightforward extension of scale factor cutoff to the transdimensional case gives a measure that strongly disfavors large amounts of slow-rollmore » inflation and predicts low values for the density parameter Ω, in conflict with observations. A suitable generalization, which retains all the good properties of the original measure, is the ''volume factor'' cutoff, which regularizes the infinite spacetime volume using cutoff surfaces of constant volume expansion factor.« less

  2. τ hadronic spectral function moments in a nonpower QCD perturbation theory

    NASA Astrophysics Data System (ADS)

    Abbas, Gauhar; Ananthanarayan, B.; Caprini, I.; Fischer, J.

    2016-04-01

    The moments of the hadronic spectral functions are of interest for the extraction of the strong coupling and other QCD parameters from the hadronic decays of the τ lepton. We consider the perturbative behavior of these moments in the framework of a QCD nonpower perturbation theory, defined by the technique of series acceleration by conformal mappings, which simultaneously implements renormalization-group summation and has a tame large-order behavior. Two recently proposed models of the Adler function are employed to generate the higher order coefficients of the perturbation series and to predict the exact values of the moments, required for testing the properties of the perturbative expansions. We show that the contour-improved nonpower perturbation theories and the renormalization-group-summed nonpower perturbation theories have very good convergence properties for a large class of moments of the so-called ;reference model;, including moments that are poorly described by the standard expansions.

  3. Nanofluid flow and heat transfer in boundary layers: the influence of the concentration diffusion layer on heat transfer enhancement

    NASA Astrophysics Data System (ADS)

    Liu, Joseph T. C.; Barbosa Decastilho, Cintia Juliana; Fuller, Mark E.; Sane, Aakash

    2017-11-01

    The present work uses a perturbation procedure to deduce the small nanoparticle volume concentration conservation equations for momentum, heat and concentration diffusion. Thermal physical variables are obtained from conventional means (mixture and field theories) for alumina-water and gold-water nanofluids. In the case of gold-water nano fluid molecular dynamics results are used to estimate such properties, including transport coefficients. The very thin diffusion layer at large Schmidt numbers is found to have a great impact on the velocity and temperature profiles owing to their dependency on transport properties. This has a profound effect on the conduction surface heat transfer rate enhancement and skin friction suppression for the case of nano fluid concentration withdrawal at the wall, while the diffusional surface heat transfer rate is negligible due to large Schmidt numbers. Possible experimental directed at this interesting phenomenon is suggested.

  4. Reduced-Scale Transition-Edge Sensor Detectors for Solar and X-Ray Astrophysics

    NASA Technical Reports Server (NTRS)

    Datesman, Aaron M.; Adams, Joseph S.; Bandler, Simon R.; Betancourt-Martinez, Gabriele L.; Chang, Meng-Ping; Chervenak, James A.; Eckart, Megan E.; Ewin, Audrey E.; Finkbeiner, Fred M.; Ha, Jong Yoon; hide

    2017-01-01

    We have developed large-format, close-packed X-ray microcalorimeter arrays fabricated on solid substrates, designed to achieve high energy resolution with count rates up to a few hundred counts per second per pixel for X-ray photon energies upto 8 keV. Our most recent arrays feature 31-micron absorbers on a 35-micron pitch, reducing the size of pixels by about a factor of two. This change will enable an instrument with significantly higher angular resolution. In order to wire out large format arrays with an increased density of smaller pixels, we have reduced the lateral size of both the microstrip wiring and the Mo/Au transition-edge sensors (TES). We report on the key physical properties of these small TESs and the fine Nb leads attached, including the critical currents and weak-link properties associated with the longitudinal proximity effect.

  5. How the folding rates of two- and multistate proteins depend on the amino acid properties.

    PubMed

    Huang, Jitao T; Huang, Wei; Huang, Shanran R; Li, Xin

    2014-10-01

    Proteins fold by either two-state or multistate kinetic mechanism. We observe that amino acids play different roles in different mechanism. Many residues that are easy to form regular secondary structures (α helices, β sheets and turns) can promote the two-state folding reactions of small proteins. Most of hydrophilic residues can speed up the multistate folding reactions of large proteins. Folding rates of large proteins are equally responsive to the flexibility of partial amino acids. Other properties of amino acids (including volume, polarity, accessible surface, exposure degree, isoelectric point, and phase transfer energy) have contributed little to folding kinetics of the proteins. Cysteine is a special residue, it triggers two-state folding reaction and but inhibits multistate folding reaction. These findings not only provide a new insight into protein structure prediction, but also could be used to direct the point mutations that can change folding rate. © 2014 Wiley Periodicals, Inc.

  6. Chemical vapor deposition growth

    NASA Technical Reports Server (NTRS)

    Ruth, R. P.; Manasevit, H. M.; Kenty, J. L.; Moudy, L. A.; Simpson, W. I.; Yang, J. J.

    1976-01-01

    The chemical vapor deposition (CVD) method for the growth of Si sheet on inexpensive substrate materials is investigated. The objective is to develop CVD techniques for producing large areas of Si sheet on inexpensive substrate materials, with sheet properties suitable for fabricating solar cells meeting the technical goals of the Low Cost Silicon Solar Array Project. Specific areas covered include: (1) modification and test of existing CVD reactor system; (2) identification and/or development of suitable inexpensive substrate materials; (3) experimental investigation of CVD process parameters using various candidate substrate materials; (4) preparation of Si sheet samples for various special studies, including solar cell fabrication; (5) evaluation of the properties of the Si sheet material produced by the CVD process; and (6) fabrication and evaluation of experimental solar cell structures, using standard and near-standard processing techniques.

  7. Spectroscopic properties of nuclear skyrme energy density functionals.

    PubMed

    Tarpanov, D; Dobaczewski, J; Toivanen, J; Carlsson, B G

    2014-12-19

    We address the question of how to improve the agreement between theoretical nuclear single-particle energies (SPEs) and observations. Empirically, in doubly magic nuclei, the SPEs can be deduced from spectroscopic properties of odd nuclei that have one more or one less neutron or proton. Theoretically, bare SPEs, before being confronted with observations, must be corrected for the effects of the particle vibration coupling (PVC). In the present work, we determine the PVC corrections in a fully self-consistent way. Then, we adjust the SPEs, with PVC corrections included, to empirical data. In this way, the agreement with observations, on average, improves; nevertheless, large discrepancies still remain. We conclude that the main source of disagreement is still in the underlying mean fields, and not in including or neglecting the PVC corrections.

  8. A Study of ATLAS Grid Performance for Distributed Analysis

    NASA Astrophysics Data System (ADS)

    Panitkin, Sergey; Fine, Valery; Wenaus, Torre

    2012-12-01

    In the past two years the ATLAS Collaboration at the LHC has collected a large volume of data and published a number of ground breaking papers. The Grid-based ATLAS distributed computing infrastructure played a crucial role in enabling timely analysis of the data. We will present a study of the performance and usage of the ATLAS Grid as platform for physics analysis in 2011. This includes studies of general properties as well as timing properties of user jobs (wait time, run time, etc). These studies are based on mining of data archived by the PanDA workload management system.

  9. Post-polymerization functionalization of polyolefins.

    PubMed

    Boaen, Nicole K; Hillmyer, Marc A

    2005-03-01

    Polyolefins are macromolecular alkanes and include the most familiar and most commercially produced plastic, polyethylene. The low cost of these materials combined with their diverse and desirable property profiles drive such large-scale production. One property that renders polyolefins so attractive is their resistance to harsh chemical environments. However, this attribute becomes a severe limitation when attempting to chemically convert these plastics into value-added materials. Functionalization of polymers is a useful methodology for the generation of new materials with wide ranging applications, and this tutorial review describes both new and established methods for the post-polymerization modification of polyolefins.

  10. Plant diversity and root traits benefit physical properties key to soil function in grasslands.

    PubMed

    Gould, Iain J; Quinton, John N; Weigelt, Alexandra; De Deyn, Gerlinde B; Bardgett, Richard D

    2016-09-01

    Plant diversity loss impairs ecosystem functioning, including important effects on soil. Most studies that have explored plant diversity effects belowground, however, have largely focused on biological processes. As such, our understanding of how plant diversity impacts the soil physical environment remains limited, despite the fundamental role soil physical structure plays in ensuring soil function and ecosystem service provision. Here, in both a glasshouse and a long-term field study, we show that high plant diversity in grassland systems increases soil aggregate stability, a vital structural property of soil, and that root traits play a major role in determining diversity effects. We also reveal that the presence of particular plant species within mixed communities affects an even wider range of soil physical processes, including hydrology and soil strength regimes. Our results indicate that alongside well-documented effects on ecosystem functioning, plant diversity and root traits also benefit essential soil physical properties. © 2016 The Authors Ecology Letters published by CNRS and John Wiley & Sons Ltd.

  11. Distinct cellular properties of oncogenic KIT receptor tyrosine kinase mutants enable alternative courses of cancer cell inhibition

    PubMed Central

    Shi, Xiarong; Sousa, Leiliane P.; Mandel-Bausch, Elizabeth M.; Tome, Francisco; Reshetnyak, Andrey V.; Hadari, Yaron; Schlessinger, Joseph; Lax, Irit

    2016-01-01

    Large genomic sequencing analysis as part of precision medicine efforts revealed numerous activating mutations in receptor tyrosine kinases, including KIT. Unfortunately, a single approach is not effective for inhibiting cancer cells or treating cancers driven by all known oncogenic KIT mutants. Here, we show that each of the six major KIT oncogenic mutants exhibits different enzymatic, cellular, and dynamic properties and responds distinctly to different KIT inhibitors. One class of KIT mutants responded well to anti-KIT antibody treatment alone or in combination with a low dose of tyrosine kinase inhibitors (TKIs). A second class of KIT mutants, including a mutant resistant to imatinib treatment, responded well to a combination of TKI with anti-KIT antibodies or to anti-KIT toxin conjugates, respectively. We conclude that the preferred choice of precision medicine treatments for cancers driven by activated KIT and other RTKs may rely on clear understanding of the dynamic properties of oncogenic mutants. PMID:27482095

  12. Characterization of soot properties in two-meter JP-8 pool fires.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Suo-Anttila, Jill Marie; Jensen, Kirk A.; Blevins, Linda Gail

    2005-02-01

    The thermal hazard posed by large hydrocarbon fires is dominated by the radiative emission from high temperature soot. Since the optical properties of soot, especially in the infrared region of the electromagnetic spectrum, as well as its morphological properties, are not well known, efforts are underway to characterize these properties. Measurements of these soot properties in large fires are important for heat transfer calculations, for interpretation of laser-based diagnostics, and for developing soot property models for fire field models. This research uses extractive measurement diagnostics to characterize soot optical properties, morphology, and composition in 2 m pool fires. For measurementmore » of the extinction coefficient, soot extracted from the flame zone is transported to a transmission cell where measurements are made using both visible and infrared lasers. Soot morphological properties are obtained by analysis via transmission electron microscopy of soot samples obtained thermophoretically within the flame zone, in the overfire region, and in the transmission cell. Soot composition, including carbon-to-hydrogen ratio and polycyclic aromatic hydrocarbon concentration, is obtained by analysis of soot collected on filters. Average dimensionless extinction coefficients of 8.4 {+-} 1.2 at 635 nm and 8.7 {+-} 1.1 at 1310 nm agree well with recent measurements in the overfire region of JP-8 and other fuels in lab-scale burners and fires. Average soot primary particle diameters, radius of gyration, and fractal dimensions agree with these recent studies. Rayleigh-Debye-Gans theory of scattering applied to the measured fractal parameters shows qualitative agreement with the trends in measured dimensionless extinction coefficients. Results of the density and chemistry are detailed in the report.« less

  13. Scanning properties of large dual-shaped offset and symmetric reflector antennas

    NASA Astrophysics Data System (ADS)

    Galindo-Israel, Victor; Veruttipong, Watt; Norrod, Roger D.; Imbriale, William A.

    1992-04-01

    Several characteristics of dual offset (DOSR) and symmetric shaped reflectors are examined. Among these is the amelioration of the added cost of manufacturing a shaped reflector antenna, particularly a doubly curved surface for the DOSR, if adjustable panels, which may be necessary for correction of gravity and wind distortions, are also used for improving gain by shaping. The scanning properties of shaped reflectors, both offset and circularly symmetric, are examined and compared to conic section scanning characteristics. Scanning of the pencil beam is obtained by lateral and axial translation of a single point-source feed. The feed is kept pointed toward the center of the subreflector. The effects of power spillover and aperture phase error as a function of beam scanning is examined for several different types of large reflector designs including DOSR, circularly symmetric large f/D and smaller f/D dual reflector antenna systems. It is graphically illustrated that the Abbe-sine condition for improving scanning of an optical system cannot, inherently, be satisfied in a dual-shaped reflector system shaped for high gain and low feed spillover.

  14. RECONNECTION PROPERTIES OF LARGE-SCALE CURRENT SHEETS DURING CORONAL MASS EJECTION ERUPTIONS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lynch, B. J.; Kazachenko, M. D.; Edmondson, J. K.

    2016-07-20

    We present a detailed analysis of the properties of magnetic reconnection at large-scale current sheets (CSs) in a high cadence version of the Lynch and Edmondson 2.5D MHD simulation of sympathetic magnetic breakout eruptions from a pseudostreamer source region. We examine the resistive tearing and break-up of the three main CSs into chains of X- and O-type null points and follow the dynamics of magnetic island growth, their merging, transit, and ejection with the reconnection exhaust. For each CS, we quantify the evolution of the length-to-width aspect ratio (up to ∼100:1), Lundquist number (∼10{sup 3}), and reconnection rate (inflow-to-outflow ratiosmore » reaching ∼0.40). We examine the statistical and spectral properties of the fluctuations in the CSs resulting from the plasmoid instability, including the distribution of magnetic island area, mass, and flux content. We show that the temporal evolution of the spectral index of the reconnection-generated magnetic energy density fluctuations appear to reflect global properties of the CS evolution. Our results are in excellent agreement with recent, high-resolution reconnection-in-a-box simulations even though our CSs’ formation, growth, and dynamics are intrinsically coupled to the global evolution of sequential sympathetic coronal mass ejection eruptions.« less

  15. γ-Aminobutyric Acid Type A α4, β2, and δ Subunits Assemble to Produce More Than One Functionally Distinct Receptor Type

    PubMed Central

    Eaton, Megan M.; Bracamontes, John; Shu, Hong-Jin; Li, Ping; Mennerick, Steven; Steinbach, Joe Henry

    2014-01-01

    Native γ-aminobutyric acid (GABA)A receptors consisting of α4, β1–3, and δ subunits mediate responses to the low, tonic concentration of GABA present in the extracellular milieu. Previous studies on heterologously expressed α4βδ receptors have shown a large degree of variability in functional properties, including sensitivity to the transmitter. We studied properties of α4β2δ receptors employing free subunits and concatemeric constructs, expressed in Xenopus oocytes, HEK 293 cells, and cultured hippocampal neurons. The expression system had a strong effect on the properties of receptors containing free subunits. The midpoint of GABA activation curve was 10 nM for receptors in oocytes versus 2300 nM in HEK cells. Receptors activated by the steroid alfaxalone had an estimated maximal open probability of 0.6 in oocytes and 0.01 in HEK cells. Irrespective of the expression system, receptors resulting from combining the tandem construct β2-δ and a free α4 subunit exhibited large steroid responses. We propose that free α4, β2, and δ subunits assemble in different configurations with distinct properties in oocytes and HEK cells, and that subunit linkage can overcome the expression system-dependent preferential assembly of free subunits. Hippocampal neurons transfected with α4 and the picrotoxin-resistant δ(T269Y) subunit showed large responses to alfaxalone in the presence of picrotoxin, suggesting that α4βδ receptors may assemble in a similar configuration in neurons and oocytes. PMID:25238745

  16. RT DDA: A hybrid method for predicting the scattering properties by densely packed media

    NASA Astrophysics Data System (ADS)

    Ramezan Pour, B.; Mackowski, D.

    2017-12-01

    The most accurate approaches to predicting the scattering properties of particulate media are based on exact solutions of the Maxwell's equations (MEs), such as the T-matrix and discrete dipole methods. Applying these techniques for optically thick targets is challenging problem due to the large-scale computations and are usually substituted by phenomenological radiative transfer (RT) methods. On the other hand, the RT technique is of questionable validity in media with large particle packing densities. In recent works, we used numerically exact ME solvers to examine the effects of particle concentration on the polarized reflection properties of plane parallel random media. The simulations were performed for plane parallel layers of wavelength-sized spherical particles, and results were compared with RT predictions. We have shown that RTE results monotonically converge to the exact solution as the particle volume fraction becomes smaller and one can observe a nearly perfect fit for packing densities of 2%-5%. This study describes the hybrid technique composed of exact and numerical scalar RT methods. The exact methodology in this work is the plane parallel discrete dipole approximation whereas the numerical method is based on the adding and doubling method. This approach not only decreases the computational time owing to the RT method but also includes the interference and multiple scattering effects, so it may be applicable to large particle density conditions.

  17. Multi-thread parallel algorithm for reconstructing 3D large-scale porous structures

    NASA Astrophysics Data System (ADS)

    Ju, Yang; Huang, Yaohui; Zheng, Jiangtao; Qian, Xu; Xie, Heping; Zhao, Xi

    2017-04-01

    Geomaterials inherently contain many discontinuous, multi-scale, geometrically irregular pores, forming a complex porous structure that governs their mechanical and transport properties. The development of an efficient reconstruction method for representing porous structures can significantly contribute toward providing a better understanding of the governing effects of porous structures on the properties of porous materials. In order to improve the efficiency of reconstructing large-scale porous structures, a multi-thread parallel scheme was incorporated into the simulated annealing reconstruction method. In the method, four correlation functions, which include the two-point probability function, the linear-path functions for the pore phase and the solid phase, and the fractal system function for the solid phase, were employed for better reproduction of the complex well-connected porous structures. In addition, a random sphere packing method and a self-developed pre-conditioning method were incorporated to cast the initial reconstructed model and select independent interchanging pairs for parallel multi-thread calculation, respectively. The accuracy of the proposed algorithm was evaluated by examining the similarity between the reconstructed structure and a prototype in terms of their geometrical, topological, and mechanical properties. Comparisons of the reconstruction efficiency of porous models with various scales indicated that the parallel multi-thread scheme significantly shortened the execution time for reconstruction of a large-scale well-connected porous model compared to a sequential single-thread procedure.

  18. Hydro-geomorphological characterization and classification of Chilean river networks using horizontal, vertical and climatological properties

    NASA Astrophysics Data System (ADS)

    Pereira, A. A.; Gironas, J. A.; Passalacqua, P.; Mejia, A.; Niemann, J. D.

    2017-12-01

    Previous work has shown that lithological, tectonic and climatic processes have a major influence in shaping the geomorphology of river networks. Accordingly, quantitative classification methods have been developed to identify and characterize network types (dendritic, parallel, pinnate, rectangular and trellis) based solely on the self-affinity of their planform properties, computed from available Digital Elevation Model (DEM) data. In contrast, this research aim is to include both horizontal and vertical properties to evaluate a quantitative classification method for river networks. We include vertical properties to consider the unique surficial conditions (e.g., large and steep height drops, volcanic activity, and complexity of stream networks) of the Andes Mountains. Furthermore, the goal of the research is also to explain the implications and possible relations between the hydro-geomorphological properties and climatic conditions. The classification method is applied to 42 basins in the southern Andes in Chile, ranging in size from 208 Km2 to 8,000 Km2. The planform metrics include the incremental drainage area, stream course irregularity and junction angles, while the vertical metrics include the hypsometric curve and the slope-area relationship. We introduce new network structures (Brush, Funnel and Low Sinuosity Rectangular), possibly unique to the Andes, that can be quantitatively differentiated from previous networks identified in other geographic regions. Then, this research evaluates the effect that excluding different Strahler order streams has on the horizontal properties and therefore in the classification. We found that climatic conditions are not only linked to horizontal parameters, but also to vertical ones, finding significant correlation between climatic variables (average near-surface temperature and rainfall) and vertical measures (parameters associated with the hypsometric curve and slope-area relation). The proposed classification shows differences among basins previously classified as the same type, which are not noticeable in their horizontal properties and helps reduce misclassifications within the old clusters. Additional hydro-geomorphological metrics are to be considered in the classification method to improve the effectiveness of it.

  19. Derivation of Physical and Optical Properties of Midlatitude Cirrus Ice Crystals for a Size-Resolved Cloud Microphysics Model

    NASA Technical Reports Server (NTRS)

    Fridlind, Ann M.; Atlas, Rachel; Van Diedenhoven, Bastiaan; Um, Junshik; McFarquhar, Greg M.; Ackerman, Andrew S.; Moyer, Elisabeth J.; Lawson, R. Paul

    2016-01-01

    Single-crystal images collected in mid-latitude cirrus are analyzed to provide internally consistent ice physical and optical properties for a size-resolved cloud microphysics model, including single-particle mass, projected area, fall speed, capacitance, single-scattering albedo, and asymmetry parameter. Using measurements gathered during two flights through a widespread synoptic cirrus shield, bullet rosettes are found to be the dominant identifiable habit among ice crystals with maximum dimension (Dmax) greater than 100µm. Properties are therefore first derived for bullet rosettes based on measurements of arm lengths and widths, then for aggregates of bullet rosettes and for unclassified (irregular) crystals. Derived bullet rosette masses are substantially greater than reported in existing literature, whereas measured projected areas are similar or lesser, resulting in factors of 1.5-2 greater fall speeds, and, in the limit of large Dmax, near-infrared single-scattering albedo and asymmetry parameter (g) greater by approx. 0.2 and 0.05, respectively. A model that includes commonly imaged side plane growth on bullet rosettes exhibits relatively little difference in microphysical and optical properties aside from approx. 0:05 increase in mid-visible g primarily attributable to plate aspect ratio. In parcel simulations, ice size distribution, and g are sensitive to assumed ice properties.

  20. Lung Parenchymal Mechanics

    PubMed Central

    Suki, Béla; Stamenovic, Dimitrije; Hubmayr, Rolf

    2014-01-01

    The lung parenchyma comprises a large number of thin-walled alveoli, forming an enormous surface area, which serves to maintain proper gas exchange. The alveoli are held open by the transpulmonary pressure, or prestress, which is balanced by tissues forces and alveolar surface film forces. Gas exchange efficiency is thus inextricably linked to three fundamental features of the lung: parenchymal architecture, prestress, and the mechanical properties of the parenchyma. The prestress is a key determinant of lung deformability that influences many phenomena including local ventilation, regional blood flow, tissue stiffness, smooth muscle contractility, and alveolar stability. The main pathway for stress transmission is through the extracellular matrix. Thus, the mechanical properties of the matrix play a key role both in lung function and biology. These mechanical properties in turn are determined by the constituents of the tissue, including elastin, collagen, and proteoglycans. In addition, the macroscopic mechanical properties are also influenced by the surface tension and, to some extent, the contractile state of the adherent cells. This article focuses on the biomechanical properties of the main constituents of the parenchyma in the presence of prestress and how these properties define normal function or change in disease. An integrated view of lung mechanics is presented and the utility of parenchymal mechanics at the bedside as well as its possible future role in lung physiology and medicine are discussed. PMID:23733644

  1. Fire Whirls

    NASA Astrophysics Data System (ADS)

    Tohidi, Ali; Gollner, Michael J.; Xiao, Huahua

    2018-01-01

    Fire whirls present a powerful intensification of combustion, long studied in the fire research community because of the dangers they present during large urban and wildland fires. However, their destructive power has hidden many features of their formation, growth, and propagation. Therefore, most of what is known about fire whirls comes from scale modeling experiments in the laboratory. Both the methods of formation, which are dominated by wind and geometry, and the inner structure of the whirl, including velocity and temperature fields, have been studied at this scale. Quasi-steady fire whirls directly over a fuel source form the bulk of current experimental knowledge, although many other cases exist in nature. The structure of fire whirls has yet to be reliably measured at large scales; however, scaling laws have been relatively successful in modeling the conditions for formation from small to large scales. This review surveys the state of knowledge concerning the fluid dynamics of fire whirls, including the conditions for their formation, their structure, and the mechanisms that control their unique state. We highlight recent discoveries and survey potential avenues for future research, including using the properties of fire whirls for efficient remediation and energy generation.

  2. The opportunities and challenges of large-scale molecular approaches to songbird neurobiology

    PubMed Central

    Mello, C.V.; Clayton, D.F.

    2014-01-01

    High-through put methods for analyzing genome structure and function are having a large impact in song-bird neurobiology. Methods include genome sequencing and annotation, comparative genomics, DNA microarrays and transcriptomics, and the development of a brain atlas of gene expression. Key emerging findings include the identification of complex transcriptional programs active during singing, the robust brain expression of non-coding RNAs, evidence of profound variations in gene expression across brain regions, and the identification of molecular specializations within song production and learning circuits. Current challenges include the statistical analysis of large datasets, effective genome curations, the efficient localization of gene expression changes to specific neuronal circuits and cells, and the dissection of behavioral and environmental factors that influence brain gene expression. The field requires efficient methods for comparisons with organisms like chicken, which offer important anatomical, functional and behavioral contrasts. As sequencing costs plummet, opportunities emerge for comparative approaches that may help reveal evolutionary transitions contributing to vocal learning, social behavior and other properties that make songbirds such compelling research subjects. PMID:25280907

  3. Measuring Kindness at School: Psychometric Properties of a School Kindness Scale for Children and Adolescents

    ERIC Educational Resources Information Center

    Binfet, John Tyler; Gadermann, Anne M.; Schonert-Reichl, Kimberly A.

    2016-01-01

    In this study, we sought to create and validate a brief measure to assess students' perceptions of kindness in school. Participants included 1,753 students in Grades 4 to 8 attending public schools in a large school district in southern British Columbia. The School Kindness Scale (SKS) demonstrated a unidimensional factor structure and adequate…

  4. Microstructural Design for Stress Wave Energy Management

    DTIC Science & Technology

    2013-04-01

    Polyurea based foam 7 4) Controlling transmission and reflection of pressure and shear waves in a multilayered anisotropic structure 10 5... Polyurea based foam consists of several factors including high energy absorption, light weight, higher elastic modulus to density ratio (compared with... Polyurea ), and collapsible voids under extreme loading. Pure Polyurea offers unique properties such as increased shear stiffness under large pressure

  5. Computational Environment for Modeling and Analysing Network Traffic Behaviour Using the Divide and Recombine Framework

    ERIC Educational Resources Information Center

    Barthur, Ashrith

    2016-01-01

    There are two essential goals of this research. The first goal is to design and construct a computational environment that is used for studying large and complex datasets in the cybersecurity domain. The second goal is to analyse the Spamhaus blacklist query dataset which includes uncovering the properties of blacklisted hosts and understanding…

  6. High-Throughput Light Sheet Microscopy for the Automated Live Imaging of Larval Zebrafish

    NASA Astrophysics Data System (ADS)

    Baker, Ryan; Logan, Savannah; Dudley, Christopher; Parthasarathy, Raghuveer

    The zebrafish is a model organism with a variety of useful properties; it is small and optically transparent, it reproduces quickly, it is a vertebrate, and there are a large variety of transgenic animals available. Because of these properties, the zebrafish is well suited to study using a variety of optical technologies including light sheet fluorescence microscopy (LSFM), which provides high-resolution three-dimensional imaging over large fields of view. Research progress, however, is often not limited by optical techniques but instead by the number of samples one can examine over the course of an experiment, which in the case of light sheet imaging has so far been severely limited. Here we present an integrated fluidic circuit and microscope which provides rapid, automated imaging of zebrafish using several imaging modes, including LSFM, Hyperspectral Imaging, and Differential Interference Contrast Microscopy. Using this system, we show that we can increase our imaging throughput by a factor of 10 compared to previous techniques. We also show preliminary results visualizing zebrafish immune response, which is sensitive to gut microbiota composition, and which shows a strong variability between individuals that highlights the utility of high throughput imaging. National Science Foundation, Award No. DBI-1427957.

  7. Optical properties of mineral dust aerosol including analysis of particle size, composition, and shape effects, and the impact of physical and chemical processing

    NASA Astrophysics Data System (ADS)

    Alexander, Jennifer Mary

    Atmospheric mineral dust has a large impact on the earth's radiation balance and climate. The radiative effects of mineral dust depend on factors including, particle size, shape, and composition which can all be extremely complex. Mineral dust particles are typically irregular in shape and can include sharp edges, voids, and fine scale surface roughness. Particle shape can also depend on the type of mineral and can vary as a function of particle size. In addition, atmospheric mineral dust is a complex mixture of different minerals as well as other, possibly organic, components that have been mixed in while these particles are suspended in the atmosphere. Aerosol optical properties are investigated in this work, including studies of the effect of particle size, shape, and composition on the infrared (IR) extinction and visible scattering properties in order to achieve more accurate modeling methods. Studies of particle shape effects on dust optical properties for single component mineral samples of silicate clay and diatomaceous earth are carried out here first. Experimental measurements are modeled using T-matrix theory in a uniform spheroid approximation. Previous efforts to simulate the measured optical properties of silicate clay, using models that assumed particle shape was independent of particle size, have achieved only limited success. However, a model which accounts for a correlation between particle size and shape for the silicate clays offers a large improvement over earlier modeling approaches. Diatomaceous earth is also studied as an example of a single component mineral dust aerosol with extreme particle shapes. A particle shape distribution, determined by fitting the experimental IR extinction data, used as a basis for modeling the visible light scattering properties. While the visible simulations show only modestly good agreement with the scattering data, the fits are generally better than those obtained using more commonly invoked particle shape distributions. The next goal of this work is to investigate if modeling methods developed in the studies of single mineral components can be generalized to predict the optical properties of more authentic aerosol samples which are complex mixtures of different minerals. Samples of Saharan sand, Iowa loess, and Arizona road dust are used here as test cases. T-matrix based simulations of the authentic samples, using measured particle size distributions, empirical mineralogies, and a priori particle shape models for each mineral component are directly compared with the measured IR extinction spectra and visible scattering profiles. This modeling approach offers a significant improvement over more commonly applied models that ignore variations in particle shape with size or mineralogy and include only a moderate range of shape parameters. Mineral dust samples processed with organic acids and humic material are also studied in order to explore how the optical properties of dust can change after being aged in the atmosphere. Processed samples include quartz mixed with humic material, and calcite reacted with acetic and oxalic acid. Clear differences in the light scattering properties are observed for all three processed mineral dust samples when compared to the unprocessed mineral dust or organic salt products. These interactions result in both internal and external mixtures depending on the sample. In addition, the presence of these organic materials can alter the mineral dust particle shape. Overall, however, these results demonstrate the need to account for the effects of atmospheric aging of mineral dust on aerosol optical properties. Particle shape can also affect the aerodynamic properties of mineral dust aerosol. In order to account for these effects, the dynamic shape factor is used to give a measure of particle asphericity. Dynamic shape factors of quartz are measured by mass and mobility selecting particles and measuring their vacuum aerodynamic diameter. From this, dynamic shape factors in both the transition and vacuum regime can be derived. The measured dynamic shape factors of quartz agree quite well with the spheroidal shape distributions derived through studies of the optical properties.

  8. Multi-Scale Transport Properties of Fine-Grained Rocks: A Case Study of the Kirtland Formation, San Juan Basin, USA

    NASA Astrophysics Data System (ADS)

    Heath, J. E.; Dewers, T. A.; McPherson, B. J.; Wilson, T. H.; Flach, T.

    2009-12-01

    Understanding and characterizing transport properties of fine-grained rocks is critical in development of shale gas plays or assessing retention of CO2 at geologic storage sites. Difficulties arise in that both small scale (i.e., ~ nm) properties of the rock matrix and much larger scale fractures, faults, and sedimentological architecture govern migration of multiphase fluids. We present a multi-scale investigation of sealing and transport properties of the Kirtland Formation, which is a regional aquitard and reservoir seal in the San Juan Basin, USA. Sub-micron dual FIB/SEM imaging and reconstruction of 3D pore networks in core samples reveal a variety of pore types, including slit-shaped pores that are co-located with sedimentary structures and variations in mineralogy. Micron-scale chemical analysis and XRD reveal a mixture of mixed-layer smectite/illite, chlorite, quartz, and feldspar with little organic matter. Analysis of sub-micron digital reconstructions, mercury capillary injection pressure, and gas breakthrough measurements indicate a high quality sealing matrix. Natural full and partially mineralized fractures observed in core and in FMI logs include those formed from early soil-forming processes, differential compaction, and tectonic events. The potential impact of both fracture and matrix properties on large-scale transport is investigated through an analysis of natural helium from core samples, 3D seismic data and poro-elastic modeling. While seismic interpretations suggest considerable fracturing of the Kirtland, large continuous fracture zones and faults extending through the seal to the surface cannot be inferred from the data. Observed Kirtland Formation multi-scale transport properties are included as part of a risk assessment methodology for CO2 storage. Acknowledgements: The authors gratefully acknowledge the U.S. Department of Energy’s (DOE) National Energy Technology Laboratory for sponsoring this project. The DOE’s Basic Energy Science Office funded the dual FIB/SEM analysis. The Kirtland Formation overlies the coal seams of the Fruitland into which CO2 has been injected as a Phase II demonstration of the Southwest Regional Partnership on Carbon Sequestration. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the U.S. Department of Energy under contract DE-ACOC4-94AL85000.

  9. Toward Semistructural Cellulose Nanocomposites: The Need for Scalable Processing and Interface Tailoring.

    PubMed

    Ansari, Farhan; Berglund, Lars A

    2018-04-11

    Cellulose nanocomposites can be considered for semistructural load-bearing applications where modulus and strength requirements exceed 10 GPa and 100 MPa, respectively. Such properties are higher than for most neat polymers but typical for molded short glass fiber composites. The research challenge for polymer matrix biocomposites is to develop processing concepts that allow high cellulose nanofibril (CNF) content, nanostructural control in the form of well-dispersed CNF, the use of suitable polymer matrices, as well as molecular scale interface tailoring to address moisture effects. From a practical point of view, the processing concept needs to be scalable so that large-scale industrial processing is feasible. The vast majority of cellulose nanocomposite studies elaborate on materials with low nanocellulose content. An important reason is the challenge to prevent CNF agglomeration at high CNF content. Research activities are therefore needed on concepts with the potential for rapid processing with controlled nanostructure, including well-dispersed fibrils at high CNF content so that favorable properties are obtained. This perspective discusses processing strategies, agglomeration problems, opportunities, and effects from interface tailoring. Specifically, preformed CNF mats can be used to design nanostructured biocomposites with high CNF content. Because very few composite materials combine functional and structural properties, CNF materials are an exception in this sense. The suggested processing concept could include functional components (inorganic clays, carbon nanotubes, magnetic nanoparticles, among others). In functional three-phase systems, CNF networks are combined with functional components (nanoparticles or fibril coatings) together with a ductile polymer matrix. Such materials can have functional properties (optical, magnetic, electric, etc.) in combination with mechanical performance, and the comparably low cost of nanocellulose may facilitate the use of large nanocomposite structures in industrial applications.

  10. Distribution and Intrinsic Membrane Properties of Basal Forebrain GABAergic and Parvalbumin Neurons in the Mouse

    PubMed Central

    McKenna, James T.; Yang, Chun; Franciosi, Serena; Winston, Stuart; Abarr, Kathleen K.; Rigby, Matthew S.; Yanagawa, Yuchio; McCarley, Robert W.; Brown, Ritchie E.

    2013-01-01

    The basal forebrain (BF) strongly regulates cortical activation, sleep homeostasis, and attention. Many BF neurons involved in these processes are GABAergic, including a subpopulation of projection neurons containing the calcium-binding protein, parvalbumin (PV). However, technical difficulties in identification have prevented a precise mapping of the distribution of GABAergic and GABA/PV+ neurons in the mouse or a determination of their intrinsic membrane properties. Here we used mice expressing fluorescent proteins in GABAergic (GAD67-GFP knock-in mice) or PV+ neurons (PV-Tomato mice) to study these neurons. Immunohistochemical staining for GABA in GAD67-GFP mice confirmed that GFP selectively labeled BF GABAergic neurons. GFP+ neurons and fibers were distributed throughout the BF, with the highest density in the magnocellular preoptic area (MCPO). Immunohistochemistry for PV indicated that the majority of PV+ neurons in the BF were large (>20 μm) or medium-sized (15–20 μm) GFP+ neurons. Most medium and large-sized BF GFP+ neurons, including those retrogradely labeled from the neocortex, were fast-firing and spontaneously active in vitro. They exhibited prominent hyperpolarization-activated inward currents and subthreshold “spikelets,” suggestive of electrical coupling. PV+ neurons recorded in PV-Tomato mice had similar properties but had significantly narrower action potentials and a higher maximal firing frequency. Another population of smaller GFP+ neurons had properties similar to striatal projection neurons. The fast firing and electrical coupling of BF GABA/PV+ neurons, together with their projections to cortical interneurons and the thalamic reticular nucleus, suggest a strong and synchronous control of the neocortical fast rhythms typical of wakefulness and REM sleep. PMID:23254904

  11. Mechanical Stability of Fractured Rift Basin Mudstones: from lab to basin scale

    NASA Astrophysics Data System (ADS)

    Zakharova, N. V.; Goldberg, D.; Collins, D.; Swager, L.; Payne, W. G.

    2016-12-01

    Understanding petrophysical and mechanical properties of caprock mudstones is essential for ensuring good containment and mechanical formation stability at potential CO2 storage sites. Natural heterogeneity and presence of fractures, however, create challenges for accurate prediction of mudstone behavior under injection conditions and at reservoir scale. In this study, we present a multi-scale geomechanical analysis for Mesozoic mudstones from the Newark Rift basin, integrating petropyshical core and borehole data, in situ stress measurements, and caprock stability modeling. The project funded by the U.S. Department of Energy's National Energy Technology Laboratory (NETL) focuses on the Newark basin as a representative locality for a series of the Mesozoic rift basins in eastern North America considered as potential CO2 storage sites. An extensive core characterization program, which included laboratory CT scans, XRD, SEM, MICP, porosity, permeability, acoustic velocity measurements, and geomechanical testing under a range of confining pressures, revealed large variability and heterogeneity in both petrophysical and mechanical properties. Estimates of unconfined compressive strength for these predominantly lacustrine mudstones range from 5,000 to 50,000 psi, with only a weak correlation to clay content. Thinly bedded intervals exhibit up to 30% strength anisotropy. Mineralized fractures, abundant in most formations, are characterized by compressive strength as low as 10% of matrix strength. Upscaling these observations from core to reservoir scale is challenging. No simple one-to-one correlation between mechanical and petrophyscial properties exists, and therefore, we develop multivariate empirical relationships among these properties. A large suite of geophysical logs, including new measurements of the in situ stress field, is used to extrapolate these relationships to a basin-scale geomechanical model and predict mudstone behavior under injection conditions.

  12. Electromechanical coupling and temperature-dependent polarization reversal in piezoelectric ceramics.

    PubMed

    Weaver, Paul M; Cain, Markys G; Correia, Tatiana M; Stewart, Mark

    2011-09-01

    Electrostriction plays a central role in describing the electromechanical properties of ferroelectric materials, including widely used piezoelectric ceramics. The piezoelectric properties are closely related to the underlying electrostriction. Small-field piezoelectric properties can be described as electrostriction offset by the remanent polarization which characterizes the ferroelectric state. Indeed, even large-field piezoelectric effects are accurately accounted for by quadratic electrostriction. However, the electromechanical properties deviate from this simple electrostrictive description at electric fields near the coercive field. This is particularly important for actuator applications, for which very high electromechanical coupling can be obtained in this region. This paper presents the results of an experimental study of electromechanical coupling in piezoelectric ceramics at electric field strengths close to the coercive field, and the effects of temperature on electromechanical processes during polarization reversal. The roles of intrinsic ferroelectric strain coupling and extrinsic domain processes and their temperature dependence in determining the electromechanical response are discussed.

  13. Properties of the Water Column and Bottom Derived from AVIRIS Data

    NASA Technical Reports Server (NTRS)

    Lee, Zhong-Ping; Carder, Kendall L.; Chen, F. Robert; Peacock, Thomas G.

    2001-01-01

    Using AVIRIS data as an example, we show in this study that the optical properties of the water column and bottom of a large, shallow area can be adequately retrieved using a model-driven optimization technique. The simultaneously derived properties include bottom depth, bottom albedo, and water absorption and backscattering coefficients, which in turn could be used to derive concentrations of chlorophyll, dissolved organic matter, and suspended sediments. The derived bottom depths were compared with a bathymetry chart and a boat survey and were found to agree very well. Also, the derived bottom-albedo image shows clear spatial patterns, with end members consistent with sand and seagrass. The image of absorption and backscattering coefficients indicates that the water is quite horizontally mixed. These results suggest that the model and approach used work very well for the retrieval of sub-surface properties of shallow-water environments even for rather turbid environments like Tampa Bay, Florida.

  14. Intuitive intellectual property law: A nationally-representative test of the plagiarism fallacy.

    PubMed

    Fast, Anne A; Olson, Kristina R; Mandel, Gregory N

    2017-01-01

    Studies with convenience samples have suggested that the lay public's conception of intellectual property laws, including how the laws should regulate and why they should exist, are largely incommensurate with the actual intended purpose of intellectual property laws and their history in the United States. In this paper, we test whether these findings generalize to a more diverse and representative sample. The major findings from past work were replicated in the current study. When presented with several potential reasons for IP protection, the lay public endorsed plagiarism and felt that acknowledging the original source of a creative work should make copying that work permissible-viewpoints strongly divergent from lawmakers' intent and the law itself. In addition, we replicate the finding that lay people know remarkably little about intellectual property laws more generally and report little experience as users or creators of creative works.

  15. Tailored Welding Technique for High Strength Al-Cu Alloy for Higher Mechanical Properties

    NASA Astrophysics Data System (ADS)

    Biradar, N. S.; Raman, R.

    AA2014 aluminum alloy, with 4.5% Cu as major alloying element, offers highest strength and hardness values in T6 temper and finds extensive use in aircraft primary structures. However, this alloy is difficult to weld by fusion welding because the dendritic structure formed can affect weld properties seriously. Among the welding processes, AC-TIG technique is largely used for welding. As welded yield strength was in the range of 190-195 MPa, using conventional TIG technique. Welding metallurgy of AA2014 was critically reviewed and factors responsible for lower properties were identified. Square-wave AC TIG with Transverse mechanical arc oscillation (TMAO) was postulated to improve the weld strength. A systematic experimentation using 4 mm thick plates produced YS in the range of 230-240 MPa, has been achieved. Through characterization including optical and SEM/EDX was conducted to validate the metallurgical phenomena attributable to improvement in weld properties.

  16. Intuitive intellectual property law: A nationally-representative test of the plagiarism fallacy

    PubMed Central

    Olson, Kristina R.; Mandel, Gregory N.

    2017-01-01

    Studies with convenience samples have suggested that the lay public’s conception of intellectual property laws, including how the laws should regulate and why they should exist, are largely incommensurate with the actual intended purpose of intellectual property laws and their history in the United States. In this paper, we test whether these findings generalize to a more diverse and representative sample. The major findings from past work were replicated in the current study. When presented with several potential reasons for IP protection, the lay public endorsed plagiarism and felt that acknowledging the original source of a creative work should make copying that work permissible—viewpoints strongly divergent from lawmakers’ intent and the law itself. In addition, we replicate the finding that lay people know remarkably little about intellectual property laws more generally and report little experience as users or creators of creative works. PMID:28863170

  17. Energetic Consistency and Coupling of the Mean and Covariance Dynamics

    NASA Technical Reports Server (NTRS)

    Cohn, Stephen E.

    2008-01-01

    The dynamical state of the ocean and atmosphere is taken to be a large dimensional random vector in a range of large-scale computational applications, including data assimilation, ensemble prediction, sensitivity analysis, and predictability studies. In each of these applications, numerical evolution of the covariance matrix of the random state plays a central role, because this matrix is used to quantify uncertainty in the state of the dynamical system. Since atmospheric and ocean dynamics are nonlinear, there is no closed evolution equation for the covariance matrix, nor for the mean state. Therefore approximate evolution equations must be used. This article studies theoretical properties of the evolution equations for the mean state and covariance matrix that arise in the second-moment closure approximation (third- and higher-order moment discard). This approximation was introduced by EPSTEIN [1969] in an early effort to introduce a stochastic element into deterministic weather forecasting, and was studied further by FLEMING [1971a,b], EPSTEIN and PITCHER [1972], and PITCHER [1977], also in the context of atmospheric predictability. It has since fallen into disuse, with a simpler one being used in current large-scale applications. The theoretical results of this article make a case that this approximation should be reconsidered for use in large-scale applications, however, because the second moment closure equations possess a property of energetic consistency that the approximate equations now in common use do not possess. A number of properties of solutions of the second-moment closure equations that result from this energetic consistency will be established.

  18. Pretest predictions for the response of a 1:8-scale steel LWR containment building model to static overpressurization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Clauss, D.B.

    The analyses used to predict the behavior of a 1:8-scale model of a steel LWR containment building to static overpressurization are described and results are presented. Finite strain, large displacement, and nonlinear material properties were accounted for using finite element methods. Three-dimensional models were needed to analyze the penetrations, which included operable equipment hatches, personnel lock representations, and a constrained pipe. It was concluded that the scale model would fail due to leakage caused by large deformations of the equipment hatch sleeves. 13 refs., 34 figs., 1 tab.

  19. The effects of plasma spray parameters and atmosphere on the properties and microstructure of WC-Co coatings

    NASA Astrophysics Data System (ADS)

    Ghosh, D.; Lamy, D.; Sopkow, T.; Smuga-Otto, I.

    Wear- and corrosion-resistant coatings deposited by plasma spray process are increasingly used in severe environments in resource industries, such as oil and gas, oil sands, mining, pulp and paper, etc. While there is a large volume of literature in the area of plasma spray coatings, comparatively few papers deal with the co-relation between coating properties and microstructure as a function of plasma spray processing parameters. In this study, the effect of some plasma spray processing variables and atmosphere (air or inert gas) on the microstructure and the properties of WC-Co coatings were studied. The properties of the coatings measured include: microhardness, porosity by image analysis, wear resistance by dry sand/rubber wheel abrasion test (ASTM G 65-91) and corrosion properties by AC impedance technique. Phase analyses of the coatings were also performed by X-ray diffraction. From the above, optimized coatings were developed for oil and gas industry applications.

  20. Optical and electronic properties of doped p -type CuI: Explanation of transparent conductivity from first principles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Yuwei; Sun, Jifeng; Singh, David J.

    In this paper, we report the properties of the reported transparent conductor CuI, including the effect of heavy p-type doping. The results, based on first-principles calculations, include an analysis of the electronic structure and calculations of optical and dielectric properties. We find that the origin of the favorable transparent conducting behavior lies in the absence in the visible of strong interband transitions between deeper valence bands and states at the valence-band maximum that become empty with p-type doping. Instead, strong interband transitions to the valence-band maximum are concentrated in the infrared with energies below 1.3 eV. This is contrast tomore » the valence bands of many wide-band-gapmaterials. Turning to the mobility,we find that the states at the valence-band maximum are relatively dispersive. This originates from their antibonding Cu d–I p character. We find a modest enhancement of the Born effective charges relative to nominal values, leading to a dielectric constant ε(0) = 6.3. This is sufficiently large to reduce ionized impurity scattering, leading to the expectation that the properties of CuI can still be significantly improved through sample quality.« less

  1. Optical and electronic properties of doped p -type CuI: Explanation of transparent conductivity from first principles

    DOE PAGES

    Li, Yuwei; Sun, Jifeng; Singh, David J.

    2018-03-26

    In this paper, we report the properties of the reported transparent conductor CuI, including the effect of heavy p-type doping. The results, based on first-principles calculations, include an analysis of the electronic structure and calculations of optical and dielectric properties. We find that the origin of the favorable transparent conducting behavior lies in the absence in the visible of strong interband transitions between deeper valence bands and states at the valence-band maximum that become empty with p-type doping. Instead, strong interband transitions to the valence-band maximum are concentrated in the infrared with energies below 1.3 eV. This is contrast tomore » the valence bands of many wide-band-gapmaterials. Turning to the mobility,we find that the states at the valence-band maximum are relatively dispersive. This originates from their antibonding Cu d–I p character. We find a modest enhancement of the Born effective charges relative to nominal values, leading to a dielectric constant ε(0) = 6.3. This is sufficiently large to reduce ionized impurity scattering, leading to the expectation that the properties of CuI can still be significantly improved through sample quality.« less

  2. Los Alamos Explosives Performance Key to Stockpile Stewardship

    ScienceCinema

    Dattelbaum, Dana

    2018-02-14

    As the U.S. Nuclear Deterrent ages, one essential factor in making sure that the weapons will continue to perform as designed is understanding the fundamental properties of the high explosives that are part of a nuclear weapons system. As nuclear weapons go through life extension programs, some changes may be advantageous, particularly through the addition of what are known as "insensitive" high explosives that are much less likely to accidentally detonate than the already very safe "conventional" high explosives that are used in most weapons. At Los Alamos National Laboratory explosives research includes a wide variety of both large- and small-scale experiments that include small contained detonations, gas and powder gun firings, larger outdoor detonations, large-scale hydrodynamic tests, and at the Nevada Nuclear Security Site, underground sub-critical experiments.

  3. Large deformation analysis of axisymmetric inhomogeneities including coupled elastic and plastic anisotropy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brannon, R.M.

