Literature relevant to remote sensing of water quality
NASA Technical Reports Server (NTRS)
Middleton, E. M.; Marcell, R. F.
1983-01-01
References relevant to remote sensing of water quality were compiled, organized, and cross-referenced. The following general categories were included: (1) optical properties and measurement of water characteristics; (2) interpretation of water characteristics by remote sensing, including color, transparency, suspended or dissolved inorganic matter, biological materials, and temperature; (3) application of remote sensing for water quality monitoring; (4) application of remote sensing according to water body type; and (5) manipulation, processing and interpretation of remote sensing digital water data.
Microwave remote sensing of snowpack properties
NASA Technical Reports Server (NTRS)
Rango, A. (Editor)
1980-01-01
Topic concerning remote sensing capabilities for providing reliable snow cover data and measurement of snow water equivalents are discussed. Specific remote sensing technqiues discussed include those in the microwave region of the electromagnetic spectrum.
Development of sea ice monitoring with aerial remote sensing technology
NASA Astrophysics Data System (ADS)
Jiang, Xuhui; Han, Lei; Dong, Liang; Cui, Lulu; Bie, Jun; Fan, Xuewei
2014-11-01
In the north China Sea district, sea ice disaster is very serious every winter, which brings a lot of adverse effects to shipping transportation, offshore oil exploitation, and coastal engineering. In recent years, along with the changing of global climate, the sea ice situation becomes too critical. The monitoring of sea ice is playing a very important role in keeping human life and properties in safety, and undertaking of marine scientific research. The methods to monitor sea ice mainly include: first, shore observation; second, icebreaker monitoring; third, satellite remote sensing; and then aerial remote sensing monitoring. The marine station staffs use relevant equipments to monitor the sea ice in the shore observation. The icebreaker monitoring means: the workers complete the test of the properties of sea ice, such as density, salinity and mechanical properties. MODIS data and NOAA data are processed to get sea ice charts in the satellite remote sensing means. Besides, artificial visual monitoring method and some airborne remote sensors are adopted in the aerial remote sensing to monitor sea ice. Aerial remote sensing is an important means in sea ice monitoring because of its strong maneuverability, wide watching scale, and high resolution. In this paper, several methods in the sea ice monitoring using aerial remote sensing technology are discussed.
Toward Linking Aboveground Vegetation Properties and Soil Microbial Communities Using Remote Sensing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hamada, Yuki; Gilbert, Jack A.; Larsen, Peter E.
2014-04-01
Despite their vital role in terrestrial ecosystem function, the distributions and dynamics of soil microbial communities (SMCs) are poorly understood. Vegetation and soil properties are the primary factors that influence SMCs. This paper discusses the potential effectiveness of remote sensing science and technologies for mapping SMC biogeography by characterizing surface biophysical properties (e.g., plant traits and community composition) strongly correlated with SMCs. Using remotely sensed biophysical properties to predict SMC distributions is extremely challenging because of the intricate interactions between biotic and abiotic factors and between above- and belowground ecosystems. However, the integration of biophysical and soil remote sensing withmore » geospatial information about the e nvironment holds great promise for mapping SMC biogeography. Additional research needs invol ve microbial taxonomic definition, soil environmental complexity, and scaling strategies. The collaborative effort of experts from diverse disciplines is essential to linking terrestrial surface biosphere observations with subsurface microbial community distributions using remote sensing.« less
Toward Linking Aboveground Vegetation Properties and Soil Microbial Communities Using Remote Sensing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hamada, Yuki; Gilbert, Jack A.; Larsen, Peter E.
2014-04-01
Despite their vital role in terrestrial ecosystem function, the distributions and dynamics of soil microbial communities (SMCs) are poorly understood. Vegetation and soil properties are the primary factors that influence SMCs. This paper discusses the potential effectiveness of remote sensing science and technologies for mapping SMC biogeography by characterizing surface biophysical properties (e.g., plant traits and community composition) strongly correlated with SMCs. Using remotely sensed biophysical properties to predict SMC distributions is extremely challenging because of the intricate interactions between biotic and abiotic factors and between above- and below-ground ecosystems. However, the integration of biophysical and soil remote sensing withmore » geospatial information about the environment holds great promise for mapping SMC biogeography. Additional research needs involve microbial taxonomic definition, soil environmental complexity, and scaling strategies. The collaborative effort of experts from diverse disciplines is essential to linking terrestrial surface biosphere observations with subsurface microbial community distributions using remote sensing.« less
The design of optimum remote-sensing instruments
NASA Technical Reports Server (NTRS)
Peckham, G. E.; Flower, D. A.
1983-01-01
Remote-sensing instruments allow values for certain properties of a target to be retrieved from measurements of radiation emitted, reflected or transmitted by the target. The retrieval accuracy is affected by random variations in the many target properties which affect the measurements. A method is described, by which statistical properties of the target and theoretical models of its electromagnetic behavior can be used to choose values for the instrument parameters which maximize the retrieval accuracy. The technique is applicable to a wide range of remote-sensing instruments.
NASA Technical Reports Server (NTRS)
Vandegriend, A. A.; Oneill, P. E.
1986-01-01
Using the De Vries models for thermal conductivity and heat capacity, thermal inertia was determined as a function of soil moisture for 12 classes of soil types ranging from sand to clay. A coupled heat and moisture balance model was used to describe the thermal behavior of the top soil, while microwave remote sensing was used to estimate the soil moisture content of the same top soil. Soil hydraulic parameters are found to be very highly correlated with the combination of soil moisture content and thermal inertia at the same moisture content. Therefore, a remotely sensed estimate of the thermal behavior of the soil from diurnal soil temperature observations and an independent remotely sensed estimate of soil moisture content gives the possibility of estimating soil hydraulic properties by remote sensing.
Experimental Sea Slicks in the Marsen (Maritime Remote Sensing) Exercise.
1980-10-30
Experimental slicks with various surface properties were generated in the North Sea as part of the MARSEN (Maritime Remote Sensing ) exercise. The one...with remote sensing instrumentation. Because of the numerous effects of surface films on air-sea interfacial processes, these experiments were designed...information was obtained on the influence of sea surface films on the interpretation of signals received by remote sensing systems. Criteria for the
Albert, A; Mobley, C
2003-11-03
Subsurface remote sensing signals, represented by the irradiance re fl ectance and the remote sensing re fl ectance, were investigated. The present study is based on simulations with the radiative transfer program Hydrolight using optical properties of Lake Constance (German: Bodensee) based on in-situ measurements of the water constituents and the bottom characteristics. Analytical equations are derived for the irradiance re fl ectance and remote sensing re fl ectance for deep and shallow water applications. The input of the parameterization are the inherent optical properties of the water - absorption a(lambda) and backscattering bb(lambda). Additionally, the solar zenith angle thetas, the viewing angle thetav , and the surface wind speed u are considered. For shallow water applications the bottom albedo RB and the bottom depth zB are included into the parameterizations. The result is a complete set of analytical equations for the remote sensing signals R and Rrs in deep and shallow waters with an accuracy better than 4%. In addition, parameterizations of apparent optical properties were derived for the upward and downward diffuse attenuation coefficients Ku and Kd.
N. E. Zimmermann; T. C. Edwards; G. G. Moisen; T. S. Frescino; J. A. Blackard
2007-01-01
Compared to bioclimatic variables, remote sensing predictors are rarely used for predictive species modelling. When used, the predictors represent typically habitat classifications or filters rather than gradual spectral, surface or biophysical properties. Consequently, the full potential of remotely sensed predictors for modelling the spatial distribution of species...
Remote sensing fire and fuels in southern California
Philip Riggan; Lynn Wolden; Bob Tissell; David Weise; J. Coen
2011-01-01
Airborne remote sensing at infrared wavelengths has the potential to quantify large-fire properties related to energy release or intensity, residence time, fuel-consumption rate, rate of spread, and soil heating. Remote sensing at a high temporal rate can track fire-line outbreaks and acceleration and spotting ahead of a fire front. Yet infrared imagers and imaging...
USDA-ARS?s Scientific Manuscript database
Remote sensing technology can rapidly provide spatial information on crop growth status, which ideally could be used to invert radiative transfer models or ecophysiological models for estimating a variety of crop biophysical properties. However, the outcome of the model inversion procedure will be ...
NASA Technical Reports Server (NTRS)
Deepak, A.; Becher, J.
1979-01-01
Advanced remote sensing techniques and inversion methods for the measurement of characteristics of aerosol and gaseous species in the atmosphere were investigated. Of particular interest were the physical and chemical properties of aerosols, such as their size distribution, number concentration, and complex refractive index, and the vertical distribution of these properties on a local as well as global scale. Remote sensing techniques for monitoring of tropospheric aerosols were developed as well as satellite monitoring of upper tropospheric and stratospheric aerosols. Computer programs were developed for solving multiple scattering and radiative transfer problems, as well as inversion/retrieval problems. A necessary aspect of these efforts was to develop models of aerosol properties.
NASA Technical Reports Server (NTRS)
Minnis, Patrick; Charlock, Thomas P.
1998-01-01
The work proposed under this agreement was designed to validate and improve remote sensing of cloud and radiation properties in the atmosphere for climate studies with special emphasis on the use of satellites for monitoring these parameters to further the goals of the Atmospheric Radiation Measurement (ARM) Program.
NASA Astrophysics Data System (ADS)
Leonard, Donald A.; Sweeney, Harold E.
1990-09-01
The physical properties of ocean water, in the top few ten meters, are of great interest in the scientific, engineering, and general oceanographic communities. Subsurface profiles of temperature, salinity, and sound speed measured by laser radar in real time on a synoptic basis over a wide area from an airborne platform would provide valuable information complementary to the data that is now readily available. The laser-radar technique specifically applicable to ocean sensing uses spectroscopic analysis of the inelastic backscattered optical signal. Two methods have received considerable attention for remote sensing and both have been demonstrated in field experiments. These are spontaneous Raman1 and spontaneous Brillouin2 scattering. A discussion of these two processes and a comparison of their properties that are useful for remote sensing was presented3 at SPIE Ocean Optics IX. This paper compares ocean remote sensing using stimulated Brillouin scattering (SBS) and stimulated Raman scattering (SRS) processes with better known spontaneous methods. The results of laboratory measurements of temperature using SBS and some preliminary results of SRS are presented with extensions to performance estimates of potential field systems.
NASA Astrophysics Data System (ADS)
Hilker, T.; Hall, F. G.; Dyrud, L. P.; Slagowski, S.
2014-12-01
Frequent earth observations are essential for assessing the risks involved with global climate change, its feedbacks on carbon, energy and water cycling and consequences for live on earth. Often, satellite-remote sensing is the only practical way to provide such observations at comprehensive spatial scales, but relationships between land surface parameters and remotely sensed observations are mostly empirical and cannot easily be scaled across larger areas or over longer time intervals. For instance, optically based methods frequently depend on extraneous effects that are unrelated to the surface property of interest, including the sun-server geometry or background reflectance. As an alternative to traditional, mono-angle techniques, multi-angle remote sensing can help overcome some of these limitations by allowing vegetation properties to be derived from comprehensive reflectance models that describe changes in surface parameters based on physical principles and radiative transfer theory. Recent results have shown in theoretical and experimental research that multi-angle techniques can be used to infer and scale the photosynthetic rate of vegetation, its biochemical and structural composition robustly from remote sensing. Multi-angle remote sensing could therefore revolutionize estimates of the terrestrial carbon uptake as scaling of primary productivity may provide a quantum leap in understanding the spatial and temporal complexity of terrestrial earth science. Here, we introduce a framework of next generation tower-based instruments to a novel and unique constellation of nano-satellites (Figure 1) that will allow us to systematically scale vegetation parameters from stand to global levels. We provide technical insights, scientific rationale and present results. We conclude that future earth observation from multi-angle satellite constellations, supported by tower based remote sensing will open new opportunities for earth system science and earth system modeling.
NASA Technical Reports Server (NTRS)
1977-01-01
Application and processing of remotely sensed data are discussed. Areas of application include: pollution monitoring, water quality, land use, marine resources, ocean surface properties, and agriculture. Image processing and scene analysis are described along with automated photointerpretation and classification techniques. Data from infrared and multispectral band scanners onboard LANDSAT satellites are emphasized.
[Biooptical properties of marine phytoplankton as they apply to satellite remote sensing
NASA Technical Reports Server (NTRS)
Yentsch, Charles S.
1992-01-01
This final report covers research performed over a period of 10 years from 1982 to 1992. During this time, Grant #NAGW410 was funded under three titles through a series of Supplements. The original proposal was entitled 'Photoecology, optical properties and remote sensing of warm core rings'; the second and major portion was entitled 'Continuation of studies of biooptical properties of phytoplankton and the study of mesoscale and submesoscale features using fluorescence and colorimetry'; with the final portion named 'Studies of biooptical properties of phytoplankton, with reference to identification of spectral types associated with meso- and submesoscale features in the ocean'. The focus of these projects was to try to expand our knowledge of the biooptical properties of marine phytoplankton as they apply to satellite remote sensing. We used a variety of techniques, new and old, to better measure these optical properties at appropriate scales, in some cases at the level of individual cells. We also exploited the specialized oceanic conditions that occur within certain regions and features of the ocean around the world in order to explain the tremendous variability one sees in a single remote sensing image. This document strives to provide as complete a summary as possible for this large body of work, including the pertinent publications supported by this funding.
Remote Sensing of Snow and Evapotranspiration
NASA Technical Reports Server (NTRS)
Schmugge, T. (Editor)
1985-01-01
The use of snowmelt runoff models from both the U.S. and Japan for simulating discharge on basins in both countries is discussed as well as research in snowpack properties and evapotranspiration using remotely sensed data.
Laboratory requirements for in-situ and remote sensing of suspended material
NASA Technical Reports Server (NTRS)
Kuo, C. Y.; Cheng, R. Y. K.
1978-01-01
Recommendations for laboratory and in-situ measurements required for remote sensing of suspended material are presented. This study investigates the properties of the suspended materials, factors influencing the upwelling radiance, and the various types of remote sensing techniques. Calibration and correlation procedures are given to obtain the accuracy necessary to quantify the suspended materials by remote sensing. In addition, the report presents a survey of the national need for sediment data, the agencies that deal with and require the data of suspended sediment, and a summary of some recent findings of sediment measurements.
Laboratory requirements for in-situ and remote sensing of suspended material
NASA Technical Reports Server (NTRS)
Kuo, C. Y.; Cheng, R. Y. K.
1976-01-01
Recommendations for laboratory and in-situ measurements required for remote sensing of suspended material are presented. This study investigates the properties of the suspended materials, factors influencing the upwelling radiance, and the various types of remote sensing techniques. Calibration and correlation procedures are given to obtain the accuracy necessary to quantify the suspended materials by remote sensing. In addition, the report presents a survey of the national need for sediment data, the agencies that deal with and require the data of suspended sediment, and a summary of some recent findings of sediment measurements.
NASA Technical Reports Server (NTRS)
Piepmeier, Jeffrey R.; Vega, Manuel; Fritts, Matthew; Du Toit, Cornelis; Knuble, Joseph; Lin, Yao-Cheng; Nold, Benjamin; Garrison, James
2017-01-01
Low frequency observations are desired for soil moisture and biomass remote sensing. Long wavelengths are needed to penetrate vegetation and Earths land surface. In addition to the technical challenges of developing Earth observing spaceflight instruments operating at low frequencies, the radio frequency spectrum allocated to remote sensing is limited. Signal-of-opportunity remote sensing offers the chance to use existing signals exploiting their allocated spectrum to make Earth science measurements. We have made observations of the radio frequency environment around 240-270 MHz and discuss properties of desired and undesired signals.
The importance of ground truth data in remote sensing
NASA Technical Reports Server (NTRS)
Hoffer, R. M.
1972-01-01
Surface observation data is discussed as an essential part of remote sensing research. One of the most important aspects of ground truth is the collection of measurements and observations about the type, size, condition and other physical or chemical properties of importance concerning the materials on the earth's surface that are being sensed remotely. The use of a variety of sensor systems in combination at different altitudes is emphasized.
NASA Astrophysics Data System (ADS)
Goodman, James Ansell
My research focuses on the development and application of hyperspectral remote sensing as a valuable component in the assessment and management of coral ecosystems. Remote sensing provides an important quantitative ability to investigate the spatial dynamics of coral health and evaluate the impacts of local, regional and global change on this important natural resource. Furthermore, advances in detector capabilities and analysis methods, particularly with respect to hyperspectral remote sensing, are also increasing the accuracy and level of effectiveness of the resulting data products. Using imagery of Kaneohe Bay and French Frigate Shoals in the Hawaiian Islands, acquired in 2000 by NASA's Airborne Visible InfraRed Imaging Spectrometer (AVIRIS), I developed, applied and evaluated algorithms for analyzing coral reefs using hyperspectral remote sensing data. Research included developing methods for acquiring in situ underwater reflectance, collecting spectral measurements of the dominant bottom components in Kaneohe Bay, applying atmospheric correction and sunglint removal algorithms, employing a semianalytical optimization model to derive bathymetry and aquatic optical properties, and developing a linear unmixing approach for deriving bottom composition. Additionally, algorithm development focused on using fundamental scientific principles to facilitate the portability of methods to diverse geographic locations and across variable environmental conditions. Assessments of this methodology compared favorably with available field measurements and habitat information, and the overall analysis demonstrated the capacity to derive information on water properties, bathymetry and habitat composition. Thus, results illustrated a successful approach for extracting environmental information and habitat composition from a coral reef environment using hyperspectral remote sensing.
ERIC Educational Resources Information Center
Schnebele, Emily K.
2013-01-01
Flooding is the most frequently occurring natural hazard on Earth; with catastrophic, large scale floods causing immense damage to people, property, and the environment. Over the past 20 years, remote sensing has become the standard technique for flood identification because of its ability to offer synoptic coverage. Unfortunately, remote sensing…
2002-09-30
integrated observation system that is being coupled to a data assimilative hydrodynamic bio-optical ecosystem model. The system was used adaptively to develop hyperspectral remote sensing techniques in optically complex nearshore coastal waters.
A new simple concept for ocean colour remote sensing using parallel polarisation radiance
He, Xianqiang; Pan, Delu; Bai, Yan; Wang, Difeng; Hao, Zengzhou
2014-01-01
Ocean colour remote sensing has supported research on subjects ranging from marine ecosystems to climate change for almost 35 years. However, as the framework for ocean colour remote sensing is based on the radiation intensity at the top-of-atmosphere (TOA), the polarisation of the radiation, which contains additional information on atmospheric and water optical properties, has largely been neglected. In this study, we propose a new simple concept to ocean colour remote sensing that uses parallel polarisation radiance (PPR) instead of the traditional radiation intensity. We use vector radiative transfer simulation and polarimetric satellite sensing data to demonstrate that using PPR has two significant advantages in that it effectively diminishes the sun glint contamination and enhances the ocean colour signal at the TOA. This concept may open new doors for ocean colour remote sensing. We suggest that the next generation of ocean colour sensors should measure PPR to enhance observational capability. PMID:24434904
M. E. Miller; William Elliot; M. Billmire; Pete Robichaud; K. A. Endsley
2016-01-01
Post-wildfire flooding and erosion can threaten lives, property and natural resources. Increased peak flows and sediment delivery due to the loss of surface vegetation cover and fire-induced changes in soil properties are of great concern to public safety. Burn severity maps derived from remote sensing data reflect fire-induced changes in vegetative cover and soil...
Factors affecting the remotely sensed response of coniferous forest plantations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Danson, F.M.; Curran, P.J.
1993-01-01
Remote sensing of forest biophysical properties has concentrated upon forest sites with a wide range of green vegetation amount and thereby leaf area index and canopy cover. However, coniferous forest plantations, an important forest type in Europe, are managed to maintain a large amount of green vegetation with little spatial variation. Therefore, the strength of the remotely sensed signal will, it is hypothesized, be determined more by the structure of this forest than by its cover. Airborne Thematic Mapper (ATM) and SPOT-1 HRV data were used to determine the effects of this structural variation on the remotely sensed response ofmore » a coniferous forest plantation in the United Kingdom. Red and near infrared radiance were strongly and negatively correlated with a range of structural properties and with the age of the stands but weakly correlated with canopy cover. A composite variable, related to the volume of the canopy, accounted for over 75% of the variation in near infrared radiance. A simple model that related forest structural variables to the remotely sensed response was used to understand and explain this response from a coniferous forest plantation.« less
NASA Technical Reports Server (NTRS)
Wind, Galina; DaSilva, Arlindo M.; Norris, Peter M.; Platnick, Steven E.
2013-01-01
In this paper we describe a general procedure for calculating equivalent sensor radiances from variables output from a global atmospheric forecast model. In order to take proper account of the discrepancies between model resolution and sensor footprint the algorithm takes explicit account of the model subgrid variability, in particular its description of the probably density function of total water (vapor and cloud condensate.) The equivalent sensor radiances are then substituted into an operational remote sensing algorithm processing chain to produce a variety of remote sensing products that would normally be produced from actual sensor output. This output can then be used for a wide variety of purposes such as model parameter verification, remote sensing algorithm validation, testing of new retrieval methods and future sensor studies. We show a specific implementation using the GEOS-5 model, the MODIS instrument and the MODIS Adaptive Processing System (MODAPS) Data Collection 5.1 operational remote sensing cloud algorithm processing chain (including the cloud mask, cloud top properties and cloud optical and microphysical properties products.) We focus on clouds and cloud/aerosol interactions, because they are very important to model development and improvement.
NASA Technical Reports Server (NTRS)
Wind, G.; DaSilva, A. M.; Norris, P. M.; Platnick, S.
2013-01-01
In this paper we describe a general procedure for calculating synthetic sensor radiances from variable output from a global atmospheric forecast model. In order to take proper account of the discrepancies between model resolution and sensor footprint, the algorithm takes explicit account of the model subgrid variability, in particular its description of the probability density function of total water (vapor and cloud condensate.) The simulated sensor radiances are then substituted into an operational remote sensing algorithm processing chain to produce a variety of remote sensing products that would normally be produced from actual sensor output. This output can then be used for a wide variety of purposes such as model parameter verification, remote sensing algorithm validation, testing of new retrieval methods and future sensor studies.We show a specific implementation using the GEOS-5 model, the MODIS instrument and the MODIS Adaptive Processing System (MODAPS) Data Collection 5.1 operational remote sensing cloud algorithm processing chain (including the cloud mask, cloud top properties and cloud optical and microphysical properties products). We focus on clouds because they are very important to model development and improvement.
NASA Astrophysics Data System (ADS)
Oktem, R.; Wainwright, H. M.; Curtis, J. B.; Dafflon, B.; Peterson, J.; Ulrich, C.; Hubbard, S. S.; Torn, M. S.
2016-12-01
Predicting carbon cycling in Arctic requires quantifying tightly coupled surface and subsurface processes including permafrost, hydrology, vegetation and soil biogeochemistry. The challenge has been a lack of means to remotely sense key ecosystem properties in high resolution and over large areas. A particular challenge has been characterizing soil properties that are known to be highly heterogeneous. In this study, we exploit tightly-coupled above/belowground ecosystem functioning (e.g., the correlations among soil moisture, vegetation and carbon fluxes) to estimate subsurface and other key properties over large areas. To test this concept, we have installed a ground-based remote sensing platform - a track-mounted tram system - along a 70 m transect in the ice-wedge polygonal tundra near Barrow, Alaska. The tram carries a suite of near-surface remote sensing sensors, including sonic depth, thermal IR, NDVI and multispectral sensors. Joint analysis with multiple ground-based measurements (soil temperature, active layer soil moisture, and carbon fluxes) was performed to quantify correlations and the dynamics of above/belowground processes at unprecedented resolution, both temporally and spatially. We analyzed the datasets with particular focus on correlating key subsurface and ecosystem properties with surface properties that can be measured by satellite/airborne remote sensing over a large area. Our results provided several new insights about system behavior and also opens the door for new characterization approaches. We documented that: (1) soil temperature (at >5 cm depth; critical for permafrost thaw) was decoupled from soil surface temperature and was influenced strongly by soil moisture, (2) NDVI and greenness index were highly correlated with both soil moisture and gross primary productivity (based on chamber flux data), and (3) surface deformation (which can be measured by InSAR) was a good proxy for thaw depth dynamics at non-inundated locations.
Thermal remote sensing: theory, sensors, and applications
USDA-ARS?s Scientific Manuscript database
Applications of thermal infrared remote sensing for Earth science research are both varied and wide in scope. They range from understanding thermal energy responses that drive land-atmosphere energy exchanges in the hydrologic cycle, to measurement of dielectric surface properties for snow, ice, an...
NASA Technical Reports Server (NTRS)
Spiering, Bruce; Underwood, Lauren; Ellis, Chris; Lehrter, John; Hagy, Jim; Schaeffer, Blake
2010-01-01
The goals of the project are to provide information from satellite remote sensing to support numeric nutrient criteria development and to determine data processing methods and data quality requirements to support nutrient criteria development and implementation. The approach is to identify water quality indicators that are used by decision makers to assess water quality and that are related to optical properties of the water; to develop remotely sensed data products based on algorithms relating remote sensing imagery to field-based observations of indicator values; to develop methods to assess estuarine water quality, including trends, spatial and temporal variability, and seasonality; and to develop tools to assist in the development and implementation of estuarine and coastal nutrient criteria. Additional slides present process, criteria development, typical data sources and analyses for criteria process, the power of remote sensing data for the process, examples from Pensacola Bay, spatial and temporal variability, pixel matchups, remote sensing validation, remote sensing in coastal waters, requirements for remotely sensed data products, and needs assessment. An additional presentation examines group engagement and information collection. Topics include needs assessment purpose and objectives, understanding water quality decision making, determining information requirements, and next steps.
What is a picture worth? A history of remote sensing
Moore, Gerald K.
1979-01-01
Remote sensing is the use of electromagnetic energy to measure the physical properties of distant objects. It includes photography and geophysical surveying as well as newer techniques that use other parts of the electromagnetic spectrum. The history of remote sensing begins with photography. The origin of other types of remote sensing can be traced to World War II, with the development of radar, sonar, and thermal infrared detection systems. Since the 1960s, sensors have been designed to operate in virtually all of the electromagnetic spectrum. Today a wide variety of remote sensing instruments are available for use in hydrological studies; satellite data, such as Skylab photographs and Landsat images are particularly suitable for regional problems and studies. Planned future satellites will provide a ground resolution of 10–80 m. Remote sensing is currently used for hydrological applications in most countries of the world. The range of applications includes groundwater exploration determination of physical water quality, snowfield mapping, flood-inundation delineation, and making inventories of irrigated land. The use of remote sensing commonly results in considerable hydrological information at minimal cost. This information can be used to speed-up the development of water resources, to improve management practices, and to monitor environmental problems.
Applying narrowband remote-sensing reflectance models to wideband data.
Lee, Zhongping
2009-06-10
Remote sensing of coastal and inland waters requires sensors to have a high spatial resolution to cover the spatial variation of biogeochemical properties in fine scales. High spatial-resolution sensors, however, are usually equipped with spectral bands that are wide in bandwidth (50 nm or wider). In this study, based on numerical simulations of hyperspectral remote-sensing reflectance of optically-deep waters, and using Landsat band specifics as an example, the impact of a wide spectral channel on remote sensing is analyzed. It is found that simple adoption of a narrowband model may result in >20% underestimation in calculated remote-sensing reflectance, and inversely may result in >20% overestimation in inverted absorption coefficients even under perfect conditions, although smaller (approximately 5%) uncertainties are found for higher absorbing waters. These results provide a cautious note, but also a justification for turbid coastal waters, on applying narrowband models to wideband data.
The decomposition of remote sensing reflectance (RSR) spectra into absorption, scattering and backscattering coefficients, and scattering phase function is an important issue for estimating water quality (WQ) components. For Case 1 waters RSR decomposition can be easily accompli...
Integration of Remote Sensing Data In Operational Flood Forecast In Southwest Germany
NASA Astrophysics Data System (ADS)
Bach, H.; Appel, F.; Schulz, W.; Merkel, U.; Ludwig, R.; Mauser, W.
Methods to accurately assess and forecast flood discharge are mandatory to minimise the impact of hydrological hazards. However, existing rainfall-runoff models rarely accurately consider the spatial characteristics of the watershed, which is essential for a suitable and physics-based description of processes relevant for runoff formation. Spatial information with low temporal variability like elevation, slopes and land use can be mapped or extracted from remote sensing data. However, land surface param- eters of high temporal variability, like soil moisture and snow properties are hardly available and used in operational forecasts. Remote sensing methods can improve flood forecast by providing information on the actual water retention capacities in the watershed and facilitate the regionalisation of hydrological models. To prove and demonstrate this, the project 'InFerno' (Integration of remote sensing data in opera- tional water balance and flood forecast modelling) has been set up, funded by DLR (50EE0053). Within InFerno remote sensing data (optical and microwave) are thor- oughly processed to deliver spatially distributed parameters of snow properties and soil moisture. Especially during the onset of a flood this information is essential to estimate the initial conditions of the model. At the flood forecast centres of 'Baden- Württemberg' and 'Rheinland-Pfalz' (Southwest Germany) the remote sensing based maps on soil moisture and snow properties will be integrated in the continuously op- erated water balance and flood forecast model LARSIM. The concept is to transfer the developed methodology from the Neckar to the Mosel basin. The major challenges lie on the one hand in the implementation of algorithms developed for a multisensoral synergy and the creation of robust, operationally applicable remote sensing products. On the other hand, the operational flood forecast must be adapted to make full use of the new data sources. In the operational phase of the project ESA's ENVISAT satellite, which will be launched in 2002, will serve as remote sensing data source. Until EN- VISAT data is available, algorithm retrieval, software development and product gener- ation is performed using existing sensors with ENVISAT-like specifications. Based on these data sets test cases and demonstration runs are conducted and will be presented to prove the advantages of the approach.
Contrasting seasonality in optical-biogeochemical properties of the Baltic Sea.
Simis, Stefan G H; Ylöstalo, Pasi; Kallio, Kari Y; Spilling, Kristian; Kutser, Tiit
2017-01-01
Optical-biogeochemical relationships of particulate and dissolved organic matter are presented in support of remote sensing of the Baltic Sea pelagic. This system exhibits strong seasonality in phytoplankton community composition and wide gradients of chromophoric dissolved organic matter (CDOM), properties which are poorly handled by existing remote sensing algorithms. Absorption and scattering properties of particulate matter reflected the seasonality in biological (phytoplankton succession) and physical (thermal stratification) processes. Inherent optical properties showed much wider variability when normalized to the chlorophyll-a concentration compared to normalization to either total suspended matter dry weight or particulate organic carbon. The particle population had the largest optical variability in summer and was dominated by organic matter in both seasons. The geographic variability of CDOM and relationships with dissolved organic carbon (DOC) are also presented. CDOM dominated light absorption at blue wavelengths, contributing 81% (median) of the absorption by all water constituents at 400 nm and 63% at 442 nm. Consequentially, 90% of water-leaving radiance at 412 nm originated from a layer (z90) no deeper than approximately 1.0 m. With water increasingly attenuating light at longer wavelengths, a green peak in light penetration and reflectance is always present in these waters, with z90 up to 3.0-3.5 m depth, whereas z90 only exceeds 5 m at biomass < 5 mg Chla m-3. High absorption combined with a weakly scattering particle population (despite median phytoplankton biomass of 14.1 and 4.3 mg Chla m-3 in spring and summer samples, respectively), characterize this sea as a dark water body for which dedicated or exceptionally robust remote sensing techniques are required. Seasonal and regional optical-biogeochemical models, data distributions, and an extensive set of simulated remote-sensing reflectance spectra for testing of remote sensing algorithms are provided as supplementary data.
NASA Astrophysics Data System (ADS)
Xu, Yiming; Smith, Scot E.; Grunwald, Sabine; Abd-Elrahman, Amr; Wani, Suhas P.
2017-01-01
Soil prediction models based on spectral indices from some multispectral images are too coarse to characterize spatial pattern of soil properties in small and heterogeneous agricultural lands. Image pan-sharpening has seldom been utilized in Digital Soil Mapping research before. This research aimed to analyze the effects of pan-sharpened (PAN) remote sensing spectral indices on soil prediction models in smallholder farm settings. This research fused the panchromatic band and multispectral (MS) bands of WorldView-2, GeoEye-1, and Landsat 8 images in a village in Southern India by Brovey, Gram-Schmidt and Intensity-Hue-Saturation methods. Random Forest was utilized to develop soil total nitrogen (TN) and soil exchangeable potassium (Kex) prediction models by incorporating multiple spectral indices from the PAN and MS images. Overall, our results showed that PAN remote sensing spectral indices have similar spectral characteristics with soil TN and Kex as MS remote sensing spectral indices. There is no soil prediction model incorporating the specific type of pan-sharpened spectral indices always had the strongest prediction capability of soil TN and Kex. The incorporation of pan-sharpened remote sensing spectral data not only increased the spatial resolution of the soil prediction maps, but also enhanced the prediction accuracy of soil prediction models. Small farms with limited footprint, fragmented ownership and diverse crop cycle should benefit greatly from the pan-sharpened high spatial resolution imagery for soil property mapping. Our results show that multiple high and medium resolution images can be used to map soil properties suggesting the possibility of an improvement in the maps' update frequency. Additionally, the results should benefit the large agricultural community through the reduction of routine soil sampling cost and improved prediction accuracy.
NASA Technical Reports Server (NTRS)
Goldman, Joel C.; Brink, Kenneth K.; Gawarkiewicz, Glen; Sosik, Heidi M.
1997-01-01
This research program was a collaborative effort to investigate the impact of rapid changes in the water column during coastal upwelling, on biological and optical properties. These properties are important for constructing region or event-specific algorithms for remote sensing of pigment concentration and primary productivity and for comparing these algorithms with those used for the development of large scale maps from ocean color. We successfully achieved the primary objective of this research project which was to study in situ the dynamics of rapid spatial and temporal changes in properties of the water column during, coastal upwelling off the Crimean Coast in the Black Sea. The work was a collaborative effort between a group of biological and physical oceanographers from the Woods Hole Oceanographic Institution and from two oceanographic research institutions in the Crimea, Ukraine, located near the study site, the Marine Hydrophysical Institute (MHI) and the Institute of Biology of the Southern Seas (IBSS). The site was an ideal experimental model, both from a technical and economic standpoint, because of the predictable summer upwelling that occurs in the region and because of the availability of both a ship on call and laboratory and remote sensing facilities at the nearby marine institutes. We used a combination of shipboard measurements and remote sensing to investigate the physical evolution of rapid upwelling events and their impact on photoplankton and water column optical properties. The field work involved a two day cruise for mooring, deployment and a three day baseline survey cruise, followed by an eleven day primary cruise during, a summer upwelling event (anticipated by monitoring local winds and tracked by remote sensing imaging). An MHI ship was outfitted and used for these purposes.
FY 2015 Report: Developing Remote Sensing Capabilities for Meter-Scale Sea Ice Properties
2015-09-30
albedo retrieval from MERIS data–Part 2: Case studies and trends of sea ice albedo and melt ponds in the Arctic for years 2002–2011. The Cryosphere, 9...and spectral sea ice albedo retrieval from MERIS data-Part 1: Validation against in situ, aerial, and ship cruise data. The Cryosphere, 9, 1551-1566. ...1 FY 2015 Report: Developing Remote Sensing Capabilities for Meter-Scale Sea Ice Properties Chris Polashenski USACE-CRREL Building 4070
Research on visible and near infrared spectral-polarimetric properties of soil polluted by crude oil
NASA Astrophysics Data System (ADS)
Shen, Hui-yan; Zhou, Pu-cheng; Pan, Bang-long
2017-10-01
Hydrocarbon contaminated soil can impose detrimental effects on forest health and quality of agricultural products. To manage such consequences, oil leak indicators should be detected quickly by monitoring systems. Remote sensing is one of the most suitable techniques for monitoring systems, especially for areas which are uninhabitable and difficulty to access. The most available physical quantities in optical remote sensing domain are the intensity and spectral information obtained by visible or infrared sensors. However, besides the intensity and wavelength, polarization is another primary physical quantity associated with an optical field. During the course of reflecting light-wave, the surface of soil polluted by crude oil will cause polarimetric properties which are related to the nature of itself. Thus, detection of the spectralpolarimetric properties for soil polluted by crude oil has become a new remote sensing monitoring method. In this paper, the multi-angle spectral-polarimetric instrument was used to obtain multi-angle visible and near infrared spectralpolarimetric characteristic data of soil polluted by crude oil. And then, the change rule between polarimetric properties with different affecting factors, such as viewing zenith angle, incidence zenith angle of the light source, relative azimuth angle, waveband of the detector as well as different grain size of soil were discussed, so as to provide a scientific basis for the research on polarization remote sensing for soil polluted by crude oil.
NASA Astrophysics Data System (ADS)
Dimopoulos, Thomas; Labropoulos, Tassos; Hadjimitsis, Diofantos G.
2014-08-01
This paper aims to examine how CAMA, GIS and Remote Sensing are integrated to assist property taxation. Real property tax apart from its fiscal dimension is directly linked to geographic location. The value of the land and other immovable features such as buildings and structures is determined from specific parameters. All these immovable assets are visible and have specific geographic location & coordinates, materials, occupied area, land-use & utility, ownership & occupancy status and finally a specific value (ad valorem property taxation system) according to which the property tax is levied to taxpayers. Of high importance in the tax imposing procedure is that the use of CAMA, GIS and Remote Sensing tools is capable of providing effective and efficient collection of this property value determining data. Furthermore, these tools can track changes during a property's lifecycle such parcel subdivision into plots, demolition of a building and development of a new one or track a change in the planning zone. The integration of these systems also supports a full range of business processes on revenue mobilization ranging from billing to taxpayers objections management.
USDA-ARS?s Scientific Manuscript database
Hyper-temporal remote sensing is capable of detecting detailed information on vegetation dynamics relating to plant functional types (PFT), a useful proxy for estimating soil physical and chemical properties. A central concept of PFT is that plant morphological and physiological adaptations are link...
USDA-ARS?s Scientific Manuscript database
Indices derived from remotely-sensed imagery are commonly used to predict soil properties with digital soil mapping (DSM) techniques. The use of images from single dates or a small number of dates is most common for DSM; however, selection of the appropriate images is complicated by temporal variabi...
Principles of thermal remote sensing
NASA Technical Reports Server (NTRS)
1982-01-01
The remote sensing of temperature is performed by sensing radiation emitted from solids, liquids, and gases in the thermal infrared region of the spectrum, in which thermal emission is dominant over reflected solar energy. For Earth resources applications, thermal sensing of solids and liquids is performed in two ""windows'' of the atmosphere where atmospheric absorption and emission are at a minimum. Temperature measurement, intrinsic thermal properties, factors in interpreting thermal data, the use of thermal inertia, and the measurements obtained by the heat capacity mapping radiometer are discussed.
A Design of a Novel Airborne Aerosol Spectrometer for Remote Sensing Validation
NASA Astrophysics Data System (ADS)
Adler, G. A.; Brock, C. A.; Dube, W. P.; Erdesz, F.; Gordon, T.; Law, D. C.; Manfred, K.; Mason, B. J.; McLaughlin, R. J.; Richardson, M.; Wagner, N. L.; Washenfelder, R. A.; Murphy, D. M.
2016-12-01
Aerosols and their effect on the radiative properties of clouds contribute one of the largest sources of uncertainty to the Earth's energy budget. Many current global assessments, of atmospheric aerosol radiative forcing rely heavily on remote sensing observation; therefore, in situ aircraft and ground-based measurements are essential for validation of remote sensing measurements. Cavity ringdown spectrometers (CRD) measure aerosol extinction and are commonly used to validate remote sensing observations. These instruments have been deployed on aircraft based platforms over the years thus providing the opportunity to measure these properties over large areas in various conditions. However, deployment of the CRD on an aircraft platform has drawbacks. Typically, aircraft based CRDs draw sampled aerosol into a cabin based instrument through long lengths of tubing. This limits the ability of the instrument to measure: 1) Course mode aerosols (e.g. dust) 2) Aerosols at high relative humidity (above 90%) Here we describe the design of a novel aircraft based open path CRD. The open path CRD is intended to be mounted external to the cabin and has no sample tubing for aerosol delivery, thus measuring optical properties of all aerosol at the ambient conditions. However, the design of an open path CRD for operation on a wing-mounted aircraft platform has certain design complexities. The instrument's special design features include 2 CRD channels, 2 airfoils around the open Path CRD and a configuration which could be easily aligned and rigid at the same time. This novel implementation of cavity ringdown spectroscopy will provide a better assessment of the accuracy of remote sensing satellite measurements
Remote sensing in Michigan for land resource management: Highway impact assessment
NASA Technical Reports Server (NTRS)
1972-01-01
An existing section of M-14 freeway constructed in 1964 and a potential extension from Ann Arbor to Plymouth, Michigan provided an opportunity for investigating the potential uses of remote sensing techniques in providing projective information needed for assessing the impact of highway construction. Remote sensing data included multispectral scanner imagery and aerial photography. Only minor effects on vegetation, soils, and land use were found to have occurred in the existing corridor. Adverse changes expected to take place in the corridor proposed for extension of the freeway can be minimized by proper design of drainage ditches and attention to good construction practices. Remote sensing can be used to collect and present many types of data useful for highway impact assessment on land use, vegetation categories and species, soil properties and hydrologic characteristics.
Applications of Remote Sensing to Alien Invasive Plant Studies
Huang, Cho-ying; Asner, Gregory P.
2009-01-01
Biological invasions can affect ecosystems across a wide spectrum of bioclimatic conditions. Therefore, it is often important to systematically monitor the spread of species over a broad region. Remote sensing has been an important tool for large-scale ecological studies in the past three decades, but it was not commonly used to study alien invasive plants until the mid 1990s. We synthesize previous research efforts on remote sensing of invasive plants from spatial, temporal and spectral perspectives. We also highlight a recently developed state-of-the-art image fusion technique that integrates passive and active energies concurrently collected by an imaging spectrometer and a scanning-waveform light detection and ranging (LiDAR) system, respectively. This approach provides a means to detect the structure and functional properties of invasive plants of different canopy levels. Finally, we summarize regional studies of biological invasions using remote sensing, discuss the limitations of remote sensing approaches, and highlight current research needs and future directions. PMID:22408558
MARTA GANs: Unsupervised Representation Learning for Remote Sensing Image Classification
NASA Astrophysics Data System (ADS)
Lin, Daoyu; Fu, Kun; Wang, Yang; Xu, Guangluan; Sun, Xian
2017-11-01
With the development of deep learning, supervised learning has frequently been adopted to classify remotely sensed images using convolutional networks (CNNs). However, due to the limited amount of labeled data available, supervised learning is often difficult to carry out. Therefore, we proposed an unsupervised model called multiple-layer feature-matching generative adversarial networks (MARTA GANs) to learn a representation using only unlabeled data. MARTA GANs consists of both a generative model $G$ and a discriminative model $D$. We treat $D$ as a feature extractor. To fit the complex properties of remote sensing data, we use a fusion layer to merge the mid-level and global features. $G$ can produce numerous images that are similar to the training data; therefore, $D$ can learn better representations of remotely sensed images using the training data provided by $G$. The classification results on two widely used remote sensing image databases show that the proposed method significantly improves the classification performance compared with other state-of-the-art methods.
Remote measurement of pollution
NASA Technical Reports Server (NTRS)
1971-01-01
A summary of the major conclusions and recommendations developed by the panels on gaseous air pollution, water pollution, and particulate air pollution is presented. It becomes evident that many of the trace gases are amenable to remote sensing; that certain water pollutants can be measured by remote techniques, but their number is limited; and that a similar approach to the remote measurement of specific particulate pollutants will follow only after understanding of their physical, chemical, and radiative properties is improved. It is also clear that remote sensing can provide essential information in all three categories that can not be obtained by any other means.
Viking Landers and remote sensing
NASA Technical Reports Server (NTRS)
Moore, H. J.; Jakosky, B. M.; Christensen, P. R.
1987-01-01
Thermal and radar remote sensing signatures of the materials in the lander sample fields can be crudely estimated from evaluations of their physical-mechanical properties, laboratory data on thermal conductivities and dielectric constants, and theory. The estimated thermal inertias and dielectric constants of some of the materials in the sample field are close to modal values estimated from orbital and earth-based observations. This suggests that the mechanical properties of the surface materials of much of Mars will not be significantly different that those of the landing sites.
2003-09-30
We are developing an integrated rapid environmental assessment capability that will be used to feed an ocean nowcast/forecast system. The goal is to develop a capacity for predicting the dynamics in inherent optical properties in coastal waters. This is being accomplished by developing an integrated observation system that is being coupled to a data assimilative hydrodynamic bio-optical ecosystem model. The system was used adaptively to calibrate hyperspectral remote sensing sensors in optically complex nearshore coastal waters.
Optical properties of volcanic ash: improving remote sensing observations.
NASA Astrophysics Data System (ADS)
Whelley, Patrick; Colarco, Peter; Aquila, Valentina; Krotkov, Nickolay; Bleacher, Jake; Garry, Brent; Young, Kelsey; Rocha Lima, Adriana; Martins, Vanderlei; Carn, Simon
2016-04-01
Many times each year explosive volcanic eruptions loft ash into the atmosphere. Global travel and trade rely on aircraft vulnerable to encounters with airborne ash. Volcanic ash advisory centers (VAACs) rely on dispersion forecasts and satellite data to issue timely warnings. To improve ash forecasts model developers and satellite data providers need realistic information about volcanic ash microphysical and optical properties. In anticipation of future large eruptions we can study smaller events to improve our remote sensing and modeling skills so when the next Pinatubo 1991 or larger eruption occurs, ash can confidently be tracked in a quantitative way. At distances >100km from their sources, drifting ash plumes, often above meteorological clouds, are not easily detected from conventional remote sensing platforms, save deriving their quantitative characteristics, such as mass density. Quantitative interpretation of these observations depends on a priori knowledge of the spectral optical properties of the ash in UV (>0.3μm) and TIR wavelengths (>10μm). Incorrect assumptions about the optical properties result in large errors in inferred column mass loading and size distribution, which misguide operational ash forecasts. Similarly, simulating ash properties in global climate models also requires some knowledge of optical properties to improve aerosol speciation.
Landscape characterization of peridomestic risk for Lyme disease using satellite imagery
NASA Technical Reports Server (NTRS)
Dister, S. W.; Fish, D.; Bros, S. M.; Frank, D. H.; Wood, B. L.
1997-01-01
Remotely sensed characterizations of landscape composition were evaluated for Lyme disease exposure risk on 337 residential properties in two communities of suburban Westchester County, New York. Properties were categorized as no, low, or high risk based on seasonally adjusted densities of Ixodes scapularis nymphs, determined by drag sampling during June and July 1990. Spectral indices based on Landsat Thematic Mapper data provided relative measures of vegetation structure and moisture (wetness), as well as vegetation abundance (greenness). A geographic information system (GIS) was used to spatially quantify and relate the remotely sensed landscape variables to risk category. A comparison of the two communities showed that Chappaqua, which had more high-risk properties (P < 0.001), was significantly greener and wetter than Armonk (P < 0.001). Furthermore, within Chappaqua, high-risk properties were significantly greener and wetter than lower-risk properties in this community (P < 0.01). The high-risk properties appeared to contain a greater proportion of broadleaf trees, while lower-risk properties were interpreted as having a greater proportion of nonvegetative cover and/or open lawn. The ability to distinguish these fine scale differences among communities and individual properties illustrates the efficiency of a remote sensing/GIS-based approach for identifying peridomestic risk of Lyme disease over large geographic areas.
NASA Astrophysics Data System (ADS)
Downs, R. R.; Adamo, S. B.
2014-12-01
The integration of remote sensing data with socioeconomic data presents new opportunities for scientific discovery and analysis that can improve understanding of the environmental sustainability issues that society faces today. Such integrated data products and services can be used to study interdisciplinary issues by investigators representing various disciplines. In addition to the scientific benefits that can be attained by integrating remote sensing data with socioeconomic data, the integration of these data also present challenges that reflect the complex issues that arise when sharing and integrating different types of science data. When integrating one or more datasets that contain sensitive information, data producers need to be aware of the limitations that have been placed upon the data to protect private property, species or other inhabitants that reside on the property, or restricted information about a particular location. Similarly, confidentiality and privacy issues are a concern for data that have been collected about individual humans and families who have volunteered to serve as human research subjects or whose personal information may have been collected without their knowledge. In addition, intellectual property rights that are associated with a particular dataset may prevent integration with other data or pose constraints on the use of the resulting data products or services. These challenges will be described along with approaches that can be applied to address them when planning projects that involve the integration of remote sensing data with socioeconomic data.
Panda, Sudhanshu S.; Rao, Mahesh N.; Thenkabail, Prasad S.; Fitzerald, James E.
2015-01-01
The American Society of Photogrammetry and Remote Sensing defined remote sensing as the measurement or acquisition of information of some property of an object or phenomenon, by a recording device that is not in physical or intimate contact with the object or phenomenon under study (Colwell et al., 1983). Environmental Systems Research Institute (ESRI) in its geographic information system (GIS) dictionary defines remote sensing as “collecting and interpreting information about the environment and the surface of the earth from a distance, primarily by sensing radiation that is naturally emitted or reflected by the earth’s surface or from the atmosphere, or by sending signals transmitted from a device and reflected back to it (ESRI, 2014).” The usual source of passive remote sensing data is the measurement of reflected or transmitted electromagnetic radiation (EMR) from the sun across the electromagnetic spectrum (EMS); this can also include acoustic or sound energy, gravity, or the magnetic field from or of the objects under consideration. In this context, the simple act of reading this text is considered remote sensing. In this case, the eye acts as a sensor and senses the light reflected from the object to obtain information about the object. It is the same technology used by a handheld camera to take a photograph of a person or a distant scenic view. Active remote sensing, however, involves sending a pulse of energy and then measuring the returned energy through a sensor (e.g., Radio Detection and Ranging [RADAR], Light Detection and Ranging [LiDAR]). Thermal sensors measure emitted energy by different objects. Thus, in general, passive remote sensing involves the measurement of solar energy reflected from the Earth’s surface, while active remote sensing involves synthetic (man-made) energy pulsed at the environment and the return signals are measured and recorded.
Zimmermann, N.E.; Edwards, T.C.; Moisen, Gretchen G.; Frescino, T.S.; Blackard, J.A.
2007-01-01
1. Compared to bioclimatic variables, remote sensing predictors are rarely used for predictive species modelling. When used, the predictors represent typically habitat classifications or filters rather than gradual spectral, surface or biophysical properties. Consequently, the full potential of remotely sensed predictors for modelling the spatial distribution of species remains unexplored. Here we analysed the partial contributions of remotely sensed and climatic predictor sets to explain and predict the distribution of 19 tree species in Utah. We also tested how these partial contributions were related to characteristics such as successional types or species traits. 2. We developed two spatial predictor sets of remotely sensed and topo-climatic variables to explain the distribution of tree species. We used variation partitioning techniques applied to generalized linear models to explore the combined and partial predictive powers of the two predictor sets. Non-parametric tests were used to explore the relationships between the partial model contributions of both predictor sets and species characteristics. 3. More than 60% of the variation explained by the models represented contributions by one of the two partial predictor sets alone, with topo-climatic variables outperforming the remotely sensed predictors. However, the partial models derived from only remotely sensed predictors still provided high model accuracies, indicating a significant correlation between climate and remote sensing variables. The overall accuracy of the models was high, but small sample sizes had a strong effect on cross-validated accuracies for rare species. 4. Models of early successional and broadleaf species benefited significantly more from adding remotely sensed predictors than did late seral and needleleaf species. The core-satellite species types differed significantly with respect to overall model accuracies. Models of satellite and urban species, both with low prevalence, benefited more from use of remotely sensed predictors than did the more frequent core species. 5. Synthesis and applications. If carefully prepared, remotely sensed variables are useful additional predictors for the spatial distribution of trees. Major improvements resulted for deciduous, early successional, satellite and rare species. The ability to improve model accuracy for species having markedly different life history strategies is a crucial step for assessing effects of global change. ?? 2007 The Authors.
ZIMMERMANN, N E; EDWARDS, T C; MOISEN, G G; FRESCINO, T S; BLACKARD, J A
2007-01-01
Compared to bioclimatic variables, remote sensing predictors are rarely used for predictive species modelling. When used, the predictors represent typically habitat classifications or filters rather than gradual spectral, surface or biophysical properties. Consequently, the full potential of remotely sensed predictors for modelling the spatial distribution of species remains unexplored. Here we analysed the partial contributions of remotely sensed and climatic predictor sets to explain and predict the distribution of 19 tree species in Utah. We also tested how these partial contributions were related to characteristics such as successional types or species traits. We developed two spatial predictor sets of remotely sensed and topo-climatic variables to explain the distribution of tree species. We used variation partitioning techniques applied to generalized linear models to explore the combined and partial predictive powers of the two predictor sets. Non-parametric tests were used to explore the relationships between the partial model contributions of both predictor sets and species characteristics. More than 60% of the variation explained by the models represented contributions by one of the two partial predictor sets alone, with topo-climatic variables outperforming the remotely sensed predictors. However, the partial models derived from only remotely sensed predictors still provided high model accuracies, indicating a significant correlation between climate and remote sensing variables. The overall accuracy of the models was high, but small sample sizes had a strong effect on cross-validated accuracies for rare species. Models of early successional and broadleaf species benefited significantly more from adding remotely sensed predictors than did late seral and needleleaf species. The core-satellite species types differed significantly with respect to overall model accuracies. Models of satellite and urban species, both with low prevalence, benefited more from use of remotely sensed predictors than did the more frequent core species. Synthesis and applications. If carefully prepared, remotely sensed variables are useful additional predictors for the spatial distribution of trees. Major improvements resulted for deciduous, early successional, satellite and rare species. The ability to improve model accuracy for species having markedly different life history strategies is a crucial step for assessing effects of global change. PMID:18642470
Contrasting seasonality in optical-biogeochemical properties of the Baltic Sea
Ylöstalo, Pasi; Kallio, Kari Y.; Spilling, Kristian; Kutser, Tiit
2017-01-01
Optical-biogeochemical relationships of particulate and dissolved organic matter are presented in support of remote sensing of the Baltic Sea pelagic. This system exhibits strong seasonality in phytoplankton community composition and wide gradients of chromophoric dissolved organic matter (CDOM), properties which are poorly handled by existing remote sensing algorithms. Absorption and scattering properties of particulate matter reflected the seasonality in biological (phytoplankton succession) and physical (thermal stratification) processes. Inherent optical properties showed much wider variability when normalized to the chlorophyll-a concentration compared to normalization to either total suspended matter dry weight or particulate organic carbon. The particle population had the largest optical variability in summer and was dominated by organic matter in both seasons. The geographic variability of CDOM and relationships with dissolved organic carbon (DOC) are also presented. CDOM dominated light absorption at blue wavelengths, contributing 81% (median) of the absorption by all water constituents at 400 nm and 63% at 442 nm. Consequentially, 90% of water-leaving radiance at 412 nm originated from a layer (z90) no deeper than approximately 1.0 m. With water increasingly attenuating light at longer wavelengths, a green peak in light penetration and reflectance is always present in these waters, with z90 up to 3.0–3.5 m depth, whereas z90 only exceeds 5 m at biomass < 5 mg Chla m-3. High absorption combined with a weakly scattering particle population (despite median phytoplankton biomass of 14.1 and 4.3 mg Chla m-3 in spring and summer samples, respectively), characterize this sea as a dark water body for which dedicated or exceptionally robust remote sensing techniques are required. Seasonal and regional optical-biogeochemical models, data distributions, and an extensive set of simulated remote-sensing reflectance spectra for testing of remote sensing algorithms are provided as supplementary data. PMID:28384157
NASA Astrophysics Data System (ADS)
Clevers, Jan G. P. W.
2018-05-01
This book provides a comprehensive and timely overview on all aspects of hyperspectral remote sensing combined with various applications. As such, it is an excellent book of reference for both students and professionals active in the field of optical remote sensing. It deals with all aspects of retrieving quantitative information on biophysical properties of the Earth's surface, the data corrections needed and the range of analysis approaches available.
NASA Technical Reports Server (NTRS)
Castruccio, P. A.; Loats, H. L., Jr.; Fowler, T. R.
1977-01-01
Methods for the reduction of remotely sensed data and its application in hydrologic land use assessment, surface water inventory, and soil property studies are presented. LANDSAT data is used to provide quantitative parameters and coefficients to construct watershed transfer functions for a hydrologic planning model aimed at estimating peak outflow from rainfall inputs.
An overview of mesoscale aerosol processes, comparisons, and validation studies from DRAGON networks
NASA Astrophysics Data System (ADS)
Holben, Brent N.; Kim, Jhoon; Sano, Itaru; Mukai, Sonoyo; Eck, Thomas F.; Giles, David M.; Schafer, Joel S.; Sinyuk, Aliaksandr; Slutsker, Ilya; Smirnov, Alexander; Sorokin, Mikhail; Anderson, Bruce E.; Che, Huizheng; Choi, Myungje; Crawford, James H.; Ferrare, Richard A.; Garay, Michael J.; Jeong, Ukkyo; Kim, Mijin; Kim, Woogyung; Knox, Nichola; Li, Zhengqiang; Lim, Hwee S.; Liu, Yang; Maring, Hal; Nakata, Makiko; Pickering, Kenneth E.; Piketh, Stuart; Redemann, Jens; Reid, Jeffrey S.; Salinas, Santo; Seo, Sora; Tan, Fuyi; Tripathi, Sachchida N.; Toon, Owen B.; Xiao, Qingyang
2018-01-01
Over the past 24 years, the AErosol RObotic NETwork (AERONET) program has provided highly accurate remote-sensing characterization of aerosol optical and physical properties for an increasingly extensive geographic distribution including all continents and many oceanic island and coastal sites. The measurements and retrievals from the AERONET global network have addressed satellite and model validation needs very well, but there have been challenges in making comparisons to similar parameters from in situ surface and airborne measurements. Additionally, with improved spatial and temporal satellite remote sensing of aerosols, there is a need for higher spatial-resolution ground-based remote-sensing networks. An effort to address these needs resulted in a number of field campaign networks called Distributed Regional Aerosol Gridded Observation Networks (DRAGONs) that were designed to provide a database for in situ and remote-sensing comparison and analysis of local to mesoscale variability in aerosol properties. This paper describes the DRAGON deployments that will continue to contribute to the growing body of research related to meso- and microscale aerosol features and processes. The research presented in this special issue illustrates the diversity of topics that has resulted from the application of data from these networks.
Gillison, Andrew N; Asner, Gregory P; Fernandes, Erick C M; Mafalacusser, Jacinto; Banze, Aurélio; Izidine, Samira; da Fonseca, Ambrósio R; Pacate, Hermenegildo
2016-07-15
Sustainable biodiversity and land management require a cost-effective means of forecasting landscape response to environmental change. Conventional species-based, regional biodiversity assessments are rarely adequate for policy planning and decision making. We show how new ground and remotely-sensed survey methods can be coordinated to help elucidate and predict relationships between biodiversity, land use and soil properties along complex biophysical gradients that typify many similar landscapes worldwide. In the lower Zambezi valley, Mozambique we used environmental, gradient-directed transects (gradsects) to sample vascular plant species, plant functional types, vegetation structure, soil properties and land-use characteristics. Soil fertility indices were derived using novel multidimensional scaling of soil properties. To facilitate spatial analysis, we applied a probabilistic remote sensing approach, analyzing Landsat 7 satellite imagery to map photosynthetically active and inactive vegetation and bare soil along each gradsect. Despite the relatively low sample number, we found highly significant correlations between single and combined sets of specific plant, soil and remotely sensed variables that permitted testable spatial projections of biodiversity and soil fertility across the regional land-use mosaic. This integrative and rapid approach provides a low-cost, high-return and readily transferable methodology that permits the ready identification of testable biodiversity indicators for adaptive management of biodiversity and potential agricultural productivity. Copyright © 2016 Elsevier Ltd. All rights reserved.
Potential for Remotely Sensed Soil Moisture Data in Hydrologic Modeling
NASA Technical Reports Server (NTRS)
Engman, Edwin T.
1997-01-01
Many hydrologic processes display a unique signature that is detectable with microwave remote sensing. These signatures are in the form of the spatial and temporal distributions of surface soil moisture and portray the spatial heterogeneity of hydrologic processes and properties that one encounters in drainage basins. The hydrologic processes that may be detected include ground water recharge and discharge zones, storm runoff contributing areas, regions of potential and less than potential ET, and information about the hydrologic properties of soils and heterogeneity of hydrologic parameters. Microwave remote sensing has the potential to detect these signatures within a basin in the form of volumetric soil moisture measurements in the top few cm. These signatures should provide information on how and where to apply soil physical parameters in distributed and lumped parameter models and how to subdivide drainage basins into hydrologically similar sub-basins.
Remote sensing, hydrological modeling and in situ observations in snow cover research: A review
NASA Astrophysics Data System (ADS)
Dong, Chunyu
2018-06-01
Snow is an important component of the hydrological cycle. As a major part of the cryosphere, snow cover also represents a valuable terrestrial water resource. In the context of climate change, the dynamics of snow cover play a crucial role in rebalancing the global energy and water budgets. Remote sensing, hydrological modeling and in situ observations are three techniques frequently utilized for snow cover investigations. However, the uncertainties caused by systematic errors, scale gaps, and complicated snow physics, among other factors, limit the usability of these three approaches in snow studies. In this paper, an overview of the advantages, limitations and recent progress of the three methods is presented, and more effective ways to estimate snow cover properties are evaluated. The possibility of improving remotely sensed snow information using ground-based observations is discussed. As a rapidly growing source of volunteered geographic information (VGI), web-based geotagged photos have great potential to provide ground truth data for remotely sensed products and hydrological models and thus contribute to procedures for cloud removal, correction, validation, forcing and assimilation. Finally, this review proposes a synergistic framework for the future of snow cover research. This framework highlights the cross-scale integration of in situ and remotely sensed snow measurements and the assimilation of improved remote sensing data into hydrological models.