    1996-12-31

    A mathematical framework is developed for the study of materials containing axisymmetric inclusions or flaws such as ellipsoidal voids, penny-shaped cracks, or fibers of circular cross-section. The general case of nonuniform statistical distributions of such heterogeneities is attacked by first considering a spatially uniform distribution of flaws that are all oriented in the same direction. Assuming an isotropic substrate, the macroscopic material properties of this simpler microstructure naturally should be transversely isotropic. An orthogonal basis for the linear subspace consisting of all double-symmetric transversely-isotropic fourth-order tensors associated with a given material vector is applied to deduce the explicit functional dependencemore » of the material properties of these aligned materials on the shared symmetry axis. The aligned and uniform microstructure seems geometrically simple enough that the macroscopic transversely isotropic properties could be derived in closed form. Since the resulting properties are transversely isotropic, the analyst must therefore be able to identify the appropriate coefficients of the transverse basis. Once these functions are identified, a principle of superposition of strain rates ay be applied to define an expectation integral for the composite properties of a material containing arbitrary anisotropic distributions of axisymmetric inhomogeneities. A proposal for coupling plastic anisotropy to the elastic anisotropy is presented in which the composite yield surface is interpreted as a distortion of the isotropic substrate yield surface; the distortion directions are coupled to the elastic anisotropy directions. Finally, some commonly assumed properties (such as major symmetry) of the Cauchy tangent stiffness tensor are shown to be inappropriate for large distortions of anisotropic materials.« less

  4. The VIMOS Ultra Deep Survey first data release: Spectra and spectroscopic redshifts of 698 objects up to zspec 6 in CANDELS

    NASA Astrophysics Data System (ADS)

    Tasca, L. A. M.; Le Fèvre, O.; Ribeiro, B.; Thomas, R.; Moreau, C.; Cassata, P.; Garilli, B.; Le Brun, V.; Lemaux, B. C.; Maccagni, D.; Pentericci, L.; Schaerer, D.; Vanzella, E.; Zamorani, G.; Zucca, E.; Amorin, R.; Bardelli, S.; Cassarà, L. P.; Castellano, M.; Cimatti, A.; Cucciati, O.; Durkalec, A.; Fontana, A.; Giavalisco, M.; Grazian, A.; Hathi, N. P.; Ilbert, O.; Paltani, S.; Pforr, J.; Scodeggio, M.; Sommariva, V.; Talia, M.; Tresse, L.; Vergani, D.; Capak, P.; Charlot, S.; Contini, T.; de la Torre, S.; Dunlop, J.; Fotopoulou, S.; Guaita, L.; Koekemoer, A.; López-Sanjuan, C.; Mellier, Y.; Salvato, M.; Scoville, N.; Taniguchi, Y.; Wang, P. W.

    2017-04-01

    This paper describes the first data release (DR1) of the VIMOS Ultra Deep Survey (VUDS). The VUDS-DR1 is the release of all low-resolution spectroscopic data obtained in 276.9 arcmin2 of the CANDELS-COSMOS and CANDELS-ECDFS survey areas, including accurate spectroscopic redshifts zspec and individual spectra obtained with VIMOS on the ESO-VLT. A total of 698 objects have a measured redshift, with 677 galaxies, two type-I AGN, and a small number of 19 contaminating stars. The targets of the spectroscopic survey are selected primarily on the basis of their photometric redshifts to ensure a broad population coverage. About 500 galaxies have zspec > 2, 48of which have zspec > 4; the highest reliable redshifts reach beyond zspec = 6. This data set approximately doubles the number of galaxies with spectroscopic redshifts at z > 3 in these fields. We discuss the general properties of the VUDS-DR1 sample in terms of the spectroscopic redshift distribution, the distribution of Lyman-α equivalent widths, and physical properties including stellar masses M⋆ and star formation rates derived from spectral energy distribution fitting with the knowledge of zspec. We highlight the properties of the most massive star-forming galaxies, noting the wide range in spectral properties, with Lyman-α in emission or in absorption, and in imaging properties with compact, multi-component, or pair morphologies. We present the catalogue database and data products. All VUDS-DR1 data are publicly available and can be retrieved from a dedicated query-based database. Future VUDS data releases will follow this VUDS-DR1 to give access to the spectra and associated measurement of 8000 objects in the full 1 square degree of the VUDS survey. Based on data obtained with the European Southern Observatory Very Large Telescope, Paranal, Chile, under Large Program 185.A-0791. http://cesam.lam.fr/vuds

  5. A database of microwave and sub-millimetre ice particle single scattering properties

    NASA Astrophysics Data System (ADS)

    Ekelund, Robin; Eriksson, Patrick

    2016-04-01

    Ice crystal particles are today a large contributing factor as to why cold-type clouds such as cirrus remain a large uncertainty in global climate models and measurements. The reason for this is the complex and varied morphology in which ice particles appear, as compared to liquid droplets with an in general spheroidal shape, thus making the description of electromagnetic properties of ice particles more complicated. Single scattering properties of frozen hydrometers have traditionally been approximated by representing the particles as spheres using Mie theory. While such practices may work well in radio applications, where the size parameter of the particles is generally low, comparisons with measurements and simulations show that this assumption is insufficient when observing tropospheric cloud ice in the microwave or sub-millimetre regions. In order to assist the radiative transfer and remote sensing communities, a database of single scattering properties of semi-realistic particles is being produced. The data is being produced using DDA (Discrete Dipole Approximation) code which can treat arbitrarily shaped particles, and Tmatrix code for simpler shapes when found sufficiently accurate. The aim has been to mainly cover frequencies used by the upcoming ICI (Ice Cloud Imager) mission with launch in 2022. Examples of particles to be included are columns, plates, bullet rosettes, sector snowflakes and aggregates. The idea is to treat particles with good average optical properties with respect to the multitude of particles and aggregate types appearing in nature. The database will initially only cover macroscopically isotropic orientation, but will eventually also include horizontally aligned particles. Databases of DDA particles do already exist with varying accessibility. The goal of this database is to complement existing data. Regarding the distribution of the data, the plan is that the database shall be available in conjunction with the ARTS (Atmospheric Radiative Transfer Simulator) project.

  6. Towards development of nanofibrous large strain flexible strain sensors with programmable shape memory properties

    NASA Astrophysics Data System (ADS)

    Khalili, N.; Asif, H.; Naguib, H. E.

    2018-05-01

    Electrospun polymeric fibers can be used as strain sensors due to their large surface to weight/volume ratio, high porosity and pore interconnectivity. Large strain flexible strain sensors are used in numerous applications including rehabilitation, health monitoring, and sports performance monitoring where large strain detection should be accommodated by the sensor. This has boosted the demand for a stretchable, flexible and highly sensitive sensor able to detect a wide range of mechanically induced deformations. Herein, a physically cross-linked polylactic acid (PLA) and thermoplastic polyurethane (TPU) blend is made into nanofiber networks via electrospinning. The PLA/TPU weight ratio is optimized to obtain a maximum attainable strain of 100% while maintaining its mechanical integrity. The TPU/PLA fibers also allowed for their thermally activated recovery due to shape memory properties of the substrate. This novel feature enhances the sensor’s performance as it is no longer limited by its plastic deformation. Using spray coating method, a homogeneous layer of single-walled carbon nanotube is deposited onto the as-spun fiber mat to induce electrical conductivity to the surface of the fibers. It is shown that stretching and bending the sensor result in a highly sensitive and linear response with a maximum gauge factor of 33.

  7. New temperable solar coatings: Tempsol

    NASA Astrophysics Data System (ADS)

    Demiryont, Hulya

    2001-11-01

    This paper deals with the large area deposition and coating properties of the thermo-stable (temperable/bendable) solar coating material, CuO, and some new optical coating systems comprising CuO films for architectural and automotive/transportation applications. The CuO solar coating is combined with other coating layers, for example, an anti-reflection film, a reflection film, a coloration coating layer, etc., which are also thermo-stable. The film systems are developed at the research laboratory by D.C. Magnetron reactive sputtering process. The new developed technologies then transferred to the production line. Product performances are compared before and after heat treatment of the coating systems. Performance tables and other physical properties, including optical parameters, mechanical and environmental stability, storage properties, etc., are also presented for this new product series.

  8. Magnetic ionic liquids in analytical chemistry: A review.

    PubMed

    Clark, Kevin D; Nacham, Omprakash; Purslow, Jeffrey A; Pierson, Stephen A; Anderson, Jared L

    2016-08-31

    Magnetic ionic liquids (MILs) have recently generated a cascade of innovative applications in numerous areas of analytical chemistry. By incorporating a paramagnetic component within the cation or anion, MILs exhibit a strong response toward external magnetic fields. Careful design of the MIL structure has yielded magnetoactive compounds with unique physicochemical properties including high magnetic moments, enhanced hydrophobicity, and the ability to solvate a broad range of molecules. The structural tunability and paramagnetic properties of MILs have enabled magnet-based technologies that can easily be added to the analytical method workflow, complement needed extraction requirements, or target specific analytes. This review highlights the application of MILs in analytical chemistry and examines the important structural features of MILs that largely influence their physicochemical and magnetic properties. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. FInal Report - Investment Casting Shell Cracking

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Von Richards

    2003-12-01

    This project made a significant contribution to the understanding of the investment casting shell cracking problem. The effects of wax properties on the occurrence of shell cracking were demonstrated and can be measured. The properties measured include coefficient of thermal expansion, heating rate and crystallinity of the structure. The important features of production molds and materials properties have been indicated by case study analysis and fractography of low strength test bars. It was found that stress risers in shell cavity design were important and that typical critical flaws were either oversize particles or large pores just behind the prime coat.more » It was also found that the true effect of fugitive polymer fibers was not permeability increase, but rather a toughening mechanism due to crack deflection.« less

  10. Influence of Carbide Modifications on the Mechanical Properties of Ultra-High-Strength Stainless Steels

    NASA Astrophysics Data System (ADS)

    Seo, Joo-Young; Park, Soo-Keun; Kwon, Hoon; Cho, Ki-Sub

    2017-10-01

    The mechanical properties of ultra-high-strength secondary hardened stainless steels with varying Co, V, and C contents have been studied. A reduced-Co alloy based on the chemical composition of Ferrium S53 was made by increasing the V and C content. This changed the M2C-strengthened microstructure to a MC plus M2C-strengthened microstructure, and no deteriorative effects were observed for peak-aged and over-aged samples despite the large reduction in Co content from 14 to 7 wt pct. The mechanical properties according to alloying modification were associated with carbide precipitation kinetics, which was clearly outlined by combining analytical tools including small-angle neutron scattering (SANS) as well as an analytical TEM with computational simulation.

  11. M4Ag44(p-MBA)30 Molecular Nanoparticles

    NASA Astrophysics Data System (ADS)

    Conn, Brian E.

    In recent years, molecular nanoparticles have attracted much attention due to their unique physical, optical, and electronic properties. The properties of molecular nanoparticles are shown to deviate from their larger bulk counterparts, due to quantum confinement effects and large surface-to-volume ratios. As the size of the nanoparticle shrinks to a cluster of metal atoms (<3 nm in diameter), there is an emergence of a HOMO-LUMO band gap, which is not present in transitional d-block metals. The HOMO-LUMO band gap gives rise to discrete electronic states, leading to new chemical and physical properties. Molecular nanoparticles have had a substantial impact across a diverse range of fields, including catalysis, sensing, photochemistry, optoelectronic, energy conversion, and medicine. Currently many of the synthetic procedures for molecular nanoparticles require low temperatures, long incubation times, multistep purification and hazardous reagents that produce low yields and polydisperse molecular nanoparticles with poor stability. Although silver has very desirable physical properties, good relative abundance and low cost, gold molecular nanoparticles have been widely favored owing to their proved stability and ease of use. Unlike gold, silver is notorious for its susceptibility to oxidation, i.e., tarnishing, which has limited the development of silver-based nanotechnologies. Despite two decades of synthetic efforts, silver molecular nanoparticles that are inert or have long-term stability have remained unrealized. Herein we report a simple synthetic protocol for producing ultrastable M4Ag44(p-MBA)30 nanoparticles as a single-sized molecular product and in exceptionally large quantities. The stability, purity, and yield are substantially better than other metal nanoparticles, including gold, due to several stabilization mechanisms. Also, reported are the structural and mechanical properties of extended crystalline solids of Na4Ag44(p-MBA)30 from large-scale quantum-mechanical simulations based on the atomically-precise X-ray measured structure. Calculations show that cohesion is derived from hydrogen bonds between bundled p-MBA ligands and that the superlattice's mechanical response to hydrostatic compression is characterized by a molecular-solid-like bulk modulus B0 = 16.7 GPa, exhibiting anomalous pressure softening and a compression-induced transition to a soft-solid phase. Such a transition involves ligand flexure, which causes gear-like correlated chiral rotation of the nanoparticles.

  12. Sexual Experience in Female Rodents: Cellular Mechanisms and Functional Consequences

    PubMed Central

    Meisel, Robert L.; Mullins, Amanda J.

    2007-01-01

    The neurobiology of female sexual behavior has largely focused on mechanisms of hormone action on nerve cells and how these effects translate into the display of copulatory motor patterns. Of equal importance, though less studied, are some of the consequences of engaging in sexual behavior, including the rewarding properties of sexual interactions and how sexual experience alters copulatory efficiency. This review summarizes the effects of sexual experience on reward processes and copulation in female Syrian hamsters. Neural correlates of these sexual interactions include long-term cellular changes in dopamine transmission and postsynaptic signaling pathways related to neuronal plasticity (e.g., dendritic spine formation). Taken together, these studies suggest that sexual experience enhances the reinforcing properties of sexual behavior, which has the coincident outcome of increasing copulatory efficiency in a way that can increase reproductive success. PMID:16978593

  13. Immunoglobulin superfamily members encoded by viruses and their multiple roles in immune evasion.

    PubMed

    Farré, Domènec; Martínez-Vicente, Pablo; Engel, Pablo; Angulo, Ana

    2017-05-01

    Pathogens have developed a plethora of strategies to undermine host immune defenses in order to guarantee their survival. For large DNA viruses, these immune evasion mechanisms frequently rely on the expression of genes acquired from host genomes. Horizontally transferred genes include members of the immunoglobulin superfamily, whose products constitute the most diverse group of proteins of vertebrate genomes. Their promiscuous immunoglobulin domains, which comprise the building blocks of these molecules, are involved in a large variety of functions mediated by ligand-binding interactions. The flexible structural nature of the immunoglobulin domains makes them appealing targets for viral capture due to their capacity to generate high functional diversity. Here, we present an up-to-date review of immunoglobulin superfamily gene homologs encoded by herpesviruses, poxviruses, and adenoviruses, that include CD200, CD47, Fc receptors, interleukin-1 receptor 2, interleukin-18 binding protein, CD80, carcinoembryonic antigen-related cell adhesion molecules, and signaling lymphocyte activation molecules. We discuss their distinct structural attributes, binding properties, and functions, shaped by evolutionary pressures to disarm specific immune pathways. We include several novel genes identified from extensive genome database surveys. An understanding of the properties and modes of action of these viral proteins may guide the development of novel immune-modulatory therapeutic tools. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Chromophore photophysics and dynamics in fluorescent proteins of the GFP family

    NASA Astrophysics Data System (ADS)

    Nienhaus, Karin; Nienhaus, G. Ulrich

    2016-11-01

    Proteins of the green fluorescent protein (GFP) family are indispensable for fluorescence imaging experiments in the life sciences, particularly of living specimens. Their essential role as genetically encoded fluorescence markers has motivated many researchers over the last 20 years to further advance and optimize these proteins by using protein engineering. Amino acids can be exchanged by site-specific mutagenesis, starting with naturally occurring proteins as templates. Optical properties of the fluorescent chromophore are strongly tuned by the surrounding protein environment, and a targeted modification of chromophore-protein interactions requires a profound knowledge of the underlying photophysics and photochemistry, which has by now been well established from a large number of structural and spectroscopic experiments and molecular-mechanical and quantum-mechanical computations on many variants of fluorescent proteins. Nevertheless, such rational engineering often does not meet with success and thus is complemented by random mutagenesis and selection based on the optical properties. In this topical review, we present an overview of the key structural and spectroscopic properties of fluorescent proteins. We address protein-chromophore interactions that govern ground state optical properties as well as processes occurring in the electronically excited state. Special emphasis is placed on photoactivation of fluorescent proteins. These light-induced reactions result in large structural changes that drastically alter the fluorescence properties of the protein, which enables some of the most exciting applications, including single particle tracking, pulse chase imaging and super-resolution imaging. We also present a few examples of fluorescent protein application in live-cell imaging experiments.

  15. Segregation of Visual Response Properties in the Mouse Superior Colliculus and Their Modulation during Locomotion

    PubMed Central

    2017-01-01

    The superior colliculus (SC) receives direct input from the retina and integrates it with information about sound, touch, and state of the animal that is relayed from other parts of the brain to initiate specific behavioral outcomes. The superficial SC layers (sSC) contain cells that respond to visual stimuli, whereas the deep SC layers (dSC) contain cells that also respond to auditory and somatosensory stimuli. Here, we used a large-scale silicon probe recording system to examine the visual response properties of SC cells of head-fixed and alert male mice. We found cells with diverse response properties including: (1) orientation/direction-selective (OS/DS) cells with a firing rate that is suppressed by drifting sinusoidal gratings (negative OS/DS cells); (2) suppressed-by-contrast cells; (3) cells with complex-like spatial summation nonlinearity; and (4) cells with Y-like spatial summation nonlinearity. We also found specific response properties that are enriched in different depths of the SC. The sSC is enriched with cells with small RFs, high evoked firing rates (FRs), and sustained temporal responses, whereas the dSC is enriched with the negative OS/DS cells and with cells with large RFs, low evoked FRs, and transient temporal responses. Locomotion modulates the activity of the SC cells both additively and multiplicatively and changes the preferred spatial frequency of some SC cells. These results provide the first description of the negative OS/DS cells and demonstrate that the SC segregates cells with different response properties and that the behavioral state of a mouse affects SC activity. SIGNIFICANCE STATEMENT The superior colliculus (SC) receives visual input from the retina in its superficial layers (sSC) and induces eye/head-orientating movements and innate defensive responses in its deeper layers (dSC). Despite their importance, very little is known about the visual response properties of dSC neurons. Using high-density electrode recordings and novel model-based analysis, we found several novel visual response properties of the SC cells, including encoding of a cell's preferred orientation or direction by suppression of the firing rate. The sSC and the dSC are enriched with cells with different visual response properties. Locomotion modulates the cells in the SC. These findings contribute to our understanding of how the SC processes visual inputs, a critical step in comprehending visually guided behaviors. PMID:28760858

  16. Optical transitions in highly charged californium ions with high sensitivity to variation of the fine-structure constant.

    PubMed

    Berengut, J C; Dzuba, V A; Flambaum, V V; Ong, A

    2012-08-17

    We study electronic transitions in highly charged Cf ions that are within the frequency range of optical lasers and have very high sensitivity to potential variations in the fine-structure constant, α. The transitions are in the optical range despite the large ionization energies because they lie on the level crossing of the 5f and 6p valence orbitals in the thallium isoelectronic sequence. Cf(16+) is a particularly rich ion, having several narrow lines with properties that minimize certain systematic effects. Cf(16+) has very large nuclear charge and large ionization energy, resulting in the largest α sensitivity seen in atomic systems. The lines include positive and negative shifters.

  17. Large-Scale Fabrication of Silicon Nanowires for Solar Energy Applications.

    PubMed

    Zhang, Bingchang; Jie, Jiansheng; Zhang, Xiujuan; Ou, Xuemei; Zhang, Xiaohong

    2017-10-11

    The development of silicon (Si) materials during past decades has boosted up the prosperity of the modern semiconductor industry. In comparison with the bulk-Si materials, Si nanowires (SiNWs) possess superior structural, optical, and electrical properties and have attracted increasing attention in solar energy applications. To achieve the practical applications of SiNWs, both large-scale synthesis of SiNWs at low cost and rational design of energy conversion devices with high efficiency are the prerequisite. This review focuses on the recent progresses in large-scale production of SiNWs, as well as the construction of high-efficiency SiNW-based solar energy conversion devices, including photovoltaic devices and photo-electrochemical cells. Finally, the outlook and challenges in this emerging field are presented.

  18. Exploring ownership in a developmental context.

    PubMed

    Noles, Nicholaus S; Keil, Frank C

    2011-01-01

    Ownership and economic behaviors are highly salient elements of the human social landscape. Indeed, the human world is literally constructed of property. Individuals perceive and manipulate a complex web of people and property that is largely invisible and abstract. In this chapter, the authors focus on drawing together information from a variety of disciplines, including legal theory, philosophy, psychology, and economics, to begin creating a coherent picture of the cognitive architecture that underlies ownership concepts. In doing so, the authors review theories of ownership and discuss recent research that highlights the unique contributions garnered by studying ownership in a developmental context. Copyright © 2011 Wiley Periodicals, Inc., A Wiley Company.

  19. Macromolecular Origins of Harmonics Higher than the Third in Large-Amplitude Oscillatory Shear Flow

    NASA Astrophysics Data System (ADS)

    Giacomin, Alan; Jbara, Layal; Gilbert, Peter; Chemical Engineering Department Team

    2016-11-01

    In 1935, Andrew Gemant conceived of the complex viscosity, a rheological material function measured by "jiggling" an elastic liquid in oscillatory shear. This test reveals information about both the viscous and elastic properties of the liquid, and about how these properties depend on frequency. The test gained popularity with chemists when John Ferry perfected instruments for measuring both the real and imaginary parts of the complex viscosity. In 1958, Cox and Merz discovered that the steady shear viscosity curve was easily deduced from the magnitude of the complex viscosity, and today oscillatory shear is the single most popular rheological property measurement. With oscillatory shear, we can control two things: the frequency (Deborah number) and the shear rate amplitude (Weissenberg number). When the Weissenberg number is large, the elastic liquids respond with a shear stress over a series of odd-multiples of the test frequency. In this lecture we will explore recent attempts to deepen our understand of the physics of these higher harmonics, including especially harmonics higher than the third. Canada Research Chairs program of the Government of Canada for the Natural Sciences and Engineering Research Council of Canada (NSERC) Tier 1 Canada Research Chair in Rheology.

  20. Specialization of tendon mechanical properties results from interfascicular differences

    PubMed Central

    Thorpe, Chavaunne T.; Udeze, Chineye P.; Birch, Helen L.; Clegg, Peter D.; Screen, Hazel R. C.

    2012-01-01

    Tendons transfer force from muscle to bone. Specific tendons, including the equine superficial digital flexor tendon (SDFT), also store and return energy. For efficient function, energy-storing tendons need to be more extensible than positional tendons such as the common digital extensor tendon (CDET), and when tested in vitro have a lower modulus and failure stress, but a higher failure strain. It is not known how differences in matrix organization contribute to distinct mechanical properties in functionally different tendons. We investigated the properties of whole tendons, tendon fascicles and the fascicular interface in the high-strain energy-storing SDFT and low-strain positional CDET. Fascicles failed at lower stresses and strains than tendons. The SDFT was more extensible than the CDET, but SDFT fascicles failed at lower strains than CDET fascicles, resulting in large differences between tendon and fascicle failure strain in the SDFT. At physiological loads, the stiffness at the fascicular interface was lower in the SDFT samples, enabling a greater fascicle sliding that could account for differences in tendon and fascicle failure strain. Sliding between fascicles prior to fascicle extension in the SDFT may allow the large extensions required in energy-storing tendons while protecting fascicles from damage. PMID:22764132

  1. Specialization of tendon mechanical properties results from interfascicular differences.

    PubMed

    Thorpe, Chavaunne T; Udeze, Chineye P; Birch, Helen L; Clegg, Peter D; Screen, Hazel R C

    2012-11-07

    Tendons transfer force from muscle to bone. Specific tendons, including the equine superficial digital flexor tendon (SDFT), also store and return energy. For efficient function, energy-storing tendons need to be more extensible than positional tendons such as the common digital extensor tendon (CDET), and when tested in vitro have a lower modulus and failure stress, but a higher failure strain. It is not known how differences in matrix organization contribute to distinct mechanical properties in functionally different tendons. We investigated the properties of whole tendons, tendon fascicles and the fascicular interface in the high-strain energy-storing SDFT and low-strain positional CDET. Fascicles failed at lower stresses and strains than tendons. The SDFT was more extensible than the CDET, but SDFT fascicles failed at lower strains than CDET fascicles, resulting in large differences between tendon and fascicle failure strain in the SDFT. At physiological loads, the stiffness at the fascicular interface was lower in the SDFT samples, enabling a greater fascicle sliding that could account for differences in tendon and fascicle failure strain. Sliding between fascicles prior to fascicle extension in the SDFT may allow the large extensions required in energy-storing tendons while protecting fascicles from damage.

  2. Unleashing elastic energy: dynamics of energy release in rubber bands and impulsive biological systems

    NASA Astrophysics Data System (ADS)

    Ilton, Mark; Cox, Suzanne; Egelmeers, Thijs; Patek, S. N.; Crosby, Alfred J.

    Impulsive biological systems - which include mantis shrimp, trap-jaw ants, and venus fly traps - can reach high speeds by using elastic elements to store and rapidly release energy. The material behavior and shape changes critical to achieving rapid energy release in these systems are largely unknown due to limitations of materials testing instruments operating at high speed and large displacement. In this work, we perform fundamental, proof-of-concept measurements on the tensile retraction of elastomers. Using high speed imaging, the kinematics of retraction are measured for elastomers with varying mechanical properties and geometry. Based on the kinematics, the rate of energy dissipation in the material is determined as a function of strain and strain-rate, along with a scaling relation which describes the dependence of maximum velocity on material properties. Understanding this scaling relation along with the material failure limits of the elastomer allows the prediction of material properties required for optimal performance. We demonstrate this concept experimentally by optimizing for maximum velocity in our synthetic model system, and achieve retraction velocities that exceed those in biological impulsive systems. This model system provides a foundation for future work connecting continuum performance to molecular architecture in impulsive systems.

  3. Analyzing and Visualizing Cosmological Simulations with ParaView

    NASA Astrophysics Data System (ADS)

    Woodring, Jonathan; Heitmann, Katrin; Ahrens, James; Fasel, Patricia; Hsu, Chung-Hsing; Habib, Salman; Pope, Adrian

    2011-07-01

    The advent of large cosmological sky surveys—ushering in the era of precision cosmology—has been accompanied by ever larger cosmological simulations. The analysis of these simulations, which currently encompass tens of billions of particles and up to a trillion particles in the near future, is often as daunting as carrying out the simulations in the first place. Therefore, the development of very efficient analysis tools combining qualitative and quantitative capabilities is a matter of some urgency. In this paper, we introduce new analysis features implemented within ParaView, a fully parallel, open-source visualization toolkit, to analyze large N-body simulations. A major aspect of ParaView is that it can live and operate on the same machines and utilize the same parallel power as the simulation codes themselves. In addition, data movement is in a serious bottleneck now and will become even more of an issue in the future; an interactive visualization and analysis tool that can handle data in situ is fast becoming essential. The new features in ParaView include particle readers and a very efficient halo finder that identifies friends-of-friends halos and determines common halo properties, including spherical overdensity properties. In combination with many other functionalities already existing within ParaView, such as histogram routines or interfaces to programming languages like Python, this enhanced version enables fast, interactive, and convenient analyses of large cosmological simulations. In addition, development paths are available for future extensions.

  4. V and V of Lexical, Syntactic and Semantic Properties for Interactive Systems Through Model Checking of Formal Description of Dialog

    NASA Technical Reports Server (NTRS)

    Brat, Guillaume P.; Martinie, Celia; Palanque, Philippe

    2013-01-01

    During early phases of the development of an interactive system, future system properties are identified (through interaction with end users in the brainstorming and prototyping phase of the application, or by other stakehold-ers) imposing requirements on the final system. They can be specific to the application under development or generic to all applications such as usability principles. Instances of specific properties include visibility of the aircraft altitude, speed… in the cockpit and the continuous possibility of disengaging the autopilot in whatever state the aircraft is. Instances of generic properties include availability of undo (for undoable functions) and availability of a progression bar for functions lasting more than four seconds. While behavioral models of interactive systems using formal description techniques provide complete and unambiguous descriptions of states and state changes, it does not provide explicit representation of the absence or presence of properties. Assessing that the system that has been built is the right system remains a challenge usually met through extensive use and acceptance tests. By the explicit representation of properties and the availability of tools to support checking these properties, it becomes possible to provide developers with means for systematic exploration of the behavioral models and assessment of the presence or absence of these properties. This paper proposes the synergistic use two tools for checking both generic and specific properties of interactive applications: Petshop and Java PathFinder. Petshop is dedicated to the description of interactive system behavior. Java PathFinder is dedicated to the runtime verification of Java applications and as an extension dedicated to User Interfaces. This approach is exemplified on a safety critical application in the area of interactive cockpits for large civil aircrafts.

  5. Networks for image acquisition, processing and display

    NASA Technical Reports Server (NTRS)

    Ahumada, Albert J., Jr.

    1990-01-01

    The human visual system comprises layers of networks which sample, process, and code images. Understanding these networks is a valuable means of understanding human vision and of designing autonomous vision systems based on network processing. Ames Research Center has an ongoing program to develop computational models of such networks. The models predict human performance in detection of targets and in discrimination of displayed information. In addition, the models are artificial vision systems sharing properties with biological vision that has been tuned by evolution for high performance. Properties include variable density sampling, noise immunity, multi-resolution coding, and fault-tolerance. The research stresses analysis of noise in visual networks, including sampling, photon, and processing unit noises. Specific accomplishments include: models of sampling array growth with variable density and irregularity comparable to that of the retinal cone mosaic; noise models of networks with signal-dependent and independent noise; models of network connection development for preserving spatial registration and interpolation; multi-resolution encoding models based on hexagonal arrays (HOP transform); and mathematical procedures for simplifying analysis of large networks.

  6. Structure/property development in aPET during large strain, solid phase polymer processing

    NASA Astrophysics Data System (ADS)

    Martin, Peter; Mohamed, Raja Roslan Raja

    2015-12-01

    Amorphous Polyethylene terephthalate (aPET) is increasingly of interest for the polymer packaging industry due to its blend of excellent mechanical properties and most importantly its ease of recyclability. Among the major commercial polymers it is almost unique in the degree of improvement in mechanical properties that can be obtained through process-induced strain. For many years these unique properties have been very successfully exploited in the injection stretch blow molding process, where it is deliberately stretched to very large strains using extremely high pressures. However, the material is now also being used in much lower pressure processes such as thermoforming where its properties are often not fully exploited. In this work the change in structure and properties of aPET with strain is systematically investigated using a high speed biaxial stretching machine. The aim was to demonstrate how the properties of the material could be controlled by large strain, high temperature biaxial stretching processes such as thermoforming and blow molding. The results show that property changes in the material are driven by orientation and the onset of rapid strain hardening at large strains. This in turn is shown to vary strongly with process-induced parameters such as the strain rate and the mode and magnitude of biaxial deformation.

  7. Scattering and extinction properties of overfire soot in large buoyant turbulent diffusion flames

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Krishnan, S.S.; Lin, K.C.; Faeth, G.M.

    1999-07-01

    Measurements of the scattering and extinction properties of soot at visible wavelengths (351.2--632.8 nm) were completed for soot in the overfire region of large buoyant turbulent diffusion flames burning in still air where soot properties are independent of position and characteristic flame residence time for a particular fuel. Flames fueled with both gas (acetylene, ethylene, propylene and butadiene) and liquid (benzene, toluene, cyclohexane and n-heptane) hydrocarbon fuels were considered during the experiments. The measurements were considered during the experiments. The measurements were used to evaluate Rayleigh-Debye-Gans/polydisperse-fractal-aggregate theory for the absorption and scattering properties of soot, finding good performance for themore » present test range which included primary particle size parameters as large as 0.46; in addition, effects of fuel type over the test range were comparable to experimental uncertainties. Fractal dimensions were properly independent of wavelength and yielded a mean value of 1.79 with a standard deviation of 0.05, which is in excellent agreement with earlier work. Dimensionless extinction coefficients were relatively independent of wavelength and yielded a mean value of 8.4 with a standard deviation of 1.5. Present refractive indices did not exhibit a resonance condition, seen for graphite, as the uv was approached. Values of the refractive index function for absorption, E(m), increased as wavelength increased and were comparable to most earlier measurements for wavelengths greater than 400 nm. Values of the refractive index function for scattering, F(m), agreed with earlier measurements at wavelengths of 450--550 nm but otherwise increased with increasing wavelength more rapidly than seen before.« less

  8. Mechanical Analyses for coupled Vegetation-Flow System

    NASA Astrophysics Data System (ADS)

    Chen, L.; Acharya, K.; Stone, M.

    2010-12-01

    Vegetation in riparian areas plays important roles in hydrology, geomorphology and ecology in local environment. Mechanical response of the aquatic vegetation to hydraulic forces and its impact on flow hydraulics have received considerable attention due to implications for flood control, habitat restoration, and water resources management. This study aims to advance understanding of the mechanical properties of in-stream vegetation including drag force, moment and stress. Dynamic changes of these properties under various flow conditions largely determine vegetation affected flow field and dynamic resistance with progressive bending, and hydraulic conditions for vegetation failure (rupture or wash-out) thus are critical for understanding the coupled vegetation-flow system. A new approach combining fluid and material mechanics is developed in this study to examine the behavior of both rigid and flexible vegetation. The major advantage of this approach is its capability to treat large deflection (bending) of plants and associated changes of mechanical properties in both vegetation and flow. Starting from simple emergent vegetation, both static and dynamic formulations of the problem are presented and the solutions are compared. Results show the dynamic behavior of a simplified system mimicking complex and real systems, implying the approach is able to disclose the physical essence of the coupled system. The approach is extended to complex vegetation under both submerged and emergent conditions using more realistic representation of biomechanical properties for vegetation.

  9. Factors Controlling the Properties of Multi-Phase Arctic Stratocumulus Clouds

    NASA Technical Reports Server (NTRS)

    Fridlind, Ann; Ackerman, Andrew; Menon, Surabi

    2005-01-01

    The 2004 Multi-Phase Arctic Cloud Experiment (M-PACE) IOP at the ARM NSA site focused on measuring the properties of autumn transition-season arctic stratus and the environmental conditions controlling them, including concentrations of heterogeneous ice nuclei. Our work aims to use a large-eddy simulation (LES) code with embedded size-resolved aerosol and cloud microphysics to identify factors controlling multi-phase arctic stratus. Our preliminary simulations of autumn transition-season clouds observed during the 1994 Beaufort and Arctic Seas Experiment (BASE) indicated that low concentrations of ice nuclei, which were not measured, may have significantly lowered liquid water content and thereby stabilized cloud evolution. However, cloud drop concentrations appeared to be virtually immune to changes in liquid water content, indicating an active Bergeron process with little effect of collection on drop number concentration. We will compare these results with preliminary simulations from October 8-13 during MPACE. The sensitivity of cloud properties to uncertainty in other factors, such as large-scale forcings and aerosol profiles, will also be investigated. Based on the LES simulations with M-PACE data, preliminary results from the NASA GlSS single-column model (SCM) will be used to examine the sensitivity of predicted cloud properties to changing cloud drop number concentrations for multi-phase arctic clouds. Present parametrizations assumed fixed cloud droplet number concentrations and these will be modified using M-PACE data.

  10. Analyses of microstructural and elastic properties of porous SOFC cathodes based on focused ion beam tomography

    NASA Astrophysics Data System (ADS)

    Chen, Zhangwei; Wang, Xin; Giuliani, Finn; Atkinson, Alan

    2015-01-01

    Mechanical properties of porous SOFC electrodes are largely determined by their microstructures. Measurements of the elastic properties and microstructural parameters can be achieved by modelling of the digitally reconstructed 3D volumes based on the real electrode microstructures. However, the reliability of such measurements is greatly dependent on the processing of raw images acquired for reconstruction. In this work, the actual microstructures of La0.6Sr0.4Co0.2Fe0.8O3-δ (LSCF) cathodes sintered at an elevated temperature were reconstructed based on dual-beam FIB/SEM tomography. Key microstructural and elastic parameters were estimated and correlated. Analyses of their sensitivity to the grayscale threshold value applied in the image segmentation were performed. The important microstructural parameters included porosity, tortuosity, specific surface area, particle and pore size distributions, and inter-particle neck size distribution, which may have varying extent of effect on the elastic properties simulated from the microstructures using FEM. Results showed that different threshold value range would result in different degree of sensitivity for a specific parameter. The estimated porosity and tortuosity were more sensitive than surface area to volume ratio. Pore and neck size were found to be less sensitive than particle size. Results also showed that the modulus was essentially sensitive to the porosity which was largely controlled by the threshold value.

  11. Investigation of graphene-based nanoscale radiation sensitive materials

    NASA Astrophysics Data System (ADS)

    Robinson, Joshua A.; Wetherington, Maxwell; Hughes, Zachary; LaBella, Michael, III; Bresnehan, Michael

    2012-06-01

    Current state-of-the-art nanotechnology offers multiple benefits for radiation sensing applications. These include the ability to incorporate nano-sized radiation indicators into widely used materials such as paint, corrosion-resistant coatings, and ceramics to create nano-composite materials that can be widely used in everyday life. Additionally, nanotechnology may lead to the development of ultra-low power, flexible detection systems that can be embedded in clothing or other systems. Graphene, a single layer of graphite, exhibits exceptional electronic and structural properties, and is being investigated for high-frequency devices and sensors. Previous work indicates that graphene-oxide (GO) - a derivative of graphene - exhibits luminescent properties that can be tailored based on chemistry; however, exploration of graphene-oxide's ability to provide a sufficient change in luminescent properties when exposed to gamma or neutron radiation has not been carried out. We investigate the mechanisms of radiation-induced chemical modifications and radiation damage induced shifts in luminescence in graphene-oxide materials to provide a fundamental foundation for further development of radiation sensitive detection architectures. Additionally, we investigate the integration of hexagonal boron nitride (hBN) with graphene-based devices to evaluate radiation induced conductivity in nanoscale devices. Importantly, we demonstrate the sensitivity of graphene transport properties to the presence of alpha particles, and discuss the successful integration of hBN with large area graphene electrodes as a means to provide the foundation for large-area nanoscale radiation sensors.

  12. Relativistic effects on the bonding and properties of the hydrides of platinum

    NASA Technical Reports Server (NTRS)

    Dyall, Kenneth G.

    1993-01-01

    The ground state of PtH2 and several low-lying states of PtH(+) and PtH have been studied at the all-electron self-consistent-field level of theory to examine the importance of relativistic effects. The results of calculations based on Dirac-Hartree-Fock theory, nonrelativistic theory, and the spin-free no-pair relativistic approximation of Hess are compared to separate the effects of the spin-free terms and the spin-orbit terms of the Hamiltonian on the relativistic corrections to the molecular properties. Comparison is also made between first-order perturbation theory including the one-electron spin-free terms and the method of Hess to determine the size of effects beyond first order. It is found that the spin-orbit interaction significantly affects the properties and energetics of these molecules because of the participation of the Pt 5d orbitals in the bonding, and that effects beyond first order in perturbation theory are large. Any treatment of Pt compounds will have to include both the spin-free and spin-orbit interactions for an accurate description.

  13. Electronic band structures and optical properties of type-II superlattice photodetectors with interfacial effect.

    PubMed

    Qiao, Peng-Fei; Mou, Shin; Chuang, Shun Lien

    2012-01-30

    The electronic band structures and optical properties of type-II superlattice (T2SL) photodetectors in the mid-infrared (IR) range are investigated. We formulate a rigorous band structure model using the 8-band k · p method to include the conduction and valence band mixing. After solving the 8 × 8 Hamiltonian and deriving explicitly the new momentum matrix elements in terms of envelope functions, optical transition rates are obtained through the Fermi's golden rule under various doping and injection conditions. Optical measurements on T2SL photodetectors are compared with our model and show good agreement. Our modeling results of quantum structures connect directly to the device-level design and simulation. The predicted doping effect is readily applicable to the optimization of photodetectors. We further include interfacial (IF) layers to study the significance of their effect. Optical properties of T2SLs are expected to have a large tunable range by controlling the thickness and material composition of the IF layers. Our model provides an efficient tool for the designs of novel photodetectors.

  14. Effects of anisotropic thermal conduction on wind properties in hot accretion flow

    NASA Astrophysics Data System (ADS)

    Bu, De-Fu; Wu, Mao-Chun; Yuan, Ye-Fei

    2016-06-01

    Previous works have clearly shown the existence of winds from black hole hot accretion flow and investigated their detailed properties. In extremely low accretion rate systems, the collisional mean-free path of electrons is large compared with the length-scale of the system, thus thermal conduction is dynamically important. When the magnetic field is present, the thermal conduction is anisotropic and energy transport is along magnetic field lines. In this paper, we study the effects of anisotropic thermal conduction on the wind production in hot accretion flows by performing two-dimensional magnetohydrodynamic simulations. We find that thermal conduction has only moderate effects on the mass flux of wind. But the energy flux of wind can be increased by a factor of ˜10 due to the increase of wind velocity when thermal conduction is included. The increase of wind velocity is because of the increase of driving forces (e.g. gas pressure gradient force and centrifugal force) when thermal conduction is included. This result demonstrates that thermal conduction plays an important role in determining the properties of wind.

  15. External tufted cells in the main olfactory bulb form two distinct subpopulations.

    PubMed

    Antal, Miklós; Eyre, Mark; Finklea, Bryson; Nusser, Zoltan

    2006-08-01

    The glomeruli of the main olfactory bulb are the first processing station of the olfactory pathway, where complex interactions occur between sensory axons, mitral cells and a variety of juxtaglomerular neurons, including external tufted cells (ETCs). Despite a number of studies characterizing ETCs, little is known about how their morphological and functional properties correspond to each other. Here we determined the active and passive electrical properties of ETCs using in vitro whole-cell recordings, and correlated them with their dendritic arborization patterns. Principal component followed by cluster analysis revealed two distinct subpopulations of ETCs based on their electrophysiological properties. Eight out of 12 measured physiological parameters exhibited significant difference between the two subpopulations, including the membrane time constant, amplitude of spike afterhyperpolarization, variance in the interspike interval distribution and subthreshold resonance. Cluster analysis of the morphological properties of the cells also revealed two subpopulations, the most prominent dissimilarity between the groups being the presence or absence of secondary, basal dendrites. Finally, clustering the cells taking all measured properties into account also indicated the presence of two subpopulations that mapped in an almost perfect one-to-one fashion to both the physiologically and the morphologically derived groups. Our results demonstrate that a number of functional and structural properties of ETCs are highly predictive of one another. However, cells within each subpopulation exhibit pronounced variability, suggesting a large degree of specialization evolved to fulfil specific functional requirements in olfactory information processing.

  16. External tufted cells in the main olfactory bulb form two distinct subpopulations

    PubMed Central

    Antal, Miklós; Eyre, Mark; Finklea, Bryson; Nusser, Zoltan

    2006-01-01

    The glomeruli of the main olfactory bulb are the first processing station of the olfactory pathway, where complex interactions occur between sensory axons, mitral cells and a variety of juxtaglomerular neurons, including external tufted cells (ETCs). Despite a number of studies characterizing ETCs, little is known about how their morphological and functional properties correspond to each other. Here we determined the active and passive electrical properties of ETCs using in vitro whole-cell recordings, and correlated them with their dendritic arborization patterns. Principal component followed by cluster analysis revealed two distinct subpopulations of ETCs based on their electrophysiological properties. Eight out of 12 measured physiological parameters exhibited significant difference between the two subpopulations, including the membrane time constant, amplitude of spike afterhyperpolarization, variance in the interspike interval distribution and subthreshold resonance. Cluster analysis of the morphological properties of the cells also revealed two subpopulations, the most prominent dissimilarity between the groups being the presence or absence of secondary, basal dendrites. Finally, clustering the cells taking all measured properties into account also indicated the presence of two subpopulations that mapped in an almost perfect one-to-one fashion to both the physiologically and the morphologically derived groups. Our results demonstrate that a number of functional and structural properties of ETCs are highly predictive of one another. However, cells within each subpopulation exhibit pronounced variability, suggesting a large degree of specialization evolved to fulfil specific functional requirements in olfactory information processing. PMID:16930438

  17. The variability of tropical ice cloud properties as a function of the large-scale context from ground-based radar-lidar observations over Darwin, Australia

    NASA Astrophysics Data System (ADS)

    Protat, A.; Delanoë, J.; May, P. T.; Haynes, J.; Jakob, C.; O'Connor, E.; Pope, M.; Wheeler, M. C.

    2011-08-01

    The high complexity of cloud parameterizations now held in models puts more pressure on observational studies to provide useful means to evaluate them. One approach to the problem put forth in the modelling community is to evaluate under what atmospheric conditions the parameterizations fail to simulate the cloud properties and under what conditions they do a good job. It is the ambition of this paper to characterize the variability of the statistical properties of tropical ice clouds in different tropical "regimes" recently identified in the literature to aid the development of better process-oriented parameterizations in models. For this purpose, the statistical properties of non-precipitating tropical ice clouds over Darwin, Australia are characterized using ground-based radar-lidar observations from the Atmospheric Radiation Measurement (ARM) Program. The ice cloud properties analysed are the frequency of ice cloud occurrence, the morphological properties (cloud top height and thickness), and the microphysical and radiative properties (ice water content, visible extinction, effective radius, and total concentration). The variability of these tropical ice cloud properties is then studied as a function of the large-scale cloud regimes derived from the International Satellite Cloud Climatology Project (ISCCP), the amplitude and phase of the Madden-Julian Oscillation (MJO), and the large-scale atmospheric regime as derived from a long-term record of radiosonde observations over Darwin. The vertical variability of ice cloud occurrence and microphysical properties is largest in all regimes (1.5 order of magnitude for ice water content and extinction, a factor 3 in effective radius, and three orders of magnitude in concentration, typically). 98 % of ice clouds in our dataset are characterized by either a small cloud fraction (smaller than 0.3) or a very large cloud fraction (larger than 0.9). In the ice part of the troposphere three distinct layers characterized by different statistically-dominant microphysical processes are identified. The variability of the ice cloud properties as a function of the large-scale atmospheric regime, cloud regime, and MJO phase is large, producing mean differences of up to a factor 8 in the frequency of ice cloud occurrence between large-scale atmospheric regimes and mean differences of a factor 2 typically in all microphysical properties. Finally, the diurnal cycle of the frequency of occurrence of ice clouds is also very different between regimes and MJO phases, with diurnal amplitudes of the vertically-integrated frequency of ice cloud occurrence ranging from as low as 0.2 (weak diurnal amplitude) to values in excess of 2.0 (very large diurnal amplitude). Modellers should now use these results to check if their model cloud parameterizations are capable of translating a given atmospheric forcing into the correct statistical ice cloud properties.

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Antropov, Vladimir P; Antonov, Victor N

    We present a first-principles investigation of the electronic structure and physical properties of doped lithium nitridometalates Li 2(Li 1-xM x)N (LiMN) with M = Cr, Mn, Fe, Co, and Ni. The diverse properties include the equilibrium magnetic moments, magneto-crystalline anisotropy, magneto-optical Kerr spectra, and x-ray magnetic circular dichroism. We explain the colossal magnetic anisotropy in LiFeN by its unique electronic structure which ultimately leads to a series of unusual physical properties. The most unique property is a complete suppression of relativistic effects and freezing of orbital moments for in-plane orientation of the magnetization. This leads to the colossal spatial anisotropymore » of many magnetic properties including energy, Kerr, and dichroism effects. LiFeN is identified as an ultimate single-ion anisotropy system where a nearly insulating state can be produced by a spin orbital coupling alone. A very nontrivial strongly fluctuating and sign changing character of the magnetic anisotropy with electronic 3d-atomic doping is predicted theoretically. A large and highly anisotropic Kerr effect due to the interband transitions between atomic-like Fe 3d bands is found for LiFeN. A giant anisotropy of the x-ray magnetic circular dichroism for the Fe K spectrum and a very weak one for the Fe L 2,3 spectra in LiFeN are also predicted.« less

  19. Derivation of physical and optical properties of mid-latitude cirrus ice crystals for a size-resolved cloud microphysics model

    DOE PAGES

    Fridlind, Ann M.; Atlas, Rachel; van Diedenhoven, Bastiaan; ...

    2016-06-10

    Single-crystal images collected in mid-latitude cirrus are analyzed to provide internally consistent ice physical and optical properties for a size-resolved cloud microphysics model, including single-particle mass, projected area, fall speed, capacitance, single-scattering albedo, and asymmetry parameter. Using measurements gathered during two flights through a widespread synoptic cirrus shield, bullet rosettes are found to be the dominant identifiable habit among ice crystals with maximum dimension ( D max) greater than 100 µm. Properties are therefore first derived for bullet rosettes based on measurements of arm lengths and widths, then for aggregates of bullet rosettes and for unclassified (irregular) crystals. Derived bulletmore » rosette masses are substantially greater than reported in existing literature, whereas measured projected areas are similar or lesser, resulting in factors of 1.5–2 greater fall speeds, and, in the limit of large D max, near-infrared single-scattering albedo and asymmetry parameter ( g) greater by ~0.2 and 0.05, respectively. Furthermore, a model that includes commonly imaged side plane growth on bullet rosettes exhibits relatively little difference in microphysical and optical properties aside from ~0.05 increase in mid-visible g primarily attributable to plate aspect ratio. In parcel simulations, ice size distribution, and g are sensitive to assumed ice properties.« less

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shin, Jaejin; Woo, Jong-Hak; Mulchaey, John S.

    We perform a comprehensive study of X-ray cavities using a large sample of X-ray targets selected from the Chandra archive. The sample is selected to cover a large dynamic range including galaxy clusters, groups, and individual galaxies. Using β -modeling and unsharp masking techniques, we investigate the presence of X-ray cavities for 133 targets that have sufficient X-ray photons for analysis. We detect 148 X-ray cavities from 69 targets and measure their properties, including cavity size, angle, and distance from the center of the diffuse X-ray gas. We confirm the strong correlation between cavity size and distance from the X-raymore » center similar to previous studies. We find that the detection rates of X-ray cavities are similar among galaxy clusters, groups and individual galaxies, suggesting that the formation mechanism of X-ray cavities is independent of environment.« less

  1. Los Alamos Explosives Performance Key to Stockpile Stewardship

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dattelbaum, Dana

    2014-11-03

    As the U.S. Nuclear Deterrent ages, one essential factor in making sure that the weapons will continue to perform as designed is understanding the fundamental properties of the high explosives that are part of a nuclear weapons system. As nuclear weapons go through life extension programs, some changes may be advantageous, particularly through the addition of what are known as "insensitive" high explosives that are much less likely to accidentally detonate than the already very safe "conventional" high explosives that are used in most weapons. At Los Alamos National Laboratory explosives research includes a wide variety of both large- andmore » small-scale experiments that include small contained detonations, gas and powder gun firings, larger outdoor detonations, large-scale hydrodynamic tests, and at the Nevada Nuclear Security Site, underground sub-critical experiments.« less

  2. Intranasal delivery: physicochemical and therapeutic aspects.

    PubMed

    Costantino, Henry R; Illum, Lisbeth; Brandt, Gordon; Johnson, Paul H; Quay, Steven C

    2007-06-07

    Interest in intranasal (IN) administration as a non-invasive route for drug delivery continues to grow rapidly. The nasal mucosa offers numerous benefits as a target issue for drug delivery, such as a large surface area for delivery, rapid drug onset, potential for central nervous system delivery, and no first-pass metabolism. A wide variety of therapeutic compounds can be delivered IN, including relatively large molecules such as peptides and proteins, particularly in the presence of permeation enhancers. The current review provides an in-depth discussion of therapeutic aspects of IN delivery including consideration of the intended indication, regimen, and patient population, as well as physicochemical properties of the drug itself. Case examples are provided to illustrate the utility of IN dosing. It is anticipated that the present review will prove useful for formulation scientists considering IN delivery as a delivery route.

  3. Estimation of environment-related properties of chemicals for design of sustainable processes: development of group-contribution+ (GC+) property models and uncertainty analysis.

    PubMed

    Hukkerikar, Amol Shivajirao; Kalakul, Sawitree; Sarup, Bent; Young, Douglas M; Sin, Gürkan; Gani, Rafiqul

    2012-11-26

    The aim of this work is to develop group-contribution(+) (GC(+)) method (combined group-contribution (GC) method and atom connectivity index (CI) method) based property models to provide reliable estimations of environment-related properties of organic chemicals together with uncertainties of estimated property values. For this purpose, a systematic methodology for property modeling and uncertainty analysis is used. The methodology includes a parameter estimation step to determine parameters of property models and an uncertainty analysis step to establish statistical information about the quality of parameter estimation, such as the parameter covariance, the standard errors in predicted properties, and the confidence intervals. For parameter estimation, large data sets of experimentally measured property values of a wide range of chemicals (hydrocarbons, oxygenated chemicals, nitrogenated chemicals, poly functional chemicals, etc.) taken from the database of the US Environmental Protection Agency (EPA) and from the database of USEtox is used. For property modeling and uncertainty analysis, the Marrero and Gani GC method and atom connectivity index method have been considered. In total, 22 environment-related properties, which include the fathead minnow 96-h LC(50), Daphnia magna 48-h LC(50), oral rat LD(50), aqueous solubility, bioconcentration factor, permissible exposure limit (OSHA-TWA), photochemical oxidation potential, global warming potential, ozone depletion potential, acidification potential, emission to urban air (carcinogenic and noncarcinogenic), emission to continental rural air (carcinogenic and noncarcinogenic), emission to continental fresh water (carcinogenic and noncarcinogenic), emission to continental seawater (carcinogenic and noncarcinogenic), emission to continental natural soil (carcinogenic and noncarcinogenic), and emission to continental agricultural soil (carcinogenic and noncarcinogenic) have been modeled and analyzed. The application of the developed property models for the estimation of environment-related properties and uncertainties of the estimated property values is highlighted through an illustrative example. The developed property models provide reliable estimates of environment-related properties needed to perform process synthesis, design, and analysis of sustainable chemical processes and allow one to evaluate the effect of uncertainties of estimated property values on the calculated performance of processes giving useful insights into quality and reliability of the design of sustainable processes.

  4. Statistical Characterization of the Chandra Source Catalog

    NASA Astrophysics Data System (ADS)

    Primini, Francis A.; Houck, John C.; Davis, John E.; Nowak, Michael A.; Evans, Ian N.; Glotfelty, Kenny J.; Anderson, Craig S.; Bonaventura, Nina R.; Chen, Judy C.; Doe, Stephen M.; Evans, Janet D.; Fabbiano, Giuseppina; Galle, Elizabeth C.; Gibbs, Danny G.; Grier, John D.; Hain, Roger M.; Hall, Diane M.; Harbo, Peter N.; He, Xiangqun Helen; Karovska, Margarita; Kashyap, Vinay L.; Lauer, Jennifer; McCollough, Michael L.; McDowell, Jonathan C.; Miller, Joseph B.; Mitschang, Arik W.; Morgan, Douglas L.; Mossman, Amy E.; Nichols, Joy S.; Plummer, David A.; Refsdal, Brian L.; Rots, Arnold H.; Siemiginowska, Aneta; Sundheim, Beth A.; Tibbetts, Michael S.; Van Stone, David W.; Winkelman, Sherry L.; Zografou, Panagoula

    2011-06-01

    The first release of the Chandra Source Catalog (CSC) contains ~95,000 X-ray sources in a total area of 0.75% of the entire sky, using data from ~3900 separate ACIS observations of a multitude of different types of X-ray sources. In order to maximize the scientific benefit of such a large, heterogeneous data set, careful characterization of the statistical properties of the catalog, i.e., completeness, sensitivity, false source rate, and accuracy of source properties, is required. Characterization efforts of other large Chandra catalogs, such as the ChaMP Point Source Catalog or the 2 Mega-second Deep Field Surveys, while informative, cannot serve this purpose, since the CSC analysis procedures are significantly different and the range of allowable data is much less restrictive. We describe here the characterization process for the CSC. This process includes both a comparison of real CSC results with those of other, deeper Chandra catalogs of the same targets and extensive simulations of blank-sky and point-source populations.

  5. Apodized Pupil Lyot Coronagraphs for Arbitrary Apertures. II. Theoretical Properties and Application to Extremely Large Telescopes

    NASA Astrophysics Data System (ADS)

    Soummer, Rémi; Pueyo, Laurent; Ferrari, André; Aime, Claude; Sivaramakrishnan, Anand; Yaitskova, Natalia

    2009-04-01

    We study the application of Lyot coronagraphy to future Extremely Large Telescopes (ELTs), showing that Apodized Pupil Lyot Coronagraphs enable high-contrast imaging for exoplanet detection and characterization with ELTs. We discuss the properties of the optimal pupil apodizers for this application (generalized prolate spheroidal functions). The case of a circular aperture telescope with a central obstruction is considered in detail, and we discuss the effects of primary mirror segmentation and secondary mirror support structures as a function of the occulting mask size. In most cases where inner working distance is critical, e.g., for exoplanet detection, these additional features do not alter the solutions derived with just the central obstruction, although certain applications such as quasar-host galaxy coronagraphic observations could benefit from designs that explicitly accomodate ELT spider geometries. We illustrate coronagraphic designs for several ELT geometries including ESO/OWL, the Thirty Mirror Telescope, the Giant Magellan Telescope, and describe numerical methods for generating these designs.

  6. Accelerating image reconstruction in dual-head PET system by GPU and symmetry properties.

    PubMed

    Chou, Cheng-Ying; Dong, Yun; Hung, Yukai; Kao, Yu-Jiun; Wang, Weichung; Kao, Chien-Min; Chen, Chin-Tu

    2012-01-01

    Positron emission tomography (PET) is an important imaging modality in both clinical usage and research studies. We have developed a compact high-sensitivity PET system that consisted of two large-area panel PET detector heads, which produce more than 224 million lines of response and thus request dramatic computational demands. In this work, we employed a state-of-the-art graphics processing unit (GPU), NVIDIA Tesla C2070, to yield an efficient reconstruction process. Our approaches ingeniously integrate the distinguished features of the symmetry properties of the imaging system and GPU architectures, including block/warp/thread assignments and effective memory usage, to accelerate the computations for ordered subset expectation maximization (OSEM) image reconstruction. The OSEM reconstruction algorithms were implemented employing both CPU-based and GPU-based codes, and their computational performance was quantitatively analyzed and compared. The results showed that the GPU-accelerated scheme can drastically reduce the reconstruction time and thus can largely expand the applicability of the dual-head PET system.

  7. Brush-Like Polymers: New Design Platforms for Soft, Dry Materials with Unique Property Relations

    NASA Astrophysics Data System (ADS)

    Daniel, William Francis McKemie, Jr.

    Elastomers represent a unique class of engineering materials due to their light weight, low cost, and desirable combination of softness (105 -107 Pa) and large extensibilities (up to 1000%). Despite these advantages, there exist applications that require many times softer modulus, greater extensibility, and stronger strain hardening for the purpose of mimicking the mechanical properties of systems such as biological tissues. Until recently, only liquid-filled gels were suitable materials for such applications, including soft robotics and implants. A considerable amount of work has been done to create gels with superior properties, but despite unique strengths they also suffer from unique weaknesses. This class of material displays fundamental limitations in the form of heterogeneous structures, solvent loss and phase transitions at extreme temperatures, and loss of liquid fraction upon high deformations. In gels the solvent fraction also introduces a large solvent/polymer interaction parameter which must be carefully considered when designing the final mechanical properties. These energetic considerations further exaggerate the capacity for inconstant mechanical properties caused by fluctuations of the solvent fraction. In order to overcome these weaknesses, a new platform for single component materials with low modulus (<105 Pa) must be developed. Single component systems do not suffer from compositional changes over time and display more stable performance in a wider variety of temperatures and humidity conditions. A solvent-free system also has the potential to be homogeneous which replaces the large energetic interactions with comparatively small architectural interaction parameters. If a solvent-free alternative to liquid-filled gels is to be created, we must first consider the fundamental barrier to softer elastomers, i.e. entanglements - intrinsic topological restrains which define a lower limit of modulus ( 105 Pa). These entanglements are determined by chemistry specific parameters (repeat unit volume and Kuhn segment size) in the polymer liquid (melt) prior to crosslinking. Previous solvent free replacements for gels include elastomers end-linked in semidilute conditions. These materials are generated through crosslinking telechelic polymer chains in semidilute solutions at the onset of chain overlap. At such low polymer concentrations entanglements are greatly diluted and once the resulting gel is dried it creates a supersoft and super-elastic network. Although such methods have successfully generated materials with moduli below the 105 Pa limit and high extensibilities ( 1000%) they present their own limitations. Firstly, the semidilute crosslinking methods uses an impractically large volume of solvent which is unattractive in industry. Second, producing and crosslinking large monodisperse telechelic chains is a nontrivial process leading to large uncertainties in the final network architecture and properties. Specifically, telechelics have a distribution of end-to-end distances and in semidilute solutions with extremely low fraction of chain ends the crosslink reaction is diffusion limited, very slow, and imprecise. In order to achieve a superior solvent-free platform, we propose alteration of mechanical properties through the architectural disentanglement of brush-like polymer structures. In recent year there has been an increase in the synthetic conditions and crosslinking schemes available for producing brush-like structures. This makes brush-like materials an attractive alternative to more restrictive methods such as end-linking. Standard networks have one major control factor outside of chemistry, the network stand length. Brush-like architectures are created from long strands with regularly grafted side chains creating three characteristic length scales which may be independently manipulated. In collaboration with M. Rubinstein, we have utilized bottlebrush polymer architectures (a densely grafted brush-like polymer) to experimentally verify theoretical predictions of disentangled bottlebrush melts. By attaching well-defined side chains onto long polymer backbones, individual polymer strands are separated in space (similar to dilution with solvent) accompanied by a comparatively small increase in the rigidity of the strands. The end result is an architectural disentangled melt with an entanglement plateau modulus as much as three orders of magnitude lower than typical linear polymers and a broadly expanded potential for extensibility once crosslinked.

  8. The effects of heat treatment on some technological properties of Scots pine (Pinus sylvestris L.) wood.

    PubMed

    Korkut, Süleyman; Akgül, Mehmet; Dündar, Turker

    2008-04-01

    Heat treatment is often applied to wood species to improve their dimensional stability. This study examined the effect of heat treatment on certain mechanical properties of Scots pine (Pinus sylvestris L.), which has industrially high usage potential and large plantations in Turkey. Wood specimens obtained from Bolu, Turkey, were subjected to heat treatment under atmospheric pressure at varying temperatures (120, 150 and 180 degrees C) for varying durations (2, 6 and 10h). The test results of heat-treated Scots pine and control samples showed that technological properties including compression strength, bending strength, modulus of elasticity in bending, janka-hardness, impact bending strength and tension strength perpendicular to grain suffered with heat treatment, and increase in temperature and duration further diminished technological strength values of the wood specimens.

  9. Internal state variable plasticity-damage modeling of AISI 4140 steel including microstructure-property relations: temperature and strain rate effects

    NASA Astrophysics Data System (ADS)

    Nacif el Alaoui, Reda

    Mechanical structure-property relations have been quantified for AISI 4140 steel. under different strain rates and temperatures. The structure-property relations were used. to calibrate a microstructure-based internal state variable plasticity-damage model for. monotonic tension, compression and torsion plasticity, as well as damage evolution. Strong stress state and temperature dependences were observed for the AISI 4140 steel. Tension tests on three different notched Bridgman specimens were undertaken to study. the damage-triaxiality dependence for model validation purposes. Fracture surface. analysis was performed using Scanning Electron Microscopy (SEM) to quantify the void. nucleation and void sizes in the different specimens. The stress-strain behavior exhibited. a fairly large applied stress state (tension, compression dependence, and torsion), a. moderate temperature dependence, and a relatively small strain rate dependence.

  10. Continuum modeling of the mechanical and thermal behavior of discrete large structures

    NASA Technical Reports Server (NTRS)

    Nayfeh, A. H.; Hefzy, M. S.

    1980-01-01

    In the present paper we introduce a rather straightforward construction procedure in order to derive continuum equivalence of discrete truss-like repetitive structures. Once the actual structure is specified, the construction procedure can be outlined by the following three steps: (a) all sets of parallel members are identified, (b) unidirectional 'effective continuum' properties are derived for each of these sets and (c) orthogonal transformations are finally used to determine the contribution of each set to the 'overall effective continuum' properties of the structure. Here the properties includes mechanical (stiffnesses), thermal (coefficients of thermal expansions) and material densities. Once expanded descriptions of the steps (b) and (c) are done, the construction procedure will be applied to a wide variety of discrete structures and the results will be compared with those of other existing methods.

  11. Estimates of the effective compressive strength

    NASA Astrophysics Data System (ADS)

    Goldstein, R. V.; Osipenko, N. M.

    2017-07-01

    One problem encountered when determining the effective mechanical properties of large-scale objects, which requires calculating their strength in processes of mechanical interaction with other objects, is related to the possible variability in their local properties including those due to the action of external physical factors. Such problems comprise the determination of the effective strength of bodies one of whose dimensions (thickness) is significantly less than the others and whose properties and/or composition can vary with the thickness. A method for estimating the effective strength of such bodies is proposed and illustrated with example of ice cover strength under longitudinal compression with regard to a partial loss of the ice bearing capacity in deformation. The role of failure localization processes is shown. It is demonstrated that the proposed approach can be used in other problems of fracture mechanics.

  12. Properties of the moon, Mars, Martian satellites, and near-earth asteroids

    NASA Technical Reports Server (NTRS)

    Taylor, Jeffrey G.

    1989-01-01

    Environments and surface properties of the moon, Mars, Martian satellites, and near-earth asteroids are discussed. Topics include gravity, atmospheres, surface properties, surface compositions, seismicity, radiation environment, degradation, use of robotics, and environmental impacts. Gravity fields vary from large fractions of the earth's field such as 1/3 on Mars and 1/6 on the moon to smaller fractions of 0.0004 g on an asteroid 1 km in diameter. Spectral data and the analogy with meteor compositions suggest that near-earth asteroids may contain many resources such as water-rich carbonaceous materials and iron-rich metallic bodies. It is concluded that future mining and materials processing operations from extraterrestrial bodies require an investment now in both (1) missions to the moon, Mars, Phobos, Deimos, and near-earth asteroids and (2) earth-based laboratory research in materials and processing.

  13. Predicting the performance of a power amplifier using large-signal circuit simulations of an AlGaN/GaN HFET model

    NASA Astrophysics Data System (ADS)

    Bilbro, Griff L.; Hou, Danqiong; Yin, Hong; Trew, Robert J.

    2009-02-01

    We have quantitatively modeled the conduction current and charge storage of an HFET in terms its physical dimensions and material properties. For DC or small-signal RF operation, no adjustable parameters are necessary to predict the terminal characteristics of the device. Linear performance measures such as small-signal gain and input admittance can be predicted directly from the geometric structure and material properties assumed for the device design. We have validated our model at low-frequency against experimental I-V measurements and against two-dimensional device simulations. We discuss our recent extension of our model to include a larger class of electron velocity-field curves. We also discuss the recent reformulation of our model to facilitate its implementation in commercial large-signal high-frequency circuit simulators. Large signal RF operation is more complex. First, the highest CW microwave power is fundamentally bounded by a brief, reversible channel breakdown in each RF cycle. Second, the highest experimental measurements of efficiency, power, or linearity always require harmonic load pull and possibly also harmonic source pull. Presently, our model accounts for these facts with an adjustable breakdown voltage and with adjustable load impedances and source impedances for the fundamental frequency and its harmonics. This has allowed us to validate our model for large signal RF conditions by simultaneously fitting experimental measurements of output power, gain, and power added efficiency of real devices. We show that the resulting model can be used to compare alternative device designs in terms of their large signal performance, such as their output power at 1dB gain compression or their third order intercept points. In addition, the model provides insight into new device physics features enabled by the unprecedented current and voltage levels of AlGaN/GaN HFETs, including non-ohmic resistance in the source access regions and partial depletion of the 2DEG in the drain access region.

  14. The Development and Evaluation of the Psychometric Properties of the Negative Beliefs about Post-Event Processing Scale.

    PubMed

    Rodriguez, Hayley; Kissell, Kellie; Lucas, Lloyd; Fisak, Brian

    2017-11-01

    Although negative beliefs have been found to be associated with worry symptoms and depressive rumination, negative beliefs have yet to be examined in relation to post-event processing and social anxiety symptoms. The purpose of the current study was to examine the psychometric properties of the Negative Beliefs about Post-Event Processing Questionnaire (NB-PEPQ). A large, non-referred undergraduate sample completed the NB-PEPQ along with validation measures, including a measure of post-event processing and social anxiety symptoms. Based on factor analysis, a single-factor model was obtained, and the NB-PEPQ was found to exhibit good validity, including positive associations with measures of post-event processing and social anxiety symptoms. These findings add to the literature on the metacognitive variables that may lead to the development and maintenance of post-event processing and social anxiety symptoms, and have relevant clinical applications.

  15. A supramolecular biomimetic skin combining a wide spectrum of mechanical properties and multiple sensory capabilities.

    PubMed

    Lei, Zhouyue; Wu, Peiyi

    2018-03-19

    Biomimetic skin-like materials, capable of adapting shapes to variable environments and sensing external stimuli, are of great significance in a wide range of applications, including artificial intelligence, soft robotics, and smart wearable devices. However, such highly sophisticated intelligence has been mainly found in natural creatures while rarely realized in artificial materials. Herein, we fabricate a type of biomimetic iontronics to imitate natural skins using supramolecular polyelectrolyte hydrogels. The dynamic viscoelastic networks provide the biomimetic skin with a wide spectrum of mechanical properties, including flexible reconfiguration ability, robust elasticity, extremely large stretchability, autonomous self-healability, and recyclability. Meanwhile, polyelectrolytes' ionic conductivity allows multiple sensory capabilities toward temperature, strain, and stress. This work provides not only insights into dynamic interactions and sensing mechanism of supramolecular iontronics, but may also promote the development of biomimetic skins with sophisticated intelligence similar to natural skins.

  16. Twice as smart behavior of tert-butylthiacalix[4]arene derivative in glassy and crystalline form.

    PubMed

    Gataullina, K V; Ziganshin, M A; Stoikov, I I; Gubaidullin, A T; Gorbatchuk, V V

    2015-06-28

    A studied tert-butylthiacalix[4]arene derivative with four N-(2-acetoxyethyl)carbamoylmethoxy substituents on its lower rim in partial-cone configuration (calixarene 1) can remember its previous treatment in three essentially different ways by the formation either of a molecular glass or two metastable polymorphs after heating or the removal of an included guest molecule. Guest-induced memory is very selective with a polymorph created only after the release of a few included guests among a large series of those studied and is detected via an exothermic transition. Along with ordinary properties, like glass transition, curing and cold crystallization, the molecular glass from 1 is selective due to its ability to crystallize in solvent vapors and vapor mixtures over a well-defined concentration range. Being cooperative, this property may be used for the visual detection of ethanol content in water solution when it reaches a threshold value.

  17. Corporations now included under Section 189

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arlinghaus, B.P.; Anderson, D.T.

    1983-12-01

    This article examines some of the issues, including the ''real property'' question, that corporations may encounter in implementing the provisions of Code Section 189 and its regulations. The extension of 189 to regular corporations represents a significant change in congressional intent, since it was originally enacted as a reform measure and is now primarily a provision to raise revenue at a time when Congress is facing a large dificit. Code Section 189 was conceived and enacted in haste, however, and this expansion will undoubtedly have an adverse impact on capital investment at a time when stimulation is needed for themore » economy as a whole. The workload of the courts and the Internal Revenue Service will certainly increase. Careful drafting of the regulations could anticipate potential issues and clarify them in the drafting stage. The meaning of real property, capitalization rate, capitalization period, and self-constructed assets all need to be carefully addressed. 18 references.« less

  18. MAVEN Observations of Dayside Peak Electron Densities in the Ionosphere of Mars

    NASA Astrophysics Data System (ADS)

    Vogt, M. F.; Withers, P.; Andersson, L.; Mahaffy, P. R.; Benna, M.; Elrod, M. K.; Connerney, J. E. P.; Espley, J. R.; Eparvier, F. G.; Jakosky, B. M.

    2016-12-01

    The peak electron density in the dayside Martian ionosphere is a valuable diagnostic of the state of the ionosphere. Its dependence on factors like the solar zenith angle, ionizing solar irradiance, neutral scale height, and electron temperature has been well studied. The MAVEN spacecraft's September 2015 "deep dip" orbits, in which the orbital periapsis is lowered to 120 km, provided our first opportunity since Viking to sample in situ a complete dayside electron density profiles including the main peak, and the first observations with contemporaneous comprehensive measurements of the local plasma and magnetic field properties. We have analyzed the peak electron density measurements from the MAVEN deep dip orbits and will discuss their variability with various ionospheric properties, including the proximity to regions of large crustal magnetic fields, and external drivers. We will also present observations of the electron temperature and atmospheric neutral and ion composition at the altitude of the peak electron density.

  19. Structure and dynamics of the UO(2)(2+) ion in aqueous solution: an ab initio QMCF MD study.

    PubMed

    Frick, Robert J; Hofer, Thomas S; Pribil, Andreas B; Randolf, Bernhard R; Rode, Bernd M

    2009-11-12

    A comprehensive theoretical investigation on the structure and dynamics of the UO(2)(2+) ion in aqueous solution using double-zeta HF level quantum mechanical charge field molecular dynamics is presented. The quantum mechanical region includes two full layers of hydration and is embedded in a large box of explicitly treated water to achieve a realistic environment. A number of different functions, including segmential, radial, and angular distribution functions, are employed together with tilt- and Theta-angle distribution functions to describe the complex structural properties of this ion. These data were compared to recent experimental data obtained from LAXS and EXAFS and results of various theoretical calculations. Some properties were explained with the aid of charge distribution plots for the solute. The solvent dynamics around the ion were investigated using distance plots and mean ligand residence times and the results compared to experimental and theoretical data of related ions.

  20. Role of Gravity Waves in Determining Cirrus Cloud Properties

    NASA Technical Reports Server (NTRS)

    OCStarr, David; Singleton, Tamara; Lin, Ruei-Fong

    2008-01-01

    Cirrus clouds are important in the Earth's radiation budget. They typically exhibit variable physical properties within a given cloud system and from system to system. Ambient vertical motion is a key factor in determining the cloud properties in most cases. The obvious exception is convectively generated cirrus (anvils), but even in this case, the subsequent cloud evolution is strongly influenced by the ambient vertical motion field. It is well know that gravity waves are ubiquitous in the atmosphere and occur over a wide range of scales and amplitudes. Moreover, researchers have found that inclusion of statistical account of gravity wave effects can markedly improve the realism of simulations of persisting large-scale cirrus cloud features. Here, we use a 1 -dimensional (z) cirrus cloud model, to systematically examine the effects of gravity waves on cirrus cloud properties. The model includes a detailed representation of cloud microphysical processes (bin microphysics and aerosols) and is run at relatively fine vertical resolution so as to adequately resolve nucleation events, and over an extended time span so as to incorporate the passage of multiple gravity waves. The prescribed gravity waves "propagate" at 15 m s (sup -1), with wavelengths from 5 to 100 km, amplitudes range up to 1 m s (sup -1)'. Despite the fact that the net gravity wave vertical motion forcing is zero, it will be shown that the bulk cloud properties, e.g., vertically-integrated ice water path, can differ quite significantly from simulations without gravity waves and that the effects do depend on the wave characteristics. We conclude that account of gravity wave effects is important if large-scale models are to generate realistic cirrus cloud property climatology (statistics).

  1. Earthquake damage to transportation systems

    USGS Publications Warehouse

    McCullough, Heather

    1994-01-01

    Earthquakes represent one of the most destructive natural hazards known to man. A large magnitude earthquake near a populated area can affect residents over thousands of square kilometers and cause billions of dollars in property damage. Such an event can kill or injure thousands of residents and disrupt the socioeconomic environment for months, sometimes years. A serious result of a large-magnitude earthquake is the disruption of transportation systems, which limits post-disaster emergency response. Movement of emergency vehicles, such as police cars, fire trucks and ambulances, is often severely restricted. Damage to transportation systems is categorized below by cause including: ground failure, faulting, vibration damage, and tsunamis.

  2. Current developments in optical engineering and commercial optics; Proceedings of the Meeting, San Diego, CA, Aug. 7-11, 1989

    NASA Technical Reports Server (NTRS)

    Fischer, Robert E. (Editor); Pollicove, Harvey M. (Editor); Smith, Warren J. (Editor)

    1989-01-01

    Various papers on current developments in optical engineering and commercial optics are presented. Individual topics addressed include: large optics fabrication technology drivers and new manufacturing techniques, new technology for beryllium mirror production, design examples of hybrid refractive-diffractive lenses, optical sensor designs for detecting cracks in optical materials, retroreflector field-of-view properties for open and solid cube corners, correction of misalignment-dependent aberrations of the HST via phase retrieval, basic radiometry review for seeker test set, radiation effects on visible optical elements, and nonlinear simulation of efficiency for large-orbit nonwiggler FELs.

  3. Applications of the Electrodynamic Tether to Interstellar Travel

    NASA Technical Reports Server (NTRS)

    Matloff, Gregory L.; Johnson, Les

    2005-01-01

    After considering relevant properties of the local interstellar medium and defining a sample interstellar mission, this paper considers possible interstellar applications of the electrodynamic tether, or EDT. These include use of the EDT to provide on-board power and affect trajectory modifications and direct application of the EDT to starship acceleration. It is demonstrated that comparatively modest EDTs can provide substantial quantities of on-board power, if combined with a large-area electron-collection device such as the Cassenti toroidal-field ramscoop. More substantial tethers can be used to accomplish large-radius thrustless turns. Direct application of the EDT to starship acceleration is apparently infeasible.

  4. Sapphire Multiple Filament and Large Plate Growth Processes

    DTIC Science & Technology

    1972-10-01

    This is necessary to obtain proper belt tracking. The belts themselves are a silicone / glass fabric manufactured by Dodge Industries, Hoosick Falls...New York. This material is an extremely fine weave fiberglass cloth which is impregnated with silicone rubber. Its properties include high yield...by bonding together (with a silicone adhesive) two 0.010-in. thick strips of Dodge M301 silicone /glass fabric terminating in an angled butt joint to

  5. Experimental Program to Stimulate Competitive Research (EPSCoR)

    NASA Technical Reports Server (NTRS)

    Dingerson, Michael R.

    1997-01-01

    Report includes: (1) CLUSTER: "Studies in Macromolecular Behavior in Microgravity Environment": The Role of Protein Oligomers in Protein Crystallization; Phase Separation Phenomena in Microgravity; Traveling Front Polymerizations; Investigating Mechanisms Affecting Phase Transition Response and Changes in Thermal Transport Properties in ER-Fluids under Normal and Microgravity Conditions. (2) CLUSTER: "Computational/Parallel Processing Studies": Flows in Local Chemical Equilibrium; A Computational Method for Solving Very Large Problems; Modeling of Cavitating Flows.

  6. Carbon Nanotubes: Miracle of Materials Science?

    NASA Technical Reports Server (NTRS)

    Files, Bradley S.; Mayeaux, Brian M.

    1999-01-01

    Article to be sent to Advanced Materials and Processes, journal of ASM International, as attached. This is a news-type technical journal for a large organization of scientists, engineers, salesmen, and managers. The article is quite general, meant to be an introduction to the properties of nanotubes. This is a materials science organization, therefore the article is geared toward using nanotubes for materials uses. Pictures have not been included in this version.

  7. The international water conference proceedings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guseman, J.R.

    1984-10-01

    This book provides information on computer applications to water chemistry control, groundwater, membrane technology, instrumentation/analytical techniques and ion exchange. Other topics of discussion include cooling water, biocontrol, the hydraulic properties of ion exchange resins, steam electric power plant aqueous discharges and colorimetric determination of trace benzotriazole or tolytriazole. Water chemistry guidelines for large steam generating power plants is discussed, as well as wastewater treatment, boiler water conditioning and ion exchange/computer related topics.

  8. Remote Sensing of Ocean Color in the Arctic: Algorithm Development and Comparative Validation. Chapter 9

    NASA Technical Reports Server (NTRS)

    Cota, Glenn F.

    2001-01-01

    The overall goal of this effort is to acquire a large bio-optical database, encompassing most environmental variability in the Arctic, to develop algorithms for phytoplankton biomass and production and other optically active constituents. A large suite of bio-optical and biogeochemical observations have been collected in a variety of high latitude ecosystems at different seasons. The Ocean Research Consortium of the Arctic (ORCA) is a collaborative effort between G.F. Cota of Old Dominion University (ODU), W.G. Harrison and T. Platt of the Bedford Institute of Oceanography (BIO), S. Sathyendranath of Dalhousie University and S. Saitoh of Hokkaido University. ORCA has now conducted 12 cruises and collected over 500 in-water optical profiles plus a variety of ancillary data. Observational suites typically include apparent optical properties (AOPs), inherent optical property (IOPs), and a variety of ancillary observations including sun photometry, biogeochemical profiles, and productivity measurements. All quality-assured data have been submitted to NASA's SeaWIFS Bio-Optical Archive and Storage System (SeaBASS) data archive. Our algorithm development efforts address most of the potential bio-optical data products for the Sea-Viewing Wide Field-of-view Sensor (SeaWiFS), Moderate Resolution Imaging Spectroradiometer (MODIS), and GLI, and provides validation for a specific areas of concern, i.e., high latitudes and coastal waters.

  9. Prediction on dielectric strength and boiling point of gaseous molecules for replacement of SF6.

    PubMed

    Yu, Xiaojuan; Hou, Hua; Wang, Baoshan

    2017-04-15

    Developing the environment-friendly insulation gases to replace sulfur hexafluoride (SF 6 ) has attracted considerable experimental and theoretical attentions but without success. A computational methodology was presented herein for prediction on dielectric strength and boiling point of arbitrary gaseous molecules in the purpose of molecular design and screening. New structure-activity relationship (SAR) models have been established by combining the density-dependent properties of the electrostatic potential surface, including surface area and the statistical variance of the surface potentials, with the molecular properties including polarizability, electronegativity, and hardness. All the descriptors in the SAR models were calculated using density functional theory. The substitution effect of SF 6 by various functional groups was studied systematically. It was found that CF 3 is the most effective functional group to improve the dielectric strength due to the large surface area and polarizability. However, all the substitutes exhibit higher boiling points than SF 6 because the molecular hardness decreases. The balance between E r and T b could be achieved by minimizing the local polarity of the molecules. SF 5 CN and SF 5 CFO were found to be the potent candidates to replace SF 6 in view of their large dielectric strengths and low boiling points. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  10. Aerogels Derived from Polymer Nanofibers and Their Applications.

    PubMed

    Qian, Zhenchao; Wang, Zhen; Zhao, Ning; Xu, Jian

    2018-03-08

    Aerogels are gels in which the solvent is supplanted by air while the pores and networks are largely maintained. Owing to their low bulk density, high porosity, and large specific surface area (SSA), aerogels are promising for many applications. Various inorganic aerogels, e.g., silica aerogels, are intensively studied. However, the mechanical brittleness of common inorganic aerogels has seriously restricted their applications. In the past decade, nanofibers have been developed as building blocks for the construction of aerogels to improve their mechanical property. Unlike traditional frameworks constructed by interconnected particles, nanofibers can form chemically cross-linked and/or physically entangled 3D skeletons, thus showing flexibility instead of brittleness. Therefore, excellent elasticity and toughness, ultralow density, high SSA, and tunable chemical composition can be expected for the polymer nanofiber-derived aerogels (PNAs). In this review, recent research progress in the fabrication, properties, and applications of PNAs is summarized. Various nanofibers, including nanocelluloses, nanochitins, and electrospun nanofibers are included, as well as carbon nanofibers from the corresponding organic precursors. Typical applications in supercapacitors, electrocatalysts for oxygen reduction reaction, flexible electrodes, oil absorbents, adsorbents, tissue engineering, stimuli-responsive materials, and catalyst carriers, are presented. Finally, the challenges and future development of PNAs are discussed. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Blaise Collin

    The Idaho National Laboraroty (INL) PARFUME (particle fuel model) code was used to assess the overall fuel performance of uranium nitride (UN) tristructural isotropic (TRISO) ceramic fuel under irradiation conditions typical of a Light Water Reactor (LWR). The dimensional changes of the fuel particle layers and kernel were calculated, including the formation of an internal gap. The survivability of the UN TRISO particle was estimated depending on the strain behavior of the constituent materials at high fast fluence and burn up. For nominal cases, internal gas pressure and representative thermal profiles across the kernel and layers were determined along withmore » stress levels in the inner and outer pyrolytic carbon (IPyC/OPyC) and silicon carbide (SiC) layers. These parameters were then used to evaluate fuel particle failure probabilities. Results of the study show that the survivability of UN TRISO fuel under LWR irradiation conditions might only be guaranteed if the kernel and PyC swelling rates are limited at high fast fluence and burn up. These material properties have large uncertainties at the irradiation levels expected to be reached by UN TRISO fuel in LWRs. Therefore, a large experimental effort would be needed to establish material properties, including kernel and PyC swelling rates, under these conditions before definitive conclusions can be drawn on the behavior of UN TRISO fuel in LWRs.« less

  12. Spatiotemporal property and predictability of large-scale human mobility

    NASA Astrophysics Data System (ADS)

    Zhang, Hai-Tao; Zhu, Tao; Fu, Dongfei; Xu, Bowen; Han, Xiao-Pu; Chen, Duxin

    2018-04-01

    Spatiotemporal characteristics of human mobility emerging from complexity on individual scale have been extensively studied due to the application potential on human behavior prediction and recommendation, and control of epidemic spreading. We collect and investigate a comprehensive data set of human activities on large geographical scales, including both websites browse and mobile towers visit. Numerical results show that the degree of activity decays as a power law, indicating that human behaviors are reminiscent of scale-free random walks known as Lévy flight. More significantly, this study suggests that human activities on large geographical scales have specific non-Markovian characteristics, such as a two-segment power-law distribution of dwelling time and a high possibility for prediction. Furthermore, a scale-free featured mobility model with two essential ingredients, i.e., preferential return and exploration, and a Gaussian distribution assumption on the exploration tendency parameter is proposed, which outperforms existing human mobility models under scenarios of large geographical scales.

  13. Visual attention mitigates information loss in small- and large-scale neural codes

    PubMed Central

    Sprague, Thomas C; Saproo, Sameer; Serences, John T

    2015-01-01

    Summary The visual system transforms complex inputs into robust and parsimonious neural codes that efficiently guide behavior. Because neural communication is stochastic, the amount of encoded visual information necessarily decreases with each synapse. This constraint requires processing sensory signals in a manner that protects information about relevant stimuli from degradation. Such selective processing – or selective attention – is implemented via several mechanisms, including neural gain and changes in tuning properties. However, examining each of these effects in isolation obscures their joint impact on the fidelity of stimulus feature representations by large-scale population codes. Instead, large-scale activity patterns can be used to reconstruct representations of relevant and irrelevant stimuli, providing a holistic understanding about how neuron-level modulations collectively impact stimulus encoding. PMID:25769502

  14. Quantifying hyporheic exchange dynamics in a highly regulated large river reach.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hammond, Glenn Edward; Zhou, T; Huang, M

    Hyporheic exchange is an important mechanism taking place in riverbanks and riverbed sediments, where river water and shallow groundwater mix and interact with each other. The direction, magnitude, and residence time of the hyporheic flux that penetrates the river bed are critical for biogeochemical processes such as carbon and nitrogen cycling, and biodegradation of organic contaminants. Many approaches including field measurements and numerical methods have been developed to quantify the hyporheic exchanges in relatively small rivers. However, the spatial and temporal distributions of hyporheic exchanges in a large, regulated river reach remain less explored due to the large spatial domains,more » complexity of geomorphologic features and subsurface properties, and the great pressure gradient variations at the riverbed created by dam operations.« less

  15. High performance semantic factoring of giga-scale semantic graph databases.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    al-Saffar, Sinan; Adolf, Bob; Haglin, David

    2010-10-01

    As semantic graph database technology grows to address components ranging from extant large triple stores to SPARQL endpoints over SQL-structured relational databases, it will become increasingly important to be able to bring high performance computational resources to bear on their analysis, interpretation, and visualization, especially with respect to their innate semantic structure. Our research group built a novel high performance hybrid system comprising computational capability for semantic graph database processing utilizing the large multithreaded architecture of the Cray XMT platform, conventional clusters, and large data stores. In this paper we describe that architecture, and present the results of our deployingmore » that for the analysis of the Billion Triple dataset with respect to its semantic factors, including basic properties, connected components, namespace interaction, and typed paths.« less

  16. Hard substrate in the deep ocean: How sediment features influence epibenthic megafauna on the eastern Canadian margin

    NASA Astrophysics Data System (ADS)

    Lacharité, Myriam; Metaxas, Anna

    2017-08-01

    Benthic habitats on deep continental margins (> 1000 m) are now considered heterogeneous - in particular because of the occasional presence of hard substrate in a matrix of sand and mud - influencing the distribution of megafauna which can thrive on both sedimented and rocky substrates. At these depths, optical imagery captured with high-definition cameras to describe megafauna can also describe effectively the fine-scale sediment properties in the immediate vicinity of the fauna. In this study, we determined the relationship between local heterogeneity (10-100 sm) in fine-scale sediment properties and the abundance, composition, and diversity of megafauna along a large depth gradient (1000-3000 m) in a previously-unexplored habitat: the Northeast Fan, which lies downslope of submarine canyons off the Gulf of Maine (northwest Atlantic). Substrate heterogeneity was quantified using a novel approach based on principles of computer vision. This approach proved powerful in detecting gradients in sediment, and sporadic complex features (i.e. large boulders) in an otherwise homogeneous environment because it characterizes sediment properties on a continuous scale. Sediment heterogeneity influenced megafaunal diversity (morphospecies richness and Shannon-Wiener Index) and community composition, with areas of higher substrate complexity generally supported higher diversity. However, patterns in abundance were not influenced by sediment properties, and may be best explained by gradients in food supply. Our study provides a new approach to quantify fine-scale sediment properties and assess their role in shaping megafaunal communities in the deep sea, which should be included into habitat studies given their potential ecological importance.

  17. Improved Saturated Hydraulic Conductivity Pedotransfer Functions Using Machine Learning Methods

    NASA Astrophysics Data System (ADS)

    Araya, S. N.; Ghezzehei, T. A.

    2017-12-01

    Saturated hydraulic conductivity (Ks) is one of the fundamental hydraulic properties of soils. Its measurement, however, is cumbersome and instead pedotransfer functions (PTFs) are often used to estimate it. Despite a lot of progress over the years, generic PTFs that estimate hydraulic conductivity generally don't have a good performance. We develop significantly improved PTFs by applying state of the art machine learning techniques coupled with high-performance computing on a large database of over 20,000 soils—USKSAT and the Florida Soil Characterization databases. We compared the performance of four machine learning algorithms (k-nearest neighbors, gradient boosted model, support vector machine, and relevance vector machine) and evaluated the relative importance of several soil properties in explaining Ks. An attempt is also made to better account for soil structural properties; we evaluated the importance of variables derived from transformations of soil water retention characteristics and other soil properties. The gradient boosted models gave the best performance with root mean square errors less than 0.7 and mean errors in the order of 0.01 on a log scale of Ks [cm/h]. The effective particle size, D10, was found to be the single most important predictor. Other important predictors included percent clay, bulk density, organic carbon percent, coefficient of uniformity and values derived from water retention characteristics. Model performances were consistently better for Ks values greater than 10 cm/h. This study maximizes the extraction of information from a large database to develop generic machine learning based PTFs to estimate Ks. The study also evaluates the importance of various soil properties and their transformations in explaining Ks.

  18. Lesion bypass activity of DNA polymerase θ (POLQ) is an intrinsic property of the pol domain and depends on unique sequence inserts.

    PubMed

    Hogg, Matthew; Seki, Mineaki; Wood, Richard D; Doublié, Sylvie; Wallace, Susan S

    2011-01-21

    DNA polymerase θ (POLQ, polθ) is a large, multidomain DNA polymerase encoded in higher eukaryotic genomes. It is important for maintaining genetic stability in cells and helping protect cells from DNA damage caused by ionizing radiation. POLQ contains an N-terminal helicase-like domain, a large central domain of indeterminate function, and a C-terminal polymerase domain with sequence similarity to the A-family of DNA polymerases. The enzyme has several unique properties, including low fidelity and the ability to insert and extend past abasic sites and thymine glycol lesions. It is not known whether the abasic site bypass activity is an intrinsic property of the polymerase domain or whether helicase activity is also required. Three "insertion" sequence elements present in POLQ are not found in any other A-family DNA polymerase, and it has been proposed that they may lend some unique properties to POLQ. Here, we analyzed the activity of the DNA polymerase in the absence of each sequence insertion. We found that the pol domain is capable of highly efficient bypass of abasic sites in the absence of the helicase-like or central domains. Insertion 1 increases the processivity of the polymerase but has little, if any, bearing on the translesion synthesis properties of the enzyme. However, removal of insertions 2 and 3 reduces activity on undamaged DNA and completely abrogates the ability of the enzyme to bypass abasic sites or thymine glycol lesions. Copyright © 2010 Elsevier Ltd. All rights reserved.

  19. Radiometric Normalization of Large Airborne Image Data Sets Acquired by Different Sensor Types

    NASA Astrophysics Data System (ADS)

    Gehrke, S.; Beshah, B. T.

    2016-06-01

    Generating seamless mosaics of aerial images is a particularly challenging task when the mosaic comprises a large number of im-ages, collected over longer periods of time and with different sensors under varying imaging conditions. Such large mosaics typically consist of very heterogeneous image data, both spatially (different terrain types and atmosphere) and temporally (unstable atmo-spheric properties and even changes in land coverage). We present a new radiometric normalization or, respectively, radiometric aerial triangulation approach that takes advantage of our knowledge about each sensor's properties. The current implementation supports medium and large format airborne imaging sensors of the Leica Geosystems family, namely the ADS line-scanner as well as DMC and RCD frame sensors. A hierarchical modelling - with parameters for the overall mosaic, the sensor type, different flight sessions, strips and individual images - allows for adaptation to each sensor's geometric and radiometric properties. Additional parameters at different hierarchy levels can compensate radiome-tric differences of various origins to compensate for shortcomings of the preceding radiometric sensor calibration as well as BRDF and atmospheric corrections. The final, relative normalization is based on radiometric tie points in overlapping images, absolute radiometric control points and image statistics. It is computed in a global least squares adjustment for the entire mosaic by altering each image's histogram using a location-dependent mathematical model. This model involves contrast and brightness corrections at radiometric fix points with bilinear interpolation for corrections in-between. The distribution of the radiometry fixes is adaptive to each image and generally increases with image size, hence enabling optimal local adaptation even for very long image strips as typi-cally captured by a line-scanner sensor. The normalization approach is implemented in HxMap software. It has been successfully applied to large sets of heterogeneous imagery, including the adjustment of original sensor images prior to quality control and further processing as well as radiometric adjustment for ortho-image mosaic generation.

  20. Measured Noise from Small Unmanned Aerial Vehicles

    NASA Technical Reports Server (NTRS)

    Cabell, Randolph; McSwain, Robert; Grosveld, Ferdinand

    2016-01-01

    Proposed uses of small unmanned aerial vehicles (UAVs), including home package delivery, have the potential to expose large portions of communities to a new noise source. This paper discusses results of flyover noise measurements of four small UAVs, including an internal combustion-powered model airplane and three battery-powered multicopters. Basic noise characteristics of these vehicles are discussed, including spectral properties and sound level metrics such as sound pressure level, effective perceived noise level, and sound exposure level. The size and aerodynamic characteristics of the multicopters in particular make their flight path susceptible to atmospheric disturbances such as wind gusts. These gusts, coupled with a flight control system that varies rotor speed to maintain vehicle stability, create an unsteady acoustic signature. The spectral variations resulting from this unsteadiness are explored, in both hover and flyover conditions for the multicopters. The time varying noise, which differs from the relatively steady noise generated by large transport aircraft, may complicate the prediction of human annoyance using conventional sound level metrics.

  1. An Experimental Investigation of the Laminar Flamelet Concept for Soot Properties

    NASA Technical Reports Server (NTRS)

    Diez, F. J.; Aalburg, C.; Sunderland, P. B.; Urban, D. L.; Yuan, Z.-G.; Faeth, G. M.

    2007-01-01

    The soot properties of round, nonbuoyant, laminar jet diffusion flames are described, based on experiments at microgravity carried out on orbit during three flights of the Space Shuttle Columbia, (Flights STS-83, 94 and 107). Experimental conditions included ethylene- and propane-fueled flames burning in still air at an ambient temperature of 300 K and ambient pressures of 35-100 kPa. Measurements included soot volume fraction distributions using deconvoluted laser extinction imaging, and soot temperature distributions using deconvoluted multiline emission imaging. Flowfield modeling based on the work of Spalding is presented. The present work explores whether soot properties of these flames are universal functions of mixture fraction, i.e., whether they satisfy soot state relationships. Measurements are presented, including radiative emissions and distributions of soot temperature and soot volume fraction. It is shown that most of the volume of these flames is bounded by the dividing streamline and thus should follow residence time state relationships. Most streamlines from the fuel supply to the surroundings are found to exhibit nearly the same maximum soot volume fraction and temperature. The radiation intensity along internal streamlines also is found to have relatively uniform values. Finally, soot state relationships were observed, i.e., soot volume fraction was found to correlate with estimated mixture fraction for each fuel/pressure selection. These results support the existence of soot property state relationships for steady nonbuoyant laminar diffusion flames, and thus in a large class of practical turbulent diffusion flames through the application of the laminar flamelet concept.

  2. Exploring the relationship between exposure to technological and gastrointestinal stress and probiotic functional properties of lactobacilli and bifidobacteria.

    PubMed

    Amund, O D

    2016-09-01

    Strains of Lactobacillus and Bifidobacterium are considered probiotic because of their associated potential health benefits. Probiotics are commonly administered orally via incorporation into food products. Microorganisms for use as probiotics encounter stress conditions, which include acid, bile, osmotic, oxidative, heat and cold stresses. These can occur during processing and storage and during passage through the gastrointestinal tract, and can affect viability. Probiotic bacteria have to remain viable to confer any health benefits. Therefore, the ability to withstand technological and gastrointestinal stresses is crucial probiotic selection criteria. While the stress tolerance mechanisms of lactobacilli and bifidobacteria are largely understood, the impact of exposure to stressful conditions on the functional properties of surviving probiotic microorganisms is not clear. This review explores the potentially positive and negative relationships between exposure to stress conditions and probiotic functional properties, such as resistance to gastric acid and bile, adhesion and colonization potential, and tolerance to antibiotics. Protective strategies can be employed to combat negative effects of stress on functional properties. However, further research is needed to ascertain synergistic relationships between exposure to stress and probiotic properties.

  3. Dynamic defect correlations dominate activated electronic transport in SrTiO3

    PubMed Central

    Snijders, Paul C.; Şen, Cengiz; McConnell, Michael P.; Ma, Ying-Zhong; May, Andrew F.; Herklotz, Andreas; Wong, Anthony T.; Ward, T. Zac

    2016-01-01

    Strontium titanate (SrTiO3, STO) is a critically important material for the study of emergent electronic phases in complex oxides, as well as for the development of applications based on their heterostructures. Despite the large body of knowledge on STO, there are still many uncertainties regarding the role of defects in the properties of STO, including their influence on ferroelectricity in bulk STO and ferromagnetism in STO-based heterostructures. We present a detailed analysis of the decay of persistent photoconductivity in STO single crystals with defect concentrations that are relatively low but significantly affect their electronic properties. The results show that photo-activated electron transport cannot be described by a superposition of the properties due to independent point defects as current models suggest but is, instead, governed by defect complexes that interact through dynamic correlations. These results emphasize the importance of defect correlations for activated electronic transport properties of semiconducting and insulating perovskite oxides. PMID:27443503

  4. Modeling the internal combustion engine

    NASA Technical Reports Server (NTRS)

    Zeleznik, F. J.; Mcbride, B. J.

    1985-01-01

    A flexible and computationally economical model of the internal combustion engine was developed for use on large digital computer systems. It is based on a system of ordinary differential equations for cylinder-averaged properties. The computer program is capable of multicycle calculations, with some parameters varying from cycle to cycle, and has restart capabilities. It can accommodate a broad spectrum of reactants, permits changes in physical properties, and offers a wide selection of alternative modeling functions without any reprogramming. It readily adapts to the amount of information available in a particular case because the model is in fact a hierarchy of five models. The models range from a simple model requiring only thermodynamic properties to a complex model demanding full combustion kinetics, transport properties, and poppet valve flow characteristics. Among its many features the model includes heat transfer, valve timing, supercharging, motoring, finite burning rates, cycle-to-cycle variations in air-fuel ratio, humid air, residual and recirculated exhaust gas, and full combustion kinetics.