Photography and imagery: a clarification of terms
Robinove, Charles J.
1963-01-01
The increased use of pictorial displays of data in the fields of photogrammetry and photo interpretation has led to some confusion of terms, not so much b photogrammetrists as bu users and interpreters of pictorial data. The terms "remote sensing" and "remote sensing of environment" are being used as general terms to describe "the measurement of some property of an object without having the measuring device physically in contact with the object" (Parker, 1962).Measurements of size and shape by photogrammetric and optical means are common examples of remote sensing and therefore require no elaboration. Other techniques of remote sensing of electromagnetic radiation in and beyond the limits of the visible spectrum require some explanation and differentiation from the techniques used in the visible spectrum.The following definitions of "photography" and "imagery" are proposed to clarify these two terms in hope that this will lead to more precise understanding and explanation of the processes.
Lin, Junfang; Lee, Zhongping; Ondrusek, Michael; Liu, Xiaohan
2018-01-22
Absorption (a) and backscattering (bb) coefficients play a key role in determining the light field; they also serve as the link between remote sensing and concentrations of optically active water constituents. Here we present an updated scheme to derive hyperspectral a and bb with hyperspectral remote-sensing reflectance (Rrs) and diffuse attenuation coefficient (Kd) as the inputs. Results show that the system works very well from clear open oceans to highly turbid inland waters, with an overall difference less than 25% between these retrievals and those from instrument measurements. This updated scheme advocates the measurement and generation of hyperspectral a and bb from hyperspectral Rrs and Kd, as an independent data source for cross-evaluation of in situ measurements of a and bb and for the development and/or evaluation of remote sensing algorithms for such optical properties.
Hyperspectral remote sensing of postfire soil properties
Sarah A. Lewis; Peter R. Robichaud; William J. Elliot; Bruce E. Frazier; Joan Q. Wu
2004-01-01
Forest fires may induce changes in soil organic properties that often lead to water repellent conditions within the soil profile that decrease soil infiltration capacity. The remote detection of water repellent soils after forest fires would lead to quicker and more accurate assessment of erosion potential. An airborne hyperspectral image was acquired over the Hayman...
NASA Astrophysics Data System (ADS)
Marshall, Hans-Peter
The distribution of water in the snow-covered areas of the world is an important climate change indicator, and it is a vital component of the water cycle. At local and regional scales, the snow water equivalent (SWE), the amount of liquid water a given area of the snowpack represents, is very important for water resource management, flood forecasting, and prediction of available hydropower energy. Measurements from only a few automatic weather stations, such as the SNOTEL network, or sparse manual snowpack measurements are typically extrapolated for estimating SWE over an entire basin. Widespread spatial variability in the distribution of SWE and snowpack stratigraphy at local scales causes large errors in these basin estimates. Remote sensing measurements offer a promising alternative, due to their large spatial coverage and high temporal resolution. Although snow cover extent can currently be estimated from remote sensing data, accurately quantifying SWE from remote sensing measurements has remained difficult, due to a high sensitivity to variations in grain size and stratigraphy. In alpine snowpacks, the large degree of spatial variability of snowpack properties and geometry, caused by topographic, vegetative, and microclimatic effects, also makes prediction of snow avalanches very difficult. Ground-based radar and penetrometer measurements can quickly and accurately characterize snowpack properties and SWE in the field. A portable lightweight radar was developed, and allows a real-time estimate of SWE to within 10%, as well as measurements of depths of all major density transitions within the snowpack. New analysis techniques developed in this thesis allow accurate estimates of mechanical properties and an index of grain size to be retrieved from the SnowMicroPenetrometer. These two tools together allow rapid characterization of the snowpack's geometry, mechanical properties, and SWE, and are used to guide a finite element model to study the stress distribution on a slope. The ability to accurately characterize snowpack properties at much higher resolutions and spatial extent than previously possible will hopefully help lead to a more complete understanding of spatial variability, its effect on remote sensing measurements and snow slope stability, and result in improvements in avalanche prediction and accuracy of SWE estimates from space.
NASA Astrophysics Data System (ADS)
Falco, N.; Wainwright, H. M.; Dafflon, B.; Leger, E.; Peterson, J.; Steltzer, H.; Wilmer, C.; Williams, K. H.; Hubbard, S. S.
2017-12-01
Mountainous watershed systems are characterized by extreme heterogeneity in hydrological and pedological properties that influence biotic activities, plant communities and their dynamics. To gain predictive understanding of how ecosystem and watershed system evolve under climate change, it is critical to capture such heterogeneity and to quantify the effect of key environmental variables such as topography, and soil properties. In this study, we exploit advanced geophysical and remote sensing techniques - coupled with machine learning - to better characterize and quantify the interactions between plant communities' distribution and subsurface properties. First, we have developed a remote sensing data fusion framework based on the random forest (RF) classification algorithm to estimate the spatial distribution of plant communities. The framework allows the integration of both plant spectral and structural information, which are derived from multispectral satellite images and airborne LiDAR data. We then use the RF method to evaluate the estimated plant community map, exploiting the subsurface properties (such as bedrock depth, soil moisture and other properties) and geomorphological parameters (such as slope, curvature) as predictors. Datasets include high-resolution geophysical data (electrical resistivity tomography) and LiDAR digital elevation maps. We demonstrate our approach on a mountain hillslope and meadow within the East River watershed in Colorado, which is considered to be a representative headwater catchment in the Upper Colorado Basin. The obtained results show the existence of co-evolution between above and below-ground processes; in particular, dominant shrub communities in wet and flat areas. We show that successful integration of remote sensing data with geophysical measurements allows identifying and quantifying the key environmental controls on plant communities' distribution, and provides insights into their potential changes in the future climate conditions.
Knepper, D.H.; Langer, W.H.; Miller, S.
1995-01-01
Natural aggregate is vital to the construction industry. Although natural aggregate is a high volume/low value commodity that is abundant, new sources are becoming increasingly difficult to find and develop because of rigid industry specifications, political considerations, development and transportation costs, and environmental concerns. There are two primary sources of natural aggregate: (1) exposed or near-surface bedrock that can be crushed, and (2) deposits of sand and gravel. Remote sensing and airborne geophysics detect surface and near-surface phenomena, and may be useful for detecting and mapping potential aggregate sources; however, before a methodology for applying these techniques can be developed, it is necessary to understand the type, distribution, physical properties, and characteristics of natural aggregate deposits. The distribution of potential aggregate sources is closely tied to local geologic history. Conventional exploration for natural aggregate deposits has been largely a ground-based operation, although aerial photographs and topographic maps have been extensively used to target possible deposits. Today, the exploration process also considers factors such as the availability of the land, space and water supply for processing, political and environmental factors, and distance from the market; exploration and planning cannot be separated. There are many physical properties and characteristics by which to judge aggregate material for specific applications; most of these properties and characteristics pertain only to individual aggregate particles. The application of remote sensing and airborne geophysical measurements to detecting and mapping potential aggregate sources, however, is based on intrinsic bulk physical properties and extrinsic characteristics of the deposits that can be directly measured, mathematically derived from measurement, or interpreted with remote sensing and geophysical data. ?? 1995 Oxford UniversityPress.
A review of remote sensing and grasslands literature
NASA Technical Reports Server (NTRS)
Tappan, G.; Kinsler, M. C. (Principal Investigator)
1982-01-01
Studies between 1971 and 1980 dealing with remote sensing of rangelands/grasslands in the multispectral band are summarized and evaluated. Vegetation and soil reflectance properties are described. In the majority of the studies, the effect of the reflectance of green rangelands vegetation on the reflectance from the total scene is the primary concern. Developments in technique are summarized and recommendations for further research are presented.
A New Way to Measure Cirrus Ice Water Content by Using Ice Raman Scatter with Raman Lidar
NASA Technical Reports Server (NTRS)
Wang, Zhien; Whiteman, David N.; Demoz, Belay; Veselovskii, Igor
2004-01-01
High and cold cirrus clouds mainly contain irregular ice crystals, such as, columns, hexagonal plates, bullet rosettes, and dendrites, and have different impacts on the climate system than low-level clouds, such as stratus, stratocumulus, and cumulus. The radiative effects of cirrus clouds on the current and future climate depend strongly on cirrus cloud microphysical properties including ice water content (IWC) and ice crystal sizes, which are mostly an unknown aspect of cinus clouds. Because of the natural complexity of cirrus clouds and their high locations, it is a challenging task to get them accurately by both remote sensing and in situ sampling. This study presents a new method to remotely sense cirrus microphysical properties by using ice Raman scatter with a Raman lidar. The intensity of Raman scattering is fundamentally proportional to the number of molecules involved. Therefore, ice Raman scattering signal provides a more direct way to measure IWC than other remote sensing methods. Case studies show that this method has the potential to provide essential information of cirrus microphysical properties to study cloud physical processes in cirrus clouds.
NASA Technical Reports Server (NTRS)
Mattikalli, N. M.; Engman, E. T.; Jackson, T. J.; Ahuja, L. R.
1997-01-01
This paper demonstrates the use of multitemporal soil moisture derived from microwave remote sensing to estimate soil physical properties. The passive microwave ESTAR instrument was employed during June 10-18, 1992, to obtain brightness temperature (TB) and surface soil moisture data in the Little Washita watershed, Oklahoma. Analyses of spatial and temporal variations of TB and soil moisture during the dry-down period revealed a direct relationship between changes in T and soil moisture and soil physical (viz. texture) and hydraulic (viz. saturated hydraulic conductivity, K(sat)) properties. Statistically significant regression relationships were developed for the ratio of percent sand to percent clay (RSC) and K(sat), in terms of change components of TB and surface soil moisture. Validation of results using field measured values and soil texture map indicated that both RSC and K(sat) can be estimated with reasonable accuracy. These findings have potential applications of microwave remote sensing to obtain quick estimates of the spatial distributions of K(sat), over large areas for input parameterization of hydrologic models.
Some Insights of Spectral Optimization in Ocean Color Inversion
NASA Technical Reports Server (NTRS)
Lee, Zhongping; Franz, Bryan; Shang, Shaoling; Dong, Qiang; Arnone, Robert
2011-01-01
In the past decades various algorithms have been developed for the retrieval of water constituents from the measurement of ocean color radiometry, and one of the approaches is spectral optimization. This approach defines an error target (or error function) between the input remote sensing reflectance and the output remote sensing reflectance, with the latter modeled with a few variables that represent the optically active properties (such as the absorption coefficient of phytoplankton and the backscattering coefficient of particles). The values of the variables when the error reach a minimum (optimization is achieved) are considered the properties that form the input remote sensing reflectance; or in other words, the equations are solved numerically. The applications of this approach implicitly assume that the error is a monotonic function of the various variables. Here, with data from numerical simulation and field measurements, we show the shape of the error surface, in a way to justify the possibility of finding a solution of the various variables. In addition, because the spectral properties could be modeled differently, impacts of such differences on the error surface as well as on the retrievals are also presented.
Dong, Yingying; Luo, Ruisen; Feng, Haikuan; Wang, Jihua; Zhao, Jinling; Zhu, Yining; Yang, Guijun
2014-01-01
Differences exist among analysis results of agriculture monitoring and crop production based on remote sensing observations, which are obtained at different spatial scales from multiple remote sensors in same time period, and processed by same algorithms, models or methods. These differences can be mainly quantitatively described from three aspects, i.e. multiple remote sensing observations, crop parameters estimation models, and spatial scale effects of surface parameters. Our research proposed a new method to analyse and correct the differences between multi-source and multi-scale spatial remote sensing surface reflectance datasets, aiming to provide references for further studies in agricultural application with multiple remotely sensed observations from different sources. The new method was constructed on the basis of physical and mathematical properties of multi-source and multi-scale reflectance datasets. Theories of statistics were involved to extract statistical characteristics of multiple surface reflectance datasets, and further quantitatively analyse spatial variations of these characteristics at multiple spatial scales. Then, taking the surface reflectance at small spatial scale as the baseline data, theories of Gaussian distribution were selected for multiple surface reflectance datasets correction based on the above obtained physical characteristics and mathematical distribution properties, and their spatial variations. This proposed method was verified by two sets of multiple satellite images, which were obtained in two experimental fields located in Inner Mongolia and Beijing, China with different degrees of homogeneity of underlying surfaces. Experimental results indicate that differences of surface reflectance datasets at multiple spatial scales could be effectively corrected over non-homogeneous underlying surfaces, which provide database for further multi-source and multi-scale crop growth monitoring and yield prediction, and their corresponding consistency analysis evaluation.
Dong, Yingying; Luo, Ruisen; Feng, Haikuan; Wang, Jihua; Zhao, Jinling; Zhu, Yining; Yang, Guijun
2014-01-01
Differences exist among analysis results of agriculture monitoring and crop production based on remote sensing observations, which are obtained at different spatial scales from multiple remote sensors in same time period, and processed by same algorithms, models or methods. These differences can be mainly quantitatively described from three aspects, i.e. multiple remote sensing observations, crop parameters estimation models, and spatial scale effects of surface parameters. Our research proposed a new method to analyse and correct the differences between multi-source and multi-scale spatial remote sensing surface reflectance datasets, aiming to provide references for further studies in agricultural application with multiple remotely sensed observations from different sources. The new method was constructed on the basis of physical and mathematical properties of multi-source and multi-scale reflectance datasets. Theories of statistics were involved to extract statistical characteristics of multiple surface reflectance datasets, and further quantitatively analyse spatial variations of these characteristics at multiple spatial scales. Then, taking the surface reflectance at small spatial scale as the baseline data, theories of Gaussian distribution were selected for multiple surface reflectance datasets correction based on the above obtained physical characteristics and mathematical distribution properties, and their spatial variations. This proposed method was verified by two sets of multiple satellite images, which were obtained in two experimental fields located in Inner Mongolia and Beijing, China with different degrees of homogeneity of underlying surfaces. Experimental results indicate that differences of surface reflectance datasets at multiple spatial scales could be effectively corrected over non-homogeneous underlying surfaces, which provide database for further multi-source and multi-scale crop growth monitoring and yield prediction, and their corresponding consistency analysis evaluation. PMID:25405760
NASA Astrophysics Data System (ADS)
Liu, Yang; Li, Feng; Xin, Lei; Fu, Jie; Huang, Puming
2017-10-01
Large amount of data is one of the most obvious features in satellite based remote sensing systems, which is also a burden for data processing and transmission. The theory of compressive sensing(CS) has been proposed for almost a decade, and massive experiments show that CS has favorable performance in data compression and recovery, so we apply CS theory to remote sensing images acquisition. In CS, the construction of classical sensing matrix for all sparse signals has to satisfy the Restricted Isometry Property (RIP) strictly, which limits applying CS in practical in image compression. While for remote sensing images, we know some inherent characteristics such as non-negative, smoothness and etc.. Therefore, the goal of this paper is to present a novel measurement matrix that breaks RIP. The new sensing matrix consists of two parts: the standard Nyquist sampling matrix for thumbnails and the conventional CS sampling matrix. Since most of sun-synchronous based satellites fly around the earth 90 minutes and the revisit cycle is also short, lots of previously captured remote sensing images of the same place are available in advance. This drives us to reconstruct remote sensing images through a deep learning approach with those measurements from the new framework. Therefore, we propose a novel deep convolutional neural network (CNN) architecture which takes in undersampsing measurements as input and outputs an intermediate reconstruction image. It is well known that the training procedure to the network costs long time, luckily, the training step can be done only once, which makes the approach attractive for a host of sparse recovery problems.
NASA Technical Reports Server (NTRS)
Henderson, F. B. (Editor); Rock, B. N. (Editor)
1983-01-01
Consideration is given to: the applications of near-infrared spectroscopy to geological reconnaissance and exploration from space; imaging systems for identifying the spectral properties of geological materials in the visible and near-infrared; and Thematic Mapper (TM) data analysis. Consideration is also given to descriptions of individual geological remote sensing systems, including: GEO-SPAS; SPOT; the Thermal Infrared Multispectral Scanner (TIMS); and the Shuttle Imaging Radars A and B (SIR-A and SIR-B). Additional topics include: the importance of geobotany in geological remote sensing; achromatic holographic stereograms from Landsat MSS data; and the availability and applications of NOAA's non-Landsat satellite data archive.
NASA Technical Reports Server (NTRS)
Moore, H. J.
1991-01-01
A semiquantitative appreciation for the physical properties of the Mars surface materials and their global variations can be gained from the Viking Lander and remote sensing observations. Analyses of Lander data yields estimates of the mechanical properties of the soil-like surface materials and best guess estimates can be made for the remote sensing signatures of the soil-like materials at the landing sites. Results show that significant thickness of powderlike surface materials with physical properties similar to drift material are present on Mars and probably pervasive in the Tharsis region. It also appears likely that soil-like materials similar to crusty to cloddy material are typical for Mars, and that soil-like material similar to blocky material are common on Mars.
NASA Astrophysics Data System (ADS)
Colombo, R.; Baccolo, G.; Garzonio, R.; Massabò, D.; Julitta, T.; Rossini, M.; Ferrero, L.; Delmonte, B.; Maggi, V.; Mattavelli, M.; Panigada, C.; Cogliati, S.; Cremonese, E.; Di Mauro, B.
2016-12-01
The European Alps are located close to one of the most industrialized areas of the planet and they are 3.000 km from the largest desert of the Earth. Light-absorbing impurities (LAI) emitted from these sources can reach the Alpine chain and deposit on snow covered areas and mountain glaciers. Although several studies show that LAI have important impacts on the optical properties of snow and ice, reducing the albedo and promoting the melt, this impact has been poorly characterized in the Alps. In this contribution, we present the results of a multisource remote sensing approach aimed to study the LAI impact on snow and ice properties in the Alpine area. This process has been observed by means of remote and proximal sensing methods, using satellite (Landsat 8, Hyperion and MODIS data), field spectroscopy (ASD measurements), Automatic Weather Stations, aerial surveys (Unmanned Aerial Vehicle), radiative transfer modeling (SNICAR and TARTES) and laboratory analysis (hyperspectral imaging system). Furthermore, particle size (Coulter Counter), geochemical (Instrumental Neutron Activation Analysis, INAA) and optical (Multi-Wavelength Absorbance Analyzer, MWAA) analyses have been applied to determine the nature and radiative properties of particulate material deposited on snow and ice or aggregated into cryoconite holes. Our results demonstrate that LAI can be monitored from remote sensing at different scale. LAI showed to have a strong impact on the Alpine cryosphere, paving the way for the assessment of their role in melting processes.
DARLA: Data Assimilation and Remote Sensing for Littoral Applications
NASA Astrophysics Data System (ADS)
Jessup, A.; Holman, R. A.; Chickadel, C.; Elgar, S.; Farquharson, G.; Haller, M. C.; Kurapov, A. L.; Özkan-Haller, H. T.; Raubenheimer, B.; Thomson, J. M.
2012-12-01
DARLA is 5-year collaborative project that couples state-of-the-art remote sensing and in situ measurements with advanced data assimilation (DA) modeling to (a) evaluate and improve remote sensing retrieval algorithms for environmental parameters, (b) determine the extent to which remote sensing data can be used in place of in situ data in models, and (c) infer bathymetry for littoral environments by combining remotely-sensed parameters and data assimilation models. The project uses microwave, electro-optical, and infrared techniques to characterize the littoral ocean with a focus on wave and current parameters required for DA modeling. In conjunction with the RIVET (River and Inlets) Project, extensive in situ measurements provide ground truth for both the remote sensing retrieval algorithms and the DA modeling. Our goal is to use remote sensing to constrain data assimilation models of wave and circulation dynamics in a tidal inlet and surrounding beaches. We seek to improve environmental parameter estimation via remote sensing fusion, determine the success of using remote sensing data to drive DA models, and produce a dynamically consistent representation of the wave, circulation, and bathymetry fields in complex environments. The objectives are to test the following three hypotheses: 1. Environmental parameter estimation using remote sensing techniques can be significantly improved by fusion of multiple sensor products. 2. Data assimilation models can be adequately constrained (i.e., forced or guided) with environmental parameters derived from remote sensing measurements. 3. Bathymetry on open beaches, river mouths, and at tidal inlets can be inferred from a combination of remotely-sensed parameters and data assimilation models. Our approach is to conduct a series of field experiments combining remote sensing and in situ measurements to investigate signature physics and to gather data for developing and testing DA models. A preliminary experiment conducted at the Field Research Facility at Duck, NC in September 2010 focused on assimilation of tower-based electo-optical, infrared, and radar measurements in predictions of longshore currents. Here we provide an overview of our contribution to the RIVET I experiment at New River Inlet, NC in May 2012. During the course of the 3-week measurement period, continuous tower-based remote sensing measurements were made using electro-optical, infrared, and radar techniques covering the nearshore zone and the inlet mouth. A total of 50 hours of airborne measurements were made using high-resolution infrared imagers and a customized along track interferometric synthetic aperture radar (ATI SAR). The airborne IR imagery provides kilometer-scale mapping of frontal features that evolve as the inlet flow interacts with the oceanic wave and current fields. The ATI SAR provides maps of the two-dimensional surface currents. Near-surface measurements of turbulent velocities and surface waves using SWIFT drifters, designed to measures near-surface properties relevant to remote sensing, complimented the extensive in situ measurements by RIVET investigators.
NASA Astrophysics Data System (ADS)
Singh, Manoj K.; Gautam, Ritesh; Gatebe, Charles K.; Poudyal, Rajesh
2016-11-01
The Bidirectional Reflectance Distribution Function (BRDF) is a fundamental concept for characterizing the reflectance property of a surface, and helps in the analysis of remote sensing data from satellite, airborne and surface platforms. Multi-angular remote sensing measurements are required for the development and evaluation of BRDF models for improved characterization of surface properties. However, multi-angular data and the associated BRDF models are typically multidimensional involving multi-angular and multi-wavelength information. Effective visualization of such complex multidimensional measurements for different wavelength combinations is presently somewhat lacking in the literature, and could serve as a potentially useful research and teaching tool in aiding both interpretation and analysis of BRDF measurements. This article describes a newly developed software package in Python (PolarBRDF) to help visualize and analyze multi-angular data in polar and False Color Composite (FCC) forms. PolarBRDF also includes functionalities for computing important multi-angular reflectance/albedo parameters including spectral albedo, principal plane reflectance and spectral reflectance slope. Application of PolarBRDF is demonstrated using various case studies obtained from airborne multi-angular remote sensing measurements using NASA's Cloud Absorption Radiometer (CAR). Our visualization program also provides functionalities for untangling complex surface/atmosphere features embedded in pixel-based remote sensing measurements, such as the FCC imagery generation of BRDF measurements of grasslands in the presence of wildfire smoke and clouds. Furthermore, PolarBRDF also provides quantitative information of the angular distribution of scattered surface/atmosphere radiation, in the form of relevant BRDF variables such as sunglint, hotspot and scattering statistics.
NASA Astrophysics Data System (ADS)
Poudyal, R.; Singh, M.; Gautam, R.; Gatebe, C. K.
2016-12-01
The Bidirectional Reflectance Distribution Function (BRDF) is a fundamental concept for characterizing the reflectance property of a surface, and helps in the analysis of remote sensing data from satellite, airborne and surface platforms. Multi-angular remote sensing measurements are required for the development and evaluation of BRDF models for improved characterization of surface properties. However, multi-angular data and the associated BRDF models are typically multidimensional involving multi-angular and multi-wavelength information. Effective visualization of such complex multidimensional measurements for different wavelength combinations is presently somewhat lacking in the literature, and could serve as a potentially useful research and teaching tool in aiding both interpretation and analysis of BRDF measurements. This article describes a newly developed software package in Python (PolarBRDF) to help visualize and analyze multi-angular data in polar and False Color Composite (FCC) forms. PolarBRDF also includes functionalities for computing important multi-angular reflectance/albedo parameters including spectral albedo, principal plane reflectance and spectral reflectance slope. Application of PolarBRDF is demonstrated using various case studies obtained from airborne multi-angular remote sensing measurements using NASA's Cloud Absorption Radiometer (CAR)- http://car.gsfc.nasa.gov/. Our visualization program also provides functionalities for untangling complex surface/atmosphere features embedded in pixel-based remote sensing measurements, such as the FCC imagery generation of BRDF measurements of grasslands in the presence of wildfire smoke and clouds. Furthermore, PolarBRDF also provides quantitative information of the angular distribution of scattered surface/atmosphere radiation, in the form of relevant BRDF variables such as sunglint, hotspot and scattering statistics.
NASA Technical Reports Server (NTRS)
Singh, Manoj K.; Gautam, Ritesh; Gatebe, Charles K.; Poudyal, Rajesh
2016-01-01
The Bidirectional Reflectance Distribution Function (BRDF) is a fundamental concept for characterizing the reflectance property of a surface, and helps in the analysis of remote sensing data from satellite, airborne and surface platforms. Multi-angular remote sensing measurements are required for the development and evaluation of BRDF models for improved characterization of surface properties. However, multi-angular data and the associated BRDF models are typically multidimensional involving multi-angular and multi-wavelength information. Effective visualization of such complex multidimensional measurements for different wavelength combinations is presently somewhat lacking in the literature, and could serve as a potentially useful research and teaching tool in aiding both interpretation and analysis of BRDF measurements. This article describes a newly developed software package in Python (PolarBRDF) to help visualize and analyze multi-angular data in polar and False Color Composite (FCC) forms. PolarBRDF also includes functionalities for computing important multi-angular reflectance/albedo parameters including spectral albedo, principal plane reflectance and spectral reflectance slope. Application of PolarBRDF is demonstrated using various case studies obtained from airborne multi-angular remote sensing measurements using NASA's Cloud Absorption Radiometer (CAR). Our visualization program also provides functionalities for untangling complex surface/atmosphere features embedded in pixel-based remote sensing measurements, such as the FCC imagery generation of BRDF measurements of grasslands in the presence of wild fire smoke and clouds. Furthermore, PolarBRDF also provides quantitative information of the angular distribution of scattered surface/atmosphere radiation, in the form of relevant BRDF variables such as sunglint, hotspot and scattering statistics.
Active and Passive 3D Vector Radiative Transfer with Preferentially-Aligned Ice Particles
NASA Technical Reports Server (NTRS)
Adams, Ian S.; Munchak, Stephen J.; Pelissier, Craig S.; Kuo, Kwo-Sen; Heymsfield, Gerald M.
2017-01-01
For the purposes of interpreting active (radar) and passive (radiometer) microwave and millimeter wave remote sensing data, we have constructed a consistent radiative transfer modeling framework to simulate the responses for arbitrary sensors with differing sensing geometries and hardware configurations. As part of this work, we have implemented a recent method for calculating the electromagnetic properties of individual ice crystals and snow flakes. These calculations will allow us to exploit polarized remote sensing observations to discriminate different particles types and elucidate dynamics of cloud and precipitating systems.
Remote sensing of plant functional types.
Ustin, Susan L; Gamon, John A
2010-06-01
Conceptually, plant functional types represent a classification scheme between species and broad vegetation types. Historically, these were based on physiological, structural and/or phenological properties, whereas recently, they have reflected plant responses to resources or environmental conditions. Often, an underlying assumption, based on an economic analogy, is that the functional role of vegetation can be identified by linked sets of morphological and physiological traits constrained by resources, based on the hypothesis of functional convergence. Using these concepts, ecologists have defined a variety of functional traits that are often context dependent, and the diversity of proposed traits demonstrates the lack of agreement on universal categories. Historically, remotely sensed data have been interpreted in ways that parallel these observations, often focused on the categorization of vegetation into discrete types, often dependent on the sampling scale. At the same time, current thinking in both ecology and remote sensing has moved towards viewing vegetation as a continuum rather than as discrete classes. The capabilities of new remote sensing instruments have led us to propose a new concept of optically distinguishable functional types ('optical types') as a unique way to address the scale dependence of this problem. This would ensure more direct relationships between ecological information and remote sensing observations.
Spatial Inference for Distributed Remote Sensing Data
NASA Astrophysics Data System (ADS)
Braverman, A. J.; Katzfuss, M.; Nguyen, H.
2014-12-01
Remote sensing data are inherently spatial, and a substantial portion of their value for scientific analyses derives from the information they can provide about spatially dependent processes. Geophysical variables such as atmopsheric temperature, cloud properties, humidity, aerosols and carbon dioxide all exhibit spatial patterns, and satellite observations can help us learn about the physical mechanisms driving them. However, remote sensing observations are often noisy and incomplete, so inferring properties of true geophysical fields from them requires some care. These data can also be massive, which is both a blessing and a curse: using more data drives uncertainties down, but also drives costs up, particularly when data are stored on different computers or in different physical locations. In this talk I will discuss a methodology for spatial inference on massive, distributed data sets that does not require moving large volumes of data. The idea is based on a combination of ideas including modeling spatial covariance structures with low-rank covariance matrices, and distributed estimation in sensor or wireless networks.
Investigating the thermophysical properties of indurated materials on Mars
NASA Astrophysics Data System (ADS)
Murphy, Nathaniel William
Indurated materials have been observed on the surface of Mars at every landing site and inferred from orbital remote-sensing data by the Viking, Mars Global Surveyor, and Mars Odyssey spacecraft. However, indurated materials on Mars are poorly understood because there is no ground truth for the indurated surfaces inferred from thermal remote-sensing data. I adopted two approaches to investigate indurated materials on Mars: (1) remote-sensing analysis of the Isidis basin, which shows some of the highest thermal inertia values derived from TES 1 observations, and (2) laboratory analyses of terrestrial indurated materials. To characterize the surface of the Isidis basin, I combined a variety of remote-sensing datasets, including thermal inertia data derived from TES and MO-THEMIS, TES albedo, THEMIS thermal and visible imaging, and Earth-based radar observations. From these observations I concluded that the thermal inertia values in the Isidis basin are likely the result of variations in the degree of cementation of indurated materials. To examine the thermophysical properties of indurated materials I collected four examples of terrestrial indurated materials. These included two types of gypcrete collected from a gypcrete deposit near Upham Hills, NM, clay-materials from Lunar Lake Playa, NV, and a pyroclastic material from the Bandelier Tuff near Los Alamos, NM. Despite significant differences in their physical properties and origins, all of these materials have thermal inertia values consistent with inferred indurated surfaces on Mars. There are no strong correlations between the thermal and physical properties of the collected samples due to thermal effects of the fabrics of the indurated materials. 1 Thermal Emission Spectrometer onboard the Mars Global Surveyor spacecraft. 2 Thermal Emission Imaging System onboard the Mars Odyssey spacecraft
Remote sensing reflectance simulation of coastal optical complex water in the East China Sea
NASA Astrophysics Data System (ADS)
He, Shuo; Lou, Xiulin; Zhang, Huaguo; Zheng, Gang
2018-02-01
In this work, remote sensing reflectance (Rrs) spectra of the Zhejiang coastal water in the East China Sea (ECS) were simulated by using the Hydrolight software with field data as input parameters. The seawater along the Zhejiang coast is typical Case II water with complex optical properties. A field observation was conducted in the Zhejiang coastal region in late May of 2016, and the concentration of ocean color constituents (pigment, SPM and CDOM), IOPs (absorption and backscattering coefficients) and Rrs were measured at 24 stations of 3 sections covering the turbid to clear inshore coastal waters. Referring to these ocean color field data, an ocean color model suitable for the Zhejiang coastal water was setup and applied in the Hydrolight. A set of 11 remote sensing reflectance spectra above water surface were modeled and calculated. Then, the simulated spectra were compared with the filed measurements. Finally, the spectral shape and characteristics of the remote sensing reflectance spectra were analyzed and discussed.
Hyperspectral remote sensing of plant pigments.
Blackburn, George Alan
2007-01-01
The dynamics of pigment concentrations are diagnostic of a range of plant physiological properties and processes. This paper appraises the developing technologies and analytical methods for quantifying pigments non-destructively and repeatedly across a range of spatial scales using hyperspectral remote sensing. Progress in deriving predictive relationships between various characteristics and transforms of hyperspectral reflectance data are evaluated and the roles of leaf and canopy radiative transfer models are reviewed. Requirements are identified for more extensive intercomparisons of different approaches and for further work on the strategies for interpreting canopy scale data. The paper examines the prospects for extending research to the wider range of pigments in addition to chlorophyll, testing emerging methods of hyperspectral analysis and exploring the fusion of hyperspectral and LIDAR remote sensing. In spite of these opportunities for further development and the refinement of techniques, current evidence of an expanding range of applications in the ecophysiological, environmental, agricultural, and forestry sciences highlights the growing value of hyperspectral remote sensing of plant pigments.
A stochastic atmospheric model for remote sensing applications
NASA Technical Reports Server (NTRS)
Turner, R. E.
1983-01-01
There are many factors which reduce the accuracy of classification of objects in the satellite remote sensing of Earth's surface. One important factor is the variability in the scattering and absorptive properties of the atmospheric components such as particulates and the variable gases. For multispectral remote sensing of the Earth's surface in the visible and infrared parts of the spectrum the atmospheric particulates are a major source of variability in the received signal. It is difficult to design a sensor which will determine the unknown atmospheric components by remote sensing methods, at least to the accuracy needed for multispectral classification. The problem of spatial and temporal variations in the atmospheric quantities which can affect the measured radiances are examined. A method based upon the stochastic nature of the atmospheric components was developed, and, using actual data the statistical parameters needed for inclusion into a radiometric model was generated. Methods are then described for an improved correction of radiances. These algorithms will then result in a more accurate and consistent classification procedure.
Observations in the solar spectrum interest for remote sensing purposes
NASA Technical Reports Server (NTRS)
Herman, M.; Vanderbilt, V.
1994-01-01
The polarization of the sunlight scattered by atmospheric aerosols or cloud droplets and reflected from ground surfaces or plant canopies may convey much information when used for remote sensing purposes. The typical polarization features of aerosols, cloud droplets, and plant canopies, as observed by ground based and airborne sensors, are investigated, looking especially for those invariant properties amenable to description by simple models when possible. The question of polarization measurements from space is addressed. The interest of such measurements for remote sensing purposes is investigated, and their feasibility is tested by using results obtained during field campaigns of the airborne POLDER instrument, a radiometer designed to measure the directionality and polarization of the sunlight scattered by the ground atmosphere system.
Research of BRDF effects on remote sensing imagery
NASA Astrophysics Data System (ADS)
Nina, Peng; Kun, Wang; Tao, Li; Yang, Pan
2011-08-01
The gray distribution and contrast of the optical satellite remote sensing imagery in the same kind of ground surface acquired by sensor is quite different, it depends not only on the satellite's observation and the sun incidence orientation but also the structural and optical properties of the surface. Therefore, the objectives of this research are to analyze the different BRDF characters of soil, vegetation, water and urban surface and also their BRDF effects on the quality of satellite image through 6S radiative transfer model. Furthermore, the causation of CCD blooming and spilling by ground reflectance is discussed by using QUICKBIRD image data and the corresponding ground image data. The general conclusion of BRDF effects on remote sensing imagery is proposed.
NASA Astrophysics Data System (ADS)
Hashimoto, M.; Nakajima, T.; Takenaka, H.; Higurashi, A.
2013-12-01
We develop a new satellite remote sensing algorithm to retrieve the properties of aerosol particles in the atmosphere. In late years, high resolution and multi-wavelength, and multiple-angle observation data have been obtained by grand-based spectral radiometers and imaging sensors on board the satellite. With this development, optimized multi-parameter remote sensing methods based on the Bayesian theory have become popularly used (Turchin and Nozik, 1969; Rodgers, 2000; Dubovik et al., 2000). Additionally, a direct use of radiation transfer calculation has been employed for non-linear remote sensing problems taking place of look up table methods supported by the progress of computing technology (Dubovik et al., 2011; Yoshida et al., 2011). We are developing a flexible multi-pixel and multi-parameter remote sensing algorithm for aerosol optical properties. In this algorithm, the inversion method is a combination of the MAP method (Maximum a posteriori method, Rodgers, 2000) and the Phillips-Twomey method (Phillips, 1962; Twomey, 1963) as a smoothing constraint for the state vector. Furthermore, we include a radiation transfer calculation code, Rstar (Nakajima and Tanaka, 1986, 1988), numerically solved each time in iteration for solution search. The Rstar-code has been directly used in the AERONET operational processing system (Dubovik and King, 2000). Retrieved parameters in our algorithm are aerosol optical properties, such as aerosol optical thickness (AOT) of fine mode, sea salt, and dust particles, a volume soot fraction in fine mode particles, and ground surface albedo of each observed wavelength. We simultaneously retrieve all the parameters that characterize pixels in each of horizontal sub-domains consisting the target area. Then we successively apply the retrieval method to all the sub-domains in the target area. We conducted numerical tests for the retrieval of aerosol properties and ground surface albedo for GOSAT/CAI imager data to test the algorithm for the land area. In this test, we simulated satellite-observed radiances for a sub-domain consisting of 5 by 5 pixels by the Rstar code assuming wavelengths of 380, 674, 870 and 1600 [nm], atmospheric condition of the US standard atmosphere, and the several aerosol and ground surface conditions. The result of the experiment showed that AOTs of fine mode and dust particles, soot fraction and ground surface albedo at the wavelength of 674 [nm] are retrieved within absolute value differences of 0.04, 0.01, 0.06 and 0.006 from the true value, respectively, for the case of dark surface, and also, for the case of blight surface, 0.06, 0.03, 0.04 and 0.10 from the true value, respectively. We will conduct more tests to study the information contents of parameters needed for aerosol and land surface remote sensing with different boundary conditions among sub-domains.
NASA Astrophysics Data System (ADS)
Hufkens, K.; Richardson, A. D.; Migliavacca, M.; Frolking, S. E.; Braswell, B. H.; Milliman, T.; Friedl, M. A.
2010-12-01
In recent years several studies have used digital cameras and webcams to monitor green leaf phenology. Such "near-surface" remote sensing has been shown to be a cost effective means of accurately capturing phenology. Specifically, it allows for accurate tracking of intra- and inter-annual phenological dynamics at high temporal frequency and over broad spatial scales compared to visual observations or tower-based fAPAR and broadband NDVI measurements. Near surface remote sensing measurements therefore show promise for bridging the gap between traditional in-situ measurements of phenology and satellite remote sensing data. For this work, we examined the relationship between phenophase estimates derived from satellite remote sensing (MODIS) and near-earth remote sensing derived from webcams for a select set of sites with high-quality webcam data. A logistic model was used to characterize phenophases for both the webcam and MODIS data. We documented model fit accuracy, phenophase estimates, and model biases for both data sources. Our results show that different vegetation indices (VI's) derived from MODIS produce significantly different phenophase estimates compared to corresponding estimates derived from webcam data. Different VI's showed markedly different radiometric properties, and as a result, influenced phenophase estimates. The study shows that phenophase estimates are not only highly dependent on the algorithm used but also depend on the VI used by the phenology retrieval algorithm. These results highlight the need for a better understanding of how near-earth and satellite remote data relate to eco-physiological and canopy changes during different parts of the growing season.
Remote sensing of vegetation structure using computer vision
NASA Astrophysics Data System (ADS)
Dandois, Jonathan P.
High-spatial resolution measurements of vegetation structure are needed for improving understanding of ecosystem carbon, water and nutrient dynamics, the response of ecosystems to a changing climate, and for biodiversity mapping and conservation, among many research areas. Our ability to make such measurements has been greatly enhanced by continuing developments in remote sensing technology---allowing researchers the ability to measure numerous forest traits at varying spatial and temporal scales and over large spatial extents with minimal to no field work, which is costly for large spatial areas or logistically difficult in some locations. Despite these advances, there remain several research challenges related to the methods by which three-dimensional (3D) and spectral datasets are joined (remote sensing fusion) and the availability and portability of systems for frequent data collections at small scale sampling locations. Recent advances in the areas of computer vision structure from motion (SFM) and consumer unmanned aerial systems (UAS) offer the potential to address these challenges by enabling repeatable measurements of vegetation structural and spectral traits at the scale of individual trees. However, the potential advances offered by computer vision remote sensing also present unique challenges and questions that need to be addressed before this approach can be used to improve understanding of forest ecosystems. For computer vision remote sensing to be a valuable tool for studying forests, bounding information about the characteristics of the data produced by the system will help researchers understand and interpret results in the context of the forest being studied and of other remote sensing techniques. This research advances understanding of how forest canopy and tree 3D structure and color are accurately measured by a relatively low-cost and portable computer vision personal remote sensing system: 'Ecosynth'. Recommendations are made for optimal conditions under which forest structure measurements should be obtained with UAS-SFM remote sensing. Ultimately remote sensing of vegetation by computer vision offers the potential to provide an 'ecologist's eye view', capturing not only canopy 3D and spectral properties, but also seeing the trees in the forest and the leaves on the trees.
Remote Sensing of Crystal Shapes in Ice Clouds
NASA Technical Reports Server (NTRS)
van Diedenhoven, Bastiaan
2017-01-01
Ice crystals in clouds exist in a virtually limitless variation of geometries. The most basic shapes of ice crystals are columnar or plate-like hexagonal prisms with aspect ratios determined by relative humidity and temperature. However, crystals in ice clouds generally display more complex structures owing to aggregation, riming and growth histories through varying temperature and humidity regimes. Crystal shape is relevant for cloud evolution as it affects microphysical properties such as fall speeds and aggregation efficiency. Furthermore, the scattering properties of ice crystals are affected by their general shape, as well as by microscopic features such as surface roughness, impurities and internal structure. To improve the representation of ice clouds in climate models, increased understanding of the global variation of crystal shape and how it relates to, e.g., location, cloud temperature and atmospheric state is crucial. Here, the remote sensing of ice crystal macroscale and microscale structure from airborne and space-based lidar depolarization observations and multi-directional measurements of total and polarized reflectances is reviewed. In addition, a brief overview is given of in situ and laboratory observations of ice crystal shape as well as the optical properties of ice crystals that serve as foundations for the remote sensing approaches. Lidar depolarization is generally found to increase with increasing cloud height and to vary with latitude. Although this variation is generally linked to the variation of ice crystal shape, the interpretation of the depolarization remains largely qualitative and more research is needed before quantitative conclusions about ice shape can be deduced. The angular variation of total and polarized reflectances of ice clouds has been analyzed by numerous studies in order to infer information about ice crystal shapes from them. From these studies it is apparent that pristine crystals with smooth surfaces are generally inconsistent with the data and thus crystal impurity, distortion or surface roughness is prevalent. However, conclusions about the dominating ice shapes are often inconclusive and contradictory and are highly dependent on the limited selection of shapes included in the investigations. Since ice crystal optical properties are mostly determined by the aspect ratios of the crystal components and their microscale structure, it is advised that remote sensing applications focus on the variation of these ice shape characteristics, rather than on the macroscale shape or habit. Recent studies use databases with nearly continuous ranges of crystal component aspect ratio and-or roughness levels to infer the variation of ice crystal shape from satellite and airborne remote sensing measurements. Here, the rationale and results of varying strategies for the remote sensing of ice crystal shape are reviewed. Observed systematic variations of ice crystal geometry with location, cloud height and atmospheric state suggested by the data are discussed. Finally, a prospective is given on the future of the remote sensing of ice cloud particle shapes.
Compositing multitemporal remote sensing data sets
Qi, J.; Huete, A.R.; Hood, J.; Kerr, Y.
1993-01-01
To eliminate cloud and atmosphere-affected pixels, the compositing of multi temporal remote sensing data sets is done by selecting the maximum vale of the normalized different vegetation index (NDVI) within a compositing period. The NDVI classifier, however, is strongly affected by surface type and anisotropic properties, sensor viewing geometries, and atmospheric conditions. Consequently, the composited, multi temporal, remote sensing data contain substantial noise from these external conditions. Consequently, the composited, multi temporal, remote sensing data contain substantial noise from these external effects. To improve the accuracy of compositing products, two key approaches can be taken: one is to refine the compositing classifier (NDVI) and the other is to improve existing compositing algorithms. In this project, an alternative classifier was developed and an alternative pixel selection criterion was proposed for compositing. The new classifier and the alternative compositing algorithm were applied to an advanced very high resolution radiometer data set of different biome types in the United States. The results were compared with the maximum value compositing and the best index slope extraction algorithms. The new approaches greatly reduced the high frequency noises related to the external factors and repainted more reliable data. The results suggest that the geometric-optical canopy properties of specific biomes may be needed in compositing. Limitations of the new approaches include the dependency of pixel selection on the length of the composite period and data discontinuity.
Atmospheric Effect on Remote Sensing of the Earth's Surface
NASA Technical Reports Server (NTRS)
Fraser, R. S.; Kaufman, Y. J. (Principal Investigator)
1985-01-01
Radiative transfer theory (RT) for an atmosphere with a nonuniform surface is the basis for understanding and correcting for the atmospheric effect on remote sensing of surface properties. In the present work the theory is generalized and tested successfully against laboratory and field measurements. There is still a need to generalize the RT approximation for off-nadir directions and to take into account anisotropic reflectance at the surface. The reflectance at the surface. The adjacency effect results in a significant modification of spectral signatures of the surface, and therefore results in modification of classifications, of separability of field classes, and of spatial resolution. For example, the 30 m resolution of the Thematic Mapper is reduced to 100 m by a hazy atmosphere. The adjacency effect depends on several optical parameters of aerosols: optical thickness, depth of aerosol layer, scattering phase function, and absorption. Remote sensing in general depends on these parameter, not just adjacency effects, but they are not known well enough for making accurate atmospheric corrections. It is important to establish methods for estimating these parameters in order to develop correction methods for atmospheric effects. Such estimations can be based on climatological data, which are not available yet, correlations between the optical parameters and meteorological data, and the same satellite measurements of radiances that are used for estimating surface properties. Knowledge about the atmospheric parameters important for remote sensing is being enlarged with current measurements of them.
NASA Astrophysics Data System (ADS)
Ding, Jiachen; Bi, Lei; Yang, Ping; Kattawar, George W.; Weng, Fuzhong; Liu, Quanhua; Greenwald, Thomas
2017-03-01
An ice crystal single-scattering property database is developed in the microwave spectral region (1 to 874 GHz) to provide the scattering, absorption, and polarization properties of 12 ice crystal habits (10-plate aggregate, 5-plate aggregate, 8-column aggregate, solid hexagonal column, hollow hexagonal column, hexagonal plate, solid bullet rosette, hollow bullet rosette, droxtal, oblate spheroid, prolate spheroid, and sphere) with particle maximum dimensions from 2 μm to 10 mm. For each habit, four temperatures (160, 200, 230, and 270 K) are selected to account for temperature dependence of the ice refractive index. The microphysical and scattering properties include projected area, volume, extinction efficiency, single-scattering albedo, asymmetry factor, and six independent nonzero phase matrix elements (i.e. P11, P12, P22, P33, P43 and P44). The scattering properties are computed by the Invariant Imbedding T-Matrix (II-TM) method and the Improved Geometric Optics Method (IGOM). The computation results show that the temperature dependence of the ice single-scattering properties in the microwave region is significant, particularly at high frequencies. Potential active and passive remote sensing applications of the database are illustrated through radar reflectivity and radiative transfer calculations. For cloud radar applications, ignoring temperature dependence has little effect on ice water content measurements. For passive microwave remote sensing, ignoring temperature dependence may lead to brightness temperature biases up to 5 K in the case of a large ice water path.
Using leaf optical properties to detect ozone effects on foliar biochemistry
USDA-ARS?s Scientific Manuscript database
Efficient methods for accurate and meaningful high-throughput plant phenotyping are limiting the development and breeding of stress-tolerant crops. A number of emerging techniques, specifically remote sensing methods, have been identified as promising tools for plant phenotyping. These remote-sensin...
Propagation Limitations in Remote Sensing.
Contents: Multi-sensors and systems in remote sensing ; Radar sensing systems over land; Remote sensing techniques in oceanography; Influence of...propagation media and background; Infrared techniques in remote sensing ; Photography in remote sensing ; Analytical studies in remote sensing .
Development and implementation of software systems for imaging spectroscopy
Boardman, J.W.; Clark, R.N.; Mazer, A.S.; Biehl, L.L.; Kruse, F.A.; Torson, J.; Staenz, K.
2006-01-01
Specialized software systems have played a crucial role throughout the twenty-five year course of the development of the new technology of imaging spectroscopy, or hyperspectral remote sensing. By their very nature, hyperspectral data place unique and demanding requirements on the computer software used to visualize, analyze, process and interpret them. Often described as a marriage of the two technologies of reflectance spectroscopy and airborne/spaceborne remote sensing, imaging spectroscopy, in fact, produces data sets with unique qualities, unlike previous remote sensing or spectrometer data. Because of these unique spatial and spectral properties hyperspectral data are not readily processed or exploited with legacy software systems inherited from either of the two parent fields of study. This paper provides brief reviews of seven important software systems developed specifically for imaging spectroscopy.
NASA Technical Reports Server (NTRS)
Flower, D. A.; Peckham, G. E.; Bradford, W. J.
1984-01-01
Experiments with a millimeter wave radar operating on the NASA CV-990 aircraft which validate the technique for remotely sensing atmospheric pressure at the Earth's surface are described. Measurements show that the precise millimeter wave observations needed to deduce pressure from space with an accuracy of 1 mb are possible, that sea surface reflection properties agree with theory and that the measured variation of differential absorption with altitude corresponds to that expected from spectroscopic models.
GPS: A New Tool for Ocean Science
NASA Technical Reports Server (NTRS)
Komjathy, Attila; Garrison, James L.; Zavorotny, Valery
2001-01-01
In this article, we demonstrate wind retrieval (estimate its speed) from reflected signals obtained by a GPS receiver on board an aircraft to illustrate the potential of using GPS for remote-sensing applications. Before showing those results, we provide some background on radar remote sensing and discuss the theoretical model we used to interpret reflection data. This model describes the power and correlation properties of the reflected GPS signals as a function of scattering geometry and environmental parameters related to the reflecting surface.
Remote sensing: Physical principles, sensors and products, and the LANDSAT
NASA Technical Reports Server (NTRS)
Dejesusparada, N. (Principal Investigator); Steffen, C. A.; Lorenzzetti, J. A.; Stech, J. L.; Desouza, R. C. M.
1981-01-01
Techniques of data acquisition by remote sensing are introduced in this teaching aid. The properties of the elements involved (radiant energy, topograph, atmospheric attenuation, surfaces, and sensors) are covered. Radiometers, photography, scanners, and radar are described as well as their products. Aspects of the LANDSAT system examined include the characteristics of the satellite and its orbit, the multispectral band scanner, and the return beam vidicon. Pixels (picture elements), pattern registration, and the characteristics, reception, and processing of LANDSAT imagery are also considered.
Stennis Space Center Verification & Validation Capabilities
NASA Technical Reports Server (NTRS)
Pagnutti, Mary; Ryan, Robert E.; Holekamp, Kara; ONeal, Duane; Knowlton, Kelly; Ross, Kenton; Blonski, Slawomir
2005-01-01
Scientists within NASA s Applied Sciences Directorate have developed a well-characterized remote sensing Verification & Validation (V&V) site at the John C. Stennis Space Center (SSC). This site enables the in-flight characterization of satellite and airborne high spatial and moderate resolution remote sensing systems and their products. The smaller scale of the newer high resolution remote sensing systems allows scientists to characterize geometric, spatial, and radiometric data properties using a single V&V site. The targets and techniques used to characterize data from these newer systems can differ significantly from the techniques used to characterize data from the earlier, coarser spatial resolution systems. Scientists are also using the SSC V&V site to characterize thermal infrared systems and active lidar systems. SSC employs geodetic targets, edge targets, radiometric tarps, atmospheric monitoring equipment, and thermal calibration ponds to characterize remote sensing data products. The SSC Instrument Validation Lab is a key component of the V&V capability and is used to calibrate field instrumentation and to provide National Institute of Standards and Technology traceability. This poster presents a description of the SSC characterization capabilities and examples of calibration data.
Using remote sensing and machine learning for the spatial modelling of a bluetongue virus vector
NASA Astrophysics Data System (ADS)
Van doninck, J.; Peters, J.; De Baets, B.; Ducheyne, E.; Verhoest, N. E. C.
2012-04-01
Bluetongue is a viral vector-borne disease transmitted between hosts, mostly cattle and small ruminants, by some species of Culicoides midges. Within the Mediterranean basin, C. imicola is the main vector of the bluetongue virus. The spatial distribution of this species is limited by a number of environmental factors, including temperature, soil properties and land cover. The identification of zones at risk of bluetongue outbreaks thus requires detailed information on these environmental factors, as well as appropriate epidemiological modelling techniques. We here give an overview of the environmental factors assumed to be constraining the spatial distribution of C. imicola, as identified in different studies. Subsequently, remote sensing products that can be used as proxies for these environmental constraints are presented. Remote sensing data are then used together with species occurrence data from the Spanish Bluetongue National Surveillance Programme to calibrate a supervised learning model, based on Random Forests, to model the probability of occurrence of the C. imicola midge. The model will then be applied for a pixel-based prediction over the Iberian peninsula using remote sensing products for habitat characterization.
Advances in U.S. Land Imaging Capabilities
NASA Astrophysics Data System (ADS)
Stryker, T. S.
2017-12-01
Advancements in Earth observations, cloud computing, and data science are improving everyday life. Information from land-imaging satellites, such as the U.S. Landsat system, helps us to better understand the changing landscapes where we live, work, and play. This understanding builds capacity for improved decision-making about our lands, waters, and resources, driving economic growth, protecting lives and property, and safeguarding the environment. The USGS is fostering the use of land remote sensing technology to meet local, national, and global challenges. A key dimension to meeting these challenges is the full, free, and open provision of land remote sensing observations for both public and private sector applications. To achieve maximum impact, these data must also be easily discoverable, accessible, and usable. The presenter will describe the USGS Land Remote Sensing Program's current capabilities and future plans to collect and deliver land remote sensing information for societal benefit. He will discuss these capabilities in the context of national plans and policies, domestic partnerships, and international collaboration. The presenter will conclude with examples of how Landsat data is being used on a daily basis to improve lives and livelihoods.
NASA Technical Reports Server (NTRS)
Campbell, W. J.; Wayenberg, J.; Ramseyer, J. B.; Ramseier, R. O.; Vant, M. R.; Weaver, R.; Redmond, A.; Arsenault, L.; Gloersen, P.; Zwally, H. J.
1978-01-01
A microwave remote sensing program of sea ice in the Beaufort Sea was conducted during the Arctic Ice Dynamics Joint Experiment (AIDJEX). Several types of both passive and active sensors were used to perform surface and aircraft measurements during all seasons of the year. In situ observations were made of physical properties (salinity, temperature, density, surface roughness), dielectric properties, and passive microwave measurements were made of first-year, multiyear, and first-year/multiyear mixtures. Airborne passive microwave measurements were performed with the electronically scanning microwave radiometer while airborne active microwave measurements were performed by synthetic aperture radar, X- and L-band radar, and a scatterometer.
Wang, Hong-Mei; Wang, Kun; Xie, Ying-Zhong
2009-06-01
Studies of ecological boundaries are important and have become a rapidly evolving part of contemporary ecology. The ecotones are dynamic and play several functional roles in ecosystem dynamics, and the changes in their locations can be used as an indicator of environment changes, and for these reasons, ecotones have recently become a focus of investigation of landscape ecology and global climate change. As the interest in ecotone increases, there is an increased need for formal techniques to detect it. Hence, to better study and understand the functional roles and dynamics of ecotones in ecosystem, we need quantitative methods to characterize them. In the semi-arid region of northern China, there exists a farming-pasturing transition resulting from grassland reclamation and deforestation. With the fragmentation of grassland landscape, the structure and function of the grassland ecosystem are changing. Given this perspective; new-image processing approaches are needed to focus on transition themselves. Hyperspectral remote sensing data, compared with wide-band remote sensing data, has the advantage of high spectral resolution. Hyperspectral remote sensing can be used to visualize transitional zones and to detect ecotone based on surface properties (e. g. vegetation, soil type, and soil moisture etc). In this paper, the methods of hyperspectral remote sensing information processing, spectral analysis and its application in detecting the vegetation classifications, vegetation growth state, estimating the canopy biochemical characteristics, soil moisture, soil organic matter etc are reviewed in detail. Finally the paper involves further application of hyperspectral remote sensing information in research on local climate in ecological boundary in north farming-pasturing transition in China.
Earth view: A business guide to orbital remote sensing
NASA Technical Reports Server (NTRS)
Bishop, Peter C.
1990-01-01
The following subject areas are covered: Earth view - a guide to orbital remote sensing; current orbital remote sensing systems (LANDSAT, SPOT image, MOS-1, Soviet remote sensing systems); remote sensing satellite; and remote sensing organizations.
Remote sensing of water quality and contaminants in the California Bay-Delta
NASA Astrophysics Data System (ADS)
Fichot, C. G.; Downing, B. D.; Windham-Myers, L.; Marvin-DiPasquale, M. C.; Bergamaschi, B. A.; Thompson, D. R.; Gierach, M. M.
2014-12-01
The California Bay-Delta is a highly altered ecosystem largely reclaimed from wetlands for agriculture, and millions of acres of farmland and Californians rely on the Bay-Delta for their water supply. The Bay-Delta also harbors important habitats for many organisms, including commercial and endangered species. Recently, the Delta Stewardship Council developed a two component mission (coequal goals) to 1) provide a more reliable water supply for California while 2) protecting, restoring, and enhancing the Bay-Delta ecosystem. Dissolved organic carbon, turbidity, and contaminants such as methylmercury represent important water quality issues for water management and in the context of wetland restoration in the Bay-Delta, and can threaten the achievement of the coequal goals. Here, we use field measurements of optical properties, chemical analyses, and remotely sensed data acquired with the airborne Portable Remote Imaging SpectroMeter (PRISM ; http://prism.jpl.nasa.gov/index.html) to demonstrate these water quality parameters and the study of their dynamics in the Bay-Delta are amenable to remote sensing. PRISM provides high signal-to-noise, high spatial resolution (~2 m), hyperspectral measurements of remote-sensing reflectance in the 350-1050 nm range, and therefore has the adequate resolutions for water quality monitoring in inland, optically complex waters. Remote sensing of water quality will represent a valuable complement to existing in situ water quality monitoring programs in this region and will help with decision-making to achieve the co-equal goals.
NASA Astrophysics Data System (ADS)
Osburn, C. L.; Boyd, T. J.; Anastasiou, C. J.; Thao, P. T. P.; Reid, J. S.
2016-02-01
Optical measurements (absorbance, EEM fluorescence, remote sensing reflectance) and concurrently-collected sensor-based data (CDOM, chlorophyll-a, salinity, turbidity, and temperature) were used to link optical properties to water mass characteristics. Data and samples were collected during four field events in the Philippines (SEP2011, SEP2012 - transects from Manila to Palawan Island), Thailand (MAR2012 - Pattaya Beach area) and Vietnam (MAR2012 - Nha Trang and Ha Long Bay). EEM fluorescence spectra from each site were modeled using PARAFAC to identify representative fluorophores. Remote sensing reflectance was modeled using PCA, determining spectral loadings showing variation in samples from each site. These synthesized model data and sensor-based measurements were collated and ordinated using PCA to determine if optical properties could be linked to water quality and biogeochemical measures. PCA models at each site showed stations nearest to the coastline falling near or outside 95% confidence regions. Initial results indicate protein-like fluorophores were found in lower salinity waters and more heavily-impacted regions (Manila Bay - Philippines, Nha Trang River - Vietnam, Bang Pakong River - Thailand). Spectral slope and an component loading from remote sensing reflectance appeared to co-vary with sensor-derived CDOM fluorescence. Results from intra- and inter-site comparisons and linkages to biogeochemical parameters will be presented.
Technology study of quantum remote sensing imaging
NASA Astrophysics Data System (ADS)
Bi, Siwen; Lin, Xuling; Yang, Song; Wu, Zhiqiang
2016-02-01
According to remote sensing science and technology development and application requirements, quantum remote sensing is proposed. First on the background of quantum remote sensing, quantum remote sensing theory, information mechanism, imaging experiments and prototype principle prototype research situation, related research at home and abroad are briefly introduced. Then we expounds compress operator of the quantum remote sensing radiation field and the basic principles of single-mode compression operator, quantum quantum light field of remote sensing image compression experiment preparation and optical imaging, the quantum remote sensing imaging principle prototype, Quantum remote sensing spaceborne active imaging technology is brought forward, mainly including quantum remote sensing spaceborne active imaging system composition and working principle, preparation and injection compression light active imaging device and quantum noise amplification device. Finally, the summary of quantum remote sensing research in the past 15 years work and future development are introduced.
Crosscutting Airborne Remote Sensing Technologies for Oil and Gas and Earth Science Applications
NASA Technical Reports Server (NTRS)
Aubrey, A. D.; Frankenberg, C.; Green, R. O.; Eastwood, M. L.; Thompson, D. R.; Thorpe, A. K.
2015-01-01
Airborne imaging spectroscopy has evolved dramatically since the 1980s as a robust remote sensing technique used to generate 2-dimensional maps of surface properties over large spatial areas. Traditional applications for passive airborne imaging spectroscopy include interrogation of surface composition, such as mapping of vegetation diversity and surface geological composition. Two recent applications are particularly relevant to the needs of both the oil and gas as well as government sectors: quantification of surficial hydrocarbon thickness in aquatic environments and mapping atmospheric greenhouse gas components. These techniques provide valuable capabilities for petroleum seepage in addition to detection and quantification of fugitive emissions. New empirical data that provides insight into the source strength of anthropogenic methane will be reviewed, with particular emphasis on the evolving constraints enabled by new methane remote sensing techniques. Contemporary studies attribute high-strength point sources as significantly contributing to the national methane inventory and underscore the need for high performance remote sensing technologies that provide quantitative leak detection. Imaging sensors that map spatial distributions of methane anomalies provide effective techniques to detect, localize, and quantify fugitive leaks. Airborne remote sensing instruments provide the unique combination of high spatial resolution (<1 m) and large coverage required to directly attribute methane emissions to individual emission sources. This capability cannot currently be achieved using spaceborne sensors. In this study, results from recent NASA remote sensing field experiments focused on point-source leak detection, will be highlighted. This includes existing quantitative capabilities for oil and methane using state-of-the-art airborne remote sensing instruments. While these capabilities are of interest to NASA for assessment of environmental impact and global climate change, industry similarly seeks to detect and localize leaks of both oil and methane across operating fields. In some cases, higher sensitivities desired for upstream and downstream applications can only be provided by new airborne remote sensing instruments tailored specifically for a given application. There exists a unique opportunity for alignment of efforts between commercial and government sectors to advance the next generation of instruments to provide more sensitive leak detection capabilities, including those for quantitative source strength determination.
NASA/GSFC Research Activities for the Global Ocean Carbon Cycle: A Prospectus for the 21st Century
NASA Technical Reports Server (NTRS)
Gregg, W. W.; Behrenfield, M. J.; Hoge, F. E.; Esaias, W. E.; Huang, N. E.; Long, S. R.; McClain, C. R.
2000-01-01
There are increasing concerns that anthropogenic inputs of carbon dioxide into the Earth system have the potential for climate change. In response to these concerns, the GSFC Laboratory for Hydrospheric Processes has formed the Ocean Carbon Science Team (OCST) to contribute to greater understanding of the global ocean carbon cycle. The overall goals of the OCST are to: 1) detect changes in biological components of the ocean carbon cycle through remote sensing of biooptical properties, 2) refine understanding of ocean carbon uptake and sequestration through application of basic research results, new satellite algorithms, and improved model parameterizations, 3) develop and implement new sensors providing critical missing environmental information related to the oceanic carbon cycle and the flux of CO2 across the air-sea interface. The specific objectives of the OCST are to: 1) establish a 20-year time series of ocean color, 2) develop new remote sensing technologies, 3) validate ocean remote sensing observations, 4) conduct ocean carbon cycle scientific investigations directly related to remote sensing data, emphasizing physiological, empirical and coupled physical/biological models, satellite algorithm development and improvement, and analysis of satellite data sets. These research and mission objectives are intended to improve our understanding of global ocean carbon cycling and contribute to national goals by maximizing the use of remote sensing data.
NASA Astrophysics Data System (ADS)
Noda, H. M.; Muraoka, H.
2014-12-01
Satellite remote sensing of structure and function of canopy is crucial to detect temporal and spatial distributions of forest ecosystems dynamics in changing environments. The spectral reflectance of the canopy is determined by optical properties (spectral reflectance and transmittance) of single leaves and their spatial arrangements in the canopy. The optical properties of leaves reflect their pigments contents and anatomical structures. Thus detailed information and understandings of the consequence between ecophysiological traits and optical properties from single leaf to canopy level are essential for remote sensing of canopy ecophysiology. To develop the ecophysiological remote sensing of forest canopy, we have been promoting multiple and cross-scale measurements in "Takayama site" belonging to AsiaFlux and JaLTER networks, located in a cool-temperate deciduous broadleaf forest on a mountainous landscape in Japan. In this forest, in situ measurement of canopy spectral reflectance has been conducted continuously by a spectroradiometer as part of the "Phenological Eyes Network (PEN)" since 2004. To analyze the canopy spectral reflectance from leaf ecophysiological viewpoints, leaf mass per area, nitrogen content, chlorophyll contents, photosynthetic capacities and the optical properties have been measured for dominant canopy tree species Quercus crispla and Betula ermanii throughout the seasons for multiple years.Photosynthetic capacity was largely correlated with chlorophyll contents throughout the growing season in both Q. crispla and B. ermanii. In these leaves, the reflectance at "red edge" (710 nm) changed by corresponding to the changes of chlorophyll contents throughout the seasons. Our canopy-level examination showed that vegetation indices obtained by red edge reflectance have linear relationship with leaf chlorophyll contents and photosynthetic capacity. Finally we apply this knowledge to the Rapid Eye satellite imagery around Takayama site to scale-up the leaf-level findings to canopy and landscape levels on a mountainous landscape.
NASA Astrophysics Data System (ADS)
Cheng, Tianhai; Gu, Xingfa; Wu, Yu; Chen, Hao; Yu, Tao
2013-08-01
Applying sphere aerosol models to replace the absorbing fine-sized dominated aerosols can potentially result in significant errors in the climate models and aerosol remote sensing retrieval. In this paper, the optical properties of absorbing fine-sized dominated aerosol were modeled, which are taking into account the fresh emitted soot particles (agglomerates of primary spherules), aged soot particles (semi-externally mixed with other weakly absorbing aerosols), and coarse aerosol particles (dust particles). The optical properties of the individual fresh and aged soot aggregates are calculated using the superposition T-matrix method. In order to quantify the morphology effect of absorbing aerosol models on the aerosol remote sensing retrieval, the ensemble averaged optical properties of absorbing fine-sized dominated aerosols are calculated based on the size distribution of fine aerosols (fresh and aged soot) and coarse aerosols. The corresponding optical properties of sphere absorbing aerosol models using Lorenz-Mie solutions were presented for comparison. The comparison study demonstrates that the sphere absorbing aerosol models underestimate the absorption ability of the fine-sized dominated aerosol particles. The morphology effect of absorbing fine-sized dominated aerosols on the TOA radiances and polarized radiances is also investigated. It is found that the sphere aerosol models overestimate the TOA reflectance and polarized reflectance by approximately a factor of 3 at wavelength of 0.865 μm. In other words, the fine-sized dominated aerosol models can cause large errors in the retrieved aerosol properties if satellite reflectance measurements are analyzed using the conventional Mie theory for spherical particles.
NASA Technical Reports Server (NTRS)
Taylor, Lawrence A.; Pieters, Carle; McKay, David S.
1998-01-01
Inferences about the igneous and impact evolution of planetary bodies are based upon spectral remote sensing of their surfaces. However, it is not the rocks of a body that are seen by the remote sensing, but rather the regolith, that may contain small pieces of rock but also many other phases as well. Indeed, recent flybys of objects even as small as asteroid Ida have shown that these objects are covered by a regolith. Thus, spectral properties cannot be directly converted into information about the igneous history of the object. It is imperative to fully understand the nature of the regolith, particularly its finer fraction termed "soil," to appreciate the possible effects of "space weathering" on the reflectance spectra. We have initiated a study of our nearest, regolith-bearing body, the Moon, as "ground truth" for further probes of planetary and asteroidal surfaces. the foundation for remote chemical and mineralogical analyses lies in the physics underlying optical absorption and the linking of spectral properties of materials measured in the laboratory to well understood mineral species and their mixtures. From this statement, it is obvious that there should be a thorough integration of the material science of lunar rocks and soils with the remote-sensing observations. That is, the lunar samples returned by the Apollo missions provide a direct means for evaluation of spectral characteristics of the Moon. However, this marriage of the remote-sensing and lunar sample communities has suffered from a prolonged unconsummated betrothal, nurtured by an obvious complacency by both parties. To make more direct and quantitative links between soil chemistry/mineralogy and spectral properties, we have initiated a program to (1) obtain accurate characterization of the petrography of lunar soils (in terms relevant to remote analyses), coupled with (2) measurement of precise reflectance spectra, with testing and use of appropriate analytical tools that identify and characterize individual mineral and glass components. It is the finest-sized fractions of the bulk lunar soil that dominate the observed spectral signatures.
Retrieving the properties of ice-phase precipitation with multi-frequency radar measurements
NASA Astrophysics Data System (ADS)
Mace, G. G.; Gergely, M.; Mascio, J.
2017-12-01
The objective of most retrieval algorithms applied to remote sensing measurements is the microphysical properties that a model might predict such as condensed water content, particle number, or effective size. However, because ice crystals grow and aggregate into complex non spherical shapes, the microphysical properties of interest are very much dependent on the physical characteristics of the precipitation such as how mass and crystal area are distributed as a function of particle size. Such physical properties also have a strong influence on how microwave electromagnetic energy scatters from ice crystals causing significant ambiguity in retrieval algorithms. In fact, passive and active microwave remote sensing measurements are typically nearly as sensitive to the ice crystal physical properties as they are to the microphysical characteristics that are typically the aim of the retrieval algorithm. There has, however, been active development of multi frequency algorithms recently that attempt to ameliorate and even exploit this sensitivity. In this paper, we will review these approaches and present practical applications of retrieving ice crystal properties such as mass- and area dimensional relationships from single and dual frequency radar measurements of precipitating ice using data collected aboard ship in the Southern Ocean and from remote sensors in the Rocky Mountains of the Western U.S.
Satellite imaging coral reef resilience at regional scale. A case-study from Saudi Arabia.
Rowlands, Gwilym; Purkis, Sam; Riegl, Bernhard; Metsamaa, Liisa; Bruckner, Andrew; Renaud, Philip
2012-06-01
We propose a framework for spatially estimating a proxy for coral reef resilience using remote sensing. Data spanning large areas of coral reef habitat were obtained using the commercial QuickBird satellite, and freely available imagery (NASA, Google Earth). Principles of coral reef ecology, field observation, and remote observations, were combined to devise mapped indices. These capture important and accessible components of coral reef resilience. Indices are divided between factors known to stress corals, and factors incorporating properties of the reef landscape that resist stress or promote coral growth. The first-basis for a remote sensed resilience index (RSRI), an estimate of expected reef resilience, is proposed. Developed for the Red Sea, the framework of our analysis is flexible and with minimal adaptation, could be extended to other reef regions. We aim to stimulate discussion as to use of remote sensing to do more than simply deliver habitat maps of coral reefs. Copyright © 2012 Elsevier Ltd. All rights reserved.
A high throughput geocomputing system for remote sensing quantitative retrieval and a case study
NASA Astrophysics Data System (ADS)
Xue, Yong; Chen, Ziqiang; Xu, Hui; Ai, Jianwen; Jiang, Shuzheng; Li, Yingjie; Wang, Ying; Guang, Jie; Mei, Linlu; Jiao, Xijuan; He, Xingwei; Hou, Tingting
2011-12-01
The quality and accuracy of remote sensing instruments have been improved significantly, however, rapid processing of large-scale remote sensing data becomes the bottleneck for remote sensing quantitative retrieval applications. The remote sensing quantitative retrieval is a data-intensive computation application, which is one of the research issues of high throughput computation. The remote sensing quantitative retrieval Grid workflow is a high-level core component of remote sensing Grid, which is used to support the modeling, reconstruction and implementation of large-scale complex applications of remote sensing science. In this paper, we intend to study middleware components of the remote sensing Grid - the dynamic Grid workflow based on the remote sensing quantitative retrieval application on Grid platform. We designed a novel architecture for the remote sensing Grid workflow. According to this architecture, we constructed the Remote Sensing Information Service Grid Node (RSSN) with Condor. We developed a graphic user interface (GUI) tools to compose remote sensing processing Grid workflows, and took the aerosol optical depth (AOD) retrieval as an example. The case study showed that significant improvement in the system performance could be achieved with this implementation. The results also give a perspective on the potential of applying Grid workflow practices to remote sensing quantitative retrieval problems using commodity class PCs.
NASA Technical Reports Server (NTRS)
Brunet, Y.; Vauclin, M.
1985-01-01
The correct interpretation of thermal and hydraulic soil parameters infrared from remotely sensed data (thermal infrared, microwaves) implies a good understanding of the causes of their temporal and spatial variability. Given this necessity, the sensitivity of the surface variables (temperature, moisture) to the spatial variability of hydraulic soil properties is tested with a numerical model of heat and mass transfer between bare soil and atmosphere. The spatial variability of hydraulic soil properties is taken into account in terms of the scaling factor. For a given soil, the knowledge of its frequency distribution allows a stochastic use of the model. The results are treated statistically, and the part of the variability of soil surface parameters due to that of soil hydraulic properties is evaluated quantitatively.
Applications of Remote Sensing to Emergency Management.
1980-02-15
Contents: Foundations of Remote Sensing : Data Acquisition and Interpretation; Availability of Remote Sensing Technology for Disaster Response...Imaging Systems, Current and Near Future Satellite and Aircraft Remote Sensing Systems; Utilization of Remote Sensing in Disaster Response: Categories of...Disasters, Phases of Monitoring Activities; Recommendations for Utilization of Remote Sensing Technology in Disaster Response; Selected Reading List.
Estimation of soil hydraulic properties with microwave techniques
NASA Technical Reports Server (NTRS)
Oneill, P. E.; Gurney, R. J.; Camillo, P. J.
1985-01-01
Useful quantitative information about soil properties may be obtained by calibrating energy and moisture balance models with remotely sensed data. A soil physics model solves heat and moisture flux equations in the soil profile and is driven by the surface energy balance. Model generated surface temperature and soil moisture and temperature profiles are then used in a microwave emission model to predict the soil brightness temperature. The model hydraulic parameters are varied until the predicted temperatures agree with the remotely sensed values. This method is used to estimate values for saturated hydraulic conductivity, saturated matrix potential, and a soil texture parameter. The conductivity agreed well with a value measured with an infiltration ring and the other parameters agreed with values in the literature.
Hakkenberg, C R; Peet, R K; Urban, D L; Song, C
2018-01-01
In light of the need to operationalize the mapping of forest composition at landscape scales, this study uses multi-scale nested vegetation sampling in conjunction with LiDAR-hyperspectral remotely sensed data from the G-LiHT airborne sensor to map vascular plant compositional turnover in a compositionally and structurally complex North Carolina Piedmont forest. Reflecting a shift in emphasis from remotely sensing individual crowns to detecting aggregate optical-structural properties of forest stands, predictive maps reflect the composition of entire vascular plant communities, inclusive of those species smaller than the resolution of the remotely sensed imagery, intertwined with proximate taxa, or otherwise obscured from optical sensors by dense upper canopies. Stand-scale vascular plant composition is modeled as community continua: where discrete community-unit classes at different compositional resolutions provide interpretable context for continuous gradient maps that depict n-dimensional compositional complexity as a single, consistent RGB color combination. In total, derived remotely sensed predictors explain 71%, 54%, and 48% of the variation in the first three components of vascular plant composition, respectively. Among all remotely sensed environmental gradients, topography derived from LiDAR ground returns, forest structure estimated from LiDAR all returns, and morphological-biochemical traits determined from hyperspectral imagery each significantly correspond to the three primary axes of floristic composition in the study site. Results confirm the complementarity of LiDAR and hyperspectral sensors for modeling the environmental gradients constraining landscape turnover in vascular plant composition and hold promise for predictive mapping applications spanning local land management to global ecosystem modeling. © 2017 by the Ecological Society of America.
Laser remote sensing of an algal bloom in a freshwater reservoir
NASA Astrophysics Data System (ADS)
Grishin, M. Ya; Lednev, V. N.; Pershin, S. M.; Bunkin, A. F.; Kobylyanskiy, V. V.; Ermakov, S. A.; Kapustin, I. A.; Molkov, A. A.
2016-12-01
Laser remote sensing of an algal bloom in a freshwater reservoir on the Volga River in central Russia was carried out. The compact Raman lidar was installed on a small ship to probe the properties of the surface water layer in different typical regions of Gorky Water Reservoir. Elastic and Raman scattering as well as chlorophyll fluorescence were quantified, mapped and compared with data acquired by a commercial salinity, temperature and depth probe (STD probe) equipped with a blue-green algae sensor. Good correlation between lidar and STD measurements was established.
Methodology of remote sensing data interpretation and geological applications. [Brazil
NASA Technical Reports Server (NTRS)
Parada, N. D. J. (Principal Investigator); Veneziani, P.; Dosanjos, C. E.
1982-01-01
Elements of photointerpretation discussed include the analysis of photographic texture and structure as well as film tonality. The method used is based on conventional techniques developed for interpreting aerial black and white photographs. By defining the properties which characterize the form and individuality of dual images, homologous zones can be identified. Guy's logic method (1966) was adapted and used on functions of resolution, scale, and spectral characteristics of remotely sensed products. Applications of LANDSAT imagery are discussed for regional geological mapping, mineral exploration, hydrogeology, and geotechnical engineering in Brazil.
The variability of winds over the ocean
NASA Technical Reports Server (NTRS)
Pierson, W. J.
1981-01-01
The present state of knowledge of the synoptic scale, the mesoscale, and the microscale in describing the winds, especially over the ocean, is summarized both in terms of conventional data and remotely sensed properties and effects of the winds. A description is then given of some of the areas posing problems in modeling each scale and interpreting the various kinds of measurements that are made. It is noted that not much is known about the wind, especially in the mesoscale, that affects the ability to use remotely sensed data in an optimum way.
Advancing Technologies for Climate Observation
NASA Technical Reports Server (NTRS)
Wu, D.; Esper, J.; Ehsan, N.; Johnson, T.; Mast, W.; Piepmeier, J.; Racette, P.
2014-01-01
Climate research needs Accurate global cloud ice measurements Cloud ice properties are fundamental controlling variables of radiative transfer and precipitation Cost-effective, sensitive instruments for diurnal and wide-swath coverage Mature technology for space remote sensing IceCube objectivesDevelop and validate a flight-qualified 883 GHz receiver for future use in ice cloud radiometer missions Raise TRL (57) of 883 GHz receiver technology Reduce instrument cost and risk by developing path to space for COTS sub-mm-wave receiver systems Enable remote sensing of global cloud ice with advanced technologies and techniques
NASA Astrophysics Data System (ADS)
Alonso, Carmelo; Tarquis, Ana M.; Zuñiga, Ignacio; Benito, Rosa M.
2017-04-01
Vegetation indexes, such as Normalized Difference Vegetation Index (NDVI) and enhanced Vegetation index (EVI), can been used to estimate root zone soil moisture through high resolution remote sensing images. These indexes are based in red (R), near infrared (NIR) and blue (B) wavelengths data. In this work we have studied the scaling properties of both vegetation indexes analyzing the information contained in two satellite data: Landsat-7 and Ikonos. Because of the potential capacity for systematic observations at various scales, remote sensing technology extends possible data archives from present time to over several decades back. For this advantage, enormous efforts have been made by researchers and application specialists to delineate vegetation indexes from local scale to global scale by applying remote sensing imagery. To study the influence of the spatial resolution the vegetation indexes map estimated with Ikonos-2 coded in 8 bits, with a resolution of 4m, have been compared through a multifractal analysis with the ones obtained with Lansat-7 8 bits, of 30 m. resolution, on the same area of study. The scaling behaviour of NDVI and EVI presents several differences that will be discussed based on the multifractal parameters extracted from the analysis. REFERENCES Alonso, C., Tarquis, A. M., Benito, R. M. and Zuñiga, I. Correlation scaling properties between soil moisture and vegetation indices. Geophysical Research Abstracts, 11, EGU2009-13932, 2009. Alonso, C., Tarquis, A. M. and Benito, R. M. Comparison of fractal dimensions based on segmented NDVI fields obtained from different remote sensors. Geophysical Research Abstracts, 14, EGU2012-14342, 2012. Escribano Rodriguez, J., Alonso, C., Tarquis, A.M., Benito, R.M. and Hernandez Diaz-Ambrona, C. Comparison of NDVI fields obtained from different remote sensors. Geophysical Research Abstracts,15, EGU2013-14153, 2013. Lovejoy, S., Tarquis, A., Gaonac'h, H. and Schertzer, D. Single and multiscale remote sensing techniques, multifractals and MODIS derived vegetation and soil moisture, Vadose Zone J., 7, 533-546, 2008. Renosh, P. R., Schmitt, F. G., and Loisel, H.: Scaling analysis of ocean surface turbulent heterogeneities from satellite remote sensing: use of 2D structure functions. PLoS ONE, 10, e0126975, 2015. Tarquis, A.M., Platonov, A., Matulka, A., Grau, J., Sekula, E., Diez, M. and Redondo J. M. Application of multifractal analysis to the study of SAR features and oil spills on the ocean surface. Nonlin. Processes Geophys., 21, 439-450, 2014.
Stennis Space Center Verification & Validation Capabilities
NASA Technical Reports Server (NTRS)
Pagnutti, Mary; Ryan, Robert E.; Holekamp, Kara; O'Neal, Duane; Knowlton, Kelly; Ross, Kenton; Blonski, Slawomir
2007-01-01
Scientists within NASA#s Applied Research & Technology Project Office (formerly the Applied Sciences Directorate) have developed a well-characterized remote sensing Verification & Validation (V&V) site at the John C. Stennis Space Center (SSC). This site enables the in-flight characterization of satellite and airborne high spatial resolution remote sensing systems and their products. The smaller scale of the newer high resolution remote sensing systems allows scientists to characterize geometric, spatial, and radiometric data properties using a single V&V site. The targets and techniques used to characterize data from these newer systems can differ significantly from the techniques used to characterize data from the earlier, coarser spatial resolution systems. Scientists have used the SSC V&V site to characterize thermal infrared systems. Enhancements are being considered to characterize active lidar systems. SSC employs geodetic targets, edge targets, radiometric tarps, atmospheric monitoring equipment, and thermal calibration ponds to characterize remote sensing data products. Similar techniques are used to characterize moderate spatial resolution sensing systems at selected nearby locations. The SSC Instrument Validation Lab is a key component of the V&V capability and is used to calibrate field instrumentation and to provide National Institute of Standards and Technology traceability. This poster presents a description of the SSC characterization capabilities and examples of calibration data.
Recent advances and progress in photonic crystal-based gas sensors
NASA Astrophysics Data System (ADS)
Goyal, Amit Kumar; Sankar Dutta, Hemant; Pal, Suchandan
2017-05-01
This review covers the recent progress made in the photonic crystal-based sensing technology for gas sensing applications. Photonic crystal-based sensing has tremendous potential because of its obvious advantages in sensitivity, stability, miniaturisation, portability, online use, remote monitoring etc. Several 1D and 2D photonic crystal structures including photonic crystal waveguides and cavities for gas sensing applications have been discussed in this review. For each kind of photonic crystal structure, the novelty, measurement principle and their respective gas sensing properties are presented. The reported works and the corresponding results predict the possibility to realize a commercially viable miniaturized and highly sensitive photonic crystal-based optical gas sensor having flexibility in the structure of ultra-compact size with excellent sensing properties.
The remote sensing image segmentation mean shift algorithm parallel processing based on MapReduce
NASA Astrophysics Data System (ADS)
Chen, Xi; Zhou, Liqing
2015-12-01
With the development of satellite remote sensing technology and the remote sensing image data, traditional remote sensing image segmentation technology cannot meet the massive remote sensing image processing and storage requirements. This article put cloud computing and parallel computing technology in remote sensing image segmentation process, and build a cheap and efficient computer cluster system that uses parallel processing to achieve MeanShift algorithm of remote sensing image segmentation based on the MapReduce model, not only to ensure the quality of remote sensing image segmentation, improved split speed, and better meet the real-time requirements. The remote sensing image segmentation MeanShift algorithm parallel processing algorithm based on MapReduce shows certain significance and a realization of value.
REMOTE SENSING TECHNOLOGIES APPLICATIONS RESEARCH
Remote sensing technologies applications research supports the ORD Landscape Sciences Program (LSP) in two separate areas: operational remote sensing, and remote sensing research and development. Operational remote sensing is provided to the LSP through the use of current and t...
An Airborne A-Band Spectrometer for Remote Sensing Of Aerosol and Cloud Optical Properties
NASA Technical Reports Server (NTRS)
Pitts, Michael; Hostetler, Chris; Poole, Lamont; Holden, Carl; Rault, Didier
2000-01-01
Atmospheric remote sensing with the O2 A-band has a relatively long history, but most of these studies were attempting to estimate surface pressure or cloud-top pressure. Recent conceptual studies have demonstrated the potential of spaceborne high spectral resolution O2 A-band spectrometers for retrieval of aerosol and cloud optical properties. The physical rationale of this new approach is that information on the scattering properties of the atmosphere is embedded in the detailed line structure of the O2 A-band reflected radiance spectrum. The key to extracting this information is to measure the radiance spectrum at very high spectral resolution. Instrument performance requirement studies indicate that, in addition to high spectral resolution, the successful retrieval of aerosol and cloud properties from A-band radiance spectra will also require high radiometric accuracy, instrument stability, and high signal-to-noise measurements. To experimentally assess the capabilities of this promising new remote sensing application, the NASA Langley Research Center is developing an airborne high spectral resolution A-band spectrometer. The spectrometer uses a plane holographic grating with a folded Littrow geometry to achieve high spectral resolution (0.5 cm-1) and low stray light in a compact package. This instrument will be flown in a series of field campaigns beginning in 2001 to evaluate the overall feasibility of this new technique. Results from these campaigns should be particularly valuable for future spaceborne applications of A-band spectrometers for aerosol and cloud retrievals.
An overview of remote sensing of chlorophyll fluorescence
NASA Astrophysics Data System (ADS)
Xing, Xiao-Gang; Zhao, Dong-Zhi; Liu, Yu-Guang; Yang, Jian-Hong; Xiu, Peng; Wang, Lin
2007-03-01
Besides empirical algorithms with the blue-green ratio, the algorithms based on fluorescence are also important and valid methods for retrieving chlorophyll-a concentration in the ocean waters, especially for Case II waters and the sea with algal blooming. This study reviews the history of initial cognitions, investigations and detailed approaches towards chlorophyll fluorescence, and then introduces the biological mechanism of fluorescence remote sensing and main spectral characteristics such as the positive correlation between fluorescence and chlorophyll concentration, the red shift phenomena. Meanwhile, there exist many influence factors that increase complexity of fluorescence remote sensing, such as fluorescence quantum yield, physiological status of various algae, substances with related optical property in the ocean, atmospheric absorption etc. Based on these cognitions, scientists have found two ways to calculate the amount of fluorescence detected by ocean color sensors: fluorescence line height and reflectance ratio. These two ways are currently the foundation for retrieval of chlorophyl l - a concentration in the ocean. As the in-situ measurements and synchronous satellite data are continuously being accumulated, the fluorescence remote sensing of chlorophyll-a concentration in Case II waters should be recognized more thoroughly and new algorithms could be expected.
NASA Technical Reports Server (NTRS)
Kahn, Ralph A.
2013-01-01
Desert dust, wildfire smoke, volcanic ash, biogenic and urban pollution particles, all affect the regional-scale climate of Earth in places and at times; some have global-scale impacts on the column radiation balance, cloud properties, atmospheric stability structure, and circulation patterns. Remote sensing has played a central role in identifying the sources and transports of airborne particles, mapping their three-dimensional distribution and variability, quantifying their amount, and constraining aerosol air mass type. The measurements obtained from remote sensing have strengths and limitations, and their value for characterizing Earths environment is enhanced immensely when they are combined with direct, in situ observations, and used to constrain aerosol transport and climate models. A similar approach has been taken to study the role particles play in determining the climate of Mars, though based on far fewer observations. This presentation will focus what we have learned from remote sensing about the impacts aerosol have on Earths climate; a few points about how aerosols affect the climate of Mars will also be introduced, in the context of how we might assess aerosol-climate impacts more generally on other worlds.
The Use of Remote Sensing to Resolve the Aerosol Radiative Forcing
NASA Technical Reports Server (NTRS)
Kaufman, Y. J.; Tanre, D.; Remer, Lorraine
1999-01-01
Satellites are used for remote sensing of aerosol optical thickness and optical properties in order to derive the aerosol direct and indirect radiative forcing of climate. Accuracy of the derived aerosol optical thickness is used as a measure of the accuracy in deriving the aerosol radiative forcing. Several questions can be asked to challenge this concept. Is the accuracy of the satellite-derived aerosol direct forcing limited to the accuracy of the measured optical thickness? What are the spectral bands needed to derive the total aerosol forcing? Does most of the direct or indirect aerosol forcing of climate originate from regions with aerosol concentrations that are high enough to be detected from space? What should be the synergism ground-based and space-borne remote sensing to solve the problem? We shall try to answer some of these questions, using AVIRIS airborne measurements and simulations.
Initial Scientific Assessment of the EOS Data and Information System (EOSDIS)
NASA Technical Reports Server (NTRS)
1989-01-01
Crucial to the success of the Earth Observing System (Eos) is the Eos Data and Information System (EosDIS). The goals of Eos depend not only on its instruments and science investigations, but also on how well EosDlS helps scientists integrate reliable, large-scale data sets of geophysical and biological measurements made from Eos data, and on how successfully Eos scientists interact with other investigations in Earth System Science. Current progress in the use of remote sensing for science is hampered by requirements that the scientist understand in detail the instrument, the electromagnetic properties of the surface, and a suite of arcane tape formats, and by the immaturity of some of the techniques for estimating geophysical and biological variables from remote sensing data. These shortcomings must be transcended if remote sensing data are to be used by a much wider population of scientists who study environmental change at regional and global scales.
Seasonality of a boreal forest: a remote sensing perspective
NASA Astrophysics Data System (ADS)
Rautiainen, Miina; Heiskanen, Janne; Lukes, Petr; Majasalmi, Titta; Mottus, Matti; Pisek, Jan
2016-04-01
Understanding the seasonal dynamics of boreal ecosystems through interpretation of satellite reflectance data is needed for efficient large-scale monitoring of northern vegetation dynamics and productivity trends. Satellite remote sensing enables continuous global monitoring of vegetation status and is not limited to single-date phenological metrics. Using remote sensing also enables gaining a wider perspective to the seasonality of vegetation dynamics. The seasonal reflectance cycles of boreal forests observed in optical satellite images are explained by changes in biochemical properties and geometrical structure of vegetation as well as seasonal variation in solar illumination. This poster provides a synthesis of a research project (2010-2015) dedicated to monitoring the seasonal cycle of boreal forests. It is based on satellite and field data collected from the Hyytiälä Forestry Field Station in Finland. The results highlight the role understory vegetation has in forming the forest reflectance measured by satellite instruments.
NASA Astrophysics Data System (ADS)
Lin, Yueguan; Wang, Wei; Wen, Qi; Huang, He; Lin, Jingli; Zhang, Wei
2015-12-01
Ms8.0 Wenchuan earthquake that occurred on May 12, 2008 brought huge casualties and property losses to the Chinese people, and Beichuan County was destroyed in the earthquake. In order to leave a site for commemorate of the people, and for science propaganda and research of earthquake science, Beichuan National Earthquake Ruins Museum has been built on the ruins of Beichuan county. Based on the demand for digital preservation of the earthquake ruins park and collection of earthquake damage assessment of research and data needs, we set up a data set of Beichuan National Earthquake Ruins Museum, including satellite remote sensing image, airborne remote sensing image, ground photogrammetry data and ground acquisition data. At the same time, in order to make a better service for earthquake science research, we design the sharing ideas and schemes for this scientific data set.
Estimating population size of Pygoscelid Penguins from TM data
NASA Technical Reports Server (NTRS)
Olson, Charles E., Jr.; Schwaller, Mathew R.; Dahmer, Paul A.
1987-01-01
An estimate was made toward a continent wide population of penguins. The results indicate that Thematic Mapper data can be used to identify penguin rookeries due to the unique reflectance properties of guano. Strong correlations exist between nesting populations and rookery area occupied by the birds. These correlations allow estimation of the number of nesting pairs in colonies. The success of remote sensing and biometric analyses leads one to believe that a continent wide estimate of penguin populations is possible based on a timely sample employing ground based and remote sensing techniques. Satellite remote sensing along the coastline may well locate previously undiscovered penguin nesting sites, or locate rookeries which have been assumed to exist for over a half century, but never located. Observations which found that penguins are one of the most sensitive elements in the complex of Southern Ocean ecosystems motivated this study.
Mapping CDOM Concentration in Waters Influenced by the Mississippi River Plume
NASA Technical Reports Server (NTRS)
Miller, Richard L.; DelCastillo, Carlos E.; Powell, Rodney T.; DSa, Eurico; Spiering, Bruce
2002-01-01
Colored dissolved organic matter (CDOM) is often an important component of the organic carbon pool in river-dominated coastal margins. CDOM directly influences remote sensing applications through its strong absorption in the UV and blue regions of the spectrum. This effect can complicate the use of chlorophyll a retrieval algorithms and phytoplankton production models that are based on remotely sensed ocean color. As freshwater input is the principle source of CDOM in coastal margins, CDOM distribution can often be described by conservative mixing with open ocean waters and may serve as an optical tracer of riverine water. Hence, there is considerable interest in the ability to accurately measure and map CDOM concentrations as well as understand the processes that govern the optical properties and distribution of CDOM in coastal environments. We are examining CDOM dynamics in the waters influenced by the Mississippi River plume. Our program incorporates discrete samples, flow-through measurements, and remote sensing. CDOM absorption spectra of discrete samples are measured at sea using a portable, multiple pathlength waveguide system. A SAFire multi-spectral fluorescence meter provides spectral characterization of CDOM (fluorescence and absorption) using a ship flow-through system for continuous surface mapping. In situ reflectance spectra are obtained by a hand held spectroradiometer. Remotely sensed images are obtained from the SeaWiFS and CRIS (Coastal Research Imaging Spectrometer) instruments. We describe here the instruments used, sampling protocols employed, and the relationships derived between in situ measurements and remotely sensed data for this optically complex environment.
Maes, W H; Steppe, K
2012-08-01
As evaporation of water is an energy-demanding process, increasing evapotranspiration rates decrease the surface temperature (Ts) of leaves and plants. Based on this principle, ground-based thermal remote sensing has become one of the most important methods for estimating evapotranspiration and drought stress and for irrigation. This paper reviews its application in agriculture. The review consists of four parts. First, the basics of thermal remote sensing are briefly reviewed. Second, the theoretical relation between Ts and the sensible and latent heat flux is elaborated. A modelling approach was used to evaluate the effect of weather conditions and leaf or vegetation properties on leaf and canopy temperature. Ts increases with increasing air temperature and incoming radiation and with decreasing wind speed and relative humidity. At the leaf level, the leaf angle and leaf dimension have a large influence on Ts; at the vegetation level, Ts is strongly impacted by the roughness length; hence, by canopy height and structure. In the third part, an overview of the different ground-based thermal remote sensing techniques and approaches used to estimate drought stress or evapotranspiration in agriculture is provided. Among other methods, stress time, stress degree day, crop water stress index (CWSI), and stomatal conductance index are discussed. The theoretical models are used to evaluate the performance and sensitivity of the most important methods, corroborating the literature data. In the fourth and final part, a critical view on the future and remaining challenges of ground-based thermal remote sensing is presented.
NASA Technical Reports Server (NTRS)
Batista, G. T. (Principal Investigator); Delima, A. M.; Tardin, A. T.; Rudorff, B. F. T.; Mendonca, F. J.; Dosanjosferreirapinto, S.; Chen, S. C.; Duarte, V.
1984-01-01
Remote sensing techniques for supporting the rural credit supervision system were developed and tested. The test area comprised the counties of Aracatuba and Guararapes, located in the State of Sao Paulo. Aerial photography, LANDSAT images and topographic charts were used. Aerial photographs were extremely useful for the out lining of properties boundaries with financing of sugarcane plantations by the Banco do Brasil S.A.. The percentage of correctly interpreted sugarcane on LANDSAT images, considering the 85 analyzed properties, was of 63.12%. The occurrence of atypical conditions such as excessive raining, sugarcane in bloom, and wind damaged sugarcane and sugarcane not harvested due to planning failures verified during the period the images were obtained, were some of the contributing factors associated with a low interpretation performance. An alternative approach was developed using several LANDSAT overpasses and auxiliary field data, which resulted in 91.77 percent correct.
MODIS Cloud Products Derived from Terra and Aqua During CRYSTAL-FACE
NASA Technical Reports Server (NTRS)
King, Michael D.; Platnick, S.; Riedi, J. C.; Ackerman, S. A.; Menzel, W. P.
2003-01-01
The Moderate Resolution Imaging Spectroradiometer (MODIS), developed as part of the Earth Observing System (EOS) and launched on Terra in December 1999 and Aqua in May 2002, is designed to meet the scientific needs for satellite remote sensing of clouds, aerosols, water vapor, and land and ocean surface properties. During the CRYSTAL-FACE experiment, numerous aircraft coordinated both in situ and remote sensing observations with the Terra and Aqua spacecraft. In this paper we will emphasize the optical, microphysical, and physical properties of both liquid water and ice clouds obtained from an analysis of the satellite observations over Florida and the Gulf of Mexico during July 2002. We will present the frequency distribution of liquid water and ice cloud microphysical properties throughout the region, separating the results over land and ocean. Probability distributions of effective radius and cloud optical thickness will also be shown.
Application of symmetry properties to polarimetric remote sensing with JPL AIRSAR data
NASA Technical Reports Server (NTRS)
Nghiem, S. V.; Yueh, Simon H.; Kwok, R.; Li, F. K.
1992-01-01
Based on symmetry properties, polarimetric remote sensing of geophysical media is studied. From the viewpoint of symmetry groups, media with reflection, rotation, azimuthal, and centrical symmetries are considered. The symmetries impose relations among polarimetric scattering coefficients, which are valid to all scattering mechanisms in the symmetrical configurations. Various orientation distributions of non-spherical scatterers can be identified from the scattering coefficients by a comparison with the symmetry calculations. Experimental observations are then analyzed for many geophysical scenes acquired with the Jet Propulsion Laboratory (JPL) airborne polarimetric SAR at microwave frequencies over sea ice and vegetation. Polarimetric characteristics of different ice types are compared with symmetry behaviors. The polarimetric response of a tropical rain forest reveals characteristics close to the centrical symmetry properties, which can be used as a distributed target to relatively calibrate polarimetric radars without any deployment of manmade calibration targets.
Application of Thermal Infrared Remote Sensing for Quantitative Evaluation of Crop Characteristics
NASA Technical Reports Server (NTRS)
Shaw, J.; Luvall, J.; Rickman, D.; Mask, P.; Wersinger, J.; Sullivan, D.; Arnold, James E. (Technical Monitor)
2002-01-01
Evidence suggests that thermal infrared emittance (TIR) at the field-scale is largely a function of the integrated crop/soil moisture continuum. Because soil moisture dynamics largely determine crop yields in non-irrigated farming (85 % of Alabama farms are non-irrigated), TIR may be an effective method of mapping within field crop yield variability, and possibly, absolute yields. The ability to map yield variability at juvenile growth stages can lead to improved soil fertility and pest management, as well as facilitating the development of economic forecasting. Researchers at GHCC/MSFC/NASA and Auburn University are currently investigating the role of TIR in site-specific agriculture. Site-specific agriculture (SSA), or precision farming, is a method of crop production in which zones and soils within a field are delineated and managed according to their unique properties. The goal of SSA is to improve farm profits and reduce environmental impacts through targeted agrochemical applications. The foundation of SSA depends upon the spatial and temporal characterization of soil and crop properties through the creation of management zones. Management zones can be delineated using: 1) remote sensing (RS) data, 2) conventional soil testing and soil mapping, and 3) yield mapping. Portions of this research have concentrated on using remote sensing data to map yield variability in corn (Zea mays L.) and soybean (Glycine max L.) crops. Remote sensing data have been collected for several fields in the Tennessee Valley region at various crop growth stages during the last four growing seasons. Preliminary results of this study will be presented.
Tunnel-Site Selection by Remote Sensing Techniques
A study of the role of remote sensing for geologic reconnaissance for tunnel-site selection was commenced. For this study, remote sensing was defined...conventional remote sensing . Future research directions are suggested, and the extension of remote sensing to include airborne passive microwave
Validation of Satellite Derived Cloud Properties Over the Southeastern Pacific
NASA Astrophysics Data System (ADS)
Ayers, J.; Minnis, P.; Zuidema, P.; Sun-Mack, S.; Palikonda, R.; Nguyen, L.; Fairall, C.
2005-12-01
Satellite measurements of cloud properties and the radiation budget are essential for understanding meso- and large-scale processes that determine the variability in climate over the southeastern Pacific. Of particular interest in this region is the prevalent stratocumulus cloud deck. The stratocumulus albedos are directly related to cloud microphysical properties that need to be accurately characterized in Global Climate Models (GCMs) to properly estimate the Earth's radiation budget. Meteorological observations in this region are sparse causing large uncertainties in initialized model fields. Remote sensing from satellites can provide a wealth of information about the clouds in this region, but it is vital to validate the remotely sensed parameters and to understand their relationship to other parameters that are not directly observed by the satellites. The variety of measurements from the R/V Roger Revelle during the 2003 STRATUS cruise and from the R/V Ron Brown during EPIC 2001 and the 2004 STRATUS cruises are suitable for validating and improving the interpretation of the satellite derived cloud properties. In this study, satellite-derived cloud properties including coverage, height, optical depth, and liquid water path are compared with in situ measurements taken during the EPIC and STRATUS cruises. The remotely sensed values are derived from Geostationary Operational Environmental Satellite (GOES) imager data, Moderate Resolution Imaging Spectroradiometer (MODIS) data from the Terra and Aqua satellites, and from the Visible and Infrared Scanner (VIRS) aboard the Tropical Rainfall Measuring Mission (TRMM) satellite. The products from this study will include regional monthly cloud climatologies derived from the GOES data for the 2003 and 2004 cruises as well as micro and macro physical cloud property retrievals centered over the ship tracks from MODIS and VIRS.
Visible-infrared remote-sensing model and applications for ocean waters. Ph.D. Thesis
NASA Technical Reports Server (NTRS)
Lee, Zhongping
1994-01-01
Remote sensing has become important in the ocean sciences, especially for research involving large spatial scales. To estimate the in-water constituents through remote sensing, whether carried out by satellite or airplane, the signal emitted from beneath the sea surface, the so called water-leaving radiance (L(w)), is of prime importance. The magnitude of L(w) depends on two terms: one is the intensity of the solar input, and the other is the reflectance of the in-water constituents. The ratio of the water-leaving radiance to the downwelling irradiance (E(d)) above the sear surface (remote-sensing reflectance, R(sub rs)) is independent of the intensity of the irradiance input, and is largely a function of the optical properties of the in-water constituents. In this work, a model is developed to interpret r(sub rs) for ocean water in the visible-infrared range. In addition to terms for the radiance scattered from molecules and particles, the model includes terms that describe contributions from bottom reflectance, fluorescence of gelbstoff or colored dissolved organic matter (CDOM), and water Raman scattering. By using this model, the measured R(sub rs) of waters from the West Florida Shelf to the Mississippi River plume, which covered a (concentration of chlorophyll a) range of 0.07 - 50 mg/cu m, were well interpreted. The average percentage difference (a.p.d.) between the measured and modeled R(sub rs) is 3.4%, and, for the shallow waters, the model-required water depth is within 10% of the chart depth. Simple mathematical simulations for the phytoplankton pigment absorption coefficient (a(sub theta)) are suggested for using the R(sub rs) model. The inverse problem of R(sub rs), which is to analytically derive the in-water constituents from R(sub rs) data alone, can be solved using the a(sub theta) functions without prior knowledge of the in-water optical properties. More importantly, this method avoids problems associated with a need for knowledge of the shape and value of the chlorophyll-specific absorption coefficient. The simulation was tested for a wide range of water types, including waters from Monterey Bay, the West Florida Shelf, and the Mississippi River plume. Using the simulation, the R(sub rs)-derived in-water absorption coefficients were consistent with the values from in-water measurements (r(exp 2) greater than 0.94, slope approximately 1.0). In the remote-sensing applications, a new approach is suggested for the estimation of primary production based on remote sensing. Using this approach, the calculated primary production (PP) values based upon remotely sensed data were very close to the measured values for the euphotic zone (r(exp 2) = 0.95, slope 1.26, and 32% average difference), while traditional, pigment-based PP model provided values only one-third the size of the measured data. This indicates a potential to significantly improve the accuracy of the estimation of primary production based upon remote sensing.
System and method for evaluating wind flow fields using remote sensing devices
Schroeder, John; Hirth, Brian; Guynes, Jerry
2016-12-13
The present invention provides a system and method for obtaining data to determine one or more characteristics of a wind field using a first remote sensing device and a second remote sensing device. Coordinated data is collected from the first and second remote sensing devices and analyzed to determine the one or more characteristics of the wind field. The first remote sensing device is positioned to have a portion of the wind field within a first scanning sector of the first remote sensing device. The second remote sensing device is positioned to have the portion of the wind field disposed within a second scanning sector of the second remote sensing device.
Biochemical processes in sagebrush ecosystems: Interactions with terrain
NASA Technical Reports Server (NTRS)
Matson, P. (Principal Investigator); Reiners, W.; Strong, L.
1985-01-01
The objectives of a biogeochemical study of sagebrush ecosystems in Wyoming and their interactions with terrain are as follows: to describe the vegetational pattern on the landscape and elucidate controlling variables, to measure the soil properties and chemical cycling properties associated with the vegetation units, to associate soil properties with vegetation properties as measured on the ground, to develop remote sensing capabilities for vegetation and surface characteristics of the sagebrush landscape, to develop a system of sensing snow cover and indexing seasonal soil to moisture; and to develop relationships between temporal Thematic Mapper (TM) data and vegetation phenological state.
Exploring Models and Data for Remote Sensing Image Caption Generation
NASA Astrophysics Data System (ADS)
Lu, Xiaoqiang; Wang, Binqiang; Zheng, Xiangtao; Li, Xuelong
2018-04-01
Inspired by recent development of artificial satellite, remote sensing images have attracted extensive attention. Recently, noticeable progress has been made in scene classification and target detection.However, it is still not clear how to describe the remote sensing image content with accurate and concise sentences. In this paper, we investigate to describe the remote sensing images with accurate and flexible sentences. First, some annotated instructions are presented to better describe the remote sensing images considering the special characteristics of remote sensing images. Second, in order to exhaustively exploit the contents of remote sensing images, a large-scale aerial image data set is constructed for remote sensing image caption. Finally, a comprehensive review is presented on the proposed data set to fully advance the task of remote sensing caption. Extensive experiments on the proposed data set demonstrate that the content of the remote sensing image can be completely described by generating language descriptions. The data set is available at https://github.com/201528014227051/RSICD_optimal
Remote sensing for prediction of 1-year post-fire ecosystem condition
Leigh B. Lentile; Alistair M. S. Smith; Andrew T. Hudak; Penelope Morgan; Michael J. Bobbitt; Sarah A. Lewis; Peter R. Robichaud
2009-01-01
Appropriate use of satellite data in predicting >1 year post-fire effects requires remote measurement of surface properties that can be mechanistically related to ground measures of post-fire condition. The present study of burned ponderosa pine (Pinus ponderosa) forests in the Black Hills of South Dakota evaluates whether immediate fractional cover estimates of...
NASA Astrophysics Data System (ADS)
Bi, Siwen; Zhen, Ming; Yang, Song; Lin, Xuling; Wu, Zhiqiang
2017-08-01
According to the development and application needs of Remote Sensing Science and technology, Prof. Siwen Bi proposed quantum remote sensing. Firstly, the paper gives a brief introduction of the background of quantum remote sensing, the research status and related researches at home and abroad on the theory, information mechanism and imaging experiments of quantum remote sensing and the production of principle prototype.Then, the quantization of pure remote sensing radiation field, the state function and squeezing effect of quantum remote sensing radiation field are emphasized. It also describes the squeezing optical operator of quantum light field in active imaging information transmission experiment and imaging experiments, achieving 2-3 times higher resolution than that of coherent light detection imaging and completing the production of quantum remote sensing imaging prototype. The application of quantum remote sensing technology can significantly improve both the signal-to-noise ratio of information transmission imaging and the spatial resolution of quantum remote sensing .On the above basis, Prof.Bi proposed the technical solution of active imaging information transmission technology of satellite borne quantum remote sensing, launched researches on its system composition and operation principle and on quantum noiseless amplifying devices, providing solutions and technical basis for implementing active imaging information technology of satellite borne Quantum Remote Sensing.
Introduction to the physics and techniques of remote sensing
NASA Technical Reports Server (NTRS)
Elachi, Charles
1987-01-01
This book presents a comprehensive overview of the basics behind remote-sensing physics, techniques, and technology. The physics of wave/matter interactions, techniques of remote sensing across the electromagnetic spectrum, and the concepts behind remote sensing techniques now established and future ones under development are discussed. Applications of remote sensing are described for a wide variety of earth and planetary atmosphere and surface sciences. Solid surface sensing across the electromagnetic spectrum, ocean surface sensing, basic principles of atmospheric sensing and radiative transfer, and atmospheric remote sensing in the microwave, millimeter, submillimeter, and infrared regions are examined.
Aerosol Remote Sensing from AERONET, the Ground-Based Satellite
NASA Technical Reports Server (NTRS)
Holben, Brent N.
2012-01-01
Atmospheric particles including mineral dust, biomass burning smoke, pollution from carbonaceous aerosols and sulfates, sea salt, impact air quality and climate. The Aerosol Robotic Network (AERONET) program, established in the early 1990s, is a federation of ground-based remote sensing aerosol networks of Sun/sky radiometers distributed around the world, which provides a long-term, continuous and readily accessible public domain database of aerosol optical (e.g., aerosol optical depth) and microphysical (e.g., aerosol volume size distribution) properties for aerosol characterization, validation of satellite retrievals, and synergism with Earth science databases. Climatological aerosol properties will be presented at key worldwide locations exhibiting discrete dominant aerosol types. Further, AERONET's temporary mesoscale network campaign (e.g., UAE2, TIGERZ, DRAGON-USA.) results that attempt to quantify spatial and temporal variability of aerosol properties, establish validation of ground-based aerosol retrievals using aircraft profile measurements, and measure aerosol properties on compatible spatial scales with satellite retrievals and aerosol transport models allowing for more robust validation will be discussed.
NASA Technical Reports Server (NTRS)
Minnis, Patrick; Young, David F.; Heck, Patrick W.; Liou, Kuo-Nan; Takano, Yoshihide
1992-01-01
The First ISCCP (International Satellite Cloud Climatology Project) Regional Experiment (FIRE) Phase II Intensive Field Observations (IFO) were taken over southeastern Kansas between November 13 and December 7,1991, to determine cirrus cloud properties. The observations include in situ microphysical data; surface, aircraft, and satellite remote sensing; and measurements of divergence over meso- and smaller-scale areas using wind profilers. Satellite remote sensing of cloud characteristics is an essential aspect for understanding and predicting the role of clouds in climate variations. The objectives of the satellite cloud analysis during FIRE are to validate cloud property retrievals, develop advanced methods for extracting cloud information from satellite-measured radiances, and provide multiscale cloud data for cloud process studies and for verification of cloud generation models. This paper presents the initial results of cloud property analyses during FIRE-II using Geostationary Operational Environmental Satellite (GOES) data and NOAA Advanced Very High Resolution Radiometer (AVHRR) radiances.
[Thematic Issue: Remote Sensing.
ERIC Educational Resources Information Center
Howkins, John, Ed.
1978-01-01
Four of the articles in this publication discuss the remote sensing of the Earth and its resources by satellites. Among the topics dealt with are the development and management of remote sensing systems, types of satellites used for remote sensing, the uses of remote sensing, and issues involved in using information obtained through remote…
75 FR 65304 - Advisory Committee on Commercial Remote Sensing (ACCRES); Request for Nominations
Federal Register 2010, 2011, 2012, 2013, 2014
2010-10-22
... Commercial Remote Sensing (ACCRES); Request for Nominations AGENCY: National Oceanic and Atmospheric... Commercial Remote Sensing (ACCRES). SUMMARY: The Advisory Committee on Commercial Remote Sensing (ACCRES) was... Atmosphere, on matters relating to the U.S. commercial remote sensing industry and NOAA's activities to carry...
Different atmospheric effects in remote sensing of uniform and nonuniform surfaces
NASA Technical Reports Server (NTRS)
Kaufman, Y. J.; Fraser, R. S.
1982-01-01
The atmospheric effect on the radiance of sunlight scattered from the earth-atmosphere system is greatly dependent on the surface reflectance pattern, the contrast between adjacent fields, and the optical properties of the atmosphere. In addition, the atmospheric effect is described by the range and magnitude of the adjacency effects, the atmospheric modulation transfer function, and the apparent spatial resolution of remotely sensed imagery. This paper discusses the atmospheric effect on classification of surface features and shows that surface nonuniformity can be used for developing procedures to remove the atmospheric effect from the satellite imagery.
Learning Methods of Remote Sensing In the 2013 Curriculum of Secondary School
NASA Astrophysics Data System (ADS)
Lili Somantri, Nandi
2016-11-01
The new remote sensing material included in the subjects of geography in the curriculum of 1994. For geography teachers generation of 90s and over who in college do not get the material remote sensing, for teaching is a tough matter. Most teachers only give a theoretical matter, and do not carry out practical reasons in the lack of facilities and infrastructure of computer laboratories. Therefore, in this paper studies the importance about the method or manner of teaching remote sensing material in schools. The purpose of this paper is 1) to explain the position of remote sensing material in the study of geography, 2) analyze the Geography Curriculum 2013 Subjects related to remote sensing material, 3) describes a method of teaching remote sensing material in schools. The method used in this paper is a descriptive analytical study supported by the literature. The conclusion of this paper that the position of remote sensing in the study of geography is a method or a way to obtain spatial data earth's surface. In the 2013 curriculum remote sensing material has been applied to the study of land use and transportation. Remote sensing methods of teaching must go through a practicum, which starts from the introduction of the theory of remote sensing, data extraction phase of remote sensing imagery to produce maps, both visually and digitally, field surveys, interpretation of test accuracy, and improved maps.
The Athena Mars Rover Investigation
NASA Technical Reports Server (NTRS)
Squyres, S. W.; Arvidson, R. E.; Bell, J. F., III; Carr, M.; Christensen, P.; DesMarais, D.; Economou, T.; Gorevan, S.; Haskin, L.; Herkenhoff, K.
2000-01-01
The Mars Surveyor program requires tools for martian surface exploration, including remote sensing, in-situ sensing, and sample collection. The Athena Mars rover payload is a suite of scientific instruments and sample collection tools designed to: (1) Provide color stereo imaging of martian surface environments, and remotely-sensed point discrimination of mineralogical composition; (2) Determine the elemental and mineralogical composition of martian surface materials; (3) Determine the fine-scale textural properties of these materials; and (4) Collect and store samples. The Athena payload is designed to be implemented on a long-range rover such as the one now under consideration for the 2003 Mars opportunity. The payload is at a high state of maturity, and most of the instruments have now been built for flight.
Symmetry in polarimetric remote sensing
NASA Technical Reports Server (NTRS)
Nghiem, S. V.; Yueh, S. H.; Kwok, R.
1993-01-01
Relationships among polarimetric backscattering coefficients are derived from the viewpoint of symmetry groups. For both reciprocal and non-reciprocal media, symmetry encountered in remote sensing due to reflection, rotation, azimuthal, and centrical symmetry groups is considered. The derived properties are general and valid to all scattering mechanisms, including volume and surface scatterings and their interactions, in a given symmetrical configuration. The scattering coefficients calculated from theoretical models for layer random media and rough surfaces are shown to obey the symmetry relations. Use of symmetry properties in remote sensing of structural and environmental responses of scattering media is also discussed. Orientations of spheroidal scatterers described by spherical, uniform, planophile, plagiothile, erectophile, and extremophile distributions are considered to derive their polarimetric backscattering characteristics. These distributions can be identified from the observed scattering coefficients by comparison with theoretical symmetry calculations. A new parameter is then defined to study scattering structures in geophysical media. Observations from polarimetric data acquired by the Jet Propulsion Laboratory airborne synthetic aperture radar over forests, sea ice, and sea surface are presented. Experimental evidences of the symmetry relationships are shown and their use in polarimetric remote sensing is illustrated. For forests, the coniferous forest in Mt. Shasta area (California) and mixed forest near Presque Isle (Maine) exhibit characteristics of the centrical symmetry at C-band. For sea ice in the Beaufort Sea, multi-year sea ice has a cross-polarized ratio e close to e(sub 0), calculated from symmetry, due to the randomness in the scattering structure. First-year sea ice has e much smaller than e(sub 0) due to the preferential alignment of the columnar structure of the ice. From polarimetric data of a sea surface in the Bering Sea, it is observed that e and e(sub 0) are increasing with incident angle and e is greater than e(sub 0) at L-band because of the directional feature of sea surface waves. Symmetry properties of geophysical media can also be used to calibrate polarimetric radars.
JPRS Report, Science & Technology, China, Remote Sensing Systems, Applications.
1991-01-17
Partial Contents: Short Introduction to Nation’s Remote Sensing Units, Domestic Airborne Remote - Sensing System, Applications in Monitoring Natural...Disasters, Applications of Imagery From Experimental Satellites Launched in 1985, 1986, Current Status, Future Prospects for Domestic Remote - Sensing -Satellite...Ground Station, and Radar Remote - Sensing Technology Used to Monitor Yellow River Delta,
The Impact of Iron Limitation on Remote Sensing Reflectance in Phaeocystis antarctica
NASA Astrophysics Data System (ADS)
Tagliabue, A.; van Dijken, G. L.; Arrigo, K. R.
2006-12-01
The iron limited Southern Ocean is an important controller of the global carbon cycle and is predicted to be heavily impacted by future changes in climate. Such remote regions are heavily reliant on acquiring data from remotely sensed satellite observations of pigment concentrations, via algorithms that utilize bio-optical properties to estimate chlorophyll a concentrations. The haptophyte Phaeocystis antarctica is a key phytoplankton functional group across the Southern Ocean and dominates phytoplankton biomass in the highly productive southwestern Ross Sea. In this study, we examine absorption spectra obtained from laboratory cultures of P. antarctica grown under iron sufficient and deficient conditions. We then utilize a semi-analytical reflectance model, alongside data collected from the Ross Sea, to compare remote sensing reflectance (Rrs) derived from absorption spectra to chlorophyll a. We find that Rrs(490):Rrs(555) per unit chlorophyll a for iron sufficient P. antarctica is consistent with the existing Ross Sea algorithm. However, the increased chlorophyll specific absorption at 490 and 555 nm of iron deficient P. antarctica results in a reduction in Rrs(490):Rrs(555) per unit chlorophyll a. Therefore, remotely sensed chlorophyll a concentrations based on Rrs(490):Rrs(555) will be overestimated when waters dominated by P. antarctica experience iron stress. If remotely sensed chlorophyll a concentrations are erroneously high when P. antarctica is iron limited, then both the magnitude and duration of P. antarctica blooms might have been overestimated. We suggest that an in situ investigation of the P. antarctica Rrs to chlorophyll a relationship is necessary during the onset of iron limitation. The likely causes and broader implications of these conclusions will also be discussed.
[A review on polarization information in the remote sensing detection].
Gong, Jie-Qiong; Zhan, Hai-Gang; Liu, Da-Zhao
2010-04-01
Polarization is one of the inherent characteristics. Because the surface of the target structure, internal structure, and the angle of incident light are different, the earth's surface and any target in atmosphere under optical interaction process will have their own characteristic nature of polarization. Polarimetric characteristics of radiation energy from the targets are used in polarization remote sensing detection as detective information. Polarization remote sensing detection can get the seven-dimensional information of targets in complicated backgrounds, detect well-resolved outline of targets and low-reflectance region of objectives, and resolve the problems of atmospheric detection and identification camouflage detection which the traditional remote sensing detection can not solve, having good foreground in applications. This paper introduces the development of polarization information in the remote sensing detection from the following four aspects. The rationale of polarization remote sensing detection is the base of polarization remote sensing detection, so it is firstly introduced. Secondly, the present researches on equipments that are used in polarization remote sensing detection are particularly and completely expatiated. Thirdly, the present exploration of theoretical simulation of polarization remote sensing detection is well detailed. Finally, the authors present the applications research home and abroad of the polarization remote sensing detection technique in the fields of remote sensing, atmospheric sounding, sea surface and underwater detection, biology and medical diagnosis, astronomical observation and military, summing up the current problems in polarization remote sensing detection. The development trend of polarization remote sensing detection technology in the future is pointed out in order to provide a reference for similar studies.
Reflectance spectroscopy of organic compounds: 1. Alkanes
NASA Astrophysics Data System (ADS)
Clark, Roger N.; Curchin, John M.; Hoefen, Todd M.; Swayze, Gregg A.
2009-03-01
Reflectance spectra of the organic compounds comprising the alkane series are presented from the ultraviolet to midinfrared, 0.35 to 15.5 μm. Alkanes are hydrocarbon molecules containing only single carbon-carbon bonds, and are found naturally on the Earth and in the atmospheres of the giant planets and Saturn's moon, Titan. This paper presents the spectral properties of the alkanes as the first in a series of papers to build a spectral database of organic compounds for use in remote sensing studies. Applications range from mapping the environment on the Earth, to the search for organic molecules and life in the solar system and throughout the universe. We show that the spectral reflectance properties of organic compounds are rich, with major diagnostic spectral features throughout the spectral range studied. Little to no spectral change was observed as a function of temperature and only small shifts and changes in the width of absorption bands were observed between liquids and solids, making remote detection of spectral properties throughout the solar system simpler. Some high molecular weight organic compounds contain single-bonded carbon chains and have spectra similar to alkanes even when they fall into other families. Small spectral differences are often present allowing discrimination among some compounds, further illustrating the need to catalog spectral properties for accurate remote sensing identification with spectroscopy.
Reflectance spectroscopy of organic compounds: 1. Alkanes
Clark, R.N.; Curchin, J.M.; Hoefen, T.M.; Swayze, G.A.
2009-01-01
Reflectance spectra of the organic compounds comprising the alkane series are presented from the ultraviolet to midinfrared, 0.35 to 15.5 /??m. Alkanes are hydrocarbon molecules containing only single carbon-carbon bonds, and are found naturally on the Earth and in the atmospheres of the giant planets and Saturn's moon, Titan. This paper presents the spectral properties of the alkanes as the first in a series of papers to build a spectral database of organic compounds for use in remote sensing studies. Applications range from mapping the environment on the Earth, to the search for organic molecules and life in the solar system and throughout the. universe. We show that the spectral reflectance properties of organic compounds are rich, with major diagnostic spectral features throughout the spectral range studied. Little to no spectral change was observed as a function of temperature and only small shifts and changes in the width of absorption bands were observed between liquids and solids, making remote detection of spectral properties throughout the solar system simpler. Some high molecular weight organic compounds contain single-bonded carbon chains and have spectra similar to alkanes even ' when they fall into other families. Small spectral differences are often present allowing discrimination among some compounds, further illustrating the need to catalog spectral properties for accurate remote sensing identification with spectroscopy.