  5. Evaluation of fluorophores for optimal performance in localization-based super-resolution imaging

    PubMed Central

    Dempsey, Graham T.; Vaughan, Joshua C.; Chen, Kok Hao; Bates, Mark; Zhuang, Xiaowei

    2011-01-01

    One approach to super-resolution fluorescence imaging uses sequential activation and localization of individual fluorophores to achieve high spatial resolution. Essential to this technique is the choice of fluorescent probes — the properties of the probes, including photons per switching event, on/off duty cycle, photostability, and number of switching cycles, largely dictate the quality of super-resolution images. While many probes have been reported, a systematic characterization of the properties of these probes and their impact on super-resolution image quality has been described in only a few cases. Here, we quantitatively characterized the switching properties of 26 organic dyes and directly related these properties to the quality of super-resolution images. This analysis provides a set of guidelines for characterization of super-resolution probes and a resource for selecting probes based on performance. Our evaluation identified several photoswitchable dyes with good to excellent performance in four independent spectral ranges, with which we demonstrated low crosstalk, four-color super-resolution imaging. PMID:22056676

  6. Dynamic defect correlations dominate activated electronic transport in SrTiO 3

    DOE PAGES

    Snijders, Paul C.; Sen, Cengiz; McConnell, Michael P.; ...

    2016-07-22

    Strontium titanate (SrTiO 3, STO) is a critically important material for the study of emergent electronic phases in complex oxides, as well as for the development of applications based on their heterostructures. Despite the large body of knowledge on STO, there are still many uncertainties regarding the role of defects in the properties of STO, including their influence on ferroelectricity in bulk STO and ferromagnetism in STO-based heterostructures. In this paper, we present a detailed analysis of the decay of persistent photoconductivity in STO single crystals with defect concentrations that are relatively low but significantly affect their electronic properties. Themore » results show that photo-activated electron transport cannot be described by a superposition of the properties due to independent point defects as current models suggest but is, instead, governed by defect complexes that interact through dynamic correlations. In conclusion, these results emphasize the importance of defect correlations for activated electronic transport properties of semiconducting and insulating perovskite oxides.« less

  7. From the experience of development of composite materials with desired properties

    NASA Astrophysics Data System (ADS)

    Garkina, I. A.; Danilov, A. M.

    2017-04-01

    Using the experience in the development of composite materials with desired properties is given the algorithm of construction materials synthesis on the basis of their representation in the form of a complex system. The possibility of creation of a composite and implementation of the technical task originally are defined at a stage of cognitive modeling. On the basis of development of the cognitive map hierarchical structures of criteria of quality are defined; according to them for each allocated large-scale level the corresponding block diagrams of system are specified. On the basis of the solution of problems of one-criteria optimization with use of the found optimum values formalization of a multi-criteria task and its decision is carried out (the optimum organization and properties of system are defined). The emphasis is on methodological aspects of mathematical modeling (construction of a generalized and partial models to optimize the properties and structure of materials, including those based on the concept of systemic homeostasis).

  8. Nanoscale defect architectures and their influence on material properties

    NASA Astrophysics Data System (ADS)

    Campbell, Branton

    2006-10-01

    Diffraction studies of long-range order often permit one to unambiguously determine the atomic structure of a crystalline material. Many interesting material properties, however, are dominated by nanoscale crystal defects that can't be characterized in this way. Fortunately, advances in x-ray detector technology, synchrotron x-ray source brightness, and computational power make it possible to apply new methods to old problems. Our research group uses multi-megapixel x-ray cameras to map out large contiguous volumes of reciprocal space, which can then be visually explored using graphics engines originally developed by the video-game industry. Here, I will highlight a few recent examples that include high-temperature superconductors, colossal magnetoresistors and piezoelectric materials.

  9. Optical and interfacial electronic properties of diamond-like carbon films

    NASA Technical Reports Server (NTRS)

    Woollam, J. A.; Natarajan, V.; Lamb, J.; Khan, A. A.; Bu-Abbud, G.; Banks, B.; Pouch, J.; Gulino, D. A.; Domitz, S.; Liu, D. C.

    1984-01-01

    Hard, semitransparent carbon films were prepared on oriented polished crystal wafers of silicon, indium phosphide and gallium arsenide, as well as on KBr and quartz. Properties of the films were determined using IR and visible absorption spectrocopy, ellipsometry, conductance-capacitance spectroscopy and alpha particle-proton recoil spectroscopy. Preparation techniques include RF plasma decomposition of methane (and other hydrocarbons), ion beam sputtering, and dual-ion-beam sputter deposition. Optical energy band gaps as large as 2.7 eV and extinction coefficients lower than 0.1 at long wavelengths are found. Electronic state densities at the interface with silicon as low as 10 to the 10th states/eV sq cm per were found.

  10. The basis function approach for modeling autocorrelation in ecological data

    USGS Publications Warehouse

    Hefley, Trevor J.; Broms, Kristin M.; Brost, Brian M.; Buderman, Frances E.; Kay, Shannon L.; Scharf, Henry; Tipton, John; Williams, Perry J.; Hooten, Mevin B.

    2017-01-01

    Analyzing ecological data often requires modeling the autocorrelation created by spatial and temporal processes. Many seemingly disparate statistical methods used to account for autocorrelation can be expressed as regression models that include basis functions. Basis functions also enable ecologists to modify a wide range of existing ecological models in order to account for autocorrelation, which can improve inference and predictive accuracy. Furthermore, understanding the properties of basis functions is essential for evaluating the fit of spatial or time-series models, detecting a hidden form of collinearity, and analyzing large data sets. We present important concepts and properties related to basis functions and illustrate several tools and techniques ecologists can use when modeling autocorrelation in ecological data.

  11. Wireless communication with implanted medical devices using the conductive properties of the body.

    PubMed

    Ferguson, John E; Redish, A David

    2011-07-01

    Many medical devices that are implanted in the body use wires or wireless radiofrequency telemetry to communicate with circuitry outside the body. However, the wires are a common source of surgical complications, including breakage, infection and electrical noise. In addition, radiofrequency telemetry requires large amounts of power and results in low-efficiency transmission through biological tissue. As an alternative, the conductive properties of the body can be used to enable wireless communication with implanted devices. In this article, several methods of intrabody communication are described and compared. In addition to reducing the complications that occur with current implantable medical devices, intrabody communication can enable novel types of miniature devices for research and clinical applications.

  12. Influence of ingredients and chemical components on the quality of Chinese steamed bread.

    PubMed

    Zhu, Fan

    2014-11-15

    Chinese steamed bread (CSB) is a staple food in China since ancient time. The basic ingredients include wheat flour, yeast/sourdough, and water. Current consumer trends urge the production of CSB on a large scale as well as the formulation of healthier CSB with specific nutritional benefits. This requires a better definition of the relationship between the properties of ingredients/chemical components and CSB quality. This review summarises the recent advances in understanding the roles of basic and optional ingredients and their chemical components in the appearance, textural, sensory, and shelf-life properties of CSB, and provides suggestions for further research to match the current trends. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. Calibration of Noah soil hydraulic property parameters using surface soil moisture from SMOS and basin-wide in situ observations

    USDA-ARS?s Scientific Manuscript database

    Soil hydraulic properties can be retrieved from physical sampling of soil, via surveys, but this is time consuming and only as accurate as the scale of the sample. Remote sensing provides an opportunity to get pertinent soil properties at large scales, which is very useful for large scale modeling....

  14. Systematic observations of the slip pulse properties of large earthquake ruptures

    USGS Publications Warehouse

    Melgar, Diego; Hayes, Gavin

    2017-01-01

    In earthquake dynamics there are two end member models of rupture: propagating cracks and self-healing pulses. These arise due to different properties of faults and have implications for seismic hazard; rupture mode controls near-field strong ground motions. Past studies favor the pulse-like mode of rupture; however, due to a variety of limitations, it has proven difficult to systematically establish their kinematic properties. Here we synthesize observations from a database of >150 rupture models of earthquakes spanning M7–M9 processed in a uniform manner and show the magnitude scaling properties of these slip pulses indicates self-similarity. Further, we find that large and very large events are statistically distinguishable relatively early (at ~15 s) in the rupture process. This suggests that with dense regional geophysical networks strong ground motions from a large rupture can be identified before their onset across the source region.

  15. A new algorithm for construction of coarse-grained sites of large biomolecules.

    PubMed

    Li, Min; Zhang, John Z H; Xia, Fei

    2016-04-05

    The development of coarse-grained (CG) models for large biomolecules remains a challenge in multiscale simulations, including a rigorous definition of CG representations for them. In this work, we proposed a new stepwise optimization imposed with the boundary-constraint (SOBC) algorithm to construct the CG sites of large biomolecules, based on the s cheme of essential dynamics CG. By means of SOBC, we can rigorously derive the CG representations of biomolecules with less computational cost. The SOBC is particularly efficient for the CG definition of large systems with thousands of residues. The resulted CG sites can be parameterized as a CG model using the normal mode analysis based fluctuation matching method. Through normal mode analysis, the obtained modes of CG model can accurately reflect the functionally related slow motions of biomolecules. The SOBC algorithm can be used for the construction of CG sites of large biomolecules such as F-actin and for the study of mechanical properties of biomaterials. © 2015 Wiley Periodicals, Inc.

  16. Single-Phase Concentrated Solid-Solution Alloys: Bridging Intrinsic Transport Properties and Irradiation Resistance

    DOE PAGES

    Jin, Ke; Bei, Hongbin

    2018-04-30

    Single-phase concentrated solid-solution alloys (SP-CSAs), including high entropy alloys (HEAs), are compositionally complex but structurally simple, and provide a playground of tailoring material properties through modifying their compositional complexity. The recent progress in understanding the compositional effects on the energy and mass transport properties in a series of face-centered-cubic SP-CSAs is the focus of this review. Relatively low electrical and thermal conductivities, as well as small separations between the interstitial and vacancy migration barriers have been generally observed, but largely depend on the alloying constituents. We further discuss the impact of such intrinsic transport properties on their irradiation response; themore » linkage to the delayed damage accumulation, slow defect aggregation, and suppressed irradiation induced swelling and segregation has been presented. We emphasize that the number of alloying elements may not be a critical factor on both transport properties and the defect behaviors under ion irradiations. Furthermore, the recent findings have stimulated novel concepts in the design of new radiation-tolerant materials, but further studies are demanded to enable predictive models that can quantitatively bridge the transport properties to the radiation damage.« less

  17. Single-Phase Concentrated Solid-Solution Alloys: Bridging Intrinsic Transport Properties and Irradiation Resistance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jin, Ke; Bei, Hongbin

    Single-phase concentrated solid-solution alloys (SP-CSAs), including high entropy alloys (HEAs), are compositionally complex but structurally simple, and provide a playground of tailoring material properties through modifying their compositional complexity. The recent progress in understanding the compositional effects on the energy and mass transport properties in a series of face-centered-cubic SP-CSAs is the focus of this review. Relatively low electrical and thermal conductivities, as well as small separations between the interstitial and vacancy migration barriers have been generally observed, but largely depend on the alloying constituents. We further discuss the impact of such intrinsic transport properties on their irradiation response; themore » linkage to the delayed damage accumulation, slow defect aggregation, and suppressed irradiation induced swelling and segregation has been presented. We emphasize that the number of alloying elements may not be a critical factor on both transport properties and the defect behaviors under ion irradiations. Furthermore, the recent findings have stimulated novel concepts in the design of new radiation-tolerant materials, but further studies are demanded to enable predictive models that can quantitatively bridge the transport properties to the radiation damage.« less

  18. Variability in morphology, hygroscopicity, and optical properties of soot aerosols during atmospheric processing

    PubMed Central

    Zhang, Renyi; Khalizov, Alexei F.; Pagels, Joakim; Zhang, Dan; Xue, Huaxin; McMurry, Peter H.

    2008-01-01

    The atmospheric effects of soot aerosols include interference with radiative transfer, visibility impairment, and alteration of cloud formation and are highly sensitive to the manner by which soot is internally mixed with other aerosol constituents. We present experimental studies to show that soot particles acquire a large mass fraction of sulfuric acid during atmospheric aging, considerably altering their properties. Soot particles exposed to subsaturated sulfuric acid vapor exhibit a marked change in morphology, characterized by a decreased mobility-based diameter but an increased fractal dimension and effective density. These particles experience large hygroscopic size and mass growth at subsaturated conditions (<90% relative humidity) and act efficiently as cloud-condensation nuclei. Coating with sulfuric acid and subsequent hygroscopic growth enhance the optical properties of soot aerosols, increasing scattering by ≈10-fold and absorption by nearly 2-fold at 80% relative humidity relative to fresh particles. In addition, condensation of sulfuric acid is shown to occur at a similar rate on ambient aerosols of various types of a given mobility size, regardless of their chemical compositions and microphysical structures. Representing an important mechanism of atmospheric aging, internal mixing of soot with sulfuric acid has profound implications on visibility, human health, and direct and indirect climate forcing. PMID:18645179

  19. Structural Basis of Clostridium perfringens Toxin Complex Formation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adams,J.; Gregg, K.; Bayer, E.

    2008-01-01

    The virulent properties of the common human and livestock pathogen Clostridium perfringens are attributable to a formidable battery of toxins. Among these are a number of large and highly modular carbohydrate-active enzymes, including the {mu}-toxin and sialidases, whose catalytic properties are consistent with degradation of the mucosal layer of the human gut, glycosaminoglycans, and other cellular glycans found throughout the body. The conservation of noncatalytic ancillary modules among these enzymes suggests they make significant contributions to the overall functionality of the toxins. Here, we describe the structural basis of an ultra-tight interaction (Ka = 1.44 x 1011 M-1) between themore » X82 and dockerin modules, which are found throughout numerous C. perfringens carbohydrate-active enzymes. Extensive hydrogen-bonding and van der Waals contacts between the X82 and dockerin modules give rise to the observed high affinity. The {mu}-toxin dockerin module in this complex is positioned {approx}180 relative to the orientation of the dockerin modules on the cohesin module surface within cellulolytic complexes. These observations represent a unique property of these clostridial toxins whereby they can associate into large, noncovalent multitoxin complexes that allow potentiation of the activities of the individual toxins by combining complementary toxin specificities.« less

  20. Statistical properties of filtered pseudorandom digital sequences formed from the sum of maximum-length sequences

    NASA Technical Reports Server (NTRS)

    Wallace, G. R.; Weathers, G. D.; Graf, E. R.

    1973-01-01

    The statistics of filtered pseudorandom digital sequences called hybrid-sum sequences, formed from the modulo-two sum of several maximum-length sequences, are analyzed. The results indicate that a relation exists between the statistics of the filtered sequence and the characteristic polynomials of the component maximum length sequences. An analysis procedure is developed for identifying a large group of sequences with good statistical properties for applications requiring the generation of analog pseudorandom noise. By use of the analysis approach, the filtering process is approximated by the convolution of the sequence with a sum of unit step functions. A parameter reflecting the overall statistical properties of filtered pseudorandom sequences is derived. This parameter is called the statistical quality factor. A computer algorithm to calculate the statistical quality factor for the filtered sequences is presented, and the results for two examples of sequence combinations are included. The analysis reveals that the statistics of the signals generated with the hybrid-sum generator are potentially superior to the statistics of signals generated with maximum-length generators. Furthermore, fewer calculations are required to evaluate the statistics of a large group of hybrid-sum generators than are required to evaluate the statistics of the same size group of approximately equivalent maximum-length sequences.

  1. BRepertoire: a user-friendly web server for analysing antibody repertoire data.

    PubMed

    Margreitter, Christian; Lu, Hui-Chun; Townsend, Catherine; Stewart, Alexander; Dunn-Walters, Deborah K; Fraternali, Franca

    2018-04-14

    Antibody repertoire analysis by high throughput sequencing is now widely used, but a persisting challenge is enabling immunologists to explore their data to discover discriminating repertoire features for their own particular investigations. Computational methods are necessary for large-scale evaluation of antibody properties. We have developed BRepertoire, a suite of user-friendly web-based software tools for large-scale statistical analyses of repertoire data. The software is able to use data preprocessed by IMGT, and performs statistical and comparative analyses with versatile plotting options. BRepertoire has been designed to operate in various modes, for example analysing sequence-specific V(D)J gene usage, discerning physico-chemical properties of the CDR regions and clustering of clonotypes. Those analyses are performed on the fly by a number of R packages and are deployed by a shiny web platform. The user can download the analysed data in different table formats and save the generated plots as image files ready for publication. We believe BRepertoire to be a versatile analytical tool that complements experimental studies of immune repertoires. To illustrate the server's functionality, we show use cases including differential gene usage in a vaccination dataset and analysis of CDR3H properties in old and young individuals. The server is accessible under http://mabra.biomed.kcl.ac.uk/BRepertoire.

  2. Multilayer Black Phosphorus Near-Infrared Photodetectors.

    PubMed

    Hou, Chaojian; Yang, Lijun; Li, Bo; Zhang, Qihan; Li, Yuefeng; Yue, Qiuyang; Wang, Yang; Yang, Zhan; Dong, Lixin

    2018-05-23

    Black phosphorus (BP), owing to its distinguished properties, has become one of the most competitive candidates for photodetectors. However, there has been little attention paid on photo-response performance of multilayer BP nanoflakes with large layer thickness. In fact, multilayer BP nanoflakes with large layer thickness have greater potential from the fabrication viewpoint as well as due to the physical properties than single or few layer ones. In this report, the thickness-dependence of the intrinsic property of BP photodetectors in the dark was initially investigated. Then the photo-response performance (including responsivity, photo-gain, photo-switching time, noise equivalent power, and specific detectivity) of BP photodetectors with relative thicker thickness was explored under a near-infrared laser beam ( λ IR = 830 nm). Our experimental results reveal the impact of BP's thickness on the current intensity of the channel and show degenerated p-type BP is beneficial for larger current intensity. More importantly, the photo-response of our thicker BP photodetectors exhibited a larger responsivity up to 2.42 A/W than the few-layer ones and a fast response photo-switching speed (response time is ~2.5 ms) comparable to thinner BP nanoflakes was obtained, indicating BP nanoflakes with larger layer thickness are also promising for application for ultra-fast and ultra-high near-infrared photodetectors.

  3. Challenges in Extracting Information From Large Hydrogeophysical-monitoring Datasets

    NASA Astrophysics Data System (ADS)

    Day-Lewis, F. D.; Slater, L. D.; Johnson, T.

    2012-12-01

    Over the last decade, new automated geophysical data-acquisition systems have enabled collection of increasingly large and information-rich geophysical datasets. Concurrent advances in field instrumentation, web services, and high-performance computing have made real-time processing, inversion, and visualization of large three-dimensional tomographic datasets practical. Geophysical-monitoring datasets have provided high-resolution insights into diverse hydrologic processes including groundwater/surface-water exchange, infiltration, solute transport, and bioremediation. Despite the high information content of such datasets, extraction of quantitative or diagnostic hydrologic information is challenging. Visual inspection and interpretation for specific hydrologic processes is difficult for datasets that are large, complex, and (or) affected by forcings (e.g., seasonal variations) unrelated to the target hydrologic process. New strategies are needed to identify salient features in spatially distributed time-series data and to relate temporal changes in geophysical properties to hydrologic processes of interest while effectively filtering unrelated changes. Here, we review recent work using time-series and digital-signal-processing approaches in hydrogeophysics. Examples include applications of cross-correlation, spectral, and time-frequency (e.g., wavelet and Stockwell transforms) approaches to (1) identify salient features in large geophysical time series; (2) examine correlation or coherence between geophysical and hydrologic signals, even in the presence of non-stationarity; and (3) condense large datasets while preserving information of interest. Examples demonstrate analysis of large time-lapse electrical tomography and fiber-optic temperature datasets to extract information about groundwater/surface-water exchange and contaminant transport.

  4. Unique Piezoelectric Properties of the Monoclinic Phase in Pb (Zr ,Ti )O3 Ceramics: Large Lattice Strain and Negligible Domain Switching

    NASA Astrophysics Data System (ADS)

    Fan, Longlong; Chen, Jun; Ren, Yang; Pan, Zhao; Zhang, Linxing; Xing, Xianran

    2016-01-01

    The origin of the excellent piezoelectric properties at the morphotropic phase boundary is generally attributed to the existence of a monoclinic phase in various piezoelectric systems. However, there exist no experimental studies that reveal the role of the monoclinic phase in the piezoelectric behavior in phase-pure ceramics. In this work, a single monoclinic phase has been identified in Pb (Zr ,Ti )O3 ceramics at room temperature by in situ high-energy synchrotron x-ray diffraction, and its response to electric field has been characterized for the first time. Unique piezoelectric properties of the monoclinic phase in terms of large intrinsic lattice strain and negligible domain switching have been observed. The extensional strain constant d33 and the transverse strain constant d31 are calculated to be 520 and -200 pm /V , respectively. These large piezoelectric coefficients are mainly due to the large intrinsic lattice strain, with very little extrinsic contribution from domain switching. The unique properties of the monoclinic phase provide new insights into the mechanisms responsible for the piezoelectric properties at the morphotropic phase boundary.

  5. Thermodynamically consistent force fields for the assembly of inorganic, organic, and biological nanostructures: the INTERFACE force field.

    PubMed

    Heinz, Hendrik; Lin, Tzu-Jen; Mishra, Ratan Kishore; Emami, Fateme S

    2013-02-12

    The complexity of the molecular recognition and assembly of biotic-abiotic interfaces on a scale of 1 to 1000 nm can be understood more effectively using simulation tools along with laboratory instrumentation. We discuss the current capabilities and limitations of atomistic force fields and explain a strategy to obtain dependable parameters for inorganic compounds that has been developed and tested over the past decade. Parameter developments include several silicates, aluminates, metals, oxides, sulfates, and apatites that are summarized in what we call the INTERFACE force field. The INTERFACE force field operates as an extension of common harmonic force fields (PCFF, COMPASS, CHARMM, AMBER, GROMACS, and OPLS-AA) by employing the same functional form and combination rules to enable simulations of inorganic-organic and inorganic-biomolecular interfaces. The parametrization builds on an in-depth understanding of physical-chemical properties on the atomic scale to assign each parameter, especially atomic charges and van der Waals constants, as well as on the validation of macroscale physical-chemical properties for each compound in comparison to measurements. The approach eliminates large discrepancies between computed and measured bulk and surface properties of up to 2 orders of magnitude using other parametrization protocols and increases the transferability of the parameters by introducing thermodynamic consistency. As a result, a wide range of properties can be computed in quantitative agreement with experiment, including densities, surface energies, solid-water interface tensions, anisotropies of interfacial energies of different crystal facets, adsorption energies of biomolecules, and thermal and mechanical properties. Applications include insight into the assembly of inorganic-organic multiphase materials, the recognition of inorganic facets by biomolecules, growth and shape preferences of nanocrystals and nanoparticles, as well as thermal transitions and nanomechanics. Limitations and opportunities for further development are also described.

  6. Plasmonic colour generation

    NASA Astrophysics Data System (ADS)

    Kristensen, Anders; Yang, Joel K. W.; Bozhevolnyi, Sergey I.; Link, Stephan; Nordlander, Peter; Halas, Naomi J.; Mortensen, N. Asger

    2017-01-01

    Plasmonic colours are structural colours that emerge from resonant interactions between light and metallic nanostructures. The engineering of plasmonic colours is a promising, rapidly emerging research field that could have a large technological impact. We highlight basic properties of plasmonic colours and recent nanofabrication developments, comparing technology-performance indicators for traditional and nanophotonic colour technologies. The structures of interest include diffraction gratings, nanoaperture arrays, thin films, and multilayers and structures that support Mie resonances and whispering-gallery modes. We discuss plasmonic colour nanotechnology based on localized surface plasmon resonances, such as gap plasmons and hybridized disk-hole plasmons, which allow for colour printing with sub-diffraction resolution. We also address a range of fabrication approaches that enable large-area printing and nanoscale lithography compatible with complementary metal-oxide semiconductor technologies, including nanoimprint lithography and self-assembly. Finally, we review recent developments in dynamically reconfigurable plasmonic colours and in the laser-induced post-processing of plasmonic colour surfaces.

  7. Carotenoids in the treatment of diabetes mellitus and its complications: A mechanistic review.

    PubMed

    Roohbakhsh, Ali; Karimi, Gholamreza; Iranshahi, Mehrdad

    2017-07-01

    Carotenoids are a large class of natural antioxidants that occur in many vegetables, foods and other natural sources. To date, a large number of biological properties have been reported from carotenoids, particularly protective effects against diabetes mellitus (DM), cancer, and neurodegenerative, metabolic and cardiovascular diseases. However, recent studies including clinical evidences, have shown that carotenoids play a role in the treatment of diabetes via enhancing insulin sensitivity. They are also able to protect the body from long-term consequences of diabetes including infectious diseases, nephropathy, neuronal and eye abnormalities. In this review, we try to discuss the mechanisms behind the biological effects of carotenoids for the prevention and treatment of DM and its complications. The authors believe that carotenoids will have a prominent place in the treatment of DM and its complications in the future. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  8. Orthobiologics in the augmentation of osteoporotic fractures.

    PubMed

    Watson, J Tracy; Nicolaou, Daemeon A

    2015-02-01

    Many orthobiologic adjuvants are available and widely utilized for general skeletal restoration. Their use for the specific task of osteoporotic fracture augmentation is less well recognized. Common conductive materials are reviewed for their value in this patient population including the large group of allograft adjuvants categorically known as the demineralized bone matrices (DBMs). Another large group of alloplastic materials is also examined-the calcium phosphate and sulfate ceramics. Both of these materials, when used for the proper indications, demonstrate efficacy for these patients. The inductive properties of bone morphogenic proteins (BMPs) and platelet concentrates show no clear advantages for this group of patients. Systemic agents including bisphosphonates, receptor activator of nuclear factor κβ ligand (RANKL) inhibitors, and parathyroid hormone augmentation all demonstrate positive effects with this fracture cohort. Newer modalities, such as trace ion bioceramic augmentation, are also reviewed for their positive effects on osteoporotic fracture healing.

  9. Functional genomic Landscape of Human Breast Cancer drivers, vulnerabilities, and resistance

    PubMed Central

    Marcotte, Richard; Sayad, Azin; Brown, Kevin R.; Sanchez-Garcia, Felix; Reimand, Jüri; Haider, Maliha; Virtanen, Carl; Bradner, James E.; Bader, Gary D.; Mills, Gordon B.; Pe’er, Dana; Moffat, Jason; Neel, Benjamin G.

    2016-01-01

    Summary Large-scale genomic studies have identified multiple somatic aberrations in breast cancer, including copy number alterations, and point mutations. Still, identifying causal variants and emergent vulnerabilities that arise as a consequence of genetic alterations remain major challenges. We performed whole genome shRNA “dropout screens” on 77 breast cancer cell lines. Using a hierarchical linear regression algorithm to score our screen results and integrate them with accompanying detailed genetic and proteomic information, we identify vulnerabilities in breast cancer, including candidate “drivers,” and reveal general functional genomic properties of cancer cells. Comparisons of gene essentiality with drug sensitivity data suggest potential resistance mechanisms, effects of existing anti-cancer drugs, and opportunities for combination therapy. Finally, we demonstrate the utility of this large dataset by identifying BRD4 as a potential target in luminal breast cancer, and PIK3CA mutations as a resistance determinant for BET-inhibitors. PMID:26771497

  10. Epitaxial thin film growth in outer space

    NASA Technical Reports Server (NTRS)

    Ignatiev, Alex; Chu, C. W.

    1988-01-01

    A new concept for materials processing in space exploits the ultravacuum component of space for thin-film epitaxial growth. The unique LEO space environment is expected to yield 10-ftorr or better pressures, semiinfinite pumping speeds, and large ultravacuum volume (about 100 cu m) without walls. These space ultravacuum properties promise major improvement in the quality, unique nature, and throughput of epitaxially grown materials, including semiconductors, magnetic materials, and thin-film high-temperature superconductors.

  11. Public views and attitudes concerning fire and fuels reduction strategies in the Valles Caldera National Preserve (VCNP) New Mexico

    Treesearch

    Kurt Anschuetz; Carol Raish

    2010-01-01

    The Valles Caldera National Preserve (VCNP), located in the heart of the Jemez Mountains in northcentral New Mexico, is a special place for many residents of the region. The large volcanic caldera, formerly the privately owned Baca Ranch, is an 89,000-acre property known for its scenic meadows and abundant wildlife, including herds of elk. The U.S. purchased the...

  12. Network rigidity and properties of SiO2 and GeO2 glasses under pressure.

    PubMed

    Trachenko, Kostya; Dove, Martin T; Brazhkin, Vadim; El'kin, F S

    2004-09-24

    We report in situ studies of SiO2 glass under pressure and find that temperature-induced densification takes place in a pressure window. To explain this effect, we study how rigidity of glasses changes under pressure, with rigidity percolation affecting the dynamics of local relaxation events. We link rigidity percolation in glasses to other effects, including a large increase of crystallization temperature and logarithmic relaxation under pressure.

  13. Invited Parallel Talk: Lattice results on nucleon/roper properties

    NASA Astrophysics Data System (ADS)

    Lin, Huey-Wen

    2009-12-01

    In this proceeding, I review the attempts to calculate the Nucleon resonance (including Roper as first radially excited state of nucleon and other excited states) using lattice quantum chromodynamics (QCD). The latest preliminary results from Hadron Spectrum Collaboration (HSC) with mπ thickapprox 380 MeV are reported. The Sachs electric form factor of the proton and neutron and their transition with the Roper at large Q2 are also updated in this work.

  14. Investigation of Carrageenan Aerogel Microparticles as a Potential Drug Carrier.

    PubMed

    Obaidat, Rana M; Alnaief, Mohammad; Mashaqbeh, Hadeia

    2018-05-07

    Carrageenan is an anionic polysaccharide offering many advantages to be used in drug delivery applications. These include availability, thermo-stability, low toxicity, and encapsulating properties. Combination of these properties with aerogel properties like large surface area and porosity make them an ideal candidate for drug adsorption and delivery applications. Emulsion-gelation technique was used to prepare carrageenan gel microparticles with supercritical CO 2 for drying and loading purposes. Ibuprofen has been selected as a model drug for drug loading inside. The prepared microparticles were characterized using particle size analysis, X-ray diffraction, differential scanning calorimetry, Fourier transform infrared spectroscopy, density measurements, surface area, and porosity measurements. Finally, dissolution was applied to the loaded preparations to test in vitro drug release. Ibuprofen was successfully loaded in the amorphous form inside the prepared microparticles with a significant enhancement in the drug release profile. In conclusion, prepared carrageenan aerogel microparticles showed an excellent potential for use as a drug carrier.

  15. A Role for MST Neurons in Heading Estimation

    NASA Technical Reports Server (NTRS)

    Stone, L. S.; Perrone, J. A.

    1994-01-01

    A template model of human visual self-motion perception, which uses neurophysiologically realistic "heading detectors", is consistent with numerous human psychophysical results including the failure of humans to estimate their heading (direction of forward translation) accurately under certain visual conditions. We tested the model detectors with stimuli used by others in single-unit studies. The detectors showed emergent properties similar to those of MST neurons: (1) Sensitivity to non-preferred flow; Each detector is tuned to a specific combination of flow components and its response is systematically reduced by the addition of nonpreferred flow, and (2) Position invariance; The detectors maintain their apparent preference for particular flow components over large regions of their receptive fields. It has been argued that this latter property is incompatible with MST playing a role in heading perception. The model however demonstrates how neurons with the above response properties could still support accurate heading estimation within extrastriate cortical maps.

  16. Analytical model for three-dimensional Mercedes-Benz water molecules.

    PubMed

    Urbic, T

    2012-06-01

    We developed a statistical model which describes the thermal and volumetric properties of water-like molecules. A molecule is presented as a three-dimensional sphere with four hydrogen-bonding arms. Each water molecule interacts with its neighboring waters through a van der Waals interaction and an orientation-dependent hydrogen-bonding interaction. This model, which is largely analytical, is a variant of a model developed before for a two-dimensional Mercedes-Benz model of water. We explored properties such as molar volume, density, heat capacity, thermal expansion coefficient, and isothermal compressibility as a function of temperature and pressure. We found that the volumetric and thermal properties follow the same trends with temperature as in real water and are in good general agreement with Monte Carlo simulations, including the density anomaly, the minimum in the isothermal compressibility, and the decreased number of hydrogen bonds upon increasing the temperature.

  17. Analytical model for three-dimensional Mercedes-Benz water molecules

    NASA Astrophysics Data System (ADS)

    Urbic, T.

    2012-06-01

    We developed a statistical model which describes the thermal and volumetric properties of water-like molecules. A molecule is presented as a three-dimensional sphere with four hydrogen-bonding arms. Each water molecule interacts with its neighboring waters through a van der Waals interaction and an orientation-dependent hydrogen-bonding interaction. This model, which is largely analytical, is a variant of a model developed before for a two-dimensional Mercedes-Benz model of water. We explored properties such as molar volume, density, heat capacity, thermal expansion coefficient, and isothermal compressibility as a function of temperature and pressure. We found that the volumetric and thermal properties follow the same trends with temperature as in real water and are in good general agreement with Monte Carlo simulations, including the density anomaly, the minimum in the isothermal compressibility, and the decreased number of hydrogen bonds upon increasing the temperature.

  18. Fabrication Methods and Luminescent Properties of ZnO Materials for Light-Emitting Diodes

    PubMed Central

    Lee, Ching-Ting

    2010-01-01

    Zinc oxide (ZnO) is a potential candidate material for optoelectronic applications, especially for blue to ultraviolet light emitting devices, due to its fundamental advantages, such as direct wide band gap of 3.37 eV, large exciton binding energy of 60 meV, and high optical gain of 320 cm−1 at room temperature. Its luminescent properties have been intensively investigated for samples, in the form of bulk, thin film, or nanostructure, prepared by various methods and doped with different impurities. In this paper, we first review briefly the recent progress in this field. Then a comprehensive summary of the research carried out in our laboratory on ZnO preparation and its luminescent properties, will be presented, in which the involved samples include ZnO films and nanorods prepared with different methods and doped with n-type or p-type impurities. The results of ZnO based LEDs will also be discussed.

  19. Floquet topological insulators for sound

    NASA Astrophysics Data System (ADS)

    Fleury, Romain; Khanikaev, Alexander B.; Alù, Andrea

    2016-06-01

    The unique conduction properties of condensed matter systems with topological order have recently inspired a quest for the similar effects in classical wave phenomena. Acoustic topological insulators, in particular, hold the promise to revolutionize our ability to control sound, allowing for large isolation in the bulk and broadband one-way transport along their edges, with topological immunity against structural defects and disorder. So far, these fascinating properties have been obtained relying on moving media, which may introduce noise and absorption losses, hindering the practical potential of topological acoustics. Here we overcome these limitations by modulating in time the acoustic properties of a lattice of resonators, introducing the concept of acoustic Floquet topological insulators. We show that acoustic waves provide a fertile ground to apply the anomalous physics of Floquet topological insulators, and demonstrate their relevance for a wide range of acoustic applications, including broadband acoustic isolation and topologically protected, nonreciprocal acoustic emitters.

  20. Analytical model for three-dimensional Mercedes-Benz water molecules

    PubMed Central

    Urbic, T.

    2013-01-01

    We developed a statistical model which describes the thermal and volumetric properties of water-like molecules. A molecule is presented as a three-dimensional sphere with four hydrogen-bonding arms. Each water molecule interacts with its neighboring waters through a van der Waals interaction and an orientation-dependent hydrogen-bonding interaction. This model, which is largely analytical, is a variant of a model developed before for a two-dimensional Mercedes-Benz model of water. We explored properties such as molar volume, density, heat capacity, thermal expansion coefficient, and isothermal compressibility as a function of temperature and pressure. We found that the volumetric and thermal properties follow the same trends with temperature as in real water and are in good general agreement with Monte Carlo simulations, including the density anomaly, the minimum in the isothermal compressibility, and the decreased number of hydrogen bonds upon increasing the temperature. PMID:23005100

  1. TOPICAL REVIEW: Progress in engineering high strain lead-free piezoelectric ceramics

    NASA Astrophysics Data System (ADS)

    Leontsev, Serhiy O.; Eitel, Richard E.

    2010-08-01

    Environmental concerns are strongly driving the need to replace the lead-based piezoelectric materials currently employed as multilayer actuators. The current review describes both compositional and structural engineering approaches to achieve enhanced piezoelectric properties in lead-free materials. The review of the compositional engineering approach focuses on compositional tuning of the properties and phase behavior in three promising families of lead-free perovskite ferroelectrics: the titanate, alkaline niobate and bismuth perovskites and their solid solutions. The 'structural engineering' approaches focus instead on optimization of microstructural features including grain size, grain orientation or texture, ferroelectric domain size and electrical bias field as potential paths to induce large piezoelectric properties in lead-free piezoceramics. It is suggested that a combination of both compositional and novel structural engineering approaches will be required in order to realize viable lead-free alternatives to current lead-based materials for piezoelectric actuator applications.

  2. Progress in engineering high strain lead-free piezoelectric ceramics

    PubMed Central

    Leontsev, Serhiy O; Eitel, Richard E

    2010-01-01

    Environmental concerns are strongly driving the need to replace the lead-based piezoelectric materials currently employed as multilayer actuators. The current review describes both compositional and structural engineering approaches to achieve enhanced piezoelectric properties in lead-free materials. The review of the compositional engineering approach focuses on compositional tuning of the properties and phase behavior in three promising families of lead-free perovskite ferroelectrics: the titanate, alkaline niobate and bismuth perovskites and their solid solutions. The ‘structural engineering’ approaches focus instead on optimization of microstructural features including grain size, grain orientation or texture, ferroelectric domain size and electrical bias field as potential paths to induce large piezoelectric properties in lead-free piezoceramics. It is suggested that a combination of both compositional and novel structural engineering approaches will be required in order to realize viable lead-free alternatives to current lead-based materials for piezoelectric actuator applications. PMID:27877343

  3. Floquet topological insulators for sound

    PubMed Central

    Fleury, Romain; Khanikaev, Alexander B; Alù, Andrea

    2016-01-01

    The unique conduction properties of condensed matter systems with topological order have recently inspired a quest for the similar effects in classical wave phenomena. Acoustic topological insulators, in particular, hold the promise to revolutionize our ability to control sound, allowing for large isolation in the bulk and broadband one-way transport along their edges, with topological immunity against structural defects and disorder. So far, these fascinating properties have been obtained relying on moving media, which may introduce noise and absorption losses, hindering the practical potential of topological acoustics. Here we overcome these limitations by modulating in time the acoustic properties of a lattice of resonators, introducing the concept of acoustic Floquet topological insulators. We show that acoustic waves provide a fertile ground to apply the anomalous physics of Floquet topological insulators, and demonstrate their relevance for a wide range of acoustic applications, including broadband acoustic isolation and topologically protected, nonreciprocal acoustic emitters. PMID:27312175

  4. Nanosize effect: Enhanced compensation temperature and existence of magnetodielectric coupling in SmFe O3

    NASA Astrophysics Data System (ADS)

    Chaturvedi, Smita; Shyam, Priyank; Bag, Rabindranath; Shirolkar, Mandar M.; Kumar, Jitender; Kaur, Harleen; Singh, Surjeet; Awasthi, A. M.; Kulkarni, Sulabha

    2017-07-01

    In transition metal oxides, quantum confinement arising from a large surface to volume ratio often gives rise to novel physicochemical properties at nanoscale. Their size-dependent properties have potential applications in diverse areas, including therapeutics, imaging, electronic devices, communication systems, sensors, and catalysis. We have analyzed the structural, magnetic, dielectric, and thermal properties of weakly ferromagnetic SmFe O3 nanoparticles of sizes of about 55 and 500 nm. The nanometer-size particles exhibit several distinct features that are neither observed in their larger-size variants nor reported previously for the single crystals. In particular, for the 55-nm particle, we observe a sixfold enhancement of compensation temperature, an unusual rise in susceptibility in the temperature range 550 to 630 K due to spin pinning, and a coupled antiferromagnetic-ferroelectric transition, directly observed in the dielectric constant.

  5. The Effect of Solution Heat Treatment on an Advanced Nickel-Base Disk Alloy

    NASA Technical Reports Server (NTRS)

    Gayda, J.; Gabb, T. P.; Kantzos, P. T.

    2004-01-01

    Five heat treat options for an advanced nickel-base disk alloy, LSHR, have been investigated. These included two conventional solution heat treat cycles, subsolvus/oil quench and supersolvus/fan cool, which yield fine grain and coarse grain microstructure disks respectively, as well as three advanced dual microstructure heat treat (DMHT) options. The DMHT options produce disks with a fine grain bore and a coarse grain rim. Based on an overall evaluation of the mechanical property data, it was evident that the three DMHT options achieved a desirable balance of properties in comparison to the conventional solution heat treatments for the LSHR alloy. However, one of the DMHT options, SUB/DMHT, produced the best set of properties, largely based on dwell crack growth data. Further evaluation of the SUB/DMHT option in spin pit experiments on a generic disk shape demonstrated the advantages and reliability of a dual grain structure at the component level.

  6. 7 CFR 1955.128 - Appraisers.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... type of properties (such as large farms and business property) requiring valuation. For Farmer Programs... REGULATIONS (CONTINUED) PROPERTY MANAGEMENT Disposal of Inventory Property Use of Contractors to Dispose of Inventory Property § 1955.128 Appraisers. (a) Real property. The State Director may authorize the County...

  7. Flexibility Correlation between Active Site Regions Is Conserved across Four AmpC β-Lactamase Enzymes.

    PubMed

    Brown, Jenna R; Livesay, Dennis R

    2015-01-01

    β-lactamases are bacterial enzymes that confer resistance to β-lactam antibiotics, such as penicillins and cephalosporins. There are four classes of β-lactamase enzymes, each with characteristic sequence and structure properties. Enzymes from class A are the most common and have been well characterized across the family; however, less is known about how physicochemical properties vary across the C and D families. In this report, we compare the dynamical properties of four AmpC (class C) β-lactamases using our distance constraint model (DCM). The DCM reliably predicts thermodynamic and mechanical properties in an integrated way. As a consequence, quantitative stability/flexibility relationships (QSFR) can be determined and compared across the whole family. The DCM calculates a large number of QSFR metrics. Perhaps the most useful is the flexibility index (FI), which quantifies flexibility along the enzyme backbone. As typically observed in other systems, FI is well conserved across the four AmpC enzymes. Cooperativity correlation (CC), which quantifies intramolecular couplings within structure, is rarely conserved across protein families; however, it is in AmpC. In particular, the bulk of each structure is composed of a large rigid cluster, punctuated by three flexibly correlated regions located at the active site. These regions include several catalytic residues and the Ω-loop. This evolutionary conservation combined with active their site location strongly suggests that these coupled dynamical modes are important for proper functioning of the enzyme.

  8. Flexibility Correlation between Active Site Regions Is Conserved across Four AmpC β-Lactamase Enzymes

    PubMed Central

    Brown, Jenna R.; Livesay, Dennis R.

    2015-01-01

    β-lactamases are bacterial enzymes that confer resistance to β-lactam antibiotics, such as penicillins and cephalosporins. There are four classes of β-lactamase enzymes, each with characteristic sequence and structure properties. Enzymes from class A are the most common and have been well characterized across the family; however, less is known about how physicochemical properties vary across the C and D families. In this report, we compare the dynamical properties of four AmpC (class C) β-lactamases using our distance constraint model (DCM). The DCM reliably predicts thermodynamic and mechanical properties in an integrated way. As a consequence, quantitative stability/flexibility relationships (QSFR) can be determined and compared across the whole family. The DCM calculates a large number of QSFR metrics. Perhaps the most useful is the flexibility index (FI), which quantifies flexibility along the enzyme backbone. As typically observed in other systems, FI is well conserved across the four AmpC enzymes. Cooperativity correlation (CC), which quantifies intramolecular couplings within structure, is rarely conserved across protein families; however, it is in AmpC. In particular, the bulk of each structure is composed of a large rigid cluster, punctuated by three flexibly correlated regions located at the active site. These regions include several catalytic residues and the Ω-loop. This evolutionary conservation combined with active their site location strongly suggests that these coupled dynamical modes are important for proper functioning of the enzyme. PMID:26018804

  9. Multi-property characterization chamber for geophysical-hydrological investigations of hydrate bearing sediments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seol, Yongkoo, E-mail: Yongkoo.Seol@netl.doe.gov; Choi, Jeong-Hoon; Dai, Sheng

    With the increase in the interest of producing natural gas from methane hydrates as well as potential risks of massive hydrate dissociation in the context of global warming, studies have recently shifted from pure hydrate crystals to hydrates in sediments. Such a research focus shift requires a series of innovative laboratory devices that are capable of investigating various properties of hydrate-bearing sediments (HBS). This study introduces a newly developed high pressure testing chamber, i.e., multi-property characterization chamber (MPCC), that allows simultaneous investigation of a series of fundamental properties of HBS, including small-strain stiffness (i.e., P- and S-waves), shear strength, large-strainmore » deformation, stress-volume responses, and permeability. The peripheral coolant circulation system of the MPCC permits stable and accurate temperature control, while the core holder body, made of aluminum, enables X-ray computer tomography scanning to be easily employed for structural and morphological characterization of specimens. Samples of hydrate-bearing sediments are held within a rubber sleeve inside the chamber. The thick sleeve is more durable and versatile than thin membranes while also being much softer than oedometer-type chambers that are incapable of enabling flow tests. Bias introduced by the rubber sleeve during large deformation tests are also calibrated both theoretically and experimentally. This system provides insight into full characterization of hydrate-bearing sediments in the laboratory, as well as pressure core technology in the field.« less

  10. Tensile Properties of Hydrogels and of Snake Skin

    NASA Technical Reports Server (NTRS)

    Hinkley, Jeffrey A.; Savitzky, Alan H.; Rivera, Gabriel; Gehrke, Stevin H.

    2002-01-01

    Stimulus-responsive or 'smart' gels are of potential interest as sensors and actuators, in industrial separations, and as permeable delivery systems. In most applications, a certain degree of mechanical strength and toughness will be required, yet the large-strain behavior of gels has not been widely reported. Some exceptions include work on gelatin and other food gels, some characterization of soft gels applicable for in-vitro cell growth studies, and toughness determinations on commercial contact lens materials. In general, it can be anticipated that the gel stiffness will increase with increasing degree of crosslinking, but the tensile strength may go through a maximum. Gel properties can be tailored by varying not only the degree of crosslinking, but also the polymer concentration and the nature of the polymer backbone (e.g. its stiffness or solubility). Polypeptides provide an especially interesting case, where secondary structure affects trends in moduli and conformational transitions may accompany phase changes. A few papers on the tensile properties of responsive gels have begun to appear. The responsive hydrogel chosen for the present study, crosslinked hydroxypropylcellulose, shrinks over a rather narrow temperature range near 44 C. Some vertebrate skin is also subject to substantial strain. Among reptiles, the morphologies of the skin and scales show wide variations. Bauer et al. described the mechanical properties and histology of gecko skin; longitudinal tensile properties of snake skin were examined by Jayne with reference to locomotion. The present measurements focus on adaptations related to feeding, including the response of the skin to circumferential tension. Tensile properties will be related to interspecific and regional variation in skin structure and folding.

  11. Light scattering by hexagonal ice crystals with distributed inclusions

    NASA Astrophysics Data System (ADS)

    Panetta, R. Lee; Zhang, Jia-Ning; Bi, Lei; Yang, Ping; Tang, Guanlin

    2016-07-01

    Inclusions of air bubbles or soot particles have significant effects on the single-scattering properties of ice crystals, effects that in turn have significant impacts on the radiation budget of an atmosphere containing the crystals. This study investigates some of the single-scattering effects in the case of hexagonal ice crystals, including effects on the backscattering depolarization ratio, a quantity of practical importance in the interpretation of lidar observations. One distinguishing feature of the study is an investigation of scattering properties at a visible wavelength for a crystal with size parameter (x) above 100, a size regime where one expects some agreement between exact methods and geometrical optics methods. This expectation is generally borne out in a test comparison of how the sensitivity of scattering properties to the distribution of a given volume fraction of included air is represented using (i) an approximate Monte Carlo Ray Tracing (MCRT) method and (ii) a numerically exact pseudo-spectral time-domain (PSTD) method. Another distinguishing feature of the study is a close examination, using the numerically exact Invariant-Imbedding T-Matrix (II-TM) method, of how some optical properties of importance to satellite remote sensing vary as the volume fraction of inclusions and size of crystal are varied. Although such an investigation of properties in the x>100 regime faces serious computational burdens that force a large number of idealizations and simplifications in the study, the results nevertheless provide an intriguing glimpse of what is evidently a quite complex sensitivity of optical scattering properties to inclusions of air or soot as volume fraction and size parameter are varied.

  12. A High Resolution Hydrometer Phase Classifier Based on Analysis of Cloud Radar Doppler Spectra.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Luke,E.; Kollias, P.