NASA Astrophysics Data System (ADS)
Becker, R.; Gebremichael, M.; Marker, M.
2015-12-01
Soil moisture is one of the main input variables for hydrological models. However due to the high spatial and temporal variability of soil properties it is often difficult to obtain accurate soil information at the required resolution. The new satellite SMAP promises to deliver soil moisture information at higher resolutions and could therefore improve the results of hydrological models. Nevertheless it still has to be investigated how precisely the SMAP soil moisture data can be used to delineate rainfall-runoff generation processes and if SMAP imagery can significantly improve the results of surface runoff models. Important parameters to understand the spatiotemporal distribution of soil humidity are infiltration and hydraulic conductivities apart from soil texture and macrostructure. During the SMAPVEX15-field campaign data on hydraulic conductivity and infiltration rates is collected in the Walnut Gulch Experimental Watershed (WGEW) in Southeastern Arizona in order to analyze the spatiotemporal variability of soil hydraulic properties. A Compact Constant Head Permeameter is used for in situ measurements of saturated hydraulic conductivity within the soil layers and a Hood Infiltrometer is used to determine infiltration rates at the undisturbed soil surface. Sampling sites were adjacent to the USDA-ARS meteorological and soil moisture measuring sites in the WGEW to take advantage of the long-term database of soil and climate data. Furthermore a sample plot of 3x3km was selected, where the spatial variability of soil hydraulic properties within a SMAP footprint was investigated. The results of the ground measurement based analysis are then compared with the remote sensing data derived from SMAP and aircraft-based microwave data to determine how well these spatiotemporal variations are captured by the remotely sensed data with the final goal of evaluating the use of future satellite soil moisture products for the improvement of rainfall runoff models. The results reveal several interesting features on the spatiotemporal variability of soil moisture at multiple scales, and the capabilities and limitations of remote sensing derived products in reproducing them.
Forkuor, Gerald; Hounkpatin, Ozias K L; Welp, Gerhard; Thiel, Michael
2017-01-01
Accurate and detailed spatial soil information is essential for environmental modelling, risk assessment and decision making. The use of Remote Sensing data as secondary sources of information in digital soil mapping has been found to be cost effective and less time consuming compared to traditional soil mapping approaches. But the potentials of Remote Sensing data in improving knowledge of local scale soil information in West Africa have not been fully explored. This study investigated the use of high spatial resolution satellite data (RapidEye and Landsat), terrain/climatic data and laboratory analysed soil samples to map the spatial distribution of six soil properties-sand, silt, clay, cation exchange capacity (CEC), soil organic carbon (SOC) and nitrogen-in a 580 km2 agricultural watershed in south-western Burkina Faso. Four statistical prediction models-multiple linear regression (MLR), random forest regression (RFR), support vector machine (SVM), stochastic gradient boosting (SGB)-were tested and compared. Internal validation was conducted by cross validation while the predictions were validated against an independent set of soil samples considering the modelling area and an extrapolation area. Model performance statistics revealed that the machine learning techniques performed marginally better than the MLR, with the RFR providing in most cases the highest accuracy. The inability of MLR to handle non-linear relationships between dependent and independent variables was found to be a limitation in accurately predicting soil properties at unsampled locations. Satellite data acquired during ploughing or early crop development stages (e.g. May, June) were found to be the most important spectral predictors while elevation, temperature and precipitation came up as prominent terrain/climatic variables in predicting soil properties. The results further showed that shortwave infrared and near infrared channels of Landsat8 as well as soil specific indices of redness, coloration and saturation were prominent predictors in digital soil mapping. Considering the increased availability of freely available Remote Sensing data (e.g. Landsat, SRTM, Sentinels), soil information at local and regional scales in data poor regions such as West Africa can be improved with relatively little financial and human resources.
Bio-Optical Properties of the Arabian Sea as Determined by In Situ and Sea WiFS Data
NASA Technical Reports Server (NTRS)
Trees, Charles C.
1997-01-01
The overall objective of this work was to characterize optical and fluorescence properties in the euphotic zone during two British Ocean Flux Study (BOFS) Arabian Sea cruises. This was later expanded in 1995 to include three U.S. JGOFS Arabian Sea Cruises. The region was to be divided into one or more "bio-optical provinces," within each of which a single set of regression models was to be developed to relate the vertical distribution of irradiance attenuation and normalized fluorescence (SF and NF) to remote sensing reflectance and diffuse attenuation coefficient. The working hypothesis was that over relatively large spatial and temporal scales, the vertical profiles of bio-optical properties were predictable. The specific technical objectives were: (1) To characterize the vertical distribution of the inherent and apparent optical properties by measuring downwelling and upwelling irradiances, upwelling radiances, scalar irradiance of PAR, and beam transmissions at each station - from these data, spectral diffuse attenuation coefficients, irradiance reflectances, remote sensing reflectances, surface-leaving radiances and beam attenuation coefficients were determined; (2) To characterize the spectral absorption of total particulate, detrital, and dissolved organic material at each station from discrete water samples; (3) To describe the vertical distribution of photoadaptive properties in the water column by measuring profiles of stimulated (SF) and natural (NF) fluorescence and examining relationships between SF and NF as a function of diffuse optical depth, pigment biomass and primary productivity; and (4) To establish locally derived, in-water algorithms relating remote sensing reflectance spectra to diffuse attenuation coefficients, phytoplankton pigment concentrations and primary productivity, through intercomparisons with in situ measurements, for application to SeaWiFS data.
Material Characterization using Passive Multispectral Polarimetric Imagery
2013-03-01
least intuitive RS technique is undoubtedly polarimetry . Polarization is a property of all TEM waves, so its applications are not limited to any...Shaw. “Review of passive imaging polarimetry for remote sensing applications”. Applied Optics, 45(22):5453–5469, 2006. [48] Vanderbilt, V.C. and...refractive index; polarimetry ; multispectral; polarization; polarisation; polarimetric imagery; dispersion; Drude model; Cauchy equation; remote
J. McKean; D. Tonina; C. Bohn; C. W. Wright
2014-01-01
New remote sensing technologies and improved computer performance now allow numerical flow modeling over large stream domains. However, there has been limited testing of whether channel topography can be remotely mapped with accuracy necessary for such modeling. We assessed the ability of the Experimental Advanced Airborne Research Lidar, to support a multi-dimensional...
NASA Astrophysics Data System (ADS)
Infante Corona, J. A.; Lakhankar, T.; Khanbilvardi, R.; Pradhanang, S. M.
2013-12-01
Stream flow estimation and flood prediction influenced by snow melting processes have been studied for the past couple of decades because of their destruction potential, money losses and demises. It has been observed that snow, that was very stationary during its seasons, now is variable in shorter time-scales (daily and hourly) and rapid snowmelt can contribute or been the cause of floods. Therefore, good estimates of snowpack properties on ground are necessary in order to have an accurate prediction of these destructive events. The snow thermal model (SNTHERM) is a 1-dimensional model that analyzes the snowpack properties given the climatological conditions of a particular area. Gridded data from both, in-situ meteorological observations and remote sensing data will be produced using interpolation methods; thus, snow water equivalent (SWE) and snowmelt estimations can be obtained. The soil and water assessment tool (SWAT) is a hydrological model capable of predicting runoff quantity and quality of a watershed given its main physical and hydrological properties. The results from SNTHERM will be used as an input for SWAT in order to have simulated runoff under snowmelt conditions. This project attempts to improve the river discharge estimation considering both, excess rainfall runoff and the snow melting process. Obtaining a better estimation of the snowpack properties and evolution is expected. A coupled use of SNTHERM and SWAT based on meteorological in situ and remote sensed data will improve the temporal and spatial resolution of the snowpack characterization and river discharge estimations, and thus flood prediction.
Cybernetic Basis and System Practice of Remote Sensing and Spatial Information Science
NASA Astrophysics Data System (ADS)
Tan, X.; Jing, X.; Chen, R.; Ming, Z.; He, L.; Sun, Y.; Sun, X.; Yan, L.
2017-09-01
Cybernetics provides a new set of ideas and methods for the study of modern science, and it has been fully applied in many areas. However, few people have introduced cybernetics into the field of remote sensing. The paper is based on the imaging process of remote sensing system, introducing cybernetics into the field of remote sensing, establishing a space-time closed-loop control theory for the actual operation of remote sensing. The paper made the process of spatial information coherently, and improved the comprehensive efficiency of the space information from acquisition, procession, transformation to application. We not only describes the application of cybernetics in remote sensing platform control, sensor control, data processing control, but also in whole system of remote sensing imaging process control. We achieve the information of output back to the input to control the efficient operation of the entire system. This breakthrough combination of cybernetics science and remote sensing science will improve remote sensing science to a higher level.
Zhou, Weiqi; Troy, Austin; Grove, Morgan
2008-05-01
This article investigates how remotely sensed lawn characteristics, such as parcel lawn area and parcel lawn greenness, combined with household characteristics, can be used to predict household lawn fertilization practices on private residential lands. This study involves two watersheds, Glyndon and Baisman's Run, in Baltimore County, Maryland, USA. Parcel lawn area and lawn greenness were derived from high-resolution aerial imagery using an object-oriented classification approach. Four indicators of household characteristics, including lot size, square footage of the house, housing value, and housing age were obtained from a property database. Residential lawn care survey data combined with remotely sensed parcel lawn area and greenness data were used to estimate two measures of household lawn fertilization practices, household annual fertilizer nitrogen application amount (N_yr) and household annual fertilizer nitrogen application rate (N_ha_yr). Using multiple regression with multi-model inferential procedures, we found that a combination of parcel lawn area and parcel lawn greenness best predicts N_yr, whereas a combination of parcel lawn greenness and lot size best predicts variation in N_ha_yr. Our analyses show that household fertilization practices can be effectively predicted by remotely sensed lawn indices and household characteristics. This has significant implications for urban watershed managers and modelers.
Advancing Partnerships Towards an Integrated Approach to Oil Spill Response
NASA Astrophysics Data System (ADS)
Green, D. S.; Stough, T.; Gallegos, S. C.; Leifer, I.; Murray, J. J.; Streett, D.
2015-12-01
Oil spills can cause enormous ecological and economic devastation, necessitating application of the best science and technology available, and remote sensing is playing a growing critical role in the detection and monitoring of oil spills, as well as facilitating validation of remote sensing oil spill products. The FOSTERRS (Federal Oil Science Team for Emergency Response Remote Sensing) interagency working group seeks to ensure that during an oil spill, remote sensing assets (satellite/aircraft/instruments) and analysis techniques are quickly, effectively, appropriately, and seamlessly available to oil spills responders. Yet significant challenges remain for addressing oils spanning a vast range of chemical properties that may be spilled from the Tropics to the Arctic, with algorithms and scientific understanding needing advances to keep up with technology. Thus, FOSTERRS promotes enabling scientific discovery to ensure robust utilization of available technology as well as identifying technologies moving up the TRL (Technology Readiness Level). A recent FOSTERRS facilitated support activity involved deployment of the AVIRIS NG (Airborne Visual Infrared Imaging Spectrometer- Next Generation) during the Santa Barbara Oil Spill to validate the potential of airborne hyperspectral imaging to real-time map beach tar coverage including surface validation data. Many developing airborne technologies have potential to transition to space-based platforms providing global readiness.
Mapping Migratory Bird Prevalence Using Remote Sensing Data Fusion
Swatantran, Anu; Dubayah, Ralph; Goetz, Scott; Hofton, Michelle; Betts, Matthew G.; Sun, Mindy; Simard, Marc; Holmes, Richard
2012-01-01
Background Improved maps of species distributions are important for effective management of wildlife under increasing anthropogenic pressures. Recent advances in lidar and radar remote sensing have shown considerable potential for mapping forest structure and habitat characteristics across landscapes. However, their relative efficacies and integrated use in habitat mapping remain largely unexplored. We evaluated the use of lidar, radar and multispectral remote sensing data in predicting multi-year bird detections or prevalence for 8 migratory songbird species in the unfragmented temperate deciduous forests of New Hampshire, USA. Methodology and Principal Findings A set of 104 predictor variables describing vegetation vertical structure and variability from lidar, phenology from multispectral data and backscatter properties from radar data were derived. We tested the accuracies of these variables in predicting prevalence using Random Forests regression models. All data sets showed more than 30% predictive power with radar models having the lowest and multi-sensor synergy (“fusion”) models having highest accuracies. Fusion explained between 54% and 75% variance in prevalence for all the birds considered. Stem density from discrete return lidar and phenology from multispectral data were among the best predictors. Further analysis revealed different relationships between the remote sensing metrics and bird prevalence. Spatial maps of prevalence were consistent with known habitat preferences for the bird species. Conclusion and Significance Our results highlight the potential of integrating multiple remote sensing data sets using machine-learning methods to improve habitat mapping. Multi-dimensional habitat structure maps such as those generated from this study can significantly advance forest management and ecological research by facilitating fine-scale studies at both stand and landscape level. PMID:22235254
NASA Astrophysics Data System (ADS)
Delbart, Nicolas; Emmanuelle, Vaudour; Fabienne, Maignan; Catherine, Ottlé; Jean-Marc, Gilliot
2017-04-01
This study explores the potential of multi-temporal optical remote sensing, with high revisit frequency, to derive missing information on agricultural calendar and crop types over the agricultural lands in the Versailles plain in the western Paris suburbs. This study comes besides past and ongoing studies on the use of radar and high spatial resolution optical remote sensing to monitor agricultural practices in this study area (e.g. Vaudour et al. 2014). Agricultural statistics, such as the Land Parcel Identification System (LPIS) for France, permit to know the nature of annual crops for each digitized declared field of this land parcel registry. However, within each declared field several cropped plots and a diversity of practices may exist, being marked by agricultural rotations which vary both spatially and temporally within it and differ from one year to the other. Even though the new LPIS to be released in 2016 is expected to describe individual plots within declared fields, its attributes may not enable to discriminate between winter and spring crops. Here we evaluate the potential of high observation frequency remote sensing to differentiate seasonal crops based essentially on the seasonality of the spectral properties. In particular, we use the Landsat data to spatially disaggregate the LPIS statistical data, on the basis of the analysis of the remote sensing spectral seasonality measured on a number of selected ground-observed fields. This work is carried out in the framework of the CNES TOSCA-PLEIADES-CO of the French Space Agency.
Remote Sensing Information Science Research
NASA Technical Reports Server (NTRS)
Clarke, Keith C.; Scepan, Joseph; Hemphill, Jeffrey; Herold, Martin; Husak, Gregory; Kline, Karen; Knight, Kevin
2002-01-01
This document is the final report summarizing research conducted by the Remote Sensing Research Unit, Department of Geography, University of California, Santa Barbara under National Aeronautics and Space Administration Research Grant NAG5-10457. This document describes work performed during the period of 1 March 2001 thorough 30 September 2002. This report includes a survey of research proposed and performed within RSRU and the UCSB Geography Department during the past 25 years. A broad suite of RSRU research conducted under NAG5-10457 is also described under themes of Applied Research Activities and Information Science Research. This research includes: 1. NASA ESA Research Grant Performance Metrics Reporting. 2. Global Data Set Thematic Accuracy Analysis. 3. ISCGM/Global Map Project Support. 4. Cooperative International Activities. 5. User Model Study of Global Environmental Data Sets. 6. Global Spatial Data Infrastructure. 7. CIESIN Collaboration. 8. On the Value of Coordinating Landsat Operations. 10. The California Marine Protected Areas Database: Compilation and Accuracy Issues. 11. Assessing Landslide Hazard Over a 130-Year Period for La Conchita, California Remote Sensing and Spatial Metrics for Applied Urban Area Analysis, including: (1) IKONOS Data Processing for Urban Analysis. (2) Image Segmentation and Object Oriented Classification. (3) Spectral Properties of Urban Materials. (4) Spatial Scale in Urban Mapping. (5) Variable Scale Spatial and Temporal Urban Growth Signatures. (6) Interpretation and Verification of SLEUTH Modeling Results. (7) Spatial Land Cover Pattern Analysis for Representing Urban Land Use and Socioeconomic Structures. 12. Colorado River Flood Plain Remote Sensing Study Support. 13. African Rainfall Modeling and Assessment. 14. Remote Sensing and GIS Integration.
Mapping migratory bird prevalence using remote sensing data fusion.
Swatantran, Anu; Dubayah, Ralph; Goetz, Scott; Hofton, Michelle; Betts, Matthew G; Sun, Mindy; Simard, Marc; Holmes, Richard
2012-01-01
Improved maps of species distributions are important for effective management of wildlife under increasing anthropogenic pressures. Recent advances in lidar and radar remote sensing have shown considerable potential for mapping forest structure and habitat characteristics across landscapes. However, their relative efficacies and integrated use in habitat mapping remain largely unexplored. We evaluated the use of lidar, radar and multispectral remote sensing data in predicting multi-year bird detections or prevalence for 8 migratory songbird species in the unfragmented temperate deciduous forests of New Hampshire, USA. A set of 104 predictor variables describing vegetation vertical structure and variability from lidar, phenology from multispectral data and backscatter properties from radar data were derived. We tested the accuracies of these variables in predicting prevalence using Random Forests regression models. All data sets showed more than 30% predictive power with radar models having the lowest and multi-sensor synergy ("fusion") models having highest accuracies. Fusion explained between 54% and 75% variance in prevalence for all the birds considered. Stem density from discrete return lidar and phenology from multispectral data were among the best predictors. Further analysis revealed different relationships between the remote sensing metrics and bird prevalence. Spatial maps of prevalence were consistent with known habitat preferences for the bird species. Our results highlight the potential of integrating multiple remote sensing data sets using machine-learning methods to improve habitat mapping. Multi-dimensional habitat structure maps such as those generated from this study can significantly advance forest management and ecological research by facilitating fine-scale studies at both stand and landscape level.
Downhole steam quality measurement
Lee, David O.; Montoya, Paul C.; Muir, James F.; Wayland, Jr., J. Robert
1987-01-01
An empirical method for the remote sensing of steam quality that can be easily adapted to downhole steam quality measurements by measuring the electrical properties of two-phase flow across electrode grids at low frequencies.
Essentials of LIDAR multiangle data processing methodology for smoke polluted atmospheres
V. A. Kovalev; A. Petkov; C. Wold; S. Urbanski; W. M. Hao
2009-01-01
Mobile scanning lidar is the most appropriate tool for monitoring wildfire smoke-plume dynamics and optical properties. Lidar is the only remote sensing instrument capable of obtaining detailed three-dimensional range-resolved information for smoke distributions and optical properties over ranges of 10+ km at different wavelengths simultaneously.
Allgöwer, Britta; Carlson, J.D.; Van Wagtendonk, Jan W.; Chuvieco, Emilio
2003-01-01
While ‘Fire Danger’ per se cannot be measured, the physical properties of the biotic and abiotic world that relate to fire occurrence and fire behavior can. Today, increasingly sophisticated Remote Sensing methods are being developed to more accurately detect fuel properties such as species composition (fuel types), vegetation structure or plant water content - to name a few. Based on meteorological input data and physical, semi-physical or empirical model calculations, Wildland Fire Danger Rating Systems provide ‘indirect values’ - numerical indices - at different temporal scales (e.g., daily, weekly, monthly) denoting the physical conditions that may lead to fire ignition and support fire propagation. The results can be expressed as fire danger levels, ranging from ‘low’ to ‘very high’, and are commonly used in operational wildland fire management (e.g., the Canadian Fire Weather Index [FWI] System, the Russian Nesterov Index, or the U.S. National Fire Danger Rating System [NFDRS]). Today, fire danger levels are often turned into broad scale maps with the help of Geographical Information Systems (GIS) showing the areas with the different fire danger levels, and are distributed via the World Wide Web.In this chapter we will outline some key issues dealing with Remote Sensing and GIS techniques that are covered in the following chapters, and elaborate how the Fire Danger Rating concepts could be integrated into a framework that enables comprehensive and sustainable wildland fire risk assessment. To do so, we will first raise some general thoughts about wildland fires and suggest how to approach this extremely complex phenomenon. Second, we will outline a possible fire risk analysis framework and third we will give a short overview on existing Fire Danger Rating Systems and the principles behind them.
NASA Astrophysics Data System (ADS)
Krupnik, D.; Khan, S.; Okyay, U.; Hartzell, P. J.; Biber, K.
2015-12-01
Ground based remote sensing is a novel technique for development of digital outcrop models which can be instrumental in performing detailed qualitative and quantitative sedimentological analysis for the study of depositional environment, diagenetic processes, and hydrocarbon reservoir characterization. For this investigation, ground-based hyperspectral data collection is combined with terrestrial LiDAR to study outcrops of Late Albian rudist buildups of the Edwards formation in the Lake Georgetown Spillway in Williamson County, Texas. The Edwards formation consists of shallow water deposits of reef and associated inter-reef facies, including rudist bioherms and biostromes. It is a significant aquifer and was investigated as a hydrocarbon play in south central Texas. Hyperspectral data were used to map compositional variation in the outcrop by distinguishing spectral properties unique to each material. Lithological variation was mapped in detail to investigate the structure and composition of rudist buildups. Hyperspectral imagery was registered to a 3D model produced from the LiDAR point cloud with an accuracy of up to one pixel. Flat-topped toucasid-rich bioherm facies were distinguished from overlying toucasid-rich biostrome facies containing chert nodules, overlying sucrosic dolostones, and uppermost peloid wackestones and packstones of back-reef facies. Ground truth was established by petrographic study of samples from this area and has validated classification products of remote sensing data. Several types of porosity were observed and have been associated with increased dolomitization. This ongoing research involves integration of remotely sensed datasets to analyze geometrical and compositional properties of this carbonate formation at a finer scale than traditional methods have achieved and seeks to develop a workflow for quick and efficient ground based remote sensing-assisted outcrop studies.
A random optimization approach for inherent optic properties of nearshore waters
NASA Astrophysics Data System (ADS)
Zhou, Aijun; Hao, Yongshuai; Xu, Kuo; Zhou, Heng
2016-10-01
Traditional method of water quality sampling is time-consuming and highly cost. It can not meet the needs of social development. Hyperspectral remote sensing technology has well time resolution, spatial coverage and more general segment information on spectrum. It has a good potential in water quality supervision. Via the method of semi-analytical, remote sensing information can be related with the water quality. The inherent optical properties are used to quantify the water quality, and an optical model inside the water is established to analysis the features of water. By stochastic optimization algorithm Threshold Acceptance, a global optimization of the unknown model parameters can be determined to obtain the distribution of chlorophyll, organic solution and suspended particles in water. Via the improvement of the optimization algorithm in the search step, the processing time will be obviously reduced, and it will create more opportunity for the increasing the number of parameter. For the innovation definition of the optimization steps and standard, the whole inversion process become more targeted, thus improving the accuracy of inversion. According to the application result for simulated data given by IOCCG and field date provided by NASA, the approach model get continuous improvement and enhancement. Finally, a low-cost, effective retrieval model of water quality from hyper-spectral remote sensing can be achieved.
The Measurement of Unsteady Surface Pressure Using a Remote Microphone Probe.
Guan, Yaoyi; Berntsen, Carl R; Bilka, Michael J; Morris, Scott C
2016-12-03
Microphones are widely applied to measure pressure fluctuations at the walls of solid bodies immersed in turbulent flows. Turbulent motions with various characteristic length scales can result in pressure fluctuations over a wide frequency range. This property of turbulence requires sensing devices to have sufficient sensitivity over a wide range of frequencies. Furthermore, the small characteristic length scales of turbulent structures require small sensing areas and the ability to place the sensors in very close proximity to each other. The complex geometries of the solid bodies, often including large surface curvatures or discontinuities, require the probe to have the ability to be set up in very limited spaces. The development of a remote microphone probe, which is inexpensive, consistent, and repeatable, is described in the present communication. It allows for the measurement of pressure fluctuations with high spatial resolution and dynamic response over a wide range of frequencies. The probe is small enough to be placed within the interior of typical wind tunnel models. The remote microphone probe includes a small, rigid, and hollow tube that penetrates the model surface to form the sensing area. This tube is connected to a standard microphone, at some distance away from the surface, using a "T" junction. An experimental method is introduced to determine the dynamic response of the remote microphone probe. In addition, an analytical method for determining the dynamic response is described. The analytical method can be applied in the design stage to determine the dimensions and properties of the RMP components.
NASA Astrophysics Data System (ADS)
Rauhala, Anssi; Tuomela, Anne; Rossi, Pekka M.; Davids, Corine
2017-04-01
The management of vast amounts of tailings produced is one of the key issues in mining operations. The effective and economic disposal of the waste requires knowledge concerning both basic physical properties of the tailings as well as more complex aspects such as consolidation behavior. The behavior of tailings in itself is a very complex issue that can be affected by flocculation, sedimentation, consolidation, segregation, deposition, freeze-thaw, and desiccation phenomena. The utilization of remote sensing in an impoundment-scale monitoring of tailings could benefit the management of tailings, and improve our knowledge on tailings behavior. In order to gain better knowledge of tailings behavior in cold climate, we have utilized both modern remote sensing techniques and more traditional in situ and laboratory measurements in characterizing thickened gold tailings behavior at a Finnish gold mine site, where the production has been halted due to low gold prices. The remote sensing measurements consisted of elevation datasets collected from unmanned aerial vehicles during summers 2015 and 2016, and a further campaign is planned for the summer 2017. The ongoing traditional measurements include for example particle-size distribution, frost heave, frost depth, water retention, temperature profile, and rheological measurements. Initial results from the remote sensing indicated larger than expected settlements on parts of the tailings impoundment, and also highlighted some of the complexities related to data processing. The interpretation of the results and characterization of the behavior is in this case complicated by possible freeze-thaw effects and potential settlement of the impoundment bottom structure consisting of natural peat. Experiments with remote sensing and unmanned aerial vehicles indicate that they could offer potential benefits in frequent mine site monitoring, but there is a need towards more robust and streamlined data acquisition and processing. The gathered data and obtained results form the basis for further modelling efforts which aim at better management of tailings storage facilities.
NASA Astrophysics Data System (ADS)
Hulslander, D.; Warren, J. N.; Weintraub, S. R.
2017-12-01
Hyperspectral imaging systems can be used to produce spectral reflectance curves giving rich information about composition, relative abundances of materials, mixes and combinations. Indices based on just a few spectral bands have been used for over 40 years to study vegetation health, mineral abundance, and more. These indices are much simpler to visualize and use than a full hyperspectral data set which may contain over 400 bands. Yet historically, it has been difficult to directly relate remotely sensed spectral indices to quantitative biophysical properties significant to forest ecology such as canopy nitrogen, lignin, and chlorophyll. This linkage is a critical piece in enabling the detection of high value ecological information, usually only available from labor-intensive canopy foliar chemistry sampling, to the geographic and temporal coverage available via remote sensing. Previous studies have shown some promising results linking ground-based data and remotely sensed indices, but are consistently limited in time, geographic extent, and land cover type. Moreover, previous studies are often focused on tuning linkage algorithms for the purpose of achieving good results for only one study site or one type of vegetation, precluding development of more generalized algorithms. The National Ecological Observatory Network (NEON) is a unique system of 47 terrestrial sites covering all of the major eco-climatic domains of the US, including AK, HI, and Puerto Rico. These sites are regularly monitored and sampled using uniform instrumentation and protocols, including both foliar chemistry sampling and remote sensing flights for high resolution hyperspectral, LiDAR, and digital camera data acquisition. In this study we compare the results of foliar chemistry analysis to the remote sensing vegetation indices and investigate possible sources for variance and difference through the use of the larger hyperspectral dataset as well as ground based spectrometer measurements of samples subsequently analyzed for foliar chemistry.
NASA Astrophysics Data System (ADS)
Meyer, Uwe; Fries, Elke; Frei, Michaela
2016-04-01
Soil is one of the most precious resources on Earth. Preserving, using and enriching soils are most complex processes that fundamentally need a sound regional data base. Many countries lack this sort of extensive data or the existing data must be urgently updated when land use recently changed in major patterns. The project "RECHARBO" (Regional Characterization of Soil Properties) aims at the combination of methods from remote sensing, geophysics and geopedology in order to develop a new system to map soils on a regional scale in a quick and efficient manner. First tests will be performed on existing soil monitoring districts, using newly available sensing systems as well as established techniques. Especially hyperspectral and infrared data measured from satellites or airborne platforms shall be combined. Moreover, a systematic correlation between hyperspectral imagery and gamma-ray spectroscopy shall be established. These recordings will be compared and correlated to measurements upon ground and on soil samples to get hold of properties such as soil moisture, soil density, specific resistance plus analytic properties like clay content, anorganic background, organic matter etc. The goal is to generate a system that enables users to map soil patterns on a regional scale using airborne or satellite data and to fix their characteristics with only a limited number of soil samples.
Near-earth orbital guidance and remote sensing
NASA Technical Reports Server (NTRS)
Powers, W. F.
1972-01-01
The curriculum of a short course in remote sensing and parameter optimization is presented. The subjects discussed are: (1) basics of remote sensing and the user community, (2) multivariant spectral analysis, (3) advanced mathematics and physics of remote sensing, (4) the atmospheric environment, (5) imaging sensing, and (6)nonimaging sensing. Mathematical models of optimization techniques are developed.
NASA Astrophysics Data System (ADS)
Bi, L.
2016-12-01
Atmospheric remote sensing based on the Lidar technique fundamentally relies on knowledge of the backscattering of light by particulate matters in the atmosphere. This talk starts with a review of the current capabilities of electromagnetic wave scattering simulations to determine the backscattering optical properties of irregular particles, such as the backscatterer and depolarization ratio. This will be followed by a discussion of possible pitfalls in the relevant simulations. The talk will then be concluded with reports on the latest advancements in computational techniques. In addition, we summarize the laws of the backscattering optical properties of aerosols with respect to particle geometries, particle sizes, and mixing rules. These advancements will be applied to the analysis of the Lidar observation data to reveal the state and possible microphysical processes of various aerosols.
An agreement coefficient for image comparison
Ji, Lei; Gallo, Kevin
2006-01-01
Combination of datasets acquired from different sensor systems is necessary to construct a long time-series dataset for remotely sensed land-surface variables. Assessment of the agreement of the data derived from various sources is an important issue in understanding the data continuity through the time-series. Some traditional measures, including correlation coefficient, coefficient of determination, mean absolute error, and root mean square error, are not always optimal for evaluating the data agreement. For this reason, we developed a new agreement coefficient for comparing two different images. The agreement coefficient has the following properties: non-dimensional, bounded, symmetric, and distinguishable between systematic and unsystematic differences. The paper provides examples of agreement analyses for hypothetical data and actual remotely sensed data. The results demonstrate that the agreement coefficient does include the above properties, and therefore is a useful tool for image comparison.
Monthly AOD maps combining strengths of remote sensing products
NASA Astrophysics Data System (ADS)
Kinne, Stefan
2010-05-01
The mid-visible aerosol optical depth (AOD) is the most prominent property to quantify aerosol amount the atmospheric column. Almost all aerosol retrievals of satellite sensors provide estimates for this property, however, often with limited success. As sensors differ in capabilities individual retrievals have local and regional strengths and weaknesses. Focusing on individual retrieval strengths a satellite based AOD composite has been constructed. Hereby, every retrieval performance has been assessed in statistical comparisons to ground-based sun-photometry, which provide highly accurate references though only at few globally distributed monitoring sites. Based on these comparisons, which consider bias as well as spatial patterns and seasonality, the regionally best performing satellite AOD products are combined. The resulting remote sensing AOD composite provide a general reference for the spatial and temporal AOD distribution on an (almost) global basis - solely tied to sensor data.
NASA Technical Reports Server (NTRS)
Salomonson, V. V. (Editor); Walter, L. S. (Editor); Maetzler, C. (Editor); Rott, H. (Editor)
1989-01-01
The present conference discusses topics in the spaceborne study of the earth's surface, crust, and lithosphere, recent results from SPOT and Landsat TM investigations, and microwave observations of snowpack and soil properties. Attention is given to airborne and satellite-borne gravimetry, stereoviewing from space, TM studies of volcanism and tectonism in central Mexico, remote sensing of volcanoes, the uses of SPOT in forest management, the tectonics of the central Andes, and the application of VLBI to crustal movement studies. Also discussed are Landsat TM band ratios for soil investigations, snow dielectric measurements, the microwave radiometry of snow, microwave signatures of bare soil, the estimation of Alpine snow properties from Landsat TM data, and an experimental study of vegetable canopy microwave emissions.
MODIS Direct Broadcast and Remote Sensing Applications
NASA Technical Reports Server (NTRS)
Tsay, Si-Chee
2004-01-01
The Moderate Resolution Imaging Spectroradiometer (MODIS) was developed by NASA and launched onboard both Terra spacecraft on December 18, 1999 and Aqua spacecraft on May 4, 2002. MODIS scans a swath width sufficient to provide nearly complete global coverage every two days from a polar-orbiting, sun-synchronous, platform at an altitude of 705 km, and provides images in 36 spectral bands between 0.415 and 14.235 microns with spatial resolutions of 250 m (2 bands), 500 m (5 bands) and 1000 m (29 bands). Equipped with direct broadcast capability, the MODIS measurements can be received worldwide real time. There are 82 ingest sites (over 900 users, listed on the Direct Readout Portal) around the world for Terra/Aqua-MODIS Direct Broadcast DB) downlink. This represents 27 (6 from EOS science team members) science research organizations for DB land, ocean and atmospheric processing, and 53 companies that base their application algorithms and value added products on DB data. In this paper we will describe the various methods being used for the remote sensing of cloud properties using MODIS data, focusing primarily on the MODIS cloud mask used to distinguish clouds, clear sky, heavy aerosol, and shadows on the ground, and on the remote sensing of aerosol/cloud optical properties, especially optical thickness and effective particle size. Additional properties of clouds derived from multispectral thermal infrared measurements, especially cloud top pressure and emissivity, will also be described. Preliminary results will be presented and discussed their implications in regional-to-global climatic effects.
Operational programs in forest management and priority in the utilization of remote sensing
NASA Technical Reports Server (NTRS)
Douglass, R. W.
1978-01-01
A speech is given on operational remote sensing programs in forest management and the importance of remote sensing in forestry is emphasized. Forest service priorities in using remote sensing are outlined.
Remote sensing, land use, and demography - A look at people through their effects on the land
NASA Technical Reports Server (NTRS)
Paul, C. K.; Landini, A. J.
1976-01-01
Relevant causes of failure by the remote sensing community in the urban scene are analyzed. The reasons for the insignificant role of remote sensing in urban land use data collection are called the law of realism, the incompatibility of remote sensing and urban management system data formats is termed the law of nominal/ordinal systems compatibility, and the land use/population correlation dilemma is referred to as the law of missing persons. The study summarizes the three laws of urban land use information for which violations, avoidance, or ignorance have caused the decline of present remote sensing research. Particular attention is given to the rationale for urban land use information and for remote sensing. It is shown that remote sensing of urban land uses compatible with the three laws can be effectively developed by realizing the 10 percent contribution of remote sensing to urban land use planning data collection.
NASA Technical Reports Server (NTRS)
1991-01-01
The proceedings contain papers discussing the state-of-the-art exploration, engineering, and environmental applications of geologic remote sensing, along with the research and development activities aimed at increasing the future capabilities of this technology. The following topics are addressed: spectral geology, U.S. and international hydrocarbon exporation, radar and thermal infrared remote sensing, engineering geology and hydrogeology, mineral exploration, remote sensing for marine and environmental applications, image processing and analysis, geobotanical remote sensing, and data integration and geographic information systems. Particular attention is given to spectral alteration mapping with imaging spectrometers, mapping the coastal plain of the Congo with airborne digital radar, applications of remote sensing techniques to the assessment of dam safety, remote sensing of ferric iron minerals as guides for gold exploration, principal component analysis for alteration mappping, and the application of remote sensing techniques for gold prospecting in the north Fujian province.
Methods of training the graduate level and professional geologist in remote sensing technology
NASA Technical Reports Server (NTRS)
Kolm, K. E.
1981-01-01
Requirements for a basic course in remote sensing to accommodate the needs of the graduate level and professional geologist are described. The course should stress the general topics of basic remote sensing theory, the theory and data types relating to different remote sensing systems, an introduction to the basic concepts of computer image processing and analysis, the characteristics of different data types, the development of methods for geological interpretations, the integration of all scales and data types of remote sensing in a given study, the integration of other data bases (geophysical and geochemical) into a remote sensing study, and geological remote sensing applications. The laboratories should stress hands on experience to reinforce the concepts and procedures presented in the lecture. The geologist should then be encouraged to pursue a second course in computer image processing and analysis of remotely sensed data.
Remote sensing of Earth terrain
NASA Technical Reports Server (NTRS)
Kong, J. A.
1993-01-01
Progress report on remote sensing of Earth terrain covering the period from Jan. to June 1993 is presented. Areas of research include: radiative transfer model for active and passive remote sensing of vegetation canopy; polarimetric thermal emission from rough ocean surfaces; polarimetric passive remote sensing of ocean wind vectors; polarimetric thermal emission from periodic water surfaces; layer model with tandom spheriodal scatterers for remote sensing of vegetation canopy; application of theoretical models to active and passive remote sensing of saline ice; radiative transfer theory for polarimetric remote sensing of pine forest; scattering of electromagnetic waves from a dense medium consisting of correlated mie scatterers with size distributions and applications to dry snow; variance of phase fluctuations of waves propagating through a random medium; polarimetric signatures of a canopy of dielectric cylinders based on first and second order vector radiative transfer theory; branching model for vegetation; polarimetric passive remote sensing of periodic surfaces; composite volume and surface scattering model; and radar image classification.
NASA Astrophysics Data System (ADS)
2011-12-01
Jacobo Bielak, university professor of civil and environmental engineering at Carnegie Mellon University, in Pittsburgh, Pa., has been recognized as a distinguished member of the American Society of Civil Engineers, the highest recognition the organization confers. Bielak was noted as “an internationally-known researcher in the area of structural responses to earthquakes, developing sophisticated numerical simulations to pinpoint earthquake effects.” Alan Strahler, professor of geography and environment at Boston University, Boston, Mass., received a 2011 William T. Pecora Award for his achievements in Earth remote sensing. The award, presented by NASA and the U.S. Department of the Interior on 15 November, recognized Strahler for “his contributions to remote-sensing science, leadership and education, which have improved the fundamental understanding of the remote-sensing process and its applications for observing land surface properties.” The Pecora award is named for the former director of the U.S. Geological Survey and undersecretary of the Interior department, who was influential in the establishment of the Landsat satellite program.
NASA Astrophysics Data System (ADS)
Menk, Frederick; Kale, Zoë; Sciffer, Murray; Robinson, Peter; Waters, Colin; Grew, Russell; Clilverd, Mark; Mann, Ian
2014-11-01
The plasmapause is a highly dynamic boundary between different magnetospheric particle populations and convection regimes. Some of the most important space weather processes involve wave-particle interactions in this region, but wave properties may also be used to remote sense the plasmasphere and plasmapause, contributing to plasmasphere models. This paper discusses the use of existing ground magnetometer arrays for such remote sensing. Using case studies we illustrate measurement of plasmapause location, shape and movement during storms; refilling of flux tubes within and outside the plasmasphere; storm-time increase in heavy ion concentration near the plasmapause; and detection and mapping of density irregularities near the plasmapause, including drainage plumes, biteouts and bulges. We also use a 2D MHD model of wave propagation through the magnetosphere, incorporating a realistic ionosphere boundary and Alfvén speed profile, to simulate ground array observations of power and cross-phase spectra, hence confirming the signatures of plumes and other density structures.
Capturing the fugitive: Applying remote sensing to terrestrial animal distribution and diversity
NASA Astrophysics Data System (ADS)
Leyequien, Euridice; Verrelst, Jochem; Slot, Martijn; Schaepman-Strub, Gabriela; Heitkönig, Ignas M. A.; Skidmore, Andrew
2007-02-01
Amongst many ongoing initiatives to preserve biodiversity, the Millennium Ecosystem Assessment again shows the importance to slow down the loss of biological diversity. However, there is still a gap in the overview of global patterns of species distributions. This paper reviews how remote sensing has been used to assess terrestrial faunal diversity, with emphasis on proxies and methodologies, while exploring prospective challenges for the conservation and sustainable use of biodiversity. We grouped and discussed papers dealing with the faunal taxa mammals, birds, reptiles, amphibians, and invertebrates into five classes of surrogates of animal diversity: (1) habitat suitability, (2) photosynthetic productivity, (3) multi-temporal patterns, (4) structural properties of habitat, and (5) forage quality. It is concluded that the most promising approach for the assessment, monitoring, prediction, and conservation of faunal diversity appears to be the synergy of remote sensing products and auxiliary data with ecological biodiversity models, and a subsequent validation of the results using traditional observation techniques.
The interaction of light with phytoplankton in the marine environment
NASA Technical Reports Server (NTRS)
Carder, Kendall L.; Collins, Donald J.; Perry, Mary Jane; Clark, H. Lawrence; Mesias, Jorge M.
1986-01-01
In many regions of the ocean, the phytoplankton population dominates both the attenuation and scattering of light. In other regions, non-phytoplankton contributions to the absorption and scattering may change the remote sensing reflectance and thus affect the ability to interpret remotely sensed ocean color. Hence, variations in the composition of both the phytoplankton population and of the non-phytoplankton material in the water can affect the optical properties of the sea. The effects of these contributions to the remote sensing reflectance and the submarine light field are modeled using scattering and absorption measurements of phytoplankton cultures obtained at the Friday Harbor Laboratory of the University of Washington. These measurements are used to develop regional chlorophyll algorithms specific to the summer waters of Puget Sound for the Coastal Zone Color Scanner, Thematic Mapper and future Ocean Color Imager, and their accuracies are compared for high chlorophyll waters with little or no Gelbstoff, but with variable detrital and suspended material.
Remote sensing by satellite - Technical and operational implications for international cooperation
NASA Technical Reports Server (NTRS)
Doyle, S. E.
1976-01-01
International cooperation in the U.S. Space Program is discussed and related to the NASA program for remote sensing of the earth. Satellite remote sensing techniques are considered along with the selection of the best sensors and wavelength bands. The technology of remote sensing satellites is considered with emphasis on the Landsat system configuration. Future aspects of remote sensing satellites are considered.
Remote sensing in operational range management programs in Western Canada
NASA Technical Reports Server (NTRS)
Thompson, M. D.
1977-01-01
A pilot program carried out in Western Canada to test remote sensing under semi-operational conditions and display its applicability to operational range management programs was described. Four agencies were involved in the program, two in Alberta and two in Manitoba. Each had different objectives and needs for remote sensing within its range management programs, and each was generally unfamiliar with remote sensing techniques and their applications. Personnel with experience and expertise in the remote sensing and range management fields worked with the agency personnel through every phase of the pilot program. Results indicate that these agencies have found remote sensing to be a cost effective tool and will begin to utilize remote sensing in their operational work during ensuing seasons.
NASA Technical Reports Server (NTRS)
Christensen, P. R.; Edgett, Kenneth S.
1994-01-01
Critical to the assessment of potential sites for the 1997 Pathfinder landing is estimation of general physical properties of the martian surface. Surface properties have been studied using a variety of spacecraft and earth-based remote sensing observations, plus in situ studies at the Viking lander sites. Because of their value in identifying landing hazards and defining scientific objectives, we focus this discussion on thermal inertia and rock abundance derived from middle-infrared (6 to 30 microns) observations. Used in conjunction with other datasets, particularly albedo and Viking orbiter images, thermal inertia and rock abundance provide clues about the properties of potential Mars landing sites.
Experimental results for correlation-based wavefront sensing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Poyneer, L A; Palmer, D W; LaFortune, K N
2005-07-01
Correlation wave-front sensing can improve Adaptive Optics (AO) system performance in two keys areas. For point-source-based AO systems, Correlation is more accurate, more robust to changing conditions and provides lower noise than a centroiding algorithm. Experimental results from the Lick AO system and the SSHCL laser AO system confirm this. For remote imaging, Correlation enables the use of extended objects for wave-front sensing. Results from short horizontal-path experiments will show algorithm properties and requirements.
PROCEEDINGS OF THE FOURTH SYMPOSIUM ON REMOTE SENSING OF ENVIRONMENT; 12, 13, 14 APRIL 1966.
The symposium was conducted as part of a continuing program investigating the field of remote sensing , its potential in scientific research and...information on all aspects of remote sensing , with special emphasis on such topics as needs for remotely sensed data, data management, and the special... remote sensing programs, data acquisition, data analysis and application, and equipment design, were presented. (Author)
Remote sensing and image interpretation
NASA Technical Reports Server (NTRS)
Lillesand, T. M.; Kiefer, R. W. (Principal Investigator)
1979-01-01
A textbook prepared primarily for use in introductory courses in remote sensing is presented. Topics covered include concepts and foundations of remote sensing; elements of photographic systems; introduction to airphoto interpretation; airphoto interpretation for terrain evaluation; photogrammetry; radiometric characteristics of aerial photographs; aerial thermography; multispectral scanning and spectral pattern recognition; microwave sensing; and remote sensing from space.
USDA-ARS?s Scientific Manuscript database
Soil hydraulic properties can be retrieved from physical sampling of soil, via surveys, but this is time consuming and only as accurate as the scale of the sample. Remote sensing provides an opportunity to get pertinent soil properties at large scales, which is very useful for large scale modeling....
Potential of Remote Sensing in the Corps of Engineers Dredging Program.
1985-11-01
remotely sensed sultispectral data. Earth Resources Survey Symposium June 9-12, Houston. Texas. Lyndon B. Johnson Space Center, pp. 2087-2098. Kalle , K ...a" -- , :0 0 4 n - 0 00 0 A 14. U ,U a4 t4 f"’ 4- t4- -- cf 0 0-4 z so a 0 . 4," . +" ’," - AC8" N N- ,, . -o - o 0 0 - 4.4 o o 0’, K . 0...signal. Several studies have shown that many substances can be identified by their optical properties. Using cruise data, Kalle (1966) was one of the
Downhole steam quality measurement
Lee, D.O.; Montoya, P.C.; Muir, J.F.; Wayland, J.R. Jr.
1985-06-19
The present invention relates to an empirical electrical method for remote sensing of steam quality utilizing flow-through grids which allow measurement of the electrical properties of a flowing two-phase mixture. The measurement of steam quality in the oil field is important to the efficient application of steam assisted recovery of oil. Because of the increased energy content in higher quality steam it is important to maintain the highest possible steam quality at the injection sandface. The effectiveness of a steaming operation without a measure of steam quality downhole close to the point of injection would be difficult to determine. Therefore, a need exists for the remote sensing of steam quality.
Remote sensing of atmospheric aerosol and ocean color for the COMS/GOCI
NASA Astrophysics Data System (ADS)
Lee, Kwon-Ho; Kim, Young J.; Kim, Gwan C.; Wong, Man S.; Ahn, Yu H.
2010-10-01
The Geostationary Ocean Color Imager (GOCI) on board the Communication Ocean Meteorological Satellite (COMS) requires accurate atmospheric correction for the purpose of qualified ocean remote sensing. Since its eight bands are affected by atmospheric constituents such as gases, molecules and atmospheric aerosols, understanding of aerosolradiation interactions is needed. Aerosol optical properties based on sun-photometer measurements are used to analysis aerosol optical thickness (AOT) under various aerosol type and loadings. It is found that the choice of aerosol type makes little different in AOT retrieval for AOT<0.2. These results will be useful for aerosol retrieval of COMS/GOCI data processing.
Obituary: Walter G. Egan, 1923-2003
NASA Astrophysics Data System (ADS)
Hilgeman, Theodore
2009-01-01
Walter G. Egan, a scientist and engineer with a professional life spanning well over half a century, died on 3 November 2003. Born to Caroline and George Egan on 12 October 1923 in New York City, Egan studied Electrical Engineering at the City College of New York from 1941 until 1943 when he was called to active duty in World War II, switching from enlisted reserve status. During the war, he served honorably in both the Signal Corps and the Medical Corps. Following his discharge in 1946, he resumed his college studies, obtaining a BEE in 1949 from City College of New York, an MA in Physics in 1951 from Columbia University, and a PhD in Solid State Physics in 1960 from the Polytechnic Institute of Brooklyn. Egan's PhD thesis was "Ferromagnetic Resonance in thin Nickel Films," performed under advisor H. Juretschke. Egan's professional career covered both industry and academia. In the summer of 1942, he worked for the Bruce Engineering Company. From 1957 to 1963, he worked for Ford Instrument Company, a Division of Sperry Rand Corporation, successively as an Engineering Project Supervisor, Assistant Director of Research, and Executive Assistant to the Director of Research. From 1964 to 1986 Egan worked as a Staff Scientist at the Grumman Corporation Corporate Research Center where his pioneering work consisted of research and development of remote sensing equipment and techniques for the remote sensing of terrestrial and space targets and backgrounds. I came to know and work with him during his tenure at the Grumman Corporation, where we co-authored many papers and a book. His insight into remote sensing engineering and research, shared willingly with younger colleagues, was a major stimulus to my future research in this field. Egan instilled a sense of discipline in publication, so our work could be shared with others in a timely way. This drive to share his knowledge with others also made him an excellent teacher. Subsequently, he held the position of Research Associate at the Mohonk Preserve, New Paltz, New York; Professor of Physics at York College, City University of New York; Research Professor of Physics at Polytechnic University, Brooklyn New York; and Professor of Earth Sciences at Adelphi University, Garden City, New York. Research was the focus of his professional life. At various points in his career Egan was a member of Tau Beta Pi, Sigma Xi, Eta Kappa Nu, Sigma Pi Sigma, the American Radio Relay League, the Research Society of America, the American Physical Society, the American Astronomical Society, the Institute of Electrical and Electronic Engineers, the American Geophysical Union, the Optical Society of America, the American Meteorological Society, the Institute for Aerosol Research, and the Society of Photo-optical Instrumentation Engineers. A long and distinguished professional career was accompanied by more than two-hundred published works in the fields of Planetary Astronomy, Geophysics, Atmospheric Physics, Soils Physics, Materials Properties, Photometry, Polarization, Remote Sensing, Aerosols, Oceanography, and Optics. We co-wrote the book Optical Properties of Inhomogeneous Materials (Academic Press) in 1979. This was followed by Egan's two books on remote sensing: Photometry and Polarization in Remote Sensing (Elsevier) in 1985 and Optical Remote Sensing, Science and Technology (Marcel Dekker) in 2004. These books have become classical references in today's remote sensing courses. He brought clarity to this burgeoning field of research at a time when it was just developing. Egan is survived by his wife, Joan K. Egan. He also leaves behind many younger colleagues, myself included, who considered him both a mentor and a friend.
Enhancing PTFs with remotely sensed data for multi-scale soil water retention estimation
NASA Astrophysics Data System (ADS)
Jana, Raghavendra B.; Mohanty, Binayak P.
2011-03-01
SummaryUse of remotely sensed data products in the earth science and water resources fields is growing due to increasingly easy availability of the data. Traditionally, pedotransfer functions (PTFs) employed for soil hydraulic parameter estimation from other easily available data have used basic soil texture and structure information as inputs. Inclusion of surrogate/supplementary data such as topography and vegetation information has shown some improvement in the PTF's ability to estimate more accurate soil hydraulic parameters. Artificial neural networks (ANNs) are a popular tool for PTF development, and are usually applied across matching spatial scales of inputs and outputs. However, different hydrologic, hydro-climatic, and contaminant transport models require input data at different scales, all of which may not be easily available from existing databases. In such a scenario, it becomes necessary to scale the soil hydraulic parameter values estimated by PTFs to suit the model requirements. Also, uncertainties in the predictions need to be quantified to enable users to gauge the suitability of a particular dataset in their applications. Bayesian Neural Networks (BNNs) inherently provide uncertainty estimates for their outputs due to their utilization of Markov Chain Monte Carlo (MCMC) techniques. In this paper, we present a PTF methodology to estimate soil water retention characteristics built on a Bayesian framework for training of neural networks and utilizing several in situ and remotely sensed datasets jointly. The BNN is also applied across spatial scales to provide fine scale outputs when trained with coarse scale data. Our training data inputs include ground/remotely sensed soil texture, bulk density, elevation, and Leaf Area Index (LAI) at 1 km resolutions, while similar properties measured at a point scale are used as fine scale inputs. The methodology was tested at two different hydro-climatic regions. We also tested the effect of varying the support scale of the training data for the BNNs by sequentially aggregating finer resolution training data to coarser resolutions, and the applicability of the technique to upscaling problems. The BNN outputs are corrected for bias using a non-linear CDF-matching technique. Final results show good promise of the suitability of this Bayesian Neural Network approach for soil hydraulic parameter estimation across spatial scales using ground-, air-, or space-based remotely sensed geophysical parameters. Inclusion of remotely sensed data such as elevation and LAI in addition to in situ soil physical properties improved the estimation capabilities of the BNN-based PTF in certain conditions.
15 CFR 904.1 - Purpose and scope.
Code of Federal Regulations, 2010 CFR
2010-01-01
...(a); (19) Lacey Act Amendments of 1981, 16 U.S.C. 3371-3378; (20) Land Remote-Sensing Policy Act of..., issuance and use of written warnings, and release or forfeiture of seized property. (b) This subpart...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johnson, A.I.; Pettersson, C.B.
1988-01-01
Papers and discussions concerning the geotechnical applications of remote sensing and remote data transmission, sources of remotely sensed data, and glossaries of remote sensing and remote data transmission terms, acronyms, and abbreviations are presented. Aspects of remote sensing use covered include the significance of lineaments and their effects on ground-water systems, waste-site use and geotechnical characterization, the estimation of reservoir submerging losses using CIR aerial photographs, and satellite-based investigation of the significance of surficial deposits for surface mining operations. Other topics presented include the location of potential ground subsidence and collapse features in soluble carbonate rock, optical Fourier analysis ofmore » surface features of interest in geotechnical engineering, geotechnical applications of U.S. Government remote sensing programs, updating the data base for a Geographic Information System, the joint NASA/Geosat Test Case Project, the selection of remote data telemetry methods for geotechnical applications, the standardization of remote sensing data collection and transmission, and a comparison of airborne Goodyear electronic mapping system/SAR with satelliteborne Seasat/SAR radar imagery.« less
Education in Environmental Remote Sensing: Potentials and Problems.
ERIC Educational Resources Information Center
Kiefer, Ralph W.; Lillesand, Thomas M.
1983-01-01
Discusses remote sensing principles and applications and the status and needs of remote sensing education in the United States. A summary of the fundamental policy issues that will determine remote sensing's future role in environmental and resource managements is included. (Author/BC)
THE EPA REMOTE SENSING ARCHIVE
What would you do if you were faced with organizing 30 years of remote sensing projects that had been haphazardly stored at two separate locations for years then combined? The EPA Remote Sensing Archive, currently located in Las Vegas, Nevada. contains the remote sensing data and...
Research on remote sensing image pixel attribute data acquisition method in AutoCAD
NASA Astrophysics Data System (ADS)
Liu, Xiaoyang; Sun, Guangtong; Liu, Jun; Liu, Hui
2013-07-01
The remote sensing image has been widely used in AutoCAD, but AutoCAD lack of the function of remote sensing image processing. In the paper, ObjectARX was used for the secondary development tool, combined with the Image Engine SDK to realize remote sensing image pixel attribute data acquisition in AutoCAD, which provides critical technical support for AutoCAD environment remote sensing image processing algorithms.
Bibliography of Remote Sensing Techniques Used in Wetland Research.
1993-01-01
remote sensing technology for detecting changes in wetland environments. This report documents a bibliographic search conducted as part of that work unit on applications of remote sensing techniques in wetland research. Results were used to guide research efforts on the use of remote sensing technology for wetland change detection and assessment. The citations are presented in three appendixes, organized by wetland type, sensor type, and author.... Change detection, Wetland assessment, Remote sensing ,
Remote Sensing of Aerosol in the Terrestrial Atmosphere from Space: New Missions
NASA Technical Reports Server (NTRS)
Milinevsky, G.; Yatskiv, Ya.; Degtyaryov, O.; Syniavskyi, I.; Ivanov, Yu.; Bovchaliuk, A.; Mishchenko, M.; Danylevsky, V.; Sosonkin, M.; Bovchaliuk, V.
2015-01-01
The distribution and properties of atmospheric aerosols on a global scale are not well known in terms of determination of their effects on climate. This mostly is due to extreme variability of aerosol concentrations, properties, sources, and types. Aerosol climate impact is comparable to the effect of greenhouse gases, but its influence is more difficult to measure, especially with respect to aerosol microphysical properties and the evaluation of anthropogenic aerosol effect. There are many satellite missions studying aerosol distribution in the terrestrial atmosphere, such as MISR/Terra, OMI/Aura, AVHHR, MODIS/Terra and Aqua, CALIOP/CALIPSO. To improve the quality of data and climate models, and to reduce aerosol climate forcing uncertainties, several new missions are planned. The gap in orbital instruments for studying aerosol microphysics has arisen after the Glory mission failed during launch in 2011. In this review paper, we describe several planned aerosol space missions, including the Ukrainian project Aerosol-UA that obtains data using a multi-channel scanning polarimeter and wide-angle polarimetric camera. The project is designed for remote sensing of the aerosol microphysics and cloud properties on a global scale.
Kite Aerial Photography as a Tool for Remote Sensing
ERIC Educational Resources Information Center
Sallee, Jeff; Meier, Lesley R.
2010-01-01
As humans, we perform remote sensing nearly all the time. This is because we acquire most of our information about our surroundings through the senses of sight and hearing. Whether viewed by the unenhanced eye or a military satellite, remote sensing is observing objects from a distance. With our current technology, remote sensing has become a part…
Remote sensing for detecting and mapping whitefly (Bemisia tabaci) infestations
USDA-ARS?s Scientific Manuscript database
Remote sensing technology has long been used for detecting insect infestations on agricultural crops. With recent advances in remote sensing sensors and other spatial information technologies such as Global Position Systems (GPS) and Geographic Information Systems (GIS), remote sensing is finding mo...
Reflections on Earth--Remote-Sensing Research from Your Classroom.
ERIC Educational Resources Information Center
Campbell, Bruce A.
2001-01-01
Points out the uses of remote sensing in different areas, and introduces the program "Reflections on Earth" which provides access to basic and instructional information on remote sensing to students and teachers. Introduces students to concepts related to remote sensing and measuring distances. (YDS)
Remote-Sensing Practice and Potential
1974-05-01
Six essential processes that must be accomplished if use of a remote - sensing system is to result in useful information are defined as problem...to be useful in remote - sensing projects are described. An overview of the current state-of-the-art of remote sensing is presented.
History and future of remote sensing technology and education
NASA Technical Reports Server (NTRS)
Colwell, R. N.
1980-01-01
A historical overview of the discovery and development of photography, related sciences, and remote sensing technology is presented. The role of education to date in the development of remote sensing is discussed. The probable future and potential of remote sensing and training is described.
Ten ways remote sensing can contribute to conservation
Rose, Robert A.; Byler, Dirck; Eastman, J. Ron; Fleishman, Erica; Geller, Gary; Goetz, Scott; Guild, Liane; Hamilton, Healy; Hansen, Matt; Headley, Rachel; Hewson, Jennifer; Horning, Ned; Kaplin, Beth A.; Laporte, Nadine; Leidner, Allison K.; Leimgruber, Peter; Morisette, Jeffrey T.; Musinsky, John; Pintea, Lilian; Prados, Ana; Radeloff, Volker C.; Rowen, Mary; Saatchi, Sassan; Schill, Steve; Tabor, Karyn; Turner, Woody; Vodacek, Anthony; Vogelmann, James; Wegmann, Martin; Wilkie, David; Wilson, Cara
2014-01-01
In an effort to increase conservation effectiveness through the use of Earth observation technologies, a group of remote sensing scientists affiliated with government and academic institutions and conservation organizations identified 10 questions in conservation for which the potential to be answered would be greatly increased by use of remotely sensed data and analyses of those data. Our goals were to increase conservation practitioners’ use of remote sensing to support their work, increase collaboration between the conservation science and remote sensing communities, identify and develop new and innovative uses of remote sensing for advancing conservation science, provide guidance to space agencies on how future satellite missions can support conservation science, and generate support from the public and private sector in the use of remote sensing data to address the 10 conservation questions. We identified a broad initial list of questions on the basis of an email chain-referral survey. We then used a workshop-based iterative and collaborative approach to whittle the list down to these final questions (which represent 10 major themes in conservation): How can global Earth observation data be used to model species distributions and abundances? How can remote sensing improve the understanding of animal movements? How can remotely sensed ecosystem variables be used to understand, monitor, and predict ecosystem response and resilience to multiple stressors? How can remote sensing be used to monitor the effects of climate on ecosystems? How can near real-time ecosystem monitoring catalyze threat reduction, governance and regulation compliance, and resource management decisions? How can remote sensing inform configuration of protected area networks at spatial extents relevant to populations of target species and ecosystem services? How can remote sensing-derived products be used to value and monitor changes in ecosystem services? How can remote sensing be used to monitor and evaluate the effectiveness of conservation efforts? How does the expansion and intensification of agriculture and aquaculture alter ecosystems and the services they provide? How can remote sensing be used to determine the degree to which ecosystems are being disturbed or degraded and the effects of these changes on species and ecosystem functions?
Ten ways remote sensing can contribute to conservation.
Rose, Robert A; Byler, Dirck; Eastman, J Ron; Fleishman, Erica; Geller, Gary; Goetz, Scott; Guild, Liane; Hamilton, Healy; Hansen, Matt; Headley, Rachel; Hewson, Jennifer; Horning, Ned; Kaplin, Beth A; Laporte, Nadine; Leidner, Allison; Leimgruber, Peter; Morisette, Jeffrey; Musinsky, John; Pintea, Lilian; Prados, Ana; Radeloff, Volker C; Rowen, Mary; Saatchi, Sassan; Schill, Steve; Tabor, Karyn; Turner, Woody; Vodacek, Anthony; Vogelmann, James; Wegmann, Martin; Wilkie, David; Wilson, Cara
2015-04-01
In an effort to increase conservation effectiveness through the use of Earth observation technologies, a group of remote sensing scientists affiliated with government and academic institutions and conservation organizations identified 10 questions in conservation for which the potential to be answered would be greatly increased by use of remotely sensed data and analyses of those data. Our goals were to increase conservation practitioners' use of remote sensing to support their work, increase collaboration between the conservation science and remote sensing communities, identify and develop new and innovative uses of remote sensing for advancing conservation science, provide guidance to space agencies on how future satellite missions can support conservation science, and generate support from the public and private sector in the use of remote sensing data to address the 10 conservation questions. We identified a broad initial list of questions on the basis of an email chain-referral survey. We then used a workshop-based iterative and collaborative approach to whittle the list down to these final questions (which represent 10 major themes in conservation): How can global Earth observation data be used to model species distributions and abundances? How can remote sensing improve the understanding of animal movements? How can remotely sensed ecosystem variables be used to understand, monitor, and predict ecosystem response and resilience to multiple stressors? How can remote sensing be used to monitor the effects of climate on ecosystems? How can near real-time ecosystem monitoring catalyze threat reduction, governance and regulation compliance, and resource management decisions? How can remote sensing inform configuration of protected area networks at spatial extents relevant to populations of target species and ecosystem services? How can remote sensing-derived products be used to value and monitor changes in ecosystem services? How can remote sensing be used to monitor and evaluate the effectiveness of conservation efforts? How does the expansion and intensification of agriculture and aquaculture alter ecosystems and the services they provide? How can remote sensing be used to determine the degree to which ecosystems are being disturbed or degraded and the effects of these changes on species and ecosystem functions? © 2014 Society for Conservation Biology.
1992-08-01
Faas, " Analysis of the relationship between acoustic reflectivity and sediment porosity," Geophysics 3 4, 546-553 (1969). M. A. Foda , J. Y.-H. Chang...properties, together with in situ measured mechanical, acoustic and electrical properties, should be subjected to factor analysis . Natural clusters could...properties. The mechanical 1 properties and remotely sensed properties are a matrix of information that can be subjected to factor analysis . One can
Role of remote sensing in documenting living resources
NASA Technical Reports Server (NTRS)
Wagner, P. E.; Anderson, R. R.; Brun, B.; Eisenberg, M.; Genys, J. B.; Lear, D. W., Jr.; Miller, M. H.
1978-01-01
Specific cases of known or potentially useful applications of remote sensing in assessing biological resources are discussed. It is concluded that the more usable remote sensing techniques relate to the measurement of population fluctuations in aquatic systems. Sensing of the flora and the fauna of the Bay is considered with emphasis on direct sensing of aquatic plant populations and of water quality. Recommendations for remote sensing projects are given.
Commercial future: making remote sensing a media event
NASA Astrophysics Data System (ADS)
Lurie, Ian
1999-12-01
The rapid growth of commercial remote sensing has made high quality digital sensing data widely available -- now, remote sensing must become and remain a strong, commercially viable industry. However, this new industry cannot survive without an educated consumer base. To access markets, remote sensing providers must make their product more accessible, both literally and figuratively: Potential customers must be able to find the data they require, when they require it, and they must understand the utility of the information available to them. The Internet and the World Wide Web offer the perfect medium to educate potential customers and to sell remote sensing data to those customers. A well-designed web presence can provide both an information center and a market place for companies offering their data for sale. A very high potential web-based market for remote sensing lies in media. News agencies, web sites, and a host of other visual media services can use remote sensing data to provide current, relevant information regarding news around the world. This paper will provide a model for promotion and sale of remote sensing data via the Internet.
NASA Technical Reports Server (NTRS)
Martin, William G.; Cairns, Brian; Bal, Guillaume
2014-01-01
This paper derives an efficient procedure for using the three-dimensional (3D) vector radiative transfer equation (VRTE) to adjust atmosphere and surface properties and improve their fit with multi-angle/multi-pixel radiometric and polarimetric measurements of scattered sunlight. The proposed adjoint method uses the 3D VRTE to compute the measurement misfit function and the adjoint 3D VRTE to compute its gradient with respect to all unknown parameters. In the remote sensing problems of interest, the scalar-valued misfit function quantifies agreement with data as a function of atmosphere and surface properties, and its gradient guides the search through this parameter space. Remote sensing of the atmosphere and surface in a three-dimensional region may require thousands of unknown parameters and millions of data points. Many approaches would require calls to the 3D VRTE solver in proportion to the number of unknown parameters or measurements. To avoid this issue of scale, we focus on computing the gradient of the misfit function as an alternative to the Jacobian of the measurement operator. The resulting adjoint method provides a way to adjust 3D atmosphere and surface properties with only two calls to the 3D VRTE solver for each spectral channel, regardless of the number of retrieval parameters, measurement view angles or pixels. This gives a procedure for adjusting atmosphere and surface parameters that will scale to the large problems of 3D remote sensing. For certain types of multi-angle/multi-pixel polarimetric measurements, this encourages the development of a new class of three-dimensional retrieval algorithms with more flexible parametrizations of spatial heterogeneity, less reliance on data screening procedures, and improved coverage in terms of the resolved physical processes in the Earth?s atmosphere.
NASA Astrophysics Data System (ADS)
Serbin, S.; Shiklomanov, A. N.; Viskari, T.; Desai, A. R.; Townsend, P. A.; Dietze, M.
2015-12-01
Modeling global change requires accurate representation of terrestrial carbon (C), energy and water fluxes. In particular, capturing the properties of vegetation canopies that describe the radiation regime are a key focus for global change research because the properties related to radiation utilization and penetration within plant canopies provide an important constraint on terrestrial ecosystem productivity, as well as the fluxes of water and energy from vegetation to the atmosphere. As such, optical remote sensing observations present an important, and as yet relatively untapped, source of observations that can be used to inform modeling activities. In particular, high-spectral resolution optical data at the leaf and canopy scales offers the potential for an important and direct data constraint on the parameterization and structure of the radiative transfer model (RTM) scheme within ecosystem models across diverse vegetation types, disturbance and management histories. In this presentation we highlight ongoing work to integrate optical remote sensing observations, specifically leaf and imaging spectroscopy (IS) data across a range of forest ecosystems, into complex ecosystem process models within an efficient computational assimilation framework as a means to improve the description of canopy optical properties, vegetation composition, and modeled radiation balance. Our work leverages the Predictive Ecosystem Analyzer (PEcAn; http://www.pecanproject.org/) ecoinformatics toolbox together with a RTM module designed for efficient assimilation of leaf and IS observations to inform vegetation optical properties as well as associated plant traits. Ultimately, an improved understanding of the radiation balance of ecosystems will provide a better constraint on model projections of energy balance, vegetation composition, and carbon pools and fluxes thus allowing for a better diagnosis of the vulnerability of terrestrial ecosystems in response to global change.
Applications of Earth Remote Sensing for Identifying Tornado and Severe Weather Damage
NASA Astrophysics Data System (ADS)
Burks, J. E.; Molthan, A.; Schultz, L. A.; McGrath, K.; Bell, J. R.; Cole, T.; Angle, K.
2014-12-01
In 2014, collaborations between the Short-term Prediction Research and Transition (SPoRT) Center at NASA Marshall Space Flight Center, the National Weather Service (NWS), and the USGS led to the incorporation of Earth remote sensing imagery within the NOAA/NWS Damage Assessment Toolkit (DAT). The DAT is a smartphone, tablet, and web-based application that allows NWS meteorologists to acquire, quality control, and manage various storm damage indicators following a severe weather event, such as a tornado, occurrence of widespread damaging winds, or significant hail. Earth remote sensing supports the damage assessment process by providing a broad overview of how various acquired damage indicators relate to scarring visible from space, ranging from high spatial resolution commercial imagery (~1-4m) acquired via USGS and in collaboration with other federal and private sector partners, to moderate resolution imaging from NASA sensors (~15-30m) such as those aboard Landsat 7 and 8 and Terra's ASTER, to lower resolution but routine imaging from NASA's Terra and Aqua MODIS, or the Suomi-NPP VIIRS instrument. In several cases, the acquisition and delivery of imagery in the days after a severe weather event has proven helpful in confirming or in some cases adjusting the preliminary damage track acquired during a ground survey. For example, limited road networks and access to private property may make it difficult to observe the entire length of a tornado track, while satellite imagery can fill in observation gaps to complete a more detailed damage track assessment. This presentation will highlight successful applications of Earth remote sensing for the improvement of damage surveys, discuss remaining challenges, and provide direction on future efforts that will improve the delivery of remote sensing data and use through new automation processes and training opportunities.
Applications of Earth Remote Sensing for Identifying Tornado and Severe Weather Damage
NASA Astrophysics Data System (ADS)
Burks, J. E.; Molthan, A.; Schultz, L. A.; McGrath, K.; Bell, J. R.; Cole, T.; Angle, K.
2015-12-01
In 2014, collaborations between the Short-term Prediction Research and Transition (SPoRT) Center at NASA Marshall Space Flight Center, the National Weather Service (NWS), and the USGS led to the incorporation of Earth remote sensing imagery within the NOAA/NWS Damage Assessment Toolkit (DAT). The DAT is a smartphone, tablet, and web-based application that allows NWS meteorologists to acquire, quality control, and manage various storm damage indicators following a severe weather event, such as a tornado, occurrence of widespread damaging winds, or significant hail. Earth remote sensing supports the damage assessment process by providing a broad overview of how various acquired damage indicators relate to scarring visible from space, ranging from high spatial resolution commercial imagery (~1-4m) acquired via USGS and in collaboration with other federal and private sector partners, to moderate resolution imaging from NASA sensors (~15-30m) such as those aboard Landsat 7 and 8 and Terra's ASTER, to lower resolution but routine imaging from NASA's Terra and Aqua MODIS, or the Suomi-NPP VIIRS instrument. In several cases, the acquisition and delivery of imagery in the days after a severe weather event has proven helpful in confirming or in some cases adjusting the preliminary damage track acquired during a ground survey. For example, limited road networks and access to private property may make it difficult to observe the entire length of a tornado track, while satellite imagery can fill in observation gaps to complete a more detailed damage track assessment. This presentation will highlight successful applications of Earth remote sensing for the improvement of damage surveys, discuss remaining challenges, and provide direction on future efforts that will improve the delivery of remote sensing data and use through new automation processes and training opportunities.
77 FR 39220 - Advisory Committee on Commercial Remote Sensing (ACCRES); Charter Renewal
Federal Register 2010, 2011, 2012, 2013, 2014
2012-07-02
... Commercial Remote Sensing (ACCRES); Charter Renewal AGENCY: National Oceanic and Atmospheric Administration... Committee on Commercial Remote Sensing (ACCRES) was renewed on March 14, 2012. SUPPLEMENTARY INFORMATION: In... Commercial Remote Sensing (ACCRES) is in the public interest in connection with the performance of duties...
76 FR 66042 - Advisory Committee on Commercial Remote Sensing (ACCRES); Request for Nominations
Federal Register 2010, 2011, 2012, 2013, 2014
2011-10-25
... Commercial Remote Sensing (ACCRES); Request for Nominations ACTION: Notice requesting nominations for the Advisory Committee on Commercial Remote Sensing (ACCRES). SUMMARY: The Advisory Committee on Commercial Remote Sensing (ACCRES) was established to advise the Secretary of Commerce, through the Under Secretary...
An introduction to quantitative remote sensing. [data processing
NASA Technical Reports Server (NTRS)
Lindenlaub, J. C.; Russell, J.
1974-01-01
The quantitative approach to remote sensing is discussed along with the analysis of remote sensing data. Emphasis is placed on the application of pattern recognition in numerically oriented remote sensing systems. A common background and orientation for users of the LARS computer software system is provided.
Wang, Kai; Franklin, Steven E.; Guo, Xulin; Cattet, Marc
2010-01-01
Remote sensing, the science of obtaining information via noncontact recording, has swept the fields of ecology, biodiversity and conservation (EBC). Several quality review papers have contributed to this field. However, these papers often discuss the issues from the standpoint of an ecologist or a biodiversity specialist. This review focuses on the spaceborne remote sensing of EBC from the perspective of remote sensing specialists, i.e., it is organized in the context of state-of-the-art remote sensing technology, including instruments and techniques. Herein, the instruments to be discussed consist of high spatial resolution, hyperspectral, thermal infrared, small-satellite constellation, and LIDAR sensors; and the techniques refer to image classification, vegetation index (VI), inversion algorithm, data fusion, and the integration of remote sensing (RS) and geographic information system (GIS). PMID:22163432
Wang, Kai; Franklin, Steven E; Guo, Xulin; Cattet, Marc
2010-01-01
Remote sensing, the science of obtaining information via noncontact recording, has swept the fields of ecology, biodiversity and conservation (EBC). Several quality review papers have contributed to this field. However, these papers often discuss the issues from the standpoint of an ecologist or a biodiversity specialist. This review focuses on the spaceborne remote sensing of EBC from the perspective of remote sensing specialists, i.e., it is organized in the context of state-of-the-art remote sensing technology, including instruments and techniques. Herein, the instruments to be discussed consist of high spatial resolution, hyperspectral, thermal infrared, small-satellite constellation, and LIDAR sensors; and the techniques refer to image classification, vegetation index (VI), inversion algorithm, data fusion, and the integration of remote sensing (RS) and geographic information system (GIS).
Remote Sensing and Reflectance Profiling in Entomology.
Nansen, Christian; Elliott, Norman
2016-01-01
Remote sensing describes the characterization of the status of objects and/or the classification of their identity based on a combination of spectral features extracted from reflectance or transmission profiles of radiometric energy. Remote sensing can be benchtop based, and therefore acquired at a high spatial resolution, or airborne at lower spatial resolution to cover large areas. Despite important challenges, airborne remote sensing technologies will undoubtedly be of major importance in optimized management of agricultural systems in the twenty-first century. Benchtop remote sensing applications are becoming important in insect systematics and in phenomics studies of insect behavior and physiology. This review highlights how remote sensing influences entomological research by enabling scientists to nondestructively monitor how individual insects respond to treatments and ambient conditions. Furthermore, novel remote sensing technologies are creating intriguing interdisciplinary bridges between entomology and disciplines such as informatics and electrical engineering.
Imperatore, Pasquale; Iodice, Antonio; Riccio, Daniele
2017-12-27
A general, approximate perturbation method, able to provide closed-form expressions of scattering from a layered structure with an arbitrary number of rough interfaces, has been recently developed. Such a method provides a unique tool for the characterization of radar response patterns of natural rough multilayers. In order to show that, here, for the first time in a journal paper, we describe the application of the developed perturbation theory to fractal interfaces; we then employ the perturbative method solution to analyze the scattering from real-world layered structures of practical interest in remote sensing applications. We focus on the dependence of normalized radar cross section on geometrical and physical properties of the considered scenarios, and we choose two classes of natural stratifications: wet paleosoil covered by a low-loss dry sand layer and a sea-ice layer above water with dry snow cover. Results are in accordance with the experimental evidence available in the literature for the low-loss dry sand layer, and they may provide useful indications about the actual ability of remote sensing instruments to perform sub-surface sensing for different sensor and scene parameters.
2017-01-01
A general, approximate perturbation method, able to provide closed-form expressions of scattering from a layered structure with an arbitrary number of rough interfaces, has been recently developed. Such a method provides a unique tool for the characterization of radar response patterns of natural rough multilayers. In order to show that, here, for the first time in a journal paper, we describe the application of the developed perturbation theory to fractal interfaces; we then employ the perturbative method solution to analyze the scattering from real-world layered structures of practical interest in remote sensing applications. We focus on the dependence of normalized radar cross section on geometrical and physical properties of the considered scenarios, and we choose two classes of natural stratifications: wet paleosoil covered by a low-loss dry sand layer and a sea-ice layer above water with dry snow cover. Results are in accordance with the experimental evidence available in the literature for the low-loss dry sand layer, and they may provide useful indications about the actual ability of remote sensing instruments to perform sub-surface sensing for different sensor and scene parameters. PMID:29280979
Remote Sensing in Geography in the New Millennium: Prospects, Challenges, and Opportunities
NASA Technical Reports Server (NTRS)
Quattrochi, Dale A.; Jensen, John R.; Morain, Stanley A.; Walsh, Stephen J.; Ridd, Merrill K.
1999-01-01
Remote sensing science contributes greatly to our understanding of the Earth's ecosystems and cultural landscapes. Almost all the natural and social sciences, including geography, rely heavily on remote sensing to provide quantitative, and indispensable spatial information. Many geographers have made significant contributions to remote sensing science since the 1970s, including the specification of advanced remote sensing systems, improvements in analog and digital image analysis, biophysical modeling, and terrain analysis. In fact, the Remote Sensing Specialty Group (RSSG) is one of the largest specialty groups within the AAG with over 500 members. Remote sensing in concert with a geographic information systems, offers much value to geography as both an incisive spatial-analytical tool and as a scholarly pursuit that adds to the body of geographic knowledge on the whole. The "power" of remote sensing as a research endeavor in geography lies in its capabilities for obtaining synoptic, near-real time data at many spatial and temporal scales, and in many regions of the electromagnetic spectrum - from microwave, to RADAR, to visible, and reflective and thermal infrared. In turn, these data present a vast compendium of information for assessing Earth attributes and characte6stics that are at the very core of geography. Here we revisit how remote sensing has become a fundamental and important tool for geographical research, and how with the advent of new and improved sensing systems to be launched in the near future, remote sensing will further advance geographical analysis in the approaching New Millennium.
1993-01-01
during the agricultural season. Satellite remote sensing can contribute significantly to such a system by collecting information on crops and on...well as techniques to derive biophysical variables from remotely-sensed data. Finally, the integration of these remote - sensing techniques with crop
Remote sensing of snow and ice
NASA Technical Reports Server (NTRS)
Rango, A.
1979-01-01
This paper reviews remote sensing of snow and ice, techniques for improved monitoring, and incorporation of the new data into forecasting and management systems. The snowcover interpretation of visible and infrared data from satellites, automated digital methods, radiative transfer modeling to calculate the solar reflectance of snow, and models using snowcover input data and elevation zones for calculating snowmelt are discussed. The use of visible and near infrared techniques for inferring snow properties, microwave monitoring of snowpack characteristics, use of Landsat images for collecting glacier data, monitoring of river ice with visible imagery from NOAA satellites, use of sequential imagery for tracking ice flow movement, and microwave studies of sea ice are described. Applications of snow and ice research to commercial use are examined, and it is concluded that a major problem to be solved is characterization of snow and ice in nature, since assigning of the correct properties to a real system to be modeled has been difficult.
Bottom depth and type for shallow waters: Hyperspectral observations from a blimp
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, ZhongPing; Carder, K.; Steward, R.
1997-08-01
In a study of a blimp transect over Tampa Bay (Florida), hyperspectral upwelling radiance over the sand and seagrass bottoms was measured. These measurements were converted to hyperspectral remote-sensing reflectances. Using a shallow-water remote-sensing-reflectance model, in-water optical properties, bottom depths and bottom albedos were derived analytically and simultaneously by an optimization procedure. In the process, curvatures of sand and seagrass albedos were used. Also used was a model of absorption spectrum of phytoplankton pigments. The derived bottom depths were compared with bathymetry charts and found to agree well. This study suggests that a low-flying blimp is a useful platform formore » the study and mapping of coastal water environments. The optical model as well as the data-reduction procedure used are practical for the retrieval of shallow water optical properties.« less
Cloud Properties Derived from Surface-Based Near-Infrared Spectral Transmission
NASA Technical Reports Server (NTRS)
Pilewskie, Peter; Twomey, S.; Gore, Warren J. Y. (Technical Monitor)
1996-01-01
Surface based near-infrared cloud spectral transmission measurements from a recent precipitation/cloud physics field study are used to determine cloud physical properties and relate them to other remote sensing and in situ measurements. Asymptotic formulae provide an effective means of closely approximating the qualitative and quantitative behavior of transmission computed by more laborious detailed methods. Relationships derived from asymptotic formulae are applied to measured transmission spectra to test objectively the internal consistency of data sets acquired during the field program and they confirmed the quality of the measurements. These relationships appear to be very useful in themselves, not merely as a quality control measure, but also a potentially valuable remote-sensing technique in its own right. Additional benefits from this analysis have been the separation of condensed water (cloud) transmission and water vapor transmission and the development of a method to derive cloud liquid water content.
Lunar and Planetary Science XXXV: Lunar Remote Sensing: Seeing the Big Picture
NASA Technical Reports Server (NTRS)
2004-01-01
The session "Lunar Remote Sensing: Seeing the Big Picture" contained the following reports:Approaches for Approximating Topography in High Resolution, Multispectral Data; Verification of Quality and Compatibility for the Newly Calibrated Clementine NIR Data Set; Near Infrared Spectral Properties of Selected Nearside and Farside Sites ; Global Comparisons of Mare Volcanism from Clementine Near-Infrared Data; Testing the Relation Between UVVIS Color and TiO2 Composition in the Lunar Maria; Color Reflectance Trends in the Mare: Implications for Mapping Iron with Multispectral Images ; The Composition of the Lunar Megaregolith: Some Initial Results from Global Mapping; Global Images of Mg-Number Derived from Clementine Data; The Origin of Lunar Crater Rays; Properties of Lunar Crater Ejecta from New 70-cm Radar Observations ; Permanent Sunlight at the Lunar North Pole; and ESA s SMART-1 Mission to the Moon: Goals, Status and First Results.
Perspectives of methods of laser monitoring of the atmosphere and sea surface
NASA Astrophysics Data System (ADS)
Pashayev, Arif; Tunaboylu, Bahadir; Usta, Metin; Sadixov, Ilham; Allahverdiyev, Kerim
2016-01-01
Laser monitoring (remote sensing) may be considered as the science of collecting and interpreting information about the atmosphere, earth and sea using sensors on earth, on platforms in our atmosphere (airplanes, balloons) or in space (satellites) without being in direct physical contact with them. Remote sensing by LIDARs (Light Identification Detection and Ranging) has wide applications as technique to probe the Earth's atmosphere, ocean and land surfaces. LIDARs are widely used to get knowledge of spatial and temporal variations in meteorological quantities (e.g. temperature, humidity, clouds and aerosol properties) and to monitor the changes in these quantities on different timescales. Subject of the present work is quite wide. It is rather difficult to perform analysis and to provide full knowledge about existing information. In the present work, in addition to the literature data, the information will be provided also about KA-09 aerosol LIDAR developed at the Marmara Research Centre of TÜBITAK (Turkish Scientific and technological Research Council) and also about KA-14 LIDAR developed at the National Aviation Academy of Azerbaijan for remote sensing of contaminations on water surfaces taking place during oil-gas production. The main goal of this paper is to give students insight in different remote sensing instruments and techniques (including their perspectives) that are used for the derivation of meteorological quantities and obtaining the information about water surface.
Measurement Sets and Sites Commonly Used for Characterization
NASA Technical Reports Server (NTRS)
Pagnutti, Mary; Holekamp, Kara; Ryan, Robert; Sellers, Richard; Davis, Bruce; Zanoni, Vicki
2002-01-01
Scientists at NASA's Earth Science Applications Directorate are creating a well-characterized Verification & Validation (V&V) site at the Stennis Space Center. This site enables the in-flight characterization of remote sensing systems and the data they acquire. The data are predominantly acquired by commercial, high spatial resolution satellite systems, such as IKONOS and QuickBird 2, and airborne systems. The smaller scale of these newer high resolution remote sensing systems allows scientists to characterize the geometric, spatial, and radiometric data properties using a single V&V site. The targets and techniques used to characterize data from these newer systems can differ significantly from the techniques used to characterize data from the earlier, coarser spatial resolution systems. Scientists are also using the SSC V&V site to characterize thermal infrared systems and active LIDAR systems. SSC employs geodetic targets, edge targets, radiometric tarps, and thermal calibration ponds to characterize remote sensing data products. This paper presents a proposed set of required measurements for visible through long-wave infrared remote sensing systems and a description of the Stennis characterization. Other topics discussed include: 1) The use of ancillary atmospheric and solar measurements taken at SSC that support various characterizations; 2) Additional sites used for radiometric, geometric, and spatial characterization in the continental United States; 3) The need for a standardized technique to be adopted by CEOS and other organizations.
Measurement Sets and Sites Commonly used for Characterizations
NASA Technical Reports Server (NTRS)
Pagnutti, Mary; Holekamp, Kara; Ryan, Robert; Blonski, Slawomir; Sellers, Richard; Davis, Bruce; Zanoni, Vicki
2002-01-01
Scientists with NASA's Earth Science Applications Directorate are creating a well-characterized Verification & Validation (V&V) site at the Stennis Space Center (SSC). This site enables the in-flight characterization of remote sensing systems and the data that they require. The data are predominantly acquired by commercial, high-spatial resolution satellite systems, such as IKONOS and QuickBird 2, and airborne systems. The smaller scale of these newer high-resolution remote sensing systems allows scientists to characterize the geometric, spatial, and radiometric data properties using a single V&V site. The targets and techniques used to characterize data from these newer systems can differ significantly from the earlier, coarser spatial resolution systems. Scientists are also using the SSC V&V site to characterize thermal infrared systems and active Light Detection and Ranging (LIDAR) systems. SSC employs geodetic targets, edge targets, radiometric tarps, and thermal calibration ponds to characterize remote sensing data products. This paper presents a proposed set of required measurements for visible-through-longwave infrared remote sensing systems, and a description of the Stennis characterization. Other topics discussed inslude: 1) use of ancillary atmospheric and solar measurements taken at SSC that support various characterizations, 2) other sites used for radiometric, geometric, and spatial characterization in the continental United States,a nd 3) the need for a standardized technique to be adopted by the Committee on Earth Observation Satellites (CEOS) and other organizations.
NASA Astrophysics Data System (ADS)
Davies, Gwendolyn E.
Acid mine drainage (AMD) resulting from the oxidation of sulfides in mine waste is a major environmental issue facing the mining industry today. Open pit mines, tailings ponds, ore stockpiles, and waste rock dumps can all be significant sources of pollution, primarily heavy metals. These large mining-induced footprints are often located across vast geographic expanses and are difficult to access. With the continuing advancement of imaging satellites, remote sensing may provide a useful monitoring tool for pit lake water quality and the rapid assessment of abandoned mine sites. This study explored the applications of laboratory spectroscopy and multi-season hyperspectral remote sensing for environmental monitoring of mine waste environments. Laboratory spectral experiments were first performed on acid mine waters and synthetic ferric iron solutions to identify and isolate the unique spectral properties of mine waters. These spectral characterizations were then applied to airborne hyperspectral imagery for identification of poor water quality in AMD ponds at the Leviathan Mine Superfund site, CA. Finally, imagery varying in temporal and spatial resolutions were used to identify changes in mineralogy over weathering overburden piles and on dry AMD pond liner surfaces at the Leviathan Mine. Results show the utility of hyperspectral remote sensing for monitoring a diverse range of surfaces associated with AMD.
Designing Zoning of Remote Sensing Drones for Urban Applications: a Review
NASA Astrophysics Data System (ADS)
Norzailawati, M. N.; Alias, A.; Akma, R. S.
2016-06-01
This paper discusses on-going research related to zoning regulation for the remote sensing drone in the urban applications. Timestamped maps are presented here follow a citation-based approach, where significant information is retrieved from the scientific literature. The emergence of drones in domestic air raises lots understandable issues on privacy, security and uncontrolled pervasive surveillance that require a careful and alternative solution. The effective solution is to adopt a privacy and property rights approach that create a drone zoning and clear drone legislatures. In providing a differential trend to other reviews, this paper is not limited to drones zoning and regulations, but also, discuss on trend remote sensing drones specification in designing a drone zones. Remote sensing drone will specific according to their features and performances; size and endurance, maximum airspeed and altitude level and particular references are made to the drones range. The implementation of laws zoning could lie with the urban planners whereby, a zoning for drone could become a new tactic used to specify areas, where drones could be used, will provide remedies for the harm that arise from drones, and act as a different against irresponsible behaviour. Finally, underlines the need for next regulations on guidelines and standards which can be used as a guidance for urban decision makers to control the drones' operating, thus ensuring a quality and sustainability of resilience cities simultaneously encouraging the revolution of technology.
Understanding the Microphysical Properties of Developing Cloud Clusters During TCS-08
2012-09-30
sensed satellite data In addition to the lightning data , geostationary infrared brightness temperatures and MODIS data have been used to analyze...detailed investigation of genesis using remote-sensed observations from platforms that are maintained on a more permanent basis including satellite -based...searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments
Method of determining forest production from remotely sensed forest parameters
Corey, J.C.; Mackey, H.E. Jr.
1987-08-31
A method of determining forest production entirely from remotely sensed data in which remotely sensed multispectral scanner (MSS) data on forest 5 composition is combined with remotely sensed radar imaging data on forest stand biophysical parameters to provide a measure of forest production. A high correlation has been found to exist between the remotely sensed radar imaging data and on site measurements of biophysical 10 parameters such as stand height, diameter at breast height, total tree height, mean area per tree, and timber stand volume.
2010-12-01
remote - sensing reflectance) can be highly inaccurate if a spectrally constant value is applied (although errors can be reduced by carefully filtering measured raw data). To remove surface-reflected light in field measurements of remote sensing reflectance, a spectral optimization approach was applied, with results compared with those from remote sensing models and from direct measurements. The agreement from different determinations suggests that reasonable results for remote sensing reflectance of clear
2010-12-06
remote - sensing reflectance) can be highly inaccurate if a spectrally constant value is applied (although errors can be reduced by carefully filtering measured raw data). To remove surface-reflected light in field measurements of remote sensing reflectance, a spectral optimization approach was applied, with results compared with those from remote sensing models and from direct measurements. The agreement from different determinations suggests that reasonable results for remote sensing reflectance of clear
Electromagnetic Power Attenuation in Soils
2005-08-01
based on field measurements of effective conductivity. Previous Soil Property Models Clearly, the problem of predicting EM attenuation in soils...Curtis, J. O. (2001a). “Moisture effects on the dielectric properties of soils,” IEEE Transactions on Geoscience and Remote Sensing 39(1), 125-128... properties of materials by time-domain techniques,” IEEE Transactions on Instrumentation and Measurement IM-19(4), 377-382. Portland Cement Association
NASA Technical Reports Server (NTRS)
Merrill, R. B.
1975-01-01
Recent investigations of the moon are reported. Topics discussed include the Apollo 17 site, selenography, craters, remote sensing, selenophysics, lunar surface fields and particles, magnetic properties of lunar samples, physical property measurements, surface-correlated properties, micrometeoroids, solar-system regoliths, and cosmic rays. Lunar orbital data maps are presented, and the evolution of lunar features is examined.
Field Data Collection: an Essential Element in Remote Sensing Applications
NASA Technical Reports Server (NTRS)
Pettinger, L. R.
1971-01-01
Field data collected in support of remote sensing projects are generally used for the following purposes: (1) calibration of remote sensing systems, (2) evaluation of experimental applications of remote sensing imagery on small test sites, and (3) designing and evaluating operational regional resource studies and inventories which are conducted using the remote sensing imagery obtained. Field data may be used to help develop a technique for a particular application, or to aid in the application of that technique to a resource evaluation or inventory problem for a large area. Scientists at the Forestry Remote Sensing Laboratory have utilized field data for both purposes. How meaningful field data has been collected in each case is discussed.
Remote sensing and eLearning 2.0 for school education
NASA Astrophysics Data System (ADS)
Voss, Kerstin; Goetzke, Roland; Hodam, Henryk
2010-10-01
The "Remote Sensing in Schools" project aims at improving the integration of "Satellite remote sensing" into school teaching. Therefore, it is the project's overall objective to teach students in primary and secondary schools the basics and fields of application of remote sensing. Existing results show that many teachers are interested in remote sensing and at same time motivated to integrate it into their teaching. Despite the good intention, in the end, the implementation often fails due to the complexity and poor set-up of the information provided. Therefore, a comprehensive and well-structured learning platform on the topic of remote sensing is developed. The platform shall allow a structured introduction to the topic.
Remote sensing programs and courses in engineering and water resources
NASA Technical Reports Server (NTRS)
Kiefer, R. W.
1981-01-01
The content of typical basic and advanced remote sensing and image interpretation courses are described and typical remote sensing graduate programs of study in civil engineering and in interdisciplinary environmental remote sensing and water resources management programs are outlined. Ideally, graduate programs with an emphasis on remote sensing and image interpretation should be built around a core of five courses: (1) a basic course in fundamentals of remote sensing upon which the more specialized advanced remote sensing courses can build; (2) a course dealing with visual image interpretation; (3) a course dealing with quantitative (computer-based) image interpretation; (4) a basic photogrammetry course; and (5) a basic surveying course. These five courses comprise up to one-half of the course work required for the M.S. degree. The nature of other course work and thesis requirements vary greatly, depending on the department in which the degree is being awarded.
Remote sensing research in geographic education: An alternative view
NASA Technical Reports Server (NTRS)
Wilson, H.; Cary, T. K.; Goward, S. N.
1981-01-01
It is noted that within many geography departments remote sensing is viewed as a mere technique a student should learn in order to carry out true geographic research. This view inhibits both students and faculty from investigation of remotely sensed data as a new source of geographic knowledge that may alter our understanding of the Earth. The tendency is for geographers to accept these new data and analysis techniques from engineers and mathematicians without questioning the accompanying premises. This black-box approach hinders geographic applications of the new remotely sensed data and limits the geographer's contribution to further development of remote sensing observation systems. It is suggested that geographers contribute to the development of remote sensing through pursuit of basic research. This research can be encouraged, particularly among students, by demonstrating the links between geographic theory and remotely sensed observations, encouraging a healthy skepticism concerning the current understanding of these data.
Research on assessment and improvement method of remote sensing image reconstruction
NASA Astrophysics Data System (ADS)
Sun, Li; Hua, Nian; Yu, Yanbo; Zhao, Zhanping
2018-01-01
Remote sensing image quality assessment and improvement is an important part of image processing. Generally, the use of compressive sampling theory in remote sensing imaging system can compress images while sampling which can improve efficiency. A method of two-dimensional principal component analysis (2DPCA) is proposed to reconstruct the remote sensing image to improve the quality of the compressed image in this paper, which contain the useful information of image and can restrain the noise. Then, remote sensing image quality influence factors are analyzed, and the evaluation parameters for quantitative evaluation are introduced. On this basis, the quality of the reconstructed images is evaluated and the different factors influence on the reconstruction is analyzed, providing meaningful referential data for enhancing the quality of remote sensing images. The experiment results show that evaluation results fit human visual feature, and the method proposed have good application value in the field of remote sensing image processing.
Unmanned aerial vehicle: A unique platform for low-altitude remote sensing for crop management
USDA-ARS?s Scientific Manuscript database
Unmanned aerial vehicles (UAV) provide a unique platform for remote sensing to monitor crop fields that complements remote sensing from satellite, aircraft and ground-based platforms. The UAV-based remote sensing is versatile at ultra-low altitude to be able to provide an ultra-high-resolution imag...
Christopher D. Lippitt; Douglas A. Stow; Philip J. Riggan
2016-01-01
Remote sensing for hazard response requires a priori identification of sensor, transmission, processing, and distribution methods to permit the extraction of relevant information in timescales sufficient to allow managers to make a given time-sensitive decision. This study applies and demonstrates the utility of the Remote Sensing Communication...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-06-08
... Collection; Comment Request; Licensing of Private Remote-Sensing Space Systems AGENCY: National Oceanic and.... Abstract NOAA has established requirements for the licensing of private operators of remote-sensing space... Land Remote- Sensing Policy Act of 1992 and with the national security and international obligations of...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-07-24
... Collection; Comment Request; Licensing of Private Remote-Sensing Space Systems AGENCY: National Oceanic and... for the licensing of private operators of remote-sensing space systems. The information in applications and subsequent reports is needed to ensure compliance with the Land Remote- Sensing Policy Act of...
Advancement of China’s Visible Light Remote Sensing Technology In Aerospace,
1996-03-19
Aerospace visible light film systems were among the earliest space remote sensing systems to be developed in China. They have been applied very well...makes China the third nation in the world to master space remote sensing technology, it also puts recoverable remote sensing satellites among the first
Polarimetric passive remote sensing of periodic surfaces
NASA Technical Reports Server (NTRS)
Veysoglu, Murat E.; Yueh, H. A.; Shin, R. T.; Kong, J. A.
1991-01-01
The concept of polarimetry in active remote sensing is extended to passive remote sensing. The potential use of the third and fourth Stokes parameters U and V, which play an important role in polarimetric active remote sensing, is demonstrated for passive remote sensing. It is shown that, by the use of the reciprocity principle, the polarimetric parameters of passive remote sensing can be obtained through the solution of the associated direct scattering problem. These ideas are applied to study polarimetric passive remote sensing of periodic surfaces. The solution of the direct scattering problem is obtained by an integral equation formulation which involves evaluation of periodic Green's functions and normal derivative of those on the surface. Rapid evaluation of the slowly convergent series associated with these functions is observed to be critical for the feasibility of the method. New formulas, which are rapidly convergent, are derived for the calculation of these series. The study has shown that the brightness temperature of the Stokes parameter U can be significant in passive remote sensing. Values as high as 50 K are observed for certain configurations.
NASA Astrophysics Data System (ADS)
Preißler, Jana; Martucci, Giovanni; Saponaro, Giulia; Ovadnevaite, Jurgita; Vaishya, Aditya; Kolmonen, Pekka; Ceburnis, Darius; Sogacheva, Larisa; de Leeuw, Gerrit; O'Dowd, Colin
2016-12-01
A total of 118 stratiform water clouds were observed by ground-based remote sensing instruments at the Mace Head Atmospheric Research Station on the west coast of Ireland from 2009 to 2015. Microphysical and optical characteristics of these clouds were studied as well as the impact of aerosols on these properties. Microphysical and optical cloud properties were derived using the algorithm SYRSOC (SYnergistic Remote Sensing Of Clouds). Ground-based in situ measurements of aerosol concentrations and the transport path of air masses at cloud level were investigated as well. The cloud properties were studied in dependence of the prevailing air mass at cloud level and season. We found higher cloud droplet number concentrations (CDNC) and smaller effective radii (reff) with greater pollution. Median CDNC ranged from 60 cm-3 in marine air masses to 160 cm-3 in continental air. Median reff ranged from 8 μm in polluted conditions to 10 μm in marine air. Effective droplet size distributions were broader in marine than in continental cases. Cloud optical thickness (COT) and albedo were lower in cleaner air masses and higher in more polluted conditions, with medians ranging from 2.1 to 4.9 and 0.22 to 0.39, respectively. However, calculation of COT and albedo was strongly affected by liquid water path (LWP) and departure from adiabatic conditions. A comparison of SYRSOC results with MODIS (Moderate-Resolution Imaging Spectroradiometer) observations showed large differences for LWP and COT but good agreement for reff with a linear fit with slope near 1 and offset of -1 μm.
NASA Astrophysics Data System (ADS)
Shinozuka, Y.; Clarke, A.; Howell, S.; Kapustin, V.; McNaughton, C.; Zhou, J.; Decarlo, P.; Jimenez, J.; Roberts, G.; Tomlinson, J.; Collins, D.
2008-12-01
Remote sensing of the concentration of cloud condensation nuclei (CCN) would help investigate the indirect effect of tropospheric aerosols on clouds and climate. In order to assess its feasibility, this paper evaluates the spectral-based retrieval technique for aerosol number and seeks one for aerosol solubility, using in-situ aircraft measurements of aerosol size distribution, chemical composition, hygroscopicity, CCN activity and optical properties. Our statistical analysis reveals that the CCN concentration over Mexico can be optically determined to a relative error of <20%, smaller than that for the mainland US and the surrounding oceans (~a factor of 2). Mexico's advantage is four-fold. Firstly, many particles originating from the lightly regulated industrial combustion and biomass burning are large enough to significantly affect light extinction, elevating the correlation between extinction and CCN number in absence of substantial dust. Secondly, the generally low ambient humidity near the major aerosol sources limits the error in the estimated response of particle extinction to humidity changes. Thirdly, because many CCN contain black carbon, light absorption also provides a measure of the CCN concentration. Fourthly, the organic fraction of volatile mass of submicron particles (OMF) is anti-correlated with the wavelength dependence of extinction due to preferential anion uptake by coarse dust, which provides a potential tool for remote-sensing OMF and the particle solubility.
From planets to crops and back: Remote sensing makes sense
NASA Astrophysics Data System (ADS)
Mustard, John F.
2017-04-01
Remotely sensed data and the instruments that acquire them are core parts of Earth and planetary observation systems. They are used to quantify the Earth's interconnected systems, and remote sensing is the only way to get a daily, or more frequent, snapshot of the status of the Earth. It really is the Earth's stethoscope. In a similar manner remote sensing is the rock hammer of the planetary scientist and the only way comprehensive data sets can be acquired. To risk offending many remotely sensed data acquired across the electromagnetic spectrum, it is the tricorder to explore known and unknown planets. Arriving where we are today in the use of remotely sensed data in the solar system has been a continually evolving synergy between Earth observation, planetary exploration, and fundamental laboratory work.
Remote sensing of on-road vehicle emissions: Mechanism, applications and a case study from Hong Kong
NASA Astrophysics Data System (ADS)
Huang, Yuhan; Organ, Bruce; Zhou, John L.; Surawski, Nic C.; Hong, Guang; Chan, Edward F. C.; Yam, Yat Shing
2018-06-01
Vehicle emissions are a major contributor to air pollution in cities and have serious health impacts to their inhabitants. On-road remote sensing is an effective and economic tool to monitor and control vehicle emissions. In this review, the mechanism, accuracy, advantages and limitations of remote sensing were introduced. Then the applications and major findings of remote sensing were critically reviewed. It was revealed that the emission distribution of on-road vehicles was highly skewed so that the dirtiest 10% vehicles accounted for over half of the total fleet emissions. Such findings highlighted the importance and effectiveness of using remote sensing for in situ identification of high-emitting vehicles for further inspection and maintenance programs. However, the accuracy and number of vehicles affected by screening programs were greatly dependent on the screening criteria. Remote sensing studies showed that the emissions of gasoline and diesel vehicles were significantly reduced in recent years, with the exception of NOx emissions of diesel vehicles in spite of greatly tightened automotive emission regulations. Thirdly, the experience and issues of using remote sensing for identifying high-emitting vehicles in Hong Kong (where remote sensing is a legislative instrument for enforcement purposes) were reported. That was followed by the first time ever identification and discussion of the issue of frequent false detection of diesel high-emitters using remote sensing. Finally, the challenges and future research directions of on-road remote sensing were elaborated.
Welp, Gerhard; Thiel, Michael
2017-01-01
Accurate and detailed spatial soil information is essential for environmental modelling, risk assessment and decision making. The use of Remote Sensing data as secondary sources of information in digital soil mapping has been found to be cost effective and less time consuming compared to traditional soil mapping approaches. But the potentials of Remote Sensing data in improving knowledge of local scale soil information in West Africa have not been fully explored. This study investigated the use of high spatial resolution satellite data (RapidEye and Landsat), terrain/climatic data and laboratory analysed soil samples to map the spatial distribution of six soil properties–sand, silt, clay, cation exchange capacity (CEC), soil organic carbon (SOC) and nitrogen–in a 580 km2 agricultural watershed in south-western Burkina Faso. Four statistical prediction models–multiple linear regression (MLR), random forest regression (RFR), support vector machine (SVM), stochastic gradient boosting (SGB)–were tested and compared. Internal validation was conducted by cross validation while the predictions were validated against an independent set of soil samples considering the modelling area and an extrapolation area. Model performance statistics revealed that the machine learning techniques performed marginally better than the MLR, with the RFR providing in most cases the highest accuracy. The inability of MLR to handle non-linear relationships between dependent and independent variables was found to be a limitation in accurately predicting soil properties at unsampled locations. Satellite data acquired during ploughing or early crop development stages (e.g. May, June) were found to be the most important spectral predictors while elevation, temperature and precipitation came up as prominent terrain/climatic variables in predicting soil properties. The results further showed that shortwave infrared and near infrared channels of Landsat8 as well as soil specific indices of redness, coloration and saturation were prominent predictors in digital soil mapping. Considering the increased availability of freely available Remote Sensing data (e.g. Landsat, SRTM, Sentinels), soil information at local and regional scales in data poor regions such as West Africa can be improved with relatively little financial and human resources. PMID:28114334
NASA Astrophysics Data System (ADS)
Palacios-Peña, Laura; Baró, Rocío; Baklanov, Alexander; Balzarini, Alessandra; Brunner, Dominik; Forkel, Renate; Hirtl, Marcus; Honzak, Luka; María López-Romero, José; Montávez, Juan Pedro; Pérez, Juan Luis; Pirovano, Guido; San José, Roberto; Schröder, Wolfram; Werhahn, Johannes; Wolke, Ralf; Žabkar, Rahela; Jiménez-Guerrero, Pedro
2018-04-01
Atmospheric aerosols modify the radiative budget of the Earth due to their optical, microphysical and chemical properties, and are considered one of the most uncertain climate forcing agents. In order to characterise the uncertainties associated with satellite and modelling approaches to represent aerosol optical properties, mainly aerosol optical depth (AOD) and Ångström exponent (AE), their representation by different remote-sensing sensors and regional online coupled chemistry-climate models over Europe are evaluated. This work also characterises whether the inclusion of aerosol-radiation (ARI) or/and aerosol-cloud interactions (ACI) help improve the skills of modelling outputs.Two case studies were selected within the EuMetChem COST Action ES1004 framework when important aerosol episodes in 2010 all over Europe took place: a Russian wildfire episode and a Saharan desert dust outbreak that covered most of the Mediterranean Sea. The model data came from different regional air-quality-climate simulations performed by working group 2 of EuMetChem, which differed according to whether ARI or ACI was included or not. The remote-sensing data came from three different sensors: MODIS, OMI and SeaWIFS. The evaluation used classical statistical metrics to first compare satellite data versus the ground-based instrument network (AERONET) and then to evaluate model versus the observational data (both satellite and ground-based data).Regarding the uncertainty in the satellite representation of AOD, MODIS presented the best agreement with the AERONET observations compared to other satellite AOD observations. The differences found between remote-sensing sensors highlighted the uncertainty in the observations, which have to be taken into account when evaluating models. When modelling results were considered, a common trend for underestimating high AOD levels was observed. For the AE, models tended to underestimate its variability, except when considering a sectional approach in the aerosol representation. The modelling results showed better skills when ARI+ACI interactions were included; hence this improvement in the representation of AOD (above 30 % in the model error) and AE (between 20 and 75 %) is important to provide a better description of aerosol-radiation-cloud interactions in regional climate models.
NASA Astrophysics Data System (ADS)
Hakkenberg, Christopher R.
Forest modification, from local stress to global change, has given rise to efforts to model, map, and monitor critical properties of forest communities like structure, composition, and diversity. Predictive models based on data from spatially-nested field plots and LiDAR-hyperspectral remote sensing systems are one particularly effective means towards the otherwise prohibitively resource-intensive task of consistently characterizing forest community dynamics at landscape scales. However, to date, most predictive models fail to account for actual (rather than idealized) species and community distributions, are unsuccessful in predicting understory components in structurally and taxonomically heterogeneous forests, and may suffer from diminished predictive accuracy due to incongruity in scale and precision between field plot samples, remotely-sensed data, and target biota of varying size and density. This three-part study addresses these and other concerns in the modeling and mapping of emergent properties of forest communities by shifting the scope of prediction from the individual or taxon to the whole stand or community. It is, after all, at the stand scale where emergent properties like functional processes, biodiversity, and habitat aggregate and manifest. In the first study, I explore the relationship between forest structure (a proxy for successional demographics and resource competition) and tree species diversity in the North Carolina Piedmont, highlighting the empirical basis and potential for utilizing forest structure from LiDAR in predictive models of tree species diversity. I then extend these conclusions to map landscape pattern in multi-scale vascular plant diversity as well as turnover in community-continua at varying compositional resolutions in a North Carolina Piedmont landscape using remotely-sensed LiDAR-hyperspectral estimates of topography, canopy structure, and foliar biochemistry. Recognizing that the distinction between correlation and causation mirrors that between knowledge and understanding, all three studies distinguish between prediction of pattern and inference of process. Thus, in addition to advancing mapping methodologies relevant to a range of forest ecosystem management and monitoring applications, all three studies are noteworthy for assessing the ecological relationship between environmental predictors and emergent landscape patterns in plant composition and diversity in North Carolina Piedmont forests.
Remote sensing of natural resources: Quarterly literature review
NASA Technical Reports Server (NTRS)
1976-01-01
A quarterly review of technical literature concerning remote sensing techniques is presented. The format contains indexed and abstracted materials with emphasis on data gathering techniques performed or obtained remotely from space, aircraft, or ground-based stations. Remote sensor applications including the remote sensing of natural resources are presented.
USDA-ARS?s Scientific Manuscript database
Active microwave remote sensing has long been recognized as a key component of an effective environmental observing strategy, due to the strong relationships of radar measurements with geometric and compositional properties of the Earth’s landscape. The Airborne Microwave Observatory of Subcanopy an...
NASA Astrophysics Data System (ADS)
Diao, Chunyuan
In today's big data era, the increasing availability of satellite and airborne platforms at various spatial and temporal scales creates unprecedented opportunities to understand the complex and dynamic systems (e.g., plant invasion). Time series remote sensing is becoming more and more important to monitor the earth system dynamics and interactions. To date, most of the time series remote sensing studies have been conducted with the images acquired at coarse spatial scale, due to their relatively high temporal resolution. The construction of time series at fine spatial scale, however, is limited to few or discrete images acquired within or across years. The objective of this research is to advance the time series remote sensing at fine spatial scale, particularly to shift from discrete time series remote sensing to continuous time series remote sensing. The objective will be achieved through the following aims: 1) Advance intra-annual time series remote sensing under the pure-pixel assumption; 2) Advance intra-annual time series remote sensing under the mixed-pixel assumption; 3) Advance inter-annual time series remote sensing in monitoring the land surface dynamics; and 4) Advance the species distribution model with time series remote sensing. Taking invasive saltcedar as an example, four methods (i.e., phenological time series remote sensing model, temporal partial unmixing method, multiyear spectral angle clustering model, and time series remote sensing-based spatially explicit species distribution model) were developed to achieve the objectives. Results indicated that the phenological time series remote sensing model could effectively map saltcedar distributions through characterizing the seasonal phenological dynamics of plant species throughout the year. The proposed temporal partial unmixing method, compared to conventional unmixing methods, could more accurately estimate saltcedar abundance within a pixel by exploiting the adequate temporal signatures of saltcedar. The multiyear spectral angle clustering model could guide the selection of the most representative remotely sensed image for repetitive saltcedar mapping over space and time. Through incorporating spatial autocorrelation, the species distribution model developed in the study could identify the suitable habitats of saltcedar at a fine spatial scale and locate appropriate areas at high risk of saltcedar infestation. Among 10 environmental variables, the distance to the river and the phenological attributes summarized by the time series remote sensing were regarded as the most important. These methods developed in the study provide new perspectives on how the continuous time series can be leveraged under various conditions to investigate the plant invasion dynamics.
NASA Astrophysics Data System (ADS)
Krezhova, Dora; Krezhov, Kiril; Maneva, Svetla; Moskova, Irina; Petrov, Nikolay
2016-07-01
Hyperspectral remote sensing technique, based on reflectance measurements acquired in a high number of contiguous spectral bands in the visible and near infrared spectral ranges, was used to detect the influence of some environmental changes to vegetation ecosystems. Adverse physical and biological conditions give rise to morphological, physiological, and biochemical changes in the plants that affect the manner in which they interact with the light. All green vegetation species have unique spectral features, mainly because of the chlorophyll and carotenoid, and other pigments, and water content. Because spectral reflectance is a function of the illumination conditions, tissue optical properties and biochemical content of the plants it may be used to collect information on several important biophysical parameters such as color and the spectral signature of features, vegetation chlorophyll absorption characteristics, vegetation moisture content, etc. Remotely sensed data collected by means of a portable fiber-optics spectrometer in the spectral range 350-1100 nm were used to extract information on the influence of some environmental changes. Stress factors such as enhanced UV-radiation, salinity, viral infections, were applied to some young plants species (potato, tomato, plums). The test data were subjected to different digital image processing techniques. This included statistical (Student's t-criterion), first derivative and cluster analyses and some vegetation indices. Statistical analyses were carried out in four most informative for the investigated species regions: green (520-580 nm), red (640-680 nm), red edge (680-720 nm) and near infrared (720-780 nm). The strong relationship, which was found between the results from the remote sensing technique and some biochemical and serological analyses (stress markers, DAS-ELISA), indicates the importance of hyperspectral reflectance data for conducting, easily and without damage, rapid assessments of plant biophysical variables. Emphasis is put on current capability and future potential of remote sensing for assessment of the plant health and on the optimum spectral regions and vegetation indices for sensing these biophysical variables.
Aerosol Remote Sensing From Space
NASA Astrophysics Data System (ADS)
Kokhanovsky, A.; Kinne, S.
2010-01-01
Determination of Atmospheric Aerosol Properties Using Satellite Measurements;Bad Honnef, Germany, 16-19 August 2009; Aerosol optical depth (AOD), a measure of how much light is attenuated by aerosol particles, provides scientists information about the amount and type of aerosols in the atmosphere. Recent developments in aerosol remote sensing was the theme of a workshop held in Germany. The workshop was sponsored by the Wilhelm and Else Heraeus Foundation and attracted 67 participants from 12 countries. The workshop focused on the determination (retrieval) of AOD and its spectral dependence using measurements of changes to the solar radiation back-scattered to space. The midvisible AOD is usually applied to define aerosol amount, while the size of aerosol particles is indicated by the AOD spectral dependence and is commonly expressed by the Angstrom parameter. Identical properties retrieved by different sensors, however, display significant diversity, especially over continents. A major reason for this is that the derivation of AOD requires more accurate determination of nonaerosol contributions to the sensed satellite signal than is usually available. In particular, surface reflectance data as a function of the viewing geometry and robust cloud-clearing methods are essential retrieval elements. In addition, the often needed assumptions about aerosol properties in terms of absorption and size are more reasons for the discrepancy between different AOD measurements.
Forest mensuration with remote sensing: A retrospective and a vision for the future
Randolph H. Wynne
2004-01-01
Remote sensing, while occasionally oversold, has clear potential to reduce the overall cost of traditional forest inventories. Perhaps most important, some of the information needed for more intensive, rather than extensive, forest management is available from remote sensing. These new information needs may justify increased use and the increased cost of remote sensing...
15 CFR 960.12 - Data policy for remote sensing space systems.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 15 Commerce and Foreign Trade 3 2010-01-01 2010-01-01 false Data policy for remote sensing space... REGULATIONS OF THE ENVIRONMENTAL DATA SERVICE LICENSING OF PRIVATE REMOTE SENSING SYSTEMS Licenses § 960.12 Data policy for remote sensing space systems. (a) In accordance with the Act, if the U.S. Government...
Remote Sensing: Analyzing Satellite Images to Create Higher Order Thinking Skills.
ERIC Educational Resources Information Center
Marks, Steven K.; And Others
1996-01-01
Presents a unit that uses remote-sensing images from satellites and other spacecraft to provide new perspectives of the earth and generate greater global awareness. Relates the levels of Bloom's hierarchy to different aspects of the remote sensing unit to confirm that the concepts and principles of remote sensing and related images belong in…
15 CFR 960.12 - Data policy for remote sensing space systems.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 15 Commerce and Foreign Trade 3 2011-01-01 2011-01-01 false Data policy for remote sensing space... REGULATIONS OF THE ENVIRONMENTAL DATA SERVICE LICENSING OF PRIVATE REMOTE SENSING SYSTEMS Licenses § 960.12 Data policy for remote sensing space systems. (a) In accordance with the Act, if the U.S. Government...
15 CFR 960.12 - Data policy for remote sensing space systems.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 15 Commerce and Foreign Trade 3 2012-01-01 2012-01-01 false Data policy for remote sensing space... REGULATIONS OF THE ENVIRONMENTAL DATA SERVICE LICENSING OF PRIVATE REMOTE SENSING SYSTEMS Licenses § 960.12 Data policy for remote sensing space systems. (a) In accordance with the Act, if the U.S. Government...
15 CFR 960.12 - Data policy for remote sensing space systems.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 15 Commerce and Foreign Trade 3 2014-01-01 2014-01-01 false Data policy for remote sensing space... REGULATIONS OF THE ENVIRONMENTAL DATA SERVICE LICENSING OF PRIVATE REMOTE SENSING SYSTEMS Licenses § 960.12 Data policy for remote sensing space systems. (a) In accordance with the Act, if the U.S. Government...
15 CFR 960.12 - Data policy for remote sensing space systems.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 15 Commerce and Foreign Trade 3 2013-01-01 2013-01-01 false Data policy for remote sensing space... REGULATIONS OF THE ENVIRONMENTAL DATA SERVICE LICENSING OF PRIVATE REMOTE SENSING SYSTEMS Licenses § 960.12 Data policy for remote sensing space systems. (a) In accordance with the Act, if the U.S. Government...
Annotated bibliography of remote sensing methods for monitoring desertification
Walker, A.S.; Robinove, Charles J.
1981-01-01
Remote sensing techniques are valuable for locating, assessing, and monitoring desertification. Remotely sensed data provide a permanent record of the condition of the land in a format that allows changes in land features and condition to be measured. The annotated bibliography of 118 items discusses remote sensing methods that may be applied to desertification studies.
Applied Remote Sensing Program (ARSP)
NASA Technical Reports Server (NTRS)
Johnson, J. D.; Foster, K. E.; Mouat, D. A.; Miller, D. A.; Conn, J. S.
1976-01-01
The activities and accomplishments of the Applied Remote Sensing Program during FY 1975-1976 are reported. The principal objective of the Applied Remote Sensing Program continues to be designed projects having specific decision-making impacts as a principal goal. These projects are carried out in cooperation and collaboration with local, state and federal agencies whose responsibilities lie with planning, zoning and environmental monitoring and/or assessment in the application of remote sensing techniques. The end result of the projects is the use by the involved agencies of remote sensing techniques in problem solving.
Communicating remote sensing concepts in an interdisciplinary environment
NASA Technical Reports Server (NTRS)
Chung, R.
1981-01-01
Although remote sensing is currently multidisciplinary in its applications, many of its terms come from the engineering sciences, particularly from the field of pattern recognition. Scholars from fields such as the social sciences, botany, and biology, may experience initial difficulty with remote sensing terminology, even though parallel concepts exist in their own fields. Some parallel concepts and terminologies from nonengineering fields, which might enhance the understanding of remote sensing concepts in an interdisciplinary situation are identified. Feedbacks which this analogue strategy might have on remote sensing itself are explored.
People, Places and Pixels: Remote Sensing in the Service of Society
NASA Technical Reports Server (NTRS)
Lulla, Kamlesh
2003-01-01
What is the role of Earth remote sensing and other geospatial technologies in our society? Recent global events have brought into focus the role of geospatial science and technology such as remote sensing, GIS, GPS in assisting the professionals who are responsible for operations such as rescue and recovery of sites after a disaster or a terrorist act. This paper reviews the use of recent remote sensing products from satellites such as IKONOS in these efforts. Aerial and satellite imagery used in land mine detection has been evaluated and the results of this evaluation will be discussed. Synopsis of current and future ISS Earth Remote Sensing capabilities will be provided. The role of future missions in humanitarian use of remote sensing will be explored.
When Models and Observations Collide: Journeying towards an Integrated Snow Depth Product
NASA Astrophysics Data System (ADS)
Webster, M.; Petty, A.; Boisvert, L.; Markus, T.; Kurtz, N. T.; Kwok, R.; Perovich, D. K.
2017-12-01
Knowledge of snow depth is essential for assessing changes in sea ice mass balance due to snow's insulating and reflective properties. In remote sensing applications, the accuracy of sea ice thickness retrievals from altimetry crucially depends on snow depth. Despite the need for snow depth data, we currently lack continuous observations that capture the basin-scale snow depth distribution and its seasonal evolution. Recent in situ and remote sensing observations are sparse in space and time, and contain uncertainties, caveats, and/or biases that often require careful interpretation. Likewise, using model output for remote sensing applications is limited due to uncertainties in atmospheric forcing and different treatments of snow processes. Here, we summarize our efforts in bringing observational and model data together to develop an approach for an integrated snow depth product. We start with a snow budget model and incrementally incorporate snow processes to determine the effects on snow depth and to assess model sensitivity. We discuss lessons learned in model-observation integration and ideas for potential improvements to the treatment of snow in models.
A Comprehensive Review on Water Quality Parameters Estimation Using Remote Sensing Techniques.
Gholizadeh, Mohammad Haji; Melesse, Assefa M; Reddi, Lakshmi
2016-08-16
Remotely sensed data can reinforce the abilities of water resources researchers and decision makers to monitor waterbodies more effectively. Remote sensing techniques have been widely used to measure the qualitative parameters of waterbodies (i.e., suspended sediments, colored dissolved organic matter (CDOM), chlorophyll-a, and pollutants). A large number of different sensors on board various satellites and other platforms, such as airplanes, are currently used to measure the amount of radiation at different wavelengths reflected from the water's surface. In this review paper, various properties (spectral, spatial and temporal, etc.) of the more commonly employed spaceborne and airborne sensors are tabulated to be used as a sensor selection guide. Furthermore, this paper investigates the commonly used approaches and sensors employed in evaluating and quantifying the eleven water quality parameters. The parameters include: chlorophyll-a (chl-a), colored dissolved organic matters (CDOM), Secchi disk depth (SDD), turbidity, total suspended sediments (TSS), water temperature (WT), total phosphorus (TP), sea surface salinity (SSS), dissolved oxygen (DO), biochemical oxygen demand (BOD) and chemical oxygen demand (COD).