    2007-08-06

    The lifecycle and radiative properties of clouds are highly sensitive to the phase of their hydrometeors (i.e., liquid or ice). Knowledge of cloud phase is essential for specifying the optical properties of clouds, or else, large errors can be introduced in the calculation of the cloud radiative fluxes. Current parameterizations of cloud water partition in liquid and ice based on temperature are characterized by large uncertainty (Curry et al., 1996; Hobbs and Rangno, 1998; Intriery et al., 2002). This is particularly important in high geographical latitudes and temperature ranges where both liquid droplets and ice crystal phases can exist (mixed-phasemore » cloud). The mixture of phases has a large effect on cloud radiative properties, and the parameterization of mixed-phase clouds has a large impact on climate simulations (e.g., Gregory and Morris, 1996). Furthermore, the presence of both ice and liquid affects the macroscopic properties of clouds, including their propensity to precipitate. Despite their importance, mixed-phase clouds are severely understudied compared to the arguably simpler single-phase clouds. In-situ measurements in mixed-phase clouds are hindered due to aircraft icing, difficulties distinguishing hydrometeor phase, and discrepancies in methods for deriving physical quantities (Wendisch et al. 1996, Lawson et al. 2001). Satellite-based retrievals of cloud phase in high latitudes are often hindered by the highly reflecting ice-covered ground and persistent temperature inversions. From the ground, the retrieval of mixed-phase cloud properties has been the subject of extensive research over the past 20 years using polarization lidars (e.g., Sassen et al. 1990), dual radar wavelengths (e.g., Gosset and Sauvageot 1992; Sekelsky and McIntosh, 1996), and recently radar Doppler spectra (Shupe et al. 2004). Millimeter-wavelength radars have substantially improved our ability to observe non-precipitating clouds (Kollias et al., 2007) due to their excellent sensitivity that enables the detection of thin cloud layers and their ability to penetrate several non-precipitating cloud layers. However, in mixed-phase clouds conditions, the observed Doppler moments are dominated by the highly reflecting ice crystals and thus can not be used to identify the cloud phase. This limits our ability to identify the spatial distribution of cloud phase and our ability to identify the conditions under which mixed-phase clouds form.« less

  13. Gram-scale synthesis of single-crystalline graphene quantum dots with superior optical properties.

    PubMed

    Wang, Liang; Wang, Yanli; Xu, Tao; Liao, Haobo; Yao, Chenjie; Liu, Yuan; Li, Zhen; Chen, Zhiwen; Pan, Dengyu; Sun, Litao; Wu, Minghong

    2014-10-28

    Graphene quantum dots (GQDs) have various alluring properties and potential applications, but their large-scale applications are limited by current synthetic methods that commonly produce GQDs in small amounts. Moreover, GQDs usually exhibit polycrystalline or highly defective structures and thus poor optical properties. Here we report the gram-scale synthesis of single-crystalline GQDs by a facile molecular fusion route under mild and green hydrothermal conditions. The synthesis involves the nitration of pyrene followed by hydrothermal treatment in alkaline aqueous solutions, where alkaline species play a crucial role in tuning their size, functionalization and optical properties. The single-crystalline GQDs are bestowed with excellent optical properties such as bright excitonic fluorescence, strong excitonic absorption bands extending to the visible region, large molar extinction coefficients and long-term photostability. These high-quality GQDs can find a large array of novel applications in bioimaging, biosensing, light emitting diodes, solar cells, hydrogen production, fuel cells and supercapacitors.

  14. Resolving Properties of Polymers and Nanoparticle Assembly through Coarse-Grained Computational Studies.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grest, Gary S.

    2017-09-01

    Coupled length and time scales determine the dynamic behavior of polymers and polymer nanocomposites and underlie their unique properties. To resolve the properties over large time and length scales it is imperative to develop coarse grained models which retain the atomistic specificity. Here we probe the degree of coarse graining required to simultaneously retain significant atomistic details a nd access large length and time scales. The degree of coarse graining in turn sets the minimum length scale instrumental in defining polymer properties and dynamics. Using polyethylene as a model system, we probe how the coarse - graining scale affects themore » measured dynamics with different number methylene group s per coarse - grained beads. Using these models we simulate polyethylene melts for times over 500 ms to study the viscoelastic properties of well - entangled polymer melts and large nanoparticle assembly as the nanoparticles are driven close enough to form nanostructures.« less

  15. Artificial fluid properties for large-eddy simulation of compressible turbulent mixing

    NASA Astrophysics Data System (ADS)

    Cook, Andrew W.

    2007-05-01

    An alternative methodology is described for large-eddy simulation (LES) of flows involving shocks, turbulence, and mixing. In lieu of filtering the governing equations, it is postulated that the large-scale behavior of a LES fluid, i.e., a fluid with artificial properties, will be similar to that of a real fluid, provided the artificial properties obey certain constraints. The artificial properties consist of modifications to the shear viscosity, bulk viscosity, thermal conductivity, and species diffusivity of a fluid. The modified transport coefficients are designed to damp out high wavenumber modes, close to the resolution limit, without corrupting lower modes. Requisite behavior of the artificial properties is discussed and results are shown for a variety of test problems, each designed to exercise different aspects of the models. When combined with a tenth-order compact scheme, the overall method exhibits excellent resolution characteristics for turbulent mixing, while capturing shocks and material interfaces in a crisp fashion.

  16. Computational study of culture conditions and nutrient supply in a hollow membrane sheet bioreactor for large-scale bone tissue engineering.

    PubMed

    Khademi, Ramin; Mohebbi-Kalhori, Davod; Hadjizadeh, Afra

    2014-03-01

    Successful bone tissue culture in a large implant is still a challenge. We have previously developed a porous hollow membrane sheet (HMSh) for tissue engineering applications (Afra Hadjizadeh and Davod Mohebbi-Kalhori, J Biomed. Mater. Res. Part A [2]). This study aims to investigate culture conditions and nutrient supply in a bioreactor made of HMSh. For this purpose, hydrodynamic and mass transport behavior in the newly proposed hollow membrane sheet bioreactor including a lumen region and porous membrane (scaffold) for supporting and feeding cells with a grooved section for accommodating gel-cell matrix was numerically studied. A finite element method was used for solving the governing equations in both homogenous and porous media. Furthermore, the cell resistance and waste production have been included in a 3D mathematical model. The influences of different bioreactor design parameters and the scaffold properties which determine the HMSh bioreactor performance and various operating conditions were discussed in detail. The obtained results illustrated that the novel scaffold can be employed in the large-scale applications in bone tissue engineering.

  17. Thermodynamic and kinetic modeling of Mn-Ni-Si precipitates in low-Cu reactor pressure vessel steels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ke, Huibin; Wells, Peter; Edmondson, Philip D.

    Formation of large volume fractions of Mn-Ni-Si precipitates (MNSPs) causes excess irradiation embrittlement of reactor pressure vessel (RPV) steels at high, extended-life fluences. Thus, a new and unique, semi-empirical cluster dynamics model was developed to study the evolution of MNSPs in low-Cu RPV steels. The model is based on CALPHAD thermodynamics and radiation enhanced diffusion kinetics. The thermodynamics dictates the compositional and temperature dependence of the free energy reductions that drive precipitation. The model treats both homogeneous and heterogeneous nucleation, where the latter occurs on cascade damage, like dislocation loops. The model has only four adjustable parameters that were fitmore » to an atom probe tomography (APT) database. The model predictions are in semi-quantitative agreement with systematic Mn, Ni and Si composition variations in alloys characterized by APT, including a sensitivity to local tip-to-tip variations even in the same steel. The model predicts that heterogeneous nucleation plays a critical role in MNSP formation in lower alloy Ni contents. Single variable assessments of compositional effects show that Ni plays a dominant role, while even small variations in irradiation temperature can have a large effect on the MNSP evolution. Within typical RPV steel ranges, Mn and Si have smaller effects. Furthermore, the delayed but then rapid growth of MNSPs to large volume fractions at high fluence is well predicted by the model. For purposes of illustration, the effect of MNSPs on transition temperature shifts are presented based on well-established microstructure-property and property-property models.« less

  18. Thermodynamic and kinetic modeling of Mn-Ni-Si precipitates in low-Cu reactor pressure vessel steels

    DOE PAGES

    Ke, Huibin; Wells, Peter; Edmondson, Philip D.; ...

    2017-07-12

    Formation of large volume fractions of Mn-Ni-Si precipitates (MNSPs) causes excess irradiation embrittlement of reactor pressure vessel (RPV) steels at high, extended-life fluences. Thus, a new and unique, semi-empirical cluster dynamics model was developed to study the evolution of MNSPs in low-Cu RPV steels. The model is based on CALPHAD thermodynamics and radiation enhanced diffusion kinetics. The thermodynamics dictates the compositional and temperature dependence of the free energy reductions that drive precipitation. The model treats both homogeneous and heterogeneous nucleation, where the latter occurs on cascade damage, like dislocation loops. The model has only four adjustable parameters that were fitmore » to an atom probe tomography (APT) database. The model predictions are in semi-quantitative agreement with systematic Mn, Ni and Si composition variations in alloys characterized by APT, including a sensitivity to local tip-to-tip variations even in the same steel. The model predicts that heterogeneous nucleation plays a critical role in MNSP formation in lower alloy Ni contents. Single variable assessments of compositional effects show that Ni plays a dominant role, while even small variations in irradiation temperature can have a large effect on the MNSP evolution. Within typical RPV steel ranges, Mn and Si have smaller effects. Furthermore, the delayed but then rapid growth of MNSPs to large volume fractions at high fluence is well predicted by the model. For purposes of illustration, the effect of MNSPs on transition temperature shifts are presented based on well-established microstructure-property and property-property models.« less

  19. The History of Electromagnetic Induction Techniques in Soil Survey

    NASA Astrophysics Data System (ADS)

    Brevik, Eric C.; Doolittle, Jim

    2014-05-01

    Electromagnetic induction (EMI) has been used to characterize the spatial variability of soil properties since the late 1970s. Initially used to assess soil salinity, the use of EMI in soil studies has expanded to include: mapping soil types; characterizing soil water content and flow patterns; assessing variations in soil texture, compaction, organic matter content, and pH; and determining the depth to subsurface horizons, stratigraphic layers or bedrock, among other uses. In all cases the soil property being investigated must influence soil apparent electrical conductivity (ECa) either directly or indirectly for EMI techniques to be effective. An increasing number and diversity of EMI sensors have been developed in response to users' needs and the availability of allied technologies, which have greatly improved the functionality of these tools. EMI investigations provide several benefits for soil studies. The large amount of georeferenced data that can be rapidly and inexpensively collected with EMI provides more complete characterization of the spatial variations in soil properties than traditional sampling techniques. In addition, compared to traditional soil survey methods, EMI can more effectively characterize diffuse soil boundaries and identify included areas of dissimilar soils within mapped soil units, giving soil scientists greater confidence when collecting spatial soil information. EMI techniques do have limitations; results are site-specific and can vary depending on the complex interactions among multiple and variable soil properties. Despite this, EMI techniques are increasingly being used to investigate the spatial variability of soil properties at field and landscape scales.

  20. Nanopore Confinement of C-O-H Fluids Relevant to Subsurface Energy Systems

    NASA Astrophysics Data System (ADS)

    Cole, D. R.

    2016-12-01

    Complex intermolecular interactions of C-O-H fluids (e.g., H2O, CO2, CH4) result in their unique thermophysical properties, including large deviations in the volumetric properties from ideality, vapor-liquid equilibria, and critical phenomena as these fluids encounter different pressure-temperature-pore network conditions in the crust. Development of a comprehensive understanding of the structures, dynamics, and reactivity at multiple length scales (molecular to macroscopic) over wide ranges of state conditions and composition is foundational to advances in quantifying geochemical processes involving mineral-fluid interfaces. The size, distribution and connectivity of these confined geometries dictate how fluids migrate into and through these micro- and nano-environments, wet and react with the solid. This presentation will provide an overview of the application of state-of-the-art experimental, analytical and computational tools to assess key features of the fluid-matrix interaction. The multidisciplinary approaches highlighted will include neutron scattering and NMR experiments, thermodynamic measurements and molecular-level simulations to quantitatively assess molecular properties of different mixtures of C-O-H fluids in nanpores. Key results include: (1) The addition of a second carbon-bearing phase or water has a profound effect on the competition for sorption sites, phase chemistry and the dynamical properties of all phases present in the pore. (2) Low solubility phases such as methane may exhibit profound increases in concentration in nanopores in the presence of water at elevated pressures and ambient temperature compared to bulk values. (3) Methane permeability through the hydrated pores is strongly dependent on the solid substrate and local properties of confined water, including its structure and, more importantly, evolution of solvation free energy and hydrogen bond structure. (4) Under certain conditions preferential adsorption of the fluids in the narrow pores can produce a shift in the equilibrium distribution of mixed volatiles present in adjoining fractures (aka the bulk portion of the system).

  1. Visual attention mitigates information loss in small- and large-scale neural codes.

    PubMed

    Sprague, Thomas C; Saproo, Sameer; Serences, John T

    2015-04-01

    The visual system transforms complex inputs into robust and parsimonious neural codes that efficiently guide behavior. Because neural communication is stochastic, the amount of encoded visual information necessarily decreases with each synapse. This constraint requires that sensory signals are processed in a manner that protects information about relevant stimuli from degradation. Such selective processing--or selective attention--is implemented via several mechanisms, including neural gain and changes in tuning properties. However, examining each of these effects in isolation obscures their joint impact on the fidelity of stimulus feature representations by large-scale population codes. Instead, large-scale activity patterns can be used to reconstruct representations of relevant and irrelevant stimuli, thereby providing a holistic understanding about how neuron-level modulations collectively impact stimulus encoding. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. An Investigation of the Large Scale Evolution and Topology of Coronal Mass Ejections in the Solar Wind

    NASA Technical Reports Server (NTRS)

    Riley, Peter

    2000-01-01

    This investigation is concerned with the large-scale evolution and topology of coronal mass ejections (CMEs) in the solar wind. During this reporting period we have focused on several aspects of CME properties, their identification and their evolution in the solar wind. The work included both analysis of Ulysses and ACE observations as well as fluid and magnetohydrodynamic simulations. In addition, we analyzed a series of "density holes" observed in the solar wind, that bear many similarities with CMEs. Finally, this work was communicated to the scientific community at three meetings and has led to three scientific papers that are in various stages of review.

  3. Diversity of large DNA viruses of invertebrates.

    PubMed

    Williams, Trevor; Bergoin, Max; van Oers, Monique M

    2017-07-01

    In this review we provide an overview of the diversity of large DNA viruses known to be pathogenic for invertebrates. We present their taxonomical classification and describe the evolutionary relationships among various groups of invertebrate-infecting viruses. We also indicate the relationships of the invertebrate viruses to viruses infecting mammals or other vertebrates. The shared characteristics of the viruses within the various families are described, including the structure of the virus particle, genome properties, and gene expression strategies. Finally, we explain the transmission and mode of infection of the most important viruses in these families and indicate, which orders of invertebrates are susceptible to these pathogens. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. SIGN SINGULARITY AND FLARES IN SOLAR ACTIVE REGION NOAA 11158

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sorriso-Valvo, L.; De Vita, G.; Kazachenko, M. D.

    Solar Active Region NOAA 11158 has hosted a number of strong flares, including one X2.2 event. The complexity of current density and current helicity are studied through cancellation analysis of their sign-singular measure, which features power-law scaling. Spectral analysis is also performed, revealing the presence of two separate scaling ranges with different spectral index. The time evolution of parameters is discussed. Sudden changes of the cancellation exponents at the time of large flares and the presence of correlation with Extreme-Ultra-Violet and X-ray flux suggest that eruption of large flares can be linked to the small-scale properties of the current structures.

  5. Response of human populations to large-scale emergencies

    NASA Astrophysics Data System (ADS)

    Bagrow, James; Wang, Dashun; Barabási, Albert-László

    2010-03-01

    Until recently, little quantitative data regarding collective human behavior during dangerous events such as bombings and riots have been available, despite its importance for emergency management, safety and urban planning. Understanding how populations react to danger is critical for prediction, detection and intervention strategies. Using a large telecommunications dataset, we study for the first time the spatiotemporal, social and demographic response properties of people during several disasters, including a bombing, a city-wide power outage, and an earthquake. Call activity rapidly increases after an event and we find that, when faced with a truly life-threatening emergency, information rapidly propagates through a population's social network. Other events, such as sports games, do not exhibit this propagation.

  6. Aggregate nanostructures of organic molecular materials.

    PubMed

    Liu, Huibiao; Xu, Jialiang; Li, Yongjun; Li, Yuliang

    2010-12-21

    Conjugated organic molecules are interesting materials because of their structures and their electronic, electrical, magnetic, optical, biological, and chemical properties. However, researchers continue to face great challenges in the construction of well-defined organic compounds that aggregate into larger molecular materials such as nanowires, tubes, rods, particles, walls, films, and other structural arrays. Such nanoscale materials could serve as direct device components. In this Account, we describe our recent progress in the construction of nanostructures formed through the aggregation of organic conjugated molecules and in the investigation of the optical, electrical, and electronic properties that depend on the size or morphology of these nanostructures. We have designed and synthesized functional conjugated organic molecules with structural features that favor assembly into aggregate nanostructures via weak intermolecular interactions. These large-area ordered molecular aggregate nanostructures are based on a variety of simpler structures such as fullerenes, perylenes, anthracenes, porphyrins, polydiacetylenes, and their derivatives. We have developed new methods to construct these larger structures including organic vapor-solid phase reaction, natural growth, association via self-polymerization and self-organization, and a combination of self-assembly and electrochemical growth. These methods are both facile and reliable, allowing us to produce ordered and aligned aggregate nanostructures, such as large-area arrays of nanowires, nanorods, and nanotubes. In addition, we can synthesize nanoscale materials with controlled properties. Large-area ordered aggregate nanostructures exhibit interesting electrical, optical, and optoelectronic properties. We also describe the preparation of large-area aggregate nanostructures of charge transfer (CT) complexes using an organic solid-phase reaction technique. By this process, we can finely control the morphologies and sizes of the organic nanostructures on wires, tubes, and rods. Through field emission studies, we demonstrate that the films made from arrays of CT complexes are a new kind of cathode materials, and we systematically investigate the effects of size and morphology on electrical properties. Low-dimension organic/inorganic hybrid nanostructures can be used to produce new classes of organic/inorganic solid materials with properties that are not observed in either the individual nanosize components or the larger bulk materials. We developed the combined self-assembly and templating technique to construct various nanostructured arrays of organic and inorganic semiconductors. The combination of hybrid aggregate nanostructures displays distinct optical and electrical properties compared with their individual components. Such hybrid structures show promise for applications in electronics, optics, photovoltaic cells, and biology. In this Account, we aim to provide an intuition for understanding the structure-function relationships in organic molecular materials. Such principles could lead to new design concepts for the development of new nonhazardous, high-performance molecular materials on aggregate nanostructures.

  7. Coronal mass ejections and their sheath regions in interplanetary space

    NASA Astrophysics Data System (ADS)

    Kilpua, Emilia; Koskinen, Hannu E. J.; Pulkkinen, Tuija I.

    2017-11-01

    Interplanetary coronal mass ejections (ICMEs) are large-scale heliospheric transients that originate from the Sun. When an ICME is sufficiently faster than the preceding solar wind, a shock wave develops ahead of the ICME. The turbulent region between the shock and the ICME is called the sheath region. ICMEs and their sheaths and shocks are all interesting structures from the fundamental plasma physics viewpoint. They are also key drivers of space weather disturbances in the heliosphere and planetary environments. ICME-driven shock waves can accelerate charged particles to high energies. Sheaths and ICMEs drive practically all intense geospace storms at the Earth, and they can also affect dramatically the planetary radiation environments and atmospheres. This review focuses on the current understanding of observational signatures and properties of ICMEs and the associated sheath regions based on five decades of studies. In addition, we discuss modelling of ICMEs and many fundamental outstanding questions on their origin, evolution and effects, largely due to the limitations of single spacecraft observations of these macro-scale structures. We also present current understanding of space weather consequences of these large-scale solar wind structures, including effects at the other Solar System planets and exoplanets. We specially emphasize the different origin, properties and consequences of the sheaths and ICMEs.

  8. Hydraulic head applications of flow logs in the study of heterogeneous aquifers

    USGS Publications Warehouse

    Paillet, Frederick L.

    2001-01-01

    Permeability profiles derived from high-resolution flow logs in heterogeneous aquifers provide a limited sample of the most permeable beds or fractures determining the hydraulic properties of those aquifers. This paper demonstrates that flow logs can also be used to infer the large-scale properties of aquifers surrounding boreholes. The analysis is based on the interpretation of the hydraulic head values estimated from the flow log analysis. Pairs of quasi-steady flow profiles obtained under ambient conditions and while either pumping or injecting are used to estimate the hydraulic head in each water-producing zone. Although the analysis yields localized estimates of transmissivity for a few water-producing zones, the hydraulic head estimates apply to the farfield aquifers to which these zones are connected. The hydraulic head data are combined with information from other sources to identify the large-scale structure of heterogeneous aquifers. More complicated cross-borehole flow experiments are used to characterize the pattern of connection between large-scale aquifer units inferred from the hydraulic head estimates. The interpretation of hydraulic heads in situ under steady and transient conditions is illustrated by several case studies, including an example with heterogeneous permeable beds in an unconsolidated aquifer, and four examples with heterogeneous distributions of bedding planes and/or fractures in bedrock aquifers.

  9. Learning maximum entropy models from finite-size data sets: A fast data-driven algorithm allows sampling from the posterior distribution.

    PubMed

    Ferrari, Ulisse

    2016-08-01

    Maximum entropy models provide the least constrained probability distributions that reproduce statistical properties of experimental datasets. In this work we characterize the learning dynamics that maximizes the log-likelihood in the case of large but finite datasets. We first show how the steepest descent dynamics is not optimal as it is slowed down by the inhomogeneous curvature of the model parameters' space. We then provide a way for rectifying this space which relies only on dataset properties and does not require large computational efforts. We conclude by solving the long-time limit of the parameters' dynamics including the randomness generated by the systematic use of Gibbs sampling. In this stochastic framework, rather than converging to a fixed point, the dynamics reaches a stationary distribution, which for the rectified dynamics reproduces the posterior distribution of the parameters. We sum up all these insights in a "rectified" data-driven algorithm that is fast and by sampling from the parameters' posterior avoids both under- and overfitting along all the directions of the parameters' space. Through the learning of pairwise Ising models from the recording of a large population of retina neurons, we show how our algorithm outperforms the steepest descent method.

  10. Advances in vascular tissue engineering.

    PubMed

    Thomas, Anita C; Campbell, Gordon R; Campbell, Julie H

    2003-01-01

    Coronary and peripheral artery bypass grafting is commonly used to relieve the symptoms of vascular deficiencies, but the supply of autologous artery or vein may not be sufficient or suitable for multiple bypass or repeat procedures, necessitating the use of other materials. Synthetic materials are suitable for large bore arteries but often thrombose when used in smaller arteries. Suitable replacement grafts must have appropriate characteristics, including resistance to infection, low immunogenicity and good biocompatability and thromboresistance, with appropriate mechanical and physiological properties and cheap and fast manufacture. Current avenues of graft development include coating synthetic grafts with either biological chemicals or cells with anticoagulatory properties. Matrix templates or acellular tubes of extracellular matrix (such as collagen) may be coated or infiltrated with cultured cells. Once placed into the artery, these grafts may become colonised by host cells and gain many of the properties of normal artery. "Tissue-engineered blood vessels" may also be formed from layers of human vascular cells grown in culture. These engineered vessels have many of the characteristics of arteries formed in vivo. "Artificial arteries" may be also be derived from peritoneal granulation tissue in body "bioreactors" by adapting the body's natural wound healing response to produce a hollow tube.

  11. Cable deformation simulation and a hierarchical framework for Nb3Sn Rutherford cables

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arbelaez, D.; Prestemon, S. O.; Ferracin, P.

    2009-09-13

    Knowledge of the three-dimensional strain state induced in the superconducting filaments due to loads on Rutherford cables is essential to analyze the performance of Nb{sub 3}Sn magnets. Due to the large range of length scales involved, we develop a hierarchical computational scheme that includes models at both the cable and strand levels. At the Rutherford cable level, where the strands are treated as a homogeneous medium, a three-dimensional computational model is developed to determine the deformed shape of the cable that can subsequently be used to determine the strain state under specified loading conditions, which may be of thermal, magnetic,more » and mechanical origins. The results can then be transferred to the model at the strand/macro-filament level for rod restack process (RRP) strands, where the geometric details of the strand are included. This hierarchical scheme can be used to estimate the three-dimensional strain state in the conductor as well as to determine the effective properties of the strands and cables from the properties of individual components. Examples of the modeling results obtained for the orthotropic mechanical properties of the Rutherford cables are presented.« less

  12. Cubesat in-situ degradation detector (CIDD)

    NASA Astrophysics Data System (ADS)

    Rievers, Benny; Milke, Alexander; Salden, Daniel

    2015-07-01

    The design of the thermal control and management system (TCS) is a central task in satellite design. In order to evaluate and dimensionize the properties of the TCS, material parameters specifying the conductive and radiative properties of the different TCS components have to be known including their respective variations within the mission lifetime. In particular the thermo-optical properties of the outer surfaces including critical TCS components such as radiators and thermal insulation are subject to degradation caused by interaction with the space environment. The evaluation of these material parameters by means of ground testing is a time-consuming and expensive endeavor. Long-term in-situ measurements on board the ISS or large satellites not only realize a better implementation of the influence of the space environment but also imply high costs. Motivated by this we propose the utilization of low-cost nano-satellite systems to realize material tests within space at a considerably reduced cost. We present a nanosat-scale degradation sensor concept which realizes low power consumption and data rates compatible with nanosat boundaries at UHF radio. By means of a predefined measurement and messaging cycle temperature curves are measured and evaluated on ground to extract the change of absorptivity and emissivity over mission lifetime.

  13. Hemodynamics

    PubMed Central

    Secomb, Timothy W.

    2016-01-01

    A review is presented of the physical principles governing the distribution of blood flow and blood pressure in the vascular system. The main factors involved are the pulsatile driving pressure generated by the heart, the flow characteristics of blood, and the geometric structure and mechanical properties of the vessels. The relationship between driving pressure and flow in a given vessel can be understood by considering the viscous and inertial forces acting on the blood. Depending on the vessel diameter and other physical parameters, a wide variety of flow phenomena can occur. In large arteries, the propagation of the pressure pulse depends on the elastic properties of the artery walls. In the microcirculation, the fact that blood is a suspension of cells strongly influences its flow properties and leads to a non-uniform distribution of hematocrit among microvessels. The forces acting on vessel walls include shear stress resulting from blood flow and circumferential stress resulting from blood pressure. Biological responses to these forces are important in the control of blood flow and the structural remodeling of vessels, and also play a role in major disease processes including hypertension and atherosclerosis. Consideration of hemodynamics is essential for a comprehensive understanding of the functioning of the circulatory system. PMID:27065172

  14. Decompositions of large-scale biological systems based on dynamical properties.

    PubMed

    Soranzo, Nicola; Ramezani, Fahimeh; Iacono, Giovanni; Altafini, Claudio

    2012-01-01

    Given a large-scale biological network represented as an influence graph, in this article we investigate possible decompositions of the network aimed at highlighting specific dynamical properties. The first decomposition we study consists in finding a maximal directed acyclic subgraph of the network, which dynamically corresponds to searching for a maximal open-loop subsystem of the given system. Another dynamical property investigated is strong monotonicity. We propose two methods to deal with this property, both aimed at decomposing the system into strongly monotone subsystems, but with different structural characteristics: one method tends to produce a single large strongly monotone component, while the other typically generates a set of smaller disjoint strongly monotone subsystems. Original heuristics for the methods investigated are described in the article. altafini@sissa.it

  15. Preparation of Gd(OH){sub 3} large single crystals by solid KOH assisted hydrothermal method and their luminescent and magnetic properties

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Hai; Zhang, Youjin, E-mail: zyj@ustc.edu.cn; Zhou, Maozhong

    Highlights: • Gd(OH){sub 3} large single crystals were prepared by solid KOH assisted hydrothermal method. • The possible growth mechanism of Gd(OH){sub 3} large single crystals was proposed. • The Gd(OH){sub 3} samples emitted a strong narrow-band ultraviolet B (NB-UVB) light. • The Gd(OH){sub 3} samples showed good paramagnetic properties. - Abstract: Large single crystals of gadolinium hydroxide [Gd(OH){sub 3}] in the length of several millimeters were successfully prepared by using solid KOH assisted hydrothermal method. Gd(OH){sub 3} samples were characterized by X-ray diffraction (XRD), 4-circle single-crystal diffraction, Fourier transform infrared (FTIR) spectroscopy and X-ray photoelectron spectroscopy (XPS). FESEM imagemore » shows hexagonal prism morphology for the Gd(OH){sub 3} large crystals. The possible growth mechanism of Gd(OH){sub 3} large single crystals was proposed. The photoluminescence and magnetic properties of Gd(OH){sub 3} species were investigated.« less

  16. Microwave Properties of Ice-Phase Hydrometeors for Radar and Radiometers: Sensitivity to Model Assumptions

    NASA Technical Reports Server (NTRS)

    Johnson, Benjamin T.; Petty, Grant W.; Skofronick-Jackson, Gail

    2012-01-01

    A simplied framework is presented for assessing the qualitative sensitivities of computed microwave properties, satellite brightness temperatures, and radar reflectivities to assumptions concerning the physical properties of ice-phase hydrometeors. Properties considered included the shape parameter of a gamma size distribution andthe melted-equivalent mass median diameter D0, the particle density, dielectric mixing formula, and the choice of complex index of refraction for ice. We examine these properties at selected radiometer frequencies of 18.7, 36.5, 89.0, and 150.0 GHz; and radar frequencies at 2.8, 13.4, 35.6, and 94.0 GHz consistent with existing and planned remote sensing instruments. Passive and active microwave observables of ice particles arefound to be extremely sensitive to the melted-equivalent mass median diameter D0 ofthe size distribution. Similar large sensitivities are found for variations in the ice vol-ume fraction whenever the geometric mass median diameter exceeds approximately 1/8th of the wavelength. At 94 GHz the two-way path integrated attenuation is potentially large for dense compact particles. The distribution parameter mu has a relatively weak effect on any observable: less than 1-2 K in brightness temperature and up to 2.7 dB difference in the effective radar reflectivity. Reversal of the roles of ice and air in the MaxwellGarnett dielectric mixing formula leads to a signicant change in both microwave brightness temperature (10 K) and radar reflectivity (2 dB). The choice of Warren (1984) or Warren and Brandt (2008) for the complex index of refraction of ice can produce a 3%-4% change in the brightness temperature depression.

  17. DigitalCrust – a 4D data system of material properties for transforming research on crustal fluid flow

    USGS Publications Warehouse

    Fan, Yin; Richard, Steve; Bristol, R. Sky; Peters, Shanan; Ingebritsen, Steven E.; Moosdorf, Nils; Packman, Aaron I.; Gleeson, Tom; Zazlavsky, Ilya; Peckham, Scott; Murdoch, Larry; Cardiff, Michael; Tarboton, David; Jones, Norm; Hooper, Richard; Arrigo, Jennifer; Gochis, David; Olson, John

    2015-01-01

    Fluid circulation in the Earth's crust plays an essential role in surface, near surface, and deep crustal processes. Flow pathways are driven by hydraulic gradients but controlled by material permeability, which varies over many orders of magnitude and changes over time. Although millions of measurements of crustal properties have been made, including geophysical imaging and borehole tests, this vast amount of data and information has not been integrated into a comprehensive knowledge system. A community data infrastructure is needed to improve data access, enable large-scale synthetic analyses, and support representations of the subsurface in Earth system models. Here, we describe the motivation, vision, challenges, and an action plan for a community-governed, four-dimensional data system of the Earth's crustal structure, composition, and material properties from the surface down to the brittle–ductile transition. Such a system must not only be sufficiently flexible to support inquiries in many different domains of Earth science, but it must also be focused on characterizing the physical crustal properties of permeability and porosity, which have not yet been synthesized at a large scale. The DigitalCrust is envisioned as an interactive virtual exploration laboratory where models can be calibrated with empirical data and alternative hypotheses can be tested at a range of spatial scales. It must also support a community process for compiling and harmonizing models into regional syntheses of crustal properties. Sustained peer review from multiple disciplines will allow constant refinement in the ability of the system to inform science questions and societal challenges and to function as a dynamic library of our knowledge of Earth's crust.

  18. Nome Offshore Mining Information

    Science.gov Websites

    Lands Coal Regulatory Program Large Mine Permits Mineral Property and Rights Mining Index Land potential safety concerns, prevent overcrowding, and provide for efficient processing of the permits and Regulatory Program Large Mine Permitting Mineral Property Management Mining Fact Sheets Mining Forms APMA

  19. Properties of coarse particles in suspended particulate matter of the North Yellow Sea during summer

    NASA Astrophysics Data System (ADS)

    Zhang, Kainan; Wang, Zhenyan; Li, Wenjian; Yan, Jun

    2018-01-01

    Fine particles in seawater commonly form large porous aggregates. Aggregate density and settling velocity determine the behavior of this suspended particulate matter (SPM) within the water column. However, few studies of aggregate particles over a continental shelf have been undertaken. In our case study, properties of aggregate particles, including size and composition, over the continental shelf of the North Yellow Sea were investigated. During a scientific cruise in July 2016, in situ effective particle size distributions of SPM at 10 stations were measured, while temperature and turbidity measurements and samples of water were obtained from surface, middle, and bottom layers. Dispersed and inorganic particle size distributions were determined in the laboratory. The in situ SPM was divided into (1) small particles (<32 μm), (2) medium particles (32-256 μm) and (3) large particles (>256 μm). Large particles and medium particles dominated the total volume concentrations (VCs) of in situ SPM. After dispersion, the VCs of medium particles decreased to low values (<0.1 μL/L). The VCs of large particles in the surface and middle layers also decreased markedly, although they had higher peak values (0.1-1 μL/L). This suggests that almost all in situ medium particles and some large particles were aggregated, while other large particles were single particles. Correlation analysis showed that primary particles <32 μm influenced the formation of these aggregates. Microscopic examination revealed that these aggregates consisted of both organic and inorganic fine particles, while large particles were mucus-bound organic aggregates or individual plankton. The vertical distribution of coarser particles was clearly related to water stratification. Generally, medium aggregate particles were dominant in SPM of the bottom layer. A thermocline blocked resuspension of fine material into upper layers, yielding low VCs of medium-sized aggregate particles in the surface layer. Abundant large biogenic particles were present in both surface and middle layers.

  20. Workshop Report on Additive Manufacturing for Large-Scale Metal Components - Development and Deployment of Metal Big-Area-Additive-Manufacturing (Large-Scale Metals AM) System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Babu, Sudarsanam Suresh; Love, Lonnie J.; Peter, William H.

    Additive manufacturing (AM) is considered an emerging technology that is expected to transform the way industry can make low-volume, high value complex structures. This disruptive technology promises to replace legacy manufacturing methods for the fabrication of existing components in addition to bringing new innovation for new components with increased functional and mechanical properties. This report outlines the outcome of a workshop on large-scale metal additive manufacturing held at Oak Ridge National Laboratory (ORNL) on March 11, 2016. The charter for the workshop was outlined by the Department of Energy (DOE) Advanced Manufacturing Office program manager. The status and impact ofmore » the Big Area Additive Manufacturing (BAAM) for polymer matrix composites was presented as the background motivation for the workshop. Following, the extension of underlying technology to low-cost metals was proposed with the following goals: (i) High deposition rates (approaching 100 lbs/h); (ii) Low cost (<$10/lbs) for steel, iron, aluminum, nickel, as well as, higher cost titanium, (iii) large components (major axis greater than 6 ft) and (iv) compliance of property requirements. The above concept was discussed in depth by representatives from different industrial sectors including welding, metal fabrication machinery, energy, construction, aerospace and heavy manufacturing. In addition, DOE’s newly launched High Performance Computing for Manufacturing (HPC4MFG) program was reviewed. This program will apply thermo-mechanical models to elucidate deeper understanding of the interactions between design, process, and materials during additive manufacturing. Following these presentations, all the attendees took part in a brainstorming session where everyone identified the top 10 challenges in large-scale metal AM from their own perspective. The feedback was analyzed and grouped in different categories including, (i) CAD to PART software, (ii) selection of energy source, (iii) systems development, (iv) material feedstock, (v) process planning, (vi) residual stress & distortion, (vii) post-processing, (viii) qualification of parts, (ix) supply chain and (x) business case. Furthermore, an open innovation network methodology was proposed to accelerate the development and deployment of new large-scale metal additive manufacturing technology with the goal of creating a new generation of high deposition rate equipment, affordable feed stocks, and large metallic components to enhance America’s economic competitiveness.« less

  1. How Single-site Mutation Affects HP Lattice Proteins

    NASA Astrophysics Data System (ADS)

    Shi, Guangjie; Landau, David P.; Vogel, Thomas; Wüst, Thomas; Li, Ying Wai

    2014-03-01

    We developed a heuristic method based on Wang-Landauand multicanonical sampling for determining the ground-state degeneracy of HP lattice proteins . Our algorithm allowed the most precise estimations of the (sometimes substantial) ground-state degeneracies of some widely studied HP sequences. We investigated the effects of single-site mutation on specific long HP lattice proteins comprehensively, including structural changes in ground-states, changes of ground-state degeneracy and thermodynamic properties of the systems. Both extremely sensitive and insensitive cases have been observed; consequently, properties such as specific heat, tortuosities etc. may be either largely unaffected or may change significantly due to mutation. More interestingly, mutation can even induce a lower ground-state energy in a few cases. Supported by NSF.

  2. The Physical Properties of Intracluster Gas at z > 1

    NASA Technical Reports Server (NTRS)

    Rosati, Piero; Ford, Holland C.

    2004-01-01

    We have used XMM-Newton, Chandra and HST/ACS data on one of the most distant clusters known to date, RDCS1252-29 at z= 1.24, to measure the mass of its baryonic and dark components for the first time at these large redshifts. By comparing physical properties of cluster galaxies and of the X-ray emitting intra-cluster medium (including the iron abundance) with those in low-redshift clusters, we have found that little evolution has taken place over 60% of the lifetime of the Universe. This suggests that most of the stars formed at z>approx.3 and metal enrichment processes took place early in the evolutionary history of galaxy clusters. These findings have a strong bearing on galaxy and cluster evolution models.

  3. Magnetic properties of electrospun non-woven superconducting fabrics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Koblischka, Michael R.; Zeng, Xian Lin; Karwoth, Thomas

    2016-03-15

    Non-woven superconducting fabrics were prepared by the electrospinning technique, consisting of Bi{sub 2}Sr{sub 2}CaCuO{sub 8} (Bi-2212) nanowires. The individual nanowires have a diameter of ∼150-200 nm and lengths of up to 100 μm. A non-woven fabric forming a network with a large number of interconnects results, which enables the flow of transport currents through the entire network. We present here magnetization data [M(T) and M(H)-loops] of this new class of superconducting material. The magnetic properties of these nanowire networks are discussed including the irreversibility line and effects of different field sweep rates, regarding the microstructure of the nanowire networks investigatedmore » by electron microscopy.« less

  4. Exploration versus exploitation in space, mind, and society

    PubMed Central

    Hills, Thomas T.; Todd, Peter M.; Lazer, David; Redish, A. David; Couzin, Iain D.

    2015-01-01

    Search is a ubiquitous property of life. Although diverse domains have worked on search problems largely in isolation, recent trends across disciplines indicate that the formal properties of these problems share similar structures and, often, similar solutions. Moreover, internal search (e.g., memory search) shows similar characteristics to external search (e.g., spatial foraging), including shared neural mechanisms consistent with a common evolutionary origin across species. Search problems and their solutions also scale from individuals to societies, underlying and constraining problem solving, memory, information search, and scientific and cultural innovation. In summary, search represents a core feature of cognition, with a vast influence on its evolution and processes across contexts and requiring input from multiple domains to understand its implications and scope. PMID:25487706

  5. Analytical bond order potential for simulations of BeO 1D and 2D nanostructures and plasma-surface interactions

    NASA Astrophysics Data System (ADS)

    Byggmästar, J.; Hodille, E. A.; Ferro, Y.; Nordlund, K.

    2018-04-01

    An analytical interatomic bond order potential for the Be-O system is presented. The potential is fitted and compared to a large database of bulk BeO and point defect properties obtained using density functional theory. Its main applications include simulations of plasma-surface interactions involving oxygen or oxide layers on beryllium, as well as simulations of BeO nanotubes and nanosheets. We apply the potential in a study of oxygen irradiation of Be surfaces, and observe the early stages of an oxide layer forming on the Be surface. Predicted thermal and elastic properties of BeO nanotubes and nanosheets are simulated and compared with published ab initio data.

  6. Introduction

    NASA Astrophysics Data System (ADS)

    Zhao, Ben; Garbacki, Paweł; Gkantsidis, Christos; Iamnitchi, Adriana; Voulgaris, Spyros

    After a decade of intensive investigation, peer-to-peer computing has established itself as an accepted research eld in the general area of distributed systems. Peer-to- peer computing can be seen as the democratization of computing over throwing traditional hierarchical designs favored in client-server systems largely brought about by last-mile network improvements which have made individual PCs rst-class citizens in the network community. Much of the early focus in peer-to-peer systems was on best-effort le sharing applications. In recent years, however, research has focused on peer-to-peer systems that provide operational properties and functionality similar to those shown by more traditional distributed systems. These properties include stronger consistency, reliability, and security guarantees suitable to supporting traditional applications such as databases.

  7. Potenziale der Nutzung organischer Spurenstoffe als Indikatoren in Grundwasserleitern

    NASA Astrophysics Data System (ADS)

    Reh, Roland; Nödler, Karsten; Hillebrand, Olav; Licha, Tobias

    2016-11-01

    Risk assessment for drinking water requires a conceptual hydrogeological model of the catchment as well as an understanding of flow pathways, residence times and processes on the catchment scale. In fractured and karst aquifers, this is a challenging task, in part because the application of artificial tracers, environmental tracers or stable isotopes for understanding processes on the catchment scale is limited. Recently, a large number of organic compounds with different properties in very small concentrations have been detected in groundwater, including pesticides, pharmaceuticals, corrosion inhibitors and caffeine. In this article, we use a case study to demonstrate the potential of employing these compounds as indicators to reflect selected aquifer characteristics and properties, and to answer specific questions on the hydrogeological system.

  8. The basis function approach for modeling autocorrelation in ecological data.

    PubMed

    Hefley, Trevor J; Broms, Kristin M; Brost, Brian M; Buderman, Frances E; Kay, Shannon L; Scharf, Henry R; Tipton, John R; Williams, Perry J; Hooten, Mevin B

    2017-03-01

    Analyzing ecological data often requires modeling the autocorrelation created by spatial and temporal processes. Many seemingly disparate statistical methods used to account for autocorrelation can be expressed as regression models that include basis functions. Basis functions also enable ecologists to modify a wide range of existing ecological models in order to account for autocorrelation, which can improve inference and predictive accuracy. Furthermore, understanding the properties of basis functions is essential for evaluating the fit of spatial or time-series models, detecting a hidden form of collinearity, and analyzing large data sets. We present important concepts and properties related to basis functions and illustrate several tools and techniques ecologists can use when modeling autocorrelation in ecological data. © 2016 by the Ecological Society of America.

  9. Human land-use and soil change

    USGS Publications Warehouse

    Wills, Skye A.; Williams, Candiss O.; Duniway, Michael C.; Veenstra, Jessica; Seybold, Cathy; Pressley, DeAnn

    2017-01-01

    Soil change refers to the alteration of soil and soil properties over time in one location, as opposed to soil variability across space. Although soils change with pedogensis, this chapter focuses on human caused soil change. Soil change can occur with human use and management over long or short time periods and small or large scales. While change can be negative or positive; often soil change is observed when short-term or narrow goals overshadow the other soil’s ecosystem services. Many soils have been changed in their chemical, physical or biological properties through agricultural activities, including cultivation, tillage, weeding, terracing, subsoiling, deep plowing, manure and fertilizer addition, liming, draining, and irrigation. Assessing soil change depends upon the ecosystem services and soil functions being evaluated. The interaction of soil properties with the type and intensity of management and disturbance determines the changes that will be observed. Tillage of cropland disrupts aggregates and decreases soil organic carbon content which can lead to decreased infiltration, increased erosion, and reduced biological function. Improved agricultural management systems can increase soil functions including crop productivity and sustainability. Forest management is most intensive during harvesting and seedling establishment. Most active management in forests causes disturbance of the soil surface which may include loss of forest floor organic materials, increases in bulk density, and increased risk of erosion. In grazing lands, pasture management often includes periods of biological, chemical and physical disturbance in addition to the grazing management imposed on rangelands. Grazing animals have both direct and indirect impacts on soil change. Hoof action can lead to the disturbance of biological crusts and other surface features impairing the soil’s physical, biological and hydrological function. There are clear feedbacks between vegetative systems and soil properties; when vegetation is altered because of grazing or other disturbances, soil property changes often follow. Some soils are very sensitive to management and disturbance and can undergo rapid change: cropping led to massive gully formation in the southeastern USA, exposure of acid-sulfate soils led to irreversible changes in soil minerology and thawing of cold soils has created thermokarst features. These soil changes alter soil properties and functions and may impact soil ecosystem services far into the future.

  10. Competing opinions and stubborness: Connecting models to data.

    PubMed

    Burghardt, Keith; Rand, William; Girvan, Michelle

    2016-03-01

    We introduce a general contagionlike model for competing opinions that includes dynamic resistance to alternative opinions. We show that this model can describe candidate vote distributions, spatial vote correlations, and a slow approach to opinion consensus with sensible parameter values. These empirical properties of large group dynamics, previously understood using distinct models, may be different aspects of human behavior that can be captured by a more unified model, such as the one introduced in this paper.

  11. Recent progress in graphene-material-based optical sensors.

    PubMed

    Deng, Xianghua; Tang, Hao; Jiang, Jianhui

    2014-11-01

    Graphene material has been widely used for optical sensors owing to its excellent properties, including high-energy transfer efficiency, large surface area, and great biocompatibility. Different analytes such as nucleic acids, proteins, and small molecules can be detected by graphene-material-based optical sensors. This review provides a comprehensive discussion of graphene-material-based optical sensors focusing on detection mechanisms and biosensor designs. Challenges and future perspectives for graphene-material-based optical sensors are also presented.

  12. Three-dimensional motion and deformation of a red blood cell in bifurcated microvessels

    NASA Astrophysics Data System (ADS)

    Ye, Ting; Peng, Lina; Li, Yu

    2018-02-01

    Microvessels are generally not simple straight tubes, but rather they continually bifurcate (namely, diverging bifurcation) and merge with other microvessels (namely, converging bifurcation). This paper presents a simulation study on the three-dimensional motion and deformation of a red blood cell (RBC) in a bifurcated microvessel with both diverging and converging bifurcations. The motion of the fluids inside and outside of the RBC is modeled by smooth dissipative particle dynamics. The RBC membrane is modeled as a triangular network, having the ability to not only resist the stretching and bending deformations, but also to conserve the RBC volume and surface area. The bifurcation configurations have been studied, including the bifurcated angle and the branch diameter, as well as the RBC properties, including the initial shape, shear modulus, and bending modulus. The simulation results show that the RBC deformation can be divided into five stages, when the RBC flows through a diverging-converging bifurcated microvessel. In these five stages, the RBCs have similar deformation trends but different deformation indices, subject to different bifurcation configurations or different RBC properties. If the shear modulus is large enough, the RBC membrane presents several folds; if the bending modulus is large enough, the RBC loses the symmetry completely with the long shape. These results are helpful in understanding the motion and deformation of healthy or unhealthy cells in blood microcirculation.

  13. Modeling and analysis of UN TRISO fuel for LWR application using the PARFUME code

    NASA Astrophysics Data System (ADS)

    Collin, Blaise P.

    2014-08-01

    The Idaho National Laboratory (INL) PARFUME (PARticle FUel ModEl) code was used to assess the overall fuel performance of uranium nitride (UN) tristructural isotropic (TRISO) ceramic fuel under irradiation conditions typical of a Light Water Reactor (LWR). The dimensional changes of the fuel particle layers and kernel were calculated, including the formation of an internal gap. The survivability of the UN TRISO particle was estimated depending on the strain behavior of the constituent materials at high fast fluence and burn-up. For nominal cases, internal gas pressure and representative thermal profiles across the kernel and layers were determined along with stress levels in the inner and outer pyrolytic carbon (IPyC/OPyC) and silicon carbide (SiC) layers. These parameters were then used to evaluate fuel particle failure probabilities. Results of the study show that the survivability of UN TRISO fuel under LWR irradiation conditions might only be guaranteed if the kernel and PyC swelling rates are limited at high fast fluence and burn-up. These material properties have large uncertainties at the irradiation levels expected to be reached by UN TRISO fuel in LWRs. Therefore, a large experimental effort would be needed to establish material properties, including kernel and PyC swelling rates, under these conditions before definitive conclusions can be drawn on the behavior of UN TRISO fuel in LWRs.

  14. Industrial graphene metrology.

    PubMed

    Kyle, Jennifer Reiber; Ozkan, Cengiz S; Ozkan, Mihrimah

    2012-07-07

    Graphene is an allotrope of carbon whose structure is based on one-atom-thick planar sheets of carbon atoms that are densely packed in a honeycomb crystal lattice. Its unique electrical and optical properties raised worldwide interest towards the design and fabrication of future electronic and optical devices with unmatched performance. At the moment, extensive efforts are underway to evaluate the reliability and performance of a number of such devices. With the recent advances in synthesizing large-area graphene sheets, engineers have begun investigating viable methodologies for conducting graphene metrology and quality control at industrial scales to understand a variety of reliability issues including defects, patternability, electrical, and physical properties. This review summarizes the current state of industrial graphene metrology and provides an overview of graphene metrology techniques. In addition, a recently developed large-area graphene metrology technique based on fluorescence quenching is introduced. For each metrology technique, the industrial metrics it measures are identified--layer thickness, edge structure, defects, Fermi level, and thermal conductivity--and a detailed description is provided as to how the measurements are performed. Additionally, the potential advantages of each technique for industrial use are identified, including throughput, scalability, sensitivity to substrate/environment, and on their demonstrated ability to achieve quantified results. The recently developed fluorescence-quenching metrology technique is shown to meet all the necessary criteria for industrial applications, rendering it the first industry-ready graphene metrology technique.

  15. Relationship between the Kubelka-Munk scattering and radiative transfer coefficients.

    PubMed

    Thennadil, Suresh N

    2008-07-01

    The relationship between the Kubelka-Munk (K-M) and the transport scattering coefficient is obtained through a semi-empirical approach. This approach gives the same result as that given by Gate [Appl. Opt.13, 236 (1974)] when the incident beam is diffuse. This result and those given by Star et al. [Phys. Med. Biol.33, 437 (1988)] and Brinkworth [Appl. Opt.11, 1434 (1972)] are compared with the exact solution of the radiative transfer equation over a large range of optical properties. It is found that the latter expressions, which include an absorption component, do not give accurate results over the range considered. Using the semi-empirical approach, the relationship between the K-M and the transport scattering coefficient is derived for the case where the incident light is collimated. It is shown that although the K-M equation is derived based on diffuse incident light, it can also represent very well the reflectance from a slab of infinite thickness when the incident light is collimated. However, in this case the relationship between the coefficients has to include a function that is dependent on the anisotropy factor. Analysis indicates that the K-M transform achieves the objective of obtaining a measure that gives the ratio of absorption to scattering effects for both diffuse and collimated incident beams over a large range of optical properties.