A Comprehensive Review on Water Quality Parameters Estimation Using Remote Sensing Techniques
Gholizadeh, Mohammad Haji; Melesse, Assefa M.; Reddi, Lakshmi
2016-01-01
Remotely sensed data can reinforce the abilities of water resources researchers and decision makers to monitor waterbodies more effectively. Remote sensing techniques have been widely used to measure the qualitative parameters of waterbodies (i.e., suspended sediments, colored dissolved organic matter (CDOM), chlorophyll-a, and pollutants). A large number of different sensors on board various satellites and other platforms, such as airplanes, are currently used to measure the amount of radiation at different wavelengths reflected from the water’s surface. In this review paper, various properties (spectral, spatial and temporal, etc.) of the more commonly employed spaceborne and airborne sensors are tabulated to be used as a sensor selection guide. Furthermore, this paper investigates the commonly used approaches and sensors employed in evaluating and quantifying the eleven water quality parameters. The parameters include: chlorophyll-a (chl-a), colored dissolved organic matters (CDOM), Secchi disk depth (SDD), turbidity, total suspended sediments (TSS), water temperature (WT), total phosphorus (TP), sea surface salinity (SSS), dissolved oxygen (DO), biochemical oxygen demand (BOD) and chemical oxygen demand (COD). PMID:27537896
Wang, Guizhou; Liu, Jianbo; He, Guojin
2013-01-01
This paper presents a new classification method for high-spatial-resolution remote sensing images based on a strategic mechanism of spatial mapping and reclassification. The proposed method includes four steps. First, the multispectral image is classified by a traditional pixel-based classification method (support vector machine). Second, the panchromatic image is subdivided by watershed segmentation. Third, the pixel-based multispectral image classification result is mapped to the panchromatic segmentation result based on a spatial mapping mechanism and the area dominant principle. During the mapping process, an area proportion threshold is set, and the regional property is defined as unclassified if the maximum area proportion does not surpass the threshold. Finally, unclassified regions are reclassified based on spectral information using the minimum distance to mean algorithm. Experimental results show that the classification method for high-spatial-resolution remote sensing images based on the spatial mapping mechanism and reclassification strategy can make use of both panchromatic and multispectral information, integrate the pixel- and object-based classification methods, and improve classification accuracy. PMID:24453808
City of Flagstaff Project: Ground Water Resource Evaluation, Remote Sensing Component
Chavez, Pat S.; Velasco, Miguel G.; Bowell, Jo-Ann; Sides, Stuart C.; Gonzalez, Rosendo R.; Soltesz, Deborah L.
1996-01-01
Many regions, cities, and towns in the Western United States need new or expanded water resources because of both population growth and increased development. Any tools or data that can help in the evaluation of an area's potential water resources must be considered for this increasingly critical need. Remotely sensed satellite images and subsequent digital image processing have been under-utilized in ground water resource evaluation and exploration. Satellite images can be helpful in detecting and mapping an area's regional structural patterns, including major fracture and fault systems, two important geologic settings for an area's surface to ground water relations. Within the United States Geological Survey's (USGS) Flagstaff Field Center, expertise and capabilities in remote sensing and digital image processing have been developed over the past 25 years through various programs. For the City of Flagstaff project, this expertise and these capabilities were combined with traditional geologic field mapping to help evaluate ground water resources in the Flagstaff area. Various enhancement and manipulation procedures were applied to the digital satellite images; the results, in both digital and hardcopy format, were used for field mapping and analyzing the regional structure. Relative to surface sampling, remotely sensed satellite and airborne images have improved spatial coverage that can help study, map, and monitor the earth surface at local and/or regional scales. Advantages offered by remotely sensed satellite image data include: 1. a synoptic/regional view compared to both aerial photographs and ground sampling, 2. cost effectiveness, 3. high spatial resolution and coverage compared to ground sampling, and 4. relatively high temporal coverage on a long term basis. Remotely sensed images contain both spectral and spatial information. The spectral information provides various properties and characteristics about the surface cover at a given location or pixel (that is, vegetation and/or soil type). The spatial information gives the distribution, variation, and topographic relief of the cover types from pixel to pixel. Therefore, the main characteristics that determine a pixel's brightness/reflectance and, consequently, the digital number (DN) assigned to the pixel, are the physical properties of the surface and near surface, the cover type, and the topographic slope. In this application, the ability to detect and map lineaments, especially those related to fractures and faults, is critical. Therefore, the extraction of spatial information from the digital images was of prime interest in this project. The spatial information varies among the different spectral bands available; in particular, a near infrared spectral band is better than a visible band when extracting spatial information in highly vegetated areas. In this study, both visible and near infrared bands were analyzed and used to extract the desired spatial information from the images. The wide swath coverage of remotely sensed satellite digital images makes them ideal for regional analysis and mapping. Since locating and mapping highly fractured and faulted areas is a major requirement for ground water resource evaluation and exploration this aspect of satellite images was considered critical; it allowed us to stand back (actually up about 440 miles), look at, and map the regional structural setting of the area. The main focus of the remote sensing and digital image processing component of this project was to use both remotely sensed digital satellite images and a Digital Elevation Model (DEM) to extract spatial information related to the structural and topographic patterns in the area. The data types used were digital satellite images collected by the United States' Landsat Thematic Mapper (TM) and French Systeme Probatoire d'Observation de laTerre (SPOT) imaging systems, along with a DEM of the Flagstaff region. The USGS Mini Image Processing Sy
Performance of One-Class Classifiers for Invasive Species Mapping using Hyperspectral Remote Sensing
NASA Astrophysics Data System (ADS)
Skowronek, S.; Asner, G. P.; Feilhauer, H.
2016-12-01
Reliable distribution maps are crucial for the monitoring and management of invasive plant species. Remote sensing can provide such maps for larger areas. However, most remote sensing approaches focus on species in a prominent phenological stage, and a systematic assessment of the performance of different one-class classifiers for mapping species in a more inconspicuous phenological stage is missing so far. In this study, we used hyperspectral remote sensing data to detect the invasive grass Phalaris aquatica and the invasive herb Centaurea solstitialisin a pre-flowering stage in the Jasper Ridge Biological Preserve in California. We collected presence-only data, 66 plots for C. solstitialis and 30 plots for P. aquatica, to calibrate a distribution model and additional presence-absence data (166 / 173 plots) to validate model performance. All plots have a size of 3 m x 3 m. The hyperspectral remote sensing imagery was acquired using the Carnegie Airborne Observatory (CAO) visible to shortwave infrared (VSWIR) imaging spectrometer (400-2500 nm range) in May 2015 with a ground sampling distance (pixel size) of 1 m x 1 m. To find the best approach for mapping these species, we compared the performance of three different state-of-the-art classifiers working with presence-only data: Maxent, biased support vector machines and boosted regression trees. The resulting overall accuracies were 72 - 74% for C. solstitialis, and 83 - 88% for P. aquatica. For both species the overall performance was slightly better for Maxent and BRT than for biased SVM. The detection rates for low cover plots were considerably higher for C. solstitialis than for P. aquatica. For C. solstitalis, they ranged between 71 and 75% for plots with less than 15% cover, highlighting the potential of remote sensing to contribute to an early detection. The models relied on different areas of the spectrum, but still produced the same general pattern, which implies that more than one property of a species or a mixed plot can be used to create a viable model. We conclude that the different one-class classifiers we tested do allow detecting the target species in a more inconspicuous phenological stage, with similar success rates.
Multi- and hyperspectral remote sensing of tropical marine benthic habitats
NASA Astrophysics Data System (ADS)
Mishra, Deepak R.
Tropical marine benthic habitats such as coral reef and associated environments are severely endangered because of the environmental degradation coupled with hurricanes, El Nino events, coastal pollution and runoff, tourism, and economic development. To monitor and protect this diverse environment it is important to not only develop baseline maps depicting their spatial distribution but also to document their changing conditions over time. Remote sensing offers an important means of delineating and monitoring coral reef ecosystems. Over the last twenty years the scientific community has been investigating the use and potential of remote sensing techniques to determine the conditions of the coral reefs by analyzing their spectral characteristics from space. One of the problems in monitoring coral reefs from space is the effect of the water column on the remotely sensed signal. When light penetrates water its intensity decreases exponentially with increasing depth. This process, known as water column attenuation, exerts a profound effect on remotely sensed data collected over water bodies. The approach presented in this research focuses on the development of semi-analytical models that resolves the confounding influence water column attenuation on substrate reflectance to characterize benthic habitats from high resolution remotely sensed imagery on a per-pixel basis. High spatial resolution satellite and airborne imagery were used as inputs in the models to derive water depth and water column optical properties (e.g., absorption and backscattering coefficients). These parameters were subsequently used in various bio-optical algorithms to deduce bottom albedo and then to classify the benthos, generating a detailed map of benthic habitats. IKONOS and QuickBird multispectral satellite data and AISA Eagle hyperspectral airborne data were used in this research for benthic habitat mapping along the north shore of Roatan Island, Honduras. The AISA Eagle classification was consistently more accurate (84%) including finer definition of geomorphological features than the satellite sensors. IKONOS (81%) and QuickBird (81%) sensors showed similar accuracy to AISA, however, such similarity was only reached at the coarse classification levels of 5 and 6 habitats. These results confirm the potential of an effective combination of high spectral and spatial resolution sensor, for accurate benthic habitat mapping.
NASA Astrophysics Data System (ADS)
Mouw, Colleen; Greb, Steven
2012-09-01
Workshop for Remote Sensing of Coastal and Inland Waters;Madison, Wisconsin, 20-22 June 2012 Coastal and inland water bodies, which have great value for recreation, food supply, commerce, transportation, and human health, have been experiencing external pressure from direct human activities and climate change. Given their societal and economic value, understanding issues of water quality, water quantity, and the impact of environmental change on the ecological and biogeochemical functioning of these water bodies is of interest to a broad range of communities. Remote sensing offers one of the most spatially and temporally comprehensive tools for observing these waters. While there has been some success with remotely observing these water bodies, many challenges still remain, including algorithm performance, atmospheric correction, the relationships between optical properties and biogeochemical parameters, sufficient spatial and spectral resolution, and a lack of uncertainty estimates over the wide range of environmental conditions encountered across these coastal and inland water bodies.
The application of remote sensing techniques to the study of ophiolites
NASA Astrophysics Data System (ADS)
Khan, Shuhab D.; Mahmood, Khalid
2008-08-01
Satellite remote sensing methods are a powerful tool for detailed geologic analysis, especially in inaccessible regions of the earth's surface. Short-wave infrared (SWIR) bands are shown to provide spectral information bearing on the lithologic, structural, and geochemical character of rock bodies such as ophiolites, allowing for a more comprehensive assessment of the lithologies present, their stratigraphic relationships, and geochemical character. Most remote sensing data are widely available for little or no cost, along with user-friendly software for non-specialists. In this paper we review common remote sensing systems and methods that allow for the discrimination of solid rock (lithologic) components of ophiolite complexes and their structural relationships. Ophiolites are enigmatic rock bodies which associated with most, if not all, plate collision sutures. Ophiolites are ideal for remote sensing given their widely recognized diversity of lithologic types and structural relationships. Accordingly, as a basis for demonstrating the utility of remote sensing techniques, we briefly review typical ophiolites in the Tethyan tectonic belt. As a case study, we apply integrated remote sensing studies of a well-studied example, the Muslim Bagh ophiolite, located in Balochistan, western Pakistan. On this basis, we attempt to demonstrate how remote sensing data can validate and reconcile existing information obtained from field studies. The lithologic and geochemical diversity of Muslim Bagh are representative of Tethyan ophiolites. Despite it's remote location it has been extensively mapped and characterized by structural and geochemical studies, and is virtually free of vegetative cover. Moreover, integrating the remote sensing data with 'ground truth' information thus offers the potential of an improved template for interpreting remote sensing data sets of other ophiolites for which little or no field information is available.
Remote temperature distribution sensing using permanent magnets
Chen, Yi; Guba, Oksana; Brooks, Carlton F.; ...
2016-10-31
Remote temperature sensing is essential for applications in enclosed vessels where feedthroughs or optical access points are not possible. A unique sensing method for measuring the temperature of multiple closely-spaced points is proposed using permanent magnets and several three-axis magnetic field sensors. The magnetic field theory for multiple magnets is discussed and a solution technique is presented. Experimental calibration procedures, solution inversion considerations and methods for optimizing the magnet orientations are described in order to obtain low-noise temperature estimates. The experimental setup and the properties of permanent magnets are shown. Finally, experiments were conducted to determine the temperature of ninemore » magnets in different configurations over a temperature range of 5 to 60 degrees Celsius and for a sensor-to-magnet distance of up to 35 mm. Furthermore, to show the possible applications of this sensing system for measuring temperatures through metal walls, additional experiments were conducted inside an opaque 304 stainless steel cylinder.« less
1996-04-08
Development tasks and products of remote sensing ground stations in Europe are represented by the In-Sec Corporation and the Schlumberger Industries Corporation. The article presents the main products of these two corporations.
MAPPING BATHYMETRY AND BOTTOM TYPE IN A SHALLOW ESTUARY
Bathymetry and bottom type are important in characterizing estuaries and their ecology but hard to map, especially in shallow estuaries. Acoustic backscattering was used to remotely sense these properties in the shallow Slocums River Estuary of Massachusetts. Acoustic pulses were...
[Estimation of desert vegetation coverage based on multi-source remote sensing data].
Wan, Hong-Mei; Li, Xia; Dong, Dao-Rui
2012-12-01
Taking the lower reaches of Tarim River in Xinjiang of Northwest China as study areaAbstract: Taking the lower reaches of Tarim River in Xinjiang of Northwest China as study area and based on the ground investigation and the multi-source remote sensing data of different resolutions, the estimation models for desert vegetation coverage were built, with the precisions of different estimation methods and models compared. The results showed that with the increasing spatial resolution of remote sensing data, the precisions of the estimation models increased. The estimation precision of the models based on the high, middle-high, and middle-low resolution remote sensing data was 89.5%, 87.0%, and 84.56%, respectively, and the precisions of the remote sensing models were higher than that of vegetation index method. This study revealed the change patterns of the estimation precision of desert vegetation coverage based on different spatial resolution remote sensing data, and realized the quantitative conversion of the parameters and scales among the high, middle, and low spatial resolution remote sensing data of desert vegetation coverage, which would provide direct evidence for establishing and implementing comprehensive remote sensing monitoring scheme for the ecological restoration in the study area.
NASA Astrophysics Data System (ADS)
Liu, Jia; Liu, Longli; Xue, Yong; Dong, Jing; Hu, Yingcui; Hill, Richard; Guang, Jie; Li, Chi
2017-01-01
Workflow for remote sensing quantitative retrieval is the ;bridge; between Grid services and Grid-enabled application of remote sensing quantitative retrieval. Workflow averts low-level implementation details of the Grid and hence enables users to focus on higher levels of application. The workflow for remote sensing quantitative retrieval plays an important role in remote sensing Grid and Cloud computing services, which can support the modelling, construction and implementation of large-scale complicated applications of remote sensing science. The validation of workflow is important in order to support the large-scale sophisticated scientific computation processes with enhanced performance and to minimize potential waste of time and resources. To research the semantic correctness of user-defined workflows, in this paper, we propose a workflow validation method based on tacit knowledge research in the remote sensing domain. We first discuss the remote sensing model and metadata. Through detailed analysis, we then discuss the method of extracting the domain tacit knowledge and expressing the knowledge with ontology. Additionally, we construct the domain ontology with Protégé. Through our experimental study, we verify the validity of this method in two ways, namely data source consistency error validation and parameters matching error validation.
NASA Astrophysics Data System (ADS)
Filippi, Anthony Matthew
For complex systems, sufficient a priori knowledge is often lacking about the mathematical or empirical relationship between cause and effect or between inputs and outputs of a given system. Automated machine learning may offer a useful solution in such cases. Coastal marine optical environments represent such a case, as the optical remote sensing inverse problem remains largely unsolved. A self-organizing, cybernetic mathematical modeling approach known as the group method of data handling (GMDH), a type of statistical learning network (SLN), was used to generate explicit spectral inversion models for optically shallow coastal waters. Optically shallow water light fields represent a particularly difficult challenge in oceanographic remote sensing. Several algorithm-input data treatment combinations were utilized in multiple experiments to automatically generate inverse solutions for various inherent optical property (IOP), bottom optical property (BOP), constituent concentration, and bottom depth estimations. The objective was to identify the optimal remote-sensing reflectance Rrs(lambda) inversion algorithm. The GMDH also has the potential of inductive discovery of physical hydro-optical laws. Simulated data were used to develop generalized, quasi-universal relationships. The Hydrolight numerical forward model, based on radiative transfer theory, was used to compute simulated above-water remote-sensing reflectance Rrs(lambda) psuedodata, matching the spectral channels and resolution of the experimental Naval Research Laboratory Ocean PHILLS (Portable Hyperspectral Imager for Low-Light Spectroscopy) sensor. The input-output pairs were for GMDH and artificial neural network (ANN) model development, the latter of which was used as a baseline, or control, algorithm. Both types of models were applied to in situ and aircraft data. Also, in situ spectroradiometer-derived Rrs(lambda) were used as input to an optimization-based inversion procedure. Target variables included bottom depth z b, chlorophyll a concentration [chl- a], spectral bottom irradiance reflectance Rb(lambda), and spectral total absorption a(lambda) and spectral total backscattering bb(lambda) coefficients. When applying the cybernetic and neural models to in situ HyperTSRB-derived Rrs, the difference in the means of the absolute error of the inversion estimates for zb was significant (alpha = 0.05). GMDH yielded significantly better zb than the ANN. The ANN model posted a mean absolute error (MAE) of 0.62214 m, compared with 0.55161 m for GMDH.
An Approach of Registration between Remote Sensing Image and Electronic Chart Based on Coastal Line
NASA Astrophysics Data System (ADS)
Li, Ying; Yu, Shuiming; Li, Chuanlong
Remote sensing plays an important role marine oil spill emergency. In order to implement a timely and effective countermeasure, it is important to provide exact position of oil spills. Therefore it is necessary to match remote sensing image and electronic chart properly. Variance ordinarily exists between oil spill image and electronic chart, although geometric correction is applied to remote sensing image. It is difficult to find the steady control points on sea to make exact rectification of remote sensing image. An improved relaxation algorithm was developed for finding the control points along the coastline since oil spills occurs generally near the coast. A conversion function is created with the least square, and remote sensing image can be registered with the vector map based on this function. SAR image was used as the remote sensing data and shape format map as the electronic chart data. The results show that this approach can guarantee the precision of the registration, which is essential for oil spill monitoring.
The U.S. Geological Survey land remote sensing program
Saunders, T.; Feuquay, J.; Kelmelis, J.A.
2003-01-01
The U.S. Geological Survey has been a provider of remotely sensed information for decades. As the availability and use of satellite data has grown, USGS has placed increasing emphasis on expanding the knowledge about the science of remote sensing and on making remotely sensed data more accessible. USGS encourages widespread availability and distribution of these data and through its programs, encourages and enables a variety of research activities and the development of useful applications of the data. The science of remote sensing has great potential for assisting in the monitoring and assessment of the impacts of natural disasters, management and analysis of environmental, biological, energy, and mineral investigations, and supporting informed public policy decisions. By establishing the Land Remote Sensing Program (LRS) as a major unit of the USGS Geography Program, USGS has taken the next step to further increase support for the accessibility, understanding, and use of remotely sensed data. This article describes the LRS Program, its mission and objectives, and how the program has been structured to accomplish its goals.
NASA Technical Reports Server (NTRS)
Yueh, Simon H.
2004-01-01
Active and passive microwave remote sensing techniques have been investigated for the remote sensing of ocean surface wind and salinity. We revised an ocean surface spectrum using the CMOD-5 geophysical model function (GMF) for the European Remote Sensing (ERS) C-band scatterometer and the Ku-band GMF for the NASA SeaWinds scatterometer. The predictions of microwave brightness temperatures from this model agree well with satellite, aircraft and tower-based microwave radiometer data. This suggests that the impact of surface roughness on microwave brightness temperatures and radar scattering coefficients of sea surfaces can be consistently characterized by a roughness spectrum, providing physical basis for using combined active and passive remote sensing techniques for ocean surface wind and salinity remote sensing.
Online catalog access and distribution of remotely sensed information
NASA Astrophysics Data System (ADS)
Lutton, Stephen M.
1997-09-01
Remote sensing is providing voluminous data and value added information products. Electronic sensors, communication electronics, computer software, hardware, and network communications technology have matured to the point where a distributed infrastructure for remotely sensed information is a reality. The amount of remotely sensed data and information is making distributed infrastructure almost a necessity. This infrastructure provides data collection, archiving, cataloging, browsing, processing, and viewing for applications from scientific research to economic, legal, and national security decision making. The remote sensing field is entering a new exciting stage of commercial growth and expansion into the mainstream of government and business decision making. This paper overviews this new distributed infrastructure and then focuses on describing a software system for on-line catalog access and distribution of remotely sensed information.
Remote Sensing and the Environment.
ERIC Educational Resources Information Center
Osmers, Karl
1991-01-01
Suggests using remote sensing technology to help students make sense of the natural world. Explains that satellite information allows observation of environmental changes over time. Identifies possible student projects based on remotely sensed data. Recommends obtaining the assistance of experts and seeking funding through effective project…
The Prospect for Remote Sensing of Cirrus Clouds with a Submillimeter-Wave Spectrometer
NASA Technical Reports Server (NTRS)
Evans, K. Franklin; Evans, Aaron H.; Nolt, Ira G.; Marshall, B. Thomas
1999-01-01
Given the substantial radiative effects of cirrus clouds and the need to validate cirrus cloud mass in climate models, it is important to measure the global distribution of cirrus properties with satellite remote sensing. Existing cirrus remote sensing techniques, such as solar reflectance methods, measure cirrus ice water path (IWP) rather indirectly and with limited accuracy. Submillimeter/wave radiometry is an independent method of cirrus remote sensing based on ice particles scattering the upwelling radiance emitted by the lower atmosphere. A new aircraft instrument, the Far Infrared Sensor for Cirrus (FIRSC), is described. The FIRSC employs a Fourier Transform Spectrometer (FTS). which measures the upwelling radiance across the whole submillimeter region (0.1 1.0-mm wavelength). This wide spectral coverage gives high sensitivity to most cirrus particle sizes and allows accurate determination of the characteristic particle size. Radiative transfer modeling is performed to analyze the capabilities of the submillimeter FTS technique. A linear inversion analysis is done to show that cirrus IWP, particle size, and upper-tropospheric temperature and water vapor may be accurately measured, A nonlinear statistical algorithm is developed using a database of 20000 spectra simulated by randomly varying most relevant cirrus and atmospheric parameters. An empirical orthogonal function analysis reduces the 500-point spectrum (20 - 70/cm) to 15 "pseudo-channels" that are then input to a neural network to retrieve cirrus IWP and median particle diameter. A Monte Carlo accuracy study is performed with simulated spectra having realistic noise. The retrieval errors are low for IWP (rms less than a factor of 1.5) and for particle sizes (rins less than 30%) for IWP greater than 5 g/sq m and a wide range of median particle sizes. This detailed modeling indicates that there is good potential to accurately measure cirrus properties with a submillimeter FTS.
Remote sensing of smoke, clouds, and radiation using AVIRIS during SCAR experiments
NASA Technical Reports Server (NTRS)
Gao, Bo-Cai; Remer, Lorraine; Kaufman, Yorman J.
1995-01-01
During the past two years, researchers from several institutes joined together to take part in two SCAR experiments. The SCAR-A (Sulfates, Clouds And Radiation - Atlantic) took place in the mid-Atlantic region of the United States in July, 1993. remote sensing data were acquired with the Airborne Visible Infrared Imaging Spectrometer (AVIRIS), the MODIS Airborne Simulator (MAS), and a RC-10 mapping camera from an ER-2 aircraft at 20 km. In situ measurements of aerosol and cloud microphysical properties were made with a variety of instruments equipped on the University of Washington's C-131A research aircraft. Ground based measurements of aerosol optical depths and particle size distributions were made using a network of sunphotometers. The main purpose of SCAR-A experiment was to study the optical, physical and chemical properties of sulfate aerosols and their interaction with clouds and radiation. Sulfate particles are believed to affect the energy balance of the earth by directly reflecting solar radiation back to space and by increasing the cloud albedo. The SCAR-C (Smoke, Clouds And Radiation - California) took place on the west coast areas during September - October of 1994. Sets of aircraft and ground-based instruments, similar to those used during SCAR-A, were used during SCAR-C. Remote sensing of fires and smoke from AVIRIS and MAS imagers on the ER-2 aircraft was combined with a complete in situ characterization of the aerosol and trace gases from the C-131A aircraft of the University of Washington and the Cesna aircraft from the U.S. Forest Service. The comprehensive data base acquired during SCAR-A and SCAR-C will contribute to a better understanding of the role of clouds and aerosols in global change studies. The data will also be used to develop satellite remote sensing algorithms from MODIS on the Earth Observing System.
NASA Astrophysics Data System (ADS)
Kalashnikova, O. V.; Garay, M. J.; Xu, F.; Seidel, F.; Diner, D. J.; Seinfeld, J.; Bates, K. H.; Kong, W.; Kenseth, C.; Cappa, C. D.
2017-12-01
We introduce and evaluate an approach for obtaining closure between in situ and polarimetric remote sensing observations of smoke properties obtained during the collocated CIRPAS Twin Otter and ER-2 aircraft measurements of the Lebec fire event on July 8, 2016. We investigate the utility of multi-angle, spectropolarimetric remote sensing imagery to evaluate the relative contribution of organics, non-organic and black carbon particles to smoke particulate composition. The remote sensing data were collected during the Imaging Polarimetric and Characterization of Tropospheric Particular Matter (ImPACT-PM) field campaign by the Airborne Multiangle SpectroPolarimetric Imager (AirMSPI), which flew on NASA's high-altitude ER-2 aircraft. The ImPACT-PM field campaign was a joint JPL/Caltech effort to combine measurements from the Terra Multi-angle Imaging SpectroRadiometer (MISR), AirMSPI, in situ airborne measurements, and a chemical transport model to validate remote sensing retrievals of different types of airborne particulate matter with a particular emphasis on carbonaceous aerosols. The in-situ aerosol data were collected with a suite of Caltech instruments on board the CIRPAS Twin Otter aircraft and included the Aerosol Mass Spectrometer (AMS), the Differential Mobility Analyzer (DMA), and the Single Particle Soot Photometer (SP-2). The CIRPAS Twin Otter aircraft was also equipped with the Particle Soot Absorption Photometer (PSAP), nephelometer, a particle counter, and meteorological sensors. We found that the multi-angle polarimetric observations are capable of fire particulate emission monitoring by particle type as inferred from the in-situ airborne measurements. Modeling of retrieval sensitivities show that the characterization of black carbon is the most challenging. The work aims at evaluating multi-angle, spectropolarimetric capabilities for particulate matter characterization in support of the Multi-Angle Imager for Aerosols (MAIA) satellite investigation, which is currently in development under NASA's third Earth Venture Instrument Program.
Effects of Regolith Properties on UV/VIS Spectra and Implications for Lunar Remote Sensing
NASA Astrophysics Data System (ADS)
Coman, Ecaterina Oana
Lunar regolith chemistry, mineralogy, various maturation factors, and grain size dominate the reflectance of the lunar surface at ultraviolet (UV) to visible (VIS) wavelengths. These regolith properties leave unique fingerprints on reflectance spectra in the form of varied spectral shapes, reflectance intensity values, and absorption bands. With the addition of returned lunar soils from the Apollo and Luna missions as ground truth, these spectral fingerprints can be used to derive maps of global lunar chemistry or mineralogy to analyze the range of basalt types on the Moon, their spatial distribution, and source regions for clues to lunar formation history and evolution. The Lunar Reconnaissance Orbiter Camera (LROC) Wide Angle Camera (WAC) is the first lunar imager to detect bands at UV wavelengths (321 and 360 nm) in addition to visible bands (415, 566, 604, 643, and 689 nm). This dissertation uses a combination of laboratory and remote sensing studies to examine the relation between TiO2 concentration and WAC UV/VIS spectral ratios and to test the effects of variations in lunar chemistry, mineralogy, and soil maturity on ultraviolet and visible wavelength reflectance. Chapter 1 presents an introduction to the dissertation that includes some background in lunar mineralogy and remote sensing. Chapter 2 covers coordinated analyses of returned lunar soils using UV-VIS spectroscopy, X-ray diffraction, and micro X-ray fluorescence. Chapter 3 contains comparisons of local and global remote sensing observations of the Moon using LROC WAC and Clementine UVVIS TiO2 detection algorithms and Lunar Prospector (LP) Gamma Ray Spectrometer (GRS)-derived FeO and TiO2 concentrations. While the data shows effects from maturity and FeO on the UV/VIS detection algorithm, a UV/VIS relationship remains a simple yet accurate method for TiO2 detection on the Moon.
Kingfisher: a system for remote sensing image database management
NASA Astrophysics Data System (ADS)
Bruzzo, Michele; Giordano, Ferdinando; Dellepiane, Silvana G.
2003-04-01
At present retrieval methods in remote sensing image database are mainly based on spatial-temporal information. The increasing amount of images to be collected by the ground station of earth observing systems emphasizes the need for database management with intelligent data retrieval capabilities. The purpose of the proposed method is to realize a new content based retrieval system for remote sensing images database with an innovative search tool based on image similarity. This methodology is quite innovative for this application, at present many systems exist for photographic images, as for example QBIC and IKONA, but they are not able to extract and describe properly remote image content. The target database is set by an archive of images originated from an X-SAR sensor (spaceborne mission, 1994). The best content descriptors, mainly texture parameters, guarantees high retrieval performances and can be extracted without losses independently of image resolution. The latter property allows DBMS (Database Management System) to process low amount of information, as in the case of quick-look images, improving time performance and memory access without reducing retrieval accuracy. The matching technique has been designed to enable image management (database population and retrieval) independently of dimensions (width and height). Local and global content descriptors are compared, during retrieval phase, with the query image and results seem to be very encouraging.
A hyper-temporal remote sensing protocol for high-resolution mapping of ecological sites
Karl, Jason W.
2017-01-01
Ecological site classification has emerged as a highly effective land management framework, but its utility at a regional scale has been limited due to the spatial ambiguity of ecological site locations in the U.S. or the absence of ecological site maps in other regions of the world. In response to these shortcomings, this study evaluated the use of hyper-temporal remote sensing (i.e., hundreds of images) for high spatial resolution mapping of ecological sites. We posit that hyper-temporal remote sensing can provide novel insights into the spatial variability of ecological sites by quantifying the temporal response of land surface spectral properties. This temporal response provides a spectral ‘fingerprint’ of the soil-vegetation-climate relationship which is central to the concept of ecological sites. Consequently, the main objective of this study was to predict the spatial distribution of ecological sites in a semi-arid rangeland using a 28-year time series of normalized difference vegetation index from Landsat TM 5 data and modeled using support vector machine classification. Results from this study show that support vector machine classification using hyper-temporal remote sensing imagery was effective in modeling ecological site classes, with a 62% correct classification. These results were compared to Gridded Soil Survey Geographic database and expert delineated maps of ecological sites which had a 51 and 89% correct classification, respectively. An analysis of the effects of ecological state on ecological site misclassifications revealed that sites in degraded states (e.g., shrub-dominated/shrubland and bare/annuals) had a higher rate of misclassification due to their close spectral similarity with other ecological sites. This study identified three important factors that need to be addressed to improve future model predictions: 1) sampling designs need to fully represent the range of both within class (i.e., states) and between class (i.e., ecological sites) spectral variability through time, 2) field sampling protocols that accurately characterize key soil properties (e.g., texture, depth) need to be adopted, and 3) additional environmental covariates (e.g. terrain attributes) need to be evaluated that may help further differentiate sites with similar spectral signals. Finally, the proposed hyper-temporal remote sensing framework may provide a standardized approach to evaluate and test our ecological site concepts through examining differences in vegetation dynamics in response to climatic variability and other drivers of land-use change. Results from this study demonstrate the efficacy of the hyper-temporal remote sensing approach for high resolution mapping of ecological sites, and highlights its utility in terms of reduced cost and time investment relative to traditional manual mapping approaches. PMID:28414731
A hyper-temporal remote sensing protocol for high-resolution mapping of ecological sites.
Maynard, Jonathan J; Karl, Jason W
2017-01-01
Ecological site classification has emerged as a highly effective land management framework, but its utility at a regional scale has been limited due to the spatial ambiguity of ecological site locations in the U.S. or the absence of ecological site maps in other regions of the world. In response to these shortcomings, this study evaluated the use of hyper-temporal remote sensing (i.e., hundreds of images) for high spatial resolution mapping of ecological sites. We posit that hyper-temporal remote sensing can provide novel insights into the spatial variability of ecological sites by quantifying the temporal response of land surface spectral properties. This temporal response provides a spectral 'fingerprint' of the soil-vegetation-climate relationship which is central to the concept of ecological sites. Consequently, the main objective of this study was to predict the spatial distribution of ecological sites in a semi-arid rangeland using a 28-year time series of normalized difference vegetation index from Landsat TM 5 data and modeled using support vector machine classification. Results from this study show that support vector machine classification using hyper-temporal remote sensing imagery was effective in modeling ecological site classes, with a 62% correct classification. These results were compared to Gridded Soil Survey Geographic database and expert delineated maps of ecological sites which had a 51 and 89% correct classification, respectively. An analysis of the effects of ecological state on ecological site misclassifications revealed that sites in degraded states (e.g., shrub-dominated/shrubland and bare/annuals) had a higher rate of misclassification due to their close spectral similarity with other ecological sites. This study identified three important factors that need to be addressed to improve future model predictions: 1) sampling designs need to fully represent the range of both within class (i.e., states) and between class (i.e., ecological sites) spectral variability through time, 2) field sampling protocols that accurately characterize key soil properties (e.g., texture, depth) need to be adopted, and 3) additional environmental covariates (e.g. terrain attributes) need to be evaluated that may help further differentiate sites with similar spectral signals. Finally, the proposed hyper-temporal remote sensing framework may provide a standardized approach to evaluate and test our ecological site concepts through examining differences in vegetation dynamics in response to climatic variability and other drivers of land-use change. Results from this study demonstrate the efficacy of the hyper-temporal remote sensing approach for high resolution mapping of ecological sites, and highlights its utility in terms of reduced cost and time investment relative to traditional manual mapping approaches.
Use of remote sensing in agriculture
NASA Technical Reports Server (NTRS)
Pettry, D. E.; Powell, N. L.; Newhouse, M. E.
1974-01-01
Remote sensing studies in Virginia and Chesapeake Bay areas to investigate soil and plant conditions via remote sensing technology are reported ant the results given. Remote sensing techniques and interactions are also discussed. Specific studies on the effects of soil moisture and organic matter on energy reflection of extensively occurring Sassafras soils are discussed. Greenhouse and field studies investigating the effects of chlorophyll content of Irish potatoes on infrared reflection are presented. Selected ground truth and environmental monitoring data are shown in summary form. Practical demonstrations of remote sensing technology in agriculture are depicted and future use areas are delineated.
Applications of remote sensing to watershed management
NASA Technical Reports Server (NTRS)
Rango, A.
1975-01-01
Aircraft and satellite remote sensing systems which are capable of contributing to watershed management are described and include: the multispectral scanner subsystem on LANDSAT and the basic multispectral camera array flown on high altitude aircraft such as the U-2. Various aspects of watershed management investigated by remote sensing systems are discussed. Major areas included are: snow mapping, surface water inventories, flood management, hydrologic land use monitoring, and watershed modeling. It is indicated that technological advances in remote sensing of hydrological data must be coupled with an expansion of awareness and training in remote sensing techniques of the watershed management community.
NASA Glenn OHIOVIEW FY01/02 Project
NASA Technical Reports Server (NTRS)
2003-01-01
The results of the research performed by the university principal investigators are herein compiled. OhioView's general goals were: 1) To increase remote sensing education for Ohio s undergraduate and graduate students, and also enhancing curriculum in the mathematics and science for K-12 students using the capabilities of remote sensing; 2) To conduct advanced research to develop novel remote sensing applications, i.e. to turn data into information for more applications; 3) To maximize the use of remote sensing technology by the general public through outreach and the development of tools for more user-friendly access to remote sensing data.
The availability of conventional forms of remotely sensed data
Sturdevant, James A.; Holm, Thomas M.
1982-01-01
For decades Federal and State agencies have been collecting aerial photographs of various film types and scales over parts of the United States. More recently, worldwide Earth resources data acquired by orbiting satellites have inundated the remote sensing community. Determining the types of remotely sensed data that are publicly available can be confusing to the land-resource manager, planner, and scientist. This paper is a summary of the more commonly used types of remotely sensed data (aircraft and satellite) and their public availability. Special emphasis is placed on the National High-Altitude Photography (NHAP) program and future remote-sensing satellites.
NASA Astrophysics Data System (ADS)
Podest, E.; De La Torre Juarez, M.; McDonald, K. C.; Jensen, K.; Ceccato, P.
2014-12-01
Predicting the risk of vector-borne disease outbreaks is a required step towards their control and eradication. Satellite observations can provide needed data to support agency decisions with respect to deployment of preventative measures and control resources. The coverage and persistence of open water is one of the primary indicators of conditions suitable for mosquito breeding habitats. This is currently a poorly measured variable due to its spatial and temporal variability across landscapes, especially in remote areas. Here we develop a methodology for monitoring these conditions through optical remote sensing images from Landsat. We pansharpen the images and apply a decision tree classification approach using Random Forests to generate 15 meter resolution maps of open water. In addition, since some mosquitos breed in clear water while others in turbid water, we classify water bodies according to their water color properties and we validate the results using field knowledge. We focus in East Africa where we assses the usefulness of these products to improve prediction of malaria outbreaks. Portions of this work were carried out at the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration.
Application of multispectral remote sensing to soil survey research in Indiana
NASA Technical Reports Server (NTRS)
Zachary, A. L.; Cipra, J. E.; Diderickson, R. I.; Kristof, S. J.; Baumgardner, M. F.
1972-01-01
Computer-implemented mappings based on spectral properties of bare soil surfaces were compared with mapping units of interest to soil surveyors. Some soil types could be differentiated by their spectral properties. In other cases, soils with similar surface colors and textures could not be distinguished spectrally. The spectral maps seemed useful for delineating boundaries between soils in many cases.
Thermophysical properties of the MER and Beagle II landing site regions on Mars
NASA Astrophysics Data System (ADS)
Jakosky, Bruce M.; Hynek, Brian M.; Pelkey, Shannon M.; Mellon, Michael T.; Martínez-Alonso, Sara; Putzig, Nathaniel E.; Murphy, Nate; Christensen, Philip R.
2006-08-01
We analyzed remote-sensing observations of the Isidis Basin, Gusev Crater, and Meridiani Planum landing sites for Beagle II, MER-A Spirit, and MER-B Opportunity spacecraft, respectively. We emphasized the thermophysical properties using daytime and nighttime radiance measurements from the Mars Global Surveyor (MGS) Thermal Emission Spectrometer and Mars Odyssey Thermal Emission Imaging System (THEMIS) and thermal inertias derived from nighttime data sets. THEMIS visible images, MGS Mars Orbiter Camera (MOC) narrow-angle images, and MGS Mars Orbiter Laser Altimeter (MOLA) data are incorporated as well. Additionally, the remote-sensing data were compared with ground-truth at the MER sites. The Isidis Basin surface layer has been shaped by aeolian processes and erosion by slope winds coming off of the southern highlands and funneling through notches between massifs. In the Gusev region, surface materials of contrasting thermophysical properties have been interpreted as rocks or bedrock, duricrust, and dust deposits; these are consistent with a complex geological history dominated by volcanic and aeolian processes. At Meridiani Planum the many layers having different thermophysical and erosional properties suggest periodic deposition of differing sedimentological facies possibly related to clast size, grain orientation and packing, or mineralogy.
NASA's Applied Remote Sensing Training (ARSET) Webinar Series
Atmospheric Science Data Center
2016-07-12
NASA's Applied Remote Sensing Training (ARSET) Webinar Series Tuesday, July 12, 2016 ... you of a free training opportunity: Introduction to Remote Sensing for Air Quality Applications Webinar Series Beginning in ...
Tropospheric Passive Remote Sensing
NASA Technical Reports Server (NTRS)
Keafer, L. S., Jr. (Editor)
1982-01-01
The long term role of airborne/spaceborne passive remote sensing systems for tropospheric air quality research and the identification of technology advances required to improve the performance of passive remote sensing systems were discussed.
Remote Sensing as a Demonstration of Applied Physics.
ERIC Educational Resources Information Center
Colwell, Robert N.
1980-01-01
Provides information about the field of remote sensing, including discussions of geo-synchronous and sun-synchronous remote-sensing platforms, the actual physical processes and equipment involved in sensing, the analysis of images by humans and machines, and inexpensive, small scale methods, including aerial photography. (CS)
NASA Technical Reports Server (NTRS)
Maxwell, E. L.
1980-01-01
The need for degree programs in remote sensing is considered. Any education program which claims to train remote sensing specialists must include expertise in the physical principles upon which remote sensing is based. These principles dictate the limits of engineering and design, computer analysis, photogrammetry, and photointerpretation. Faculty members must be hired to provide emphasis in those five areas.
Remote sensing of vegetation fires and its contribution to a fire management information system
Stephane P. Flasse; Simon N. Trigg; Pietro N. Ceccato; Anita H. Perryman; Andrew T. Hudak; Mark W. Thompson; Bruce H. Brockett; Moussa Drame; Tim Ntabeni; Philip E. Frost; Tobias Landmann; Johan L. le Roux
2004-01-01
In the last decade, research has proven that remote sensing can provide very useful support to fire managers. This chapter provides an overview of the types of information remote sensing can provide to the fire community. First, it considers fire management information needs in the context of a fire management information system. An introduction to remote sensing then...
2016-07-15
AFRL-AFOSR-JP-TR-2016-0068 Multi-scale Computational Electromagnetics for Phenomenology and Saliency Characterization in Remote Sensing Hean-Teik...SUBTITLE Multi-scale Computational Electromagnetics for Phenomenology and Saliency Characterization in Remote Sensing 5a. CONTRACT NUMBER 5b. GRANT NUMBER... electromagnetics to the application in microwave remote sensing as well as extension of modelling capability with computational flexibility to study
2016-07-15
AFRL-AFOSR-JP-TR-2016-0068 Multi-scale Computational Electromagnetics for Phenomenology and Saliency Characterization in Remote Sensing Hean-Teik...SUBTITLE Multi-scale Computational Electromagnetics for Phenomenology and Saliency Characterization in Remote Sensing 5a. CONTRACT NUMBER 5b. GRANT NUMBER...electromagnetics to the application in microwave remote sensing as well as extension of modelling capability with computational flexibility to study
Basic Remote Sensing Investigations for Beach Reconnaissance.
Progress is reported on three tasks designed to develop remote sensing beach reconnaissance techniques applicable to the benthic, beach intertidal...and beach upland zones. Task 1 is designed to develop remote sensing indicators of important beach composition and physical parameters which will...ultimately prove useful in models to predict beach conditions. Task 2 is designed to develop remote sensing techniques for survey of bottom features in
NASA Astrophysics Data System (ADS)
Burba, G. G.; Avenson, T.; Burkart, A.; Gamon, J. A.; Guan, K.; Julitta, T.; Pastorello, G.; Sakowska, K.
2017-12-01
Many hundreds of flux towers are presently operational as standalone projects and as parts of regional networks. However, the vast majority of these towers do not allow straightforward coupling with remote sensing (drone, aircraft, satellite, etc.) data, and even fewer have optical sensors for validation of remote sensing products, and upscaling from field to regional levels. In 2016-2017, new tools to collect, process, and share time-synchronized flux data from multiple towers were developed and deployed globally. Originally designed to automate site and data management, and to streamline flux data analysis, these tools allow relatively easy matching of tower data with remote sensing data: GPS-driven PTP time protocol synchronizes instrumentation within the station, different stations with each other, and all of these to remote sensing data to precisely align remote sensing and flux data in time Footprint size and coordinates computed and stored with flux data help correctly align tower flux footprints and drone, aircraft or satellite motion to precisely align optical and flux data in space Full snapshot of the remote sensing pixel can then be constructed, including leaf-level, ground optical sensor, and flux tower measurements from the same footprint area, closely coupled with the remote sensing measurements to help interpret remote sensing data, validate models, and improve upscaling Additionally, current flux towers can be augmented with advanced ground optical sensors and can use standard routines to deliver continuous products (e.g. SIF, PRI, NDVI, etc.) based on automated field spectrometers (e.g., FloX and RoX, etc.) and other optical systems. Several dozens of new towers already operational globally can be readily used for the proposed workflow. Over 500 active traditional flux towers can be updated to synchronize their data with remote sensing measurements. This presentation will show how the new tools are used by major networks, and describe how this approach can be utilized for matching remote sensing and tower data to aid in ground truthing, improve scientific interactions, and promote joint grant writing and other forms of collaboration between the flux and remote sensing communities.
Monitoring Crop Phenology and Growth Stages from Space: Opportunities and Challenges
NASA Astrophysics Data System (ADS)
Gao, F.; Anderson, M. C.; Mladenova, I. E.; Kustas, W. P.; Alfieri, J. G.
2014-12-01
Crop growth stages in concert with weather and soil moisture conditions can have a significant impact on crop yields. In the U.S., crop growth stages and conditions are reported by farmers at the county level. These reports are somewhat subjective and fluctuate between different reporters, locations and times. Remote sensing data provide an alternative approach to monitoring crop growth over large areas in a more consistent and quantitative way. In the recent years, remote sensing data have been used to detect vegetation phenology at 1-km spatial resolution globally. However, agricultural applications at field scale require finer spatial resolution remote sensing data. Landsat (30-m) data have been successfully used for agricultural applications. There are many medium resolution sensors available today or in near future. These include Landsat, SPOT, RapidEye, ASTER and future Sentinel-2 etc. Approaches have been developed in the past several years to integrate remote sensing data from different sensors which may have different sensor characteristics, and spatial and temporal resolutions. This allows us opportunities today to map crop growth stages and conditions using dense time-series remote sensing at field scales. However, remotely sensed phenology (or phenological metrics) is normally derived based on the mathematical functions of the time-series data. The phenological metrics are determined by either identifying inflection (curvature) points or some pre-defined thresholds in the remote sensing phenology algorithms. Furthermore, physiological crop growth stages may not be directly correlated to the remotely sensed phenology. The relationship between remotely sensed phenology and crop growth stages is likely to vary for specific crop types and varieties, growing stages, conditions and even locations. In this presentation, we will examine the relationship between remotely sensed phenology and crop growth stages using in-situ measurements from Fluxnet sites and crop progress reports from USDA NASS. We will present remote sensing approaches and focus on: 1) integrating multiple sources of remote sensing data; and 2) extracting crop phenology at field scales. An example in the U.S. Corn Belt area will be presented and analyzed. Future directions for mapping crop growth stages will be discussed.
Remote Sensing: A Film Review.
ERIC Educational Resources Information Center
Carter, David J.
1986-01-01
Reviews the content of 19 films on remote sensing published between 1973 and 1980. Concludes that they are overly simplistic, notably outdated, and generally too optimistic about the potential of remote sensing from space for resource exploration and environmental problem-solving. Provides names and addresses of more current remote sensing…
NASA Astrophysics Data System (ADS)
Raciti, S. M.; Hutyra, L.; Briber, B. M.; Dunn, A. L.; Friedl, M. A.; Woodcock, C.; Zhu, Z.; Olofsson, P.
2013-12-01
If current trends continue, the world's urban population may double and urban land area may quadruple over the next 50 years. Despite the rapid expansion of urban areas, the trajectories of carbon losses and gains following development remain poorly quantified. We are using a combination of field measurements, modeling, and remote sensing to advance our ability to measure and monitor trajectories of ecosystem carbon over space and time. To characterize how carbon stocks change across urban-to-rural gradients, we previously established field plots to survey live and dead tree biomass, tree canopy, soil and foliar carbon and nitrogen concentrations, and a range of landscape characteristics (Raciti et al. 2012). In 2013, we extended our field sampling to focus specifically on places that experienced land use and land cover change over the past 35 years. This chronosequence approach was informed by Landsat time series (1982-present) and property records (before 1982). The Landsat time series approach differs from traditional remote-sensing-based land use change detection methods because it leverages the entire Landsat archive of imagery using a Fourier fitting approach (Zhu et al. 2012). The result is a temporally and spatially continuous map of land use and land cover change across the study region. We used these field and remote sensing data to inform a carbon bookkeeping model that estimates changes in past and potential future carbon stocks over time. Here we present preliminary results of this work for eastern Massachusetts.
Remote sensing of aerosols in the Arctic for an evaluation of global climate model simulations
Glantz, Paul; Bourassa, Adam; Herber, Andreas; Iversen, Trond; Karlsson, Johannes; Kirkevåg, Alf; Maturilli, Marion; Seland, Øyvind; Stebel, Kerstin; Struthers, Hamish; Tesche, Matthias; Thomason, Larry
2014-01-01
In this study Moderate Resolution Imaging Spectroradiometer (MODIS) Aqua retrievals of aerosol optical thickness (AOT) at 555 nm are compared to Sun photometer measurements from Svalbard for a period of 9 years. For the 642 daily coincident measurements that were obtained, MODIS AOT generally varies within the predicted uncertainty of the retrieval over ocean (ΔAOT = ±0.03 ± 0.05 · AOT). The results from the remote sensing have been used to examine the accuracy in estimates of aerosol optical properties in the Arctic, generated by global climate models and from in situ measurements at the Zeppelin station, Svalbard. AOT simulated with the Norwegian Earth System Model/Community Atmosphere Model version 4 Oslo global climate model does not reproduce the observed seasonal variability of the Arctic aerosol. The model overestimates clear-sky AOT by nearly a factor of 2 for the background summer season, while tending to underestimate the values in the spring season. Furthermore, large differences in all-sky AOT of up to 1 order of magnitude are found for the Coupled Model Intercomparison Project phase 5 model ensemble for the spring and summer seasons. Large differences between satellite/ground-based remote sensing of AOT and AOT estimated from dry and humidified scattering coefficients are found for the subarctic marine boundary layer in summer. Key Points Remote sensing of AOT is very useful in validation of climate models PMID:25821664
Educational activities of remote sensing archaeology (Conference Presentation)
NASA Astrophysics Data System (ADS)
Hadjimitsis, Diofantos G.; Agapiou, Athos; Lysandrou, Vasilki; Themistocleous, Kyriacos; Cuca, Branka; Nisantzi, Argyro; Lasaponara, Rosa; Masini, Nicola; Krauss, Thomas; Cerra, Daniele; Gessner, Ursula; Schreier, Gunter
2016-10-01
Remote sensing science is increasingly being used to support archaeological and cultural heritage research in various ways. Satellite sensors either passive or active are currently used in a systematic basis to detect buried archaeological remains and to systematic monitor tangible heritage. In addition, airborne and low altitude systems are being used for documentation purposes. Ground surveys using remote sensing tools such as spectroradiometers and ground penetrating radars can detect variations of vegetation and soil respectively, which are linked to the presence of underground archaeological features. Education activities and training of remote sensing archaeology to young people is characterized of highly importance. Specific remote sensing tools relevant for archaeological research can be developed including web tools, small libraries, interactive learning games etc. These tools can be then combined and aligned with archaeology and cultural heritage. This can be achieved by presenting historical and pre-historical records, excavated sites or even artifacts under a "remote sensing" approach. Using such non-form educational approach, the students can be involved, ask, read, and seek to learn more about remote sensing and of course to learn about history. The paper aims to present a modern didactical concept and some examples of practical implementation of remote sensing archaeology in secondary schools in Cyprus. The idea was built upon an ongoing project (ATHENA) focused on the sue of remote sensing for archaeological research in Cyprus. Through H2020 ATHENA project, the Remote Sensing Science and Geo-Environment Research Laboratory at the Cyprus University of Technology (CUT), with the support of the National Research Council of Italy (CNR) and the German Aerospace Centre (DLR) aims to enhance its performance in all these new technologies.
Predictor variable resolution governs modeled soil types
USDA-ARS?s Scientific Manuscript database
Soil mapping identifies different soil types by compressing a unique suite of spatial patterns and processes across multiple spatial scales. It can be quite difficult to quantify spatial patterns of soil properties with remotely sensed predictor variables. More specifically, matching the right scale...
ERIC Educational Resources Information Center
Brosius, Craig A.; And Others
This document is designed to help senior high school students study remote sensing technology and techniques in relation to the environmental sciences. It discusses the acquisition, analysis, and use of ecological remote data. Material is divided into three sections and an appendix. Section One is an overview of the basics of remote sensing.…
Commerical Remote Sensing Data Contract
,
2005-01-01
The U. S. Geological Survey's (USGS) Commercial Remote Sensing Data Contracts (CRSDCs) provide government agencies with access to a broad range of commercially available remotely sensed airborne and satellite data. These contracts were established to support The National Map partners, other Federal Civilian agency programs, and Department of Defense programs that require data for the United States and its territories. Experience shows that centralized procurement of remotely sensed data leads to considerable cost savings to the Federal government through volume discounts, reduction of redundant contract administrative costs, and avoidance of duplicate purchases. These contracts directly support the President's Commercial Remote Sensing Space Policy, signed in 2003, by providing a centralized mechanism for civil agencies to acquire commercial remote sensing products to support their mission needs in an efficient and coordinated way. CRSDC administration is provided by the USGS Mid-Continent Mapping Center in Rolla, Missouri.
Object-oriented recognition of high-resolution remote sensing image
NASA Astrophysics Data System (ADS)
Wang, Yongyan; Li, Haitao; Chen, Hong; Xu, Yuannan
2016-01-01
With the development of remote sensing imaging technology and the improvement of multi-source image's resolution in satellite visible light, multi-spectral and hyper spectral , the high resolution remote sensing image has been widely used in various fields, for example military field, surveying and mapping, geophysical prospecting, environment and so forth. In remote sensing image, the segmentation of ground targets, feature extraction and the technology of automatic recognition are the hotspot and difficulty in the research of modern information technology. This paper also presents an object-oriented remote sensing image scene classification method. The method is consist of vehicles typical objects classification generation, nonparametric density estimation theory, mean shift segmentation theory, multi-scale corner detection algorithm, local shape matching algorithm based on template. Remote sensing vehicles image classification software system is designed and implemented to meet the requirements .
NASA Technical Reports Server (NTRS)
Ghovanlou, A. H.; Gupta, J. N.; Henderson, R. G.
1977-01-01
The development of quantitative analytical procedures for relating scattered signals, measured by a remote sensor, was considered. The applications of a Monte Carlo simulation model for radiative transfer in turbid water are discussed. The model is designed to calculate the characteristics of the backscattered signal from an illuminated body of water as a function of the turbidity level, and the spectral properties of the suspended particulates. The optical properties of the environmental waters, necessary for model applications, were derived from available experimental data and/or calculated from Mie formalism. Results of applications of the model are presented.
SYMPOSIUM ON REMOTE SENSING IN THE POLAR REGIONS
The Arctic Institute of North America long has been interested in encouraging full and specific attention to applications of remote sensing to polar...research problems. The major purpose of the symposium was to acquaint scientists and technicians concerned with remote sensing with some of the...special problems of the polar areas and, in turn, to acquaint polar scientists with the potential of the use of remote sensing . The Symposium therefore was
REMOTE SENSING IN OCEANOGRAPHY.
remote sensing from satellites. Sensing of oceanographic variables from aircraft began with the photographing of waves and ice. Since then remote measurement of sea surface temperatures and wave heights have become routine. Sensors tested for oceanographic applications include multi-band color cameras, radar scatterometers, infrared spectrometers and scanners, passive microwave radiometers, and radar imagers. Remote sensing has found its greatest application in providing rapid coverage of large oceanographic areas for synoptic and analysis and
Methods of Determining Playa Surface Conditions Using Remote Sensing
1987-10-08
NO. 11. TITLE (include Security Classification) METHODS OF DETERMINING PLAYA SURFACE CONDITIONS USING REMOTE SENSING 12. PERSONAL AUTHOR(S) J. PONDER...PLAYA SURFACE CONDITIONS USING REMOTE SENSING J. Ponder Henley U. S. Army Engineer Topographic Laboratories Fort Belvoir, Virginia 22060-5546 "ABSTRACT...geochemistry, hydrology and remote sensing but all of these are important to the understanding of these unique geomorphic features. There is a large body
Commercial use of remote sensing in agriculture: a case study
NASA Astrophysics Data System (ADS)
Gnauck, Gary E.
1999-12-01
Over 25 years of research have clearly shown that an analysis of remote sensing imagery can provide information on agricultural crops. Most of this research has been funded by and directed toward the needs of government agencies. Commercial use of agricultural remote sensing has been limited to very small-scale operations supplying remote sensing services to a few selected customers. Datron/Transco Inc. undertook an internally funded remote sensing program directed toward the California cash crop industry (strawberries, lettuce, tomatoes, other fresh vegetables and cotton). The objectives of this program were twofold: (1) to assess the need and readiness of agricultural land managers to adopt remote sensing as a management tool, and (2) determine what technical barriers exist to large-scale implementation of this technology on a commercial basis. The program was divided into three phases: Planning, Engineering Test and Evaluation, and Commercial Operations. Findings: Remote sensing technology can deliver high resolution multispectral imagery with rapid turnaround, that can provide information on crop stress insects, disease and various soil parameters. The limiting factors to the use of remote sensing in agriculture are a lack of familiarization by the land managers, difficulty in translating 'information' into increased revenue or reduced cost for the land manager, and the large economies of scale needed to make the venture commercially viable.
NASA Technical Reports Server (NTRS)
Goetz, Michael B.
2011-01-01
The Instrument Simulator Suite for Atmospheric Remote Sensing (ISSARS) entered its third and final year of development with an overall goal of providing a unified tool to simulate active and passive space borne atmospheric remote sensing instruments. These simulations focus on the atmosphere ranging from UV to microwaves. ISSARS handles all assumptions and uses various models on scattering and microphysics to fill the gaps left unspecified by the atmospheric models to create each instrument's measurements. This will help benefit mission design and reduce mission cost, create efficient implementation of multi-instrument/platform Observing System Simulation Experiments (OSSE), and improve existing models as well as new advanced models in development. In this effort, various aerosol particles are incorporated into the system, and a simulation of input wavelength and spectral refractive indices related to each spherical test particle(s) generate its scattering properties and phase functions. These atmospheric particles being integrated into the system comprise the ones observed by the Multi-angle Imaging SpectroRadiometer(MISR) and by the Multiangle SpectroPolarimetric Imager(MSPI). In addition, a complex scattering database generated by Prof. Ping Yang (Texas A&M) is also incorporated into this aerosol database. Future development with a radiative transfer code will generate a series of results that can be validated with results obtained by the MISR and MSPI instruments; nevertheless, test cases are simulated to determine the validity of various plugin libraries used to determine or gather the scattering properties of particles studied by MISR and MSPI, or within the Single-scattering properties of tri-axial ellipsoidal mineral dust particles database created by Prof. Ping Yang.
Topical Issue on Optical Particle Characterization and Remote Sensing of the Atmosphere: Part I
NASA Technical Reports Server (NTRS)
Videen, Gorden; Kocifaj, Miroslav; Sun, Wenbo; Kai, Kenji; Kawamoto, Kazuaki; Horvath, Helmuth; Mishchenko, Michael
2015-01-01
Increasing our understanding of the Earth-atmosphere system has been a scientific and political priority for the last few decades. This system not only touches on environmental science, but it has applicability to our broader understanding of planetary atmospheres in general. While this issue focuses primarily on electromagnetics, other fundamental fields of science, including fluid and thermodynamics play major roles. In recent years, significant research efforts have led to advances in the fields of radiative transfer and electromagnetic scattering from irregularly shaped particles. Recently, several workshops and small conferences have taken place to promote the fusion of these efforts. Late in 2013, for instance, two such meetings took place. The Optical Characterization of Atmospheric Aerosols (OCAA) meeting took place in Smolenice, Slovakia to promote a better understanding of microphysical properties of aerosol particles, and the characterization of such atmospheric particles using optical techniques. A complementary conference was organized in Nagoya, Japan, the 3rd International Symposium on Atmospheric Light Scattering and Remote Sensing (ISALSaRS), whose goal is to fuse the advances achieved in particle characterization with remote-sensing techniques. While the focus of these meetings is slightly different, they represent the same aspects of this rapidly growing field. This Topical Issue is the first of two parts. Within this issue we analyze different aspects of the problem of atmospheric characterization and present a broad overview of the topical area. Research includes theory and experiment, ranging from fundamental microphysical properties of individual aerosol particles to broad characterizations of atmospheric properties. Since this is an active field, we also have encouraged the submission of ideas for new methodologies that may represent the future of the field.
NASA Technical Reports Server (NTRS)
King, Michael D.; Platnick, Steven; Chu, D. Allen; Moody, Eric G.
2001-01-01
MODIS is an earth-viewing cross-track scanning spectroradiometer launched on the Terra satellite in December 1999. MODIS scans a swath width sufficient to provide nearly complete global coverage every two days from a polar-orbiting, sun-synchronous platform at an altitude of 705 km, and provides images in 36 spectral bands between 0.415 and 14.235 microns with spatial resolutions of 250 m (two bands), 500 m (five bands) and 1000 m (29 bands). These bands have been carefully selected to enable advanced studies of land, ocean, and atmospheric processes. In this presentation we review the comprehensive set of remote sensing algorithms that have been developed for the remote sensing of atmospheric properties using MODIS data, placing primary emphasis on the principal atmospheric applications of (i) developing a cloud mask for distinguishing clear sky from clouds, (ii) retrieving global cloud radiative and microphysical properties, including cloud top pressure and temperature, effective emissivity, cloud optical thickness, thermodynamic phase, and effective radius, (iii) monitoring tropospheric aerosol optical thickness over the land and ocean and aerosol size distribution over the ocean, (iv) determining atmospheric profiles of moisture and temperature, and (v) estimating column water amount. The physical principles behind the determination of each of these atmospheric products will be described, together with an example of their application using MODIS observations to the east Asian region in Spring 2001. All products are archived into two categories: pixel-level retrievals (referred to as Level-2 products) and global gridded products at a latitude and longitude resolution of 1 degree (Level-3 products). An overview of the MODIS atmosphere algorithms and products, status, validation activities, and early level-2 and -3 results will be presented.
Remote Sensing of Cloud, Aerosol, and Water Vapor Properties from MODIS
NASA Technical Reports Server (NTRS)
King, Michael D.; Platnick, Steven; Menzel, W. Paul; Kaufman, Yoram J.; Ackerman, Steven A.; Tanre, Didier; Gao, Bo-Cai
2001-01-01
MODIS is an earth-viewing cross-track scanning spectroradiometer launched on the Terra satellite in December 1999. MODIS scans a swath width sufficient to provide nearly complete global coverage every two days from a polar orbiting, sun-synchronous, platform at an altitude of 705 kilometers, and provides images in 36 spectral bands between 0.415 and 14.235 micrometers with spatial resolutions of 250 meters (2 bands), 500 meters (5 bands) and 1000 meters (29 bands). These bands have been carefully selected to enable advanced studies of land, ocean, and atmospheric processes. In this presentation we review the comprehensive set of remote sensing algorithms that have been developed for the remote sensing of atmospheric properties using MODIS data, placing primary emphasis on the principal atmospheric applications of (i) developing a cloud mask for distinguishing clear sky from clouds, (ii) retrieving global cloud radiative and microphysical properties, including cloud top pressure and temperature, effective emissivity, cloud optical thickness, thermodynamic phase, and effective radius, (iii) monitoring tropospheric aerosol optical thickness over the land and ocean and aerosol size distribution over the ocean, (iv) determining atmospheric profiles of moisture and temperature, and (v) estimating column water amount. The physical principles behind the determination of each of these atmospheric products will be described, together with an example of their application using MODIS observations. All products are archived into two categories: pixel-level retrievals (referred to as Level-2 products) and global gridded products at a latitude and longitude resolution of 1 degree (Level-3 products). An overview of the MODIS atmosphere algorithms and products, status, validation activities, and early level-2 and -3 results will be presented.
Code of Federal Regulations, 2013 CFR
2013-01-01
... remote sensing satellite industry. (Available from NOAA, National Environmental Satellite Data and... LICENSING OF PRIVATE REMOTE SENSING SYSTEMS General § 960.1 Purpose. (a) The regulations in this part set... sensing space system under Title II of the Land Remote Sensing Policy Act of 1992 (15 U.S.C. 5601 et seq...
Code of Federal Regulations, 2011 CFR
2011-01-01
... remote sensing satellite industry. (Available from NOAA, National Environmental Satellite Data and... LICENSING OF PRIVATE REMOTE SENSING SYSTEMS General § 960.1 Purpose. (a) The regulations in this part set... sensing space system under Title II of the Land Remote Sensing Policy Act of 1992 (15 U.S.C. 5601 et seq...
Code of Federal Regulations, 2014 CFR
2014-01-01
... remote sensing satellite industry. (Available from NOAA, National Environmental Satellite Data and... LICENSING OF PRIVATE REMOTE SENSING SYSTEMS General § 960.1 Purpose. (a) The regulations in this part set... sensing space system under Title II of the Land Remote Sensing Policy Act of 1992 (15 U.S.C. 5601 et seq...
Code of Federal Regulations, 2012 CFR
2012-01-01
... remote sensing satellite industry. (Available from NOAA, National Environmental Satellite Data and... LICENSING OF PRIVATE REMOTE SENSING SYSTEMS General § 960.1 Purpose. (a) The regulations in this part set... sensing space system under Title II of the Land Remote Sensing Policy Act of 1992 (15 U.S.C. 5601 et seq...
Code of Federal Regulations, 2010 CFR
2010-01-01
... LICENSING OF PRIVATE REMOTE SENSING SYSTEMS General § 960.1 Purpose. (a) The regulations in this part set... sensing space system under Title II of the Land Remote Sensing Policy Act of 1992 (15 U.S.C. 5601 et seq... remote sensing satellite industry. (Available from NOAA, National Environmental Satellite Data and...
Remote Sensing of Extraterrestrial life: Complexity as the key characteristicsof living systems
NASA Astrophysics Data System (ADS)
Wolf, Sebastian
2015-07-01
Motivated by the detection of planetary candidates around more than one thousand stars since 1995 and the beginning characterization of their major properties (orbit, mass, physical conditions and chemical composition of their atmosphere), the quest for understanding the origin and evolution of life from the broadest possible perspective comes into reach of scientific exploration. Due to the apparent lack of a better starting point, the search for life outside Earth is strongly influenced and guided by biological and biochemical studies of life on our planet so far. Furthermore, this search is built on the assumption that life - in the sense of animated matter - is qualitatively different from inanimate matter. However, the first constraint might unnecessarily limit our search, while the latter underlying assumption is not justified. In this study, a more general approach to search for life in the universe with astrophysical means is proposed, which is not based on the above constraint and assumption. More specifically, the property of living systems to possess a high degree of complexity in structure and its response to the environment is discussed in view of its potential to be used for remote sensing of extraterrestrial life.
Improved resource use decisions and actions through remote sensing
NASA Technical Reports Server (NTRS)
Hill-Rowley, R.; Boylan, M.; Enslin, W.; Vlasin, R. D.
1975-01-01
Operational uses of remote sensing for improving management decisions and actions concerning resource uses are considered in terms of first generation, or direct-action; and second generation or indirect, delayed-action applications. From among applications completed during 1974-75, seven case studies are offered in illustration of the many contrasts which can be drawn between first and second generation application studies. These include: (1) multi-agency river basin planning; (2) corridor assessment and route location for highway location together with improvement of county-level planning decisions; (3) improving timber management practices; (4) enforcement of new state statutes; (5) county-wide open space preservation; (6) land value reappraisal relative to property tax equalization; and (7) optimizing agri-business processing plant locations.
NASA Astrophysics Data System (ADS)
Powell, G. L.; Dobbins, A.; Cristy, S. S.; Cliff, T. L.; Meyer, H. M., III; Lucania, J.; Milosevic, Milan
1994-01-01
This report describes the application of reflectance FTIR spectroscopy to the measurement of the oxidation rate of uranium by environmental gases near room temperature. It also describes very efficient evacuable cells designed for 75 degree(s) external reflectance with polarized light and for diffuse reflectance using mid-infrared FTIR spectroscopy. These cells, along with functionally similar remote sensing accessories, have been applied to the study of the oxidation of uranium metal in air, oxygen, and water vapor by precisely measuring the 575 cm-1 band of UO2 and other properties of the corrosion film such as absorbed water and reflective losses caused by film degradation related to pitting or nucleation phenomena.
An Optical Model for Estimating the Underwater Light Field from Remote Sensing
NASA Technical Reports Server (NTRS)
Liu, Cheng-Chien; Miller, Richard L.
2002-01-01
A model of the wavelength-integrated scalar irradiance for a vertically homogeneous water column is developed. It runs twenty thousand times faster than simulations obtained using full Hydrolight code and limits the percentage error to less than 3.7%. Both the distribution of incident sky radiance and a wind-roughened surface are integrated in the model. Our model removes common limitations of earlier models and can be applied to waters with any composition of the inherent optical properties. Implementation of this new model, as well as the ancillary information required for processing global-scale satellite data, is discussed. This new model is fast, accurate, and flexible and therefore provides important information of the underwater light field from remote sensing.
Advanced Remote Sensing Research
Slonecker, Terrence; Jones, John W.; Price, Susan D.; Hogan, Dianna
2008-01-01
'Remote sensing' is a generic term for monitoring techniques that collect information without being in physical contact with the object of study. Overhead imagery from aircraft and satellite sensors provides the most common form of remotely sensed data and records the interaction of electromagnetic energy (usually visible light) with matter, such as the Earth's surface. Remotely sensed data are fundamental to geographic science. The Eastern Geographic Science Center (EGSC) of the U.S. Geological Survey (USGS) is currently conducting and promoting the research and development of three different aspects of remote sensing science: spectral analysis, automated orthorectification of historical imagery, and long wave infrared (LWIR) polarimetric imagery (PI).
NASA Technical Reports Server (NTRS)
Zaitzeff, J. B. (Editor); Cornillon, P. (Editor); Aubrey, D. A. (Editor)
1980-01-01
Presentations were grouped in the following categories: (1) a technical orientation of Earth resources remote sensing including data sources and processing; (2) a review of the present status of remote sensing technology applicable to the coastal and marine environment; (3) a description of data and information needs of selected coastal and marine activities; and (4) an outline of plans for marine monitoring systems for the east coast and a concept for an east coast remote sensing facility. Also discussed were user needs and remote sensing potentials in the areas of coastal processes and management, commercial and recreational fisheries, and marine physical processes.
Remote sensing of Earth terrain
NASA Technical Reports Server (NTRS)
Kong, J. A.
1992-01-01
Research findings are summarized for projects dealing with the following: application of theoretical models to active and passive remote sensing of saline ice; radiative transfer theory for polarimetric remote sensing of pine forest; scattering of electromagnetic waves from a dense medium consisting of correlated Mie scatterers with size distribution and applications to dry snow; variance of phase fluctuations of waves propagating through a random medium; theoretical modeling for passive microwave remote sensing of earth terrain; polarimetric signatures of a canopy of dielectric cylinders based on first and second order vector radiative transfer theory; branching model for vegetation; polarimetric passive remote sensing of periodic surfaces; composite volume and surface scattering model; and radar image classification.
Brazil's remote sensing activities in the Eighties
NASA Technical Reports Server (NTRS)
Raupp, M. A.; Pereiradacunha, R.; Novaes, R. A.
1985-01-01
Most of the remote sensing activities in Brazil have been conducted by the Institute for Space Research (INPE). This report describes briefly INPE's activities in remote sensing in the last years. INPE has been engaged in research (e.g., radiance studies), development (e.g., CCD-scanners, image processing devices) and applications (e.g., crop survey, land use, mineral resources, etc.) of remote sensing. INPE is also responsible for the operation (data reception and processing) of the LANDSATs and meteorological satellites. Data acquisition activities include the development of CCD-Camera to be deployed on board the space shuttle and the construction of a remote sensing satellite.
Application of remote sensing to state and regional problems. [for Mississippi
NASA Technical Reports Server (NTRS)
Miller, W. F.; Bouchillon, C. W.; Harris, J. C.; Carter, B.; Whisler, F. D.; Robinette, R.
1974-01-01
The primary purpose of the remote sensing applications program is for various members of the university community to participate in activities that improve the effective communication between the scientific community engaged in remote sensing research and development and the potential users of modern remote sensing technology. Activities of this program are assisting the State of Mississippi in recognizing and solving its environmental, resource and socio-economic problems through inventory, analysis, and monitoring by appropriate remote sensing systems. Objectives, accomplishments, and current status of the following individual projects are reported: (1) bark beetle project; (2) state park location planning; and (3) waste source location and stream channel geometry monitoring.
Physics teaching by infrared remote sensing of vegetation
NASA Astrophysics Data System (ADS)
Schüttler, Tobias; Maman, Shimrit; Girwidz, Raimund
2018-05-01
Context- and project-based teaching has proven to foster different affective and cognitive aspects of learning. As a versatile and multidisciplinary scientific research area with diverse applications for everyday life, satellite remote sensing is an interesting context for physics education. In this paper we give a brief overview of satellite remote sensing of vegetation and how to obtain your own, individual infrared remote sensing data with affordable converted digital cameras. This novel technique provides the opportunity to conduct individual remote sensing measurement projects with students in their respective environment. The data can be compared to real satellite data and is of sufficient accuracy for educational purposes.
Application of remote sensing to water resources problems
NASA Technical Reports Server (NTRS)
Clapp, J. L.
1972-01-01
The following conclusions were reached concerning the applications of remote sensing to water resources problems: (1) Remote sensing methods provide the most practical method of obtaining data for many water resources problems; (2) the multi-disciplinary approach is essential to the effective application of remote sensing to water resource problems; (3) there is a correlation between the amount of suspended solids in an effluent discharged into a water body and reflected energy; (4) remote sensing provides for more effective and accurate monitoring, discovery and characterization of the mixing zone of effluent discharged into a receiving water body; and (5) it is possible to differentiate between blue and blue-green algae.
NASA Astrophysics Data System (ADS)
Wu, X.; Shen, Y.; Wang, N.; Pan, X.; Zhang, W.; He, J.; Wang, G.
2017-12-01
Snowmelt water is an important freshwater resource in the Altay Mountains in northwest China, and it is also crucial for local ecological system, economic and social sustainable development; however, warming climate and rapid spring snowmelt can cause floods that endanger both eco-environment and public and personal property and safety. This study simulates snowmelt in the Kayiertesi River catchment using a temperature-index model based on remote sensing coupled with high-resolution meteorological data obtained from NCEP reanalysis fields that were downscaled using Weather Research Forecasting model, then bias-corrected using a statistical downscaled model. Validation of the forcing data revealed that the high-resolution meteorological fields derived from downscaled NCEP reanalysis were reliable for driving the snowmelt model. Parameters of temperature-index model based on remote sensing were calibrated for spring 2014, and model performance was validated using MODIS snow cover and snow observations from spring 2012. The results show that the temperature-index model based on remote sensing performed well, with a simulation mean relative error of 6.7% and a Nash-Sutchliffe efficiency of 0.98 in spring 2012 in the river of Altay Mountains. Based on the reliable distributed snow water equivalent simulation, daily snowmelt runoff was calculated for spring 2012 in the basin. In the study catchment, spring snowmelt runoff accounts for 72% of spring runoff and 21% of annual runoff. Snowmelt is the main source of runoff for the catchment and should be managed and utilized effectively. The results provide a basis for snowmelt runoff predictions, so as to prevent snowmelt-induced floods, and also provide a generalizable approach that can be applied to other remote locations where high-density, long-term observational data is lacking.
NASA Technical Reports Server (NTRS)
Salvucci, Guido D.
2000-01-01
The overall goal of this research is to examine the feasibility of applying a newly developed diagnostic model of soil water evaporation to large land areas using remotely sensed input parameters. The model estimates the rate of soil evaporation during periods when it is limited by the net transport resulting from competing effects of capillary rise and drainage. The critical soil hydraulic properties are implicitly estimated via the intensity and duration of the first stage (energy limited) evaporation, removing a major obstacle in the remote estimation of evaporation over large areas. This duration, or 'time to drying' (t(sub d)) is revealed through three signatures detectable in time series of remote sensing variables. The first is a break in soil albedo that occurs as a small vapor transmission zone develops near the surface. The second is a break in either surface to air temperature differences or in the diurnal surface temperature range, both of which indicate increased sensible heat flux (and/or storage) required to balance the decrease in latent heat flux. The third is a break in the temporal pattern of near surface soil moisture. Soil moisture tends to decrease rapidly during stage I drying (as water is removed from storage), and then become more or less constant during soil limited, or 'stage II' drying (as water is merely transmitted from deeper soil storage). The research tasks address: (1) improvements in model structure, including extensions to transpiration and aggregation over spatially variable soil and topographic landscape attributes; and (2) applications of the model using remotely sensed input parameters.
NASA Technical Reports Server (NTRS)
Salvucci, Guido D.
1997-01-01
The overall goal of this research is to examine the feasibility of applying a newly developed diagnostic model of soil water evaporation to large land areas using remotely sensed input parameters. The model estimates the rate of soil evaporation during periods when it is limited by the net transport resulting from competing effects of capillary rise and drainage. The critical soil hydraulic properties are implicitly estimated via the intensity and duration of the first stage (energy limited) evaporation, removing a major obstacle in the remote estimation of evaporation over large areas. This duration, or "time to drying" (t(sub d)), is revealed through three signatures detectable in time series of remote sensing variables. The first is a break in soil albedo that occurs as a small vapor transmission zone develops near the surface. The second is a break in either surface to air temperature differences or in the diurnal surface temperature range, both of which indicate increased sensible heat flux (and/or storage) required to balance the decrease in latent heat flux. The third is a break in the temporal pattern of near surface soil moisture. Soil moisture tends to decrease rapidly during stage 1 drying (as water is removed from storage), and then become more or less constant during soil limited, or "stage 2" drying (as water is merely transmitted from deeper soil storage). The research tasks address: (1) improvements in model structure, including extensions to transpiration and aggregation over spatially variable soil and topographic landscape attributes; and (2) applications of the model using remotely sensed input parameters.
NASA Astrophysics Data System (ADS)
Eisele, Andreas; Chabrillat, Sabine; Lau, Ian; Hecker, Christoph; Hewson, Robert; Carter, Dan; Wheaton, Buddy; Ong, Cindy; Cudahy, Thomas John; Kaufmann, Hermann
2014-05-01
Digital soil mapping with the means of passive remote sensing basically relies on the soils' spectral characteristics and an appropriate atmospheric window, where electromagnetic radiation transmits without significant attenuation. Traditionally the atmospheric window in the solar-reflective wavelength region (visible, VIS: 0.4 - 0.7 μm; near infrared, NIR: 0.7 - 1.1 μm; shortwave infrared, SWIR: 1.1 - 2.5 μm) has been used to quantify soil surface properties. However, spectral characteristics of semi-arid soils, typically have a coarse quartz rich texture and iron coatings that can limit the prediction of soil surface properties. In this study we investigated the potential of the atmospheric window in the thermal wavelength region (long wave infrared, LWIR: 8 - 14 μm) to predict soil surface properties such as the grain size distribution (texture) and the organic carbon content (SOC) for coarse-textured soils from the Australian wheat belt region. This region suffers soil loss due to wind erosion processes and large scale monitoring techniques, such as remote sensing, is urgently required to observe the dynamic changes of such soil properties. The coarse textured sandy soils of the investigated area require methods, which can measure the special spectral response of the quartz dominated mineralogy with iron oxide enriched grain coatings. By comparison, the spectroscopy using the solar-reflective region has limitations to discriminate such arid soil mineralogy and associated coatings. Such monitoring is important for observing potential desertification trends associated with coarsening of topsoil texture and reduction in SOC. In this laboratory study we identified the relevant LWIR wavelengths to predict these soil surface properties. The results showed the ability of multivariate analyses methods (PLSR) to predict these soil properties from the soil's spectral signature, where the texture parameters (clay and sand content) could be predicted well in the models using the LWIR-window (sand content: R2 = 0.84 and RMSECV = 1.09 %, and for clay content: R2 = 0.77 and RMSECV = 1.0 %, both with 3 factor models). In comparison, the quantification from the solar-reflective window showed its limitations in its relative complex PLSR models and a lower prediction accuracy (sand content: R2 = 0.69 and RMSECV = 1.5 % with 7 factors, and for clay content: R2 = 0.64 and RMSECV = 1.26 % with 9 factors). The prediction of the SOC content, on the other hand, showed minor disparity between the two atmospheric windows (LWIR: R2 = 0.73 and RMSECV = 0.1 % with 6 factors, VNIR-SWIR: R2 = 0.69 and RMSECV = 0.11 %, with 9 factors). The prospect of the LWIR for determining soil texture was demonstrated to be even more impressive when reduced to the spectral band specifications of airborne (TASI-600) and spaceborne (ASTER) sensors. The results demonstrate the high potential of the LWIR to detect and quantify soil surface properties in the future for a monitoring via LWIR hyperspectral remote sensing.
SUPERFUND REMOTE SENSING SUPPORT
This task provides remote sensing technical support to the Superfund program. Support includes the collection, processing, and analysis of remote sensing data to characterize hazardous waste disposal sites and their history. Image analysis reports, aerial photographs, and assoc...
NASA Technical Reports Server (NTRS)
Brosius, C. A.; Gervin, J. C.; Ragusa, J. M.
1977-01-01
A text book on remote sensing, as part of the earth resources Skylab programs, is presented. The fundamentals of remote sensing and its application to agriculture, land use, geology, water and marine resources, and environmental monitoring are summarized.
Operational Use of Remote Sensing within USDA
NASA Technical Reports Server (NTRS)
Bethel, Glenn R.
2007-01-01
A viewgraph presentation of remote sensing imagery within the USDA is shown. USDA Aerial Photography, Digital Sensors, Hurricane imagery, Remote Sensing Sources, Satellites used by Foreign Agricultural Service, Landsat Acquisitions, and Aerial Acquisitions are also shown.
NASA Technical Reports Server (NTRS)
Asner, Gregory P. (Principal Investigator)
2003-01-01
Woody encroachment has contributed to documented changes world-wide and locally in the southwestern U.S. Specifically, in North Texas rangelands encroaching mesquite (Prosopis glandulosa var. glandulosa) a known N-fixing species has caused changes in aboveground biomass. While measurements of aboveground plant production are relatively common, measures of soil N availability are scarce and vary widely. N trace gas emissions (nitric and nitrous oxide) flom soils reflect patterns in current N cycling rates and availability as they are stimulated by inputs of organic and inorganic N. Quantification of N oxide emissions from savanna soils may depend upon the spatial distribution of woody plant canopies, and specifically upon the changes in N availability and cycling and subsequent N trace gas production as influenced by the shift from herbaceous to woody vegetation type. The main goal of this research was to determine whether remotely sensible parameters of vegetation structure and soil type could be used to quantify biogeochemical changes in N at local, landscape and regional scales. To accomplish this goal, field-based measurements of N trace gases were carried out between 2000-2001, encompassing the acquisition of imaging spectrometer data from the NASA Airborne Visible and Infrared Imaging Spectrometer (AVIRIS) on September 29, 2001. Both biotic (vegetation type and soil organic N) and abiotic (soil type, soil pH, temperature, soil moisture, and soil inorganic N) controls were analyzed for their contributions to observed spatial and temporal variation in soil N gas fluxes. These plot level studies were used to develop relationships between spatially extensive, field-based measurements of N oxide fluxes and remotely sensible aboveground vegetation and soil properties, and to evaluate the short-term controls over N oxide emissions through intensive field wetting experiments. The relationship between N oxide emissions, remotely-sensed parameters (vegetation cover, and soil type), and physical controls (soil moisture, and temperature) permitted the regional scale quantification of soil N oxides emissions. Landscape scale analysis linking N oxide emissions with cover change revealed an alleviation from N limitation following mesquite invasion. This study demonstrated the advantage of using N trace gases as a measure of ecosystem N availability combined with remote sensing to characterize the spatial heterogeneity in ecosystem parameters at a scale commensurate with field-based measurements of these properties. Woody vegetation encroachment provided an opportunity to capitalize on detection of the remotely-sensible parameter of woody cover as it relates to belowground biogeochemical processes that determine N trace gas production. The first spatially-explicit estimates of NO flux were calculated based on Prosopis fractional cover derived from high resolution remote sensing estimates of fractional woody cover (< 4 m) for a 120 sq km region of North Texas. An assessment of both N stocks and fluxes from the study revealed an alleviation of N limitation at this site experiencing recent woody encroachment. Many arid and semi-arid regions of the world are experiencing woody invasions, often of N-fixing species. The issue of woody encroachment is in the center of an ecological and political debate. Improving the links between biogeochemical processes and remote sensing of ecosystem properties will improve our understanding of biogeochemical processes at the regional scale, thus providing a means to address issues of land-use and land-cover change.
Investigation related to multispectral imaging systems
NASA Technical Reports Server (NTRS)
Nalepka, R. F.; Erickson, J. D.
1974-01-01
A summary of technical progress made during a five year research program directed toward the development of operational information systems based on multispectral sensing and the use of these systems in earth-resource survey applications is presented. Efforts were undertaken during this program to: (1) improve the basic understanding of the many facets of multispectral remote sensing, (2) develop methods for improving the accuracy of information generated by remote sensing systems, (3) improve the efficiency of data processing and information extraction techniques to enhance the cost-effectiveness of remote sensing systems, (4) investigate additional problems having potential remote sensing solutions, and (5) apply the existing and developing technology for specific users and document and transfer that technology to the remote sensing community.
NASA Astrophysics Data System (ADS)
Hirsikko, Anne; Brus, David; O'Connor, Ewan J.; Filioglou, Maria; Komppula, Mika; Romakkaniemi, Sami
2017-04-01
In the high and mid latitudes super-cooled liquid water layers are frequently observed on top of clouds. These layers are difficult to forecast with numerical weather prediction models, even though, they have strong influence on atmospheric radiative properties, cloud microphysical properties, and subsequently, precipitation. This work investigates properties of super-cooled liquid water layer topped sub-arctic clouds and precipitation observed with ground-based in-situ (cloud probes) and remote-sensing (a cloud radar, Doppler and multi-wavelength lidars) instrumentation during two-month long Pallas Cloud Experiment (PaCE 2015) in autumn 2015. Analysis is based on standard Cloudnet scheme supplemented with new retrieval products of the specific clouds and their properties. Combination of two scales of observation provides new information on properties of clouds and precipitation in the sub-arctic Pallas region. Current status of results will be presented during the conference. The authors acknowledge financial support by the Academy of Finland (Centre of Excellence Programme, grant no 272041; and ICINA project, grant no 285068), the ACTRIS2 - European Union's Horizon 2020 research and innovation programme under grant agreement No 654109, the KONE foundation, and the EU FP7 project BACCHUS (grant no 603445).
Bio-Optical and Geochemical Properties of the South Atlantic Subtropical Gyre
NASA Technical Reports Server (NTRS)
Signorini, S. R.; Hooker, Stanford B.; McClain, Charles R.
2003-01-01
An investigation of the bio-optical properties of the South Atlantic subtropical gyre (SASG) was conducted using data primarily from the UK Atlantic Meridional Transect (AMT) program and SeaWiFS. The AMT cruises extend from the UK to the Falklands Islands (sailing on the RRS James Clark Ross) with the purpose of improving our knowledge of surface layer hydrography, biogeochemical processes, ecosystem dynamics and food webs across basin scales in the Atlantic Ocean. Two objectives of the AMT program relevant to this study are the characterization of biogeochemical provinces and the analysis of optical and pigment parameters in connection with remote sensing ocean color data. The primary focus of this NASA Technical Memorandum is on the variability of the vertical distribution of phytoplankton pigments and associated absorption properties across the SASG, and their relevance to remote sensing algorithms. Therefore, a subset of the AMT data within the SASG from all available cruises was used in the analyses. One of the challenges addressed here is the determination of the SASG geographic boundaries. One of the major problems is to reconcile the properties of biogeochemical provinces. We use water mass analysis, dynamics of ocean currents, and meridional gradients of bio-optical properties, to identify the SASG boundaries.
An object-based storage model for distributed remote sensing images
NASA Astrophysics Data System (ADS)
Yu, Zhanwu; Li, Zhongmin; Zheng, Sheng
2006-10-01
It is very difficult to design an integrated storage solution for distributed remote sensing images to offer high performance network storage services and secure data sharing across platforms using current network storage models such as direct attached storage, network attached storage and storage area network. Object-based storage, as new generation network storage technology emerged recently, separates the data path, the control path and the management path, which solves the bottleneck problem of metadata existed in traditional storage models, and has the characteristics of parallel data access, data sharing across platforms, intelligence of storage devices and security of data access. We use the object-based storage in the storage management of remote sensing images to construct an object-based storage model for distributed remote sensing images. In the storage model, remote sensing images are organized as remote sensing objects stored in the object-based storage devices. According to the storage model, we present the architecture of a distributed remote sensing images application system based on object-based storage, and give some test results about the write performance comparison of traditional network storage model and object-based storage model.
Fuzzy Classification of High Resolution Remote Sensing Scenes Using Visual Attention Features.
Li, Linyi; Xu, Tingbao; Chen, Yun
2017-01-01
In recent years the spatial resolutions of remote sensing images have been improved greatly. However, a higher spatial resolution image does not always lead to a better result of automatic scene classification. Visual attention is an important characteristic of the human visual system, which can effectively help to classify remote sensing scenes. In this study, a novel visual attention feature extraction algorithm was proposed, which extracted visual attention features through a multiscale process. And a fuzzy classification method using visual attention features (FC-VAF) was developed to perform high resolution remote sensing scene classification. FC-VAF was evaluated by using remote sensing scenes from widely used high resolution remote sensing images, including IKONOS, QuickBird, and ZY-3 images. FC-VAF achieved more accurate classification results than the others according to the quantitative accuracy evaluation indices. We also discussed the role and impacts of different decomposition levels and different wavelets on the classification accuracy. FC-VAF improves the accuracy of high resolution scene classification and therefore advances the research of digital image analysis and the applications of high resolution remote sensing images.
Fuzzy Classification of High Resolution Remote Sensing Scenes Using Visual Attention Features
Xu, Tingbao; Chen, Yun
2017-01-01
In recent years the spatial resolutions of remote sensing images have been improved greatly. However, a higher spatial resolution image does not always lead to a better result of automatic scene classification. Visual attention is an important characteristic of the human visual system, which can effectively help to classify remote sensing scenes. In this study, a novel visual attention feature extraction algorithm was proposed, which extracted visual attention features through a multiscale process. And a fuzzy classification method using visual attention features (FC-VAF) was developed to perform high resolution remote sensing scene classification. FC-VAF was evaluated by using remote sensing scenes from widely used high resolution remote sensing images, including IKONOS, QuickBird, and ZY-3 images. FC-VAF achieved more accurate classification results than the others according to the quantitative accuracy evaluation indices. We also discussed the role and impacts of different decomposition levels and different wavelets on the classification accuracy. FC-VAF improves the accuracy of high resolution scene classification and therefore advances the research of digital image analysis and the applications of high resolution remote sensing images. PMID:28761440
NASA Astrophysics Data System (ADS)
Shuxin, Li; Zhilong, Zhang; Biao, Li
2018-01-01
Plane is an important target category in remote sensing targets and it is of great value to detect the plane targets automatically. As remote imaging technology developing continuously, the resolution of the remote sensing image has been very high and we can get more detailed information for detecting the remote sensing targets automatically. Deep learning network technology is the most advanced technology in image target detection and recognition, which provided great performance improvement in the field of target detection and recognition in the everyday scenes. We combined the technology with the application in the remote sensing target detection and proposed an algorithm with end to end deep network, which can learn from the remote sensing images to detect the targets in the new images automatically and robustly. Our experiments shows that the algorithm can capture the feature information of the plane target and has better performance in target detection with the old methods.
Transparency of the 2 μm window on Titan studied with observations made by VIMS
NASA Astrophysics Data System (ADS)
Rannou, P.; Lemouélic, S.; Sotin, C.; Brown, R. H.
2012-09-01
The study of Titan properties with remote sensing relies on a good knowledge of the atmosphere properties. The in-situ observations made by Huygens combined with recent advances in the definition of methane properties enable to model and interpret observations with a very good accuracy. However, intensity at some wavelengths are poorly modeled because additional opacities must be studied. We focus here on the case of the 2 μm window, which is essential to determined cloud and surface properties.
A remote sensing and GIS-enabled asset management system (RS-GAMS).
DOT National Transportation Integrated Search
2013-04-01
Under U.S. Department of Transportation (DOT) Commercial Remote Sensing and : Spatial Information (CRS&SI) Technology Initiative 2 of the Transportation : Infrastructure Construction and Condition Assessment, an intelligent Remote Sensing and : GIS-b...
ERIC Educational Resources Information Center
Williams, Richard S., Jr.; Southworth, C. Scott
1983-01-01
The Landsat Program became the major event of 1982 in geological remote sensing with the successful launch of Landsat 4. Other 1982 remote sensing accomplishments, research, publications, (including a set of Landsat worldwide reference system index maps), and conferences are highlighted. (JN)
Remote sensing utility in a disaster struck urban environment
NASA Technical Reports Server (NTRS)
Rush, M.; Holguin, A.; Vernon, S.
1974-01-01
A project to determine the ways in which remote sensing can contribute to solutions of urban public health problems in time of natural disaster is discussed. The objectives of the project are to determine and describe remote sensing standard operating procedures for public health assistance during disaster relief operations which will aid the agencies and organizations involved in disaster intervention. Proposed tests to determine the validity of the remote sensing system are reported.
2010-12-06
raw data). To remove surface-reflected light in field measurements of remote sensing reflectance, a spectral optimization approach was applied, with...results compared with those from remote - sensing models and from direct measurements. The agreement from different determinations suggests that...reasonable results for remote sensing reflectance of clear blue water to turbid brown water are obtainable from above-surface measurements, even under conditions of high waves.
Bibliography of Remote Sensing Techniques Used in Wetland Research
1993-01-01
8217 is investigating the application of remote sensing technology for detecting changes in wetland environments. This report documents a bibliographic...search conducted as part of that work unit on applications of remote sensing techniques in wetland research. Results were used to guide research...efforts on the use of remote sensing technology for wetland change detection and assessment. The citations are presented in three appendixes, organized by wetland type, sensor type, and author.
Use of Openly Available Satellite Images for Remote Sensing Education
NASA Astrophysics Data System (ADS)
Wang, C.-K.
2011-09-01
With the advent of Google Earth, Google Maps, and Microsoft Bing Maps, high resolution satellite imagery are becoming more easily accessible than ever. It have been the case that the college students may already have wealth experiences with the high resolution satellite imagery by using these software and web services prior to any formal remote sensing education. It is obvious that the remote sensing education should be adjusted to the fact that the audience are already the customers of remote sensing products (through the use of the above mentioned services). This paper reports the use of openly available satellite imagery in an introductory-level remote sensing course in the Department of Geomatics of National Cheng Kung University as a term project. From the experience learned from the fall of 2009 and 2010, it shows that this term project has effectively aroused the students' enthusiastic toward Remote Sensing.
Strategies for using remotely sensed data in hydrologic models
NASA Technical Reports Server (NTRS)
Peck, E. L.; Keefer, T. N.; Johnson, E. R. (Principal Investigator)
1981-01-01
Present and planned remote sensing capabilities were evaluated. The usefulness of six remote sensing capabilities (soil moisture, land cover, impervious area, areal extent of snow cover, areal extent of frozen ground, and water equivalent of the snow cover) with seven hydrologic models (API, CREAMS, NWSRFS, STORM, STANFORD, SSARR, and NWSRFS Snowmelt) were reviewed. The results indicate remote sensing information has only limited value for use with the hydrologic models in their present form. With minor modifications to the models the usefulness would be enhanced. Specific recommendations are made for incorporating snow covered area measurements in the NWSRFS Snowmelt model. Recommendations are also made for incorporating soil moisture measurements in NWSRFS. Suggestions are made for incorporating snow covered area, soil moisture, and others in STORM and SSARR. General characteristics of a hydrologic model needed to make maximum use of remotely sensed data are discussed. Suggested goals for improvements in remote sensing for use in models are also established.
NASA Technical Reports Server (NTRS)
Sand, F.; Christie, R.
1975-01-01
Extending the crop survey application of remote sensing from small experimental regions to state and national levels requires that a sample of agricultural fields be chosen for remote sensing of crop acreage, and that a statistical estimate be formulated with measurable characteristics. The critical requirements for the success of the application are reviewed in this report. The problem of sampling in the presence of cloud cover is discussed. Integration of remotely sensed information about crops into current agricultural crop forecasting systems is treated on the basis of the USDA multiple frame survey concepts, with an assumed addition of a new frame derived from remote sensing. Evolution of a crop forecasting system which utilizes LANDSAT and future remote sensing systems is projected for the 1975-1990 time frame.
Archimedean Witness: The Application of Remote Sensing as an Aid to Human Rights Prosecutions
NASA Astrophysics Data System (ADS)
Walker, James Robin
The 21st century has seen a significant increase in the use of remote sensing technology in the international human rights arena for the purposes of documenting crimes against humanity. The nexus between remote sensing, human rights activism, and international criminal prosecutions sits at a significant crossroads within geographic thought, calling attention to the epistemological and geopolitical implications that stem from the "view from nowhere" afforded by satellite imagery. Therefore, this thesis is divided into three sections. The first looks at the geographical questions raised by the expansion of remote sensing use in the context of international activism. The second explores the complications inherent in the presentation of remote sensing data as evidence of war crimes. Building upon the first two, the third section is a case study in alternate forms of analysis, aimed at expanding the utility of remote sensing data in international criminal prosecutions.
Sun, Zhong Yu; Chen, Yan Qiao; Yang, Long; Tang, Guang Liang; Yuan, Shao Xiong; Lin, Zhi Wen
2017-02-01
Low-altitude unmanned aerial vehicles (UAV) remote sensing system overcomes the deficiencies of space and aerial remote sensing system in resolution, revisit period, cloud cover and cost, which provides a novel method for ecological research on mesoscale. This study introduced the composition of UAV remote sensing system, reviewed its applications in species, population, community and ecosystem ecology research. Challenges and opportunities of UAV ecology were identified to direct future research. The promising research area of UAV ecology includes the establishment of species morphology and spectral characteristic data base, species automatic identification, the revelation of relationship between spectral index and plant physiological processes, three-dimension monitoring of ecosystem, and the integration of remote sensing data from multi resources and multi scales. With the development of UAV platform, data transformation and sensors, UAV remote sensing technology will have wide application in ecology research.
Light Scattering by Gaussian Particles: A Solution with Finite-Difference Time Domain Technique
NASA Technical Reports Server (NTRS)
Sun, W.; Nousiainen, T.; Fu, Q.; Loeb, N. G.; Videen, G.; Muinonen, K.
2003-01-01
The understanding of single-scattering properties of complex ice crystals has significance in atmospheric radiative transfer and remote-sensing applications. In this work, light scattering by irregularly shaped Gaussian ice crystals is studied with the finite-difference time-domain (FDTD) technique. For given sample particle shapes and size parameters in the resonance region, the scattering phase matrices and asymmetry factors are calculated. It is found that the deformation of the particle surface can significantly smooth the scattering phase functions and slightly reduce the asymmetry factors. The polarization properties of irregular ice crystals are also significantly different from those of spherical cloud particles. These FDTD results could provide a reference for approximate light-scattering models developed for irregular particle shapes and can have potential applications in developing a much simpler practical light scattering model for ice clouds angular-distribution models and for remote sensing of ice clouds and aerosols using polarized light. (copyright) 2003 Elsevier Science Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Yang, P.; Ding, J.; Tang, G.; King, M. D.; Platnick, S. E.; Meyer, K.; Mlawer, E. J.
2017-12-01
Van de Hulst (1974) showed several quasi-invariant quantities in radiative transfer concerning multiple scattering. Recently, we illustrated that the aforesaid quasi-invariant quantities are useful in remote sensing of ice cloud properties from spaceborne radiometric observations (Ding et al. 2017). Specifically, the overall performance of an ice cloud optical property model can be estimated without carrying out detailed retrieval implementation. In this presentation, we will review the radiative transfer similarity relations and some recent results including the study by Ding et al. (2017). Furthermore, we will illustrate an application of the similarity relations to improvement of broadband radiative flux computation. For example, the Rapid Radiative Transfer Model (RRTM, Mlawer et al, 1999) does not consider multiple scattering in the longwave spectral regime (RRTMG-LW) ("G" indicates a version suitable for GCM applications). We show that the similarity relations can be used to effectively improve the accuracy of RRTMG-LW without increasing computational effort.
Inversion Schemes to Retrieve Atmospheric and Oceanic Parameters from SeaWiFS Data
NASA Technical Reports Server (NTRS)
Deschamps, P.-Y.; Frouin, R.
1997-01-01
The investigation focuses on two key issues in satellite ocean color remote sensing, namely the presence of whitecaps on the sea surface and the validity of the aerosol models selected for the atmospheric correction of SeaWiFS data. Experiments were designed and conducted at the Scripps Institution of Oceanography to measure the optical properties of whitecaps and to study the aerosol optical properties in a typical mid-latitude coastal environment. CIMEL Electronique sunphotometers, now integrated in the AERONET network, were also deployed permanently in Bermuda and in Lanai, calibration/validation sites for SeaWiFS and MODIS. Original results were obtained on the spectral reflectance of whitecaps and on the choice of aerosol models for atmospheric correction schemes and the type of measurements that should be made to verify those schemes. Bio-optical algorithms to remotely sense primary productivity from space were also evaluated, as well as current algorithms to estimate PAR at the earth's surface.
NASA Astrophysics Data System (ADS)
Ehrlich, André; Bierwirth, Eike; Borrmann, Stephan; Crewell, Susanne; Herber, Andreas; Hoor, Peter; Jourdan, Olivier; Krämer, Martina; Lüpkes, Christof; Mertes, Stephan; Neuber, Roland; Petzold, Andreas; Schnaiter, Martin; Schneider, Johannes; Weigel, Ralf; Weinzierl, Bernadett; Wendisch, Manfred
2016-04-01
To improve our understanding of Arctic mixed-phase clouds a series of airborne research campaigns has been initiated by a collaboration of German research institutes. Clouds in areas dominated by a close sea-ice cover were observed during the research campaign Vertical distribution of ice in Arctic mixed-phase clouds (VERDI, April/May 2012) and the Radiation-Aerosol-Cloud Experiment in the Arctic Circle (RACEPAC, April/May 2014) which both were based in Inuvik, Canada. The aircraft (Polar 5 & 6, Basler BT-67) operated by the Alfred Wegener Institute for Polar and Marine Research, Germany did cover a wide area above the Canadian Beaufort with in total 149 flight hours (62h during VERDI, 87h during RACEPAC). For May/June 2017 a third campaign ACLOUD (Arctic Clouds - Characterization of Ice, aerosol Particles and Energy fluxes) with base in Svalbard is planned within the Transregional Collaborative Research Centre TR 172 ArctiC Amplification: Climate Relevant Atmospheric and SurfaCe Processes, and Feedback Mechanisms (AC)3 to investigate Arctic clouds in the transition zone between open ocean and sea ice. The aim of all campaigns is to combine remote sensing and in-situ cloud, aerosol and trace gas measurements to investigate interactions between radiation, cloud and aerosol particles. While during VERDI remote sensing and in-situ measurements were performed by one aircraft subsequently, for RACEPAC and ACLOUD two identical aircraft are coordinated at different altitudes to horizontally collocate both remote sensing and in-situ measurements. The campaign showed that in this way radiative and microphysical processes in the clouds can by studied more reliably and remote sensing methods can be validated efficiently. Here we will illustrate the scientific strategy of the projects including the progress in instrumentation. Differences in the general synoptic and sea ice situation and related changes in cloud properties at the different locations and seasons will be addressed to illustrate the broad spectrum of the observations. Exemplary results will be highlighted.
Optical sampling of the flux tower footprint
NASA Astrophysics Data System (ADS)
Gamon, J. A.
2015-03-01
The purpose of this review is to address the reasons and methods for conducting optical remote sensing within the flux tower footprint. Fundamental principles and conclusions gleaned from over two decades of proximal remote sensing at flux tower sites are reviewed. An organizing framework is the light-use efficiency (LUE) model, both because it is widely used, and because it provides a useful theoretical construct for integrating optical remote sensing with flux measurements. Multiple ways of driving this model, ranging from meteorological measurements to remote sensing, have emerged in recent years, making it a convenient conceptual framework for comparative experimental studies. New interpretations of established optical sampling methods, including the Photochemical Reflectance Index (PRI) and Solar-Induced Fluorescence (SIF), are discussed within the context of the LUE model. Multi-scale analysis across temporal and spatial axes is a central theme, because such scaling can provide links between ecophysiological mechanisms detectable at the level of individual organisms and broad patterns emerging at larger scales, enabling evaluation of emergent properties and extrapolation to the flux footprint and beyond. Proper analysis of sampling scale requires an awareness of sampling context that is often essential to the proper interpretation of optical signals. Additionally, the concept of optical types, vegetation exhibiting contrasting optical behavior in time and space, is explored as a way to frame our understanding of the controls on surface-atmosphere fluxes. Complementary NDVI and PRI patterns across ecosystems are offered as an example of this hypothesis, with the LUE model and light-response curve providing an integrating framework. We conclude that experimental approaches allowing systematic exploration of plant optical behavior in the context of the flux tower network provides a unique way to improve our understanding of environmental constraints and ecophysiological function. In addition to an enhanced mechanistic understanding of ecosystem processes, this integration of remote sensing with flux measurements offers many rich opportunities for upscaling, satellite validation, and informing practical management objectives ranging form assessing ecosystem health and productivity to quantifying biospheric carbon sequestration.
International Models and Methods of Remote Sensing Education and Training.
ERIC Educational Resources Information Center
Anderson, Paul S.
A classification of remote sensing courses throughout the world, the world-wide need for sensing instruction, and alternative instructional methods for meeting those needs are discussed. Remote sensing involves aerial photointerpretation or the use of satellite and other non-photographic imagery; its focus is to interpret what is in the photograph…
NASA Technical Reports Server (NTRS)
Ross, A.; Richards, A.; Keith, K.; Frew, C.; Boseck, J.; Sutton, S.; Watts, C.; Rickman, D.
2007-01-01
This project focused on a comprehensive utilization of air quality model products as decision support tools (DST) needed for public health applications. A review of past and future air quality measurement methods and their uncertainty, along with the relationship of air quality to national and global public health, is vital. This project described current and future NASA satellite remote sensing and ground sensing capabilities and the potential for using these sensors to enhance the prediction, prevention, and control of public health effects that result from poor air quality. The qualitative uncertainty of current satellite remotely sensed air quality, the ground-based remotely sensed air quality, the air quality/public health model, and the decision making process is evaluated in this study. Current peer-reviewed literature suggests that remotely sensed air quality parameters correlate well with ground-based sensor data. A satellite remote-sensed and ground-sensed data complement is needed to enhance the models/tools used by policy makers for the protection of national and global public health communities
Theme section for 36th International Symposium for Remote Sensing of the Environment in Berlin
NASA Astrophysics Data System (ADS)
Trinder, John; Waske, Björn
2016-09-01
The International Symposium for Remote Sensing of the Environment (ISRSE) is the longest series of international conferences held on the topic of Remote Sensing, commencing in Ann Arbor, Michigan USA in 1962. While the name of the conference has changed over the years, it is regularly held approximately every 2 years and continues to be one of the leading international conferences on remote sensing. The latest of these conferences, the 36th ISRSE, was held in Berlin, Germany from 11 to 15 May 2015. All complete papers from the conference are available in the ISPRS International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences at http://www.int-arch-photogramm-remote-sens-spatial-inf-sci.net/XL-7-W3/index.html.
A remote sensing data assimilation system for cold land processes hydrologic estimation
NASA Astrophysics Data System (ADS)
Andreadis, Konstantinos M.
2009-12-01
Accurate forecasting of snow properties is important for effective water resources management, especially in mountainous areas. Model-based approaches are limited by biases and uncertainties. Remote sensing offers an opportunity for observation of snow properties over larger areas. Traditional approaches to direct estimation of snow properties from passive microwave remote sensing have been plagued by limitations such as the tendency of estimates to saturate for moderately deep snowpacks and the effects of mixed land cover. To address these complications, a data assimilation system is developed and evaluated in a three-part research. The data assimilation system requires the embedding of a microwave emissions model which uses modeled snowpack properties. In the first part of this study, such a model is evaluated using multi-scale TB measurements from the Cold Land Processes Experiment. The model's ability to reproduce snowpack microphysical properties is evaluated through comparison with snowpit measurements, while TB predictions are evaluated through comparison with in-situ, aircraft and satellite measurements. Point comparisons showed limitations in the model, while the spatial averaging and the effects of forest cover suppressed errors in comparisons with aircraft measurements. The layered character of snowpacks increases the complexity of algorithms intended to retrieve snow properties from the snowpack microwave return signal. Implementation of a retrieval strategy requires knowledge of stratigraphy, which practically can only be produced by models. In the second part of this study, we describe a multi-layer model designed for such applications. The model coupled with a radiative transfer scheme improved the estimation of TB, while potential impacts when assimilating radiances are explored. A system that merges SWE model predictions and observations of SCE and TB, is evaluated in the third part of this study over one winter season in the Upper Snake River basin. Two data assimilation techniques, the Ensemble Kalman filter and the Ensemble Multiscale Kalman filter are tested with the multilayer snow model forced by downscaled re-analysis meteorological observations. Both the EnKF and EnMKF showed modest improvements when compared with the open-loop simulation, relative to a baseline simulation which used in-situ meteorological data, while comparisons with in-situ SWE measurements showed an overall improvement.
NASA Technical Reports Server (NTRS)
Santanello, Joseph A.; Peters-Lidard, Christa D.; Garcia, Matthew E.; Mocko, David M.; Tischler, Michael A.; Moran, M. Susan; Thoma, D. P.
2007-01-01
Near-surface soil moisture is a critical component of land surface energy and water balance studies encompassing a wide range of disciplines. However, the processes of infiltration, runoff, and evapotranspiration in the vadose zone of the soil are not easy to quantify or predict because of the difficulty in accurately representing soil texture and hydraulic properties in land surface models. This study approaches the problem of parameterizing soils from a unique perspective based on components originally developed for operational estimation of soil moisture for mobility assessments. Estimates of near-surface soil moisture derived from passive (L-band) microwave remote sensing were acquired on six dates during the Monsoon '90 experiment in southeastern Arizona, and used to calibrate hydraulic properties in an offline land surface model and infer information on the soil conditions of the region. Specifically, a robust parameter estimation tool (PEST) was used to calibrate the Noah land surface model and run at very high spatial resolution across the Walnut Gulch Experimental Watershed. Errors in simulated versus observed soil moisture were minimized by adjusting the soil texture, which in turn controls the hydraulic properties through the use of pedotransfer functions. By estimating a continuous range of widely applicable soil properties such as sand, silt, and clay percentages rather than applying rigid soil texture classes, lookup tables, or large parameter sets as in previous studies, the physical accuracy and consistency of the resulting soils could then be assessed. In addition, the sensitivity of this calibration method to the number and timing of microwave retrievals is determined in relation to the temporal patterns in precipitation and soil drying. The resultant soil properties were applied to an extended time period demonstrating the improvement in simulated soil moisture over that using default or county-level soil parameters. The methodology is also applied to an independent case at Walnut Gulch using a new soil moisture product from active (C-band) radar imagery with much lower spatial and temporal resolution. Overall, results demonstrate the potential to gain physically meaningful soils information using simple parameter estimation with few but appropriately timed remote sensing retrievals.
THE REMOTE SENSING DATA GATEWAY
The EPA Remote Sensing Data Gateway (RSDG) is a pilot project in the National Exposure Research Laboratory (NERL) to develop a comprehensive data search, acquisition, delivery and archive mechanism for internal, national and international sources of remote sensing data for the co...
A remote sensing and GIS-enabled asset management system (RS-GAMS) : phase 2.
DOT National Transportation Integrated Search
2014-04-01
Under the U.S. Department of Transportation (DOT) Commercial Remote Sensing and Spatial : Information (CRS&SI) Technology Initiative 2 of the Transportation Infrastructure Construction : and Condition Assessment, an intelligent Remote Sensing and GIS...
Remote sensing applications program
NASA Technical Reports Server (NTRS)
1984-01-01
The activities of the Mississippi Remote Sensing Center are described in addition to technology transfer and information dissemination, remote sensing topics such as timber identification, water quality, flood prevention, land use, erosion control, animal habitats, and environmental impact studies are also discussed.
Remote Sensing Terminology in a Global and Knowledge-Based World
NASA Astrophysics Data System (ADS)
Kancheva, Rumiana
The paper is devoted to terminology issues related to all aspects of remote sensing research and applications. Terminology is the basis for a better understanding among people. It is crucial to keep up with the latest developments and novelties of the terminology in advanced technology fields such as aerospace science and industry. This is especially true in remote sensing and geoinformatics which develop rapidly and have ever extending applications in various domains of science and human activities. Remote sensing terminology issues are directly relevant to the contemporary worldwide policies on information accessibility, dissemination and utilization of research results in support of solutions to global environmental challenges and sustainable development goals. Remote sensing and spatial information technologies are an integral part of the international strategies for cooperation in scientific, research and application areas with a particular accent on environmental monitoring, ecological problems natural resources management, climate modeling, weather forecasts, disaster mitigation and many others to which remote sensing data can be put. Remote sensing researchers, professionals, students and decision makers of different counties and nationalities should fully understand, interpret and translate into their native language any term, definition or acronym found in papers, books, proceedings, specifications, documentation, and etc. The importance of the correct use, precise definition and unification of remote sensing terms refers not only to people working in this field but also to experts in a variety of disciplines who handle remote sensing data and information products. In this paper, we draw the attention on the specifics, peculiarities and recent needs of compiling specialized dictionaries in the area of remote sensing focusing on Earth observations and the integration of remote sensing with other geoinformation technologies such as photogrammetry, geodesy, GIS, etc. Our belief is that the elaboration of bilingual and multilingual dictionaries and glossaries in this spreading, most technically advanced and promising field of human expertise is of great practical importance. The work on an English-Bulgarian Dictionary of Remote Sensing Terms is described including considerations on its scope, structure, information content, sellection of terms, and etc. The vision builds upon previous national and international experience and makes use of ongoing activities on the subject. Any interest in cooperation and initiating suchlike collaborative projects is welcome and highly appreciated.
Indicators of international remote sensing activities
NASA Technical Reports Server (NTRS)
Spann, G. W.
1977-01-01
The extent of worldwide remote sensing activities, including the use of satellite and high/medium altitude aircraft data was studied. Data were obtained from numerous individuals and organizations with international remote sensing responsibilities. Indicators were selected to evaluate the nature and scope of remote sensing activities in each country. These indicators ranged from attendance at remote sensing workshops and training courses to the establishment of earth resources satellite ground stations and plans for the launch of earth resources satellites. Results indicate that this technology constitutes a rapidly increasing component of environmental, land use, and natural resources investigations in many countries, and most of these countries rely on the LANDSAT satellites for a major portion of their data.
Free acquisition and dissemination of data through remote sensing. [Landsat program legal aspects
NASA Technical Reports Server (NTRS)
Hosenball, S. N.
1976-01-01
Free acquisition and dissemination of data through remote sensing is discussed with reference to the Landsat program. The role of the Scientific and Technical Subcommittee of the U.N. General Assembly's Committee on the Peaceful Uses of Outer Space has made recommendations on the expansion of existing ground stations and on the establishment of an experimental center for training in remote sensing. The working group for the legal subcommittee of the same U.N. committee indicates that there are common elements in the three drafts on remote sensing submitted to it: a call for international cooperation and the belief that remote sensing should be conducted for the benefit of all mankind.
NASA Astrophysics Data System (ADS)
Manzo, Ciro; Bassani, Cristiana
2016-04-01
This paper focuses on the evaluation of surface reflectance obtained by different atmospheric correction algorithms of the Landsat 8 OLI data considering or not the micro-physical properties of the aerosol when images are acquired in desert area located in South-West of Nile delta. The atmospheric correction of remote sensing data was shown to be sensitive to the aerosol micro-physical properties, as reported in Bassani et al., 2012. In particular, the role of the aerosol micro-physical properties on the accuracy of the atmospheric correction of remote sensing data was investigated [Bassani et al., 2015; Tirelli et al., 2015]. In this work, the OLI surface reflectance was retrieved by the developed OLI@CRI (OLI ATmospherically Corrected Reflectance Imagery) physically-based atmospheric correction which considers the aerosol micro-physical properties available from the two AERONET stations [Holben et al., 1998] close to the study area (El_Farafra and Cairo_EMA_2). The OLI@CRI algorithm is based on 6SV radiative transfer model, last generation of the Second Simulation of a Satellite Signal in the Solar Spectrum (6S) radiative transfer code [Kotchenova et al., 2007; Vermote et al., 1997], specifically developed for Landsat 8 OLI data. The OLI reflectance obtained by the OLI@CRI was compared with reflectance obtained by other atmospheric correction algorithms which do not consider micro-physical properties of aerosol (DOS) or take on aerosol standard models (FLAASH, implemented in ENVI software). The accuracy of the surface reflectance retrieved by different algorithms were calculated by comparing the spatially resampled OLI images with the MODIS surface reflectance products. Finally, specific image processing was applied to the OLI reflectance images in order to compare remote sensing products obtained for same scene. The results highlight the influence of the physical characterization of aerosol on the OLI data improving the retrieved atmospherically corrected reflectance. One of the most important outreach of this research is the retrieval of the highest possible accuracy of the OLI reflectance for land surface variables by spectral indices. Consequently if OLI@CRI algorithm is applied to time series data, the uncertainty into the time curve can be reduced. Kotchenova and Vermote, 2007. Appl. Opt. doi:10.1364/AO.46.004455. Vermote et al., 1997. IEEE Trans. Geosci. Remote Sens. doi:10.1109/36.581987. Bassani et al., 2015. Atmos. Meas. Tech. doi:10.5194/amt-8-1593-2015. Bassani et al., 2012. Atmos. Meas. Tech. doi:10.5194/amt-5-1193-2012. Tirelli et al., 2015. Remote Sens. doi:10.3390/rs70708391. Holben et al., 1998. Rem. Sens. Environ. doi:10.1016/S0034-4257(98)00031-5.
Tagesson, Torbern; Fensholt, Rasmus; Guiro, Idrissa; Rasmussen, Mads Olander; Huber, Silvia; Mbow, Cheikh; Garcia, Monica; Horion, Stéphanie; Sandholt, Inge; Holm-Rasmussen, Bo; Göttsche, Frank M; Ridler, Marc-Etienne; Olén, Niklas; Lundegard Olsen, Jørgen; Ehammer, Andrea; Madsen, Mathias; Olesen, Folke S; Ardö, Jonas
2015-01-01
The Dahra field site in Senegal, West Africa, was established in 2002 to monitor ecosystem properties of semiarid savanna grassland and their responses to climatic and environmental change. This article describes the environment and the ecosystem properties of the site using a unique set of in situ data. The studied variables include hydroclimatic variables, species composition, albedo, normalized difference vegetation index (NDVI), hyperspectral characteristics (350-1800 nm), surface reflectance anisotropy, brightness temperature, fraction of absorbed photosynthetic active radiation (FAPAR), biomass, vegetation water content, and land-atmosphere exchanges of carbon (NEE) and energy. The Dahra field site experiences a typical Sahelian climate and is covered by coexisting trees (~3% canopy cover) and grass species, characterizing large parts of the Sahel. This makes the site suitable for investigating relationships between ecosystem properties and hydroclimatic variables for semiarid savanna ecosystems of the region. There were strong interannual, seasonal and diurnal dynamics in NEE, with high values of ~-7.5 g C m(-2) day(-1) during the peak of the growing season. We found neither browning nor greening NDVI trends from 2002 to 2012. Interannual variation in species composition was strongly related to rainfall distribution. NDVI and FAPAR were strongly related to species composition, especially for years dominated by the species Zornia glochidiata. This influence was not observed in interannual variation in biomass and vegetation productivity, thus challenging dryland productivity models based on remote sensing. Surface reflectance anisotropy (350-1800 nm) at the peak of the growing season varied strongly depending on wavelength and viewing angle thereby having implications for the design of remotely sensed spectral vegetation indices covering different wavelength regions. The presented time series of in situ data have great potential for dryland dynamics studies, global climate change related research and evaluation and parameterization of remote sensing products and dynamic vegetation models. © 2014 John Wiley & Sons Ltd.
Some fundamental concepts in remote sensing
NASA Technical Reports Server (NTRS)
1982-01-01
The term remote sensing is defined as well as ideas such as class, pattern, feature, pattern recognition, feature extraction, and theme. The electromagnetic spectrum is examined especially those wavelength regions available to remote sensing. Relevant energy and wave propagation laws are discussed and the characteristics of emitted and reflected radiation and their detection are investigated. The identification of classes by their spectral signatures, the multispectral approach, and the principal types of sensors and platforms used in remote sensing are also considered.
LWIR Microgrid Polarimeter for Remote Sensing Studies
2010-02-28
Polarimeter for Remote Sensing Studies 5b. GRANT NUMBER FA9550-08-1-0295 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER 1. Scott Tyo 5e. TASK...and tested at the University of Arizona, and preliminary images are shown in this final report. 15. SUBJECT TERMS Remote Sensing , polarimetry 16...7.0 LWIR Microgrid Polarimeter for Remote Sensing Studies J. Scott Tyo College of Optical Sciences University of Arizona Tucson, AZ, 85721 tyo
NASA Astrophysics Data System (ADS)
Han, Xiuzhen; Ma, Jianwen; Bao, Yuhai
2006-12-01
Currently the function of operational locust monitor system mainly focused on after-hazards monitoring and assessment, and to found the way effectively to perform early warning and prediction has more practical meaning. Through 2001, 2002 two years continuously field sample and statistics for locusts eggs hatching, nymph growth, adults 3 phases observation, sample statistics and calculation, spectral measurements as well as synchronically remote sensing data processing we raise the view point of Remote Sensing three stage monitor the locust hazards. Based on the point of view we designed remote sensing monitor in three stages: (1) during the egg hitching phase remote sensing can retrieve parameters of land surface temperature (LST) and soil moisture; (2) during nymph growth phase locust increases appetite greatly and remote sensing can calculate vegetation index, leaf area index, vegetation cover and analysis changes; (3) during adult phase the locust move and assembly towards ponds and water ditches as well as less than 75% vegetation cover areas and remote sensing combination with field data can monitor and predicts potential areas for adult locusts to assembly. In this way the priority of remote sensing technology is elaborated effectively and it also provides technique support for the locust monitor system. The idea and techniques used in the study can also be used as reference for other plant diseases and insect pests.
NASA Remote Sensing Research as Applied to Archaeology
NASA Technical Reports Server (NTRS)
Giardino, Marco J.; Thomas, Michael R.
2002-01-01
The use of remotely sensed images is not new to archaeology. Ever since balloons and airplanes first flew cameras over archaeological sites, researchers have taken advantage of the elevated observation platforms to understand sites better. When viewed from above, crop marks, soil anomalies and buried features revealed new information that was not readily visible from ground level. Since 1974 and initially under the leadership of Dr. Tom Sever, NASA's Stennis Space Center, located on the Mississippi Gulf Coast, pioneered and expanded the application of remote sensing to archaeological topics, including cultural resource management. Building on remote sensing activities initiated by the National Park Service, archaeologists increasingly used this technology to study the past in greater depth. By the early 1980s, there were sufficient accomplishments in the application of remote sensing to anthropology and archaeology that a chapter on the subject was included in fundamental remote sensing references. Remote sensing technology and image analysis are currently undergoing a profound shift in emphasis from broad classification to detection, identification and condition of specific materials, both organic and inorganic. In the last few years, remote sensing platforms have grown increasingly capable and sophisticated. Sensors currently in use, or nearing deployment, offer significantly finer spatial and spectral resolutions than were previously available. Paired with new techniques of image analysis, this technology may make the direct detection of archaeological sites a realistic goal.