  16. Technical design and commissioning of the KATRIN large-volume air coil system

    NASA Astrophysics Data System (ADS)

    Erhard, M.; Behrens, J.; Bauer, S.; Beglarian, A.; Berendes, R.; Drexlin, G.; Glück, F.; Gumbsheimer, R.; Hergenhan, J.; Leiber, B.; Mertens, S.; Osipowicz, A.; Plischke, P.; Reich, J.; Thümmler, T.; Wandkowsky, N.; Weinheimer, C.; Wüstling, S.

    2018-02-01

    The KATRIN experiment is a next-generation direct neutrino mass experiment with a sensitivity of 0.2 eV (90% C.L.) to the effective mass of the electron neutrino. It measures the tritium β-decay spectrum close to its endpoint with a spectrometer based on the MAC-E filter technique. The β-decay electrons are guided by a magnetic field that operates in the mT range in the central spectrometer volume; it is fine-tuned by a large-volume air coil system surrounding the spectrometer vessel. The purpose of the system is to provide optimal transmission properties for signal electrons and to achieve efficient magnetic shielding against background. In this paper we describe the technical design of the air coil system, including its mechanical and electrical properties. We outline the importance of its versatile operation modes in background investigation and suppression techniques. We compare magnetic field measurements in the inner spectrometer volume during system commissioning with corresponding simulations, which allows to verify the system's functionality in fine-tuning the magnetic field configuration. This is of major importance for a successful neutrino mass measurement at KATRIN.

  17. Machine learning of molecular properties: Locality and active learning

    NASA Astrophysics Data System (ADS)

    Gubaev, Konstantin; Podryabinkin, Evgeny V.; Shapeev, Alexander V.

    2018-06-01

    In recent years, the machine learning techniques have shown great potent1ial in various problems from a multitude of disciplines, including materials design and drug discovery. The high computational speed on the one hand and the accuracy comparable to that of density functional theory on another hand make machine learning algorithms efficient for high-throughput screening through chemical and configurational space. However, the machine learning algorithms available in the literature require large training datasets to reach the chemical accuracy and also show large errors for the so-called outliers—the out-of-sample molecules, not well-represented in the training set. In the present paper, we propose a new machine learning algorithm for predicting molecular properties that addresses these two issues: it is based on a local model of interatomic interactions providing high accuracy when trained on relatively small training sets and an active learning algorithm of optimally choosing the training set that significantly reduces the errors for the outliers. We compare our model to the other state-of-the-art algorithms from the literature on the widely used benchmark tests.

  18. Lunar and Planetary Science XXXV: Martian Aeolian and Mass Wasting Processes: Blowing and Flowing

    NASA Technical Reports Server (NTRS)

    2004-01-01

    The session Martian Aeolian and Mass Wasting Processes: BLowing and Flowing included the following topics: 1) Three Decades of Martian Surface Changes; 2) Thermophysical Properties of Isidis Basin, Mars; 3) Intracrater Material in Eastern Arabia Terra: THEMIS, MOC, and MOLA Analysis of Wind-blown Deposits and Possible High-Inertia Source Material; 4) Thermal Properties of Sand from TES and THEMIS: Do Martian Dunes Make a Good Control for Thermal Inertia Calculations? 5) A Comparative Analysis of Barchan Dunes in the Intra-Crater Dune Fields and the North Polar Sand Sea; 6) Diluvial Dunes in Athabasca Valles, Mars: Morphology, Modeling and Implications; 7) Surface Profiling of Natural Dust Devils; 8) Martian Dust Devil Tracks: Inferred Directions of Movement; 9) Numerical Simulations of Anastomosing Slope Streaks on Mars; 10) Young Fans in an Equatorial Crater in Xanthe Terra, Mars; 11) Large Well-exposed Alluvual Fans in Deep Late-Noachian Craters; 12) New Evidence for the Formation of Large Landslides on Mars; and 13) What Can We Learn from the Ages of Valles Marineris Landslides on Martian Impact History?

  19. Metal-Halide Perovskite Transistors for Printed Electronics: Challenges and Opportunities.

    PubMed

    Lin, Yen-Hung; Pattanasattayavong, Pichaya; Anthopoulos, Thomas D

    2017-12-01

    Following the unprecedented rise in photovoltaic power conversion efficiencies during the past five years, metal-halide perovskites (MHPs) have emerged as a new and highly promising class of solar-energy materials. Their extraordinary electrical and optical properties combined with the abundance of the raw materials, the simplicity of synthetic routes, and processing versatility make MHPs ideal for cost-efficient, large-volume manufacturing of a plethora of optoelectronic devices that span far beyond photovoltaics. Herein looks beyond current applications in the field of energy, to the area of large-area electronics using MHPs as the semiconductor material. A comprehensive overview of the relevant fundamental material properties of MHPs, including crystal structure, electronic states, and charge transport, is provided first. Thereafter, recent demonstrations of MHP-based thin-film transistors and their application in logic circuits, as well as bi-functional devices such as light-sensing and light-emitting transistors, are discussed. Finally, the challenges and opportunities in the area of MHPs-based electronics, with particular emphasis on manufacturing, stability, and health and environmental concerns, are highlighted. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Unique Piezoelectric Properties of the Monoclinic Phase in Pb(Zr,Ti)O_{3} Ceramics: Large Lattice Strain and Negligible Domain Switching.

    PubMed

    Fan, Longlong; Chen, Jun; Ren, Yang; Pan, Zhao; Zhang, Linxing; Xing, Xianran

    2016-01-15

    The origin of the excellent piezoelectric properties at the morphotropic phase boundary is generally attributed to the existence of a monoclinic phase in various piezoelectric systems. However, there exist no experimental studies that reveal the role of the monoclinic phase in the piezoelectric behavior in phase-pure ceramics. In this work, a single monoclinic phase has been identified in Pb(Zr,Ti)O_{3} ceramics at room temperature by in situ high-energy synchrotron x-ray diffraction, and its response to electric field has been characterized for the first time. Unique piezoelectric properties of the monoclinic phase in terms of large intrinsic lattice strain and negligible domain switching have been observed. The extensional strain constant d_{33} and the transverse strain constant d_{31} are calculated to be 520 and -200  pm/V, respectively. These large piezoelectric coefficients are mainly due to the large intrinsic lattice strain, with very little extrinsic contribution from domain switching. The unique properties of the monoclinic phase provide new insights into the mechanisms responsible for the piezoelectric properties at the morphotropic phase boundary.

  1. The First Year of Cassini RADAR Observations of Titan

    NASA Astrophysics Data System (ADS)

    Elachi, C.; Lorenz, R. D.

    2005-12-01

    Titan`s atmosphere is essentially transparent to Radar, making it an ideal technique to study Titan`s surface. Cassini`s Titan Radar Mapper operates as a passive radiometer, scatterometer, altimeter, and synthetic aperture radar (SAR). Here we review data from four fly-bys in the first year of Cassini`s tour (Ta: October 2004, T3: February 2005, T7: September 2005, and T8: October 2005.) Early SAR images from Ta and T3 (showing < 3% of Titan`s surface) reveal that Titan is geologically young and complex (see Elachi et al., 2005, Science 13, 970-4). Significant variations were seen between the range of features seen in the Ta swath (centered at ~50N, 80W) and T3 (~ 30N, 70W) : the large-scale radiometric properties also differed, with T3 being radar-brighter. A variety of features have been identified in SAR, including two large impact craters, cryovolcanic flows and a probable volcanic dome. Dendritic and braided radar-bright sinuous channels, some 180km long, are evidence of fluvial activity. `Cat scratches`, arrays of linear dark features seem most likely to be Aeolian. Radar provides unique topographic information on Titan`s landscape e.g. the depth of the 80km crater observed in T3 can be geometrically determined to be around 1300m deep. Despite the shallow large-scale slopes indicated in altimetry to date, many small hills are seen in T3. Scatterometry and radiometry maps provide large-scale classification of surface types and polarization and incidence angle coverage being assembled will constrain dielectric and scattering properties of the surface. Judging from the TA/T3 diversity, we expect further variations in the types and distribution of surface materials and geologic features in T7, which spans a wide range of Southern latitudes. T8 SAR will cover a near-equatorial dark region, including the landing site of the Huygens probe.

  2. Statistical analyses on sandstones: Systematic approach for predicting petrographical and petrophysical properties

    NASA Astrophysics Data System (ADS)

    Stück, H. L.; Siegesmund, S.

    2012-04-01

    Sandstones are a popular natural stone due to their wide occurrence and availability. The different applications for these stones have led to an increase in demand. From the viewpoint of conservation and the natural stone industry, an understanding of the material behaviour of this construction material is very important. Sandstones are a highly heterogeneous material. Based on statistical analyses with a sufficiently large dataset, a systematic approach to predicting the material behaviour should be possible. Since the literature already contains a large volume of data concerning the petrographical and petrophysical properties of sandstones, a large dataset could be compiled for the statistical analyses. The aim of this study is to develop constraints on the material behaviour and especially on the weathering behaviour of sandstones. Approximately 300 samples from historical and presently mined natural sandstones in Germany and ones described worldwide were included in the statistical approach. The mineralogical composition and fabric characteristics were determined from detailed thin section analyses and descriptions in the literature. Particular attention was paid to evaluating the compositional and textural maturity, grain contact respectively contact thickness, type of cement, degree of alteration and the intergranular volume. Statistical methods were used to test for normal distributions and calculating the linear regression of the basic petrophysical properties of density, porosity, water uptake as well as the strength. The sandstones were classified into three different pore size distributions and evaluated with the other petrophysical properties. Weathering behavior like hygric swelling and salt loading tests were also included. To identify similarities between individual sandstones or to define groups of specific sandstone types, principle component analysis, cluster analysis and factor analysis were applied. Our results show that composition and porosity evolution during diagenesis is a very important control on the petrophysical properties of a building stone. The relationship between intergranular volume, cementation and grain contact, can also provide valuable information to predict the strength properties. Since the samples investigated mainly originate from the Triassic German epicontinental basin, arkoses and feldspar-arenites are underrepresented. In general, the sandstones can be grouped as follows: i) quartzites, highly mature with a primary porosity of about 40%, ii) quartzites, highly mature, showing a primary porosity of 40% but with early clay infiltration, iii) sublitharenites-lithic arenites exhibiting a lower primary porosity, higher cementation with quartz and Fe-oxides ferritic and iv) sublitharenites-lithic arenites with a higher content of pseudomatrix. However, in the last two groups the feldspar and lithoclasts can also show considerable alteration. All sandstone groups differ with respect to the pore space and strength data, as well as water uptake properties, which were obtained by linear regression analysis. Similar petrophysical properties are discernible for each type when using principle component analysis. Furthermore, strength as well as the porosity of sandstones shows distinct differences considering their stratigraphic ages and the compositions. The relationship between porosity, strength as well as salt resistance could also be verified. Hygric swelling shows an interrelation to pore size type, porosity and strength but also to the degree of alteration (e.g. lithoclasts, pseudomatrix). To summarize, the different regression analyses and the calculated confidence regions provide a significant tool to classify the petrographical and petrophysical parameters of sandstones. Based on this, the durability and the weathering behavior of the sandstone groups can be constrained. Keywords: sandstones, petrographical & petrophysical properties, predictive approach, statistical investigation

  3. The Large Area KX Quasar Survey: Photometric Redshift Selection and the Complete Quasar Catalogue

    NASA Astrophysics Data System (ADS)

    Maddox, Natasha; Hewett, P. C.; Peroux, C.

    2013-01-01

    We have completed a large area, ˜600 square degree, spectroscopic survey for luminous quasars flux-limited in the K-band. The survey utilises the UKIRT Infrared Deep Sky Survey (UKIDSS) Large Area Survey (LAS) in regions of sky within the Sloan Digital Sky Survey (SDSS) footprint. We exploit the K-band excess (KX) of all quasars with respect to Galactic stars in combination with a custom-built photometric redshift/classification scheme to identify quasar candidates for spectroscopic follow-up observations. The survey is complete to K≤16.6, and includes >3200 known quasars from the SDSS, with more than 250 additional confirmed quasars from the KX-selection which eluded the SDSS quasar selection algorithm. The selection is >95% complete with respect to known SDSS quasars and >95% efficient, largely independent of redshift and magnitude. The KX-selected quasars will provide new constraints on the fraction of luminous quasars reddened by dust with E(B-V)≤0.5 mag. Several projects utilizing the KX quasars are ongoing, including a spectroscopic campaign searching for dusty quasar intervening absorption systems. The KX survey is a well-defined sample of quasars useful for investigating the properties of luminous quasars with intermediate levels of dust extinction either within their host galaxies or due to intervening absorption systems.

  4. Studies in the extensively automatic construction of large odds-based inference networks from structured data. Examples from medical, bioinformatics, and health insurance claims data.

    PubMed

    Robson, B; Boray, S

    2018-04-01

    Theoretical and methodological principles are presented for the construction of very large inference nets for odds calculations, composed of hundreds or many thousands or more of elements, in this paper generated by structured data mining. It is argued that the usual small inference nets can sometimes represent rather simple, arbitrary estimates. Examples of applications in clinical and public health data analysis, medical claims data and detection of irregular entries, and bioinformatics data, are presented. Construction of large nets benefits from application of a theory of expected information for sparse data and the Dirac notation and algebra. The extent to which these are important here is briefly discussed. Purposes of the study include (a) exploration of the properties of large inference nets and a perturbation and tacit conditionality models, (b) using these to propose simpler models including one that a physician could use routinely, analogous to a "risk score", (c) examination of the merit of describing optimal performance in a single measure that combines accuracy, specificity, and sensitivity in place of a ROC curve, and (d) relationship to methods for detecting anomalous and potentially fraudulent data. Copyright © 2018 Elsevier Ltd. All rights reserved.

  5. Water in silicate melts

    NASA Astrophysics Data System (ADS)

    McMillan, Paul; Stolper, Edward

    Water is one of the more important volatile species in magmas, both in terms of its abundance and its influence on the properties of a given magma. Many workers in the geological sciences have measured, modeled, and speculated on the interaction of water with silicate melts as a function of pressure. At the same time, glass and materials scientists have collected a considerable body of data on the effect of water on the properties of liquid and glassy silicates at 1 atmosphere (1.01325×105 N m-2) and below. A special session on “Solubility and Transport Properties of Water in Silicate Melts” was held during the 1983 AGU Spring Meeting, May 30-June 3, in Baltimore. The session had three main objectives: (1) review the present data base and discuss the status of current models in order to identify areas where further work is needed; (2) introduce interested geologists to the large body of work being carried out in the glass and materials sciences; and (3) consider static properties, such as thermodynamic relations, structure of hydrous melts, and dynamic properties including diffusion and viscosity. This report summarizes the major topics discussed. More detailed information may be found in the published abstracts (Eos, May 3, 1983, pp. 338-343).

  6. Overview of the CERES Edition-4 Multilayer Cloud Property Datasets

    NASA Astrophysics Data System (ADS)

    Chang, F. L.; Minnis, P.; Sun-Mack, S.; Chen, Y.; Smith, R. A.; Brown, R. R.

    2014-12-01

    Knowledge of the cloud vertical distribution is important for understanding the role of clouds on earth's radiation budget and climate change. Since high-level cirrus clouds with low emission temperatures and small optical depths can provide a positive feedback to a climate system and low-level stratus clouds with high emission temperatures and large optical depths can provide a negative feedback effect, the retrieval of multilayer cloud properties using satellite observations, like Terra and Aqua MODIS, is critically important for a variety of cloud and climate applications. For the objective of the Clouds and the Earth's Radiant Energy System (CERES), new algorithms have been developed using Terra and Aqua MODIS data to allow separate retrievals of cirrus and stratus cloud properties when the two dominant cloud types are simultaneously present in a multilayer system. In this paper, we will present an overview of the new CERES Edition-4 multilayer cloud property datasets derived from Terra as well as Aqua. Assessment of the new CERES multilayer cloud datasets will include high-level cirrus and low-level stratus cloud heights, pressures, and temperatures as well as their optical depths, emissivities, and microphysical properties.

  7. Progress in Turbulence Detection via GNSS Occultation Data

    NASA Technical Reports Server (NTRS)

    Cornman, L. B.; Goodrich, R. K.; Axelrad, P.; Barlow, E.

    2012-01-01

    The increased availability of radio occultation (RO) data offers the ability to detect and study turbulence in the Earth's atmosphere. An analysis of how RO data can be used to determine the strength and location of turbulent regions is presented. This includes the derivation of a model for the power spectrum of the log-amplitude and phase fluctuations of the permittivity (or index of refraction) field. The bulk of the paper is then concerned with the estimation of the model parameters. Parameter estimators are introduced and some of their statistical properties are studied. These estimators are then applied to simulated log-amplitude RO signals. This includes the analysis of global statistics derived from a large number of realizations, as well as case studies that illustrate various specific aspects of the problem. Improvements to the basic estimation methods are discussed, and their beneficial properties are illustrated. The estimation techniques are then applied to real occultation data. Only two cases are presented, but they illustrate some of the salient features inherent in real data.

  8. Phonon properties and slow organic-to-inorganic sub-lattice thermalization in hybrid perovskites

    NASA Astrophysics Data System (ADS)

    Chan, Maria; Chang, Angela; Xia, Yi; Sadasivam, Sridhar; Guo, Peijun; Kinaci, Alper; Lin, Hao-Wu; Darancet, Pierre; Schaller, Richard

    Organic-inorganic hybrid perovskite halide compounds have been investigated extensively for photovoltaics (PVs) and related applications. The thermal transport properties of hybrid perovskites, including phonon-carrier and phonon-phonon interactions, are of significance for their PV and solar thermoelectric applications. The interlocking organic and inorganic sublattices can be thought of as an extreme form of nanostructuring. A result of this nanostructuring is the large gap in phonon frequencies between the organic and inorganic sublattices, which is expected to create bottlenecks in phonon equilibration. In this work, we use a combination of ultrafast spectroscopy including photoluminescence and transient absorption, as well as first principles density functional theory (DFT), ab initio molecular dynamics calculations, phonon lifetimes derived from DFT force constants, and non-equilibrium phonon dynamics accounting for phonon lifetimes, to determine the phonon and charge interaction processes. We find evidence that thermalization of carriers occur at an atypically slow 50-100 ps time scale owing to the complex interplay between electronic and phonon excitations.

  9. Design Concepts, Fabrication and Advanced Characterization Methods of Innovative Piezoelectric Sensors Based on ZnO Nanowires.

    PubMed

    Araneo, Rodolfo; Rinaldi, Antonio; Notargiacomo, Andrea; Bini, Fabiano; Pea, Marialilia; Celozzi, Salvatore; Marinozzi, Franco; Lovat, Giampiero

    2014-12-08

    Micro- and nano-scale materials and systems based on zinc oxide are expected to explode in their applications in the electronics and photonics, including nano-arrays of addressable optoelectronic devices and sensors, due to their outstanding properties, including semiconductivity and the presence of a direct bandgap, piezoelectricity, pyroelectricity and biocompatibility. Most applications are based on the cooperative and average response of a large number of ZnO micro/nanostructures. However, in order to assess the quality of the materials and their performance, it is fundamental to characterize and then accurately model the specific electrical and piezoelectric properties of single ZnO structures. In this paper, we report on focused ion beam machined high aspect ratio nanowires and their mechanical and electrical (by means of conductive atomic force microscopy) characterization. Then, we investigate the suitability of new power-law design concepts to accurately model the relevant electrical and mechanical size-effects, whose existence has been emphasized in recent reviews.

  10. Minimising generation of acid whey during Greek yoghurt manufacturing.

    PubMed

    Uduwerella, Gangani; Chandrapala, Jayani; Vasiljevic, Todor

    2017-08-01

    Greek yoghurt, a popular dairy product, generates large amounts of acid whey as a by-product during manufacturing. Post-processing treatment of this stream presents one of the main concerns for the industry. The objective of this study was to manipulate initial milk total solids content (15, 20 or 23 g/100 g) by addition of milk protein concentrate, thus reducing whey expulsion. Such an adjustment was investigated from the technological standpoint including starter culture performance, chemical and physical properties of manufactured Greek yoghurt and generated acid whey. A comparison was made to commercially available products. Increasing protein content in regular yoghurt reduced the amount of acid whey during whey draining. This protein fortification also enhanced the Lb. bulgaricus growth rate and proteolytic activity. Best structural properties including higher gel strength and lower syneresis were observed in the Greek yoghurt produced with 20 g/100 g initial milk total solid compared to manufactured or commercially available products, while acid whey generation was lowered due to lower drainage requirement.

  11. Design Concepts, Fabrication and Advanced Characterization Methods of Innovative Piezoelectric Sensors Based on ZnO Nanowires

    PubMed Central

    Araneo, Rodolfo; Rinaldi, Antonio; Notargiacomo, Andrea; Bini, Fabiano; Pea, Marialilia; Celozzi, Salvatore; Marinozzi, Franco; Lovat, Giampiero

    2014-01-01

    Micro- and nano-scale materials and systems based on zinc oxide are expected to explode in their applications in the electronics and photonics, including nano-arrays of addressable optoelectronic devices and sensors, due to their outstanding properties, including semiconductivity and the presence of a direct bandgap, piezoelectricity, pyroelectricity and biocompatibility. Most applications are based on the cooperative and average response of a large number of ZnO micro/nanostructures. However, in order to assess the quality of the materials and their performance, it is fundamental to characterize and then accurately model the specific electrical and piezoelectric properties of single ZnO structures. In this paper, we report on focused ion beam machined high aspect ratio nanowires and their mechanical and electrical (by means of conductive atomic force microscopy) characterization. Then, we investigate the suitability of new power-law design concepts to accurately model the relevant electrical and mechanical size-effects, whose existence has been emphasized in recent reviews. PMID:25494351

  12. Optical contrast for identifying the thickness of two-dimensional materials

    NASA Astrophysics Data System (ADS)

    Bing, Dan; Wang, Yingying; Bai, Jing; Du, Ruxia; Wu, Guoqing; Liu, Liyan

    2018-01-01

    One of the most intriguing properties of two-dimensional (2D) materials is their thickness dependent properties. A quick and precise technique to identify the layer number of 2D materials is therefore highly desirable. In this review, we will introduce the basic principle of using optical contrast to determine the thickness of 2D material and also its advantage as compared to other modern techniques. Different 2D materials, including graphene, graphene oxide, transitional metal dichalcogenides, black phosphorus, boron nitride, have been used as examples to demonstrate the capability of optical contrast methods. A simple and more efficient optical contrast image technique is also emphasized, which is suitable for quick and large-scale thickness identification. We have also discussed the factors that could affect the experimental results of optical contrast, including incident light angle, anisotropic nature of materials, and also the twisted angle between 2D layers. Finally, we give perspectives on future development of optical contrast methods for the study and application of 2D materials.

  13. Reaction factoring and bipartite update graphs accelerate the Gillespie Algorithm for large-scale biochemical systems.

    PubMed

    Indurkhya, Sagar; Beal, Jacob

    2010-01-06

    ODE simulations of chemical systems perform poorly when some of the species have extremely low concentrations. Stochastic simulation methods, which can handle this case, have been impractical for large systems due to computational complexity. We observe, however, that when modeling complex biological systems: (1) a small number of reactions tend to occur a disproportionately large percentage of the time, and (2) a small number of species tend to participate in a disproportionately large percentage of reactions. We exploit these properties in LOLCAT Method, a new implementation of the Gillespie Algorithm. First, factoring reaction propensities allows many propensities dependent on a single species to be updated in a single operation. Second, representing dependencies between reactions with a bipartite graph of reactions and species requires only storage for reactions, rather than the required for a graph that includes only reactions. Together, these improvements allow our implementation of LOLCAT Method to execute orders of magnitude faster than currently existing Gillespie Algorithm variants when simulating several yeast MAPK cascade models.

  14. Reaction Factoring and Bipartite Update Graphs Accelerate the Gillespie Algorithm for Large-Scale Biochemical Systems

    PubMed Central

    Indurkhya, Sagar; Beal, Jacob

    2010-01-01

    ODE simulations of chemical systems perform poorly when some of the species have extremely low concentrations. Stochastic simulation methods, which can handle this case, have been impractical for large systems due to computational complexity. We observe, however, that when modeling complex biological systems: (1) a small number of reactions tend to occur a disproportionately large percentage of the time, and (2) a small number of species tend to participate in a disproportionately large percentage of reactions. We exploit these properties in LOLCAT Method, a new implementation of the Gillespie Algorithm. First, factoring reaction propensities allows many propensities dependent on a single species to be updated in a single operation. Second, representing dependencies between reactions with a bipartite graph of reactions and species requires only storage for reactions, rather than the required for a graph that includes only reactions. Together, these improvements allow our implementation of LOLCAT Method to execute orders of magnitude faster than currently existing Gillespie Algorithm variants when simulating several yeast MAPK cascade models. PMID:20066048

  15. Simulating the Effects of Semivolatile Compounds on Cloud Processing of Aerosol

    NASA Astrophysics Data System (ADS)

    Kokkola, H.; Kudzotsa, I.; Tonttila, J.; Raatikainen, T.; Romakkaniemi, S.

    2017-12-01

    Aerosol removal processes largely dictate how well aerosol is transported in the atmosphere and thus the aerosol load over remote regions depends on how effectively aerosol is removed during its transport from the source regions. This means that in order to model the global distribution aerosol, both in vertical and horizontal, wet deposition processes have to be properly modelled. However, in large scale models, the description of wet removal and the vertical redistribution of aerosol by cloud processes is often extremely simplified.Here we present a novel aerosol-cloud model SALSA, where the aerosol properties are tracked through different cloud processes. These processes include: cloud droplet activation, precipitation formation, ice nucleation, melting, and evaporation. It is a sectional model that includes separate size sections for non-activated aerosol, cloud droplets, precipitation droplets, and ice crystals. The aerosol-cloud model was coupled to a large eddy model UCLALES which simulates the boundary-layer dynamics. In this study, the model has been applied in studying the wet removal as well as interactions between aerosol, clouds, and semi-volatile compounds, ammonia and nitric acid. These semi-volative compounds are special in the sense that they co-condense together with water during cloud activation and have been suggested to form droplets that can be considered cloud-droplet-like already in subsaturated conditions. In our model, we calculate the kinetic partitioning of ammonia and sulfate thus explicitly taking into account the effect of ammonia and nitric acid in the cloud formation. Our simulations indicate that especially in polluted conditions, these compounds significantly affect the properties of cloud droplets thus significantly affecting the lifecycle of different aerosol compounds.

  16. Methods and materials relating to IMPDH and GMP production

    DOEpatents

    Collart, Frank R.; Huberman, Eliezer

    1997-01-01

    Disclosed are purified and isolated DNA sequences encoding eukaryotic proteins possessing biological properties of inosine 5'-monophosphate dehydrogenase ("IMPDH"). Illustratively, mammalian (e.g., human) IMPDH-encoding DNA sequences are useful in transformation or transfection of host cells for the large scale recombinant production of the enzymatically active expression products and/or products (e.g., GMP) resulting from IMPDH catalyzed synthesis in cells. Vectors including IMPDH-encoding DNA sequences are useful in gene amplification procedures. Recombinant proteins and synthetic peptides provided by the invention are useful as immunological reagents and in the preparation of antibodies (including polyclonal and monoclonal antibodies) for quantitative detection of IMPDH.

  17. Gradient Projection Anti-windup Scheme on Constrained Planar LTI Systems

    DTIC Science & Technology

    2010-03-15

    was recognized as a largely open problem in a recent survey paper . This report analyzes the properties of the GPAW scheme applied to an input...recent survey paper [2] that anti- windup compensation for nonlinear systems remains largely an open problem. To this end, [3] and relevant references...controllers, the solution of which was recognized as a largely open problem in a recent survey paper . This report analyzes the properties of the GPAW

  18. Effective constitutive relations for large repetitive frame-like structures

    NASA Technical Reports Server (NTRS)

    Nayfeh, A. H.; Hefzy, M. S.

    1981-01-01

    Effective mechanical properties for large repetitive framelike structures are derived using combinations of strength of material and orthogonal transformation techniques. Symmetry considerations are used in order to identify independent property constants. The actual values of these constants are constructed according to a building block format which is carried out in the three consecutive steps: (1) all basic planar lattices are identified; (2) effective continuum properties are derived for each of these planar basic grids using matrix structural analysis methods; and (3) orthogonal transformations are used to determine the contribution of each basic set to the overall effective continuum properties of the structure.

  19. Subtractive Structural Modification of Morpho Butterfly Wings.

    PubMed

    Shen, Qingchen; He, Jiaqing; Ni, Mengtian; Song, Chengyi; Zhou, Lingye; Hu, Hang; Zhang, Ruoxi; Luo, Zhen; Wang, Ge; Tao, Peng; Deng, Tao; Shang, Wen

    2015-11-11

    Different from studies of butterfly wings through additive modification, this work for the first time studies the property change of butterfly wings through subtractive modification using oxygen plasma etching. The controlled modification of butterfly wings through such subtractive process results in gradual change of the optical properties, and helps the further understanding of structural optimization through natural evolution. The brilliant color of Morpho butterfly wings is originated from the hierarchical nanostructure on the wing scales. Such nanoarchitecture has attracted a lot of research effort, including the study of its optical properties, its potential use in sensing and infrared imaging, and also the use of such structure as template for the fabrication of high-performance photocatalytic materials. The controlled subtractive processes provide a new path to modify such nanoarchitecture and its optical property. Distinct from previous studies on the optical property of the Morpho wing structure, this study provides additional experimental evidence for the origination of the optical property of the natural butterfly wing scales. The study also offers a facile approach to generate new 3D nanostructures using butterfly wings as the templates and may lead to simpler structure models for large-scale man-made structures than those offered by original butterfly wings. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. [Biooptical properties of marine phytoplankton as they apply to satellite remote sensing

    NASA Technical Reports Server (NTRS)

    Yentsch, Charles S.

    1992-01-01

    This final report covers research performed over a period of 10 years from 1982 to 1992. During this time, Grant #NAGW410 was funded under three titles through a series of Supplements. The original proposal was entitled 'Photoecology, optical properties and remote sensing of warm core rings'; the second and major portion was entitled 'Continuation of studies of biooptical properties of phytoplankton and the study of mesoscale and submesoscale features using fluorescence and colorimetry'; with the final portion named 'Studies of biooptical properties of phytoplankton, with reference to identification of spectral types associated with meso- and submesoscale features in the ocean'. The focus of these projects was to try to expand our knowledge of the biooptical properties of marine phytoplankton as they apply to satellite remote sensing. We used a variety of techniques, new and old, to better measure these optical properties at appropriate scales, in some cases at the level of individual cells. We also exploited the specialized oceanic conditions that occur within certain regions and features of the ocean around the world in order to explain the tremendous variability one sees in a single remote sensing image. This document strives to provide as complete a summary as possible for this large body of work, including the pertinent publications supported by this funding.

  1. Volatility Properties of Internally- and Externally-Mixed Ambient Aerosols at an Anthropogenically-influenced Forest Site in Southeastern USA

    NASA Astrophysics Data System (ADS)

    Khlystov, A.; Subramanian, R.

    2015-12-01

    Secondary organic aerosol (SOA) from biogenic sources has a significant contribution to ambient aerosol loadings in Southeastern USA and thus contributes to adverse health effects of air pollution and influences regional and global climate. Volatility properties of biogenic SOA determine its concentration, reactivity, and lifetime, but are still largely unknown. As part of a larger study to assess the effect of biogenic SOA on aerosol optical properties, a set of instruments, including scanning mobility sizers (SMPS), single particle soot photometer (SP2), and a thermodenuder, was deployed during June 2015 at a Duke Forest site near Chapel Hill, NC. The site is characterized by a significant contribution of both biogenic and urban (mostly traffic) sources. Measurements of changes in aerosol volume and optical size upon heating in the thermodenuder at different temperatures are used to derive volatility properties of the ambient aerosol. A limited set of experiments was carried out using the tandem differential mobility analysis (TDMA) approach to investigate whether the ambient aerosol at the Duke Forest site is internally mixed with respect to its volatility properties. In this presentation we will discuss equilibrium and kinetic aspects of aerosol volatility observed during this study and implications of external vs. internal mixing for derivation of bulk volatility properties of ambient aerosol.

  2. How does tissue regeneration influence the mechanical behavior of additively manufactured porous biomaterials?

    PubMed

    Hedayati, R; Janbaz, S; Sadighi, M; Mohammadi-Aghdam, M; Zadpoor, A A

    2017-01-01

    Although the initial mechanical properties of additively manufactured porous biomaterials are intensively studied during the last few years, almost no information is available regarding the evolution of the mechanical properties of implant-bone complex as the tissue regeneration progresses. In this paper, we studied the effects of tissue regeneration on the static and fatigue behavior of selective laser melted porous titanium structures with three different porosities (i.e. 77, 81, and 85%). The porous structures were filled with four different polymeric materials with mechanical properties in the range of those observed for de novo bone (0.7GPa

  3. From toothpaste to topological insulators and materials for valleytronics: The journeys of fluorinated tin

    NASA Astrophysics Data System (ADS)

    Barraza-Lopez, Salvador; Rivero, Pablo; Yan, Jia-An; Garcia-Suarez, Victor Manuel; Ferrer, Jaime

    2015-03-01

    Tin fluoride has a vast literature. This material is stable in bulk form at room temperature and has commercial applications that include fluorinated toothpaste. Bulk tin fluoride has a pair of fluorine atoms bridging two tin atoms. In the recent past the electronic properties of 2D tin with honeycomb structure have been discussed thus generating a wealth of literature that emphasizes its non-topologically-trivial electronic properties due to the combination of a Dirac-like dispersion and a strong spin-orbit coupling given its large atomic mass. Nevertheless the stability of such freestanding structures has been contested recently. As it turns out, the most stable form of fluorinated tin does not possess a graphane-like structure either. In the most stable phase to be discussed here, fluorine atoms tilt away from (graphane-like) positions over/below tin atoms; in an atomistic arrangement similar to the one seen on their parent bulk structure. Electronic properties depend on atomistic coordination, and the most stable form of fluorinated tin does not possess non-trivial topological properties. Nevertheless it represents a new paradigm for valleytronics in 2D.

  4. Critical Current Test of Liquid Hydrogen Cooled HTC Superconductors under External Magnetic Field

    NASA Astrophysics Data System (ADS)

    Shirai, Yasuyuki; Shiotsu, Masahiro; Tatsumoto, Hideki; Kobayashi, Hiroaki; Naruo, Yoshihiro; Nonaka, Satoshi; Inatani, Yoshifumi

    High-Tc (HTC) superconductors including MgB2 will show excellent properties under temperature of Liquid Hydrogen (LH2:20K), which has large latent heat and low viscosity coefficient. In order to design and fabricate the LH2 cooled superconducting energy devices, we must clear the cooling property of LH2 for superconductors, the cooling system and safety design of LH2 cooled superconducting devices and electro-magnetic property evaluation of superconductors (BSCCO, REBCO and MgB2) and their magnets cooled by LH2. As the first step of the study, an experimental setup which can be used for investigating heat transfer characteristics of LH2 in a pool and also in forced flow (circulation loop with a pump), and also for evaluation of electro-magnetic properties of LH2 cooled superconductors under external magnetic field (up to 7 T). In this paper, we will show a short sketch of the experimental set-up, practical experiences in safety operation of liquid hydrogen cooling system and example test results of critical current evaluation of HTC superconductors cooled by LH2.

  5. A Principle Component Analysis of Galaxy Properties from a Large, Gas-Selected Sample

    DOE PAGES

    Chang, Yu-Yen; Chao, Rikon; Wang, Wei-Hao; ...

    2012-01-01

    Disney emore » t al. (2008) have found a striking correlation among global parameters of H i -selected galaxies and concluded that this is in conflict with the CDM model. Considering the importance of the issue, we reinvestigate the problem using the principal component analysis on a fivefold larger sample and additional near-infrared data. We use databases from the Arecibo Legacy Fast Arecibo L -band Feed Array Survey for the gas properties, the Sloan Digital Sky Survey for the optical properties, and the Two Micron All Sky Survey for the near-infrared properties. We confirm that the parameters are indeed correlated where a single physical parameter can explain 83% of the variations. When color ( g - i ) is included, the first component still dominates but it develops a second principal component. In addition, the near-infrared color ( i - J ) shows an obvious second principal component that might provide evidence of the complex old star formation. Based on our data, we suggest that it is premature to pronounce the failure of the CDM model and it motivates more theoretical work.« less

  6. Fabrication and Properties of Composite Artificial Muscles Based on Nylon and a Shape Memory Alloy

    NASA Astrophysics Data System (ADS)

    Yin, Haibin; Zhou, Jia; Li, Junfeng; Joseph, Vincent S.

    2018-05-01

    This paper focuses on the design, fabrication and investigation of the mechanical properties of new artificial muscles formed by twisting and annealing. The artificial muscles designed by twisting nylon have become a popular topic in the field of smart materials due to their high mechanical performance with a large deformation and power density. However, the complexity of the heating and cooling system required to control the nylon muscle is a disadvantage, so we have proposed a composite artificial muscle for providing a direct electricity-driven actuation by integrating nylon and a shape memory alloy (SMA). In this paper, the design and fabrication process of these composite artificial muscles are introduced before their mechanical properties, which include the deformation, stiffness, load and response, are investigated. The results show that these composite artificial muscles that integrate nylon and a SMA provide better mechanical properties and yield up to a 44.1% deformation and 3.43 N driving forces. The good performance and direct electro-thermal actuation make these composite muscles ideal for driving robots in a method similar to human muscles.

  7. Quantitative description on structure-property relationships of Li-ion battery materials for high-throughput computations

    NASA Astrophysics Data System (ADS)

    Wang, Youwei; Zhang, Wenqing; Chen, Lidong; Shi, Siqi; Liu, Jianjun

    2017-12-01

    Li-ion batteries are a key technology for addressing the global challenge of clean renewable energy and environment pollution. Their contemporary applications, for portable electronic devices, electric vehicles, and large-scale power grids, stimulate the development of high-performance battery materials with high energy density, high power, good safety, and long lifetime. High-throughput calculations provide a practical strategy to discover new battery materials and optimize currently known material performances. Most cathode materials screened by the previous high-throughput calculations cannot meet the requirement of practical applications because only capacity, voltage and volume change of bulk were considered. It is important to include more structure-property relationships, such as point defects, surface and interface, doping and metal-mixture and nanosize effects, in high-throughput calculations. In this review, we established quantitative description of structure-property relationships in Li-ion battery materials by the intrinsic bulk parameters, which can be applied in future high-throughput calculations to screen Li-ion battery materials. Based on these parameterized structure-property relationships, a possible high-throughput computational screening flow path is proposed to obtain high-performance battery materials.

  8. The effect of grain size and cement content on index properties of weakly solidified artificial sandstones

    NASA Astrophysics Data System (ADS)

    Atapour, Hadi; Mortazavi, Ali

    2018-04-01

    The effects of textural characteristics, especially grain size, on index properties of weakly solidified artificial sandstones are studied. For this purpose, a relatively large number of laboratory tests were carried out on artificial sandstones that were produced in the laboratory. The prepared samples represent fifteen sandstone types consisting of five different median grain sizes and three different cement contents. Indices rock properties including effective porosity, bulk density, point load strength index, and Schmidt hammer values (SHVs) were determined. Experimental results showed that the grain size has significant effects on index properties of weakly solidified sandstones. The porosity of samples is inversely related to the grain size and decreases linearly as grain size increases. While a direct relationship was observed between grain size and dry bulk density, as bulk density increased with increasing median grain size. Furthermore, it was observed that the point load strength index and SHV of samples increased as a result of grain size increase. These observations are indirectly related to the porosity decrease as a function of median grain size.

  9. First principle study of electronic nanoscale structure of In x Ga1- x P with variable size, shape and alloying percentage

    NASA Astrophysics Data System (ADS)

    Hussein, M. T.; Kasim, T.; Abdulsattar, M. A.

    2013-11-01

    In present work, we investigate electronic properties of alloying percentage of In x Ga1- x P compound with different sizes of superlattice large unit cell (LUC) method with 8, 16, 54, and 64 nanocrystals core atoms. The size and type of alloying compound are varied so that it can be tuned to a required application. To determine properties of indium gallium phosphide nanocrystals density functional theory at the generalized-gradient approximation level coupled with LUC method is used to simulate electronic structure of zinc blende indium gallium phosphide nanocrystals that have dimensions around 2-2.8 nm. The calculated properties include lattice constant, energy gap, valence band width, cohesive energy, density of states (DOS) etc. Results show that laws that are applied at microscale alloying percentage are no more applicable at the present nanoscale. Results also show that size, shape and quantum effects are strong. Many properties fluctuate at nanoscale while others converge to definite values. DOS summarizes many of the above quantities.

  10. Effective-mass model and magneto-optical properties in hybrid perovskites

    PubMed Central

    Yu, Z. G.

    2016-01-01

    Hybrid inorganic-organic perovskites have proven to be a revolutionary material for low-cost photovoltaic applications. They also exhibit many other interesting properties, including giant Rashba splitting, large-radius Wannier excitons, and novel magneto-optical effects. Understanding these properties as well as the detailed mechanism of photovoltaics requires a reliable and accessible electronic structure, on which models of transport, excitonic, and magneto-optical properties can be efficiently developed. Here we construct an effective-mass model for the hybrid perovskites based on the group theory, experiment, and first-principles calculations. Using this model, we relate the Rashba splitting with the inversion-asymmetry parameter in the tetragonal perovskites, evaluate anisotropic g-factors for both conduction and valence bands, and elucidate the magnetic-field effect on photoluminescence and its dependence on the intensity of photoexcitation. The diamagnetic effect of exciton is calculated for an arbitrarily strong magnetic field. The pronounced excitonic peak emerged at intermediate magnetic fields in cyclotron resonance is assigned to the 3D±2 states, whose splitting can be used to estimate the difference in the effective masses of electron and hole. PMID:27338834

  11. Effective-mass model and magneto-optical properties in hybrid perovskites.

    PubMed

    Yu, Z G

    2016-06-24

    Hybrid inorganic-organic perovskites have proven to be a revolutionary material for low-cost photovoltaic applications. They also exhibit many other interesting properties, including giant Rashba splitting, large-radius Wannier excitons, and novel magneto-optical effects. Understanding these properties as well as the detailed mechanism of photovoltaics requires a reliable and accessible electronic structure, on which models of transport, excitonic, and magneto-optical properties can be efficiently developed. Here we construct an effective-mass model for the hybrid perovskites based on the group theory, experiment, and first-principles calculations. Using this model, we relate the Rashba splitting with the inversion-asymmetry parameter in the tetragonal perovskites, evaluate anisotropic g-factors for both conduction and valence bands, and elucidate the magnetic-field effect on photoluminescence and its dependence on the intensity of photoexcitation. The diamagnetic effect of exciton is calculated for an arbitrarily strong magnetic field. The pronounced excitonic peak emerged at intermediate magnetic fields in cyclotron resonance is assigned to the 3D±2 states, whose splitting can be used to estimate the difference in the effective masses of electron and hole.

  12. Effective-mass model and magneto-optical properties in hybrid perovskites

    NASA Astrophysics Data System (ADS)

    Yu, Z. G.

    2016-06-01

    Hybrid inorganic-organic perovskites have proven to be a revolutionary material for low-cost photovoltaic applications. They also exhibit many other interesting properties, including giant Rashba splitting, large-radius Wannier excitons, and novel magneto-optical effects. Understanding these properties as well as the detailed mechanism of photovoltaics requires a reliable and accessible electronic structure, on which models of transport, excitonic, and magneto-optical properties can be efficiently developed. Here we construct an effective-mass model for the hybrid perovskites based on the group theory, experiment, and first-principles calculations. Using this model, we relate the Rashba splitting with the inversion-asymmetry parameter in the tetragonal perovskites, evaluate anisotropic g-factors for both conduction and valence bands, and elucidate the magnetic-field effect on photoluminescence and its dependence on the intensity of photoexcitation. The diamagnetic effect of exciton is calculated for an arbitrarily strong magnetic field. The pronounced excitonic peak emerged at intermediate magnetic fields in cyclotron resonance is assigned to the 3D±2 states, whose splitting can be used to estimate the difference in the effective masses of electron and hole.

  13. Quantitative description on structure-property relationships of Li-ion battery materials for high-throughput computations.

    PubMed

    Wang, Youwei; Zhang, Wenqing; Chen, Lidong; Shi, Siqi; Liu, Jianjun

    2017-01-01

    Li-ion batteries are a key technology for addressing the global challenge of clean renewable energy and environment pollution. Their contemporary applications, for portable electronic devices, electric vehicles, and large-scale power grids, stimulate the development of high-performance battery materials with high energy density, high power, good safety, and long lifetime. High-throughput calculations provide a practical strategy to discover new battery materials and optimize currently known material performances. Most cathode materials screened by the previous high-throughput calculations cannot meet the requirement of practical applications because only capacity, voltage and volume change of bulk were considered. It is important to include more structure-property relationships, such as point defects, surface and interface, doping and metal-mixture and nanosize effects, in high-throughput calculations. In this review, we established quantitative description of structure-property relationships in Li-ion battery materials by the intrinsic bulk parameters, which can be applied in future high-throughput calculations to screen Li-ion battery materials. Based on these parameterized structure-property relationships, a possible high-throughput computational screening flow path is proposed to obtain high-performance battery materials.

  14. Basic Research of Intrinsic Tamper Indication Markings Defined by Pulsed Laser Irradiation (Quad Chart).

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moody, Neville R.

    Objective: We will research how short (ns) and ultrashort (fs) laser pulses interact with the surfaces of various materials to create complex color layers and morphological patterns. Method: We are investigating the site-specific, formation of microcolor features. Also, research includes a fundamental study of the physics underlying periodic ripple formation during femtosecond laser irradiation. Status of effort: Laser induced color markings were demonstrated on an increased number of materials (including metal thin films) and investigated for optical properties and microstructure. Technology that allows for marking curved surfaces (and large areas) has been implemented. We have used electro-magnetic solvers to modelmore » light-solid interactions leading to periodic surface ripple patterns. This includes identifying the roles of surface plasmon polaritons. Goals/Milestones: Research corrosion resistance of oxide color markings (salt spray, fog, polarization tests); Through modeling, investigate effects of multi-source scattering and interference on ripple patterns; Investigate microspectrophotometry for mapping color; and Investigate new methods for laser color marking curved surfaces and large areas.« less

  15. Fibrin mechanical properties and their structural origins.

    PubMed

    Litvinov, Rustem I; Weisel, John W

    2017-07-01

    Fibrin is a protein polymer that is essential for hemostasis and thrombosis, wound healing, and several other biological functions and pathological conditions that involve extracellular matrix. In addition to molecular and cellular interactions, fibrin mechanics has been recently shown to underlie clot behavior in the highly dynamic intra- and extravascular environments. Fibrin has both elastic and viscous properties. Perhaps the most remarkable rheological feature of the fibrin network is an extremely high elasticity and stability despite very low protein content. Another important mechanical property that is common to many filamentous protein polymers but not other polymers is stiffening occurring in response to shear, tension, or compression. New data has begun to provide a structural basis for the unique mechanical behavior of fibrin that originates from its complex multi-scale hierarchical structure. The mechanical behavior of the whole fibrin gel is governed largely by the properties of single fibers and their ensembles, including changes in fiber orientation, stretching, bending, and buckling. The properties of individual fibrin fibers are determined by the number and packing arrangements of double-stranded half-staggered protofibrils, which still remain poorly understood. It has also been proposed that forced unfolding of sub-molecular structures, including elongation of flexible and relatively unstructured portions of fibrin molecules, can contribute to fibrin deformations. In spite of a great increase in our knowledge of the structural mechanics of fibrin, much about the mechanisms of fibrin's biological functions remains unknown. Fibrin deformability is not only an essential part of the biomechanics of hemostasis and thrombosis, but also a rapidly developing field of bioengineering that uses fibrin as a versatile biomaterial with exceptional and tunable biochemical and mechanical properties. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Multiple Score Comparison: a network meta-analysis approach to comparison and external validation of prognostic scores.

    PubMed

    Haile, Sarah R; Guerra, Beniamino; Soriano, Joan B; Puhan, Milo A

    2017-12-21

    Prediction models and prognostic scores have been increasingly popular in both clinical practice and clinical research settings, for example to aid in risk-based decision making or control for confounding. In many medical fields, a large number of prognostic scores are available, but practitioners may find it difficult to choose between them due to lack of external validation as well as lack of comparisons between them. Borrowing methodology from network meta-analysis, we describe an approach to Multiple Score Comparison meta-analysis (MSC) which permits concurrent external validation and comparisons of prognostic scores using individual patient data (IPD) arising from a large-scale international collaboration. We describe the challenges in adapting network meta-analysis to the MSC setting, for instance the need to explicitly include correlations between the scores on a cohort level, and how to deal with many multi-score studies. We propose first using IPD to make cohort-level aggregate discrimination or calibration scores, comparing all to a common comparator. Then, standard network meta-analysis techniques can be applied, taking care to consider correlation structures in cohorts with multiple scores. Transitivity, consistency and heterogeneity are also examined. We provide a clinical application, comparing prognostic scores for 3-year mortality in patients with chronic obstructive pulmonary disease using data from a large-scale collaborative initiative. We focus on the discriminative properties of the prognostic scores. Our results show clear differences in performance, with ADO and eBODE showing higher discrimination with respect to mortality than other considered scores. The assumptions of transitivity and local and global consistency were not violated. Heterogeneity was small. We applied a network meta-analytic methodology to externally validate and concurrently compare the prognostic properties of clinical scores. Our large-scale external validation indicates that the scores with the best discriminative properties to predict 3 year mortality in patients with COPD are ADO and eBODE.

  17. Psychometric viability of measures of functional performance commonly used for people with dementia: a systematic review of measurement properties.

    PubMed

    Fox, Benjamin; Henwood, Timothy; Keogh, Justin; Neville, Christine

    2016-08-01

    Confidence in findings can only be drawn from measurement tools that have sound psychometric properties for the population with which they are used. Within a dementia specific population, measures of physical function have been poorly justified in exercise intervention studies, with justification of measures based on validity or reliability studies from dissimilar clinical populations, such as people with bronchitis or healthy older adults without dementia. To review the reliability and validity of quantitative measures of pre-identified physical function, as commonly used within exercise intervention literature for adults with dementia. Participants were adults, aged 65 years and older, with a confirmed medical diagnosis of dementia. n/a Desired studies were observational and cross-sectional and that assessed measures from a pre-identified list of measures of physical function. Studies that assessed the psychometric constructs of reliability and validity were targeted. COSMIN taxology was used to define reliability and validity. This included, but were not limited to, Intra-Class Correlations, Kappa, Cronbach's Alpha, Chi Squared, Standard Error of Measurement, Minimal Detectable Change and Limits of Agreement. Published material was sourced from the following four databases: MEDLINE, EMBASE, CINAHL and ISI Web of Science. Grey literature was searched for using ALOIS, Google Scholar and ProQuest. The COSMIN checklist was used to assess methodological quality of included studies. Assessment was completed by two reviewers independently. Reliability and validity data was extracted from included studies using standardized Joanna Briggs Institute data collection forms. Extraction was completed by two reviewers. A narrative synthesis of measurement properties of the tools used to measure physical function was performed. Quantitative meta-analysis was conducted for Intra-Class Correlation Coefficients only. With respect to relative reliability, studies reporting assessed measures had intraclass correlation coefficients greater than 0.71, indicating their suitability for use at a group level. However, a consistent finding among studies that included assessment of absolute reliability was that intra individual variation was too large for meaningful measurement of individuals. This was indicated by large Minimal Detectable Change (MDC) scores. Walk Speed has the smallest reported Mimimal Detectable Change score at 0.11m/s. This represented a change of 35% before statistical variation could be eliminated as the cause for this change. All measures had large MDC values. Walk Speed had the smallest MDC values at 0.11m/s, which represented a necessary change of 35%. Only a limited number of studies assessed the validity of measures. This supports the use of these measures in a very narrow selection of circumstances (see Summary of Findings). In summary, measures have shown appropriate levels of relative reliability. This supports their use at the group level. However, large levels of intra-individual variation undermine their applicability at the individual level. Limited studies of validity were available to this review, which limits a conclusion on whether measures are valid for people with dementia.

  18. Extreme mechanical properties of materials under extreme pressure and temperature conditions (Invited)

    NASA Astrophysics Data System (ADS)

    Kavner, A.; Armentrout, M. M.; Xie, M.; Weinberger, M.; Kaner, R. B.; Tolbert, S. H.

    2010-12-01

    A strong synergy ties together the high-pressure subfields of mineral physics, solid-state physics, and materials engineering. The catalog of studies measuring the mechanical properties of materials subjected to large differential stresses in the diamond anvil cell demonstrates a significant pressure-enhancement of strength across many classes of materials, including elemental solids, salts, oxides, silicates, and borides and nitrides. High pressure techniques—both radial diffraction and laser heating in the diamond anvil cell—can be used to characterize the behavior of ultrahard materials under extreme conditions, and help test hypotheses about how composition, structure, and bonding work together to govern the mechanical properties of materials. The principles that are elucidated by these studies can then be used to help design engineering materials to encourage desired properties. Understanding Earth and planetary interiors requires measuring equations of state of relevant materials, including oxides, silicates, and metals under extreme conditions. If these minerals in the diamond anvil cell have any ability to support a differential stress, the assumption of quasi-hydrostaticity no longer applies, with a resulting non-salubrious effect on attempts to measure equation of state. We illustrate these applications with the results of variety of studies from our laboratory and others’ that have used high-pressure radial diffraction techniques and also laser heating in the diamond anvil cell to characterize the mechanical properties of a variety of ultrahard materials, especially osmium metal, osmium diboride, rhenium diboride, and tungsten tetraboride. We compare ambient condition strength studies such as hardness testing with high-pressure studies, especially radial diffraction under differential stress. In addition, we outline criteria for evaluating mechanical properties of materials at combination high pressures and temperatures. Finally, we synthesize our understanding of mechanical properties and composite behavior to suggest new approaches to designing high-pressure experiments to target specific measurements of a wide variety of mechanical properties.

  19. Land Surface Microwave Emissivities Derived from AMSR-E and MODIS Measurements with Advanced Quality Control

    NASA Technical Reports Server (NTRS)

    Moncet, Jean-Luc; Liang, Pan; Galantowicz, John F.; Lipton, Alan E.; Uymin, Gennady; Prigent, Catherine; Grassotti, Christopher

    2011-01-01

    A microwave emissivity database has been developed with data from the Advanced Microwave Scanning Radiometer-EOS (AMSR-E) and with ancillary land surface temperature (LST) data from the Moderate Resolution Imaging Spectroradiometer (MODIS) on the same Aqua spacecraft. The primary intended application of the database is to provide surface emissivity constraints in atmospheric and surface property retrieval or assimilation. An additional application is to serve as a dynamic indicator of land surface properties relevant to climate change monitoring. The precision of the emissivity data is estimated to be significantly better than in prior databases from other sensors due to the precise collocation with high-quality MODIS LST data and due to the quality control features of our data analysis system. The accuracy of the emissivities in deserts and semi-arid regions is enhanced by applying, in those regions, a version of the emissivity retrieval algorithm that accounts for the penetration of microwave radiation through dry soil with diurnally varying vertical temperature gradients. These results suggest that this penetration effect is more widespread and more significant to interpretation of passive microwave measurements than had been previously established. Emissivity coverage in areas where persistent cloudiness interferes with the availability of MODIS LST data is achieved using a classification-based method to spread emissivity data from less-cloudy areas that have similar microwave surface properties. Evaluations and analyses of the emissivity products over homogeneous snow-free areas are presented, including application to retrieval of soil temperature profiles. Spatial inhomogeneities are the largest in the vicinity of large water bodies due to the large water/land emissivity contrast and give rise to large apparent temporal variability in the retrieved emissivities when satellite footprint locations vary over time. This issue will be dealt with in the future by including a water fraction correction. Also note that current reliance on the MODIS day-night algorithm as a source of LST limits the coverage of the database in the Polar Regions. We will consider relaxing the current restriction as part of future development.

  20. Humans use compression heuristics to improve the recall of social networks.

    PubMed

    Brashears, Matthew E

    2013-01-01

    The ability of primates, including humans, to maintain large social networks appears to depend on the ratio of the neocortex to the rest of the brain. However, observed human network size frequently exceeds predictions based on this ratio (e.g., "Dunbar's Number"), implying that human networks are too large to be cognitively managed. Here I show that humans adaptively use compression heuristics to allow larger amounts of social information to be stored in the same brain volume. I find that human adults can remember larger numbers of relationships in greater detail when a network exhibits triadic closure and kin labels than when it does not. These findings help to explain how humans manage large and complex social networks with finite cognitive resources and suggest that many of the unusual properties of human social networks are rooted in the strategies necessary to cope with cognitive limitations.

  1. Representation matters: quantitative behavioral variation in wild worm strains

    NASA Astrophysics Data System (ADS)

    Brown, Andre

    Natural genetic variation in populations is the basis of genome-wide association studies, an approach that has been applied in large studies of humans to study the genetic architecture of complex traits including disease risk. Of course, the traits you choose to measure determine which associated genes you discover (or miss). In large-scale human studies, the measured traits are usually taken as a given during the association step because they are expensive to collect and standardize. Working with the nematode worm C. elegans, we do not have the same constraints. In this talk I will describe how large-scale imaging of worm behavior allows us to develop alternative representations of behavior that vary differently across wild populations. The alternative representations yield novel traits that can be used for genome-wide association studies and may reveal basic properties of the genotype-phenotype map that are obscured if only a small set of fixed traits are used.

  2. Large-scale 3D galaxy correlation function and non-Gaussianity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Raccanelli, Alvise; Doré, Olivier; Bertacca, Daniele

    We investigate the properties of the 2-point galaxy correlation function at very large scales, including all geometric and local relativistic effects --- wide-angle effects, redshift space distortions, Doppler terms and Sachs-Wolfe type terms in the gravitational potentials. The general three-dimensional correlation function has a nonzero dipole and octupole, in addition to the even multipoles of the flat-sky limit. We study how corrections due to primordial non-Gaussianity and General Relativity affect the multipolar expansion, and we show that they are of similar magnitude (when f{sub NL} is small), so that a relativistic approach is needed. Furthermore, we look at how large-scalemore » corrections depend on the model for the growth rate in the context of modified gravity, and we discuss how a modified growth can affect the non-Gaussian signal in the multipoles.« less

  3. Sub-Selective Quantization for Learning Binary Codes in Large-Scale Image Search.

    PubMed

    Li, Yeqing; Liu, Wei; Huang, Junzhou

    2018-06-01

    Recently with the explosive growth of visual content on the Internet, large-scale image search has attracted intensive attention. It has been shown that mapping high-dimensional image descriptors to compact binary codes can lead to considerable efficiency gains in both storage and performing similarity computation of images. However, most existing methods still suffer from expensive training devoted to large-scale binary code learning. To address this issue, we propose a sub-selection based matrix manipulation algorithm, which can significantly reduce the computational cost of code learning. As case studies, we apply the sub-selection algorithm to several popular quantization techniques including cases using linear and nonlinear mappings. Crucially, we can justify the resulting sub-selective quantization by proving its theoretic properties. Extensive experiments are carried out on three image benchmarks with up to one million samples, corroborating the efficacy of the sub-selective quantization method in terms of image retrieval.

  4. BioCompoundML: A General Biofuel Property Screening Tool for Biological Molecules Using Random Forest Classifiers

    DOE PAGES

    Whitmore, Leanne S.; Davis, Ryan W.; McCormick, Robert L.; ...

    2016-09-15

    Screening a large number of biologically derived molecules for potential fuel compounds without recourse to experimental testing is important in identifying understudied yet valuable molecules. Experimental testing, although a valuable standard for measuring fuel properties, has several major limitations, including the requirement of testably high quantities, considerable expense, and a large amount of time. This paper discusses the development of a general-purpose fuel property tool, using machine learning, whose outcome is to screen molecules for desirable fuel properties. BioCompoundML adopts a general methodology, requiring as input only a list of training compounds (with identifiers and measured values) and a listmore » of testing compounds (with identifiers). For the training data, BioCompoundML collects open data from the National Center for Biotechnology Information, incorporates user-provided features, imputes missing values, performs feature reduction, builds a classifier, and clusters compounds. BioCompoundML then collects data for the testing compounds, predicts class membership, and determines whether compounds are found in the range of variability of the training data set. We demonstrate this tool using three different fuel properties: research octane number (RON), threshold soot index (TSI), and melting point (MP). Here we provide measures of its success with these properties using randomized train/test measurements: average accuracy is 88% in RON, 85% in TSI, and 94% in MP; average precision is 88% in RON, 88% in TSI, and 95% in MP; and average recall is 88% in RON, 82% in TSI, and 97% in MP. The receiver operator characteristics (area under the curve) were estimated at 0.88 in RON, 0.86 in TSI, and 0.87 in MP. We also measured the success of BioCompoundML by sending 16 compounds for direct RON determination. Finally, we provide a screen of 1977 hydrocarbons/oxygenates within the 8696 compounds in MetaCyc, identifying compounds with high predictive strength for high or low RON.« less

  5. Synoptic Control of Contrail Cirrus Life Cycles and Their Modification Due to Reduced Soot Number Emissions

    NASA Astrophysics Data System (ADS)

    Bier, A.; Burkhardt, U.; Bock, L.

    2017-11-01

    The atmospheric state, aircraft emissions, and engine properties determine formation and initial properties of contrails. The synoptic situation controls microphysical and dynamical processes and causes a wide variability of contrail cirrus life cycles. A reduction of soot particle number emissions, resulting, for example, from the use of alternative fuels, strongly impacts initial ice crystal numbers and microphysical process rates of contrail cirrus. We use the European Centre/Hamburg (ECHAM) climate model version 5 including a contrail cirrus modul, studying process rates, properties, and life cycles of contrail cirrus clusters within different synoptic situations. The impact of reduced soot number emissions is approximated by a reduction in the initial ice crystal number, exemplarily studied for 80%. Contrail cirrus microphysical and macrophysical properties can depend much more strongly on the synoptic situation than on the initial ice crystal number. They can attain a large cover, optical depth, and ice water content in long-lived and large-scale ice-supersaturated areas, making them particularly climate-relevant. In those synoptic situations, the accumulated ice crystal loss due to sedimentation is increased by around 15% and the volume of contrail cirrus, exceeding an optical depth of 0.02, and their short-wave radiative impact are strongly decreased due to reduced soot emissions. These reductions are of little consequence in short-lived and small-scale ice-supersaturated areas, where contrail cirrus stay optically very thin and attain a low cover. The synoptic situations in which long-lived and climate-relevant contrail cirrus clusters can be found over the eastern U.S. occur in around 25% of cases.

  6. A review of hemorheology: Measuring techniques and recent advances

    NASA Astrophysics Data System (ADS)

    Sousa, Patrícia C.; Pinho, Fernando T.; Alves, Manuel A.; Oliveira, Mónica S. N.

    2016-02-01

    Significant progress has been made over the years on the topic of hemorheology, not only in terms of the development of more accurate and sophisticated techniques, but also in terms of understanding the phenomena associated with blood components, their interactions and impact upon blood properties. The rheological properties of blood are strongly dependent on the interactions and mechanical properties of red blood cells, and a variation of these properties can bring further insight into the human health state and can be an important parameter in clinical diagnosis. In this article, we provide both a reference for hemorheological research and a resource regarding the fundamental concepts in hemorheology. This review is aimed at those starting in the field of hemodynamics, where blood rheology plays a significant role, but also at those in search of the most up-to-date findings (both qualitative and quantitative) in hemorheological measurements and novel techniques used in this context, including technical advances under more extreme conditions such as in large amplitude oscillatory shear flow or under extensional flow, which impose large deformations comparable to those found in the microcirculatory system and in diseased vessels. Given the impressive rate of increase in the available knowledge on blood flow, this review is also intended to identify areas where current knowledge is still incomplete, and which have the potential for new, exciting and useful research. We also discuss the most important parameters that can lead to an alteration of blood rheology, and which as a consequence can have a significant impact on the normal physiological behavior of blood.

  7. Effect of Heat Treatment on Microstructure and Mechanical Properties of Inconel 625 Alloy Fabricated by Pulsed Plasma Arc Deposition

    NASA Astrophysics Data System (ADS)

    Xu, Fujia; Lv, Yaohui; Liu, Yuxin; Xu, Binshi; He, Peng

    Pulsed plasma arc deposition (PPAD) was successfully used to fabricate the Ni-based superalloy Inconel 625 samples. The effects of three heat treatment technologies on microstructure and mechanical properties of the as-deposited material were investigated. It was found that the as-deposited structure exhibited homogenous cellular dendrite structure, which grew epitaxially along the deposition direction. Moreover, some intermetallic phases including Laves phase and MC carbides were precipitated in the interdendritic region as a result of Nb segregation. Compared with the as-deposited microstructure, the direct aged (DA) microstructure changed little except the precipitation of hardening phases γ' and γ" (Ni3Nb), which enhanced the hardness and tensile strength. But the plastic property was inferior due to the existence of brittle Laves phase. After solution and aging heat treatment (STA), a large amount of Laves particles in the interdendritic regions were dissolved, resulting in the reduction of Nb segregation and the precipitation of needle-like δ (Ni3Nb) in the interdendritic regions and grain boundaries. The hardness and tensile strength were improved without sacrificing the ductility. By homogenization and STA heat treatment (HSTA), Laves particles were dissolved into the matrix completely and resulted in recrystallized large grains with bands of annealing twins. The primary MC particles and remaining phase still appeared in the matrix and grain boundaries. Compared with the as-deposited sample, the mechanical properties decreased severely as a result of the grain growth coarsening. The failure modes of all the tensile specimens were analyzed with fractography.

  8. Macrostrat: A Platform for Geological Data Integration and Deep-Time Earth Crust Research

    NASA Astrophysics Data System (ADS)

    Peters, Shanan E.; Husson, Jon M.; Czaplewski, John

    2018-04-01

    Characterizing the lithology, age, and physical-chemical properties of rocks and sediments in the Earth's upper crust is necessary to fully assess energy, water, and mineral resources and to address many fundamental questions. Although a large number of geological maps, regional geological syntheses, and sample-based measurements have been produced, there is no openly available database that integrates rock record-derived data, while also facilitating large-scale, quantitative characterization of the volume, age, and material properties of the upper crust. Here we describe Macrostrat, a relational geospatial database and supporting cyberinfrastructure that is designed to enable quantitative spatial and geochronological analyses of the entire assemblage of surface and subsurface sedimentary, igneous, and metamorphic rocks. Macrostrat contains general, comprehensive summaries of the age and properties of 33,903 lithologically and chronologically defined geological units distributed across 1,474 regions in North and South America, the Caribbean, New Zealand, and the deep sea. Sample-derived data, including fossil occurrences in the Paleobiology Database, more than 180,000 geochemical and outcrop-derived measurements, and more than 2.3 million bedrock geologic map units from over 200 map sources, are linked to specific Macrostrat units and/or lithologies. Macrostrat has generated numerous quantitative results and its infrastructure is used as a data platform in several independently developed mobile applications. It is necessary to expand geographic coverage and to refine age models and material properties to arrive at a more precise characterization of the upper crust globally and test fundamental hypotheses about the long-term evolution of Earth systems.

  9. Enhanced nutrient transport improves the depth-dependent properties of tri-layered engineered cartilage constructs with zonal co-culture of chondrocytes and MSCs.

    PubMed

    Kim, Minwook; Farrell, Megan J; Steinberg, David R; Burdick, Jason A; Mauck, Robert L

    2017-08-01

    Biomimetic design in cartilage tissue engineering is a challenge given the complexity of the native tissue. While numerous studies have generated constructs with near-native bulk properties, recapitulating the depth-dependent features of native tissue remains a challenge. Furthermore, limitations in nutrient transport and matrix accumulation in engineered constructs hinders maturation within the central core of large constructs. To overcome these limitations, we fabricated tri-layered constructs that recapitulate the depth-dependent cellular organization and functional properties of native tissue using zonally derived chondrocytes co-cultured with MSCs. We also introduced porous hollow fibers (HFs) and HFs/cotton threads to enhance nutrient transport. Our results showed that tri-layered constructs with depth-dependent organization and properties could be fabricated. The addition of HFs or HFs/threads improved matrix accumulation in the central core region. With HF/threads, the local modulus in the deep region of tri-layered constructs nearly matched that of native tissue, though the properties in the central regions remained lower. These constructs reproduced the zonal organization and depth-dependent properties of native tissue, and demonstrate that a layer-by-layer fabrication scheme holds promise for the biomimetic repair of focal cartilage defects. Articular cartilage is a highly organized tissue driven by zonal heterogeneity of cells, extracellular matrix proteins and fibril orientations, resulting in depth-dependent mechanical properties. Therefore, the recapitulation of the functional properties of native cartilage in a tissue engineered construct requires such a biomimetic design of the morphological organization, and this has remained a challenge in cartilage tissue engineering. This study demonstrates that a layer-by-layer fabrication scheme, including co-cultures of zone-specific articular CHs and MSCs, can reproduce the depth-dependent characteristics and mechanical properties of native cartilage while minimizing the need for large numbers of chondrocytes. In addition, introduction of a porous hollow fiber (combined with a cotton thread) enhanced nutrient transport and depth-dependent properties of the tri-layered construct. Such a tri-layered construct may provide critical advantages for focal cartilage repair. These constructs hold promise for restoring native tissue structure and function, and may be beneficial in terms of zone-to-zone integration with adjacent host tissue and providing more appropriate strain transfer after implantation. Copyright © 2017 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  10. NiTi Alloys for Tribological Applications: The Role of In-Situ Nanotechnology

    NASA Technical Reports Server (NTRS)

    Dellacorte, Christopher

    2016-01-01

    Beginning in 2004, NASA initiated the investigation and development of, Nitinol 60, a nickel-rich and dimensionally stable version of shape memory alloy Nitinol 55, as an alternative to bearing steel. Early investigations showed it to be hard and impervious to aqueous corrosion but the fundamental reasons for these properties were unknown. Shape memory alloys made from equiatomic Ni-Ti are widely known for their unique dimensional instability behavior that can be triggered by thermal and mechanical stress. The nickel-rich alloys exhibit no such dimension change property and have high hardness but have largely been overlooked by industry and the engineering community. Though steel is the dominant material of choice for mechanical components (bearings and gears) it has intrinsic limitations related to corrosion and plastic deformation. In contrast, Ni-Ti alloys are intrinsically rustproof and can withstand high contact loads without damage (denting). Over the last decade, focused RD to exploit these alloys for new applications has revealed that in-situ nano-scale phases that form during processing are largely responsible for NiTis remarkable properties. In this presentation, the state-of-art of nickel-rich NiTi alloys will be introduced and the nanotechnology behind their intriguing behavior will be addressed. The presentation will include discussion of how NASA is adopting this new technology inside the space station water recycling system as a pathfinder for more down-to-earth tribological challenges.

  11. Production of Selected Key Ductile Iron Castings Used in Large-Scale Windmills

    NASA Astrophysics Data System (ADS)

    Pan, Yung-Ning; Lin, Hsuan-Te; Lin, Chi-Chia; Chang, Re-Mo

    Both the optimal alloy design and microstructures that conform to the mechanical properties requirements of selected key components used in large-scale windmills have been established in this study. The target specifications in this study are EN-GJS-350-22U-LT, EN-GJS-350-22U-LT and EN-GJS-700-2U. In order to meet the impact requirement of spec. EN-GJS-350-22U-LT, the Si content should be kept below 1.97%, and also the maximum pearlite content shouldn't exceed 7.8%. On the other hand, Si content below 2.15% and pearlite content below 12.5% were registered for specification EN-GJS-400-18U-LT. On the other hand, the optimal alloy designs that can comply with specification EN-GJS-700-2U include 0.25%Mn+0.6%Cu+0.05%Sn, 0.25%Mn+0.8%Cu+0.01%Sn and 0.45%Mn+0.6%Cu+0.01%Sn. Furthermore, based upon the experimental results, multiple regression analyses have been performed to correlate the mechanical properties with chemical compositions and microstructures. The derived regression equations can be used to attain the optimal alloy design for castings with target specifications. Furthermore, by employing these regression equations, the mechanical properties can be predicted based upon the chemical compositions and microstructures of cast irons.

  12. The Spatial Scaling of Global Rainfall Extremes

    NASA Astrophysics Data System (ADS)

    Devineni, N.; Xi, C.; Lall, U.; Rahill-Marier, B.

    2013-12-01

    Floods associated with severe storms are a significant source of risk for property, life and supply chains. These property losses tend to be determined as much by the duration of flooding as by the depth and velocity of inundation. High duration floods are typically induced by persistent rainfall (upto 30 day duration) as seen recently in Thailand, Pakistan, the Ohio and the Mississippi Rivers, France, and Germany. Events related to persistent and recurrent rainfall appear to correspond to the persistence of specific global climate patterns that may be identifiable from global, historical data fields, and also from climate models that project future conditions. A clear understanding of the space-time rainfall patterns for events or for a season will enable in assessing the spatial distribution of areas likely to have a high/low inundation potential for each type of rainfall forcing. In this paper, we investigate the statistical properties of the spatial manifestation of the rainfall exceedances. We also investigate the connection of persistent rainfall events at different latitudinal bands to large-scale climate phenomena such as ENSO. Finally, we present the scaling phenomena of contiguous flooded areas as a result of large scale organization of long duration rainfall events. This can be used for spatially distributed flood risk assessment conditional on a particular rainfall scenario. Statistical models for spatio-temporal loss simulation including model uncertainty to support regional and portfolio analysis can be developed.

  13. Influence of the Wenchuan earthquake on self-reported irregular menstrual cycles in surviving women.

    PubMed

    Li, Xiao-Hong; Qin, Lang; Hu, Han; Luo, Shan; Li, Lei; Fan, Wei; Xiao, Zhun; Li, Ying-Xing; Li, Shang-Wei

    2011-09-01

    To explore the influence of stress induced by the Wenchuan earthquake on the menstrual cycles of surviving women. Self-reports of the menstrual cycles of 473 women that survived the Wenchuan earthquake were analyzed. Menstrual regularity was defined as menses between 21 and 35 days long. The death of a child or the loss of property and social resources was verified for all surviving women. The severity of these losses was assessed and graded as high, little, and none. About 21% of the study participants reported that their menstrual cycles became irregular after the Wenchuan earthquake, and this percentage was significantly higher than before the earthquake (6%, p < 0.05). About 30% of the surviving women with a high degree of loss in the earthquake reported menstrual irregularity after the earthquake. Association analyses showed that some stressors of the Wenchuan earthquake were strongly associated with self-reports of menstrual irregularity, including the loss of children (RR: 1.58; 95% CI: 1.09, 2.28), large amounts of property (RR: 1.49; 95% CI: 1.03, 2.15), social resources (RR: 1.34; 95% CI: 1.00, 1.80) and the hormonal contraception use (RR: 1.62; 95% CI: 1.21, 1.83). Self-reported menstrual irregularity is common in women that survived the Wenchuan earthquake, especially in those who lost children, large amounts of property and social resources.

  14. Near real-time skin deformation mapping

    NASA Astrophysics Data System (ADS)

    Kacenjar, Steve; Chen, Suzie; Jafri, Madiha; Wall, Brian; Pedersen, Richard; Bezozo, Richard

    2013-02-01

    A novel in vivo approach is described that provides large area mapping of the mechanical properties of the skin in human patients. Such information is important in the understanding of skin health, cosmetic surgery[1], aging, and impacts of sun exposure. Currently, several methods have been developed to estimate the local biomechanical properties of the skin, including the use of a physical biopsy of local areas of the skin (in vitro methods) [2, 3, and 4], and also the use of non-invasive methods (in vivo) [5, 6, and 7]. All such methods examine localized areas of the skin. Our approach examines the local elastic properties via the generation of field displacement maps of the skin created using time-sequence imaging [9] with 2D digital imaging correlation (DIC) [10]. In this approach, large areas of the skin are reviewed rapidly, and skin displacement maps are generated showing the contour maps of skin deformation. These maps are then used to precisely register skin images for purposes of diagnostic comparison. This paper reports on our mapping and registration approach, and demonstrates its ability to accurately measure the skin deformation through a described nulling interpolation process. The result of local translational DIC alignment is compared using this interpolation process. The effectiveness of the approach is reported in terms of residual RMS, image entropy measures, and differential segmented regional errors.

  15. Control of magnetism by electrical charge doping or redox reactions in a surface-oxidized Co thin film with a solid-state capacitor structure

    NASA Astrophysics Data System (ADS)

    Hirai, T.; Koyama, T.; Chiba, D.

    2018-03-01

    We have investigated the electric field (EF) effect on magnetism in a Co thin film with a naturally oxidized surface. The EF was applied to the oxidized Co surface through a gate insulator layer made of HfO2, which was formed using atomic layer deposition (ALD). The efficiency of the EF effect on the magnetic anisotropy in the sample with the HfO2 layer deposited at the appropriate temperature for the ALD process was relatively large compared to the previously reported values with an unoxidized Co film. The coercivity promptly and reversibly followed the variation in gate voltage. The modulation of the channel resistance was at most ˜0.02%. In contrast, a dramatic change in the magnetic properties including the large change in the saturation magnetic moment and a much larger EF-induced modulation of the channel resistance (˜10%) were observed in the sample with a HfO2 layer deposited at a temperature far below the appropriate temperature range. The response of these properties to the gate voltage was very slow, suggesting that a redox reaction dominated the EF effect on the magnetism in this sample. The frequency response for the capacitive properties was examined to discuss the difference in the mechanism of the EF effect observed here.

  16. Magnetic Properties of Solar Active Regions that Govern Large Solar Flares and Eruptions

    NASA Astrophysics Data System (ADS)

    Toriumi, Shin; Schrijver, Carolus J.; Harra, Louise; Hudson, Hugh S.; Nagashima, Kaori

    2017-08-01

    Strong flares and CMEs are often produced from active regions (ARs). In order to better understand the magnetic properties and evolutions of such ARs, we conducted statistical investigations on the SDO/HMI and AIA data of all flare events with GOES levels >M5.0 within 45 deg from the disk center for 6 years from May 2010 (from the beginning to the declining phase of solar cycle 24). Out of the total of 51 flares from 29 ARs, more than 80% have delta-sunspots and about 15% violate Hale’s polarity rule. We obtained several key findings including (1) the flare duration is linearly proportional to the separation of the flare ribbons (i.e., scale of reconnecting magnetic fields) and (2) CME-eruptive events have smaller sunspot areas. Depending on the magnetic properties, flaring ARs can be categorized into several groups, such as spot-spot, in which a highly-sheared polarity inversion line is formed between two large sunspots, and spot-satellite, where a newly-emerging flux next to a mature sunspot triggers a compact flare event. These results point to the possibility that magnetic structures of the ARs determine the characteristics of flares and CMEs. In the presentation, we will also show new results from the systematic flux emergence simulations of delta-sunspot formation and discuss the evolution processes of flaring ARs.

  17. Estimation of Solvation Quantities from Experimental Thermodynamic Data: Development of the Comprehensive CompSol Databank for Pure and Mixed Solutes

    NASA Astrophysics Data System (ADS)

    Moine, Edouard; Privat, Romain; Sirjean, Baptiste; Jaubert, Jean-Noël

    2017-09-01

    The Gibbs energy of solvation measures the affinity of a solute for its solvent and is thus a key property for the selection of an appropriate solvent for a chemical synthesis or a separation process. More fundamentally, Gibbs energies of solvation are choice data for developing and benchmarking molecular models predicting solvation effects. The Comprehensive Solvation—CompSol—database was developed with the ambition to propose very large sets of new experimental solvation chemical-potential, solvation entropy, and solvation enthalpy data of pure and mixed components, covering extended temperature ranges. For mixed compounds, the solvation quantities were generated in infinite-dilution conditions by combining experimental values of pure-component and binary-mixture thermodynamic properties. Three types of binary-mixture properties were considered: partition coefficients, activity coefficients at infinite dilution, and Henry's-law constants. A rigorous methodology was implemented with the aim to select data at appropriate conditions of temperature, pressure, and concentration for the estimation of solvation data. Finally, our comprehensive CompSol database contains 21 671 data associated with 1969 pure species and 70 062 data associated with 14 102 binary mixtures (including 760 solvation data related to the ionic-liquid class of solvents). On the basis of the very large amount of experimental data contained in the CompSol database, it is finally discussed how solvation energies are influenced by hydrogen-bonding association effects.

  18. Biodiesel: Fuel properties, its “Design” and a source of “Designer” fuel

    USDA-ARS?s Scientific Manuscript database

    The fuel properties of biodiesel, a biogenic alternative to petrodiesel, are largely determined by its component fatty acid alkyl esters, most commonly methyl esters. These esters have vastly different properties. The properties of biodiesel are an aggregate of the properties of its components and t...

  19. Interdigitation between Triglycerides and Lipids Modulates Surface Properties of Lipid Droplets.

    PubMed

    Bacle, Amélie; Gautier, Romain; Jackson, Catherine L; Fuchs, Patrick F J; Vanni, Stefano

    2017-04-11

    Intracellular lipid droplets (LDs) are the main cellular site of metabolic energy storage. Their structure is unique inside the cell, with a core of esterified fatty acids and sterols, mainly triglycerides and sterol esters, surrounded by a single monolayer of phospholipids. Numerous peripheral proteins, including several that were previously associated with intracellular compartments surrounded by a lipid bilayer, have been recently shown to target the surface of LDs, but how they are able to selectively target this organelle remains largely unknown. Here, we use atomistic and coarse-grained molecular dynamics simulations to investigate the molecular properties of the LD surface and to characterize how it differs from that of a lipid bilayer. Our data suggest that although several surface properties are remarkably similar between the two structures, key differences originate from the interdigitation between surface phospholipids and core neutral lipids that occurs in LDs. This property is extremely sensitive to membrane undulations, unlike in lipid bilayers, and it strongly affects both lipid-packing defects and the lateral pressure profile. We observed a marked change in overall surface properties for surface tensions >10 mN/m, indicative of a bimodal behavior. Our simulations provide a comprehensive molecular characterization of the unique surface properties of LDs and suggest how the molecular properties of the surface lipid monolayer can be modulated by the underlying neutral lipids. Copyright © 2017 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  20. Large-scale environments of narrow-line Seyfert 1 galaxies

    NASA Astrophysics Data System (ADS)

    Järvelä, E.; Lähteenmäki, A.; Lietzen, H.; Poudel, A.; Heinämäki, P.; Einasto, M.

    2017-09-01

    Studying large-scale environments of narrow-line Seyfert 1 (NLS1) galaxies gives a new perspective on their properties, particularly their radio loudness. The large-scale environment is believed to have an impact on the evolution and intrinsic properties of galaxies, however, NLS1 sources have not been studied in this context before. We have a large and diverse sample of 1341 NLS1 galaxies and three separate environment data sets constructed using Sloan Digital Sky Survey. We use various statistical methods to investigate how the properties of NLS1 galaxies are connected to the large-scale environment, and compare the large-scale environments of NLS1 galaxies with other active galactic nuclei (AGN) classes, for example, other jetted AGN and broad-line Seyfert 1 (BLS1) galaxies, to study how they are related. NLS1 galaxies reside in less dense environments than any of the comparison samples, thus confirming their young age. The average large-scale environment density and environmental distribution of NLS1 sources is clearly different compared to BLS1 galaxies, thus it is improbable that they could be the parent population of NLS1 galaxies and unified by orientation. Within the NLS1 class there is a trend of increasing radio loudness with increasing large-scale environment density, indicating that the large-scale environment affects their intrinsic properties. Our results suggest that the NLS1 class of sources is not homogeneous, and furthermore, that a considerable fraction of them are misclassified. We further support a published proposal to replace the traditional classification to radio-loud, and radio-quiet or radio-silent sources with a division into jetted and non-jetted sources.

  1. Fraction of boroxol rings in vitreous boron oxide from a first-principles analysis of Raman and NMR spectra.

    PubMed

    Umari, P; Pasquarello, Alfredo

    2005-09-23

    We determine the fraction f of B atoms belonging to boroxol rings in vitreous boron oxide through a first-principles analysis. After generating a model structure of vitreous B2O3 by first-principles molecular dynamics, we address a large set of properties, including the neutron structure factor, the neutron density of vibrational states, the infrared spectra, the Raman spectra, and the 11B NMR spectra, and find overall good agreement with corresponding experimental data. From the analysis of Raman and 11B NMR spectra, we yield consistently for both probes a fraction f of approximately 0.75. This result indicates that the structure of vitreous boron oxide is largely dominated by boroxol rings.

  2. Ferroelectric ferrimagnetic LiFe2F6 : Charge-ordering-mediated magnetoelectricity

    NASA Astrophysics Data System (ADS)

    Lin, Ling-Fang; Xu, Qiao-Ru; Zhang, Yang; Zhang, Jun-Jie; Liang, Yan-Ping; Dong, Shuai

    2017-12-01

    Trirutile-type LiFe2F6 is a charge-ordered material with an Fe2 +/Fe3 + configuration. Here, its physical properties, including magnetism, electronic structure, phase transition, and charge ordering, are studied theoretically. On one hand, the charge ordering leads to improper ferroelectricity with a large polarization. On the other hand, its magnetic ground state can be tuned from the antiferromagnetic to ferrimagnetic by moderate compressive strain. Thus, LiFe2F6 can be a rare multiferroic with both large magnetization and polarization. Most importantly, since the charge ordering is the common ingredient for both ferroelectricity and magnetization, the net magnetization may be fully switched by flipping the polarization, rendering intrinsically strong magnetoelectric effects and desirable functions.

  3. Morphological changes in polycrystalline Fe after compression and release

    NASA Astrophysics Data System (ADS)

    Gunkelmann, Nina; Tramontina, Diego R.; Bringa, Eduardo M.; Urbassek, Herbert M.

    2015-02-01

    Despite a number of large-scale molecular dynamics simulations of shock compressed iron, the morphological properties of simulated recovered samples are still unexplored. Key questions remain open in this area, including the role of dislocation motion and deformation twinning in shear stress release. In this study, we present simulations of homogeneous uniaxial compression and recovery of large polycrystalline iron samples. Our results reveal significant recovery of the body-centered cubic grains with some deformation twinning driven by shear stress, in agreement with experimental results by Wang et al. [Sci. Rep. 3, 1086 (2013)]. The twin fraction agrees reasonably well with a semi-analytical model which assumes a critical shear stress for twinning. On reloading, twins disappear and the material reaches a very low strength value.

  4. Influence of Ice Particle Surface Roughening on the Global Cloud Radiative Effect

    NASA Technical Reports Server (NTRS)

    Yi, Bingqi; Yang, Ping; Baum, Bryan A.; LEcuyer, Tristan; Oreopoulos, Lazaros; Mlawer, Eli J.; Heymsfield, Andrew J.; Liou, Kuo-Nan

    2013-01-01

    Ice clouds influence the climate system by changing the radiation budget and large-scale circulation. Therefore, climate models need to have an accurate representation of ice clouds and their radiative effects. In this paper, new broadband parameterizations for ice cloud bulk scattering properties are developed for severely roughened ice particles. The parameterizations are based on a general habit mixture that includes nine habits (droxtals, hollow/solid columns, plates, solid/hollow bullet rosettes, aggregate of solid columns, and small/large aggregates of plates). The scattering properties for these individual habits incorporate recent advances in light-scattering computations. The influence of ice particle surface roughness on the ice cloud radiative effect is determined through simulations with the Fu-Liou and the GCM version of the Rapid Radiative Transfer Model (RRTMG) codes and the National Center for Atmospheric Research Community Atmosphere Model (CAM, version 5.1). The differences in shortwave (SW) and longwave (LW) radiative effect at both the top of the atmosphere and the surface are determined for smooth and severely roughened ice particles. While the influence of particle roughening on the single-scattering properties is negligible in the LW, the results indicate that ice crystal roughness can change the SW forcing locally by more than 10 W m(exp -2) over a range of effective diameters. The global-averaged SW cloud radiative effect due to ice particle surface roughness is estimated to be roughly 1-2 W m(exp -2). The CAM results indicate that ice particle roughening can result in a large regional SW radiative effect and a small but nonnegligible increase in the global LW cloud radiative effect.

  5. Suprathermal and Solar Energetic Particles - Key questions for the Interstellar Mapping and Acceleration Probe (IMAP)

    NASA Astrophysics Data System (ADS)

    Desai, M. I.; McComas, D. J.; Christian, E. R.; Mewaldt, R. A.; Schwadron, N.

    2014-12-01

    Solar energetic particles or SEPs from suprathermal (few keV) up to relativistic (~few GeV) speeds are accelerated near the Sun in at least two ways, namely, (1) by magnetic reconnection-driven processes during solar flares resulting in impulsive SEPs and (2) at fast coronal-mass-ejection-driven shock waves that produce large gradual SEP events. Large gradual SEP events are of particular interest because the accompanying high-energy (>10s MeV) protons pose serious radiation threats to human explorers living and working outside low-Earth orbit and to technological assets such as communications and scientific satellites in space. However, a complete understanding of SEP events has eluded us primarily because their properties, as observed near Earth orbit, are smeared due to mixing and contributions from many important physical effects. Thus, despite being studied for decades, several key questions regarding SEP events remain unanswered. These include (1) What are the contributions of co-temporal flares, jets, and CME shocks to impulsive and gradual SEP events?; (2) Do flares contribute to large SEP events directly by providing high-energy particles and/or by providing the suprathermal seed population?; (3) What are the roles of ambient turbulence/waves and self-generated waves?; (4) What are the origins of the source populations and how do their temporal and spatial variations affect SEP properties?; and (5) How do diffusion and scattering during acceleration and propagation through the interplanetary medium affect SEP properties observed out in the heliosphere? This talk describes how during the next decade, inner heliospheric measurements from the Solar Probe Plus and Solar Orbiter in conjunction with high sensitivity measurements from the Interstellar Mapping and Acceleration Probe will provide the ground-truth for various models of particle acceleration and transport and address these questions.

  6. MONSTER IN THE DARK: THE ULTRALUMINOUS GRB 080607 AND ITS DUSTY ENVIRONMENT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Perley, D. A.; Morgan, A. N.; Miller, A. A.

    2011-02-15

    We present early-time optical through infrared photometry of the bright Swift gamma-ray burst (GRB) 080607, starting only 6 s following the initial trigger in the rest frame. Complemented by our previously published spectroscopy, this high-quality photometric data set allows us to solve for the extinction properties of the redshift 3.036 sightline, giving perhaps the most detailed information to date on the ultraviolet continuum absorption properties of any sightline outside our Local Group. The extinction properties are not adequately modeled by any ordinary extinction template (including the average Milky Way, Large Magellanic Cloud, and Small Magellanic Cloud curves), partially because themore » 2175 A feature (while present) is weaker by about a factor of two than when seen under similar circumstances locally. However, the spectral energy distribution is exquisitely fitted by the more general Fitzpatrick and Massa parameterization of Local-Group extinction, putting it in the same family as some peculiar Milky Way extinction curves. After correcting for this (considerable, A{sub V} = 3.3 {+-} 0.4 mag) extinction, GRB 080607 is revealed to have been among the most optically luminous events ever observed, comparable to the naked-eye burst GRB 080319B. Its early peak time (t{sub rest} < 6 s) indicates a high initial Lorentz factor ({Gamma}>600), while the extreme luminosity may be explained in part by a large circumburst density. Only because of its early high luminosity could the afterglow of GRB 080607 be studied in such detail in spite of the large attenuation and great distance, making this burst an excellent prototype for the understanding of other highly obscured extragalactic objects, and of the class of 'dark' GRBs in particular.« less

  7. Mixing properties of coaxial jets with large velocity ratios and large inverse density ratios

    NASA Astrophysics Data System (ADS)

    Alexander Schumaker, S.; Driscoll, James F.

    2012-05-01

    An experimental study was conducted to better understand the mixing properties of coaxial jets as several parameters were systematically varied, including the velocity ratio, density ratio, and the Reynolds number. Diameters of the inner and outer jet were also varied. Coaxial jets are commonly used to mix fluids due to the simplicity of their geometry and the rapid mixing that they provide. A measure of the overall mixing efficiency is the stoichiometric mixing length (Ls), which is the distance along the jet centerline where the two fluids have mixed to some desired concentration, which was selected to be the stoichiometric concentration for H2/O2 and CH4/O2 in this case. For 56 cases, the profiles of mean mixture fraction, rms mixture fraction fluctuations (unmixedness), and Ls were measured using acetone planar laser induced fluorescence diagnostics. Results were compared to three mixing models. The entrainment model of Villermaux and Rehab showed good agreement with the data, indicating that the proper non-dimensional scaling parameter is the momentum flux ratio M. The work extends the existing database of coaxial jet scalar mixing properties because it considers the specific regime of large values of both the velocity ratio and the inverse density ratio, which is the regime in which rocket injectors operate. Also the work focuses on the mixing up to Ls where previous work focused on the mixing up to the end of the inner core. The Reynolds numbers achieved for a number of cases were considerably larger than previous gas mixing studies, which insures that the jet exit boundary conditions are fully turbulent.

  8. Effect of Long-Term Service on Microstructure and Mechanical Properties of Martensitic 9% Cr Steel

    NASA Astrophysics Data System (ADS)

    Golański, Grzegorz; Zielińska-Lipiec, Anna; Zieliński, Adam; Sroka, Marek

    2017-03-01

    The paper presents the results of research on the X10CrMoVNbN9-1 (T91) steel after long-term service. The material for testing was taken from a pipe section of a boiler superheater coil serviced for around 105,000 h at the temperature of 540 °C, at the pressure of 12.5 MPa. A quantitative analysis including the measurement of mean diameter of subgrains and precipitates as well as the density of dislocations of the examined steel was performed by means of TEM. The microscopic tests of T91 steel were complemented with the results of tests on mechanical properties which included also the short creep tests. After service, the investigated steel was characterized by a retained lath microstructure of tempered martensite with fine subgrain and quite large density of dislocations as well as numerous precipitates. In the microstructure, apart from the particles of M23C6 and MX (VX, NbC, V-wings), the precipitates of Laves phase and single particles of Z phase were revealed. It has been shown that the extent of degradation of the T91 steel microstructure was minor, which resulted from its low temperature of service. Performed tests of mechanical properties showed that these properties fulfilled the minimum requirements for this steel in the as-received condition. A favorable influence of fine precipitates of Laves phase on mechanical properties was observed. Moreover, an insignificant influence of single precipitates of Z phase on the creep resistance of the examined steel was stated.

  9. Fragmentation of Solid Materials Using Shock Tubes. Part 2: First Test Series in a Large Diameter Shock Tube

    DTIC Science & Technology

    2017-12-01

    description in Figure 9 below 2 Full or partial loss of test data due to instrumentation/triggering failures 3 Gages not included in these tests 4...Table 2. Sample properties. Test Description Dimensions Weight (lbs.) Strength (psi) Notes 17 Fully Tempered Glass Window 4-ft x 6-ft x...an estimate of prism strength for medium weight CMU. The reinforced concrete sample was a 5.5-in thick solid panel. To evaluate its strength

  10. The Interaction of High-Speed Turbulence with Flames: Global Properties and Internal Flame Structure

    DTIC Science & Technology

    2009-09-28

    S L, on all scales, including that of the laminar flame thickness, presents a number of both experimental and numerical challenges. Hereafter, we...fuel preconditioning, compression of the overall system, or propagation of large-scale shocks . Probing such regimes experimentally requires either...reactions are modeled using the first-order Arrhenius kinetics dY dt ≡ ẇ = −AρY exp ( − Q RT ) , (5) where A is the pre-exponential factor, Q is the

  11. Evidence for speckle effects on pulsed CO2 lidar signal returns from remote targets

    NASA Technical Reports Server (NTRS)

    Menzies, R. T.; Kavaya, M. J.; Flamant, P. H.

    1984-01-01

    A pulsed CO2 lidar was used to study statistical properties of signal returns from various rough surfaces at distances near 2 km. These included natural in situ topographic materials as well as man-made hard targets. Three lidar configurations were used: heterodyne detection with single temporal mode transmitter pulses, and direct detection with single and multiple temporal mode pulses. The significant differences in signal return statistics, due largely to speckle effects, are discussed.

  12. Design and realization of retina-like three-dimensional imaging based on a MOEMS mirror

    NASA Astrophysics Data System (ADS)

    Cao, Jie; Hao, Qun; Xia, Wenze; Peng, Yuxin; Cheng, Yang; Mu, Jiaxing; Wang, Peng

    2016-07-01

    To balance conflicts for high-resolution, large-field-of-view and real-time imaging, a retina-like imaging method based on time-of flight (TOF) is proposed. Mathematical models of 3D imaging based on MOEMS are developed. Based on this method, we perform simulations of retina-like scanning properties, including compression of redundant information and rotation and scaling invariance. To validate the theory, we develop a prototype and conduct relevant experiments. The preliminary results agree well with the simulations.

  13. Space construction base control system

    NASA Technical Reports Server (NTRS)

    1978-01-01

    Aspects of an attitude control system were studied and developed for a large space base that is structurally flexible and whose mass properties change rather dramatically during its orbital lifetime. Topics of discussion include the following: (1) space base orbital pointing and maneuvering; (2) angular momentum sizing of actuators; (3) momentum desaturation selection and sizing; (4) multilevel control technique applied to configuration one; (5) one-dimensional model simulation; (6) N-body discrete coordinate simulation; (7) structural analysis math model formulation; and (8) discussion of control problems and control methods.

  14. Lagrangian continuum dynamics in ALEGRA.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wong, Michael K. W.; Love, Edward

    Alegra is an ALE (Arbitrary Lagrangian-Eulerian) multi-material finite element code that emphasizes large deformations and strong shock physics. The Lagrangian continuum dynamics package in Alegra uses a Galerkin finite element spatial discretization and an explicit central-difference stepping method in time. The goal of this report is to describe in detail the characteristics of this algorithm, including the conservation and stability properties. The details provided should help both researchers and analysts understand the underlying theory and numerical implementation of the Alegra continuum hydrodynamics algorithm.

  15. Recent advances in research on climate and human conflict

    NASA Astrophysics Data System (ADS)

    Hsiang, S. M.

    2014-12-01

    A rapidly growing body of empirical, quantitative research examines whether rates of human conflict can be systematically altered by climatic changes. We discuss recent advances in this field, including Bayesian meta-analyses of the effect of temperature and rainfall on current and future large-scale conflicts, the impact of climate variables on gang violence and suicides in Mexico, and probabilistic projections of personal violence and property crime in the United States under RCP scenarios. Criticisms of this research field will also be explained and addressed.

  16. A Life-Cycle Model of Human Social Groups Produces a U-Shaped Distribution in Group Size.

    PubMed

    Salali, Gul Deniz; Whitehouse, Harvey; Hochberg, Michael E

    2015-01-01

    One of the central puzzles in the study of sociocultural evolution is how and why transitions from small-scale human groups to large-scale, hierarchically more complex ones occurred. Here we develop a spatially explicit agent-based model as a first step towards understanding the ecological dynamics of small and large-scale human groups. By analogy with the interactions between single-celled and multicellular organisms, we build a theory of group lifecycles as an emergent property of single cell demographic and expansion behaviours. We find that once the transition from small-scale to large-scale groups occurs, a few large-scale groups continue expanding while small-scale groups gradually become scarcer, and large-scale groups become larger in size and fewer in number over time. Demographic and expansion behaviours of groups are largely influenced by the distribution and availability of resources. Our results conform to a pattern of human political change in which religions and nation states come to be represented by a few large units and many smaller ones. Future enhancements of the model should include decision-making rules and probabilities of fragmentation for large-scale societies. We suggest that the synthesis of population ecology and social evolution will generate increasingly plausible models of human group dynamics.