Patterns of reflected radiance associated with geobotanical anomalies
NASA Technical Reports Server (NTRS)
Birnie, R. W.; Stone, T. A.; Francica, J. R.
1985-01-01
This paper summarizes three remote sensing experiments in which changes in remotely measured reflected radiance patterns of vegetation correlated with changes in geology. In two cases using airborne spectroradiometer data, changes in the physical properties of a uniform species correlated with zones of porphyry copper mineralization. In another case using Landsat digital data, changes were detected in the distribution and density of a number of species and combined with soil brightness data to produce a composite index useful for distinguishing lithologies.
NASA Technical Reports Server (NTRS)
Serke, David J.; King, Michael Christopher; Hansen, Reid; Reehorst, Andrew L.
2016-01-01
National Aeronautics and Space Administration (NASA) and the National Center for Atmospheric Research (NCAR) have developed an icing remote sensing technology that has demonstrated skill at detecting and classifying icing hazards in a vertical column above an instrumented ground station. This technology has recently been extended to provide volumetric coverage surrounding an airport. Building on the existing vertical pointing system, the new method for providing volumetric coverage utilizes a vertical pointing cloud radar, a multi-frequency microwave radiometer with azimuth and elevation pointing, and a NEXRAD radar. The new terminal area icing remote sensing system processes the data streams from these instruments to derive temperature, liquid water content, and cloud droplet size for each examined point in space. These data are then combined to ultimately provide icing hazard classification along defined approach paths into an airport. To date, statistical comparisons of the vertical profiling technology have been made to Pilot Reports and Icing Forecast Products. With the extension into relatively large area coverage and the output of microphysical properties in addition to icing severity, the use of these comparators is not appropriate and a more rigorous assessment is required. NASA conducted a field campaign during the early months of 2015 to develop a database to enable the assessment of the new terminal area icing remote sensing system and further refinement of terminal area icing weather information technologies in general. In addition to the ground-based remote sensors listed earlier, in-situ icing environment measurements by weather balloons were performed to produce a comprehensive comparison database. Balloon data gathered consisted of temperature, humidity, pressure, super-cooled liquid water content, and 3-D position with time. Comparison data plots of weather balloon and remote measurements, weather balloon flight paths, bulk comparisons of integrated liquid water content and icing cloud extent agreement, and terminal-area hazard displays are presented. Discussions of agreement quality and paths for future development are also included.
Triki Fourati, Hela; Bouaziz, Moncef; Benzina, Mourad; Bouaziz, Samir
2017-04-01
Traditional surveying methods of soil properties over landscapes are dramatically cost and time-consuming. Thus, remote sensing is a proper choice for monitoring environmental problem. This research aims to study the effect of environmental factors on soil salinity and to map the spatial distribution of this salinity over the southern east part of Tunisia by means of remote sensing and geostatistical techniques. For this purpose, we used Advanced Spaceborne Thermal Emission and Reflection Radiometer data to depict geomorphological parameters: elevation, slope, plan curvature (PLC), profile curvature (PRC), and aspect. Pearson correlation between these parameters and soil electrical conductivity (EC soil ) showed that mainly slope and elevation affect the concentration of salt in soil. Moreover, spectral analysis illustrated the high potential of short-wave infrared (SWIR) bands to identify saline soils. To map soil salinity in southern Tunisia, ordinary kriging (OK), minimum distance (MD) classification, and simple regression (SR) were used. The findings showed that ordinary kriging technique provides the most reliable performances to identify and classify saline soils over the study area with a root mean square error of 1.83 and mean error of 0.018.
Code of Federal Regulations, 2010 CFR
2010-01-01
... Committees prior to any release outside the Department. (6) Related to remote sensing. (i) Provide technical... satellite remote sensing activities to assure full consideration and evaluation of advanced technology. (ii) Coordinate administrative, management, and budget information relating to the Department's remote sensing...
NASA Astrophysics Data System (ADS)
Lee, Zhongping; Carder, Kendall L.; Steward, Robert G.; Peacock, Thomas G.; Davis, Curtiss O.; Mueller, James L.
1997-02-01
Remote-sensing reflectance and inherent optical properties of oceanic properties of oceanic waters are important parameters for ocean optics. Due to surface reflectance, Rrs or water-leaving radiance is difficult to measure from above the surface. It usually is derived by correcting for the reflected skylight in the measured above-water upwelling radiance using a theoretical Fresnel reflectance value. As it is difficult to determine the reflected skylight, there are errors in the Q and E derived Rrs, and the errors may get bigger for high chl_a coastal waters. For better correction of the reflected skylight,w e propose the following derivation procedure: partition the skylight into Rayleigh and aerosol contributions, remove the Rayleigh contribution using the Fresnel reflectance, and correct the aerosol contribution using an optimization algorithm. During the process, Rrs and in-water inherent optical properties are derived at the same time. For measurements of 45 sites made in the Gulf of Mexico and Arabian Sea with chl_a concentrations ranging from 0.07 to 49 mg/m3, the derived Rrs and inherent optical property values were compared with those from in-water measurements. These results indicate that for the waters studied, the proposed algorithm performs quite well in deriving Rrs and in- water inherent optical properties from above-surface measurements for clear and turbid waters.
Analysis of Well-Clear Boundary Models for the Integration of UAS in the NAS
NASA Technical Reports Server (NTRS)
Upchurch, Jason M.; Munoz, Cesar A.; Narkawicz, Anthony J.; Chamberlain, James P.; Consiglio, Maria C.
2014-01-01
The FAA-sponsored Sense and Avoid Workshop for Unmanned Aircraft Systems (UAS) defnes the concept of sense and avoid for remote pilots as "the capability of a UAS to remain well clear from and avoid collisions with other airborne traffic." Hence, a rigorous definition of well clear is fundamental to any separation assurance concept for the integration of UAS into civil airspace. This paper presents a family of well-clear boundary models based on the TCAS II Resolution Advisory logic. Analytical techniques are used to study the properties and relationships satisfied by the models. Some of these properties are numerically quantifed using statistical methods.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ye, Tianyu; Mani, R. G.; Wegscheider, W.
2013-11-04
A concurrent remote sensing and magneto-transport study of the microwave excited two dimensional electron system (2DES) at liquid helium temperatures has been carried out using a carbon detector to remotely sense the microwave activity of the 2D electron system in the GaAs/AlGaAs heterostructure during conventional magneto-transport measurements. Various correlations are observed and reported between the oscillatory magnetotransport and the remotely sensed reflection. In addition, the oscillatory remotely sensed signal is shown to exhibit a power law type variation in its amplitude, similar to the radiation-induced magnetoresistance oscillations.
Growing concern over climate and management induced changes to soil nutrient status has prompted interest in understanding the spatial distribution of forest soil properties. Recent advancements in remotely sensed geospatial technologies are providing an increasing array of data...
Review of Remote Sensing Needs and Applications in Africa
NASA Technical Reports Server (NTRS)
Brown, Molly E.
2007-01-01
Remote sensing data has had an important role in identifying and responding to inter-annual variations in the African environment during the past three decades. As a largely agricultural region with diverse but generally limited government capacity to acquire and distribute ground observations of rainfall, temperature and other parameters, remote sensing is sometimes the only reliable measure of crop growing conditions in Africa. Thus, developing and maintaining the technical and scientific capacity to analyze and utilize satellite remote sensing data in Africa is critical to augmenting the continent's local weather/climate observation networks as well as its agricultural and natural resource development and management. The report Review of Remote Sensing Needs and Applications in Africa' has as its central goal to recommend to the US Agency for International Development an appropriate approach to support sustainable remote sensing applications at African regional remote sensing centers. The report focuses on "RS applications" to refer to the acquisition, maintenance and archiving, dissemination, distribution, analysis, and interpretation of remote sensing data, as well as the integration of interpreted data with other spatial data products. The report focuses on three primary remote sensing centers: (1) The AGRHYMET Regional Center in Niamey, Niger, created in 1974, is a specialized institute of the Permanent Interstate Committee for Drought Control in the Sahel (CILSS), with particular specialization in science and techniques applied to agricultural development, rural development, and natural resource management. (2) The Regional Centre for Maiming of Resources for Development (RCMRD) in Nairobi, Kenya, established in 1975 under the auspices of the United Nations Economic Commission for Africa and the Organization of African Unity (now the African Union), is an intergovernmental organization, with 15 member states from eastern and southern Africa. (3) The Regional Remote Sensing Unit (RRSU) in Gaborone, Botswana, began work in June 1988 and operates under the Agriculture Information Management System (AIMS), as part of the Food, Agriculture and Natural Resources (FANR) Directorate, based at the Southern Africa Development Community (SADC) Secretariat.
Sturdevant, J.A.
1981-01-01
The Earth Resources Observation Systems (EROS) Data Center (EDO, administered by the U.S. Geological Survey, U.S. Department of the Interior, provides remotely sensed data to the user community and offers a variety of professional services to further the understanding and use of remote sensing technology. EDC reproduces and sells photographic and electronic copies of satellite images of areas throughout the world. Other products include aerial photographs collected by 16 organizations, including the U.S. Geological Survey and the National Aeronautics and Space Administration. Primary users of the remotely sensed data are Federal, State, and municipal government agencies, universities, foreign nations, and private industries. The professional services available at EDC are primarily directed at integrating satellite and aircraft remote sensing technology into the programs of the Department of the Interior and its cooperators. This is accomplished through formal training workshops, user assistance, cooperative demonstration projects, and access to equipment and capabilities in an advanced data analysis laboratory. In addition, other Federal agencies, State and local governments, universities, and the general public can get assistance from the EDC Staff. Since 1973, EDC has contributed to the accelerating growth in development and operational use of remotely sensed data for land resource problems through its role as educator and by conducting basic and applied remote sensing applications research. As remote sensing technology continues to evolve, EDC will continue to respond to the increasing demand for timely information on remote sensing applications. Questions most often asked about EDC's research and training programs include: Who may attend an EDC remote sensing training course? Specifically, what is taught? Who may cooperate with EDC on remote sensing projects? Are interpretation services provided on a service basis? This report attempts to define the goals and objectives of and policies on the following EDC services: Training Program.User Assistance.Data Analysis Laboratory.Cooperative Demonstration Projects.Research Projects.
Risk profiling of schistosomiasis using remote sensing: approaches, challenges and outlook.
Walz, Yvonne; Wegmann, Martin; Dech, Stefan; Raso, Giovanna; Utzinger, Jürg
2015-03-17
Schistosomiasis is a water-based disease that affects an estimated 250 million people, mainly in sub-Saharan Africa. The transmission of schistosomiasis is spatially and temporally restricted to freshwater bodies that contain schistosome cercariae released from specific snails that act as intermediate hosts. Our objective was to assess the contribution of remote sensing applications and to identify remaining challenges in its optimal application for schistosomiasis risk profiling in order to support public health authorities to better target control interventions. We reviewed the literature (i) to deepen our understanding of the ecology and the epidemiology of schistosomiasis, placing particular emphasis on remote sensing; and (ii) to fill an identified gap, namely interdisciplinary research that bridges different strands of scientific inquiry to enhance spatially explicit risk profiling. As a first step, we reviewed key factors that govern schistosomiasis risk. Secondly, we examined remote sensing data and variables that have been used for risk profiling of schistosomiasis. Thirdly, the linkage between the ecological consequence of environmental conditions and the respective measure of remote sensing data were synthesised. We found that the potential of remote sensing data for spatial risk profiling of schistosomiasis is - in principle - far greater than explored thus far. Importantly though, the application of remote sensing data requires a tailored approach that must be optimised by selecting specific remote sensing variables, considering the appropriate scale of observation and modelling within ecozones. Interestingly, prior studies that linked prevalence of Schistosoma infection to remotely sensed data did not reflect that there is a spatial gap between the parasite and intermediate host snail habitats where disease transmission occurs, and the location (community or school) where prevalence measures are usually derived from. Our findings imply that the potential of remote sensing data for risk profiling of schistosomiasis and other neglected tropical diseases has yet to be fully exploited.
NASA Fluid Lensing & MiDAR: Next-Generation Remote Sensing Technologies for Aquatic Remote Sensing
NASA Technical Reports Server (NTRS)
Chirayath, Ved
2018-01-01
We present two recent instrument technology developments at NASA, Fluid Lensing and MiDAR, and their application to remote sensing of Earth's aquatic systems. Fluid Lensing is the first remote sensing technology capable of imaging through ocean waves in 3D at sub-cm resolutions. MiDAR is a next-generation active hyperspectral remote sensing and optical communications instrument capable of active fluid lensing. Fluid Lensing has been used to provide 3D multispectral imagery of shallow marine systems from unmanned aerial vehicles (UAVs, or drones), including coral reefs in American Samoa and stromatolite reefs in Hamelin Pool, Western Australia. MiDAR is being deployed on aircraft and underwater remotely operated vehicles (ROVs) to enable a new method for remote sensing of living and nonliving structures in extreme environments. MiDAR images targets with high-intensity narrowband structured optical radiation to measure an objectâ€"TM"s non-linear spectral reflectance, image through fluid interfaces such as ocean waves with active fluid lensing, and simultaneously transmit high-bandwidth data. As an active instrument, MiDAR is capable of remotely sensing reflectance at the centimeter (cm) spatial scale with a signal-to-noise ratio (SNR) multiple orders of magnitude higher than passive airborne and spaceborne remote sensing systems with significantly reduced integration time. This allows for rapid video-frame-rate hyperspectral sensing into the far ultraviolet and VNIR wavelengths. Previously, MiDAR was developed into a TRL 2 laboratory instrument capable of imaging in thirty-two narrowband channels across the VNIR spectrum (400-950nm). Recently, MiDAR UV was raised to TRL4 and expanded to include five ultraviolet bands from 280-400nm, permitting UV remote sensing capabilities in UV A, B, and C bands and enabling mineral identification and stimulated fluorescence measurements of organic proteins and compounds, such as green fluorescent proteins in terrestrial and aquatic organics.
Remote sensing as a source of data for outdoor recreation planning
NASA Technical Reports Server (NTRS)
Reed, W. E.; Goodell, H. G.; Emmitt, G. D.
1972-01-01
Specific data needs for outdoor recreation planning and the ability of tested remote sensors to provide sources for these data are examined. Data needs, remote sensor capabilities, availability of imagery, and advantages and problems of incorporating remote sensing data sources into ongoing planning data collection programs are discussed in detail. Examples of the use of imagery to derive data for a range of common planning analyses are provided. A selected bibliography indicates specific uses of data in planning, basic background materials on remote sensing technology, and sources of information on environmental information systems expected to use remote sensing to provide new environmental data of use in outdoor recreation planning.
Online Remote Sensing Interface
NASA Technical Reports Server (NTRS)
Lawhead, Joel
2007-01-01
BasinTools Module 1 processes remotely sensed raster data, including multi- and hyper-spectral data products, via a Web site with no downloads and no plug-ins required. The interface provides standardized algorithms designed so that a user with little or no remote-sensing experience can use the site. This Web-based approach reduces the amount of software, hardware, and computing power necessary to perform the specified analyses. Access to imagery and derived products is enterprise-level and controlled. Because the user never takes possession of the imagery, the licensing of the data is greatly simplified. BasinTools takes the "just-in-time" inventory control model from commercial manufacturing and applies it to remotely-sensed data. Products are created and delivered on-the-fly with no human intervention, even for casual users. Well-defined procedures can be combined in different ways to extend verified and validated methods in order to derive new remote-sensing products, which improves efficiency in any well-defined geospatial domain. Remote-sensing products produced in BasinTools are self-documenting, allowing procedures to be independently verified or peer-reviewed. The software can be used enterprise-wide to conduct low-level remote sensing, viewing, sharing, and manipulating of image data without the need for desktop applications.
NASA Astrophysics Data System (ADS)
Prata, F.; Stebel, K.
2013-12-01
Over the last few years there has been a recognition of the utility of satellite measurements to identify and track volcanic emissions that present a natural hazard to human populations. Mitigation of the volcanic hazard to life and the environment requires understanding of the properties of volcanic emissions, identifying the hazard in near real-time and being able to provide timely and accurate forecasts to affected areas. Amongst the many ways to measure volcanic emissions, satellite remote sensing is capable of providing global quantitative retrievals of important microphysical parameters such as ash mass loading, ash particle effective radius, infrared optical depth, SO2 partial and total column abundance, plume altitude, aerosol optical depth and aerosol absorbing index. The eruption of Eyjafjallajokull in April-May, 2010 led to increased research and measurement programs to better characterize properties of volcanic ash and the need to establish a data-base in which to store and access these data was confirmed. The European Space Agency (ESA) has recognized the importance of having a quality controlled data-base of satellite retrievals and has funded an activity (VAST) to develop novel remote sensing retrieval schemes and a data-base, initially focused on several recent hazardous volcanic eruptions. As a first step, satellite retrievals for the eruptions of Eyjafjallajokull, Grimsvotn, Puyhue-Cordon Caulle, Nabro, Merapi, Okmok, Kasatochi and Sarychev Peak are being considered. Here we describe the data, retrievals and methods being developed for the data-base. Three important applications of the data-base are illustrated related to the ash/aviation problem, to the impact of the Merapi volcanic eruption on the local population, and to estimate SO2 fluxes from active volcanoes-as a means to diagnose future unrest. Dispersion model simulations are also being included in the data-base. In time, data from conventional in situ sampling instruments, airborne and ground-based remote sensing platforms and other meta-data (bulk ash and gas properties, volcanic setting, volcanic eruption chronologies, hazards and impacts etc.) will be added. The data-base has the potential to provide the natural hazards community with the first dynamic atmospheric volcanic hazards map and will be a valuable tool particularly for global transport.
NASA Technical Reports Server (NTRS)
2002-01-01
Contents include the following: Monitoring the Ancient Countryside: Remote Sensing and GIS at the Chora of Chersonesos (Crimea, Ukraine). Integration of Remote Sensing and GIS for Management Decision Support in the Pendjari Biosphere Reserve (Republic of Benin). Monitoring of deforestation invasion in natural reserves of northern Madagascar based on space imagery. Cartography of Kahuzi-Biega National Park. Cartography and Land Use Change of World Heritage Areas and the Benefits of Remote Sensing and GIS for Conservation. Assessing and Monitoring Vegetation in Nabq Protected Area, South Sinai, Egypt, using combine approach of Satellite Imagery and Land Surveys. Evaluation of forage resources in semi-arid savannah environments with satellite imagery: contribution to the management of a protected area (Nakuru National Park) in Kenya. SOGHA, the Surveillance of Gorilla Habitat in World Heritage sites using Space Technologies. Application of Remote Sensing to monitor the Mont-Saint-Michel Bay (France). Application of Remote Sensing & GIS for the Conservation of Natural and Cultural Heritage Sites of the Southern Province of Sri Lanka. Social and Environmental monitoring of a UNESCO Biosphere Reserve: Case Study over the Vosges du Nord and Pfalzerwald Parks using Corona and Spot Imagery. Satellite Remote Sensing as tool to Monitor Indian Reservation in the Brazilian Amazonia. Remote Sensing and GIS Technology for Monitoring UNESCO World Heritage Sites - A Pilot Project. Urban Green Spaces: Modern Heritage. Monitoring of the technical condition of the St. Sophia Cathedral and related monastic buildings in Kiev with Space Applications, geo-positioning systems and GIS tools. The Murghab delta palaeochannel Reconstruction on the Basis of Remote Sensing from Space. Acquisition, Registration and Application of IKONOS Space Imagery for the cultural World Heritage site at Mew, Turkmenistan. Remote Sensing and VR applications for the reconstruction of archaeological landscapes. Archaeology through Space: Experience in Indian Subcontinent. The creation of a GIS Archaeological Site Location Catalogue in Yucatan: A Tool to preserve its Cultural Heritage. Mapping the Ancient Anasazi Roads of Southeast Utah. Remote Sensing and GIS Technology for Identification of Conservation and Heritage sites in Urban Planning. Mapping Angkor: For a new appraisal of the Angkor region. Angkor and radar imaging: seeing a vast pre-industrial low-density, dispersed urban complex. Technical and methodological aspects of archaeological CRM integrating high resolution satellite imagery. The contribution of satellite imagery to archaeological survey: an example from western Syria. The use of satellite images, digital elevation models and ground truth for the monitoring of land degradation in the "Cinque Terre" National park. Remote Sensing and GIS Applications for Protection and Conservation of World Heritage Site on the coast - Case Study of Tamil Nadu Coast, India. Multispectral high resolution satellite imagery in combination with "traditional" remote sensing and ground survey methods to the study of archaeological landscapes. The case study of Tuscany. Use of Remotely-Sensed Imagery in Cultural Landscape. Characterisation at Fort Hood, Texas. Heritage Learning and Data Collection: Biodiversity & Heritage Conservation through Collaborative Monitoring & Research. A collaborative project by UNESCO's WHC (World Heritage Center) & The GLOBE Program (Global Learning and Observations to Benefit the Environment). Practical Remote Sensing Activities in an Interdisciplinary Master-Level Space Course.
Exploring Remote Rensing Through The Use Of Readily-Available Classroom Technologies
NASA Astrophysics Data System (ADS)
Rogers, M. A.
2013-12-01
Frontier geoscience research using remotely-sensed satellite observation routinely requires sophisticated and novel remote sensing techniques to succeed. Describing these techniques in an educational format presents significant challenges to the science educator, especially with regards to the professional development setting where a small, but competent audience has limited instructor contact time to develop the necessary understanding. In this presentation, we describe the use of simple and cheaply available technologies, including ultrasonic transducers, FLIR detectors, and even simple web cameras to provide a tangible analogue to sophisticated remote sensing platforms. We also describe methods of curriculum development that leverages the use of these simple devices to teach the fundamentals of remote sensing, resulting in a deeper and more intuitive understanding of the techniques used in modern remote sensing research. Sample workshop itineraries using these techniques are provided as well.
NASA Technical Reports Server (NTRS)
Roller, N. E. G.
1977-01-01
The concept of using remote sensing to inventory wetlands and the related topics of proper inventory design and data collection are discussed. The material presented shows that aerial photography is the form of remote sensing from which the greatest amount of wetlands information can be derived. For extensive, general-purpose wetlands inventories, however, the use of LANDSAT data may be more cost-effective. Airborne multispectral scanners and radar are, in the main, too expensive to use - unless the information that these sensors alone can gather remotely is absolutely required. Multistage sampling employing space and high altitude remote sensing data in the initial stages appears to be an efficient survey strategy for gathering non-point specific wetlands inventory data over large areas. The operational role of remote sensing insupplying inventory data for application to several typical wetlands management problems is illustrated by summary descriptions of past ERIM projects.
Classification of permafrost active layer depth from remotely sensed and topographic evidence
DOE Office of Scientific and Technical Information (OSTI.GOV)
Peddle, D.R.; Franklin, S.E.
1993-04-01
The remote detection of permafrost (perennially frozen ground) has important implications to environmental resource development, engineering studies, natural hazard prediction, and climate change research. In this study, the authors present results from two experiments into the classification of permafrost active layer depth within the zone of discontinuous permafrost in northern Canada. A new software system based on evidential reasoning was implemented to permit the integrated classification of multisource data consisting of landcover, terrain aspect, and equivalent latitude, each of which possessed different formats, data types, or statistical properties that could not be handled by conventional classification algorithms available to thismore » study. In the first experiment, four active layer depth classes were classified using ground based measurements of the three variables with an accuracy of 83% compared to in situ soil probe determination of permafrost active layer depth at over 500 field sites. This confirmed the environmental significance of the variables selected, and provided a baseline result to which a remote sensing classification could be compared. In the second experiment, evidence for each input variable was obtained from image processing of digital SPOT imagery and a photogrammetric digital elevation model, and used to classify active layer depth with an accuracy of 79%. These results suggest the classification of evidence from remotely sensed measures of spectral response and topography may provide suitable indicators of permafrost active layer depth.« less
NASA Technical Reports Server (NTRS)
Byrnes, Ray
2007-01-01
A general overview of the USGS land remote sensing program is presented. The contents include: 1) Brief overview of USGS land remote sensing program; 2) Highlights of JACIE work at USGS; 3) Update on NASA/USGS Landsat Data Continuity Mission; and 4) Notes on alternative data sources.
Hydrological Application of Remote Sensing: Surface States -- Snow
NASA Technical Reports Server (NTRS)
Hall, Dorothy K.; Kelly, Richard E. J.; Foster, James L.; Chang, Alfred T. C.
2004-01-01
Remote sensing research of snow cover has been accomplished for nearly 40 years. The use of visible, near-infrared, active and passive-microwave remote sensing for the analysis of snow cover is reviewed with an emphasis on the work on the last decade.
Remote sensing education in NASA's technology transfer program
NASA Technical Reports Server (NTRS)
Weinstein, R. H.
1981-01-01
Remote sensing is a principal focus of NASA's technology transfer program activity with major attention to remote sensing education the Regional Program and the University Applications Program. Relevant activities over the past five years are reviewed and perspective on future directions is presented.
Analysis of Coastal Dunes: A Remote Sensing and Statistical Approach.
ERIC Educational Resources Information Center
Jones, J. Richard
1985-01-01
Remote sensing analysis and statistical methods were used to analyze the coastal dunes of Plum Island, Massachusetts. The research methodology used provides an example of a student project for remote sensing, geomorphology, or spatial analysis courses at the university level. (RM)
7 CFR 2.72 - Chairman, World Agricultural Outlook Board.
Code of Federal Regulations, 2010 CFR
2010-01-01
... Commodity Estimates Committees prior to any release outside the Department. (4) Related to remote sensing..., developing, and carrying out satellite remote sensing activities to assure full consideration and evaluation... to the Department's remote sensing activities including: (A) Inter- and intra-agency meetings...
Remote sensing and reflectance profiling in entomology
USDA-ARS?s Scientific Manuscript database
Remote sensing is about characterizing the status of objects and/or classifies their identity based on a combination of spectral features extracted from reflectance or transmission profiles of radiometric energy. Remote sensing can be ground-based, and therefore acquired at a high spatial resolutio...
Planning and Implementation of Remote Sensing Experiments.
Contents: TEKTITE II experiment-upwelling detection (NASA Mx 138); Design of oceanographic experiments (Gulf of Mexico, Mx 159); Design of oceanographic experiments (Gulf of Mexico, Mx 165); Experiments on thermal pollution; Remote sensing newsletter; Symposium on remote sensing in marine biology and fishery resources.
Ionospheric Profiles from Ultraviolet Remote Sensing
1997-09-30
The long-term goal of this project is to obtain ionospheric profiles from ultraviolet remote sensing of the ionosphere from orbiting space platforms... Remote sensing of the nighttime ionosphere is a more straightforward process because of the absence of the complications brought about by daytime
The hydrology of prehistoric farming systems in a central Arizona ecotone
NASA Technical Reports Server (NTRS)
Gumerman, G. J.; Hanson, J. A.; Brew, D.; Tomoff, K.; Weed, C. S.
1975-01-01
The prehistoric land use and water management in the semi-arid Southwest was examined. Remote sensing data, geology, hydrology and biology are discussed along with an evaluation of remote sensing contributions, recommendations for applications, and proposed future remote sensing studies.
NASA Technical Reports Server (NTRS)
Hidalgo, J. U.
1975-01-01
The applicability of remote sensing to transportation and traffic analysis, urban quality, and land use problems is discussed. Other topics discussed include preliminary user analysis, potential uses, traffic study by remote sensing, and urban condition analysis using ERTS.
Multi-scale remote sensing of coral reefs
Andréfouët, Serge; Hochberg, E.J.; Chevillon, Christophe; Muller-Karger, Frank E.; Brock, John C.; Hu, Chuanmin
2005-01-01
In this chapter we present how both direct and indirect remote sensing can be integrated to address two major coral reef applications - coral bleaching and assessment of biodiversity. This approach reflects the current non-linear integration of remote sensing for environmental assessment of coral reefs, resulting from a rapid increase in available sensors, processing methods and interdisciplinary collaborations (Andréfouët and Riegl, 2004). Moreover, this approach has greatly benefited from recent collaborations of once independent investigations (e.g., benthic ecology, remote sensing, and numerical modeling).
NASA Technical Reports Server (NTRS)
Philipson, W. R. (Principal Investigator)
1983-01-01
Built on Cornell's thirty years of experience in aerial photographic studies, the NASA-sponsored remote sensing program strengthened instruction and research in remote sensing, established communication links within and beyond the university community, and conducted research projects for or with town, county, state, federal, and private organizations in New York State. The 43 completed applied research projects are listed as well as 13 spinoff grants/contracts. The curriculum offered, consultations provided, and data processing facilities available are described. Publications engendered are listed including the thesis of graduates in the remote sensing program.
NASA Technical Reports Server (NTRS)
Seinfeld, J. H. (Principal Investigator)
1982-01-01
The problem of the assimilation of remote sensing data into mathematical models of atmospheric pollutant species was investigated. The data assimilation problem is posed in terms of the matching of spatially integrated species burden measurements to the predicted three-dimensional concentration fields from atmospheric diffusion models. General conditions were derived for the reconstructability of atmospheric concentration distributions from data typical of remote sensing applications, and a computational algorithm (filter) for the processing of remote sensing data was developed.
NASA Technical Reports Server (NTRS)
Seinfeld, J. H. (Principal Investigator)
1982-01-01
The problem of the assimilation of remote sensing data into mathematical models of atmospheric pollutant species was investigated. The problem is posed in terms of the matching of spatially integrated species burden measurements to the predicted three dimensional concentration fields from atmospheric diffusion models. General conditions are derived for the "reconstructability' of atmospheric concentration distributions from data typical of remote sensing applications, and a computational algorithm (filter) for the processing of remote sensing data is developed.
NASA Technical Reports Server (NTRS)
Polhemus, J. T.
1980-01-01
Five troublesome insect pest groups were chosen for study. These represent a broad spectrum of life cycles, ecological indicators, pest management strategies, and remote sensing requirements. Background data, and field study results for each of these subjects is discussed for each insect group. Specific groups studied include tsetse flies, locusts, western rangeland grasshoppers, range caterpillars, and mosquitoes. It is concluded that remote sensing methods are aplicable to the pest management of the insect groups studied.
Searches over graphs representing geospatial-temporal remote sensing data
Brost, Randolph; Perkins, David Nikolaus
2018-03-06
Various technologies pertaining to identifying objects of interest in remote sensing images by searching over geospatial-temporal graph representations are described herein. Graphs are constructed by representing objects in remote sensing images as nodes, and connecting nodes with undirected edges representing either distance or adjacency relationships between objects and directed edges representing changes in time. Geospatial-temporal graph searches are made computationally efficient by taking advantage of characteristics of geospatial-temporal data in remote sensing images through the application of various graph search techniques.
Antarctic Tabular Iceberg A-24 Movement and Decay Via Satellite Remote Sensing
1993-04-02
Austraia. Pulished by ft Amencan Meteormogicat Society. Bost:o, MA. P7.27 ANTARCTIC TABULAR ICEBERG A-24 MOVEMENT AND DECAY VIA SATELLITE REMOTE SENSING AD...2. REMOTE SENSING DATA SOURCES 85 GHz imagery verified that the iceberg began to indicate more than The vis/IR imagery from the one berg existed in...SSM/I Instrument Evaluation, conditions. The corresponding IR data IEEE Trans. Geosci. Remote Sensing , was also of particular interest due Vol. 28, pp
Coastal Remote Sensing Investigations. Volume 2. Beach Environment
1980-12-01
1 ’ "■"’.."■•■.» ■ a .1 "llpll CO Ifi o Q- O CO I y Final Report COASTAL REMOTE SENSING INVESTIGATIONS VOLUME 2: BEACH... Remote Sensing Grain Size Soil Moisture Soil Mineralogy Multispectral Scanner iO AUTNACT fCHtfÜBB on merit nJt ij ntinwin and idmlify In hloti...The work reported herein summarizes the final research activity in the Beach Environment Task of a program at ERIM entitled "Coastal Remote Sensing Investigations
Radar Remote Sensing of Waves and Currents in the Nearshore Zone
2006-01-01
and application of novel microwave, acoustic, and optical remote sensing techniques. The objectives of this effort are to determine the extent to which...Doppler radar techniques are useful for nearshore remote sensing applications. Of particular interest are estimates of surf zone location and extent...surface currents, waves, and bathymetry. To date, optical (video) techniques have been the primary remote sensing technology used for these applications. A key advantage of the radar is its all weather day-night operability.
Emergence of the Green’s Functions from Noise and Passive Acoustic Remote Sensing of Ocean Dynamics
2009-09-30
Acoustic Remote Sensing of Ocean Dynamics Oleg A. Godin CIRES/Univ. of Colorado and NOAA/OAR/Earth System Research Lab., R/PSD99, 325 Broadway...characterization of a time-varying ocean where ambient acoustic noise is utilized as a probing signal. • To develop a passive remote sensing technique for...inapplicable. 3. To quantify degradation of performance of passive remote sensing techniques due to ocean surface motion and other variations of underwater
Active and Passive Remote Sensing of Ice
1993-01-26
92 4. TITLE AND SUBTITLE S. FUNDING NUMBERS Active and Passive Remote Sensing of Ice NO0014-89-J-l 107 6. AUTHOR(S) 425f023-08 Prof. J.A. Kong 7... REMOTE SENSING OF ICE Sponsored by: Department of the Navy Office of Naval Research Contract number: N00014-89-J-1107 Research Organization: Center for...J. A. Kong Period covered: October 1, 1988 - November 30, 1992 St ACTIVE AND PASSIVE REMOTE SENSING OF ICE FINAL REPORT This annual report covers
Investigation of the application of remote sensing technology to environmental monitoring
NASA Technical Reports Server (NTRS)
Rader, M. L. (Principal Investigator)
1980-01-01
Activities and results are reported of a project to investigate the application of remote sensing technology developed for the LACIE, AgRISTARS, Forestry and other NASA remote sensing projects for the environmental monitoring of strip mining, industrial pollution, and acid rain. Following a remote sensing workshop for EPA personnel, the EOD clustering algorithm CLASSY was selected for evaluation by EPA as a possible candidate technology. LANDSAT data acquired for a North Dakota test sight was clustered in order to compare CLASSY with other algorithms.
Remote Sensing For Water Resources And Hydrology. Recommended research emphasis for the 1980's
NASA Technical Reports Server (NTRS)
1980-01-01
The problems and the areas of activity that the Panel believes should be emphasized in work on remote sensing for water resources and hydrology in the 1980's are set forth. The Panel deals only with those activities and problems in water resources and hydrology that the Panel considers important, and where, in the Panel's opinion, application of current remote sensing capability or advancements in remote sensing capability can help meet urgent problems and provide large returns in practical benefits.
Research on Method of Interactive Segmentation Based on Remote Sensing Images
NASA Astrophysics Data System (ADS)
Yang, Y.; Li, H.; Han, Y.; Yu, F.
2017-09-01
In this paper, we aim to solve the object extraction problem in remote sensing images using interactive segmentation tools. Firstly, an overview of the interactive segmentation algorithm is proposed. Then, our detailed implementation of intelligent scissors and GrabCut for remote sensing images is described. Finally, several experiments on different typical features (water area, vegetation) in remote sensing images are performed respectively. Compared with the manual result, it indicates that our tools maintain good feature boundaries and show good performance.
Multi-sensor data processing method for improved satellite retrievals
NASA Astrophysics Data System (ADS)
Fan, Xingwang
2017-04-01
Satellite remote sensing has provided massive data that improve the overall accuracy and extend the time series of environmental studies. In reflective solar bands, satellite data are related to land surface properties via radiative transfer (RT) equations. These equations generally include sensor-related (calibration coefficients), atmosphere-related (aerosol optical thickness) and surface-related (surface reflectance) parameters. It is an ill-posed problem to solve three parameters with only one RT equation. Even if there are two RT equations (dual-sensor data), the problem is still unsolvable. However, a robust solution can be obtained when any two parameters are known. If surface and atmosphere are known, sensor intercalibration can be performed. For example, the Advanced Very High Resolution Radiometer (AVHRR) was calibrated to the MODerate-resolution Imaging Spectroradiometer (MODIS) in Fan and Liu (2014) [Fan, X., and Liu, Y. (2014). Quantifying the relationship between intersensor images in solar reflective bands: Implications for intercalibration. IEEE Transactions on Geoscience and Remote Sensing, 52(12), 7727-7737.]. If sensor and surface are known, atmospheric data can be retrieved. For example, aerosol data were retrieved using tandem TERRA and AQUA MODIS images in Fan and Liu (2016a) [Fan, X., and Liu, Y. (2016a). Exploiting TERRA-AQUA MODIS relationship in the reflective solar bands for aerosol retrieval. Remote Sensing, 8(12), 996.]. If sensor and atmosphere are known, data consistency can be obtained. For example, Normalized Difference Vegetation Index (NDVI) data were intercalibrated among coarse-resolution sensors in Fan and Liu (2016b) [Fan, X., and Liu, Y. (2016b). A global study of NDVI difference among moderate-resolution satellite sensors. ISPRS Journal of Photogrammetry and Remote Sensing, 121, 177-191.], and among fine-resolution sensors in Fan and Liu (2017) [Fan, X., and Liu, Y. (2017). A generalized model for intersensor NDVI calibration and its comparison with regression approaches. IEEE Transactions on Geoscience and Remote Sensing, 55(3), doi: 10.1109/TGRS.2016.2635802.]. These studies demonstrate the success of multi-sensor data and novel methods in the research domain of geoscience. These data will benefit remote sensing of terrestrial parameters in decadal timescales, such as soil salinity content in Fan et al. (2016) [Fan, X., Weng, Y., and Tao, J. (2016). Towards decadal soil salinity mapping using Landsat time series data. International Journal of Applied Earth Observation and Geoinformation, 52, 32-41.].
Unmanned Aerial Mass Spectrometer Systems for In-Situ Volcanic Plume Analysis
NASA Astrophysics Data System (ADS)
Diaz, Jorge Andres; Pieri, David; Wright, Kenneth; Sorensen, Paul; Kline-Shoder, Robert; Arkin, C. Richard; Fladeland, Matthew; Bland, Geoff; Buongiorno, Maria Fabrizia; Ramirez, Carlos; Corrales, Ernesto; Alan, Alfredo; Alegria, Oscar; Diaz, David; Linick, Justin
2015-02-01
Technology advances in the field of small, unmanned aerial vehicles and their integration with a variety of sensor packages and instruments, such as miniature mass spectrometers, have enhanced the possibilities and applications of what are now called unmanned aerial systems (UAS). With such technology, in situ and proximal remote sensing measurements of volcanic plumes are now possible without risking the lives of scientists and personnel in charge of close monitoring of volcanic activity. These methods provide unprecedented, and otherwise unobtainable, data very close in space and time to eruptions, to better understand the role of gas volatiles in magma and subsequent eruption products. Small mass spectrometers, together with the world's smallest turbo molecular pump, have being integrated into NASA and University of Costa Rica UAS platforms to be field-tested for in situ volcanic plume analysis, and in support of the calibration and validation of satellite-based remote sensing data. These new UAS-MS systems are combined with existing UAS flight-tested payloads and assets, such as temperature, pressure, relative humidity, SO2, H2S, CO2, GPS sensors, on-board data storage, and telemetry. Such payloads are capable of generating real time 3D concentration maps of the Turrialba volcano active plume in Costa Rica, while remote sensing data are simultaneously collected from the ASTER and OMI space-borne instruments for comparison. The primary goal is to improve the understanding of the chemical and physical properties of emissions for mitigation of local volcanic hazards, for the validation of species detection and abundance of retrievals based on remote sensing, and to validate transport models.
Unmanned aerial mass spectrometer systems for in-situ volcanic plume analysis.
Diaz, Jorge Andres; Pieri, David; Wright, Kenneth; Sorensen, Paul; Kline-Shoder, Robert; Arkin, C Richard; Fladeland, Matthew; Bland, Geoff; Buongiorno, Maria Fabrizia; Ramirez, Carlos; Corrales, Ernesto; Alan, Alfredo; Alegria, Oscar; Diaz, David; Linick, Justin
2015-02-01
Technology advances in the field of small, unmanned aerial vehicles and their integration with a variety of sensor packages and instruments, such as miniature mass spectrometers, have enhanced the possibilities and applications of what are now called unmanned aerial systems (UAS). With such technology, in situ and proximal remote sensing measurements of volcanic plumes are now possible without risking the lives of scientists and personnel in charge of close monitoring of volcanic activity. These methods provide unprecedented, and otherwise unobtainable, data very close in space and time to eruptions, to better understand the role of gas volatiles in magma and subsequent eruption products. Small mass spectrometers, together with the world's smallest turbo molecular pump, have being integrated into NASA and University of Costa Rica UAS platforms to be field-tested for in situ volcanic plume analysis, and in support of the calibration and validation of satellite-based remote sensing data. These new UAS-MS systems are combined with existing UAS flight-tested payloads and assets, such as temperature, pressure, relative humidity, SO2, H2S, CO2, GPS sensors, on-board data storage, and telemetry. Such payloads are capable of generating real time 3D concentration maps of the Turrialba volcano active plume in Costa Rica, while remote sensing data are simultaneously collected from the ASTER and OMI space-borne instruments for comparison. The primary goal is to improve the understanding of the chemical and physical properties of emissions for mitigation of local volcanic hazards, for the validation of species detection and abundance of retrievals based on remote sensing, and to validate transport models.
NASA Astrophysics Data System (ADS)
Kuhn, C.; Butman, D. E.
2016-12-01
Many river-reservoir networks are already managed for ecological targets such as stream temperature regulation, but less is known about how management choices alter the quantity and composition of dissolved organic carbon as well as the concentration of dissolved carbon gases. Understanding these ecological impacts is critical to informing water resources management, especially in light of the global hydropower boom and the increased interest in dam removal in the United States. Here we present results from a field survey and remote sensing imagery analysis quantifying a suite of water quality variables. With this approach, we evaluate spatial differences in carbon signals above, and below eight mainstem dams located on the Columbia and Snake Rivers. Dissolved methane and carbon dioxide concentrations were in excess of atmospheric levels with occasional carbon dioxide undersaturation being observed in the Snake River. CH4 and CO2 δ13C values shifted between the mainstem and the tributaries reflecting changes in carbon sources and processes. Satellite-retrieved estimates of CDOM and chlorophyll-a were compared to in situ measurements to enable surface mapping of concentrations at broader spatial scales. Our technical approach blends cloud-based data fusion techniques and machine learning to link ground-collected observations to remote sensing imagery in order to produce spatially-explicit, cross-scale estimates of carbon dynamics in a large, highly regulated river system. These findings test the feasibility of coupling remote sensing with field-based measurements to observe the complex impacts of run-of-the river impoundments to aquatic carbon cycling.
Lee, Zhongping; Shang, Shaoling; Lin, Gong; Chen, Jun; Doxaran, David
2016-03-01
We evaluated three key components in modeling hyperspectral remote-sensing reflectance in the visible to shortwave-infrared (Vis-SWIR) domain of high-sediment-load (HSL) waters, which are the relationship between remote-sensing reflectance (R(rs)) and inherent optical properties (IOPs), the absorption coefficient spectrum of pure water (a(w)) in the IR-SWIR region, and the spectral variation of sediment absorption coefficient (a(sed)). Results from this study indicate that it is necessary to use a more generalized R(rs)-IOP model to describe the spectral variation of R(rs) of HSL waters from Vis to SWIR; otherwise it may result in a spectrally distorted R(rs) spectrum if a constant model parameter is used. For hyperspectral a(w) in the IR-SWIR domain, the values reported in Kou et al. (1993) provided a much better match with the spectral variation of R(rs) in this spectral range compared to that of Segelstein (1981). For a(sed) spectrum, an empirical a(sed) spectral shape derived from sample measurements is found working much better than the traditional exponential-decay function of wavelength in modeling the spectral variation of R(rs) in the visible domain. These results would improve our understanding of the spectral signatures of R(rs) of HSL waters in the Vis-SWIR domain and subsequently improve the retrieval of IOPs from ocean color remote sensing, which could further help the estimation of sediment loading of such waters. Limitations in estimating chlorophyll concentration in such waters are also discussed.
NASA Astrophysics Data System (ADS)
Katsuhama, N.; Ikeda, K.; Imai, M.; Watanabe, K.; Marpaung, F.; Yoshii, T.; Naruse, N.; Takahashi, Y.
2016-12-01
Since 2008, coffee leaf rust fungus (Hemileia vastatrix) has expanded its infection in Latin America, and early trimming and burning infected trees have been only effective countermeasures to prevent spreading infection. Although some researchers reported a case about the monitoring of coffee leaf rust using satellite remote sensing in 1970s, the spatial resolution was unsatisfied, and therefore, further technological development has been required. The purpose of this research is to develop effective method of discovering coffee leaf rust infected areas using satellite remote sensing. Annual changes of vegetation indices, i.e. Normalized Difference Vegetation Index (NDVI) and Modified Structure Insensitive Pigment Index (MSIPI), around Cuchumatanes Mountains, Republic of Guatemala, were analyzed by Landsat 7 images. Study fields in the research were limited by the coffee farm areas based on a previous paper about on site surveys in different damage areas. As the result of the analysis, the annual change of NDVI at the coffee farm areas with damages tended to be lower than those without damages. Moreover, the decline of NDVI appear from 2008 before the damage was reported. On the other hand, the change of MSIPI had no significant difference. NDVI and MSIPI are mainly related to the amount of chlorophyll and carotenoid in the leaves respectively. This means that the infected coffee leaves turned yellow without defoliation. This situation well matches the symptom of coffee leaf rust. The research concluded that the property of infected leaves turning yellow is effective to monitoring of infection areas by satellite remote sensing.
A Remote Sensing Approach for Urban Environmental Decision-Making: An Atlanta, Georgia Case Study
NASA Technical Reports Server (NTRS)
Quattrochi, Dale A.; Luvall, Jeffrey C.; Rickman, Douglas L.; Laymon, Charles A.; Estes, Maurice G., Jr.; Howell, Burgess F.; Arnold, James E. (Technical Monitor)
2002-01-01
Unquestionably, urbanization causes tremendous changes in land cover and land use, as well as impacting a host of environmental characteristics. For example, unlike natural surfaces, urban surfaces have very different thermal energy properties whereby they store solar energy throughout the day and continue to release it as heat well after sunset. This effect, known as the 'Urban Heat Island', serves as a catalyst for chemical reactions from vehicular exhaust and industrial activities leading to the deterioration in air quality, especially exacerbating the production of ground level ozone. 'Cool Community' strategies that utilize remote sensing data, are now being implemented as a way to reduce the impacts of the urban heat island and its subsequent environmental impacts. This presentation focuses on how remote sensing data have been used to provide descriptive and quantitative data for characterizing the Atlanta, Georgia metropolitan area - particularly for measuring surface energy fluxes, such as the thermal or "heat" energy that emanates from different land cover types across the Atlanta urban landscape. In turn, this information is useful for developing a better understanding of how the thermal characteristics of the city surface affect the urban heat island phenomena and, ultimately, air quality and other environmental parameters over the Atlanta metropolitan region. Additionally, this paper also provides insight on how remote sensing, with its synoptic approach, can be used to provide urban planners, local, state, and federal government officials, and other decision-makers, as well as the general public, with information to better manage urban areas as sustainable environments.
Nonlinear Photonic Systems for V- and W-Band Antenna Remoting Applications
2016-10-22
for commercial, academic, and military purposes delivering microwaves through fibers to remote areas for wireless sensing , imaging, and detection...academic, and military purposes, which use optical carriers to deliver microwave signals to remote areas for wireless sensing , imaging, and...and military purposes, which use optical carriers to deliver microwave signals to remote areas for wireless sensing , imaging, and detection
First results of ground-based LWIR hyperspectral imaging remote gas detection
NASA Astrophysics Data System (ADS)
Zheng, Wei-jian; Lei, Zheng-gang; Yu, Chun-chao; Wang, Hai-yang; Fu, Yan-peng; Liao, Ning-fang; Su, Jun-hong
2014-11-01
The new progress of ground-based long-wave infrared remote sensing is presented. The LWIR hyperspectral imaging by using the windowing spatial and temporal modulation Fourier spectroscopy, and the results of outdoor ether gas detection, verify the features of LWIR hyperspectral imaging remote sensing and technical approach. It provides a new technical means for ground-based gas remote sensing.
NASA Astrophysics Data System (ADS)
Chen, Xuelong; Su, Bob
2017-04-01
Remote sensing has provided us an opportunity to observe Earth land surface with a much higher resolution than any of GCM simulation. Due to scarcity of information for land surface physical parameters, up-to-date GCMs still have large uncertainties in the coupled land surface process modeling. One critical issue is a large amount of parameters used in their land surface models. Thus remote sensing of land surface spectral information can be used to provide information on these parameters or assimilated to decrease the model uncertainties. Satellite imager could observe the Earth land surface with optical, thermal and microwave bands. Some basic Earth land surface status (land surface temperature, canopy height, canopy leaf area index, soil moisture etc.) has been produced with remote sensing technique, which already help scientists understanding Earth land and atmosphere interaction more precisely. However, there are some challenges when applying remote sensing variables to calculate global land-air heat and water exchange fluxes. Firstly, a global turbulent exchange parameterization scheme needs to be developed and verified, especially for global momentum and heat roughness length calculation with remote sensing information. Secondly, a compromise needs to be innovated to overcome the spatial-temporal gaps in remote sensing variables to make the remote sensing based land surface fluxes applicable for GCM model verification or comparison. A flux network data library (more 200 flux towers) was collected to verify the designed method. Important progress in remote sensing of global land flux and evaporation will be presented and its benefits for GCM models will also be discussed. Some in-situ studies on the Tibetan Plateau and problems of land surface process simulation will also be discussed.
Research Status and Development Trend of Remote Sensing in China Using Bibliometric Analysis
NASA Astrophysics Data System (ADS)
Zeng, Y.; Zhang, J.; Niu, R.
2015-06-01
Remote sensing was introduced into China in 1970s and then began to flourish. At present, China has developed into a big remote sensing country, and remote sensing is increasingly playing an important role in various fields of national economic construction and social development. Based on China Academic Journals Full-text Database and China Citation Database published by China National Knowledge Infrastructure, this paper analyzed academic characteristics of 963 highly cited papers published by 16 professional and academic journals in the field of surveying and mapping from January 2010 to December 2014 in China, which include hot topics, literature authors, research institutions, and fundations. At the same time, it studied a total of 51,149 keywords published by these 16 journals during the same period. Firstly by keyword selection, keyword normalization, keyword consistency and keyword incorporation, and then by analysis of high frequency keywords, the progress and prospect of China's remote sensing technology in data acquisition, data processing and applications during the past five years were further explored and revealed. It can be seen that: highly cited paper analysis and word frequency analysis is complementary on subject progress analysis; in data acquisition phase, research focus is new civilian remote sensing satellite systems and UAV remote sensing system; research focus of data processing and analysis is multi-source information extraction and classification, laser point cloud data processing, objectoriented high resolution image analysis, SAR data and hyper-spectral image processing, etc.; development trend of remote sensing data processing is quantitative, intelligent, automated, and real-time, and the breadth and depth of remote sensing application is gradually increased; parallel computing, cloud computing and geographic conditions monitoring and census are the new research focuses to be paid attention to.
The U.S. Geological Survey Land Remote Sensing Program
,
2003-01-01
In 2002, the U. S. Geological Survey (USGS) launched a program to enhance the acquisition, preservation, and use of remotely sensed data for USGS science programs, as well as for those of cooperators and customers. Remotely sensed data are fundamental tools for studying the Earth's land surface, including coastal and near-shore environments. For many decades, the USGS has been a leader in providing remotely sensed data to the national and international communities. Acting on its historical topographic mapping mission, the USGS has archived and distributed aerial photographs of the United States for more than half a century. Since 1972, the USGS has acquired, processed, archived, and distributed Landsat and other satellite and airborne remotely sensed data products to users worldwide. Today, the USGS operates and manages the Landsats 5 and 7 missions and cooperates with the National Aeronautics and Space Administration (NASA) to define and implement future satellite missions that will continue and expand the collection of moderate-resolution remotely sensed data. In addition to being a provider of remotely sensed data, the USGS is a user of these data and related remote sensing technology. These data are used in natural resource evaluations for energy and minerals, coastal environmental surveys, assessments of natural hazards (earthquakes, volcanoes, and landslides), biological surveys and investigations, water resources status and trends analyses and studies, and geographic and cartographic applications, such as wildfire detection and tracking and as a source of information for The National Map. The program furthers these distinct but related roles by leading the USGS activities in providing remotely sensed data while advancing applications of such data for USGS programs and a wider user community.
NASA Technical Reports Server (NTRS)
Quattrochi, Dale A.; Luvall, Jeffrey C.
1998-01-01
Thermal Infrared (TIR) remote sensing data can provide important measurements of surface energy fluxes and temperatures, which are integral to understanding landscape processes and responses. One example of this is the successful application of TIR remote sensing data to estimate evapotranspiration and soil moisture, where results from a number of studies suggest that satellite-based measurements from TIR remote sensing data can lead to more accurate regional-scale estimates of daily evapotranspiration. With further refinement in analytical techniques and models, the use of TIR data from airborne and satellite sensors could be very useful for parameterizing surface moisture conditions and developing better simulations of landscape energy exchange over a variety of conditions and space and time scales. Thus, TIR remote sensing data can significantly contribute to the observation, measurement, and analysis of energy balance characteristics (i.e., the fluxes and redistribution of thermal energy within and across the land surface) as an implicit and important aspect of landscape dynamics and landscape functioning. The application of TIR remote sensing data in landscape ecological studies has been limited, however, for several fundamental reasons that relate primarily to the perceived difficulty in use and availability of these data by the landscape ecology community, and from the fragmentation of references on TIR remote sensing throughout the scientific literature. It is our purpose here to provide evidence from work that has employed TIR remote sensing for analysis of landscape characteristics to illustrate how these data can provide important data for the improved measurement of landscape energy response and energy flux relationships. We examine the direct or indirect use of TIR remote sensing data to analyze landscape biophysical characteristics, thereby offering some insight on how these data can be used more robustly to further the understanding and modeling of landscape ecological processes.
NASA Technical Reports Server (NTRS)
Tarnopolskiy, V. I.
1978-01-01
Widely used remote probing methods, and especially the multispectral method, for studying the earth from aerospace platforms necessitate the systematization and accumulation of data on the relationships between remote observations and measured parameters and characteristic properties and conditions of phenomena on the earth's surface. Data were presented on the optical characteristics of natural objects which arise during observations of these objects over a wide spectral interval which encompasses solar radiation reflected by the object as well as the object's inherent thermal radiation. The influence of the earth's atmosphere on remote measurements and several problems in simulation and calculation are discussed.
Use of Remote Sensing for Decision Support in Africa
NASA Technical Reports Server (NTRS)
Policelli, Frederick S.
2007-01-01
Over the past 30 years, the scientific community has learned a great deal about the Earth as an integrated system. Much of this research has been enabled by the development of remote sensing technologies and their operation from space. Decision makers in many nations have begun to make use of remote sensing data for resource management, policy making, and sustainable development planning. This paper makes an attempt to provide a survey of the current state of the requirements and use of remote sensing for sustainable development in Africa. This activity has shown that there are not many climate data ready decision support tools already functioning in Africa. There are, however, endusers with known requirements who could benefit from remote sensing data.
NASA Astrophysics Data System (ADS)
Tan, Songxin; Narayanan, Ram M.
2004-04-01
The University of Nebraska has developed a multiwavelength airborne polarimetric lidar (MAPL) system to support its Airborne Remote Sensing Program for vegetation remote sensing. The MAPL design and instrumentation are described in detail. Characteristics of the MAPL system include lidar waveform capture and polarimetric measurement capabilities, which provide enhanced opportunities for vegetation remote sensing compared with current sensors. Field tests were conducted to calibrate the range measurement. Polarimetric calibration of the system is also discussed. Backscattered polarimetric returns, as well as the cross-polarization ratios, were obtained from a small forested area to validate the system's ability for vegetation canopy detection. The system has been packaged to fly abroad a Piper Saratoga aircraft for airborne vegetation remote sensing applications.
Remote atmospheric probing by ground to ground line of sight optical methods
NASA Technical Reports Server (NTRS)
Lawrence, R. S.
1969-01-01
The optical effects arising from refractive-index variations in the clear air are qualitatively described, and the possibilities are discussed of using those effects for remotely sensing the physical properties of the atmosphere. The effects include scintillations, path length fluctuations, spreading of a laser beam, deflection of the beam, and depolarization. The physical properties that may be measured include the average temperature along the path, the vertical temperature gradient, and the distribution along the path of the strength of turbulence and the transverse wind velocity. Line-of-sight laser beam methods are clearly effective in measuring the average properties, but less effective in measuring distributions along the path. Fundamental limitations to the resolution are pointed out and experiments are recommended to investigate the practicality of the methods.
Remote sensing with unmanned aircraft systems for precision agriculture applications
USDA-ARS?s Scientific Manuscript database
The Federal Aviation Administration is revising regulations for using unmanned aircraft systems (UAS) in the national airspace. An important potential application of UAS may be as a remote-sensing platform for precision agriculture, but simply down-scaling remote sensing methodologies developed usi...
Remote sensing for cotton farming
USDA-ARS?s Scientific Manuscript database
Application of remote sensing technologies in agriculture began with the use of aerial photography to identify cotton root rot in the late 1920s. From then on, agricultural remote sensing has developed gradually until the introduction of precision farming technologies in the late 1980s and biotechno...
Remote sensing for mined area reclamation: Application inventory
NASA Technical Reports Server (NTRS)
1971-01-01
Applications of aerial remote sensing to coal mined area reclamation are documented, and information concerning available data banks for coal producing areas in the east and midwest is given. A summary of mined area information requirements to which remote sensing methods might contribute is included.
NASA Technical Reports Server (NTRS)
Epps, J. W.
1973-01-01
Current references were surveyed for the application of remote sensing to traffic and transportation studies. The major problems are presented that concern traffic engineers and transportation managers, and the literature references that discuss remote sensing applications are summarized.
What does remote sensing do for ecology?
NASA Technical Reports Server (NTRS)
Roughgarden, J.; Running, S. W.; Matson, P. A.
1991-01-01
The application of remote sensing to ecological investigations is briefly discussed. Emphasis is given to the recruitment problem in marine population dynamics, the regional analysis of terrestrial ecosystems, and the monitoring of ecological changes. Impediments to the use of remote sensing data in ecology are addressed.
REVIEW OF METHODS FOR REMOTE SENSING OF ATMOSPHERIC EMISSIONS FROM STATIONARY SOURCES
The report reviews the commercially available and developing technologies for the application of remote sensing to the measurement of source emissions. The term 'remote sensing technology', as applied in the report, means the detection or concentration measurement of trace atmosp...
75 FR 26919 - Charter Renewals
Federal Register 2010, 2011, 2012, 2013, 2014
2010-05-13
...: Notice of Renewal of the Advisory Committee on Commercial Remote Sensing Charter. SUMMARY: In accordance... Commercial Remote Sensing (ACCRES) is in the public interest in connection with the performance of duties... Oceans and Atmosphere on matters relating to the U.S. commercial remote-sensing industry and NOAA's...
75 FR 52307 - Submission for OMB Review; Comment Request
Federal Register 2010, 2011, 2012, 2013, 2014
2010-08-25
...: National Oceanic and Atmospheric Administration (NOAA). Title: Licensing of Private Remote-Sensing Space... National Satellite Land Remote Sensing Data Archive; 3 hours for the submission of an operational quarterly... and Uses: NOAA has established requirements for the licensing of private operators of remote-sensing...
Atmospheric Correction Algorithm for Hyperspectral Remote Sensing of Ocean Color from Space
2000-02-20
Existing atmospheric correction algorithms for multichannel remote sensing of ocean color from space were designed for retrieving water-leaving...atmospheric correction algorithm for hyperspectral remote sensing of ocean color with the near-future Coastal Ocean Imaging Spectrometer. The algorithm uses
Target detection method by airborne and spaceborne images fusion based on past images
NASA Astrophysics Data System (ADS)
Chen, Shanjing; Kang, Qing; Wang, Zhenggang; Shen, ZhiQiang; Pu, Huan; Han, Hao; Gu, Zhongzheng
2017-11-01
To solve the problem that remote sensing target detection method has low utilization rate of past remote sensing data on target area, and can not recognize camouflage target accurately, a target detection method by airborne and spaceborne images fusion based on past images is proposed in this paper. The target area's past of space remote sensing image is taken as background. The airborne and spaceborne remote sensing data is fused and target feature is extracted by the means of airborne and spaceborne images registration, target change feature extraction, background noise suppression and artificial target feature extraction based on real-time aerial optical remote sensing image. Finally, the support vector machine is used to detect and recognize the target on feature fusion data. The experimental results have established that the proposed method combines the target area change feature of airborne and spaceborne remote sensing images with target detection algorithm, and obtains fine detection and recognition effect on camouflage and non-camouflage targets.
NASA Astrophysics Data System (ADS)
Ding, Peng; Zhang, Ye; Deng, Wei-Jian; Jia, Ping; Kuijper, Arjan
2018-07-01
Detection of objects from satellite optical remote sensing images is very important for many commercial and governmental applications. With the development of deep convolutional neural networks (deep CNNs), the field of object detection has seen tremendous advances. Currently, objects in satellite remote sensing images can be detected using deep CNNs. In general, optical remote sensing images contain many dense and small objects, and the use of the original Faster Regional CNN framework does not yield a suitably high precision. Therefore, after careful analysis we adopt dense convoluted networks, a multi-scale representation and various combinations of improvement schemes to enhance the structure of the base VGG16-Net for improving the precision. We propose an approach to reduce the test-time (detection time) and memory requirements. To validate the effectiveness of our approach, we perform experiments using satellite remote sensing image datasets of aircraft and automobiles. The results show that the improved network structure can detect objects in satellite optical remote sensing images more accurately and efficiently.