  17. A Life-Cycle Model of Human Social Groups Produces a U-Shaped Distribution in Group Size

    PubMed Central

    Salali, Gul Deniz; Whitehouse, Harvey; Hochberg, Michael E.

    2015-01-01

    One of the central puzzles in the study of sociocultural evolution is how and why transitions from small-scale human groups to large-scale, hierarchically more complex ones occurred. Here we develop a spatially explicit agent-based model as a first step towards understanding the ecological dynamics of small and large-scale human groups. By analogy with the interactions between single-celled and multicellular organisms, we build a theory of group lifecycles as an emergent property of single cell demographic and expansion behaviours. We find that once the transition from small-scale to large-scale groups occurs, a few large-scale groups continue expanding while small-scale groups gradually become scarcer, and large-scale groups become larger in size and fewer in number over time. Demographic and expansion behaviours of groups are largely influenced by the distribution and availability of resources. Our results conform to a pattern of human political change in which religions and nation states come to be represented by a few large units and many smaller ones. Future enhancements of the model should include decision-making rules and probabilities of fragmentation for large-scale societies. We suggest that the synthesis of population ecology and social evolution will generate increasingly plausible models of human group dynamics. PMID:26381745

  18. Additive manufacturing of metals: a brief review of the characteristic microstructures and properties of steels, Ti-6Al-4V and high-entropy alloys

    PubMed Central

    Gorsse, Stéphane; Hutchinson, Christopher; Gouné, Mohamed; Banerjee, Rajarshi

    2017-01-01

    Abstract We present a brief review of the microstructures and mechanical properties of selected metallic alloys processed by additive manufacturing (AM). Three different alloys, covering a large range of technology readiness levels, are selected to illustrate particular microstructural features developed by AM and clarify the engineering paradigm relating process–microstructure–property. With Ti-6Al-4V the emphasis is placed on the formation of metallurgical defects and microstructures induced by AM and their role on mechanical properties. The effects of the large in-built dislocation density, surface roughness and build atmosphere on mechanical and damage properties are discussed using steels. The impact of rapid solidification inherent to AM on phase selection is highlighted for high-entropy alloys. Using property maps, published mechanical properties of additive manufactured alloys are graphically summarized and compared to conventionally processed counterparts. PMID:28970868

  19. Additive manufacturing of metals: a brief review of the characteristic microstructures and properties of steels, Ti-6Al-4V and high-entropy alloys.

    PubMed

    Gorsse, Stéphane; Hutchinson, Christopher; Gouné, Mohamed; Banerjee, Rajarshi

    2017-01-01

    We present a brief review of the microstructures and mechanical properties of selected metallic alloys processed by additive manufacturing (AM). Three different alloys, covering a large range of technology readiness levels, are selected to illustrate particular microstructural features developed by AM and clarify the engineering paradigm relating process-microstructure-property. With Ti-6Al-4V the emphasis is placed on the formation of metallurgical defects and microstructures induced by AM and their role on mechanical properties. The effects of the large in-built dislocation density, surface roughness and build atmosphere on mechanical and damage properties are discussed using steels. The impact of rapid solidification inherent to AM on phase selection is highlighted for high-entropy alloys. Using property maps, published mechanical properties of additive manufactured alloys are graphically summarized and compared to conventionally processed counterparts.

  20. Additive manufacturing of metals: a brief review of the characteristic microstructures and properties of steels, Ti-6Al-4V and high-entropy alloys

    NASA Astrophysics Data System (ADS)

    Gorsse, Stéphane; Hutchinson, Christopher; Gouné, Mohamed; Banerjee, Rajarshi

    2017-12-01

    We present a brief review of the microstructures and mechanical properties of selected metallic alloys processed by additive manufacturing (AM). Three different alloys, covering a large range of technology readiness levels, are selected to illustrate particular microstructural features developed by AM and clarify the engineering paradigm relating process-microstructure-property. With Ti-6Al-4V the emphasis is placed on the formation of metallurgical defects and microstructures induced by AM and their role on mechanical properties. The effects of the large in-built dislocation density, surface roughness and build atmosphere on mechanical and damage properties are discussed using steels. The impact of rapid solidification inherent to AM on phase selection is highlighted for high-entropy alloys. Using property maps, published mechanical properties of additive manufactured alloys are graphically summarized and compared to conventionally processed counterparts.

  1. Large-Scale Synthesis of Carbon Nanomaterials by Catalytic Chemical Vapor Deposition: A Review of the Effects of Synthesis Parameters and Magnetic Properties

    PubMed Central

    Qi, Xiaosi; Qin, Chuan; Zhong, Wei; Au, Chaktong; Ye, Xiaojuan; Du, Youwei

    2010-01-01

    The large-scale production of carbon nanomaterials by catalytic chemical vapor deposition is reviewed in context with their microwave absorbing ability. Factors that influence the growth as well as the magnetic properties of the carbon nanomaterials are discussed. PMID:28883324

  2. Investigation of rock samples by neutron diffraction and ultrasonic sounding

    NASA Astrophysics Data System (ADS)

    Burilichev, D. E.; Ivankina, T. I.; Klima, K.; Locajicek, T.; Nikitin, A. N.; Pros, Z.

    2000-03-01

    The interpretation of large-scale geophysical anisotropies largely depends upon the knowledge of rock anisotropies of any kind (compositions, foliations, grain shape, physical properties). Almost all physical rock properties (e.g. elastic, thermal, magnetic properties) are related to the textures of the rock constituents since they are anisotropic for the single crystal. Although anisotropy determinations are numerous, systematic investigations are scarce. Therefore, several rock samples with different microfabrics were selected for texture analysis and to determine its P-wave distributions at various confining pressures.

  3. Review of Antibiotic and Non-Antibiotic Properties of Beta-lactam Molecules.

    PubMed

    Ochoa-Aguilar, Abraham; Ventura-Martinez, Rosa; Sotomayor-Sobrino, Marco Antonio; Gómez, Claudia; Morales-Espinoza, María del Rosario

    2016-01-01

    Beta-lactam molecules are a family of drugs commonly used for their antibiotic properties; however, recent research has shown that several members of this group present a large number of other effects such as neuroprotective, antioxidant, analgesic or immunomodulatory capabilities. These properties have been used in both preclinical and clinical studies in different diseases such as hypoxic neuronal damage or acute and chronic pain. The present work briefly reviews the antibiotic effect of these molecules, and will then focus specially on the non-antibiotic effects of three beta-lactam subfamilies: penicillins, cephalosporins and beta lactamase inhibitors, each of which have different molecular structure and pharmacokinetics and therefore have several potential clinical applications. A thorough search of bibliographic databases for peer-reviewed research was performed including only classic experiments or high quality reviews for the antibiotic mechanisms of beta-lactam molecules and only experimental research papers where included when the non-antibiotic properties of these molecules were searched. Only published articles from indexed journals were included. Quality of retrieved papers was assessed using standard tools. The characteristics of screened papers were described and findings of included studies were contextualized to either a mechanistic or a clinical framework. Seventy-eight papers were included in the review; the majority (56) were relative to the non-antibiotic properties of beta-lactam molecules. The non-antibiotic effects reviewed were divided accordingly to the amount of information available for each one. Twelve papers outlined the epileptogenic effects induced by beta-lactam molecules administration; these included both clinical and basic research as well as probable mechanistic explanations. Eighteen papers described a potential neuroprotective effect, mostly in basic in vitro and in vivo experiments. Analgesic properties where identified in twelve papers and basic research was described alongside with both experimental and serendipic clinical findings. Seven papers described a down-regulation effect exerted by beta-lactam molecules administration in different addiction animal models. Finally other effects such as penile erection, dopamine release facilitation and anti-neoplasic effects where described from seven papers. The findings of this review show that beta-lactam molecules may induce several effects, which may be clinically relevant in a lot of different diseases. This paper is, to our knowledge, the first comprehensive review of the non-antibiotic effects shown by beta-lactam molecules and may help increase the interest in this field, which may result in a direct translation of this effects to a clinical context.

  4. Closure on the single scattering albedo in the WRF-Chem framework using data from the MILAGRO campaign

    NASA Astrophysics Data System (ADS)

    Barnard, J. C.; Fast, J. D.; Paredes-Miranda, G.; Arnott, W. P.

    2009-02-01

    Data from the MILAGRO field campaign, which took place in the Mexico City Metropolitan Area (MCMA) during March 2006, is used to perform a closure experiment between aerosol chemical properties and aerosol optical properties. Measured aerosol chemical properties, obtained from the MILAGRO T1 site, are fed to two different "chemical to optical properties" modules. One module uses a sectional approach and is identical to that used in the WRF-Chem model, while the other is based on a modal approach. This modal code is employed as an independent check on the WRF-Chem module. Both modules compute aerosol optical properties and, in particular, the single-scattering albedo, ϖ0, as a function of time. The single-scattering albedos are compared to independent measurements obtained from a photoacoustic spectrometer (PAS). Because chemical measurements of the aerosol coarse mode were not available, and the inlet of the PAS could not ingest aerosols larger than about 2 to 3 μm, we focus here on the fine-mode ϖ0. At 870 nm, the wavelength of the PAS measurements, the agreement between the computed (modal and WRF-Chem) and observed fine-mode ϖ0, averaged over the course of the campaign, is reasonably good. The observed ϖ0 value is 0.77, while for both modules, the calculated value was 0.75 resulting in a difference of 0.02 between observations and both computational approaches. This difference is less than the uncertainty of the observed ϖ0 values (6%, or 0.05), and therefore "closure" is achieved, at least for mean values. After adjusting some properties of black carbon absorption and mass concentration within plausible uncertainty limits, the two modules simulate well the diurnal variation of ϖ0, and the absorption coefficient, Babs, but are less successful in calculating the variation of the scattering coefficient, Bscat. This difficulty is probably caused by the presence of larger particles during the day when windblown dust is ubiquitous; this dust likely increases the proportion of large particles introduced into the PAS. The dust also contributes to a very large aerosol mass loading in the coarse mode, and neglect of the coarse mode may cause significant errors, estimated to be as large as 0.07, in the calculation and measurement of ambient ϖ0. Finally, the observed ϖ0 is compared to the ϖ0 computed by the full WRF-Chem model, which includes prognostic aerosol chemistry. Unlike the results discussed above, a comparison between observed and simulated ϖ0 values reveals major differences. This large discrepancy is probably due, in part, to poor characterization of emissions near the T1 site, particularly black carbon emissions.

  5. Effect of Sintering Temperature on Dielectric Properties of Iron Deficient Nickel-Ferrite

    NASA Astrophysics Data System (ADS)

    Rani, Renu; Singh, Sangeeta; Juneja, J. K.; Prakash, Chandra; Raina, K. K.

    2011-11-01

    Nickel Ferrite among all the magneto ceramic materials have been studied very much due to its large number of applications. But there is a large scope of modification of its properties. Thus people still working on it for improvisation of its properties via compositional and structural modifications. Present paper reporting the preparation and characterization of iron deficient Nickel ferrite for different sintering temperature. Ferrite samples having the general formula NiFe1.98O4 were prepared using the standard ceramic method. The phase formation was confirmed by X-ray diffraction technique. The effect of sintering temperature on the electrical properties and resistivity was studied. The data shows that dielectric properties are highly dependent on the sintering temperature.

  6. A large-scale study of the ultrawideband microwave dielectric properties of normal breast tissue obtained from reduction surgeries.

    PubMed

    Lazebnik, Mariya; McCartney, Leah; Popovic, Dijana; Watkins, Cynthia B; Lindstrom, Mary J; Harter, Josephine; Sewall, Sarah; Magliocco, Anthony; Booske, John H; Okoniewski, Michal; Hagness, Susan C

    2007-05-21

    The efficacy of emerging microwave breast cancer detection and treatment techniques will depend, in part, on the dielectric properties of normal breast tissue. However, knowledge of these properties at microwave frequencies has been limited due to gaps and discrepancies in previously reported small-scale studies. To address these issues, we experimentally characterized the wideband microwave-frequency dielectric properties of a large number of normal breast tissue samples obtained from breast reduction surgeries at the University of Wisconsin and University of Calgary hospitals. The dielectric spectroscopy measurements were conducted from 0.5 to 20 GHz using a precision open-ended coaxial probe. The tissue composition within the probe's sensing region was quantified in terms of percentages of adipose, fibroconnective and glandular tissues. We fit a one-pole Cole-Cole model to the complex permittivity data set obtained for each sample and determined median Cole-Cole parameters for three groups of normal breast tissues, categorized by adipose tissue content (0-30%, 31-84% and 85-100%). Our analysis of the dielectric properties data for 354 tissue samples reveals that there is a large variation in the dielectric properties of normal breast tissue due to substantial tissue heterogeneity. We observed no statistically significant difference between the within-patient and between-patient variability in the dielectric properties.

  7. Copper Oxide Nanomaterials Prepared by Solution Methods, Some Properties, and Potential Applications: A Brief Review

    PubMed Central

    Tran, Thi Ha; Nguyen, Viet Tuyen

    2014-01-01

    Cupric oxide (CuO), having a narrow bandgap of 1.2 eV and a variety of chemophysical properties, is recently attractive in many fields such as energy conversion, optoelectronic devices, and catalyst. Compared with bulk material, the advanced properties of CuO nanostructures have been demonstrated; however, the fact that these materials cannot yet be produced in large scale is an obstacle to realize the potential applications of this material. In this respect, chemical methods seem to be efficient synthesis processes which yield not only large quantities but also high quality and advanced material properties. In this paper, the effect of some general factors on the morphology and properties of CuO nanomaterials prepared by solution methods will be overviewed. In terms of advanced nanostructure synthesis, microwave method in which copper hydroxide nanostructures are produced in the precursor solution and sequentially transformed by microwave into CuO may be considered as a promising method to explore in the near future. This method produces not only large quantities of nanoproducts in a short reaction time of several minutes, but also high quality materials with advanced properties. A brief review on some unique properties and applications of CuO nanostructures will be also presented. PMID:27437488

  8. Colorful Niches of Phytoplankton Shaped by the Spatial Connectivity in a Large River Ecosystem: A Riverscape Perspective

    PubMed Central

    Frenette, Jean-Jacques; Massicotte, Philippe; Lapierre, Jean-François

    2012-01-01

    Large rivers represent a significant component of inland waters and are considered sentinels and integrators of terrestrial and atmospheric processes. They represent hotspots for the transport and processing of organic and inorganic material from the surrounding landscape, which ultimately impacts the bio-optical properties and food webs of the rivers. In large rivers, hydraulic connectivity operates as a major forcing variable to structure the functioning of the riverscape, and–despite increasing interest in large-river studies–riverscape structural properties, such as the underwater spectral regime, and their impact on autotrophic ecological processes remain poorly studied. Here we used the St. Lawrence River to identify the mechanisms structuring the underwater spectral environment and their consequences on pico- and nanophytoplankton communities, which are good biological tracers of environmental changes. Our results, obtained from a 450 km sampling transect, demonstrate that tributaries exert a profound impact on the receiving river’s photosynthetic potential. This occurs mainly through injection of chromophoric dissolved organic matter (CDOM) and non-algal material (tripton). CDOM and tripton in the water column selectively absorbed wavelengths in a gradient from blue to red, and the resulting underwater light climate was in turn a strong driver of the phytoplankton community structure (prokaryote/eukaryote relative and absolute abundances) at scales of many kilometers from the tributary confluence. Our results conclusively demonstrate the proximal impact of watershed properties on underwater spectral composition in a highly dynamic river environment characterized by unique structuring properties such as high directional connectivity, numerous sources and forms of carbon, and a rapidly varying hydrodynamic regime. We surmise that the underwater spectral composition represents a key integrating and structural property of large, heterogeneous river ecosystems and a promising tool to study autotrophic functional properties. It confirms the usefulness of using the riverscape approach to study large-river ecosystems and initiate comparison along latitudinal gradients. PMID:22558259

  9. Properties of Nuclei up to A = 16 using Local Chiral Interactions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lonardoni, Diego; Carlson, Joseph; Gandolfi, Stefano

    Here, we report accurate quantum Monte Carlo calculations of nuclei up to A = 16 based on local chiral two- and three-nucleon interactions up to next-to-next-to-leading order. We examine the theoretical uncertainties associated with the chiral expansion and the cutoff in the theory, as well as the associated operator choices in the three-nucleon interactions. While in light nuclei the cutoff variation and systematic uncertainties are rather small, in 16O these can be significant for large coordinate-space cutoffs. Overall, we show that chiral interactions constructed to reproduce properties of very light systems and nucleon-nucleon scattering give an excellent description of bindingmore » energies, charge radii, and form factors for all these nuclei, including open-shell systems in A = 6 and 12.« less

  10. A main sequence for quasars

    NASA Astrophysics Data System (ADS)

    Marziani, Paola; Dultzin, Deborah; Sulentic, Jack W.; Del Olmo, Ascensión; Negrete, C. A.; Martínez-Aldama, Mary L.; D'Onofrio, Mauro; Bon, Edi; Bon, Natasa; Stirpe, Giovanna M.

    2018-03-01

    The last 25 years saw a major step forward in the analysis of optical and UV spectroscopic data of large quasar samples. Multivariate statistical approaches have led to the definition of systematic trends in observational properties that are the basis of physical and dynamical modeling of quasar structure. We discuss the empirical correlates of the so-called “main sequence” associated with the quasar Eigenvector 1, its governing physical parameters and several implications on our view of the quasar structure, as well as some luminosity effects associated with the virialized component of the line emitting regions. We also briefly discuss quasars in a segment of the main sequence that includes the strongest FeII emitters. These sources show a small dispersion around a well-defined Eddington ratio value, a property which makes them potential Eddington standard candles.

  11. [NSAID GASTROPATHY IN PATIENTS WITH COMORBID DISEASES].

    PubMed

    Morozova, T E; Rykova, S M; Chukina, M A

    2015-01-01

    The widespread use in clinical practice of non-steroidal anti-inflammatory drugs (NSAIDs), largely due to the general trend towards an aging population and, as a consequence, increase the number of individuals with comorbid conditions and diseases, including the most common are diseases of the cardiovascular system, diseases of the joints and spine, requiring of therapy with, combining the anti-inflammatory and analgesic properties. However, NSAIDs not only have favorable effects, but have quite a wide range of adverse effects, an important place among which is NSAID-induced gastropathy. The article deals with the rational choice of NSAIDs in patients depending on the degree of cardiovascular risk and gastrointenstinalnogo, as well as the possibility of preventing NSAID-associated gastropathy. Particular attention is paid to the choice of individual NSAIDs with regard to their pharmacological properties.

  12. A generative model for scientific concept hierarchies.

    PubMed

    Datta, Srayan; Adar, Eytan

    2018-01-01

    In many scientific disciplines, each new 'product' of research (method, finding, artifact, etc.) is often built upon previous findings-leading to extension and branching of scientific concepts over time. We aim to understand the evolution of scientific concepts by placing them in phylogenetic hierarchies where scientific keyphrases from a large, longitudinal academic corpora are used as a proxy of scientific concepts. These hierarchies exhibit various important properties, including power-law degree distribution, power-law component size distribution, existence of a giant component and less probability of extending an older concept. We present a generative model based on preferential attachment to simulate the graphical and temporal properties of these hierarchies which helps us understand the underlying process behind scientific concept evolution and may be useful in simulating and predicting scientific evolution.

  13. Software Development Technologies for Reactive, Real-Time, and Hybrid Systems: Summary of Research

    NASA Technical Reports Server (NTRS)

    Manna, Zohar

    1998-01-01

    This research is directed towards the implementation of a comprehensive deductive-algorithmic environment (toolkit) for the development and verification of high assurance reactive systems, especially concurrent, real-time, and hybrid systems. For this, we have designed and implemented the STCP (Stanford Temporal Prover) verification system. Reactive systems have an ongoing interaction with their environment, and their computations are infinite sequences of states. A large number of systems can be seen as reactive systems, including hardware, concurrent programs, network protocols, and embedded systems. Temporal logic provides a convenient language for expressing properties of reactive systems. A temporal verification methodology provides procedures for proving that a given system satisfies a given temporal property. The research covered necessary theoretical foundations as well as implementation and application issues.

  14. A generative model for scientific concept hierarchies

    PubMed Central

    Adar, Eytan

    2018-01-01

    In many scientific disciplines, each new ‘product’ of research (method, finding, artifact, etc.) is often built upon previous findings–leading to extension and branching of scientific concepts over time. We aim to understand the evolution of scientific concepts by placing them in phylogenetic hierarchies where scientific keyphrases from a large, longitudinal academic corpora are used as a proxy of scientific concepts. These hierarchies exhibit various important properties, including power-law degree distribution, power-law component size distribution, existence of a giant component and less probability of extending an older concept. We present a generative model based on preferential attachment to simulate the graphical and temporal properties of these hierarchies which helps us understand the underlying process behind scientific concept evolution and may be useful in simulating and predicting scientific evolution. PMID:29474409

  15. N(+)-N and O(+)-O interaction energies, dipole transition moments, and transport cross sections

    NASA Technical Reports Server (NTRS)

    Partridge, H.; Stallcop, J. R.

    1986-01-01

    Complete sets of ion-atom interaction energies have been computed for nitrogen and oxygen with accurate large scale structure calculations. The computed energies agree well with the accurate potential curves available from spectroscopic measurement. The state functions from the nitrogen calculations have been applied to determine the transition moment for all allowed dipole transitions. These results can be combined to compute a detailed radiation spectrum such as that required to define the highly nonequilibrium environment of aeroassisted orbital transfer vehicle (AOTV). The long-range interaction energies have been used to determine the ion-atom resonance charge exchange cross sections that are important for transport processes such as diffusion. A calculation to determine reliable transport properties for energies that include the AOTV temperature range from these computed properties is described.

  16. Venus Monitoring Camera (VMC/VEx) 1 micron emissivity and Magellan microwave properties of crater-related radar-dark parabolas and other terrains

    NASA Astrophysics Data System (ADS)

    Basilevsky, A. T.; Shalygina, O. S.; Bondarenko, N. V.; Shalygin, E. V.; Markiewicz, W. J.

    2017-09-01

    The aim of this work is a comparative study of several typical radar-dark parabolas, the neighboring plains and some other geologic units seen in the study areas which include craters Adivar, Bassi, Bathsheba, du Chatelet and Sitwell, at two depths scales: the upper several meters of the study object available through the Magellan-based microwave (at 12.6 cm wavelength) properties (microwave emissivity, Fresnel reflectivity, large-scale surface roughness, and radar cross-section), and the upper hundreds microns of the object characterized by the 1 micron emissivity resulted from the analysis of the near infra-red (NIR) irradiation of the night-side of the Venusian surface measured by the Venus Monitoring Camera (VMC) on-board of Venus Express (VEx).

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Breznay, Nicholas P.; Hayes, Ian M.; Ramshaw, B. J.

    In this work, we study magnetotransport properties of the electron-doped superconductor Pr 2-xCe xCuO 4±δ with x = 0.14 in magnetic fields up to 92 T, and observe Shubnikov-de Haas magnetic quantum oscillations. The oscillations display a single frequency F = 255 ± 10 T, indicating a small Fermi pocket that is ~1 % of the two-dimensional Brillouin zone and consistent with a Fermi surface reconstructed from the large holelike cylinder predicted for these layered materials. Despite the low nominal doping, all electronic properties including the effective mass and Hall effect are consistent with overdoped compounds. In conclusion, our studymore » demonstrates that the exceptional chemical control afforded by high quality thin films will enable Fermi surface studies deep into the overdoped cuprate phase diagram.« less

  18. Applications of Precipitation Feature Databases from GPM core and constellation Satellites

    NASA Astrophysics Data System (ADS)

    Liu, C.

    2017-12-01

    Using the observations from Global Precipitation Mission (GPM) core and constellation satellites, global precipitation was quantitatively described from the perspective of precipitation systems and their properties. This presentation will introduce the development of precipitation feature databases, and several scientific questions that have been tackled using this database, including the topics of global snow precipitation, extreme intensive convection, hail storms, extreme precipitation, and microphysical properties derived with dual frequency radars at the top of convective cores. As more and more observations of constellation satellites become available, it is anticipated that the precipitation feature approach will help to address a large variety of scientific questions in the future. For anyone who is interested, all the current precipitation feature databases are freely open to public at: http://atmos.tamucc.edu/trmm/.

  19. Properties of Nuclei up to A = 16 using Local Chiral Interactions

    DOE PAGES

    Lonardoni, Diego; Carlson, Joseph; Gandolfi, Stefano; ...

    2018-03-22

    Here, we report accurate quantum Monte Carlo calculations of nuclei up to A = 16 based on local chiral two- and three-nucleon interactions up to next-to-next-to-leading order. We examine the theoretical uncertainties associated with the chiral expansion and the cutoff in the theory, as well as the associated operator choices in the three-nucleon interactions. While in light nuclei the cutoff variation and systematic uncertainties are rather small, in 16O these can be significant for large coordinate-space cutoffs. Overall, we show that chiral interactions constructed to reproduce properties of very light systems and nucleon-nucleon scattering give an excellent description of bindingmore » energies, charge radii, and form factors for all these nuclei, including open-shell systems in A = 6 and 12.« less

  20. Star PolyMOCs with Diverse Structures, Dynamics, and Functions by Three-Component Assembly

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Yufeng; Gu, Yuwei; Keeler, Eric G.

    2016-12-05

    We report star polymer metal–organic cage (polyMOC) materials whose structures, mechanical properties, functionalities, and dynamics can all be precisely tailored through a simple three-component assembly strategy. The star polyMOC network is composed of tetra-arm star polymers functionalized with ligands on the chain ends, small molecule ligands, and palladium ions; polyMOCs are formed via metal–ligand coordination and thermal annealing. The ratio of small molecule ligands to polymer-bound ligands determines the connectivity of the MOC junctions and the network structure. The use of large M12L24 MOCs enables great flexibility in tuning this ratio, which provides access to a rich spectrum of materialmore » properties including tunable moduli and relaxation dynamics.« less

  1. Practical holography III; Proceedings of the Meeting, Los Angeles, CA, Jan. 17, 18, 1989

    NASA Astrophysics Data System (ADS)

    Benton, Stephen A.

    Various papers on practical holography are presented. Individual topics addressed include: design of large format commercial display holograms, design of a one-step full-color holographic recording system, color reflection holography, full color rainbow hologram using a photoresist plate, secondary effects in processing holograms, archival properties of holograms, survey of properties of volume holographic materials, image stability of DMP-128 holograms, activation monitor for DMP-128, microwave drying effects on dichromated gelatin holograms, sensitization process of dichromated gelatin, holographic optics for vision systems, holographic fingerprint sensor, cross-talk and cross-coupling in multiplexed holographic gratings, compact illuminators for transmission holograms, solar holoconcentrators in dichromated grains, three-dimensional display of scientific data, holographic liquid crystal displays, in situ swelling for hologaphic color control.

  2. The Anatomy of AP1000 Mono-Block Low Pressure Rotor Forging

    NASA Astrophysics Data System (ADS)

    Jin, Jia-yu; Rui, Shou-tai; Wang, Qun

    AP1000 mono-block low pressure (LP) rotor forgings for nuclear power station have maximum ingot weight, maximum diameter and the highest technical requirements. It confronts many technical problems during manufacturing process such as composition segregation and control of inclusion in the large ingot, core compaction during forging, control of grain size and mechanical performance. The rotor forging were anatomized to evaluate the manufacturing level of CFHI. This article introduces the anatomical results of this forging. The contents include chemical composition, mechanical properties, inclusions and grain size and other aspects from the full-length and full cross-section of this forging. The fluctuation of mechanical properties, uniformity of microstructure and purity of chemical composition were emphasized. The results show that the overall performance of this rotor forging is particularly satisfying.

  3. A large-scale study of the ultrawideband microwave dielectric properties of normal, benign and malignant breast tissues obtained from cancer surgeries

    NASA Astrophysics Data System (ADS)

    Lazebnik, Mariya; Popovic, Dijana; McCartney, Leah; Watkins, Cynthia B.; Lindstrom, Mary J.; Harter, Josephine; Sewall, Sarah; Ogilvie, Travis; Magliocco, Anthony; Breslin, Tara M.; Temple, Walley; Mew, Daphne; Booske, John H.; Okoniewski, Michal; Hagness, Susan C.

    2007-10-01

    The development of microwave breast cancer detection and treatment techniques has been driven by reports of substantial contrast in the dielectric properties of malignant and normal breast tissues. However, definitive knowledge of the dielectric properties of normal and diseased breast tissues at microwave frequencies has been limited by gaps and discrepancies across previously published studies. To address these issues, we conducted a large-scale study to experimentally determine the ultrawideband microwave dielectric properties of a variety of normal, malignant and benign breast tissues, measured from 0.5 to 20 GHz using a precision open-ended coaxial probe. Previously, we reported the dielectric properties of normal breast tissue samples obtained from reduction surgeries. Here, we report the dielectric properties of normal (adipose, glandular and fibroconnective), malignant (invasive and non-invasive ductal and lobular carcinomas) and benign (fibroadenomas and cysts) breast tissue samples obtained from cancer surgeries. We fit a one-pole Cole-Cole model to the complex permittivity data set of each characterized sample. Our analyses show that the contrast in the microwave-frequency dielectric properties between malignant and normal adipose-dominated tissues in the breast is considerable, as large as 10:1, while the contrast in the microwave-frequency dielectric properties between malignant and normal glandular/fibroconnective tissues in the breast is no more than about 10%.

  4. Integrated monitoring of wind plant systems

    NASA Astrophysics Data System (ADS)

    Whelan, Matthew J.; Janoyan, Kerop D.; Qiu, Tong

    2008-03-01

    Wind power is a renewable source of energy that is quickly gaining acceptance by many. Advanced sensor technologies have currently focused solely on improving wind turbine rotor aerodynamics and increasing of the efficiency of the blade design and concentration. Alternatively, potential improvements in wind plant efficiency may be realized through reduction of reactionary losses of kinetic energy to the structural and substructural systems supporting the turbine mechanics. Investigation of the complete dynamic structural response of the wind plant is proposed using a large-scale, high-rate wireless sensor network. The wireless network enables sensors to be placed across the sizable structure, including the rotating blades, without consideration of cabling issues and the economic burden associated with large spools of measurement cables. A large array of multi-axis accelerometers is utilized to evaluate the modal properties of the system as well as individual members and would enable long-term structural condition monitoring of the wind turbine as well. Additionally, environmental parameters, including wind speed, temperature, and humidity, are wirelessly collected for correlation. Such a wireless system could be integrated with electrical monitoring sensors and actuators and incorporated into a remote multi-turbine centralized plant monitoring and control system.

  5. Advances toward field application of 3D hydraulic tomography

    NASA Astrophysics Data System (ADS)

    Cardiff, M. A.; Barrash, W.; Kitanidis, P. K.

    2011-12-01

    Hydraulic tomography (HT) is a technique that shows great potential for aquifer characterization and one that holds the promise of producing 3D hydraulic property distributions, given suitable equipment. First suggested over 15 years ago, HT assimilates distributed aquifer pressure (head) response data collected during a series of multiple pumping tests to produce estimates of aquifer property variability. Unlike traditional curve-matching analyses, which assume homogeneity or "effective" parameters within the radius of influence of a hydrologic test, HT analysis relies on numerical models with detailed heterogeneity in order to invert for the highly resolved 3D parameter distribution that jointly fits all data. Several numerical and laboratory investigations of characterization using HT have shown that property distributions can be accurately estimated between observation locations when experiments are correctly designed - a property not always shared by other, simpler 1D characterization approaches such as partially-penetrating slug tests. HT may represent one of the best methods available for obtaining detailed 3D aquifer property descriptions, especially in deep or "hard" aquifer materials, where direct-push methods may not be feasible. However, to date HT has not yet been widely adopted at contaminated field sites. We believe that current perceived impediments to HT adoption center around four key issues: 1) A paucity in the scientific literature of proven, cross-validated 3D field applications 2) A lack of guidelines and best practices for performing field 3D HT experiments; 3) Practical difficulty and time commitment associated with the installation of a large number of high-accuracy sampling locations, and the running of a large number of pumping tests; and 4) Computational difficulty associated with solving large-scale inverse problems for parameter identification. In this talk, we present current results in 3D HT research that addresses these four issues, and thus bring HT closer to field practice. Topics to be discussed include: -Improving field efficiency through design and implementation of new modular, easily-installed equipment for 3D HT. -Validating field-scale 3D HT through application and cross-validation at the Boise Hydrogeophysical Research Site. -Developing guidelines for HT implementation based on field experience, numerical modeling, and a comprehensive literature review of the past 15 years of HT research. -Application of novel, fast numerical methods for large-scale HT data analysis. The results presented will focus on the application of 3D HT, but in general we also hope to provide insights on aquifer characterization that stimulate thought on the issue of continually updating aquifer characteristics estimates while recognizing uncertainties and providing guidance for future data collection.

  6. Near-Surface Meteorology During the Arctic Summer Cloud Ocean Study (ASCOS): Evaluation of Reanalyses and Global Climate Models.

    NASA Technical Reports Server (NTRS)

    De Boer, G.; Shupe, M.D.; Caldwell, P.M.; Bauer, Susanne E.; Persson, O.; Boyle, J.S.; Kelley, M.; Klein, S.A.; Tjernstrom, M.

    2014-01-01

    Atmospheric measurements from the Arctic Summer Cloud Ocean Study (ASCOS) are used to evaluate the performance of three atmospheric reanalyses (European Centre for Medium Range Weather Forecasting (ECMWF)- Interim reanalysis, National Center for Environmental Prediction (NCEP)-National Center for Atmospheric Research (NCAR) reanalysis, and NCEP-DOE (Department of Energy) reanalysis) and two global climate models (CAM5 (Community Atmosphere Model 5) and NASA GISS (Goddard Institute for Space Studies) ModelE2) in simulation of the high Arctic environment. Quantities analyzed include near surface meteorological variables such as temperature, pressure, humidity and winds, surface-based estimates of cloud and precipitation properties, the surface energy budget, and lower atmospheric temperature structure. In general, the models perform well in simulating large-scale dynamical quantities such as pressure and winds. Near-surface temperature and lower atmospheric stability, along with surface energy budget terms, are not as well represented due largely to errors in simulation of cloud occurrence, phase and altitude. Additionally, a development version of CAM5, which features improved handling of cloud macro physics, has demonstrated to improve simulation of cloud properties and liquid water amount. The ASCOS period additionally provides an excellent example of the benefits gained by evaluating individual budget terms, rather than simply evaluating the net end product, with large compensating errors between individual surface energy budget terms that result in the best net energy budget.

  7. Multiscale modeling of thermal conductivity of high burnup structures in UO 2 fuels

    DOE PAGES

    Bai, Xian -Ming; Tonks, Michael R.; Zhang, Yongfeng; ...

    2015-12-22

    The high burnup structure forming at the rim region in UO 2 based nuclear fuel pellets has interesting physical properties such as improved thermal conductivity, even though it contains a high density of grain boundaries and micron-size gas bubbles. To understand this counterintuitive phenomenon, mesoscale heat conduction simulations with inputs from atomistic simulations and experiments were conducted to study the thermal conductivities of a small-grain high burnup microstructure and two large-grain unrestructured microstructures. We concluded that the phonon scattering effects caused by small point defects such as dispersed Xe atoms in the grain interior must be included in order tomore » correctly predict the thermal transport properties of these microstructures. In extreme cases, even a small concentration of dispersed Xe atoms such as 10 -5 can result in a lower thermal conductivity in the large-grain unrestructured microstructures than in the small-grain high burnup structure. The high-density grain boundaries in a high burnup structure act as defect sinks and can reduce the concentration of point defects in its grain interior and improve its thermal conductivity in comparison with its large-grain counterparts. Furthermore, an analytical model was developed to describe the thermal conductivity at different concentrations of dispersed Xe, bubble porosities, and grain sizes. Upon calibration, the model is robust and agrees well with independent heat conduction modeling over a wide range of microstructural parameters.« less

  8. Modeling corona sheath dynamics and effects

    NASA Astrophysics Data System (ADS)

    Carlson, B.; Lehtinen, N. G.

    2016-12-01

    The conductive lightning channel is only a centimeter or so in diameter, but charge deposited along such a narrow channel produces a large electric field that drives corona discharge in nearby air, carrying the charge outward several meters. The formation of this "corona sheath" affects a wide range of observable properties of lightning, including the overall charge carried by the channel, the shape, speed, and attenuation of impulsive currents, and the possibility of x-ray production. Simplified electrostatic and electrodynamic models of the formation of the sheath will be discussed, with results given including regions near the tip of a hypothetical channel. These results suggest that the sheath initially expands very rapidly, limiting the lifetime of the intense fields nearest the channel. The expansion gradually slows as the fields decrease, but under certain circumstances a large-scale streamer-like process can lead to enhancement of electric fields displaced from the tip of the channel, possibly suggesting a mechanism for space stem formation and leader stepping.

  9. Functional Genomic Landscape of Human Breast Cancer Drivers, Vulnerabilities, and Resistance.

    PubMed

    Marcotte, Richard; Sayad, Azin; Brown, Kevin R; Sanchez-Garcia, Felix; Reimand, Jüri; Haider, Maliha; Virtanen, Carl; Bradner, James E; Bader, Gary D; Mills, Gordon B; Pe'er, Dana; Moffat, Jason; Neel, Benjamin G

    2016-01-14

    Large-scale genomic studies have identified multiple somatic aberrations in breast cancer, including copy number alterations and point mutations. Still, identifying causal variants and emergent vulnerabilities that arise as a consequence of genetic alterations remain major challenges. We performed whole-genome small hairpin RNA (shRNA) "dropout screens" on 77 breast cancer cell lines. Using a hierarchical linear regression algorithm to score our screen results and integrate them with accompanying detailed genetic and proteomic information, we identify vulnerabilities in breast cancer, including candidate "drivers," and reveal general functional genomic properties of cancer cells. Comparisons of gene essentiality with drug sensitivity data suggest potential resistance mechanisms, effects of existing anti-cancer drugs, and opportunities for combination therapy. Finally, we demonstrate the utility of this large dataset by identifying BRD4 as a potential target in luminal breast cancer and PIK3CA mutations as a resistance determinant for BET-inhibitors. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. The ARIEL mission reference sample

    NASA Astrophysics Data System (ADS)

    Zingales, Tiziano; Tinetti, Giovanna; Pillitteri, Ignazio; Leconte, Jérémy; Micela, Giuseppina; Sarkar, Subhajit

    2018-02-01

    The ARIEL (Atmospheric Remote-sensing Exoplanet Large-survey) mission concept is one of the three M4 mission candidates selected by the European Space Agency (ESA) for a Phase A study, competing for a launch in 2026. ARIEL has been designed to study the physical and chemical properties of a large and diverse sample of exoplanets and, through those, understand how planets form and evolve in our galaxy. Here we describe the assumptions made to estimate an optimal sample of exoplanets - including already known exoplanets and expected ones yet to be discovered - observable by ARIEL and define a realistic mission scenario. To achieve the mission objectives, the sample should include gaseous and rocky planets with a range of temperatures around stars of different spectral type and metallicity. The current ARIEL design enables the observation of ˜1000 planets, covering a broad range of planetary and stellar parameters, during its four year mission lifetime. This nominal list of planets is expected to evolve over the years depending on the new exoplanet discoveries.

  11. Simulating Biomass Fast Pyrolysis at the Single Particle Scale

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ciesielski, Peter; Wiggins, Gavin; Daw, C Stuart

    2017-07-01

    Simulating fast pyrolysis at the scale of single particles allows for the investigation of the impacts of feedstock-specific parameters such as particle size, shape, and species of origin. For this reason particle-scale modeling has emerged as an important tool for understanding how variations in feedstock properties affect the outcomes of pyrolysis processes. The origins of feedstock properties are largely dictated by the composition and hierarchical structure of biomass, from the microstructural porosity to the external morphology of milled particles. These properties may be accounted for in simulations of fast pyrolysis by several different computational approaches depending on the level ofmore » structural and chemical complexity included in the model. The predictive utility of particle-scale simulations of fast pyrolysis can still be enhanced substantially by advancements in several areas. Most notably, considerable progress would be facilitated by the development of pyrolysis kinetic schemes that are decoupled from transport phenomena, predict product evolution from whole-biomass with increased chemical speciation, and are still tractable with present-day computational resources.« less

  12. Influence of functional groups on the photophysical properties of dimethylamino chalcones as laser dyes

    NASA Astrophysics Data System (ADS)

    Ibnaouf, K. H.; Elzupir, A. O.; AlSalhi, M. S.; Alaamer, Abdulaziz S.

    2018-02-01

    In this report, a series of 3-(4-(Dimethylamino) phenyl)-1-(4,3 di-substituted phenyl)-(2E) - propen -1-one chalcones was synthesised and examined as optical materials. The influence of functional groups (FG) and solvents on their photophysical properties was investigated. These include absorption, fluorescence, Stokes shift, and amplified spontaneous emission (ASE). The absorption spectra of all compounds showed a wavelength band in the range 404-429 nm, whereas the fluorescence spectra exhibited a band at 470-535 nm. We found that the fluorescence intensity was inversely proportional to the concentration of chalcones. The FGs and solvents had an amazing effect on the photophysical properties of the synthesised materials. Unexpectedly, the electron withdrawing group showed a highly red shift, whereas the electron donating group exhibited a blue shift. Further, these compounds showed large Stokes shifts (up to 5800 cm-1). ASE was observed under pump pulse laser excitation, and the wavelengths were tuned from 509 to 566 nm.

  13. Initial Development and Validation of the BullyHARM: The Bullying, Harassment, and Aggression Receipt Measure.

    PubMed

    Hall, William J

    2016-11-01

    This article describes the development and preliminary validation of the Bullying, Harassment, and Aggression Receipt Measure (BullyHARM). The development of the BullyHARM involved a number of steps and methods, including a literature review, expert review, cognitive testing, readability testing, data collection from a large sample, reliability testing, and confirmatory factor analysis. A sample of 275 middle school students was used to examine the psychometric properties and factor structure of the BullyHARM, which consists of 22 items and 6 subscales: physical bullying, verbal bullying, social/relational bullying, cyber-bullying, property bullying, and sexual bullying. First-order and second-order factor models were evaluated. Results demonstrate that the first-order factor model had superior fit. Results of reliability testing indicate that the BullyHARM scale and subscales have very good internal consistency reliability. Findings indicate that the BullyHARM has good properties regarding content validation and respondent-related validation and is a promising instrument for measuring bullying victimization in school.

  14. Simultaneous Measurement of Thermophysical Properties of Tissue-Mimicking Phantoms for High Intensity Focused Ultrasound (HIFU) Exposures

    NASA Astrophysics Data System (ADS)

    Gao, Jing; You, Jiang; Huang, Zhihong; Cochran, Sandy; Corner, George

    2012-03-01

    Tissue-mimicking phantoms, including bovine serum albumin phantoms and egg white phantoms, have been developed for, and in laboratory use for, real-time visualization of high intensity focused ultrasound-induced thermal coagulative necrosis since 2001. However, until now, very few data are available concerning their thermophysical properties. In this article, a step-wise transient plane source method has been used to determine the values of thermal conductivity, thermal diffusivity, and specific heat capacity of egg white phantoms with elevated egg white concentrations (0 v/v% to 40 v/v%, by 10 v/v% interval) at room temperature (~20 °C). The measured thermophysical properties were close to previously reported values; the thermal conductivity and thermal diffusivity were linearly proportional to the egg white concentration within the investigation range, while the specific heat capacity decreased as the egg white concentration increased. Taking account of large differences between real experiment and ideal model, data variations within 20 % were accepted.

  15. Initial Development and Validation of the BullyHARM: The Bullying, Harassment, and Aggression Receipt Measure

    PubMed Central

    Hall, William J.

    2017-01-01

    This article describes the development and preliminary validation of the Bullying, Harassment, and Aggression Receipt Measure (BullyHARM). The development of the BullyHARM involved a number of steps and methods, including a literature review, expert review, cognitive testing, readability testing, data collection from a large sample, reliability testing, and confirmatory factor analysis. A sample of 275 middle school students was used to examine the psychometric properties and factor structure of the BullyHARM, which consists of 22 items and 6 subscales: physical bullying, verbal bullying, social/relational bullying, cyber-bullying, property bullying, and sexual bullying. First-order and second-order factor models were evaluated. Results demonstrate that the first-order factor model had superior fit. Results of reliability testing indicate that the BullyHARM scale and subscales have very good internal consistency reliability. Findings indicate that the BullyHARM has good properties regarding content validation and respondent-related validation and is a promising instrument for measuring bullying victimization in school. PMID:28194041

  16. Feasibility study on utilization of palm fibre waste into fired clay brick

    NASA Astrophysics Data System (ADS)

    Kadir, A. A.; Sarani, N. A.; Zaman, N. N.; Abdullah, Mohd Mustafa Al Bakri

    2017-04-01

    Malaysia is the second largest of palm oil producer after Indonesia, which contribute to 50 % of palm oil production. With this demand, the increasing of palm oil plantation over the years has led to the large production of agricultural waste, for example palm fibre waste. This study investigates different percentages of palm fibre (0 %, 1 %, 5 % and 10 %) to be incorporated into fired clay brick. Manufactured bricks were fired at 1 °C/min heating rate up to 1050 °C. The effects of manufacture bricks on the physical and mechanical properties of manufactured brick were also determined. All brick samples were tested due to the physical and mechanical properties which include dry density, firing shrinkage, initial rate of suction (IRS), water absorption, porosity and compressive strength. Findings show that increasing palm fibre waste affected the properties of brick, which decreased their density, besides increased firing shrinkage, IRS, water absorption, porosity and compressive strength. However, all the manufactured brick still followed the requirement.

  17. Nanoarchitectured materials composed of fullerene-like spheroids and disordered graphene layers with tunable mechanical properties.

    PubMed

    Zhao, Zhisheng; Wang, Erik F; Yan, Hongping; Kono, Yoshio; Wen, Bin; Bai, Ligang; Shi, Feng; Zhang, Junfeng; Kenney-Benson, Curtis; Park, Changyong; Wang, Yanbin; Shen, Guoyin

    2015-02-04

    Type-II glass-like carbon is a widely used material with a unique combination of properties including low density, high strength, extreme impermeability to gas and liquid and resistance to chemical corrosion. It can be considered as a carbon-based nanoarchitectured material, consisting of a disordered multilayer graphene matrix encasing numerous randomly distributed nanosized fullerene-like spheroids. Here we show that under both hydrostatic compression and triaxial deformation, this high-strength material is highly compressible and exhibits a superelastic ability to recover from large strains. Under hydrostatic compression, bulk, shear and Young's moduli decrease anomalously with pressure, reaching minima around 1-2 GPa, where Poisson's ratio approaches zero, and then revert to normal behaviour with positive pressure dependences. Controlling the concentration, size and shape of fullerene-like spheroids with tailored topological connectivity to graphene layers is expected to yield exceptional and tunable mechanical properties, similar to mechanical metamaterials, with potentially wide applications.

  18. Nanoarchitectured materials composed of fullerene-like spheroids and disordered graphene layers with tunable mechanical properties

    NASA Astrophysics Data System (ADS)

    Zhao, Zhisheng; Wang, Erik F.; Yan, Hongping; Kono, Yoshio; Wen, Bin; Bai, Ligang; Shi, Feng; Zhang, Junfeng; Kenney-Benson, Curtis; Park, Changyong; Wang, Yanbin; Shen, Guoyin

    2015-02-01

    Type-II glass-like carbon is a widely used material with a unique combination of properties including low density, high strength, extreme impermeability to gas and liquid and resistance to chemical corrosion. It can be considered as a carbon-based nanoarchitectured material, consisting of a disordered multilayer graphene matrix encasing numerous randomly distributed nanosized fullerene-like spheroids. Here we show that under both hydrostatic compression and triaxial deformation, this high-strength material is highly compressible and exhibits a superelastic ability to recover from large strains. Under hydrostatic compression, bulk, shear and Young’s moduli decrease anomalously with pressure, reaching minima around 1-2 GPa, where Poisson’s ratio approaches zero, and then revert to normal behaviour with positive pressure dependences. Controlling the concentration, size and shape of fullerene-like spheroids with tailored topological connectivity to graphene layers is expected to yield exceptional and tunable mechanical properties, similar to mechanical metamaterials, with potentially wide applications.

  19. Thermal protection materials: Thermophysical property data

    NASA Technical Reports Server (NTRS)

    Williams, S. D.; Curry, Donald M.

    1992-01-01

    This publication presents a thermophysical property survey on materials that could potentially be used for future spacecraft thermal protection systems (TPS). This includes data that was reported in the 1960's as well as more current information reported through the 1980's. An attempt was made to cite the manufacturers as well as the data source in the bibliography. This volume represents an attempt to provide in a single source a complete set of thermophysical data on a large variety of materials used in spacecraft TPS analysis. The property data is divided into two categories: ablative and reusable. The ablative materials have been compiled into twelve categories that are descriptive of the material composition. An attempt was made to define the Arrhenius equation for each material although this data may not be available for some materials. In a similar manner, char data may not be available for some of the ablative materials. The reusable materials have been divided into three basic categories: thermal protection materials (such as insulators), adhesives, and structural materials.

  20. Influences of neighborhood context, individual history and parenting behavior on recidivism among juvenile offenders.

    PubMed

    Grunwald, Heidi E; Lockwood, Brian; Harris, Philip W; Mennis, Jeremy

    2010-09-01

    This study examined the effects of neighborhood context on juvenile recidivism to determine if neighborhoods influence the likelihood of reoffending. Although a large body of literature exists regarding the impact of environmental factors on delinquency, very little is known about the effects of these factors on juvenile recidivism. The sample analyzed includes 7,061 delinquent male juveniles committed to community-based programs in Philadelphia, of which 74% are Black, 13% Hispanic, and 11% White. Since sample youths were nested in neighborhoods, a hierarchical generalized linear model was employed to predict recidivism across three general categories of recidivism offenses: drug, violent, and property. Results indicate that predictors vary across the types of offenses and that drug offending differs from property and violent offending. Neighborhood-level factors were found to influence drug offense recidivism, but were not significant predictors of violent offenses, property offenses, or an aggregated recidivism measure, despite contrary expectations. Implications stemming from the finding that neighborhood context influences only juvenile drug recidivism are discussed.

Top